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Abstract

Systems such as file backup services often use content-defined chunking (CDC) algorithms,
especially those based on rolling hash techniques, to split files into chunks in a way that allows
for data deduplication. These chunking algorithms often depend on per-user parameters in an
attempt to avoid leaking information about the data being stored. We present attacks to extract
these chunking parameters and discuss protocol-agnostic attacks and loss of security once the
parameters are breached (including when these parameters are not setup at all, which is often
available as an option). Our parameter-extraction attacks themselves are protocol-specific but
their ideas are generalizable to many potential CDC schemes.

1 Introduction

Online file backup services are one of several related applications that involving storing and manip-
ulating large amounts of changing data. One useful feature of such a service is deduplication: if the
same file is uploaded more than once, then perhaps storing it the second time should be relatively
cheap.[12] Such a system is even more useful if uploading a slightly-modified file also resulted in cost
savings, and luckily this is possible using the clever idea of content-defined chunking (CDC).

Some file backup services advertise the further feature that the backup service itself cannot
read the user’s data. This causes some tension with respect to the deduplication feature: how
can the service deduplicate data without being able to see it? There is not yet a universally-used
solution to this problem, so each backup service tends to implement their own method of performing
content-defined chunking using user-specific secret keys. In this paper, we discuss some methods of
attacking these schemes in order to extract the secret keys and then use this information to recover
some of the user’s data. There are also interesting interactions with another common feature of
backup services: compression.
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We begin by defining a chunking scheme as an algorithm where:

• The input is a string S of characters taking the form b1b2b3 · · · , where each character bi is an
element of some alphabet set B. For example, if the bi’s are bytes (as is typical for our use
cases), then we can consider B = {0, . . . , 255}.

• The output is a list of chunks C1, C2, . . ., which are themselves lists of characters, such that
S = C1||C2||C3|| · · · where || denotes concatenation. We say that S chunked at position j (or
equivalently, j is a breakpoint) if bj is the last character in some Ci.

Content-defined chunking schemes are chunking schemes where the breakpoints are determined
by the content of the surrounding data (typically the data immediately preceding the breakpoint).
An archetypal application of CDC is for a data backup service: if a server is storing data for a user,
then CDC enables a slight update of the data to only affect a small number of chunks near the edit,
whereas a more naive chunking scheme might not. For example, if the chunking scheme simply
divided the data into fixed chunk sizes, then any edit that changes the length of the document at
a single place (like a one-character insertion) would require all chunks after the edit point to be
remade, which might be a huge overhead requiring resending many chunks to the server.[11]

We mostly restrict our attentions to CDCs that follow a rolling hash format (or something very
similar, such as the scheme used by Tarsnap), meaning:

• As (public or private) parameters, we have some ring R, such as Z/nZ or F2[X] and some
window size N . Typically we want N to be much smaller than the average chunk size, so that
two strings with small edit distance will end up being divided into mostly-identical sequences
of chunks.

• As we read in characters, we chunk after a string ending with b1 · · · bN if

N∑

i=1

g(i)f(bi) ∈ RC ,

for some functions g and f (usually g is some function that is easy to iterate, such as taking a
power or multiplying by an element of some cyclic group) and some fixed subset of elements
RC ⊂ R. When this happens, we say that there was a clash after bN .

• We also chunk if the current “unchunked” part of the buffer since the last breakpoint (or the
beginning of the file) has reached some maximum chunk size parameter (and/or the end of
the data to be chunked). Thus, we can think of a clash as a special case of a chunk being
created that corresponds to some algebraic constraint in R. This allows us to assume that we
know (with high probability) if a chunk happened due to a clash or not by just looking at the
context.

Some popular examples of rolling hashes frequently used in practice are the Rabin-Karp algorithm’s
rolling hash [3] (modulo some integer n and using g(i) = αi for some α), Rabin Fingerprint [5]
(working in GF (2)), and Buzhash (working with cyclotomic polynomials).

The reason rolling hashes are relevant to our topic is that many file backup services use variations
of rolling hashes to achieve CDC. This paper will primarily look at Tarsnap [9], a project by the
second author, but we will also look at other schemes such as Borg [2] and Restic [6]. Similar attacks
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may be possible on systems making use of rsync or related tools along with gzip --rsyncable,
which resets the compression state based on a window checksum.

Attacks on tools using these algorithms will generally consist of two parts:

1. Parameter Extraction Attacks extract the chunking algorithm’s parameters, thus turning the
algorithm into a deterministic algorithm known to the attacker. These attacks are specific to
the protocol and can be thought of as individual instances of decryption problems.

2. Post-Parameter Attacks can be performed on the user’s data after the chunking algorithm is
known completely (such as after a parameter extraction attack, or in a situation where the
chunking algorithm has no private information to begin with). These attacks tend to be more
general and depend less on the specific chunking algorithm.

In Section 3, we showcase parameter extraction attacks on Tarsnap, Borg, and Restic, which
should translate into practical attacks after accounting for border cases and minor implementation
details. In Section 4, we show post-parameter attacks that can theoretically happen to any CDC-
based chunking service.

1.1 Independent work

After completing the original work underlying this paper in 2023, but before announcing it publicly
in 2025, the authors learned of similar results by Truong et al.[10] While the attacks described here
and there are somewhat related, the work of both groups was performed entirely independently of
each other.

2 Preliminaries

2.1 Attack Model

The most powerful attacker is usually the file backup service itself. In our attack model, we assume
by default that the attacker is the server (but see Subsection A.2 for alternatives). We assume that
the client software is open-source so it does not do anything obviously bad, such as sending the
server its chunking parameters. The attacker’s general goal is to find out what files the user has
uploaded, either now or in the future.

For most of our parameter-extraction attacks, we assume known-plaintext (the server knows
some files that the user happens to have and how those are split into chunks) or chosen-plaintext

(the server can trick the user into uploading particular files and see how those are split) attacks.
For post-parameter-extraction attacks we have a mixture of these and passive (the server does not
need any user-specific knowledge or influence) attacks.

2.2 Information Flow and Encryption

The standard architecture taken by all of the services we consider (though different services may
have different parts of this pipeline turned off and/or have different defaults) are:

1. First, the data (say a file) is chunked using a known CDC scheme into strings S1, . . . , Sn.

3



Figure 1: A visualization of data flow from the client to the server.

2. The strings are (sometimes optionally) compressed with some known compression algorithm
χ into χ(S1), . . . , χ(Sn).

3. The individual pieces of compressed text χ(Si) are encrypted with some industry-strength
length-preserving encryption and then sent to the server.

As a consequence, we assume that the server knows the lengths of the compressed chunks
but not their content. (Alternatively, even without access to the server, an attacker may be able
to perform fine-grained traffic analysis to glean information about chunk sizes. See Subsection A.2
in the appendix for more details.) We visualize the flow of data from the client to the server as in
Figure 1.

In this architecture, the sequence of operations is basically “forced” by the situation:

1. Any modern (strong) encryption produces ciphertext which is effectively indistinguishable
from random; consequently it is impossible to compress or usefully chunk the ciphertext if
data is encrypted1.

2. In order for chunking to be useful, it must be possible to retrieve and decompress chunks
individually; but this is only possible if the chunks are compressed individually, after the
chunking has been performed.

2.3 Compression

Compression can be thought of in a similar way across all our parameter-extraction attacks.
In our security model, we assume that the compression is with a fixed and known algorithm

(such as the default one offered by the suite), which adds an overhead to our attacks.

• In Tarsnap, the compression is done with zlib (compression level 9).

• Borg offers different compression options, of which lz4 is the default at the time of writing.

1We refer here, of course, to data being encrypted at rest. Some services encrypt data in transit, e.g. using
TLS, but not at rest; this allows them to deduplicate data between unrelated customers, but also introduces obvious
privacy concerns.
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• Restic obtained compression in August 2022, and runs its own (open-source) algorithm. [7]

We call this algorithm χ(s). It creates some ambiguity when translating compressed chunk
lengths |χ(s)| to uncompressed chunk lengths |s|. In effect, for known or chosen plaintext
attacks, if we encounter a chunk with some compressed length |χ(s)| and s is known to be a prefix
of a known string, we can simply try the relatively few possible values of s. We use the constant k to
denote the number of different possible values, or equivalently the compression factor. For attacks
which rely on highly-compressible chosen plaintexts, k may be between 4 and 8, while for more
generic inputs, the compression rate will typically be lower (which benefits the attacker since there
is less ambiguity). More specifically, for chosen plaintext attacks involving blocks of data consisting
of only two distinct byte values, k will approach the theoretical limit of log(256)/log(2) = 8; while
for known plaintexts consisting of genomic data, the compression rates can range from the expected
log(256)/log(4) = 4 to a more realistic 5 (since base pairs in DNA are not entirely randomly selected
from the four options).

For our work, we also consider attacks on versions of the protocol without compression for two
reasons. One: it provides insight into how much security is “offered” by compression against our
attacks. Two: not having compression is a legitimate option that certain users might choose to
enable (or have already enabled!), so attacks under such contexts are also practical to study.

2.4 Random Chunking Model

Recall that RC is some subset of R that will give a clash (and thus a new chunk) when the rolling
hash becomes a value inside it. For our probabilistic arguments about chunking, we assume that
at each new character we get a chunk (not accounting for minimum or maximum chunk length
settings) with probability |RC |/|R|. In this light, the set RC it typically chosen only with its size
|RC | in mind, as a method of controlling the rate of chunking.

For example, a popular choice is to define RC to be the set of elements that when written in
binary starts with some particular constant m number of 0’s, similar to Bitcoin’s proof-of-work.
This would cause the average chunk length to be 2m.

For somewhat technical reasons which we discuss later, the Tarsnap chunking algorithm doesn’t
exactly fit this model, though it is still useful as motivation.

3 Parameter Extraction Attacks

In this section, we show how one can extract parameters from commonly used in-production file
backup systems. Recall that this means that the attacker is able to see the chunk lengths but not
be able break an industry-grade encryption protocol initiated by the user’s client. By default, we
typically first assume that there is no compression and then consider compression’s effects separately.

Our attacks are fairly diverse, but all of them take the following outline:

General Attack Method:

1. Identify the space of chunking parameters and the rolling hash ring R.

2. Collect clashes (with a known or chosen plaintext). Convert each clash to some math-
ematical equation in R.
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3. Search the solutions to the set of equations in some efficient manner.

4. For each potential set of parameters P , check it on some (different) clash and accept
if the chunk sizes induced by P give the right chunk sizes. We call this last step a
clash consistency check of P . If the sizes are correct, accept (to reduce false positives,
this part of the algorithm can be amplified by e.g. checking consistency on multiple
clashes, as is standard in Monte Carlo algorithms).

3.1 Tarsnap

Tarsnap [9] uses a version of the Rabin-Karp type of hash, although instead of waiting for a rolling
hash to equal 0 in some ring R (in this case R = Z/pZ for some prime p), it waits for the running
sum (with no sliding window) to equal any of the previous running sums that are sufficiently far
away. This is similar to looking at rolling hashes with many sliding window sizes simultaneously
and seeing if any of them equal 0 ∈ R, though the precise details are still different for technical
reasons.

Tarsnap:
Secret parameters (derived from the user’s secret key):

• p, a prime close to 224; there are 17 ≈ 24 possible choices.

• α, a residue modulo p of sufficiently high multiplicative order. There are roughly 224

possible residues.

• x[] : {0, . . . , 255} → Z/pZ, a coefficient map that assigns to each possible byte some
residue mod p. This is effectively a choice of 256 random integers mod p.

Total parameter space size: 24 · 224 · (224)256 ≈ 26172.

Chunking procedure:

1. Given any stream S = b1b2 · · · of bytes, at any place J compute the “running” (not
“rolling” since there is no window) hash

yJ(S) = α1x[b1] + α2x[b2] + · · ·+ αJx[bJ ] (mod p).

2. We look for matches of this value to an earlier one. If yK(S) = yJ(S) where 1 ≤ K < J ,
then we split at J , producing a chunk consisting of bytes from 1 to J .

3. We also always create a chunk if J hits the maximal chunk size 261120 = (28−1) ·210.

There are further caveats in the actual implementation, such as requiring the inequality J−K−
1 < ⌊√4J − µ⌋ for the constant µ = 216 (corresponding to the mean chunk size) in order to chunk2

2The purpose of this constraint is to produce a faster-than-exponential decay in chunk size probabilities, that is
to get more “medium-sized” chunks.
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or zlib being used to compress the data. Going forward, we ignore these details (for Tarsnap but
also other services) unless necessary in context.

Naively, we would have to try all 26172 parameters combinations3 on some generic known plain-
text and see if any pass a chunking consistency check. We might have to repeat our process if the
chunking consistency check is unreliable (that is, if many possible parameter sets would give the
same chunk sizes). This is secure enough for practical purposes.

In fact, we were unable to find any known-plaintext parameter extraction attacks on Tarsnap
that rely on a totally arbitrary file. However, we can make some progress if we assume a chosen
plaintext model or if the known plaintext happens to have some desirable properties (which do
occasionally occur in the wild).

The main idea of our attack is to try to break the coefficient map x[] one at a time using
small-alphabet files, meaning files with few distinct byte values. Suppose we generate a known
small-alphabet file s that consists of only two distinct byte values, which we call 0 and 1 without
loss of generality. This means that the chunking locations within the file s depend on only four
parameters: p, α, x[0], x[1]. Furthermore, we can make our first reduction: observe that replacing
x[0] by 1 and x[1] by x[1]/x[0] gives the same chunking behavior; this means we can effectively
just assume that x[0] = 1 and look for x[1] instead. At this point, a very straightforward attack is
possible:

Attack 1 (Tarsnap, naive chosen-plaintext attack).

1. Obtain 255 clashes C1, . . . , C255, with each Ci from a chosen plaintext using only 0
and i as bytes.

2. Enumerate all possible (p, α, x[1]) triples.

3. Perform a clash consistency check of (p, α, x[0] = 1, x[1]) on C1.

4. Repeat a shortened version for all i = 2 through 255. For each i:

(a) Loop over all potential x[i] (at this step, p and α are already known).

(b) Perform a clash consistency check of (p, α, 1, x[i]) on Ci. Accept if consistent.

How long does this “brute force” attack take? For b[1], the number of possible parameters is
approximately

24 × 224 × 224 ≈ 5 · 1015 ≈ 252.

Suppose our known file is one megabyte in size (this is longer than necessary; see Section 4.1 for
discussion later). A naive estimate of chunking the file according to all possible parameters – but
not compressing them – is on the order of 1010 CPU-hours (100 000 CPU-years). The task is
“embarrassingly parallel,” so the clock time can be shortened by running on many cores. While
this attack is perhaps impractical, let us quickly upper-bound its cost: (cloud) compute can cost
approximately 1 cent per 1 CPU-hour, so by another quite literal measure of cost, this is $100
million of compute. Luckily, we do not have to repeat this workload 256 times; after p and α are
known, the workload of the simplified loops are much smaller.

3Or the 2256 possible HMAC keys from which these parameters are generated.
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This naive attack is still not viable, although we were doing much better than 26172 now. First,
we reduced our search by a factor of 17 million with the “dividing out by x[0]” strategy. Second,
our chosen-plaintext attack allows us to “divide and conquer” and reduce most of the work to just

finding x[1]
x[0] . We now show that this direction can be made practical if we add one more ingredient:

using the mathematical properties of the clashes to reduce the search space.
Recall that if there is a clash at position J (recall that this means there is a chunk after

position J that is not caused by having hit the maximum chunk size), then we have the relationship
∑J−1

i=0 x[si]α
i ≡∑K−1

i=0 x[si]α
i (mod p), which may be simplified to

∑J−1
i=K x[si]α

i ≡ 0 (mod p) and
further to

d−1∑

i=0

x[sJ−d+i]α
i ≡ 0 (mod p)

where d = J −K. In such a situation, let us call the substring sKsK+1 · · · sJ that caused the hash
collision a clash string (of length d).

Suppose we knew the first uncompressed chunk size J exactly. Assuming that this chunk
came from a clash, we have a constraint relating α and x[1] modulo p. Specifically, we have
∑J−1

i=J−d x[si]α
i ≡ 0 (mod p) for some clash length d. For each specific value of d, we have an

explicit polynomial relationship for α and x[1] roughly of the form
∑

i x[si]α
i ≡ 0 (mod p), where

we elide the range of the i and simplify some exponents for the sake of exposition. We can now
separate this as

∑

si=0 x[0]α
i +
∑

si=1 x[1]α
i ≡ 0 (mod p), or rewriting,

x[1]/x[0] ≡ x[1] ≡ −
∑

si=0 α
i

∑

si=1 α
i

(mod p). (3.1)

In particular, if we knew the values J and d (and of course the string s), then α determines x[1]
x[0]

uniquely. This allows the following attack:

Attack 2 (Tarsnap, using clashes).

1. Input: 255 long strings with the i-th string having only 0 and i as bytes for i ∈
{1, . . . , 255}.

2. From the ith string, obtain two clashes Ci and C ′

i. This gives 510 clashes C1, . . . , C255

and C ′

1, . . . , C
′

255, with Ci and C ′

i using only 0 and i as bytes.

3. Enumerate all possible (p, α, d) triples.

4. Compute the uniquely determined value of x[1] as in Equation 3.1 for both clash C1

and clash C ′

1.

5. Determine (p, α, x[1]) by finding the overlap in the two lists obtained in the previous
step.

6. Repeat a shortened version for all i = 2 through 255. For each i:

(a) For each d (at this step, p and α are already known), compute the uniquely
determined x[i] from the clash Ci.

(b) Perform a clash consistency check of (p, α, 1, x[i]) on C ′

i. Accept if consistent.
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On average, the constraint on d allows for 400 possible values4. This means we are looping over
24 · 224 · 29 ≈ 237 sets of parameters; each parameter has an amortized cost of only a few operations
since each of the sums in Equation 3.1 can be reused in computing the sums for the next higher
value of d. Compression makes the situation a bit harder for the attack, but not overwhelmingly;
on average for a file containing two distinct byte values, knowing the compressed chunk size allows
approximately k = 8 possible uncompressed chunk sizes and thus 8 possible ending points in addition
to the ≈ 400 possible starting points. This results in an attack taking a few hundred CPU-hours;
but the same considerations about parallelism from before apply here as well, so the attack can
complete in under an hour given a few hundred CPU cores.

3.2 Borg

Borg [2] uses Buzhash in "buzhash chunker" mode; it also provides a non-CDC "fixed chunker"
mode that seems directly inspired by protection against the types of attacks we mention5.

Simplified Buzhash Chunker:
Secret parameters (derived from the user’s secret key):

• x[] : {0, . . . , 255} → {0, 1}32, a coefficient map that assigns to each possible byte a
32-bit string.

Total parameter space size: (232)255 = 28160.

Chunking procedure:

1. Given any stream S = b1b2 · · · of bytes, at any place J compute the rolling hash

yJ(S) = sN−1(x[bJ−N+1])⊕ sN−2(x[bJ−N+2])⊕ · · · ⊕ x[bJ ] ∈ {0, 1}32,

where s is the cyclic bit shift function and ⊕ denotes XOR. N = 4095 is the hard-coded
window length.

2. If the last 21 bits of this hash equals 0, then we chunk at J .

3. We also chunk if we hit the maximal chunk size of 223 bytes.

Borg uses a 32 bit Buzhash, which runs on XOR. At first glance (this will change by Attack 4) this
means that we do not have the same algebraic properties as Tarsnap (in particular, no multiplication
symmetry and no particular meaning to quantities like x[1]/x[0]). However, since the window sizes
are fixed, our search space is smaller compared to Tarsnap in this direction. In addition, we can
make the problem “linear” in a way that removes the need for a “divide and conquer” approach.

To start this attack, for each i ∈ {0, . . . , 255}, define yi,j ∈ Z/2Z for j ∈ {0, . . . , 31} to be bits
such that x[i] = yi,0yi,1 · · · yi,31. Our task is to solve for the 256 variables x[i] by solving for the
256 · 32 = 213 variables yi,j . Analogous to Tarsnap, a clash after b1 · · · b4095 corresponds to some

4This estimation comes from the square root condition mentioned in the Tarsnap specs.
5From [2]: “The buzhash table is altered by XORing it with a seed randomly generated once for the repository,

and stored encrypted in the keyfile. This is to prevent chunk size based fingerprinting attacks on your encrypted
repo contents (to guess what files you have based on a specific set of chunk sizes).”
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relation
4094⊕

i=0

si(x[bi]) = d0 . . . d10 0 · · · 0
︸ ︷︷ ︸

21 zeroes

where the d0 through d10 are binary digits.

Attack 3 (Borg, linear algebra).

1. Input any (reasonably expressive) data; obtain 391 clashes C1, . . . , C391.

2. Each such relation corresponds to 21 equations corresponding to one of the last 21 bits
in the XOR equaling 0. These would all take the form

yi0,j + yi1,j+1 + · · ·+ yi4094,j+4094 = 0 (mod 2),

where the second index in the subscripts is taken modulo 32.

3. Solve the resulting linear system with the first 390 clashes, which has 21 ·390 equations
and 213 variables.

4. Perform a clash consistency check with the results on C391.

Because 21 · 391 > 213, we have enough information to solve for all the variables (generically).
This amount of data corresponds to about 21 · 221 bits, or about 40 megabytes. In an actual attack
we would need actual clashes instead of chunks, which would account for some additional overhead.

Attack 3 will not work if compression is enabled, since any ambiguity factor in compression
would be multiplicative across the c clashes. We give a chosen plaintext attack for this case. First,
we make the following algebraic observations, changing our bitstring operations to algebra over
R = GF (2)[X]/〈X32 − 1〉:

1. For each i ∈ {0, 1, . . . , 511}, interpret x[i] as a degree ≤ 31 polynomial Pi(X) over GF (2);
specifically, we can define a map p : {0, 1}32 → R such that

p(yi,0yi,1 · · · yi,31) = yi,0X
31 + yi,1X

30 + · · · yi,31.

2. The action of applying s in the bitstring interpretation is equivalent to multiplying by X
modulo X32 − 1 in the polynomial interpretation. That is, p(s(x[y])) = Xp(x[y]) in R.

3. The action of XORing in the bitstring interpretation is equivalent to addition in the polynomial
interpretation.

Now, we start by choosing only two types of bytes, say 0 and 1, in our chosen plaintext attack.
Recall that each clash then corresponds to

4094⊕

i=0

si(x[bi]) = d0 . . . d10 0 · · · 0
︸ ︷︷ ︸

21 zeroes

where each bi equals 0 or 1. Translated into R, this means

4094∑

i=0

XiPbi(X) = α31X
31 + α32X

30 + · · ·+ α21X
21
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where we have two polynomials P0(X) and P1(X). Define P ′

1(X) = P0(X)−P1(X). We can rewrite
the left-hand side as (

4094∑

i=0

XiP0(X)

)

+Q(X)P ′

1(X),

where Q(X) has degree at most 4094 and accounts for the places where the byte is 1 instead of 0.
By symmetry, ⊕4095

i=0 si(x[j]) = 0 · · · 0 (the upper summation limit is deliberate). This corre-

sponds to
∑4095

i=0 Xi = 0 ∈ GF (2)[X]. Manipulating, we obtain that
∑4094

i=0 Xi = X4095 = X31 in
R. Putting this together with the earlier constraint, we obtain

X31P0(X) +Q(X)P ′

1(X) = α31X
31 + α32X

30 + · · ·+ α21X
21.

This means if we have 2 clashes, we would be able to subtract off the X31P0(X) term to obtain

Q(X)P ′

1(X) = α31X
31 + α32X

30 + · · ·+ α21X
21.

In this equation, the Q’s and α’s are the differences between the coefficients in the two constraints,
where Q is known to us and the α’s are not. This means we can use a 210-iteration search to solve
for P ′

1(X).
We are now ready to present our attack:

Attack 4 (Borg, polynomials).

1. Input: 255 long strings with the i-th string having only 0 and i as bytes for i ∈
{1, . . . , 255}.

2. Using the first random string, define P ′

1(X) = P1(X)− P0(X). Obtain 4 clashes.

(a) With the first 2 clashes, obtain a constraint

Q(X)P ′

1(X) = α31X
31 + α32X

30 + · · ·+ α21X
21.

Loop over the α’s to solve for P ′

1(X);

(b) Using the 3rd clash, obtain a constraint

X31P0(X) +Q′(X)P ′

1(X) = β31X
31 + β32X

30 + · · ·+ β21X
21.

Loop over the β’s to solve for P0(X).

(c) Using the 4th clash, perform a clash consistency check on the proposed P0(X)
and P ′

1(X) (equivalently, P0(X) and P1(X)).

3. Now that we have P0(X), repeat a shortened version of the above for the other 254
long strings. On string i ≥ 2, define P ′

i (X) = Pi(X)− P0(X). Obtain 2 clashes.

(a) With the 1st clash, obtain a constraint

X31P0(X) +Q(X)P ′

i (X) = α31X
31 + α32X

30 + · · ·+ α21X
21.

Loop over the α’s to solve for P ′

i (X);

(b) Using the 2nd clash, perform a clash consistency check on P0(X) and P ′

i (X).
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This attack greatly reduces the multiplicative overhead of compression since we only need 4
loops. For non-compressed setups, the other attack is more direct and more efficient.

3.3 Restic

Restic [6] uses straight Rabin fingerprint on 64 bytes (= 512 bits), chunking when the lowest 21
bits of the resulting hash equals zero.

Restic:
Secret parameters:

• P [X]: a random irreducible polynomial over GF (2). This is generated once and is
saved, encrypted, into a file in the repository.

Chunking procedure:

1. Given any stream of bytes S ending in 64 bytes B1 . . . B64, convert the last 64 bytes
into 64 · 8 = 512 bits b0 . . . b511 and compute the rolling hash

y(S) = b0X
511 + b1X

510 + · · ·+ b510X + b511 ∈ GF (2)[X],

where the result is considered to be a polynomial in X over GF (2).

2. If the result modulo P [X], seen as a binary string, has its last 21 bits equal to 0, then
we chunk at J .

3. Also chunk if we hit the maximum chunk size of 223 or 230 bytes.

Unlike the other two systems, Restic does not have an obscured coefficient map x[]; the entirety
of the work is in breaking the hidden modulus P [X], which is a degree 53 polynomial over GF (2).
For each i ∈ {0, . . . , 52}, define yi ∈ Z/2Z via the equation

P [X] = X53 + y52X
52 + · · ·+ y1X + y0.

Our task is to solve for P [X] by solving for the 53 variables yi. As before, we obtain our information
through clashes. Each clash after a substring of 64 bytes corresponds to a substring of 64 · 8 = 512
bits b0 · · · b511, which gives the equation

511∑

i=0

biX
511−i = Q(X)P (X) +R(X),

where P (X) is our hidden degree 53 polynomial, Q(X) is a degree 458 (roughly) quotient polyno-
mial, and R(X) is a degree ≤ 52 remainder polynomial with the last 21 terms equal to 0.

We present two attacks for Restic. First, we present a linear-algebra based algorithm similar to
Attack 3 that is fast when there is no compression. Then, we present a different attack that involves
polynomial GCDs which is even faster without compression, but also works with compression as
there are fewer loops.
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Attack 5 (Restic, solving R(X)). .

1. Input any (reasonably expressive) data. Obtain 459 clashes.

2. Each clash gives a relation of the form Ai(X) = P (X)Qi(X) + Ri(X), where Ai(X)
has degree 511 and Ri(X) has degree 52 with 21 known zero bits.

3. Using Gaussian elimination, cancel off the higher-order terms in the Ai(X) to obtain
some A′(X) = P (X)Q′(X)+R′(X) where A′(X) has degree 53 and R′(X) has degree
52 with the same 21 known zero bits.

4. Based on the degrees we must have Q′(X) = 1, and thus the coefficients of A′(X) and
P (X) match for the terms corresponding to the known zero bits in R′(X).

5. Now that we have 21 bits of P (X), loop through the other 31 bits.

6. For each choice of P (X), perform a clash consistency check.

The 4th step fails in the degenerate case where A′(X) = 0 because everything canceled, but this
should only happen with probability 1/2 per run, so it vanishes as we get more clashes. In general,
we will take on the additive complexity of the O(n3) work from the Gaussian elimination and the
231 operations from the search.

Attack 6 (Restic, guessing R(X)).

1. Obtain 3 clashes. For the first clash, this gives 512 bits b0 · · · b511, which gives a
polynomial

∑511
i=0 biX

511−i = S(X).

2. Loop over the 253−21 = 232 possibilities of the first 32 terms of R(X). Each such
32-tuple gives one purported value of R(X).

(a) Compute the GCDa of S(X)−R(X) and X253 +X mod 2.

(b) Factor the result (if nontrivial) and enumerate irreducible divisors of degree 53.

(c) Set P (X) equal to any such divisors and perform a clash consistency checks on
the remaining 2 clashes.

aRecall that X2
53

−1 + 1 is the product of all irreducible polynomials in F2[X] of degree dividing 53;
this GCD can be rapidly computed via repeated squaring modulo S(X)− R(X) followed by a GCD of two
degree-511 polynomials.

We know that there are 2d−2
d

irreducible polynomials of degree d, so the expected number of

irreducible degree-p factors of a random higher-degree polynomial is 2d−2
d2d

. This means in our
232 searches, we should have found roughly 226/53 ≈ 226 irreducible polynomials of degree 53;
furthermore, in all but 1/(2 · 532) of the 232 searches the result of the GCD is degree 0, 1, 53, or
54, so the requisite polynomial factorizations are rare enough to not be significantly expensive. For
any particular “false positive” irreducible polynomial that’s not actually P (X), the probability that
on a second clash it would have a remainder with the last 21 terms equal to 0 should be only about

13



Summary of Attacks
Attack Service Chosen or Known

plaintext
compute required number of chunks

Attack 1 Tarsnap Chosen 252 255
Attack 2 Tarsnap Chosen 242 510
Attack 3 Borg Known 221 · k389 391
Attack 4 Borg Chosen 242 512
Attack 5 Restic Known 252 · k458 459
Attack 6 Restic Known 244 · k 3

Table 1: Parameter extraction attacks.

2−21. This would still have room for about 226−21 ≈ 32 false positives, which means we want a
third clash to test for false positives. Thus, this method should be good enough to find the correct
P (X).

Unlike with Borg, where different attacks have different strengths, Attack 6 should be faster
than Attack 5 regardless of the compression factor k.

3.4 Summary

We summarize our parameter extraction attacks in Table 1; for these attack times,

• k refers to the compression overhead for known-plaintext attacks (each compressed chunk size
corresponds to k possible uncompressed chunk sizes).

• We assume Gaussian elimination on n pivots over GF (2) takes n3/64 operations.

• We assume computing the GCD of two polynomials of degree n over GF (2) takes n2/64
operations.

The attacks given here are tactical – they are fairly distinct, though they share some algebraic
similarities. The main unifying theme is that the hashes used for these systems leak a nontrivial
amount of information, so the secrets can be recovered with a dedicated search that is optimized
for each use case.

3.5 Potential defences

We now discuss a few ideas (by no means exhaustive) on how to protect against the attacks, with the
common strategy being to enlarge the key space for the secret information used during chunking.
There are also some system-specific considerations.

• The Tarsnap attack we describe focuses on files with a small number of distinct byte values.
A proposal for Tarsnap to defend against such attacks is to use a rolling hash that “forces”
having many types of bytes. We propose that when considering a new byte bn, instead of
adding αix[bn] to the running hash, add αix′[b′n], where

b′n := H ′(bn−k+1bn−k+2 · · · bn)
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is computed with a second rolling hash (with different parameters) H ′ : {0, . . . , 255}k → 216 to
provide an input to an enlarged coefficient map x′ : 216 → 2256. This combination effectively
turns any text (for chunking purposes) to one where very few bytes are repeated. Thus, all
of our attacks (which depend on files with few repeating values) will fail. The cost is that the
chunking becomes slower since we need to do an additional rolling hash per byte. Enlarging
the prime space is also a conceptually simple way to add a few orders of magnitude of keyspace
security.

• In Borg, if one forces the option of not having compression, for the linear algebraic Attack 3,
assuming that it takes O(n3) to solve a system of n linear equations, the n in our attack is
256 · 32 = 213, so we are in the (up to a constant) 239 range, which is similar to where we are
in the Tarsnap attack. Naively, this means if we just made the Buzhash 8 times bigger to 256
bits instead, we would already get to 248, which is starting to look much harder. However,
like with the chosen plaintext attacks Attacks 2 and 4, the attacker might be able to use a
chosen plaintext attack that attacks two byte values at once. This would then need to be
repeated 256/2 = 128 times, but each time instead of having 256 · 256 variables, we would
just have 256 · 2 variables, which corresponds to (up to a constant) 227 computations, which
gives a total estimate of 227 · 128 = 234 ballpark again. Thus, against a sophisticated attacker
we would probably need to make the hashes about 210 larger. Then even if only two byte
values are attacked at once, it would take on the order of 260 computations to extract the
coefficients.

If we only worry about the case of compression enabled, then the only attack we have available
is Attack 4. In this case, simply changing hashes to having 64-bit codomain instead of 32-bit
would change the (210)2 search in the algorithm to (242)2, which should help protect against
the attack.

• The Restic attacks are similar in spirit with the Borg attacks. A simple keysize extension
would be enough to defend against our particular attacks. If the polynomial degree were to
be doubled to ≈ 128 or so, we would have to run through ≈ 2128−21 = 2107 iterations in our
search loop, which offers more protection.

4 Post-Parametrization Attacks

We see two “natural” classes of attacks after a rolling-hash type CDC is parameterized completely:

1. Known Chunked: the attacker only knows the chunk sizes and then tries to find out informa-
tion about the plaintext being sent.

2. Partially Chosen Chunked: the attacker can manipulate the user to input secret information
into a file (to be uploaded) where the other content can be controlled by the attacker.

We were not able to find our exact attack scenarios in literature, but there was some prece-
dent in adjacent fields. Kelsey [4] describes very similar attacks in the context of compression
algorithms. “Stateless compression side-channel attacks” were used to describe attacks where only
the compression ratios are known, and "stateful compression side-channel attacks" were used to
describe attacks where information about the rest of the message is known or controlled. These
two types of attacks roughly correspond to our two classes of attacks respectively.
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4.1 Known Chunked Attack

We start by getting a relevant but extremal case out of the way:

Example 4.1 (Single Known File). As an extremal but still relevant example, one can consider
the situation that the attacker has a particular known file in mind and wants to detect whether the
user has uploaded it. A backup server as the attacker (or someone who is able to sniff chunk sizes
from the user-server communications) with any particular file in mind would be able to detect that
the user has uploaded the file at any point.

For deeper analysis of the known chunked situation, since there is nothing the attacker really
does besides looking at the chunk sizes, the known chunked attack can be analyzed through the
perspective of the information-theoretical “leakage rate” from chunking. That is, we assume some
prior distribution of data (which by default, we assume is uniform). Then, we look at the distri-
bution of chunk sizes and consider its entropy, which gives an approximation of how many bits of
information are “leaked” per chunk.

• To start, we look at Tarsnap. On average, an uncompressed Tarsnap chunk size is around
the mean chunk size parameter µ = 216 = 65 536 bytes; it is actually slightly larger, with
the distribution as seen in Figure 2. The entropy of the uncompressed chunk size is 16
or 17 bits per chunk. If the chunk is mostly uniformly random data, then the entropy of
the compressed chunk size is similar. As a result, the information leakage is approximately
(16 bits)/(216 bytes) = 2−15 ≈ 1/30 000.

• Borg and Restic are very similar in that (as of time of this document) their min and max
chunk sizes are both 219 and 223 respectively and they both use 1/221 as roughly the probabil-
ity of chunking at any given point. Assuming a random chunking model (inducing a bounded
geometric distribution on the chunk sizes), this means the uncompressed chunk size distribu-
tion has roughly 21 bits of information per chunk. The average chunk length is around 221,
so the information leakage is approximately (21 bits)/(221 bytes) ≈ 2−17 ≈ 1/100 000.

In other words, at least one hundred-thousandth of random data is leaked. If the data in question
is at least 1.6 megabytes, then this is at least 16 bytes = 128 bits. In particular, for random data,
this is “universally uniquely identifiable” in the sense of “universally unique identifiers (UUIDs)”,
as UUIDs are 128 bits long. The main implications are as follows: if Alice is suspected to have
one of a collection of known files, each of which is at least a couple megabytes in size and which
are sufficiently “random” and different from each other, the file Alice possesses can be identified
uniquely.

Example 4.2 (Music). Using Tarsnap, we chunked a music library consisting of 10 000 songs each
downloaded from a known, external repository. The first two compressed chunk sizes uniquely
identified the album for each song. For most songs, the first two (and certainly the first three)
compressed chunk sizes uniquely identified the song. However, for a handful of albums, the MP3
files from the same album began with the same data, usually because the files included the same
album art for each file.

Even for a large library from iTunes or Spotify, similar numbers of chunks are expected to
uniquely identify the songs. This is because even 22·16 ≈ 4 billion (the implied number of different
possibilities for two chunk lengths, information-theoretically) far exceeds the number of songs ever
made.
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Figure 2: The geometric distribution drawn in red is the distribution of uncompressed chunk sizes
for most chunking algorithms, such as in Borg or Restic. The unimodal distribution drawn in green
is the distribution of uncompressed chunk sizes in Tarsnap.

As Example 4.2 shows, probably every single MP3 file that Alice possesses may be identified, if
the files are taken from a known collection (e.g. iTunes or other official/centralized sources). The
same should be true for other media files, such as videos. In general, any large file that Alice is
suspected of having may be verified using this attack. This includes anything “publicly available,”
such as any file from The Pirate Bay or Wikileaks.

Example 4.3 (DNA). The personal genomics company 23andMe [1] offers a service that collects
some of the user’s SNPs (single nucleotide polymorphisms). These SNPs can be downloaded,
producing a file that looks like the following:

# This data file generated by 23andMe at: Mon Oct 13 19:07:27 2014

#

[...]

#

# More information on reference human assembly build 37 (aka Annotation Release 104):

# http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9606

#

# rsid chromosome position genotype

rs12564807 1 734462 AA

rs3131972 1 752721 AG

rs148828841 1 760998 CC

rs12124819 1 776546 AA

rs115093905 1 787173 GG

rs11240777 1 798959 AG

rs7538305 1 824398 AC

rs4970383 1 838555 CC

rs4475691 1 846808 CC

rs7537756 1 854250 AA

One thing that Alice may do with this data is “paste” her genotypes into the reference genome,
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that is, replacing the base (nucleotide) at a given position with her own. While this is a somewhat
unusual operation for several reasons (for example, she has two copies of each chromosome, so it’s
unclear which of the two bases to paste – 23andMe does not distinguish between the copies), we
consulted with a geneticist and it appears this is in fact an operation that computational geneticists
perform. In particular, files like this can be found “in the wild.”

Upon having done so, suppose Alice uploads this modified genome to Tarsnap. Suppose the
file is encoded with one base per byte (which is typical), so that this is a small-alphabet file with
m = 4. Notice that in the file provided above by 23andMe, the very first SNP occurs at position
734 462. This is well over the half a megabyte of data necessary to determine the parameters
p, α, b[A], b[C], b[T], b[G] with some of the attacks above. In particular, even though Alice has
uploaded a modified genome, a very large prefix of the data is identical to the reference genome, so
it may as well be considered “known.”

However, starting at the position of the first SNP above, Alice’s genome potentially differs
from the reference genome, so at that point, the attacker may attempt to determine Alice’s geno-
type. There are a few ways in which the compressed chunk lengths from Alice’s genome may leak
information.

First, the differences between Alice’s genome and the reference may change the breakpoints.
This occurs sometimes (we estimate that one-sixth of the split points of a chunk might be different
in one of these genetic examples), and can leak a large amount of information, usually enough to
solve for the changed data completely. For example, if some string (S1||S2||S3) did not chunk but
(S1||S′

2||S3) now chunks after S3, where S′

2 is Alice’s hidden data, we can probably immediately
solve for S′

2 assuming reasonable bounds on the length of S′

2, especially if the alphabet is severely
limited to e.g. A,C, T,G.

Alternatively, suppose that the breakpoints are identical and the genotype does not involve an
insertion or deletion (relatively uncommon in 23andMe data: approximately half a percent of all
SNPs). Then the uncompressed chunk lengths are the same in Alice’s genome and the reference
genome. However, the information transmitted over the wire leaks the compressed chunk lengths,
and those also depend on the data!

1. For example, if the SNPs are relatively far apart and only a single SNP falls within a chunk,
it may be the case that the compressed chunk length would depend on the SNP as follows:
A : 7051, C : 7050, T : 7051, G : 7050. As such, the attacker is able to determine partial
information about Alice’s genome. Here, assuming the different bases are equally likely, one
bit was leaked from the compressed chunk length, half of the total of two bits per base. In
reality, there is a prior distribution on bases that may leak further information. For example,
if only A and C are seen in the wild, then the length would completely determine the SNP.

2. Extending, we can have multiple bases fall within a single chunk, in which case the information
is more diffuse but can still be analyzed. Suppose five bases are chunked together. Then the
distribution of compressed chunk lengths may be as in Table 2. In this example, on average
≈ 2.6 bits out of a total 10 bits would be leaked from this chunk (again assuming the different
5-tuples were equally likely). But if the length were 19422, the full 5-tuple would be known.

We estimate (very crudely!) that 20% of the information content of a 23andMe data file may be
leaked in this manner, primarily due to the change in chunking but also partially from the differences
in compressed length.
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Length 19414 19415 19416 19417 19418 19419 19420 19421 19422
Count 16 182 336 192 53 101 108 35 1

Table 2: An example distribution length of number of 5-tuples that result in each particular length
of a compressed chunk. The first row is the length of the compressed chunk containing these
particular 5 nucleotides, and the second row is the number of 5-tuples resulting in this length.

Example 4.3 is a real-world example of a not-quite-known6 plaintext situation with relatively
small m = 4, that leaks actual information of interest that people are concerned with keeping secure.
It also demonstrates a curious mechanism of information leakage. Because SNPs are relatively rare,
most of them do not participate in a clash and the chunks are mostly driven by the reference
genome. Thus, in those cases, the uncompressed chunk lengths wouldn’t have leaked information;
instead, the compression reveals information here!

4.2 Partially Chosen Chunked

Some examples of the partially chosen chunked setup are:

• The attacker (possibly the owner of the database server) can trick the user to fill out some
items in the a database with some secret, with the resulting database being exported and
backed up. But the attacker is able to control the text surrounding the item (such as adjacent
entries, strings encoding the “structure” of the database, or comments).

• The attacker can trick the user to fill out and backup a PDF survey or form, with “inactive”
text adversarially edited before and after the entry.

• (inspired by Example 4.3) The attacker can trick the user to inject some of their personal
genome into a purported “standard” genome file, but adversarially edit some of the “inactive”
bases around the personalized parts in preparation for this attack.

Attack 7 (Standard Partially-Chosen Chunked Attack). Output: a “partially completed”

string of the form (p||[c]||s), where:

1. p is a prefix known to the attacker;

2. [c] ∈ C is a secret input (of fixed known size) known only to the user and constrained
to some set C, to be filled by the user later.

3. s is a suffix controlled by the attacker.

Attack setup:

1. Start with p as given and s equal to the empty string. We now construct s one character
si at a time after the [c] area.

2. Emulate the state of the chunking scheme at this position; that is, for each possible
c ∈ C, compute the current rolling hash value in R.

6What we mean by this is that the plaintext is technically a "chosen" plaintext, but the situation occurs in the
wild, so it may occur without the attacker specifically choosing this plaintext.
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3. For each of the possible |B| values of si, say that si clashes assuming cj if
(p||cj ||s1 · · · si) creates a clash.

(a) If writing a particular si would clash assuming some cj , append si to s, remove
cj from C, and continue.

(b) If not, then pick a random si ∈ B to append to s.

4. Update the state of the chunking scheme for the remaining elements in C. Continue
until |C| = 1.

As the probability of clashing is |RC |/|R| in the random chunking model, the probability of our
state having a si that would clash assuming some cj is roughly p = |B| · |RC |/|R|. This means at
each step, we have found a si that would “identify” one of the |C| choices uniquely with probability
p, and otherwise get reset into the same state. Treating this as a simple Markov chain, the expected
number of characters before we are able to remove one of the choices of C is 1/p. By linearity of
expectations, the average length of s we would need to chunk all but one possibility is

|C|
p

=
|C| · |R|
|B| · |RC |

(strictly speaking, we have |C| − 1 instead of |C|, since once we go from 2 options to 1 option of C
we have differentiated all options). We now have a string that chunks at a different chunk length
for each possible input c ∈ C.

A useful way of conceptualizing this attack is that it speeds up the information leakage rate (as
described in Section 4.1) by |B| compared to a passive known chunked attack, since the attacker
gets to choose to look at |B| characters at a time instead of leaving it up to chance. Also, the
“prefix” / “suffix” distinction is not really important; if the attacker has access to both the prefix
and the suffix, they can attack by changing both, at a rate of |B| per character in the prefix or
suffix.

Example 4.4 (Citizenship / binary choices). As a proof of concept, we can assume the attacker
wants to figure out if the user is a U.S. citizen by inducing the user to sign some citizenship form
with a “yes/no” option. Then if the form is saved in a file with the format (p||c||s) as given and
we are streaming bytes with chunking probability 1/221 (as in Borg or Restic), it would take an
average of 221/28 = 213 bytes to find a difference.

For Tarsnap in particular, the chunking probability changes with J because the behavior
of Tarsnap’s chunking algorithm is similar to "doing many rolling hashes at once." When J
gets sufficiently close to the maximum chunking length 261120, the Tarsnap specs give roughly√
4 · 261120− 65536 ≈ 210 potential windows, a rolling hash equaling to 0 of any of them creating

a chunk. Since p ≈ 224, this means the chunking probability is roughly 214 at that point, which
means it would only take 214/28 = 26 bytes to find a difference if the attacker "aims" to have
|(p||c||s)| get close to 261120.
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5 Conclusion

5.1 Parameter-extraction Attacks

The main theme of our parameter-extraction work is that CDCs are essentially using com-
putationally efficient (instead of cryptographically secure) hash functions as a sort of
pseudo-encryption, with the chunking parameters acting as a secret key. This means
that they are susceptible to some attacks and their security-efficiency tradeoffs should be strongly
considered.

It seems like compression as default (or even required) is important. Without compression, Borg
and Restic are susceptible to known plaintext attacks. With compression, we still have theoretically
sound (and harder) chosen-plaintext attacks but no known-plaintext attacks. Sadly, compression
can also leak information for post-parameter extraction attacks, as shown in Example 4.3.

5.2 Post-parameter-extraction Attacks

Every chunking algorithm leaks some basic rate r (for Tarsnap, 1/30000) of information assuming
uniformly random data. Example 4.2 already demonstrated how this can be used in practice to
learn something concrete. However, in specific real-world situations, the leakage rate can be much
higher than our “maximum entropy” assumption of uniformly random data:

1. In a low-entropy setting (such as DNA or surveys where there are small changes from a known
“default” data), the user changes can cause chunking breakpoint changes that give away the
information completely.

2. Even if the chunking breakpoints do not change, the chunk sizes from compression would give
away significant information from the data, as in Example 4.3. See [4] for related work.

3. When an attacker can influence the “default” data (such as in the case of a malicious survey
in Section 4.2), the information can be adversarially extracted faster than known-chunking
attacks by roughly a factor of |B|, the size of the alphabet.
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A Chunk discovery

In order to carry out any of the attacks mentioned here, it is necessary first for the attacker to be
able to determine how the data is chunked, i.e. to determine the points at which one chunk ends
and the next chunk begins. Depending on the software used and the capabilities of the attacker,
this may be more or less difficult.

A.1 Server access

While encrypted backup software, by definition, encrypts the data being stored, in most (but
perhaps not all) cases the server which is being used for storage is aware of the sizes of the chunks
being stored. This is useful for the efficient storage of deduplicated archives; if the last archive using
a chunk of data is deleted, that data is no longer needed and can be removed from the backing
storage providing that there is some way for the backing storage to identify the data in question
(and distinguish it from other chunks uploaded during the same archive creation operation).

As such, the underlying storage system — or anyone with access to it — can in most cases easily
determine the sequence of sizes of chunks constituting an archive.

A.2 Fine-grained traffic analysis

Even without access to the server, it may be possible to reveal the sequence of chunk sizes by
monitoring network traffic. Typically each chunk of data will be stored as a request to the server
(potentially an HTTPS request over a new TCP connection for each chunk, but often one of a series
of requests over a long-lived TCP connection). As data is sent over the network, it will typically be
sent as a series of maximum-segment-size[8] (MSS) TCP segments followed by a smaller segment
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with the "left over" data. Even when a TCP connection is long-lived and used for many requests,
if the network is fast enough to avoid having requests buffered on the client side, the individual
requests can often be identified by the presence of a less-than-MSS TCP segment.

While this attack can obviously be carried out by an attacker who can read the (encrypted)
network traffic between the client and server, the ability to read the traffic is not necessary (and
indeed adds nothing assuming that the request transport is adequately secure, e.g. using TLS).
The requirement for carrying out this attack is merely the ability to measure how much traffic is
being sent — which for a system connected via a wireless network could be achieved by merely
measuring the amount of radio traffic, even if the wireless network is cryptographically secured.

A.3 Effects of compression

Backup software typically compresses data being archived, in order to minimize storage usage, but
for content-defined chunking to be used for deduplication purposes it’s necessary that the chunking
take place prior to data compression. The previously-mentioned attacks reveal the compressed size
of chunks (plus storage and network overheads), which may leave the actual uncompressed chunks
ambiguous.

Data being archived typically consists of a mixture of incompressible data — multimedia files
and previously compressed data – and data which compresses by anywhere between 2x and 10x.
In the former case, revealing the compressed size of a chunk will almost certainly reveal the length
of the plaintext chunk; in the latter case, there may be several points where the chunk could have
ended which yield the same compressed size, and thus several possibilities for the “window” which
triggered the end of the chunk.

A.4 Deduplication oracle

Another attack is possible which can directly reveal the uncompressed chunk size by taking ad-
vantage of deduplication of archived data. Recognizing that the decision of whether to end a
chunk depends solely on data prior to the potential dividing point, if we know a chunk of data
which has been previously stored, we can use the deduplication process as an oracle to answer the
question “does a chunk end at this point” by causing the data [query data][previously stored

chunk] to be archived; a rough measurement of the total amount of new data stored then reveals
whether [previously stored chunk] remained as a chunk (and was deduplicated away), i.e. if
the chunking process decided to end a chunk at the end of [query data].

Given this oracle and a known chunk X, a chosen-plaintext attack can create archives aX, abX,
abcX, . . . to determine the exact point where the data abc... will be chunked. While this attack
requires only coarse-grained traffic analysis — or potentially none if the total volume of data stored
is revealed in other ways (e.g. via billing records) — and reveals the precise location where the
plaintext is divided into chunks, it has the disadvantage compared to other attacks of being a
chosen-plaintext attack and requiring a larger volume of data to be uploaded (potentially across
many archives).
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