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Abstract—Recent advances in Vector Oblivious Linear Eval-
uation (VOLE) protocols have enabled constant-round, fast,
and scalable (designated-verifier) zero-knowledge proofs, sig-
nificantly reducing prover computational cost. Existing proto-
cols, such as QuickSilver [CCS’21] and LPZKv2 [CCS’22],
achieve efficiency with prover costs of 4 multiplications in
the extension field per AND gate for Boolean circuits, with
one multiplication requiring a O(κ log κ)-bit operation where
κ = 128 is the security parameter, and 3-4 field multiplications
per multiplication gate for arithmetic circuits over a large field.

We introduce JesseQ, a suite of two VOLE-based protocols:
JQv1 and JQv2, which advance state of the art. JQv1 requires
only 2 scalar multiplications in an extension field per AND
gate for Boolean circuits, with one scalar needing a O(κ)-
bit operation, and 2 field multiplications per multiplication
gate for arithmetic circuits over a large field. In terms of
communication costs, JQv1 needs just 1 field element per gate.
JQv2 further reduces communication costs by half at the cost
of doubling the prover’s computation.

Experiments show that, compared to the current state of
the art, both JQv1 and JQv2 achieve at least 3.9× improvement
in the online phase for Boolean circuits. For large field circuits,
JQv1 has a similar performance, while JQv2 offers a 1.3×
improvement. Additionally, both JQv1 and JQv2 maintain the
same communication cost as the current state of the art. No-
tably, on the cheapest AWS instances, JQv1 can prove 9.2 tril-
lion AND gates (or 5.8 trillion multiplication gates over a 61-bit
field) for just one US dollar. JesseQ excels in applications like
inner products, matrix multiplication, and lattice problems,
delivering 40%-200% performance improvements compared
to QuickSilver. Additionally, JesseQ integrates seamlessly with
the sublinear Batchman framework [CCS’23], enabling further
efficiency gains for batched disjunctive statements.

1. Introduction

Constant-round zero-knowledge proofs (ZKPs) based on
vector oblivious linear evaluation (VOLE) [1], [2], [3], [4],
[5] have recently gained notable attention for their effi-
ciency and scalability. State-of-the-art implementations [6],
[7] can prove tens of millions of gates per second, and
scale smoothly to prove trillions of gates. Additionally, they
significantly reduce the prover’s computational overhead
compared to all existing succinct zero-knowledge proof sys-
tems. Specifically, [7] demonstrates that VOLE-based ZKPs
are at least 3 ∼ 10× faster than other existing constant-

round ZKPs (e.g., Groth16 [8], Virgo [9], and Cerberus [10])
when proving one million gates.

Constant-round VOLE-based ZKPs The performance of
existing constant-round VOLE-based ZKPs is shown in Ta-
ble 1. Among the ZKPs in this paradigm, Line Point Zero
Knowledge (LPZK) [13] reduced communication and, for
the first time, reached the milestone of approximately 1 ele-
ment per gate for large field arithmetic circuits 1. It was later
improved by QuickSilver [6] to support any field. Mean-
while, in another direction of improvement, LPZKv2 [7]
halves LPZK’s communication and also reduces its com-
putational cost. In these constructions, the communication
cost is linear to the circuit size. AntMan [14] gave the first
construction with sublinear communication at O(|C|3/4),
where |C| is the circuit size for an arithmetic circuit over
a large field. While the computational cost remains fairly
efficient in practice, it incurs an overhead of O(log |C|) in
computation, i.e., the overall cost is quasilinear in |C|.

In terms of computational cost, QuickSilver and LPZKv2
delivered the best performance for the Boolean circuit and
arithmetic circuit over large fields, respectively. It is also
worth noting that there is a large difference in performance
between VOLE-based ZKPs for circuits over any field versus
their counterparts that work over large fields only.

Along another direction, several works [12], [15] im-
proves constant-round VOLE-based ZKPs for circuits with
specific structure, i.e., circuit representing disjunctive state-
ments of the form C1(w) = 1∨ C2(w) = 1 · · · ∨ CB(w) = 1
for B different subcircuits (known as branches). The state-
of-the-art Batchman [15] achieves sublinear communication
and computation for batched disjunctions. It can be viewed
as a framework that can be instantiated using constant-round
VOLE-based ZKPs as a blackbox to handle multiplication.

Motivation We consider it is worthwhile to investigate the
design of constant-round VOLE-based ZKPs for any field
with better communication and computation performance.
Therefore, this work aim to address the following question:

Can we develop a constant-round, practical and scal-
able proof system for circuits supporting any field
that outperforms existing constant-round VOLE-based
ZKPs? In addition, can it achieve better concrete perfor-
mance when it is used together with the recent sublinear
framework for batched disjunction statements?

1. The random oracle model version. The information-theoretic construc-
tion requires approximately 2 elements per gate.



TABLE 1. COMPARISON TABLE FOR CONSTANT-ROUND (S)VOLE-BASED ZKPS IN THE ONLINE PHASE

Boolean Circuit Arithmetic Circuit

Size Speed Size Speed

Wolverine [11] 7 1.25 M/sec 4 0.96 M/sec
Mac‘n‘Cheese [12] − − 3 3.6 M/sec
IT-LPZK [13] − − 2 + 1

t
19.6 M/sec

QuickSilver [6] 1 8.6 M/sec 1 7.8 M/sec
IT-LPZKv2 [7] − − 1 + 1

t
21.8 M/sec

ROM-LPZKv2 [7] − − 1
2

9.8 M/sec
AntMan [14] − − sublinear 7.01 M/sec

JQv1 1 64.1 M/sec 1 23.3 M/sec
JQv2 1

2
34.2 M/sec 1

2
13.7 M/sec

This table compares the prover cost of our works (JQv1 and JQv2) with prior related work using data reported in their studies and running experiments
on the same hardware, except for AntMan, which uses a larger instance.
Size represents the number of field elements to send for each multiplication gate, except for AntMan, which has sublinear communication. Speed
represents the number of multiplication gates that can be executed per second with unlimited bandwidth and a single thread, except for AntMan,
which uses a 1 Gbps network bandwidth and runs on four threads. Additionally, unlike other works that set the prime p = 261 − 1 for the arithmetic
circuit, AntMan requires p to be set as a smaller prime 259 − 228 + 1 due to the properties of the homomorphic encryption it uses.

1.1. Contributions

We introduce JesseQ (JQv1 and JQv2), a new design of
constant-round VOLE-based ZKPs for the circuit over any
field in the preprocessing model, as in LPZKv2. They are
applicable to arbitrary and layered circuits, respectively, with
better online performance2. The comparisons are shown in
Table 1. As in previous work, we focus on comparing prover
speeds in our analysis. For any field circuit, both the prover
and verifier in JQv1 and JQv2 require fewer operations than
the state-of-the-art. The only exception is that the verifier in
JQv1 requires one more multiplication per multiplication
gate than LPZKv2 for large field circuits. Nonetheless, our
protocols retain their advantage by supporting any field.
JQv1 For Circuit over Any Field. We introduce JQv1,
an efficient constant-round VOLE-based ZKP for arbitrary
arithmetic circuits over any field, with a communication
cost of one field element per multiplication gate. For large
field circuits, the prover in JQv1 requires only two field
multiplications per multiplication gate, compared to three
in the state-of-the-art IT-LPZKv2, a version of the LPZKv2
protocol in [7] designed for arbitrary large field circuits. For
Boolean circuits, JQv1 requires two scalar multiplications
(e.g., a ∈ F2, b ∈ F2κ , a · b) in a κ-bit extension field per
AND gate, where κ = 128 is the security parameter, while
QuickSilver requires four multiplications in the extension
field (e.g., a ∈ F2κ , b ∈ F2κ , a · b). The details of theoretical
comparison are given in Section 3.3.
JQv2 for Layered Circuit over Any Field. We intro-
duce JQv2, an efficient constant-round VOLE-based ZKP
supporting layered circuits3 over any field with a commu-
nication cost of 1

2 field element per multiplication gate.
Compared to ROM-LPZKv2, a version of the LPZKv2 pro-

2. Following LPZKv2, we report the cost of the online phase when
generating the proof after the witness is known, assuming all preprocessing
is complete. Section 6.1 provides a breakdown of the preprocessing time.

3. Each gate is assigned to a layer k, with the inputs coming from the
outputs of gates in layer k − 1.

tocol in [7] designed for layered circuits over large fields
with the same communication cost, JQv2 reduces prover
computation from an average of 8.5 to 4 field multiplications
per multiplication gate. For Boolean circuits, even though
the prover in JQv2 requires two additional multiplications in
the extension field compared to JQv1, it still uses two fewer
than QuickSilver per multiplication gate. Our approach can
be applied to general circuits with varying communication
savings. Notably, for random circuits discussed in Sec-
tion 1.2, we achieve about a 38% communication reduction
compared to JQv1. The details of theoretical comparison are
given in Section 4.1.
Efficient Implementations for JQv1 and JQv2. We im-
plement JQv1 and JQv2 based on the publicly available
implementation of QuickSilver [16]. The experiment results
show that when running on the cheapest AWS instances,
our protocol requires only one US cent to verify 92 billion
AND gates (or 58 billion multiplication gates over a 61-
bit field). Furthermore, compared to QuickSilver, in the
online phase, JQv1 and JQv2 yield approximately a 7×
and 3.9× improvement in computation for Boolean circuits,
respectively, and at least 2.9× and 1.7× for arithmetic
circuits, respectively, even though the total running time
(preprocessing + online) of JQv1 increases by 21% for
Boolean circuits and 40% for arithmetic circuits. Although
JQv1 has the similar performance as IT-LPZKv2, JQv2
achieves 1.3× improvement compared to ROM-LPZKv2.
The detailed performance of our protocols and the com-
parisons are provided in Section 6.1.
Practical Applications. Our protocols can be effectively
applied to practical applications, including proving inner
product, matrix multiplication, and proving knowledge of
solutions to lattice problems (e.g., short integer solution
(SIS) problems). We have also implemented those appli-
cations. Experimental results show that, compared to those
applications in QuickSilver, our protocol has the same com-
munication complexity and achieves around 2× improve-
ment in computation for proving inner products, a 40%



improvement for proving matrix multiplication, and at least
a 2× improvement for proving knowledge of solutions to
SIS problems. We provide the details in Section 5 and 6.2.
Sublinear Framework Extensions. We apply the sublinear
framework Batchman for batched disjunctive statements to
JQv1 and JQv2. Experiments show that Batchman based on
our designs achieves the improvement at least from 1.1× to
2.2×, compared to Batchman based on QuickSilver. The
comparisons are shown in Section 6.3.

1.2. Constant-round VOLE-Based ZKPs

We first review the relevant background of prior works
before presenting a technical overview of our protocols.
1.2.1. Information-Theoretic Message Authentication
Codes and VOLE. Most VOLE-based ZKPs utilize the
VOLE correlation as an information-theoretic message au-
thentication code (IT-MAC) [17], [18], [19], [20], enabling
P to commit wire values to V . Let Fp be a finite field,
x ∈ Fp be a global key known to V , and u ∈ Fp known
to P . An IT-MAC commitment to u consists of a pair of
values, m and k, known by P and V respectively, such that
m = k − u · x. Additionally, to open the commitment, P
sends (m,u) to V , who checks if m = k−u ·x. We denote
the commitment to u under the global key x as [u]. We also
refer [u] as an authenticated value, with m being the MAC
tag of u. Note that this MAC is information-theoretically
hiding and binding.

This MAC is also homomorphic, allowing P and V to
compute [a+b] = [a]+[b]. Additionally, we define the MAC
for a public constant c as (m := 0, c), (k := c ·x, x), which
allows for any affine operation from the committed values.

The VOLE functionality allows P and V to construct a
vector of authenticated random values. After invocation, P
receives two vectors of random field elements (m,u), and V
obtains a global key x and a vector k such that k = m+u·x.
This process effectively authenticates the random vector [u].

A commitment to a random vector [u] can be easily
transformed into a commitment to a vector [w] when [w] is
known to P . To achieve this, P sends d := w−u to V . V
then updates k by setting it to k + d · x.
1.2.2. The Framework of VOLE-based ZKPs. Most
constant-round VOLE-based ZKPs follow the “commit-and-
prove” framework and include a preprocessing phase to
enhance efficiency. Specifically, they consist of the following
phases.

1) (Preprocessing) P and V invoke the VOLE func-
tionality to obtain commitments to a vector of
random values [u], which will be consumed during
the online phase.

2) (Online Phase, Commit) P commits all wire values
in the circuit to V . Specifically, for the circuit’s
input wires and the output wires of multiplication
gates, P sends d := w − u to V to transform
the commitments of random values generated in
step 1 to the commitments of wire values. Due
to the additive homomorphism of the IT-MAC,

parties can locally compute the commitment for the
output wire of the addition gate when given the
commitments of its input wires. The total number
of field elements sent is equal to the sum of the
number of multiplication gates and the number of
input wires.

3) (Online Phase, Prove [Correct Multiplication]) P
and V cooperate to check [w] has been correctly
computed for each output wire of multiplication
gates.

4) (Online Phase,Prove [Correct Output]) P sends the
MAC tag m of the circuit’s output wire to V . V
then verifies that k = m+ x when the output wire
w is expected to be 1.

The main difference among existing constant-round VOLE-
based ZKPs lies in step 3.
1.2.3. Correct Multiplication: LPZK and QuickSilver.
LPZK [13], and subsequently QuickSilver [6], use a similar
idea to check correct multiplication. Specifically, we will
review how P proves to V that a multiplication gate is
evaluated correctly after its wire values have been commit-
ted. Consider a multiplication gate with input wires wα, wρ,
and an output wire wυ. Given the committed wire values
[wα], [wρ], [wυ], P needs to convince V that wα ·wρ = wυ.

The idea is to interpret the IT-MACs as linear poly-
nomials in X . Specifically, let pi(X) = mwi + wi · X
for i ∈ {α, ρ, υ}. Then consider the degree-2 polynomial
f(X) = pα(X) ·pρ(X)−X ·pυ(X). V knows its evaluation
at x, given by f(x) = kwα · kwρ − x · kwυ . Moreover,
P knows its coefficients. To understand this, note that
f(X) = a0 + a1 · X + a2 · X2, where a0 = mwα · mwρ ,
a1 = wα ·mwρ +wρ ·mwα −mwυ , and a2 = wα ·wρ−wυ

known to P .
More importantly, f(X) is a linear polynomial if and

only if wα · wρ = wυ, indicating that the multiplication is
correctly evaluated. To prove this, P can send values a0 and
a1 to V , who then checks if a0+a1 ·x

?
= kwα

·kwρ
−x ·kwυ

.
However, this would require sending two field elements for
each gate, so instead, a batch check is conducted.

Here, we review the batch check of QuickSilver. There
are L linear polynomials fj(X), corresponding to L multi-
plication gates, for j = 1 to L. V knows the evaluations at x
of these polynomials, while P knows their coefficients. To
perform the batch check, V first sends a random challenge
χ to P , who computes F (X) :=

∑L
j=1 fj(X) · χj =

A + B · X . P then sends A and B to V , who checks if
A + B · x ?

=
∑L

j=1 fj(x) · χj . To achieve zero-knowledge,
additional VOLE correlations are required to mask A and
B. We omit such detail here.

The above is adequate for arithmetic circuits over large
fields. However, when the field size is small, such as
Fp = F2 (i.e., Boolean circuit), security does not hold. One
vulnerability is that the global key x can be guessed with
a non-negligible probability, allowing a cheating prover to
forge the IT-MAC for any value. To address this, QuickSilver
makes use of a variant of VOLE known as subfield VOLE
(sVOLE). The sVOLE functionality generates correlated



randomness in the form k = m + u · x, where u ∈ Fn
p

and k,m ∈ Fn
pr , and x ∈ Fpr .

1.2.4. Correct Multiplication: LPZKv2. LPZKv2 im-
proves LPZK through two technical ideas. First, the IT-
MACs are redefined by placing the witness value in m
instead of u. In this setup, when m is authenticated, P holds
u, and V holds k and x, satisfying k = m+u·x. This change
allows V to save one multiplication per gate, as it can update
k with k+d after receiving d := w−m from P , rather than
using k + d · x.

The second one is using quadratically certified VOLE
(qVOLE), which generates additional correlated random-
ness, to further enhance the efficiency of the online phase.
For example, in addition to ki = mi+ui ·x for i ∈ {α, ρ, υ},
the qVOLE functionality also generates ky = my + uy · x
where uy = uα · uβ . We will briefly review how qVOLE
contributes to reducing complexity.

Assume P needs to prove that wα·wρ = wυ. In LPZKv2,
the committed value is placed in the constant term, meaning
ki = wi + ui · x for i ∈ {α, ρ, υ}. Additionally, during
the preprocessing phase, P and V invoke qVOLE to obtain
(my, uy) and (ky, x) respectively, such that ky = my+uy ·x
where uy = uα · uρ.

Consider the degree-2 polynomial f(X) = pα(X) ·
pρ(X) − pυ(X) − X · py(X). V knows its evaluation at
x, given by f(x) = kwα · kwρ − kwυ − x · ky. Moreover,
P knows its coefficients. To understand this, note that
f(X) = a0 + a1 ·X + a2 ·X2, where a0 = wα · wρ − wυ,
a1 = wα ·uwρ +wρ ·uwα −uυ−my, and a2 = uα ·uρ−uy

known to P . Since uy = uα · uρ, a2 = 0. Furthermore,
a0 = 0 if and only if wα · wρ = wυ. Then, P can send a1
to V who checks if a1 · x = kwα · kwρ − kwυ − x · ky.

The batch check of LPZKv2 operates as follows. Assume
P needs to prove that fj(X)/X = aj,1 for j = 1 to L are all
constant polynomials such that V knows their evaluations at
x. P computes and sends A =

∏L
j=1 aj,1 to V who checks

if A =
∏L

j=1 fj(x)/x. Roughly speaking, the batch check
relies on the fact that a set of polynomials are all constant
if and only if their product is a constant polynomial.

Additionally, LPZKv2 offers additional optimizations for
a broad class of circuits described in Section 1.3.2. The key
observation is that the expression g(x) = pα(x) · pρ(x) −
x · py(x) = a0 + a1 · x where a0 = wα · wρ, a1 = wα ·
uρ + wρ · uα −my, already represents an authentication of
wα · wρ without requiring any communication at all.

1.3. Technical Overview of Our Construction

In this section, we provide the intuition behind JesseQ.
We utilize quadratic subfield VOLE (qsVOLE) to enjoy the
advantage of both QuickSilver and LPZKv2. Furthermore,
we design a more efficient multiplication check that is
suitable to be used with qsVOLE. Unlike existing methods
that rely on degree-2 polynomials, our multiplication check
uses degree-1 polynomials, making it more efficient. We
have also designed a more efficient batch check.
1.3.1. JQv1 For Circuit over Any Field. Consider a mul-
tiplication gate with input wires (wα, wρ) and output wire

wυ. During preprocessing, two parties first obtain random
authenticated values [uα], [uρ], [uυ], alongside [y = uα · uρ]
generated via quadratic sVOLE (qsVOLE). After P sending
di := wi − ui for i ∈ {α, ρ, υ}, two parties only computes
[wυ] = [uυ] + dυ.

Given linear polynomials pi(X) = mui
+ ui · X for

i ∈ {α, ρ}, pυ(X) = mwυ
+wυ ·X , and py(X) = my+y·X ,

we define the degree-1 polynomial f(X) as

dρ · pα(X) + dα · pρ(X) + py(X) + dρ · dα ·X − pv(X)

= a0︸︷︷︸
dρ·muα+dα·muρ+my−mwυ

+ a1︸︷︷︸
(uα+dα)·(uρ+dρ)−wυ

·X

whose coefficients are held by P , and evaluation at x is
held by V . If and only if the multiplication gate is evaluated
correctly, we have a1 = (uα+dα)·(uρ+dρ)−wυ = wαwρ−
wυ = 0, meaning that f(X) is a constant polynomial. While
P can send a0 to V to check if a0

?
= f(x), this would

necessitate transmitting one element per multipication gate.
We also design a way to batch check that a set of poly-

nomials are constant polynomials. Unlike previous work,
our batch checking utilizes a hash function H (modeled as a
random oracle). Specifically, to prove that fj(X) for j = 1
to L are all constant polynomials (= a0,j), P computes
and sends h = H(a0,1||a0,1|| · · · ||a0,L) to V , who checks if
h

?
= H(f1(x)||f2(x)|| · · · ||fL(x)).

Like LPZKv2 [7], our result can extend from arithmetic
circuits with fan-in 2 addition and multiplication gates to
circuits with arbitrary degree-2 polynomial gates. For more
details, please refer to Section 3.

Remarks: We would like to highlight that our definition
of degree-1 f(X) leads to significant savings for Boolean
circuit. Notably, the computation of f(X) avoids the mul-
tiplication of extension field elements. In Boolean circuit,
the scalar multipication (e.g.,dα · muρ

; dα ∈ F2,muρ
∈

F2κ) is more efficient than the multiplication (e.g.,mwρ
·

mwα
;mwρ

,mwα
∈ F2

2κ) in the extension fied.
Our batch checking is also more efficient than existing

approaches. The batch checking in QuickSilver and LPZKv2
requires three multiplications over Fpr and approximately
one multiplication over Fp when p is large, respectively,
per multiplication gate. Utilizing hash function for batch
checking is desirable as it yields better concrete perfor-
mance. For instance, on an Amazon EC2 m5.2xlarge in-
stance, processing 10 million 61-bit or 128-bit field elements
using BLAKE3 [21] is at least twice as fast as performing
10 million multiplications in the same 61-bit or 128-bit
field. A comprehensive performance comparison between
multiplication and hashing can be found in Section 6.4.
1.3.2. JQv2 for Layered Circuit over Any Field. JQv2
reduces the amortized number of field elements sent by P
per multipication gate to 1

2 in the layered circuit. This is
achieved through a similar observation to LPZKv2:

g(X) = dρ · pα(X) + dα · pρ(X) + py(X) + dρ · dα ·X
= a0︸︷︷︸

dρ·muα+dα·muρ+my

+ a1︸︷︷︸
(uα+dα)·(uρ+dρ)

·X



already represents an authentication of wα · wρ without re-
quiring any communication at all. For simplicity, we assume
the even layer has more wires than the odd layers here.
Specifically, we allow P and V to directly compute [wυ] for
the gate’s output in the even layers using values associated
with the input wires, eliminating the need for P send dυ to
V . For gates in odd layers, however, P still sends dυ to V
to compute [wυ]. Our checking method in JQv1 can not be
applied here since values associated with the inputs of odd
layers (outputs of even layers) are not the sum of random
u values and d values known to both parties. Therefore,
given authenticated values of input and output wires, we
perform the similar check to QuickSilver, which is based on
the evaluation of degree-2 polynomial at x. We defer the
details to Section 4.
Applied to Arbitrary Circuits. For a broad class of non-
layered circuits, substantial savings are also possible. For
example, as described in [7], in a random circuit C composed
entirely of multiplication gates with inputs chosen randomly
from previous outputs, one can achieve an approximately
38% reduction in communication.
Compared with Polynomial-based ZK. QuickSilver also
offers a ZK protocol for polynomial sets, replacing the
entire circuit with a single polynomial of degree d, requiring
Iin + dr communication. For layered circuits, introducing
gates representing polynomials of degree up to 2c can
remove gates to those at layers i mod c. This reduces
communication to ≤ |Iin|+ |C|/c+2cr, but requires at least
2cr computation per gate. Our approach, similar to LPZKv2,
optimizes online phase and aligns with the informal defini-
tion of the gate-by-gate paradigm.

1.4. Discussion

The main advantage of constant-round VOLE-based pro-
tocols is their significant reduction in prover computation
compared to protocols like Virgo and zk-SNARKs, though
they incur linear communication costs relative to circuit size.
Thus, VOLE-based protocols generally outperform other ZK
protocols in fast network environments or where computa-
tional costs are critical.

Cloud platforms like AWS charge for computational
resources but not for intra-platform communication, render-
ing communication costs irrelevant unless they drastically
impact application feasibility. Hence, the cost is primarily
determined by computational demands. Additionally, with
dynamic pricing—higher rates during peak times and dis-
counts for off-peak or flexible usage of spare computing
power—these platforms incentivize the adoption of online-
offline models, promoting a shift of computations to the
offline phase to capitalize on cost efficiencies.
Limitation. Similar to LPZKv2 [7], our protocol requires
a more expensive preprocessing phase that includes the
invocation of qsVOLE. We can instantiate the protocol in [7]
for the large field, which has sublinear communication costs
and relies on the ring-LPN based pseudorandom correlation
generators in [22]. However, for the binary or small fields,
we adopt a QuickSilver-based instantiation, requiring a lin-

ear amount of communication (efficiently pushing at least
one-third of the computation into the offline phase).

1.5. Related Works

The construction provided by AntMan [14] is the first to
achieve sublinear communication, but it comes with a com-
putational overhead of O(log |C|). On the other hand, In-
teractive Line-Point Zero-Knowledge (ILPZK) [23] achieves
sublinear communication with linear computation, but it has
a round complexity of O(d logS), where d represents the
depth of the circuit and S is the number of gates. Unlike
QuickSilver and LPZKv2, which only introduce extra mul-
tiplications beyond circuit evaluation, ILPZK’s computation
is dominated by the sum-check protocol. Additionally, rather
than adopting the streamlined approaches used in other
works (e.g. [6], [7]), both AntMan and ILPZK process wires
in batches. In this work, we focus on constant-round VOLE-
based ZKPs that are streamable.

Recently, Baum et al. [24] introduces a method known
as VOLE-in-the-head, which can upgrade the VOLE-based
ZKPs to support public verifiability. They give the con-
struction based on the checking method in QuickSilver to
guarantee the multipication gate is correctly evaluated. Our
current focus is on providing a more efficient checking
method, while deferring how to apply the technique to make
our protocols publicly verifiable in our further work.

2. Preliminaries

Let κ and ϵ denote the computational and statistical
security parameters, respectively. Let x

R←− F denote that
sampling x uniformly at random from a finite set F , [n]
denote a set {1, · · · , n}, and [a, b] denote a set {a, · · · , b}
where n, a, b ∈ N. We also abuse the notation [u] to denote
the authenticated value where u ∈ Fp. The specific meaning
should be clear from the context. For the column vector with
n entries, we represent it as a set {xαi

}i∈[n] or the bold letter
x where αi denotes the index of the element in x.

Let Fp be a finite field and Fpr its extension field, such
that Fpr ∼= Fp[X]/f(X), where p ≥ 2 is a prime or a power
of a prime, r ≥ 1 is an integer, and f(X) is a fixed monic
irreducible polynomial of degree r. Every element w ∈ Fpr

can be uniquely represented as w =
∑

i∈[r] ai ·Xi−1, where
each ai ∈ Fp. When elements from both Fp and Fpr appear
in the same arithmetic expression, it is understood that
elements of Fp are viewed as polynomials in Fpr with only
constant terms. A circuit C over a field Fp is defined by a
set of input wires Iin and a list of gates, each represented
as (fj , Ij , υj). Here, j is the gate index in gate indices set
G, fj is a degree-2 polynomial acting on the input wires of
the gate, Ij contains the indices of the gate’s input wires. In
this case, fj = gj,2+ gj,1+ gj,0 where gj,2 is homogeneous
polynomial of degree 2, gj,1 is homogeneous polynomial
of degree 1, and gj,0 denotes the constant. The index υj
represents the gate’s output wire. For example, given the
input indices Ij = {α, ρ, β}, fj = wυj

= wα ·wρ +wβ + c
where gj,2 = wα · wρ, gj,1 = wβ , and gj,0 = c.



Initialize Upon receiving (init) from P and V , Fp,r
ext-sVOLE

works as follows,

• If V is honest, sample x
R←− Fpr . Otherwise, waits

for x from the adversary. Fp,r
ext-sVOLE stores x and

sends it to V , and ignore all subsequent (init)
commands.

Extension On input (extend, n) from P and V , Fp,r
ext-sVOLE

works as follows,

• If V is honest, sample k
R←− Fn

pr . Otherwise,
receive k from the adversary.

• If P is honest, sample u
R←− Fn

p and compute
m := k−u ·x ∈ Fn

pr . Otherwise, waits for u,m
from the adversary, and then recompute k := m+
u · x ∈ Fn

pr .
• Output k to V and output u,m to P .

Vector Oblivious Polynomial Evaluation On input
(VOPE, d) from P and V , Fp,r

ext-sVOLE works as follows,

• If V is honest, sample K
R←− Fpr . Otherwise,

receive K ∈ Fpr from the adversary.
• If P is honest, sample Mi

R←− Fpr for i ∈ [d]
and compute M0 := K −

∑
i∈[d] Mi · xi ∈ Fpr .

Otherwise, waits for {Mi}i∈[0,d] with Mi ∈ Fpr

from the adversary, and then recompute K :=∑
i∈[0,d] Mi · xi ∈ Fpr .

• Output K to V and output {Mi}i∈[0,d] to P .

Figure 1. Functionality for extended subfield VOLE.

Input Upon receiving (input, id, w) and (input, id) from
P and V , respectively, it stores (id, w) if id a fresh
identifier.

Prove Upon receiving (prove, C, id1, ..., idn) and
(verify, C, id1, ..., idn) from P and V respectively, it
retrieves (idi, wi) for i ∈ [n] where id1, ..., idn are
stored in memory. Send true to V if C(w) = 1 and false
otherwise.

Figure 2. The zero-knowledge functionality Fcir
ZK for circuit satisfiability.

The layered circuit is defined in the same way, except
for the requirement that L(υj) = L(i) + 1 for every i ∈ Ij
where L : N → N is a grading that assigns the index of
each wire to a layer. Let L(i) = 0 for i ∈ Iin.
Extended (Subfield) VOLE Functionality. We recall the
extended sVOLE functionality Fp,r

ext-sVOLE used in [6] here,
and Fp,r

ext-sVOLE is shown in Fig. 1. The standard sVOLE
functionality, which includes Initialize and Extension, sends
a uniform global x ∈ Fpr and keys k ∈ Fn

pr to the V ,
while sends values (m ∈ Fn

pr ,u ∈ Fn
p ) to the P . In

order to support our protocols, we require extended sVOLE
functionality. This extended functionality is similar to the
standard sVOLE, but it also allows both parties to derive

VOPE correlations over Fpr , ensuring that a unified global
key is utilized for both sVOLE and VOPE. To be specific,
when both parties input a degree-d polynomial, this func-
tionality selects d+1 uniform coefficients over Fpr to define
a random polynomial, then provides the coefficients to the P
and the evaluation at x to the V . The extended functionality
is realized in [6] based on the standard sVOLE functionality
which can be efficiently realized as silent using recent LPN-
based protocols [1], [3], [5], [11], [22], [25].
Zero-knowledge Proof Functionality. The zero-knowledge
proof functionality F cir

ZK is shown in Fig. 2.

3. JQv1 for Circuit over Any Field

In this section, we first introduce the qsVOLE used in
the preprocessing phase of JQv1 and JQv2. We then present
our JQv1 protocol for circuit satisfiability over any field.

3.1. Quadratic Subfield VOLE

The Fp,r
qsVOLE functionality defined in the Fig 3 is pro-

posed to compute [yj = fj({ui}i∈Ij
)−gj,0]. This function-

ality can be realized from the extended sVOLE functionality
by the method of QuickSilver that extends to support degree-
2 polynomial gates. We provide the protocol Πp,r

qsVOLE that
UC-realizes Fp,r

qsVOLE and its security proof in Appendix A.

Theorem 1. The protocol Πp,r
qsVOLE UC-realizes functionality

Fp,r
qsVOLE in the Fp,r

ext-sVOLE-hybrid model.

3.2. JQv1 Protocol

Our JQv1 Πcir
ZK protocol is shown in Fig. 4. We have

discussed the intuition of our protocols in Section 1.3.1,
and thus here describe details about our protocols applied
to arbitrary degree-2 polynomial gates. Recall that the circuit
C is defined as {(fj , Ij , υj)}j∈G .

In the preprocessing phase, two parties first obtain ran-
dom authenticated values for the circuit inputs and the out-
put wires of gates. They then generate [yj = fj({ui}i∈Ij

)−
gj,0] for every gate via Fp,r

qsVOLE.
During the online phase, after P sends d values corre-

sponding to the circuit inputs and all gate output wires, two
parties compute [wυj ] for each gate. To ensure each gate
j is correctly computed, we define the degree-1 checking
polynomial f(X) as follows. Given {di}i∈Ij sent by P , and
fj with t degree-2 terms, let the set {(ci, αi, ρi)}i∈[t] consist
of tuples where ci ∈ Fp are coefficients and αi, ρi are input
indices for each degree-2 term of fj . Besides, we define
polynomials pui(X) = mui + ui ·X for i ∈ {(αi, ρi)}i∈[t],
pυj (X) = mυj +wυj ·X , and pyj (X) = myj +yj ·X , then
we have f(X) equals∑
i∈[t]

ci · (duαi
· puρi

(X) + duρi
· puαi

(X))

+ pyj
(X) + fj({di}i∈Ij

) ·X − pυj
(X)

=
∑
i∈[t]

ci · (duαi
·muρi

+ duρi
·muαi

) +myj
−mwυj

+ (fj({ui + di}i∈Ij )− wυj ) ·X



Initialize Upon receiving (init) from P and V , and Fp,r
qsVOLE works as follows,

• If V is honest, sample x
R←− Fpr . Otherwise, waits for x from the adversary. Fp,r

qsVOLE stores x and sends it to V ,
and ignore all subsequent (init) commands.

• Fp,r
qsVOLE initializes the set S as empty.

Extension On input (extend, n, {τi}i∈[n]) from P and V , and Fp,r
qsVOLE works as follows,

• If (τi, ·) exist in S for any i ∈ [n], it aborts.
• Fp,r

qsVOLE follows the same procedure as Fp,r
ext-sVOLE to generate n relations, and outputs {[uτi ]}i∈[n] to parties.

• Store (τi, uτi ,muτi
, kuτi

) in S for every i ∈ [n].

Vector Oblivious Polynomial Evaluation On input (VOPE, d) from P and V ,

• Fp,r
qsVOLE follows the same procedure as Fp,r

ext-sVOLE to generate a random polynomial with degree-d, then outputs
coefficients to P and the evaluation at x to V .

Quadratic On input (quad, {fj , Ij}j∈G) from P and V , and Fp,r
qsVOLE works as follows.

• If (i, ·) exist for every i ∈ Ij , retrieve {(i, ui, ·)}i∈Ij
from S. Otherwise, aborts.

• Compute yj := fj({ui}i∈Ij
)− gj,0 for every j ∈ G.

• If V is honest, sample {kyj}j∈G
R←− F|G|

pr . Otherwise, wait for {kyj}j∈G from the adversary.
• If P is honest, compute myj := kyj−yj ·x ∈ Fpr for every j ∈ G. Otherwise, wait for {myj}j∈G from the adversary,

and then recompute kyj := myj + yj · x ∈ Fpr for every j ∈ G.
• Output {[yj ]} to P and V for every j ∈ G.

Figure 3. Quadratic subfield VOLE functionality

whose coefficients are held by P , and evaluation at x is
held by V . If and only if fj({ui+ di}i∈Ij

) = wυj
, f(X) is

a constant polynomial. After that, two parties conduct the
batch check via the hash function (modeled as the random
oracle) and check the correctness of the circuit output wire.
Large Field Circuit Optimization. In the context of a
large field where r can be set to 1, we can optimize
the computation of degree-2 terms in fj by reducing the
number of multiplications. Instead of performing two mul-
tiplications for each term by multiplying d values with m
values (resp. k values), we can reduce this to a single
multiplication. Specifically, rather than calculating the term∑

i∈[t] ci ·(duαi
·muρi

+duρi
·muαi

), we compute gj,2({di+
mui}i∈Ij )−gj,2({mui}i∈Ij ) where gj,2({mui}i∈Ij ) can be
precomputed. This substitution is valid because∑

i∈[t]

ci · (duαi
·muρi

+ duρi
·muαi

) =

gj,2({di +mui}i∈Ij )−gj,2({mui}i∈Ij )− gj,2({di}i∈Ij )

This approach can also be applied to the term
∑

i∈[t] ci ·
(duαi

· kuρi
+ duρi

· kuαi
). Additionally, the subtraction of

gj,2({di}i∈Ij
) can be omited since f(x)+gj,2({di}i∈Ij

) =
a0 + gj,2({di}i∈Ij

) if f(x) = a0.

Theorem 2. Assuming the existence of random oracles,
Πcir

ZK UC-realizes functionality FZK that proves the circuit
satisfiability in the Fp,r

qsVOLE-hybrid model with soundness
error (qH + 1)/pr + 1/2κ and computational security.

We present proof sketches here and defer the detailed
proof to Appendix B.1. The simulator S runs the corrupted
party as the subroutine and acts as Fp,r

qsVOLE to interact with

it. For a corrupted P , simulating the view is straightforward
since the honest V does not send any values to P , and the
witness can be reconstructed by obtaining u values from P
while acting as Fp,r

qsVOLE and receiving d values sent by P .
Additionally, S will abort if it receives an abort from FZK

or the honest V aborts. To analyze the soundness error, we
analyze the probability that a corrupted P deviates from the
protocol yet still passes the batch check or the final check of
the circuit output on the verifier’s side. In the first scenario,
a cheating P could succeed by guessing either the input
or output of H in the verifier’s check. With the unknown
global key x ∈ Fpr , the verifier’s evaluations at x yield pr

possible hash inputs from the P’s view. Consequently, a ma-
licious P with qH random oracle queries achieves ≤ qH/p

r

success probability for input guessing. Simultaneously, the
probability of output guessing is ≤ 1/2κ. In the second
scenario, a cheating prover could succeed by guessing x
with a probability of at most 1/pr.

For a corrupted V , S acting as Fp,r
qsVOLE obtains all

k values generated during the preprocessing phase. To
simulate the view, S first samples and sends random
d values to V . During the batch checking, S computes
{kj,zero}j∈G from the previously stored k values, samples
a random A, and programs the random oracle so that
H(k1,zero, . . . , k|G|,zero) := A, then sends A to V . For the
final check, S sends mh := kh − x to V .

3.3. Cost Analysis

In this section, we present the cost analysis of computa-
tion for the prover and verifier in the online phase, and com-



P and V hold a circuit C over any field Fp. P also holds witnesses w such that C(w) = 1 and |w| = n (i.e., |Iin| = n).
Let {τi}i∈[n] represent the indices of the input wires of C, and let {τi}i∈[n+1,n+|G|] represent the indices of the output
wires of gates in C, respectively. Let H : {0, 1}∗ → {0, 1}κ be a random oracle.

PREPROCESS

1) P and V sends init to Fp,r
qsVOLE, which returns a uniform x ∈ Fp to V .

2) P and V sends (extend, n+ |G|, {τi}i∈[n+|G|]) to Fp,r
qsVOLE which returns {[uτi ]}i∈[n+|G|] to parties.

3) Precomputing for gates {(fj , Ij , ·) ∈ C}j∈G :

• P and V send (poly, {fj , Ij}j∈G) to Fp,r
qsVOLE which returns {[yj ] = [fj({ui}i∈Ij

)− gj,0]}j∈G to parties.

ONLINE

1) For τi ∈ Iin, P sends dτi := wτi − uτi ∈ Fp to V , and two parties compute [wτi ] := [uτi ] + dτi .
2) In a topological order, for each gate (fj , Ij , υj) ∈ C this is the j′-th gate in G:

• P sends dυj
:= fj({wi}i∈Ij

)− uτn+j′ to V , and two parties compute [wυj
] := [uτn+j′ ] + dυj

.

3) For each gate j, P and V hold ({[wi]}i∈Ij
, [wυj

]) where wi = ui+di for every i ∈ Ij∪υj , and wυj
= fj({wi}i∈Ij

)
(resp. wυj

= fj({ui + di}i∈Ij
)):

• P computes mj,zero := gj,2({mui + di}i∈Ij )− gj,2({mui}i∈Ij ) +myj −mwυj
.

• V computes kj,zero := gj,2({kui
+ di}i∈Ij

)− gj,2({kui
}i∈Ij

) + kyj
− kwυj

+ fj({di}i∈Ij
) · x.

4) P and V perform the following check to verify that mj,zero = kj,zero for all j ∈ G.

• P computes A := H(m1,zero, . . . ,m|G|,zero), and sends A to V .
• V computes B := H(k1,zero, . . . , k|G|,zero), and checks that A = B. If the check fails, V outputs false and

aborts.

5) For the output wire h, both parties hold [wh] with kh = mh + wh · x. They verify that wh = 1 as follows.

• Concurrently with the previous step, P sends mh to V .
• V checks that kh = mh + x. If the check fails, V outputs false and aborts. Otherwise, V outputs true.

Figure 4. UC-secure zero-knowledge protocol for circuit satisfiability over any field.

pare our work with the state-of-the-arts. In terms of commu-
nication, our work JQv1, QuickSilver, and IT-LPZKv2 all
require sending one field element in Fp per multiplication
gate. Note that both P and V should each invoke H once to
perform the check for all gates.
Prover. In the online phase, P computes dυj

:=
fj({wi}i∈Ij

) − uτn+j′ and mj,zero for each gate, where
myj
− gj,2({mui

}i∈Ij
) −mwυj

and mwυj
= muτ

n+j′
are

independent of the witnesses, and can be precomputed in the
preprocessing phase. Therefore, P requires one evaluation of
fj and one addition over Fp to compute dυj

, one evaluation
of gj,2 and one addition over Fpr to compute mj,zero.
Verifier. In the online phase, V computes kυj := kuτ

n+j′
+

dυj · x ∈ Fpr and kj,zero for each gate, where kyj −
gj,2({kui}i∈Ij ) is independent of the witnesses, and can be
precomputed in the preprocessing phase. Therefore, V re-
quires one scalar product of dυj ∈ Fp on x and one addition
over Fpr to compute kwυj

. V requires one evaluation of gj,2
over Fpr , one evaluation of fj over Fp, one scalar product
on x over Fpr , and three additions over Fpr to compute
kj,zero.

Comparison with QuickSilver. We provide the compar-
ison between our JQv1 and QuickSilver Table 2. Since

TABLE 2. ONLINE COST PER MULT-GATE OVER ANY FIELD.

Prover
Fp Fpr

× + × + Scal H

QuickSilver [6] 1 1 4 4 2 0
JQv1 1 1 0 2 2 < 1

Verifier × + × + Scal H

QuickSilver [6] 0 0 4 3 1 0
JQv1 1 0 0 5 3 < 1

QuickSilver does not provide a detailed cost analysis, we
analyze it here and compare their work with our JQv1.
When compared with QuickSilver for the small field r
can not be set to 1, the evaluation of gj,2 includes costly
multiplications over Fpr . Therefore, instead of comput-
ing gj,2({mui

+ di}i∈Ij
) − gj,2({mui

}i∈Ij
) to reduce the

number of the multiplications between b values with m
values, P performs the scalar products of di ∈ Fp on
mui

∈ Fpr within the protocol. This is similar to V .
For the prover-side computation, compared to our work,
P in QuickSilver requires four additional multiplications
over Fpr per multiplication gate. In our protocol, P needs



TABLE 3. ONLINE COST PER MULT-GATE OVER LARGE FIELDS AFTER
APPLYING THE OPTIMIZATIONS DISCUSSED IN SECTION 3.2.

Prover × + H

IT-LPZKv2 [7] 3 5 0
JQv1 2 2 < 1

Verifier × + H

IT-LPZKv2 [7] 3 2 0
JQv1 4 4 < 1

one multiplication and one addition over Fp to compute
dυj

, and two scalar products and two additions over Fpr

to compute mj,zero, since myj
−mwυj

can be precomputed
where mwυ = muτ

n+j′
. In contrast, QuickSilver requires P

to perform one multiplication and one addition over Fp to
compute dυj

, one multiplication over Fpr to compute A0,
two scalar products and two addition over Fpr to compute
A1, one multiplication over Fpr to compute χj given χj−1,
and two multiplications and two additions over Fpr to batch
associated values into one for the check.

For the verifier-side computation, compared to our work,
V in QuickSilver requires four additional multiplication over
Fpr . In our protocol, V needs one scalar product and one
addition over Fpr to compute kwυj

, two scalar products
and four additions over Fpr to compute kj,zero. In contrast,
QuickSilver requires V to perform one scalar product and
one addition over Fpr to compute kwυj

, two multiplication
and one addition over Fpr to compute Bj , one multiplication
over Fpr to compute χj given χj−1, and one multiplication
and one addition over Fpr for each multiplication gate to
batch into one value for the check.

Comparison with IT-LPZKv2 for Large Field. We present
the comparison between our JQv1 and IT-LPZKv2 for the
large field in Table 3 using the number of IT-LPZKv2
reported in their work. The measurement of both their work
and our work is based on the large field F261−1.

4. JQv2 for Layered Circuit over Any Field

In this section, we introduce our Πlaycir
ZK protocol for

the layered circuit satisfiability over any field, achieving
amortized communication of 1

2 field element per gate via
Fp,r

qsVOLE. Let G0 and G1 represent the sets of gate indices
for the even and odd layers, respectively. For simplicity, we
assume the even layers have more gates than the odd layers
here. The Πlaycir

ZK protocol is shown in Fig. 5.
During the preprocessing phase, compared to JQv1, the

difference is that, in addition to handling circuit inputs, two
parties generate random authenticated values only for the
output wires of gates in the odd layers and generate [yj ]
only for each gate in the even layers.

In the online phase, two parties compute [wυj
] directly

without further communication for the even layers. Specifi-

cally, they compute kυj
= mυj

+ wυj
· x as follows:∑

i∈[t]

ci · (duαi
· kuρi

+ duρi
· kuαi

) + kyj + fj({di}i∈Ij ) · x︸ ︷︷ ︸
Known to V, denoted as kυj

=
∑
i∈[t]

ci · (duαi
·muρi

+ duρi
·muαi

) +myj︸ ︷︷ ︸
Known to P, denoted as mυj

+wυj · x

Additionally, the optimization for large field circuits dis-
cussed in Section 3.2, can be applied here to reduce the
number of multiplications performed by the two parties.
For the odd layers, they compute [wυj

] by having P send
dυj

, then two parties perform a batch check similar to
QuickSilver, based on the evaluation of degree-2 polynomial
at x.

We can apply the Fiat-Shamir heuristic to make the
online phase non-interactive. Specifically, both parties can
compute χ from the transcript up to that point using a
cryptographic hash function H : {0, 1}∗ → Fpr , modeled
as a random oracle, where pr ≥ 2κ.

Theorem 3. The protocol Πlaycir
ZK UC-realizes functionality

FZK that proves the circuit satisfiability in the Fp,r
qsVOLE-

hybrid model with soundness error (3 + |G1|)/pr and
information-theoretic security.

We have deferred the formal proof to Appendix B.2.

4.1. Cost Analysis

In this section, we present the cost analysis of com-
putation for the even and odd layers in the online phase
from both the prover and verifier sides. We then compare
our work with the state-of-the-art works QuickSilver and
ROM-LPZKv2. In terms of communication, our work JQv1
and ROM-LPZKv2 require sending 1

2 field element in Fp

per multiplication gate, while QuickSilver requires sending
one.
Prover. For j ∈ G0, P computes mwυj

where the value
myj − gj,2({mui}i∈Ij ) and mwυj

= muτ
n+j′

are inde-
pendent of the witnesses, and can be precomputed in the
preprocessing phase. Therefore, P requries one evaluation
of fj over Fp to compute wυj

, one evaluation of gj,2 and
one addition over Fpr to compute mwυj

. For j ∈ G1, P
computes dυj

= fj({wi}i∈Ij
)−uτn+j′ , a0,j , a1,j , u0 and u1

where mwυj
= muτ

n+j′
is independent of the witnesses, and

can be precomputed in the preprocessing phase. Therefore,
P requires one evaluation of fj on {wi}i∈Ij

and one
addition over Fp to compute dυj

, one evaluation of gj,2
over Fpr to compute a0,j , one evaluation of fj and three
additions over Fpr to compute a1,j where the evaluation
fj on {wi}i∈Ij

and gj,2({mwi
}i∈Ij

) have been computed
above, one multiplication over Fpr to compute χj′ given
χj′−1, and two multiplications and two additions over Fpr

to batch associated values into one for the check.
Verifier. For j ∈ G0, V computes kwυj

where the value
kyj
− gj,2({kui

}i∈Ij
) is independent of the witnesses, and



P and V hold a layered circuit C over any field Fp. P also holds witnesses w such that C(w) = 1 and |w| = n (i.e., |Iin| = n).
Let G0 and G1 contains indices of gates in all even layers and odd layers, respectively. Let {τi}i∈[n] represent the indices
of the input wires of C, and let {τi}i∈[n+1,n+|G1|] represent the indices of the output wires of gates in odd layers, respectively.

PREPROCESS

1) P and V sends init to Fp,r
qsVOLE, which returns a uniform x ∈ Fp to V .

2) P and V sends (extend, n+ |G1|, {τi}i∈[n+|G1|]) to Fp,r
qsVOLE which returns {[uτi ]}i∈[n+|G1|] to parties.

3) P and V send (VOPE, 1) to Fp,r
qsVOLE which returns M0,M1 to P and K to V .

4) Precomputing for gates in even layers {(fj , Ij , ·) ∈ C}j∈G0
:

• P and V send (quad, {fj , Ij}j∈G0) to Fp,r
qsVOLE which returns {[yj ] = [fj({ui}i∈Ij )− gj,0]}j∈G0 to parties.

ONLINE

1) For τi ∈ Iin, P sends dτi := wτi − uτi ∈ Fp to V , and two parties compute [wτi ] := [uτi ] + dτi .
2) In a topological order, for each gate (fj , Ij , υj) ∈ C:

• If j ∈ G0, with wi = ui+di for i ∈ Ij , P computes mwυj
:= gj,2({mui+di}i∈Ij )−gj,2({mui}i∈Ij )+myj ,

and V computes kwυj
:= gj,2({kui

+ di}i∈Ij
)− gj,2({kui

}i∈Ij
) + kyj

+ fj({di}i∈Ij
) · x.

• If j ∈ G1 and this is the j′-th gate in G1, then P sends dυj
:= fj({wi}i∈Ij

)− uτn+j′ to V , and two parties
compute [wυj

] := [uτn+j′ ] + dυj
.

3) For each j ∈ G1 gate with fj = gj,2 + gj,1 + gj,0, P and V hold authenticated values ({[wi]}i∈[Ij ], [wυj ]) where
ki = mi + wi · x for i ∈ Ij ∪ υj from the previous step and execute the following:

• P computes a0,j = gj,2({mwi
}i∈Ij

) ∈ Fpr , and a1,j = fj({mwi
+ wi}i∈Ij

) − gj,2({mwi
}i∈Ij

) −
fj({wi}i∈Ij

)−mwυj
∈ Fpr .

• V computes bj = gj,2({kwi}i∈Ij ) + (gj,1({kwi}i∈Ij ) + gj,0 · x− kwυj
) · x ∈ Fpr

4) P and V corperate to ensure bj′ = a0,j′ + a1,j′ · x for every j′-th gate in G1.

• V samples χ
R←− Fpr , and sends it to P .

• P computes u0 :=
∑

j′∈[|G1|] a0,j′ · χ
j′ +M0, u1 :=

∑
j′∈[|G1|] a1,j′ · χ

j′ +M1, and sends (u0, u1) to V .
• V computes w :=

∑
j′∈[|G1|] bj′ · χ

j′ +K and if w ̸= u0 + u1 · x, V aborts.

5) For the output wire h, both parties hold [wh] with kh = mh + wh · x. They verify that wh = 1 as follows.

• Concurrently with the previous step, P sends mh to V .
• V checks that kh = mh + x. If the check fails, V outputs false and aborts. Otherwise, V outputs true.

Figure 5. UC-secure zero-knowledge protocol for layered circuit satisfiability over any field.

can be precomputed in the preprocessing phase. Therefore,
V requries one evaluation of fj over Fp, one evaluation
of gj,2 over Fpr to compute kwυj

. For j ∈ G1, V com-
putes kwυj

, bj and w where gj,0 · x is independent of the
witnesses, and can be precomputed in the preprocessing
phase. Therefore, V requires one scalar product of dυj ∈ Fp

on x and one addition over Fpr to compute kwυj
. Then,

V requires one evaluation of gj,2, gj,1, one multiplication
and three additions over Fpr to compute bj . Finally, V
performs one multiplication over Fpr to compute χj given
χj−1, one multiplication and one addition over Fpr for each
multiplication gate to batch into one value for the check.

Comparison with QuickSilver. We compare our JQv2 and
QuickSilver in Table 4. Similar to the previous analysis for
JQv1 that compared with QuickSilver, we let P perform
the scalar products of di ∈ Fp on mui

∈ Fpr within
the protocol, akin to V . The cost analysis of QuickSilver

TABLE 4. ONLINE COST PER MULT-GATE OVER ANY FIELD.

Prover
Fp Fpr

× + × + Scal H

QuickSilver [6] 1 1 4 4 2 0
JQv2 1 0.5 2 3 2 0

Verifier × + × + Scal H

QuickSilver [6] 0 0 4 3 1 0
JQv2 0.5 0 2 3 2 0

is the same as in Section 3.3, so we omit it here. The
data in the table represents the amortized computation per
multiplication gate, which is the sum of the costs for j ∈ G0
and j ∈ G1, divided by 2. For j ∈ G0, P performs one
multiplication over Fp to evaluate the multiplication gate and
two additions and two scalar products to compute mwυj

, and



TABLE 5. ONLINE COST PER MULT-GATE OVER LARGE FIELDS AFTER
APPLYING THE OPTIMIZATIONS DISCUSSED IN SECTION 3.2.

Prover × + H

ROM-LPZKv2 [7] 8.5 8.5 < 1
JQv2 4 3.5 0

Verifier × + H

ROM-LPZKv2 [7] 8.5 8.5 < 1
JQv2 4 3.5 0

V performs one multiplication over Fp, three addtions and
three scalar products over Fpr to compute kwυj

. For j ∈ G1,
the analysis is the same as in QuickSilver, as discussed in
Section 3.3, for both P and V , and is therefore omitted here.
Comparison with ROM-LPZKv2. We present the compar-
ison between our JQv2 and ROM-LPZKv2 for the large field
in Table 5 using the number of ROM-LPZKv2 reported in
their work. In LPZKv2 [7], the measurement is based on the
large field F261−1 with a computational security parameter
κ = 128. In JQv2, setting r = 1 is sufficient for the
information-theoretic security when q ≥ 2ϵ.

5. Practical Applications

In this section, we demonstrate that our protocol can
prove the inner product, matrix multiplication, and solutions
to lattice problems. For JQv1, H outputs the element with
κ bits. For JQv2, we always assume that pr ≈ 2κ as the
Fiat-Shamir heuristic is assumed to be implicitly used.
Inner Product. P holds {xi}i∈[n] and intends to prove∑

i∈[n/2] ci · xi · xn/2+i = c with the public coefficients
{ci}i∈[n] and the public sum c. The inner product can
be present as a degree-2 polynomial f(x1, · · · , xn) =∑

i∈[n/2] ci ·xi ·xn/2+i−c = 0. P first commit to inputs by
sending n fields elements. When applying the underlying
technology of JQv1, two parties compute [f(x1, · · · , xn)]
by having P send d := f(x1, · · · , xn) − u where [u] is
random authenticated value. However, using the technology
of JQv2, two parties directly compute [f(x1, · · · , xn)] :=∑

i∈[n/2] ci · ([ui]+di) · ([un/2+i]+dn/2+i)− c. Since there
is one-layer multiplication, the remaining task is to check
[f(x1, · · · , xn)] = [0] in both JQv1 and JQv2, which can
be done by having P send m of [f(x1, · · · , xn)] to V , who
performs the check. Therefore, it needs communication of
(n+ 1) log p+ κ bits in JQv1 and n log p+ κ bits in JQv2
in the online phase.
Matrix Multiplication. P holds two secret matrices A,B ∈
(Fn×n

p )2, and intends to prove A · B = C with a public
matrix C ∈ Fn×n

p known to the verifier. The matrix multi-
plication can be viewed as n2 inner product. Besides, two
parties can perform the batch check for n2 inner products
via the random oracle. Therefore, it needs communication
of 3n2 log p + κ bits for JQv1 and 2n2 log p + κ bits for
JQv2 in the online phase.
Proving Solutions to Lattice Problems. P holds s ∈
{0, 1}m, and intends to prove A · s = t with the public

matrix A ∈ Zn×m
p and vector t ∈ Zn

p . In this case, P should
prove the following: 1) the relation holds, 2) si is indeed a
bit. Specifically, P should prove

∑
j∈[m] ai,j · sj − ti = 0

for i ∈ [n] and s2i − si = 0 for i ∈ [m] where ai,j is
the entry in the i-th row and j-th column of matrix A.
All of the above can be formalized as n+m polynomials.
Therefore, JQv1 offers a ZK protocol with communication
(2m+n) log p+κ bits, while JQv2 provides a ZK protocol
with communication m log p + κ bits. If the secret vector
s lies within [−B,B] (where B is a small integer) instead
of being a binary vector, as addressed in prior works [6],
[11], [26], [27], [28], we can prove it using the relation∏

j∈[−B,B](si − j) = 0 for i ∈ [m], which requires 2mB
multiplications for all si. Using our protocols, this requires
a communication cost of (m+ n+ 2mB) log p+ κ bits in
JQv1 and (m+mB) log p+ 3κ bits in JQv2.

6. Implementation and Benchmarking

We implemented JQv1 and JQv2 based on the publicly
available implementation of QuickSilver [16] and subse-
quently evaluated their performance. We employ the same
hardware configuration in previous works [6], [7], [15].
Specifically, experiments of JQv1 and JQv2, along with
their applications, were conducted on two Amazon EC2
m5.2xlarge4 using a single thread. Our implementations
achieve a computational security of κ = 128. For arithmetic
circuits over a 61-bit field, we achieve κ = 128 and
ϵ = 40 where Mersenne prime p = 261 − 1, consistent
with prior work. In our implementation, we instantiated the
COT protocol (i.e., sVOLE with p = 2 and r = κ ) and
the VOLE protocol over a 61-bit field by using the recent
protocols [5], [11]. In our testing, we found that when using
an Intel-type CPU, the cryptographic hash function Blake3
outperformed SHA-256 by at least a factor of 10 when
batching 30 millions 61-bit fied elements. Conversely, when
using an AMD-type CPU, SHA-256 proved to be at least 2
times faster than Blake3. Therefore, we employ the faster
version depending on the CPU type of the instance.

6.1. Benchmarking JQv1 and JQv2

We evaluate the performance of JQv1 and JQv2 by
proving circuits with 3× 108 AND/MULT gates and report
the number of gates per second that can be proven using
our protocols in Table 6. We evaluate JQv1 using the same
circuit structure as implemented in QuickSilver, while JQv2
is evaluated on the random circuit described in Section 1.3.2.
Comparison with Prior Work. We have compared the
performance of our JQv1 and JQv2 with prior work in Ta-
ble 1 using the same configuration. We used the most recent
numbers of QuickSilver [6] reported on their Github [16].
Although the number 7.01 M/sec of AntMan is obtained
under a 1 Gbps network bandwidth, our experiments under
different bandwidth settings shown in Table 6 present that

4. Intel Xeon Platinum 8259CL CPU@2.50GHz, 8 vCPUs, 32GiB RAM,
throttled Network



TABLE 6. BENCHMARK THE ONLINE PERFORMANCE OF OUR PROTOCOLS WITHIN A SINGLE THREAD.

Boolean Circuit Arithmetic Circuit

20 Mbps 30 Mbps 50 Mbps Local-host 500 Mbps 1 Gbps 2 Gbps Local-host

JQv1 19.5 M/sec 40.6 M/sec 64.1 M/sec 64.1 M/sec 7.4 M/sec 14.2 M/sec 23.3 M/sec 23.3 M/sec
JQv2 34 M/sec 34 M/sec 34 M/sec 34 M/sec 12.5 M/sec 12.5 M/sec 12.5 M/sec 12.5 M/sec

This table shows the number of million ‘M’ gates per second that each protocol can prove under different network settings within a single thread.

TABLE 7. DETAILED BREAKDOWN OF TIME COSTS FOR PROVING 3× 108 AND/MULT GATES WITHIN A SINGLE THREAD

Boolean Circuit (Second) Arithmetic Circuit (Second)

Bandwidth Cir-Ind Cir-Dep Online Bandwidth Cir-Ind Cir-Dep Online

JQv1
30 Mbps 3 s 32 s 7.5 s 1 Gbps 3 s 38 s 21 s

50 Mbps/Local-host 3 s 32 s 4.5 s 2 Gbps/Local-host 3 s 32 s 13 s

JQv2
30 Mbps 2 s 20 s 9 s 1 Gbps 2 s 24 s 24 s

50 Mbps/Local-host 2 s 20 s 9 s 2 Gbps/Local-host 2 s 20 s 24 s

QuickSilver
30 Mbps 3 s - 32 s 1 Gbps 3 s - 42 s

50 Mbps/Local-host 3 s - 32 s 2 Gbps/Local-host 3 s - 36 s

Cir-Ind generates random authenticated values when the upper bound of multiplication gates is known, while Cir-Dep executes quadratic subfield
VOLE once the circuit is known. The online phase occurs when the witness is available. The results are obtained under different network settings.

TABLE 8. STRESS-TESTING THE ONLINE PHASE OF OUR PROTOCOLS WITHIN A SINGLE THREAD.

Instance Information Boolean Circuit Arithmetic Circuit

Type cents/hour CPU gates/sec gates/cent gates/sec gates/cent

JQv1 t3a.small 1.8 AMD 46 M 92 B 29 M 58 B
JQv2 32 M 64 B 8.9 M 18 B

JQv1 t3.small 2 Intel 53.8 M 96 B 14.1 M 25 B
JQv2 30 M 54 B 7.9 M 14 B

This table presents the number of million ‘M’ gates each protocol can prove per second and the number of billion ‘B’ gates each protocol can prove
per cent. All instances have 2 vCPUs, 2 GiB memory, and at most 5 Gbps network bandwidth.

JQv1 and JQv2 achieve roughly 2× and 1.7× improve-
ments, respectively, under the same 1 Gbps bandwidth.
Additionally, JQv2 requires a minimum network speed of
around 10 Mbps for the boolean circuit and around 400
Mbps for the arithmetic circuit.
Detailed Breakdown of Time Costs. We divide the total
running time into three phases: circuit-independent pre-
processing (Cir-Ind), circuit-dependent preprocessing (Cir-
Dep), and the online phase for JQv1, JQv2, and QuickSilver
with the results detailed in Table 7. There are two pre-
processing models for VOLE-based ZKPs: Model 1(circuit-
independent only, e.g.,QuickSilver) and Model 2(combined
circuit-independent/dependent phases, e.g.,LPZKv2). JesseQ
achieves state-of-the-art performance in Model 2 concerning
total running time but trails QuickSilver in Model 1 (except
JQv2 in the layered Boolean circuit).
Stress-testing of JQv1 and JQv2. To show our JQv1 and
JQv2 are affordable, we benchmarked them on the cheapest
Amazon EC2 instances (t3a.small5, t3.small6). These in-
stances cost around 2 cents per hour, offering a cheaper
choice compared to QuickSilver’s stress test environment,

5. AMD EPYC 7571@2.50GHz, 2 vCPUs, 2GiB RAM, ≤5 Gpbs
6. Intel Skylake 8175M@2.50GHz, 2 vCPUs, 2GiB RAM, ≤5 Gpbs

which costs from 2 to 5 cents per hour. Our results are
presented in Table 8.

6.2. Benchmarking Practical Applications

For the applications discussed in Section 5, the primary
difference between JQv1 and JQv2 is that JQv1 lets two
parties interactively compute the values associated with the
outputs for degree-2 polynomials. This requires P to send
one additional element per gate and V to adjust the value as-
sociated with the output for each gate. Besides, QuickSilver
only reports their performance for applications based on
the degree-2 polynomial-based ZK protocol. Therefore, we
also only benchmark JQv2 for applications involving one-
depth multiplication. Our experiments use the same network
configuration as QuickSilver for those applications. Specif-
ically, we use a network bandwidth of 20 Mbps for binary
fields and 500 Mbps for 61-bit fields, always utilizing a
single thread. Below, we provide comparisons between our
results and previous work, with the number reported in
QuickSilver [6](Section 6.2).
Inner Product. We benchmark the inner product ⟨x,y⟩ =∑

i∈[n] xi · yi of two vectors x,y where each vector has
n entries, and report the cost of the online phase (when



TABLE 9. ONLINE PERFORMANCE COMPARISON BETWEEN QuickSilver
AND OUR PROTOCOLS FOR INNER PRODUCT.

F2 (ms) F261−1 (ms)

Length of vectors 106 107 108 106 107 108

QuickSilver [6] 36 69 423 42 100 703
JQv2 3.2 38 400 5.9 60.6 648

TABLE 10. ONLINE PERFORMANCE OF VARIOUS PROTOCOLS FOR
PROVING MATRIX MULTIPLICATION.

Execution Time Communication

Spartan [29] ≥ 5000 s ≤ 100 KB
Virgo [9] 357 s 221 KB
Wolverine [11] 1627 s 34 GB
Mac‘n‘Cheese [12] 2684 s 25.8 GB
QuickSilver [6] 10 s 25.2 MB
JQv2 7 s 16.7 MB

Results are based on two 1024 × 1024 matrices over a 61-bit field,
with their product being public.

the witness is known) for proving the inner product in
Table 9. In QuickSilver, the costs of processing the witness
and proving the inner product are reported separately. As
the process for processing the witness between QuickSilver
and our protocols is similar, we will only present the cost
of proving the inner product.
Matrix Multiplication. We benchmark the process of prov-
ing knowledge of two 1024 × 1024 matrices over a 61-bit
field. The comparison of the online phase with prior work, as
reported in QuickSilver, is presented in Table 10. Wolverine
and Mac‘n‘Cheese are executed on local-host, while our
protocols, QuickSilver and Virgo were tested over a 500
Mbps network.
Proving Knowledge of Solutions to Lattice Problems. We
perform a benchmark of the process for proving knowledge
of a solution vector s to a Short Integer Solution (SIS)
problem. In this scenario, the equation A · s = t must
be satisfied, where A ∈ Zn×m

q and t ∈ Zn
q are known

to two parties. Furthermore, we enforce a constraint that
the elements of s should fall within the range of [−1, 1],
which aligns with the parameters utilized in QuickSilver.
In our experiments, we set n = 2048, m = 1024, and
log q = 61. We also assessed the cost of proving knowledge
of an SIS solution for QuickSilver using their open-source
implementation in this setting, as QuickSilver only provides
performance metrics for a prime q of 31 bits.

6.3. Benchmarking Sublinear Framework

Our experiments for the sublinear framework based
on JQv1 and JQv2 are conducted on two Amazon EC2
m5.8xlarge7, also using a single thread. We use the number
of AntMan and Batchman reported in their works and run
the experiments on the same hardware. AntMan runs with

7. Intel Xeon Platinum 8259 CPU@2.5GHz, 32 vCPUs, 128GiB RAM,
10Gbps

TABLE 11. ONLINE PERFORMANCE OF PROVING KNOWLEDGE OF AN
SIS SOLUTION WITH PARAMETERS n = 2048, m = 1024, AND

log q = 61

Execution Time Communication

QuickSilver [6] 22 ms 8.2 KB
JQv2 7 ms 8.2 KB

TABLE 12. ONLINE COMPARISON OF SUBLINEAR WORKS.

100 Mbps 500 Mbps 1 Gbps

AntMan [14] 15.86 M/sec 17.51 M/sec 17.74 M/sec
QS-Batchman [6] 104.91 M/sec 335.02 M/sec 461.82 M/sec

JQv1-Batchman 122.26 M/sec 569.44 M/sec 1051.01 M/sec
JQv2-Batchman 144.76 M/sec 666.47 M/sec 1190.22 M/sec

This table presents the number of million ‘M’ gates each protocol can
prove per second. Protocols execute batches, with each repetition having
221 multiplication gates under different bandwidth setting.

TABLE 13. PERFORMANCE OF MULTIPLICATIONS AND HASH.

61-bit Field (ms) 128-bit Field (ms)

Num. of fields 106 107 108 106 107 108

MUL 3.865 38.54 386.1 8.984 90.72 901.3

SHA256 20.33 203.4 2029 40.24 401.3 4007
BLAKE3 1.833 17.61 173.8 3.576 35.42 349.1

16 threads, while Batchman uses only 1 thread. The circuit
in AntMan [14] is defined over F259−228+1, while the circuit
in both QS-Batchman and JQ∗-Batchman is defined over
F261−1. JQv2-Batchman outperforms JQv1-Batchman, as
Batchman tests on the circuit of the matrix multiplication,
and the first only needs to send one element to perform the
final batch check in the online phase.

6.4. Benchmarking Hash and Multiplications

We benchmarked the execution time of 106 ∼ 108 mul-
tiplications as well as the hash function with 106 ∼ 108 field
inputs over the 61-bit field (when p = 261−1) and the 128-
bit field (when p = 2). These benchmarks were conducted
using the Amazon EC2 instance type m5.2xlarge with a
single thread, and the performance is presented in Table 13.
We benchmarked the multiplications using the Streaming
SIMD Extensions (SSE) instruction set, as implemented in
QuickSilver [16]. For hashing, we utilized the OpenSSL
library [30] for SHA256 and the official library [21] for
BLAKE3. The results show that the BLAKE3 hash function
processes inputs 106 ∼ 108 fields at least twice as fast
as performing the same number of multiplications, whether
operating over a 61-bit or 128-bit field.
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Appendix A.
Protocol that UC-realizes Fp,r

qsVOLE

The Πp,r
qsVOLE that UC-realizes Fp,r

qsVOLE is shown in Fig 6.
This protocol requires the correlation K = M0 + M1 · x
where K ∈ Fpr is held by V , and M0,M1 ∈ Fpr are held
by P to mask the value sent by P in our protocols. This
correlation can be generated by the extended subfield VOLE
functionality presented in Section 2. We can apply the Fiat-
Shamir heuristic to make the online phase non-interactive.
, albeit at the expense of degrading information-theoretic
security to computational security.

Theorem 4. The protocol Πp,r
qsVOLE UC-realizes functionality

Fp,r
qsVOLE in the Fp,r

ext-sVOLE-hybrid model.



Let H be the random oracle {0, 1}∗ → Fpr .
Initialize Upon receiving (init) from P and V ,

• P and V send (init) Fp,r
ext-sVOLE which returns x ∈ Fpr to V .

• P and V locally initialize the set S as empty.

Extension On input (extend, n, {τi}i∈[n]) from P and V ,

• If (τi, ·) exist in S for any i ∈ [n], parties aborts.
• P and V send (extend, n) to Fp,r

ext-sVOLE which returns {[uτi ]}i∈[n] to parties.
• P and V store (τi, [uτi ]) in S for every i ∈ [n].

Vector Oblivious Polynomial Evaluation On input (VOPE, d) from P and V ,

• P and V send (VOPE, d) to Fp,r
ext-sVOLE which returns M0,M1 to P and K to V .

Quadratic On input (quad, {fj , Ij}j∈G) from P and V ,

1) If (i, ·) exist for every i ∈ Ij , P and V retrieve {[ui]}i∈Ij
from S. Otherwise, aborts.

2) P computes yj = fj({ui}i∈Ij
)− gj,0 ∈ Fp for every j ∈ G.

3) P and V send (extend, |G|) to Fp,r
ext-sVOLE which returns {[vj ]}j∈G to parties.

4) P and V send (VOPE, 1) to Fp,r
ext-sVOLE which returns M0,M1 to P and K to V .

5) P sends dj = yj − vi to V , then P and V compute [yj ] = [vj ] + dj .
6) For each j ∈ G, P and V execute the following,

• P computes a0,j = gj,2({mui
}i∈Ij

) ∈ Fpr , and a1,j = fj({mui
+ ui}i∈Ij

) − gj,2({mui
}i∈Ij

) −
fj({ui}i∈Ij

)−myj
∈ Fpr .

• V computes bj = (gj,1({kui
}i∈Ij

)− kyj
) · x+ gj,2({kui

}i∈Ij
) ∈ Fpr .

7) P and V corperate to ensure bj′ = a0,j′ + a1,j′ · x for every j′-th gate in G.

• V samples χ
R←− Fpr , and sends to P .

• P computes u0 =
∑

j′∈[|G|] a0,j′ · χj′ +M0, u1 =
∑

j′∈[|G|] a1,j′ · χj′ +M1, and sends (u0, u1) to V .
• V computes w =

∑
j′∈[|G|] bj′ · χj′ +K and if w ̸= u0 + u1 · x, V aborts.

Figure 6. The Quadratic Subfield VOLE protocol that UC-realizes Fp,r
qsVOLE.

Proof. We first consider the case of a malicious prover and
then consider the case of a malicious verifier. In each case,
we construct a simulator S could only access to an ideal
functionality Fp,r

qsVOLE, and running the adversary A as a
subroutine while emulating Fp,r

ext-sVOLE for A. We always
implicitly assume that S passes all communication between
A and environment Z .
Corrupted prover. S interacts with A and Fp,r

qsVOLE as
follows,

1) Upon receiving init query, S sends init to Fp,r
qsVOLE.

2) Upon receiving (extend, n, {τi}i∈[n]) query,
S sends it to Fp,r

qsVOLE. When S receives
{uτi ,muτi

}i∈[n] that P sends to Fp,r
ext-sVOLE,

it stores and sends those values to Fp,r
qsVOLE.

3) Upon receiving (VOPE, d) query, S sends it to
Fp,r

qsVOLE. When S receives {Mi}i∈[0,d] that P sends
to Fp,r

ext-sVOLE, it stores and sends those values to
Fp,r

qsVOLE.
4) Upon receiving (quad, {fj , Ij}j∈G) query, S sends

it to Fp,r
qsVOLE. When S receives {vj ,mvj}j∈G ,

M0,M1 that P sends to Fp,r
ext-sVOLE, it stores those

values. Then S computes yj = fj({ui}i∈Ij ) −
gj,0, dj = yj − vj ,myj = mvj for every j ∈ G.

Upon receiving {d′j}j∈G from A, if there exists any
j such that d′j ̸= dj , S sends ⊥ to Fp,r

qsVOLE and

aborts. Otherwise, S samples and sends χ
R←− Fpr

to A, and sends {myj
}j∈G to Fp,r

qsVOLE.
5) Upon receiving (u0, u1) fromA, S computes u′

0, u
′
1

as the protocol does based on the values stored. If
u0 ̸= u′

0 or u′
1 ̸= u1, S sends ⊥ to Fp,r

qsVOLE and
aborts.

The adversary A’s views have identical distributions in both
the ideal and real-world executions. Whenever the verifier
in the real-world execution aborts, the verifier in the ideal-
world execution also aborts, since S sends ⊥ to Fp,r

qsVOLE in
this case. It is trivial that the computation in init, extend
and VOPE process are correct. Therefore, it remains to
bound the probability that the verifier in the real-world
execution passes the final check in quadratic process while
A sends incorrect values in step 5 or step 7 or both steps.
The probability that the honest verifier in the real-world
execution passes the final check in this case is at most
(2 + |G|)/pr.

For the gate j, which is j′-th gate in G, two parties hold
{[ui]}i∈Ij , [yj ] where [yj ] = [fj({ui}i∈Ij ) − gj,0] + eυj .
Therefore, we have kyj = myj +(fj({ui}i∈Ij )− gj,0) ·x+



eυj
· x. Given the equation is hold:

gj,1({mui}i∈Ij ) +
∑

i∈[|G|]

ci · (uαi ·muρi
+ uρi ·muαi

)

= fj({mui + ui}i∈Ij )− gj,2({mui}i∈Ij )− fj({ui}i∈Ij )

we have the following,

bj =(gj,1({kui
}i∈Ij

)− kyj
) · x+ gj,2({kui

}i∈Ij
)

=gj,2({mui}i∈Ij ) + (gj,1({mui}i∈Ij )

+
∑

i∈[|G|]

ci · (uαi ·muρi
+ uρi ·muαi

)−myj ) · x

+ (gj,2({ui}i∈Ij
) + gj,1({ui}i∈Ij

)− yj) · x2

=gj,2({mui
}i∈Ij

)− eυj
· x2 + (fj({mui

+ ui}i∈Ij
)

− gj,2({mui
}i∈Ij

)− fj({ui}i∈Ij
)−myj

) · x
=a0,j + a1,j · x− eυj

· x2

In the step 7, A sends u′
0 = u0 + eu,0 and u′

1 = u1 + eu,1
to the honest V where u0, u1 are computed following the
protocol description, eu,0, eu,1 ∈ Fpr are the adversarially
chosen errors. Furthermore, we have the following:

w =
∑

j′∈[|G|]

bj′ · χj′ +K

=
∑

j′∈[|G|]

(a0,j′ + a1,j′ · x− eυj′ · x
2)χj′ +M0 +M1 · x

=(u′
0 − eu,0) + (u′

1 − eu,1) · x− (
∑

j′∈[|G|]

eυj′ · χ
j′) · x2

If the check passes in step 4, then we have w = u′
0+u′

1 ·x.
Therefore, we can obtain that

eu,0 + eu,1 · x+ (
∑

j′∈[|G|]

eυj′ · χ
j′) · x2 = 0 (1)

Case 1:
∑

j′∈[|G|] eυj′ · χ
j′ ̸= 0, the equation 1 is held.

Since x ∈ Fpr is uniformly random and hidden from A’s
view, the equation 1 holds with probability at most 2/pr.
Case 2:

∑
j′∈[|G1|] eυj′ · χ

j′ = 0, the equation 1 is held.
The probability of this case is less than the probability of∑

j′∈[|G|] eυj′ · χ
j′ = 0. If there exists some j′ ∈ [|G|] such

that eυj′ ̸= 0, the probability of
∑

j′∈[|G|] eυj′ · χ
j′ = 0 is

at most |G|/pr, as χ is sampled uniformly at random after
all eυj′ have been determined.

In conclusion, any unbounded environment Z cannot
distinguish between the real-world execution and ideal-
world execution, except with probability (2 + |G|)/pr.
Corrupted verifier. S interacts with A and Fp,r

qsVOLE as
follows,

1) Upon receiving init query, S sends init to Fp,r
qsVOLE.

When S receives x ∈ Fpr that A sends to
Fp,r

ext-sVOLE, it stores x and sends it to Fp,r
qsVOLE.

2) Upon receiving (extend, n, {τi}i∈[n]) query, S
sends it to Fp,r

qsVOLE. When S receives {kuτi
}i∈[n]

that A sends to Fp,r
ext-sVOLE, it stores and sends those

values to Fp,r
qsVOLE.

3) Upon receiving (VOPE, d) query, S sends it to
Fp,r

qsVOLE. When S receives K that P sends to
Fp,r

ext-sVOLE, it stores and sends it to Fp,r
qsVOLE.

4) Upon receiving (quad, {fj , Ij}j∈G) query, S sends
it to Fp,r

qsVOLE. When S receives {kvj}j∈G , K that

A sends to Fp,r
ext-sVOLE, S samples dj

R←− Fp and
computes kyj = kvj + dj · x for every j ∈ G.
Then S sends {dj}j∈G to A and sends {kyj}j∈G
to Fp,r

qsVOLE. Upon receiving χ from A, S samples

u1
R←− Fpr , and compute u0 = w − u1 · x where

w is computed using x, K and the keys received
from A following the protocol specification. Then
S sends u0, u1 to A.

Since vj , dj and M1 are uniformly random and vj and
M1 are hidden against the view of adversary A, we easily
obtain that the view of A simulated by S is distributed
identically to its view in the real protocol execution. This
completes the proof.

Appendix B.
Deferred Proofs

B.1. Proof of Theorem 2

Proof. We consider the case of a malicious prover (i.e.,
soundness and knowledge extraction), and then consider
the case of a malicious verifier (i.e., zero knowledge). In
each case, we construct a simulator S that could only
access an ideal functionality FZK and run the adversary
A as a subroutine while emulating Fp,r

qsVOLE and random
oracle for A. We always implicitly assume that S passes all
communication between A and environment Z .
Corrupted prover. S maintains a hash list Lh for the
random oracle H. On any query y ∈ {0, 1}∗ to H, if
∃(y, hy) ∈ Lh, return hy, else return a uniformly random
hy ∈ {0, 1}κ and add (y, hy) to Lh. S interacts with A as
follows,

1) S receives init that A sends to Fp,r
qsVOLE, samples

x
R←− Fpr , and stores {uτi ,muτi

}i∈[n+|G|] that P
sends to Fp,r

qsVOLE. Then S compute the correspond-
ing keys {kuτi

}i∈[n+|G|]. Upon receiving {myj}j∈G
that A sends to Fp,r

qsVOLE, S computes and stores
yj = fj({ui}i∈Ij

) − gj,0 for every j ∈ G where
uis are stored before, and the corresponding keys
{kyj
}j∈G .

2) For τi ∈ Iin, upon receiving dτi from A, S com-
putes and stores wτi = uτi + dτi .

3) S executes the rest of the protocol as an honest
verifier, using x and the keys stored in the first step.
If the honest verifier outputs false, then S sends
w = ⊥ and C to FZK and aborts. If the honest
verifier outputs true, then S sends w and C to FZK

where w = (w1, · · · , wn) stored in the second step.

The adversary A’s views have identical distributions in both
the ideal and real-world executions. Whenever the verifier



in the real-world execution outputs false, the verifier in
the ideal-world execution also outputs false, since S sends
⊥ to FZK in this case. Therefore, it remains to bound
the probability that the verifier in the real-world execu-
tion outputs true while the witness w sent by S to FZK

satisfies C(w) = 0. Then the probability that the honest
verifier in the real-world execution outputs true is at most
(qH + 1)/pr + 1/2κ.

It is trivial that the values associated with the input wires
and the output wires of ADD gates are computed correctly.
Therefore, the required probability is at most the sum of the
probabilities of the following two cases.
Case 1: When C(w) ̸= 1 and there exists a multiplication
gate where the MAC and keys of the output wire value
are not correctly computed from the MAC and keys of
the input wires during step 2, which means that [wυ] =
[fj({wi}i∈Ij

)]+eυ where eυ ∈ Fp is an error introduced by
the adversary A by sending an incorrect value d′υ = dυ+eυ,
V pass the check in step 4 which means that A = B.

Let the multiplication gate that is not correctly computed
be the i-th multiplication gate. Two parties hold {[wi] =
[ui] + di}i∈Iin , [w

′
υj
] = [wυj

] + eυj
= [uτn+j′ ] + dυj

+ eυj

where [ui], di, [uτn+j′ ], dυj
are computed following the pro-

tocol description. Given that the correctly computed values
yi = fj({ui}i∈Ij

)− gj,0 and fj({ui + di}i∈Ij
) = wυj

, we
have kj,zero eqauls

gj,2({kui
+ di}i∈Ij

)− gj,2({kui
}i∈Ij

)

+ kyj
− kw′

υj
+ fj({di}i∈Ij

) · x
=gj,2({di +mui}i∈Ij )− gj,2({mui}i∈Ij )

+myj
−mwυj

− eυj
· x

=mj,zero − eυj
· x

where mj,zero is computed following the protocol descrip-
tion. Since {mj,zero}j∈G and eυj

are known by A, x have pr

possible values, as does {kj,zero}j∈G . Then the probability
H(x1) = H(x2) where x1 consists of {mi,zero}j∈G and x2

consists of {kj,zero}j∈G is less than the sum of following
two probabilities,

1) x2 has been queried by A with probability qH/p
r.

2) x2 did not queried by A and H(x1) = H(x2) with
probability 1/2κ.

Case 2: When C(w) = 0 and the MAC and keys of the
output wire value are correctly computed from the MAC
and keys of the input wires for every multiplication gate,
meaning [wυ] = [fj({wi}i∈Ij

)], V outputs true. Then A
must send mh + x to the honest verifier where mh is an
MAC tag on the output wire known by A. In other words,
A learns x, which occurs with probability at most 1/pr .

In conclusion, any unbounded environment Z cannot
distinguish between the real-world execution and ideal-
world execution, except with probability (qH+1)/pr+1/2κ.
Corrupted verifier. S maintains a hash list Lh for the
random oracle H. On any query y ∈ {0, 1}∗ to H, if
∃(y, hy) ∈ Lh, return hy, else return a uniformly random
hy ∈ {0, 1}κ and add (y, hy) to Lh. If S receives false from

FZK, then is simply aborts. Otherwise, S interacts with A
as follows,

1) Upon receiving init, x ∈ Fpr and {kuτi
}i∈[n+|G|]

that V sends to Fp,r
qsVOLE, S stores those values. S

stores {kyj}j∈G that V sends to Fp,r
qsVOLE.

2) S sends {dτi}τi∈Iin

R←− F|Iin|
p , and sends dυj

R←− Fp

for every j ∈ G to V .
3) S computes {kj,zero}j∈G (based on the keys stored

before and sent to Fp,r
qsVOLE by V). If there not

exists ((k1,zero, · · · , k|G|,zero), hy) ∈ Lh, S sends
a uniformly random A ∈ {0, 1}κ to V and
add ((k1,zero, · · · , k|G|,zero), A) to Lh. Otherwise, S
sends A = hy to V .

4) S computes kh (based on the keys stored before and
sent to Fp,r

qsVOLE by V) and then sets mh = kh − x,
where h is the single output wire. Then S sends
mh to A.

Since {uτi}i∈[n+|G|] and A are uniformly random and
{uτi}i∈[n+|G|] perfectly hidden against the view of adversary
A, we easily obtain that the view of A simulated by S
is distributed identically to its view in the real protocol
execution. This completes the proof.

B.2. Proof of Theorem 3

Proof. We first consider the case of a malicious prover
(i.e., soundness and knowledge extraction) and then consider
the case of a malicious verifier (i.e., zero knowledge). In
each case, we construct a simulator S could only access
to an ideal functionality FZK, and run the adversary A as
a subroutine while emulating Fp,r

qsVOLE for A. We always
implicitly assume that S passes all communication between
A and environment Z .
Corrupted prover. S interacts with A as follows,

1) S receives init that A sends to Fp,r
qsVOLE, samples

x
R←− Fpr , and stores {uτi ,muτi

}i∈[n+|G1|] that
A sends to Fp,r

qsVOLE. Then S compute the corre-
sponding keys {kuτi

}i∈[n+|G1|]. S stores M0,M1

that A sends to Fp,r
qsVOLE, and computes the cor-

responding K. Upon receiving {myj}j∈G0 that A
sends to Fp,r

qsVOLE, S computes and stores yj =
fj({ui}i∈Ij

) − gj,0 for every j ∈ G0, and corre-
sponding keys {kyj

}j∈G0
.

2) For τi ∈ Iin, upon receiving dτi from A, S com-
putes and stores wτi = uτi + dτi .

3) S executes the rest of the protocol as an honest
verifier, using x and the keys stored in the first step.
If the honest verifier outputs false, then S sends
w = ⊥ and C to FZK and aborts. If the honest
verifier outputs true, then S sends w and C to FZK

where w = (w1, · · · , wn) stored in the second step.

The adversary A’s views have identical distributions in both
the ideal and real-world executions. Whenever the verifier
in the real-world execution outputs false, the verifier in



the ideal-world execution also outputs false, since S sends
⊥ to FZK in this case. Therefore, it remains to bound
the probability that the verifier in the real-world execution
outputs true while the witness w sent by S to FZK satisfies
C(w) = 0. Then the probability that the honest verifier in the
real-world execution outputs true is at most (3 + |G1|)/pr.

It is trivial that values associated with the input wires
and the output wires of the gate j are computed correctly
where j ∈ G0. Therefore, the required probability is at most
the sum of the probabilities of the following two cases.
Case 1: When C(w) = 0 and there exists some j ∈ G1
the the MAC and keys of the output wire value of gate
j are not correctly computed from the MAC and keys of
the input wires during step 2, which means that [wυj

] =
[fj({wi′}i′∈Ij

)]+eυj
where eυj

∈ Fp is an error introduced
by the adversary A by sending an incorrect value d′υj

=
dυj

+ eυj
, V pass the check in step 4 which means that

w = u0 + u1 · x where u0, u1 sent by A.
For the gate j, which is j′-th gate in G1, two par-

ties hold {[wi]}i∈Ij , [w
′
υj
] where [w′

υj
] = [wυj ] + eυj =

[fj({wi}i∈Ij
)] + eυj

. Therefore, we have kw′
υj

= mwυj
+

wυj · x+ eυj · x. Further we have bj equals

(gj,1({kwi
}i∈Ij

) + gj,0 · x− kw′
υj
) · x+ gj,2({kwi

}i∈Ij
)

=gj,2({mwi
}i∈Ij

)− eυj
· x2 + (fj({mwi

+ wi}i∈Ij
)

− gj,2({mwi}i∈Ij )− fj({wi}i∈Ij )−mwυj
) · x

=a0,j + a1,j · x− eυj · x2

In the step 4, A sends u′
0 = u0 + eu,0 and u′

1 = u1 + eu,1
to the honest V where u0, u1 are computed following the
protocol description, eu,0, eu,1 ∈ Fpr are the adversarially
chosen errors. Furthermore, we have the following:

w =
∑

j′∈[|G1|]

bj′ · χj′ +K

=
∑

j′∈[|G1|]

(a0,j′ + a1,j′ · x− eυj′ · x
2)χj′ +M0 +M1 · x

=(u′
0 − eu,0) + (u′

1 − eu,1) · x− (
∑

j′∈[|G1|]

eυj′ · χ
j′) · x2

If the check passes in step 4, then we have w = u′
0+u′

1 ·x.
Therefore, we can obtain that

eu,0 + eu,1 · x+ (
∑

j′∈[|G1|]

eυj′ · χ
j′) · x2 = 0 (2)

Then the probability of case 1 is less than the sum of
following two probabilities,

1)
∑

j′∈[|G1|] eυj′ · χ
j′ ̸= 0, the equation 2 is held.

Since x ∈ Fpr is uniformly random and hidden
from A’s view, the equation 2 holds with probabil-
ity at most 2/pr.

2)
∑

j′∈[|G1|] eυj′ ·χ
j′ = 0, the equation 2 is held. The

probability of this case is less than the probability
of

∑
j′∈[|G1|] eυj′ · χ

j′ = 0. If there exists some
j′ ∈ [|G1|] such that eυj′ ̸= 0, the probability of

∑
j′∈[|G1|] eυj′ · χ

j′ = 0 is at most |G1|/pr, as χ
is sampled uniformly at random after all eυj′ have
been determined.

Case 2: When C(w) = 0 and the MAC and keys of the
output wire value are correctly computed from the MAC
and keys of the input wires for every gate, meaning [wυj

] =
[fj({wi′}i′∈Ij

)] for every j, V outputs true. Then A must
send mh+x to the honest verifier where mh is an MAC tag
on the output wire known by A. In other words, A learns
x, which occurs with probability at most 1/pr .

In conclusion, any unbounded environment Z cannot
distinguish between the real-world execution and ideal-
world execution, except with probability (3 + |G1|)/pr.
Corrupted verifier. If S receives false from FZK, then is
simply aborts. Otherwise, S interacts with A as follows,

1) S stores x, {[kuτi
]}i∈[n+|G1|], K, and {kyj}j∈G0

that V sends to Fp,r
qsVOLE.

2) S sends {dτi}τi∈Iin

R←− Fn
p , and sends dυj

R←− Fp

for every j ∈ G1 to V .
3) S samples u1

R←− Fpr and computes u0 = w−u1 ·x
where w is computed using x,K and the keys re-
ceived from A following the protocol specification.
Then S sends u0, u1 to A.

4) S computes kh (based on the keys stored before and
sent to Fp,r

qsVOLE by V) and then sets mh = kh − x,
where h is the single output wire. Then S sends
mh to A.

Since {uτi}i∈[n+|G1|] and M1 are uniformly random and
perfectly hidden against the view of adversary A, we easily
obtain that the view of A simulated by S is distributed
identically to its view in the real protocol execution.


