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Abstract. Distinguishing Goppa codes or alternant codes from generic
linear codes [FGO`11] has been shown to be a first step before being
able to attack McEliece cryptosystem based on those codes [BMT24].
Whereas the distinguisher of [FGO`11] is only able to distinguish Goppa
codes or alternant codes of rate very close to 1, in [CMT23a] a much more
powerful (and more general) distinguisher was proposed. It is based on
computing the Hilbert series tHFpdq, d P Nu of a Pfaffian modeling.
The distinguisher of [FGO`11] can be interpreted as computing HFp1q.
Computing HFp2q still gives a polynomial time distinguisher for alternant
or Goppa codes and is apparently able to distinguish Goppa or alternant
codes in a much broader regime of rates as the one of [FGO`11]. However,
the scope of this distinguisher was unclear. We give here a formula for
HFp2q corresponding to generic alternant codes when the field size q
satisfies q ě r, where r is the degree of the alternant code. We also
show that this expression for HFp2q provides a lower bound in general.
The value of HFp2q corresponding to random linear codes is known and
this yields a precise description of the new regime of rates that can be
distinguished by this new method. This shows that the new distinguisher
improves significantly upon the one given in [FGO`11].

1 Introduction

McEliece cryptosystem [McE78] is the oldest code-based scheme and it is based
on binary Goppa codes, a subfamily of alternant codes. It is believed to be
quantum-resistant and its IND-CCA secure variation [ABC`22] is currently a
fourth round finalist of the NIST post-quantum competition. For a long time, it
was believed that structural attacks aiming at recovering the underlying Goppa
structure from an arbitrary generator matrix of the code were much more expen-
sive than message recovery attacks. The latter ignore completely the algebraic
structure and aim just at decoding a generic linear code.

In [FGO`11] another approach was tried. Instead of trying to recover directly
the algebraic structure from a generator matrix of a Goppa code, a potentially
easier problem is solved first, namely that of distinguishing a Goppa code from



a generic linear code just from the knowledge of a generator matrix of the code.
This is a promise problem where either we are given a generator matrix of a
Goppa code or one of a random linear code and one must decide in which case
we are. It turned out that there is a way to solve this problem in polynomial time
for Goppa codes, and more generally for alternant codes, as long as their rate is
high enough [FGO`11]. It took a while to transform this distinguisher into an
algorithm recovering the algebraic structure of the Goppa or the alternant code.
This has recently been (partly) achieved in [BMT24, CMT23b]. Unfortunately,
the specific case of binary Goppa codes could not be handled by these two papers.

Interestingly enough, [CMT23b] also puts forward a new algebraic object,
namely the matrix code of quadratic relations. The point is that this matrix
code can be associated to any linear code. However, the matrix code associated
to Goppa or alternant codes contains matrices of unusually low rank, namely
rank 3 in odd characteristic and rank 2 in even characteristic, which are conse-
quences of structured quadratic relations. Finding such low rank matrices can in
principle be achieved by solving the corresponding MinRank problem. Moreover,
in characteristic 2, the matrix code is a subspace of skew-symmetric matrices
and the MinRank problem can be modeled with a system where the Pfaffians of
principal submatrices of order 4 are equated to 0. The polynomials correspond-
ing to these equations define what we call the Pfaffian ideal. The existence of
low-rank matrices has been exploited to mount a distinguisher attack and its
complexity has been partially analyzed [CMT23b] as we recall below.

This work focuses on characteristic 2 and aims to advance the knowledge of
a fundamental object associated with the above-mentioned Pfaffian ideal (and
with polynomial ideals in general): its Hilbert function (or series). This Hilbert
series tHFpdq, d P Nu turns out to be a very good way to distinguish alternant
or Goppa codes from generic linear codes. Whereas HFpdq never vanishes in the
first case, it turns out to be equal to 0 for a large enough degree in the second
case. This gives a new distinguisher for Goppa or alternant codes. The Hilbert
function associated to a generic linear code can be easily derived by making
some assumptions that have been verified experimentally [CMT23b, Conjecture
1] and the smallest degree for which the Hilbert series vanishes can be computed.
Interestingly in the case when the co-dimension n ´ k of the code is of the
form n ´ k “ O pnαq when α ă 1 and n is the codelength, the degree d at
which this happens is low enough so that the actual computation of the Hilbert
series can be done with a complexity which is smaller than the aforementioned
message recovery attacks. Potentially, this also paves the way to key attacks on
the McEliece cryptosystem based on such codes of very large rate which are less
complex than message recovery attacks.

Unfortunately, whereas the Hilbert series tHFRpdq, d P Nu of a generic lin-
ear code is well understood in [CMT23b], the Hilbert series tHFApdq, d P Nu

that corresponds to an alternant code is much more difficult to analyze. This
is a pity, since this would allow to understand precisely the scope of the distin-
guisher based on the computation of the Hilbert series. The only case, which
was understood right now is the Hilbert series at degree 1, HFp1q. It turns out



that knowing HFp1q is equivalent to knowing the dimension of the square of the
dual code and the distinguisher of alternant or Goppa codes based on the fact
that their HFp1q differs is actually equivalent to the distinguisher of [FGO`11].

The aim of this work is to understand the value of HFAp2q. We will provide
here a formula for it together with a proof using a natural conjecture that has
been verified experimentally. We also prove that this formula is actually a rigor-
ous lower bound on HFAp2q in general. It turns out that the distinguisher based
on HFAp2q ‰ HFRp2q works for a much broader set of of parameters than the
distinguisher HFAp1q ‰ HFRp1q (which is equivalent to the one of [FGO`11]).
It also shows that the parameter range for which HFAp2q ‰ HFRp2q is much
broader than the range of parameters for which HFRp2q “ 0. This improves for
certain parameters the distinguisher of [CMT23b] and could also open the way
to key attacks in the regime of parameters for which HFAp2q ‰ HFRp2q, much
in the same way that [FGO`11, MT23] were a first step before the attacks of
[BMT24, CMT23b]. On top of that, knowing the Hilbert series precisely is cru-
cial when it comes to solve the Pfaffian system and our work can be viewed as
a significant step in this direction.

It is also worthwhile to note that another generalization of the distinguisher
of [FGO`11] has been proposed recently in [Ran24] and has lead to a break-
through result, namely a distinguisher of subexponential complexity of Goppa
or alternant codes which works even in the constant rate regime and for any
finite characteristic. A crucial ingredient to get this subexponential complexity
is shortening the dual of the alternant or Goppa code and then applying the
algebraic distinguisher to it. It would be interesting to understand how the HFA
distinguisher behaves at degree 2 when applied to such shortened codes.

2 Preliminaries

General notation. We work in characteristic 2 throughout the paper. We
denote by Fq the finite field of size q which is therefore assumed here to be a
power of 2. If we just want to indicate that we deal with an arbitrary field we
simply write F.

Vector and matrix notation. Vectors are indicated by lowercase bold letters
x and matrices by uppercase bold letters M . Given a function f acting on F and
a vector x “ pxiq1ďiďn P Fn, the expression fpxq is the component-wise mapping
of f on x, i.e. fpxq “ pfpxiqq1ďiďn. We will even apply this to functions f acting
on F ˆ F: for instance for two vectors x and y in Fn and two positive integers a
and b we denote by xayb the vector pxa

i y
b
i q1ďiďn.

Reed-Solomon and alternant codes.

Definition 1 (Generalized Reed-Solomon code). Let n ď q be an integer,
x “ px1, . . . , xnq be a vector of pairwise-distinct elements of Fq, and y P pFˆ

q qn.



The Generalized Reed-Solomon (GRS in short) code of dimension r, support x
and multiplier y is

GRSrpx,yq
def
“ tpy1fpx1q, . . . , ynfpxnqq | f P FqrXsăru .

Alternant codes are subfield subcodes of GRS codes. It will be convenient here
to follow the point of view of [MS86] which defines them in terms of the dual
GRS code (which is itself a GRS code [MS86]).

Definition 2 (Alternant code). Let r,m be two integers, x P Fn
qm be a support

(i.e. an n-tuple of distinct elements of Fqm), and y P pFˆ
qmqn be a multiplier. The

alternant code over Fq of degree r, support x and multiplier y is the subfield
subcode over Fq of GRSrpx,yqK:

Arpx,yq
def
“ pGRSrpx,yqKq|Fq

“ GRSrpx,yqK X Fn
q .

m is called the extension degree of the alternant code.

We know that [MS86] dimFqArpx,yq ě n´rm and this bound is generally tight.
Goppa codes are a particular family of alternant codes. They are defined as

Definition 3 (Goppa code). Let x P Fn
qm be a support vector and Γ P Fqmrzs

a polynomial of degree r such that Γ pxiq ‰ 0 for all i P t1, . . . , nu. The Goppa
code of degree r with support x and Goppa polynomial Γ is defined as G px, Γ q

def
“

Arpx,yq, where y
def
“

´

1
Γ px1q

, . . . , 1
Γ pxnq

¯

.

Schur/component-wise product. The family of codes defined above can be
conveniently generated by vectors that are component-wise (also called Schur)
products of x and y. Recall that this product is defined as

Definition 4. The component-wise product of two vectors a, b P Fn is defined
as

a ‹ b
def
“ pa1b1, . . . , anbnq.

The i-th power of a vector a is defined by ai “ a ‹ ¨ ¨ ¨ ‹ a
loooomoooon

i times

. This notation is

compatible with the notation fpxq introduced above. Sometimes we will drop the
star, i.e.yxi “ y ‹ xi.

Since any polynomial P in Frzs of degree ă r can be written as a linear combi-
nation over F of powers of z of degree ă r, by using the notation given above
we can view a GRS code as

GRSrpx,yq
def
“ xxay | 0 ď a ă r yFq

.

The Schur product is also an essential ingredient for distinguishing GRS codes
or alternant codes from random codes. The Schur/component-wise product of
codes is defined by



Definition 5. The component-wise product of codes C ,D over F with the same
length n is defined as

C ‹ D
def
“ x c ‹ d | c P C ,d P D yF .

If C “ D , we call C ‹2 def
“ C ‹ C the square code of C .

GRS codes turn out to display a very peculiar property with respect to the
square of codes. It is readily seen that dimC ‹2 ď min

´

n,
`

k`1
2

˘

¯

where k and n

are respectively the dimension and length of C . For random codes, the upper-
bound is almost always an equality [CCMZ15], whereas the situation for GRS
codes is completely different: in this case, we namely have

dimC ‹2 “ min pn, 2k ´ 1q . (1)

The reason of this particular behavior comes from the fact that GRS codes
are polynomial evaluation codes. Since the Schur product of two polynomial
evaluations of degree degP ď k ´ 1 and degQ ď k ´ 1 respectively is itself a
polynomial evaluation of degree degpP ¨ Qq “ degP ` degQ ă 2k ´ 1:

pyiP pxiqqi ‹ pyiQpxiqqi “ py2i P ¨ Qpxiqqi,

it is readily seen that

GRSkpx,yq‹2 “ GRS2k´1px,y ‹ yq, (2)

which explains (1). In a sense, the square code construction “sees” the polynomial
structure of the GRS code. Similarly, alternant codes inherit the polynomial
structure of the GRS super-code and can also be detected by taking the square
of them [COT14] (or their dual code [MT22]).

Quadratic relations over a basis of a code. The aforementioned distin-
guisher is based on computing the dimension of square codes or on computing
related quantities. A new way of approaching the problem of distinguishing such
codes has been introduced in [CMT23b] and consists instead in considering lin-
ear relations between the Schur products of basis elements of the code or the
dual code. Higher order relations were studied in [Ran24] and lead to a powerful
distinguisher. This new approach may be described using the framework detailed
below.

For any integer k, we denote with

Sk
def
“ Frx1, . . . , xks “

à

dě0

S
pdq

k

the polynomial ring in k variables over F, graded by degree, where S
pdq

k stands
for the homogeneous component of degree d. Elements of Sp2q

k are referred to as



quadratic forms. Given a list V “ pv1, . . . ,vkq of k vectors of length n over F,
there is a natural evaluation map

evV : Sk ÝÑ Fn

defined on each homogeneous component by

ev
pdq

V
def
“ evV |S

pdq

k

:

$

&

%

S
pdq

k ÝÑ Fn
ÿ

i1ď...ďid

ci1,...idxi1 . . . xid ÞÝÑ
ÿ

i1ď...ďid

ci1,...idvi1 ‹ . . . ‹ vid ,

and then extended to Sk by linearity.

Definition 6. Let C be an rn, ks-linear code over F, and let V def
“ pv1, . . . ,vkq

be a basis of C . The code of quadratic relations of C with respect to V is defined
as CrelpVq

def
“ ker ev

p2q

V .

In this setting, the code of quadratic relations is seen as a linear subspace of
S

p2q

k . A quadratic form
f “

ÿ

iďj

ci,jxixj P S
p2q

k

is associated to a matrix

Matpfq
def
“

¨

˚

˚

˚

˝

2c1,1 c1,2 c1,3 . . . c1,k
c1,2 2c2,2 c2,3 . . . c2,k
...

...
...

. . .
...

c1,k c2,k c3,k . . . 2ck,k

˛

‹

‹

‹

‚

,

which is skew-symmetric, i.e symmetric with a zero diagonal, when F has char-
acteristic 2. We may thus define the code of matrices

CmatpVq
def
“ tMatpfq | f P CrelpVqu.

This link between quadratic forms and matrices is a powerful tool for analyzing
quadratic relations. For instance, the rank of the matrix of a quadratic form
may provide insightful information about the “shortness” of the form. In the
following of this work, we may refer to the ranke of Matpfq as the rank of the
quadratic form f .
We recall that a lot of interesting features of the code of relations remain invari-
ant under a change of basis.

Lemma 1 ([CMT23b], Proposition 4).

dimCmatpVq “ dimCrelpVq.

Furthermore, dimCrelpVq and the rank distribution of CmatpVq are invariant
under a change of basis.

As a consequence, we sometimes write Crel or Cmat without specifying the basis
when we refer to invariants.



3 Codes of relations of a generalized Reed-Solomon code

The key for understanding HFAp2q will be to treat the case m “ 1 first, i.e.
when the alternant code is actually a generalized Reed-Solomon code.

3.1 Fundamental relations in the canonical basis

The behavior of Crel for a GRS code is easily seen using the very structured basis
of these codes that we introduce in the following.

Definition 7 (Canonical basis). A “ pa0, . . . ,ar´1q, where ai “ xiy forms
a basis of GRSrpx,yq, which we call a canonical basis.

The codewords of a canonical basis A are subject to very simple quadratic rela-
tions, that we will call fundamental.

Definition 8 (Fundamental relations). We define the space of fundamen-
tal quadratic forms as

Fr
def
“ xxixj ´ xkxl | 0 ď i, j, k, l ă r, i ` j “ k ` l yFq

.

It turns out that

Proposition 1. dimFr “
`

r´1
2

˘

.

Proof. Consider the Veronese embedding

ν :

#

P1 ÝÑ Pr´1

px : yq ÞÝÑ pyr´1 : xyr´2 : . . . : xr´1q,

and define Y as the image of ν. Clearly the ideal generated by Fr is a subset
of the ideal of Y. Besides, it is well-known (see [Ver82]) that the ideal of Y is
given by the determinental ideal generated by the 2 ˆ 2 minors of the following
2 ˆ pr ´ 1q matrix

ˆ

x0 x1 . . . xr´2

x1 x2 . . . xr´1

˙

. (3)

Since each of these minors actually belong to Fr, we conclude that the ideal
generated Fr is the same as the above-mentioned determinental ideal, i.e the
ideal of Y. Their homogeneous component of degree 2 coincide as well, one being
given by Fr exactly, the other one being spanned by the

`

r´1
2

˘

minors of size
2 ˆ 2 of (3). Therefore we only need to show that these minors are linearly
independant to prove the proposition. Assuming they are not, there must exist
two indices i ă j such that the minor

ˇ

ˇ

ˇ

ˇ

xi xj

xi`1 xj`1

ˇ

ˇ

ˇ

ˇ

“ xixj`1 ´ xi`1xj



is a linear combination of other minors of (3). Now consider the polynomial
matrix

ˆ

x0 . . . xi´1 xi`1 . . . xj´1 xj`1 . . . xr´2

x1 . . . xi xi`2 . . . xj xj`2 . . . xr´1

˙

,

which is nothing but (3) where columns i and j have been removed. Our as-
sumption implies that if the above matrix is of rank ă 2, then so is (3). Note
that this is the case if and only if the two rows are proportional. For (3), this
translates into the xi’s being in geometric progression, but not for the submatrix
given above, since its two rows being proportional does not require xi`1 to be a
multiple of xi. One may therefore choose a specialization (which may lie in an
extension of F) where the rows of the submatrix are proportional without the
rows of (3) being proportional. The submatrix would have rank ă 2 while (3)
would not. This contradicts the minor produced by columns i, j being linearly
dependant from the others. [\

It is readily seen that whenever A is a canonical basis of some GRS code, then
Fr Ď CrelpAq. The following proposition gives a condition for the last inclusion
to be an equality.

Proposition 2. If 2r ´ 1 ď n, then CrelpAq “ Fr.

Proof. We first recall that GRSrpx,yq‹2 “ GRS2r´1px,y2q. We have

dimCrelpAq “

ˆ

r ` 1

2

˙

´ dimGRSrpx,yq‹2 (by Proposition 5 of [CMT23b])

“
1

2
rpr ` 1q ´ p2r ´ 1q (by (1) )

“
1

2
pr2 ´ 3r ` 2q

“
1

2
pr ´ 1qpr ´ 2q

“

ˆ

r ´ 1

2

˙

.

By Proposition 1, Fr is a subspace of CrelpAq of codimension 0, i.e CrelpAq “ Fr.
[\

We are therefore interested in the vector space Fr. One could write a basis of
Fr using the determinental ideal introduced in the proof of Propositon 1. We
will use a different method so as to extract a basis from the generators of Fr

which give a nice structure to the matrix space spanned by the matrices of the
fundamental quadratic forms. Start with the following decomposition

Fr “

2r´4
à

s“2

Fr,s,

where Fr,s
def
“ xxixj ´ xkxl | 0 ď i, j, k, l ă r, i ` j “ k ` l “ s yFq

. The indices
of the sum run from 2 to 2r ´ 4 since Fr,s “ t0u when s is outside this range.



To write a basis of Fr, it suffices to write a basis of Fr,s for all possible values of
s. To this end, our idea is to first choose k ď l as close to t s2 u as possible, then
choose the lowest i and the greatest j such that i ` j “ s. A basis of Fr,s will
then be given by the sequence pxi`txj´t ´ xkxlq0ďtăk´i. The first bases may be
found in the following table.

value of s Basis of Fr,s

2 x0x2 ´ x2
1

3 x0x3 ´ x1x2

4 x0x4 ´ x2
2, x1x3 ´ x2

2

... ¨ ¨ ¨

Table 1. Basis of Fr,s for the first values of s.

More formally, we get a basis of Fr by running Algorithm 1.

Algorithm 1 Generation of a basis B “ pf1, . . . , fN q of Fr

Input: an integer r ě 3
Output: A basis pf1, . . . , fN q of Fr Ź N “

`

r´1
2

˘

.
B Ð ∅
s Ð 2
while s ď 2r ´ 4 do

i Ð maxt0, s ´ r ` 1u

j Ð s ´ i
if s mod 2 “ 0 then

k Ð s{2
l Ð s{2

else
k Ð s´1

2

l Ð s`1
2

B Ð B Y txi`txj´t ´ xkxl | 0 ď t ă k ´ iu
s Ð s ` 1

return B

Theorem 1. Algorithm 1 generates a basis of Fr.

Proof. Let F “ tf1, . . . , fNu be the sequence of quadratic forms returned by
Algorithm 1. Let us prove that F generates Fr. Consider a nonzero quadratic
form f “ xixj ´ xkxl such that i ` j “ k ` l “ s. Without loss of generality, we
may assume i ă j and k ď l. If l ´ k P t0, 1u, then f actually is an element of



F . Now suppose that l ´ k ě 2, and define k1, l1 by

pk1, l1q “

$

’

’

’

&

’

’

’

%

´s

2
,
s

2

¯

if s mod 2 “ 0

ˆ

s ´ 1

2
,
s ` 1

2

˙

otherwise.

We notice that both g “ xixj ´ xk1xl1 and h “ xkxl ´ xk1xl1 belong to F , and
that f “ g ´ h. Therefore F is a generating set of Fr.
Now, for each quadratic form f “ xixj ´ xkxl P F , with i ă j and k ď l, we see
that f is the only quadratic form in F having xixj among its monomials. This
implies that the elements of F are linearly independent. [\

Combining Proposition 2 and Theorem 1, we get

Corollary 1. When 2r ´ 1 ď n, Algorithm 1 returns a basis of CrelpAq.

The reason why we wrote this algorithm instead of simply considering the de-
terminental ideal will be clarified in Remark 2.

3.2 Rank 2 matrices in Cmat

Among the fundamental relations, the ones of the form

xixj ´ x2
k,

when i ` j “ 2k, give a matrix of rank 2 when the base field Fq of Sr is of
characteristic 2. This suggests that there are many quadratic relations of rank 2
in Cmat. We may detect this interesting feature of the matrix code of relations
related to a GRS code using an algebraic system.

Implicit modeling of [CMT23b]. To find rank 2 matrices in Cmat, we may
adopt the inverse point of view, i.e finding matrices belonging to Cmat inside
the variety of skew-symmetric matrices of rank ď 2. To describe this variety, we
first recall the following fact.

Fact 1 Let A “ pai,jq1ďi,jďn be a square matrix in characteristic 2 such that
ai,j “ aj,i for all i, j, and ai,i “ 0 for all i. Then the determinant of A can be
expressed as the square of a polynomial expression in the coefficients ai,j. This
polynomial is 0 if n is odd, and has degree n{2 otherwise. We denote with PfpAq

this polynomial expression, and call it the Pfaffian of A. For example,

Pf

¨

˚

˚

˝

0 a b c
a 0 d e
b d 0 f
c e f 0

˛

‹

‹

‚

“ af ` be ` dc.



We will now describe the algebraic variety of rank ď 2 skew-symmetric matrices
in characteristic 2. To begin with, write the generic skew-symmetric matrix

M “

¨

˚

˚

˚

˝

0 X1,2 . . . X1,r

X1,2 0 . . . X2,r

...
...

. . .
...

X1,r X2,r . . . 0

˛

‹

‹

‹

‚

.

We know that the variety of rank ď 2 skew-symmetric matrices in characteristic
2 may be described by the following equations [Wim12]:

Xi,jXk,l ` Xi,kXj,l ` Xi,lXj,k “ 0, 1 ď i ă j ă k ă l ď r. (4)

The left-hand side of Equation (4) is nothing but the Pfaffian of the submatrix
of M obtained by taking rows and columns indexed by i, j, k, l. This is why we
will call it a Pfaffian of M . More generally, if N is any skew-symmetric matrix
whose coefficients lie in some polynomial ring, we denote by PfpN , 2q the set
of polynomials given by the Pfaffians of all submatrices of size 4 ˆ 4 extracted
from N using the same set of indices for rows and columns (such submatrices
are sometimes called principal submatrices). Adding linear equations expressing
the fact that M belongs to Cmat, we obtain the first algebraic modeling of rank
ď 2 matrices in Cmat :

Modeling 2 (Implicit modeling) The implicit modeling of rank ď 2 matrices
in Cmat consists of the ideal I generated by the

`

r
4

˘

Pfaffians of the generic skew-
symmetric r ˆ r matrix M and parity-check equations expressing the fact that
M belongs to Cmat.

Remark 1. We call this modeling implicit because the matrix code is defined
through implicit (i.e parity-check) equations. In the following section, we will
detail another algebraic modeling, called explicit, because in this modeling the
matrix code is defined by a parametrization.

Explicit modeling. Another strategy is to compute a basis pB1, . . . ,BN q of
Cmat and solve algebraically the MinRank problem with matrix

M
def
“

N
ÿ

i“1

XiBi (5)

by writing that all the Pfaffians corresponding to the 4 ˆ 4 principal minors
are zero. For example, when Cmat is the matrix code of relations of a square-
distinguishable GRS code of dimension r with respect to a canonical basis, the
matrices Bi may be taken as the matrices of the quadratic forms fi returned by



Algorithm 1. Here are a few examples of M for small values of r in such a case.

M
pr“5q

“

¨

˚

˚

˚

˚

˝

0 0 X1 X2 X4

0 0 X2 X3 X5

X1 X2 0 X5 X6

X2 X3 X5 0 0
X4 X5 X6 0 0

˛

‹

‹

‹

‹

‚

, M
pr“6q

“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 X1 X2 X4 X6

0 0 X2 X3 X5 X8

X1 X2 0 X5 ` X6 X7 X9

X2 X3 X5 ` X6 0 X9 X10

X4 X5 X7 X9 0 0
X6 X8 X9 X10 0 0

˛

‹

‹

‹

‹

‹

‹

‚

,

M
pr“8q

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 X1 X2 X4 X6 X9 X12

0 0 X2 X3 X5 X8 X11 X15

X1 X2 0 X5 ` X6 X7 X10 X14 X17

X2 X3 X5 ` X6 0 X10 ` X11 ` X12 X13 X16 X19

X4 X5 X7 X10 ` X11 ` X12 0 X16 ` X17 X18 X20

X6 X8 X10 X13 X16 ` X17 0 X20 X21

X9 X11 X14 X16 X18 X20 0 0
X12 X15 X17 X19 X20 X21 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

These matrices have a very special shape that is produced on purpose by Algo-
rithm 1:

Remark 2. When M is written using the matrices returned by Algorithm 1,

– the coefficient of M at pi, jq is a single variable, unless i “ j ˘ 1;
– any variable Xi appears in exactly one anti-diagonal of M ;
– when the coefficient of M at pi, jq is not a single variable (i.e i “ j ˘ 1),

it actually is nothing but the sum of all variables appearing in the same
anti-diagonal defined by i1 ` j1 “ i ` j.

These remarks will be crucial in the proof of Theorem 3 thereafter. Let us now
detail the explicit modeling. The matrix M is the generic matrix in Cmat. Since
it is skew-symmetric, one may consider its Pfaffians of degree 2, i.e the Pfaffians
of all 4 ˆ 4 principal submatrices of M , which leads to the following algebraic
modeling.

Modeling 3 (Explicit Pfaffian modeling) The explicit modeling consists of
`

r
4

˘

equations f “ 0 for f P PfpM , 2q. More explicitly, writing M “ pmi,jq1ďi,jďr,
the equations are

mi,jmk,l ` mi,kmj,l ` mi,lmj,k “ 0.

where each coefficient mi,j is a polynomial of degree 1.

We are interested in computing the Hilbert function at degree 2 of the ideal
generated by PfpM , 2q. We recall the concept of Hilbert function.

Definition 9 (Hilbert function). Let I be a homogeneous ideal of a polyno-
mial ring FrXs. Writing FrXsd the (finite dimensional) F-vector space spanned
by monomials of degree d and Id “ IXFrXsd, the Hilbert function of I is defined
as

HFFrXs{Ipdq
def
“ dimF FrXsd{Id, d P N.



Experimentally, we always find that the elements of PfpM , 2q are linearly inde-
pendent when 2r ´ 1 ď n, i.e when the matrix M is the generic matrix in the
matrix space of fundamental relations. This leads us to state the following as a
conjecture.

Conjecture 1. When 2r´ 1 ď n, the Hilbert function at degree 2 for the explicit
Pfaffian modeling for rank ď 2 matrices in Cmat is given by

HFp2q “

ˆ

`

r´1
2

˘

` 1

2

˙

´

ˆ

r

4

˙

“
1

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Remark 3. We emphasize that the generic matrix M in CmatpAq obtained by
taking the matrices of the forms fi’s returned by Algorithm 1 only depends on
r. Therefore, Conjecture 1 may be checked easily for all parameters r, q used in
cryptography.

We have introduced two algebraic modelings for solving the same problem: find-
ing rank ď 2 matrices in CmatpAq when A is a canonical basis of some GRS code.
However, since the Hilbert function strongly depends on how the equations are
written, one must be careful when changing the modeling. In our case, we can
safely do so thanks to the following theorem.

Theorem 2. Let I (resp. J) be the ideal of the polynomial ring R (resp. S)
produced by the implicit (resp. explicit) modeling. R{I and S{J both have a
structure of graded F-algebra. There exists a map

Φ : R{I ÝÑ S{J

that defines an isomorphism of graded F-algebras.

This theorem is proved in the appendix. Note that it implies that the Hilbert
function of the (implicit or explicit) Pfaffian modeling is also invariant under a
change of basis. In the following, we sometimes talk about the Pfaffian modeling
associated with a code without specifying whether it is implicit or explicit, since
we only deal with Hilbert functions.

4 Hilbert function of a Pfaffian ideal associated with a
generic alternant code

4.1 The block-diagonal code of relations

In the case of alternant codes, the crux for having rank 2 matrices in Cmat is to
consider [CMT23b] the extension to Fqm of the dual code. Let us then recall the
following fact.

Proposition 3 ([BMT24], Proposition 14). For any code C Ď Fn
q Ď Fn

qm ,
we denote by CFqm

the Fqm-vector space spanned by C . Let C “ Arpx,yq be an
alternant code of extension degree m. Then

pArpx,yqKqFqm
“

m´1
ÿ

j“0

GRSrpxqj ,yqj q.



With the usual assumption that dimFq Arpx,yq “ n´rm, the above sum becomes

a direct sum and the sequence A “ pa0, . . . ,ar´1,a
q
0, . . . ,a

q
r´1, . . . ,a

qm´1

r´1 q is a
basis of pArpx,yqKqFqm

, called the canonical basis.

When r ă q`1, it follows from the analysis of [FGO`11] that CrelpAq is spanned
by

xrl`axrl`b ´ xrl`cxrl`d

for 0 ď l ă m and 0 ď a, b, c, d ă r such that a ` b “ c ` d. This implies that
any matrix A P CmatpAq has a block-diagonal structure, i.e.

A “ A0 ‘ . . . ‘ Am´1
def
“

¨

˚

˝

A0 . . . 0r

...
. . .

...
0r . . . Am´1

˛

‹

‚

where Aj P Cmatpa
qi

0 , . . . ,aqj

r´1q is the matrix associated with some element of
the code of quadratic relations of GRSrpxqj ,yqj q with respect to its canonical
basis.

Remark 4. In other words, when A “ pA0,Aq
0, . . . ,A

qm´1

0 q where A0 “ py, . . . ,xr´1yq,
we have CmatpAq » CmatpA0qm, the isomorphism being given explicitly by

#

CmatpA0qm ÝÑ CmatpAq

pA0, . . . ,Am´1q ÞÝÑ A0 ‘ . . . ‘ Am´1.

4.2 The Hilbert function at degree 2

The authors of [CMT23b] noticed that the Hilbert function of the Pfaffian model-
ing at degree 1 can be used as a distinguisher that boils down to the one presented
in [FGO`11]. We recall that a generic alternant code is square-distinguishable if
it is 1-distinguishable in the sense of [CMT23b]. The Hilbert function at degree
2 can also be used as a distinguisher which seems to work on a larger range
of parameters. Our goal here is to find a formula for HFp2q when the code is
square-distinguishable, assuming r ă q ` 1. In such a regime, all matrices in the
matrix code of relations associated to a canonical basis A are block-diagonal in
the generic alternant case. Therefore, so is the generic matrix M in CmatpAq.
More precisely, it can be written like

M “

¨

˚

˝

M0 . . . 0r

...
. . .

...
0r . . . Mm´1

˛

‹

‚

P FqmrXi | 1 ď i ď mN srmˆrm, (6)

where each M i “ XNi`1B1 ` . . . ` XpN`1qiBN and where the Bj ’s stand for
the matrices of the quadratic forms fj ’s returned by Algorithm 1. For such a
block-diagonal structure, computing the Hilbert function at degree 2 becomes
doable.



Theorem 3. Assume that Conjecture 1 holds. Let M be the generic matrix of
Equation (6). The Hilbert function HFA at degree 2 of the ideal generated by
PfpM , 2q is given by

HFp2q “
m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Proof. Here we use the explicit modeling for performing the analysis. The the-
orem is thus about the dimension of the vector space spanned by PfpM , 2q.
We will describe all the nonzero elements of PfpM , 2q and inspect their linear
dependencies. To do so, we will consider 4 cases. If 1 ď i1 ă . . . ă ip, the nota-
tion M ri1, . . . , ips denotes the extracted matrix of M where rows and columns
i1, . . . , ip have been taken. Let 1 ď i ă j ă k ă l ď rm.

‚ Case 1: the submatrix M ri, j, k, ls is a submatrix of some M s. The corre-
sponding Pfaffian of M is actually a Pfaffian of M s. Conjecture 1 states
that these polynomials are linearly independent. Moreover, the Pfaffians of
different blocks M s,M t are linearly independent since they are polynomials
in different variables.

‚ Case 2: the submatrix M ri, js is a submatrix of some M s and the submatrix
M rk, ls is a submatrix of some M t with s ă t, and no coefficient is taken
right above/under the diagonal. In such a case, the submatrix has the form

M ri, j, k, ls “

¨

˚

˚

˝

0 Xa 0 0
Xa 0 0 0
0 0 0 Xb

0 0 Xb 0

˛

‹

‹

‚

with Ns`1 ď a ă pN `1qs, Nt`1 ď b ă pN `1qt and its Pfaffian is XaXb.
Indeed, the coefficients mi,k and mj,l are 0 because of the block-diagonal
structure, and mi,j and mk,l are single variables since i ‰ j˘1 and k ‰ l˘1
(see Section 3).This gives Nˆ

`

m
2

˘

polynomials that are linearly independent.
They are also not in the vector space spanned by the polynomials of case 1
since none of the latter polynomials have a monomial in common with the
Pfaffians of case 2.

‚ Case 3: same as case 2, but some coefficients may be taken right above/under
the diagonal. The thing here is that there is no simple way to express the cor-
responding coefficients, as they might be sums of variables and not variables
alone. However, as we noticed in Section 3, when a coefficient of M is not a
single variable, then it is the sum of other coefficients of M that are single
variables. Each time some coefficient of M is a sum of variables, all variables
appearing in the coefficient also appear alone in the same anti-diagonal. In
other words, we may have to consider some Pfaffians of the form

PfpM ri, j, k, lsq “ Pf

¨

˚

˚

˝

0 α 0 0
α 0 0 0
0 0 0 β
0 0 β 0

˛

‹

‹

‚

“ αpXsN`1, . . . , Xps`1qN qˆβpXtN`1, . . . , Xpt`1qN q



where α, β are degree-1 polynomials of the appropriate variables. We see
that the Pfaffian we obtain is a linear combination of the Pfaffians obtained
in case 2, hence they do not change the dimension of the Pfaffian ideal at
degree 2.

‚ Case 4: at least one of the indices i, j, k, l is alone in its range JsN ` 1, ps`

1qNK, say i. In this case, the first column of the corresponding submatrix is
zero, hence its Pfaffian itself is zero.

The Hilbert function at degree 2 is the number of monomials of degree 2 minus
the number of algebraically independent Pfaffians of M . Among all monomials
of degree 2, we have the monomials XaXb where the variables Xa, Xb do not
appear in the same submatrix M s. We saw in case 2 that these monomials
appear in the Pfaffians of M . All the other monomials are of the form XaXb

where Xa and Xb do appear in the same block. For each block M s, the number
of monomials XaXb minus the number of algebraically independant Pfaffians of

M s is exactly given by
1

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q, as stated in Conjecture 1.

Since there are m blocks, we conclude that

HF p2q “
m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q

Which ends the proof. [\

Corollary 2. Let Arpx,yq be a generic square-distinguishable alternant code
with r ă q ` 1. If Conjecture 1 holds, then the Hilbert function at degree 2
associated with the (implicit or explicit) Pfaffian modeling for rank ď 2 matrices
in Cmat is given by

HFAp2q “
m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Proof. With the genericity and square-distinguishability assumptions, the generic
matrix in CmatpAq is the one described in Equation (6). Therefore the corollary
follows directly from Theorem 3.

Corollary 2 requires Conjecture 1 to hold, and is also limited to the case r ă q`1.
Indeed, equality cannot be claimed in general, because there might exist alter-
nant codes for which additional relations occur. Analogously to previous results
on the Hilbert function at degree 1 [MT23], the value provided by Theorem 3
for degree 2 still represents a lower bound.

Corollary 3. The Hilbert function of the Pfaffian modeling associated with an
alternant code of order r and extension degree m satisfies

HFAp2q ě
m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Before proving Corollary 3, we need a pair of auxiliary results.



Lemma 2. Let X “ pX1, . . . , Xaq and Y “ pY1, . . . , Ybq be two vectors of vari-
ables. Let M,N be two s ˆ t matrices whose entries are linear homogeneous
polynomials in FrXs,FrX,Y s respectively and such that

ni,jpX,Y q “ mi,jpXq ` li,jpY q.

Let fpZq be a multivariate polynomial function over a field F, where the variables
are viewed as the entries zi,j of an s ˆ t matrix Z. Let xYi yi Ă FrX,Y s the
ideal generated by Y ’s variables.

fpNq ´ fpMq P xYi yi

Proof. Let fpZq “
ř

aPA αaZ
a, where A is a finite subset of Nsˆt and αa P F

and we define Za
“

ś

i,j z
ai,j

i,j . Similarly we write

Ma def
“

ź

i,j

m
ai,j

i,j

Na def
“

ź

i,j

n
ai,j

i,j

When the input is N , we obtain

fpNq “
ÿ

aPA

αaN
a “

ÿ

aPA

αa

ź

i,j

pmi,j ` li,jpY qqai,j .

By expanding the product, we obtain

fpNq “

˜

ÿ

aPA

αaM
a

¸

` gpX,Y q

where each monomial appearing in g is a multiple of at least a variable yi.
Therefore

fpNq ´ fpMq “ gpX,Y q P xYi yi .

[\

The previous lemma can be used to show that the Hilbert function for the
Pfaffian ideal can only increase by letting the underlying matrix code grow.

Lemma 3. Let F be a finite field of characteristic 2. Let M1, . . . ,M l P Fsˆt be
linearly independent (skew-)symmetric matrices and C “ xM1, . . . ,M l yF ,C

1 “

xM1, . . . ,M l1 yF Ď Fsˆt with l1 ă l be two matrix codes. Let I Ď FrX1, . . . , Xls

(resp. I 1 Ď FrX1, . . . , Xl1 s) be the Pfaffian ideal corresponding to the explicit
modeling for C (resp. C 1) expressing that the entries of an element of the matrix
code is of rank ď 2. Then for all d P N,

HFFrX1,...,Xls{Ipdq ě HFFrX1,...,X1
ls{I1 pdq



Proof. Pfaffians of order 4 are homogeneous polynomial in the matrix entries.
Therefore, from Lemma 2, any element P of the Pfaffian ideal I Ď FrX1, . . . , Xls

can be written as an element of I 1`xXl1`1, ¨ ¨ ¨ , Xl y, thus P Ď I 1`xXl1`1, ¨ ¨ ¨ , Xl y,
or equivalently

FrX1, . . . , Xls{I Ě FrX1, . . . , Xls{pI 1 ` xXl1`1, ¨ ¨ ¨ , Xl yq » FrX1, . . . , X
1
ls{I 1.

By definition of Hilbert series, we obtain

HFFrX1,...,Xls{Ipdq ě HFFrX1,...,X1
ls{I1 pdq

for any degree d. [\

With Lemma 3 at hand, we can finally prove Corollary 3.

Proof (of Corollary 3.). Even without the condition r ă q ` 1 (resp. r ă q ´ 1)
for the degree of an alternant (resp. Goppa) code and without Conjecture 1,
the matrix code C of relationships still contains the block-diagonal matrix code
generated by the matrices corresponding to the fundamental relations. Let C 1

be the space spanned by such matrices and for which Theorem 3 provides the
value of the Hilbert function at degree 2 as

m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Since C 1 Ď C , from Lemma 3, we derive

HFFrXs{Ip2q ě
m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

[\

Corollary 3 allows us to state when a generic alternant code is 2-distinguishable.
We use here the following definition of d-distinguishability

Definition 10. An alternant code is d-distinguishable if the associated Hilbert
function HFA satisfies

HFApdq ą HFRpdq

where HFR is the Hilbert series of a random linear code of the same length and
dimension as the alternant code.

Corollary 4. If HFRp2q ă
m

12
pr´1qpr´2qpr2 ´3r`6q, then an alternant code

Ar is 2-distinguishable.

In the case r ă q`1, we experimentally found that the Hilbert function at degree
2 for a generic alternant code was always equal to

m

12
pr´ 1qpr´ 2qpr2 ´ 3r` 6q.



5 The new distinguisher regime

From [CMT23a], it can be readily deduced that HFRp2q corresponding to a
random linear code of the same dimension k “ n ´ rm as a generic alternant
code of length n, degree r and extension degree m is given by

HFRp2q “ max

"

0,
1

2

ˆ

k2 ´ kps2 ´ s ` 1q `
s4 ´ s2

6

˙*

, (7)

where s
def
“ rm. Indeed, the Hilbert function associated to a linear code of the

same dimension k “ n´rm as a generic alternant code of length n, degree r and
extension degree m is given at degree 2 by HFRp2q “ max

´

0,
`

k
2

˘

hp0q ´
`

k
1

˘

hp1q `
`

k
0

˘

hp2q

¯

where hpdq
def
“ 1

rm`d´1

`

rm`d´1
d`1

˘`

rm`d´1
d

˘

. Moreover, we notice that

hp2q “
1

rm ` 1

ˆ

rm ` 1

3

˙ˆ

rm ` 1

2

˙

“
1

rm ` 1

prm ` 1qrmprm ´ 1q

6

prm ` 1qrm

2

“
prmq2prm ` 1qprm ´ 1q

12

“
s4 ´ s2

12
,

where s
def
“ rm. If we plug this expression in the expression we have for HFRp2q,

namely HFRp2q “ max
´

0,
`

k
2

˘

hp0q ´
`

k
1

˘

hp1q `
`

k
0

˘

hp2q

¯

and using the fact that

hp0q “ 1 and hp1q “
`

mr
2

˘

we obtain

HFRp2q “ max

ˆ

0,
kpk ´ 1q

2
´ k

mrpmr ´ 1q

2
`

s4 ´ s2

12

˙

“ max

ˆ

0,
k2

2
´ k

s2 ´ s ` 1

2
`

s4 ´ s2

12

˙

.

Combined with Corollary 4, this implies

Proposition 4. For a given degree r and extension degree m and assuming that
the field size q satisfies q ě r, a generic alternant code whose dimension satisfies
k ą k0 where

k0
def
“

s2 ´ s ` 1 ´

b

s4

3 ` 2H
3 ´ 2s3 ` 11

3 s2 ´ 2s ` 1

2

with s
def
“ rm, H def

“ mpr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q is 2-distinguishable.

Proof. k0 is defined as the smallest root of the equation (in X)

1

2

ˆ

X2 ´ Xps2 ´ s ` 1q `
s4 ´ s2

6

˙

“
mpr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q

12
. (8)



Clearly, when the dimension k of an alternant code of degree r and extension de-
gree m is bigger than this k0, we have HFRp2q ă HFAp2q and it is distinguishable
at degree 2. (8) is equivalent to

X2 ´ Xps2 ´ s ` 1q `
s4 ´ s2 ´ H

6
“ 0,

where H
def
“ mpr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q. Therefore

k0 “
s2 ´ s ` 1 ´

?
∆

2

where ∆
def
“ ps2 ´ s ` 1q2 ´

2

3
ps4 ´ s2 ´ Hq

“ s4 ` s2 ` 1 ´ 2s3 ` 2s2 ´ 2s ´
2

3
s4 `

2

3
s2 `

2

3
H

“
s4

3
`

2

3
H ´ 2s3 `

11

3
s2 ´ 2s ` 1.

[\

A natural asymptotic choice of parameters is to let r go to infinity and assume
that m “ O plog rq. This is in general the range which is chosen for m, since in
order to maximize the decoding capacity one chooses the smallest possible m
such that qm ě n. In such a case, it is straightforward to check that

k0 „
rÑ8

1 ´

b

1` 2
m3

3

2
m2r2.

When m also goes to infinity with r, we have

k0 „
1 ´

b

1
3

2
m2r2 « 0.21m2r2.

This is much better than the distinguisher of [FGO`11]. In the regime where
q ě r, it is able to distinguish a generic alternant code from a generic linear code
when n ą

`

mr`1
2

˘

´
mpr´1qpr´2q

2 , that is when k ą
`

mr`1
2

˘

´rm´
mpr´1qpr´2q

2 . This

corresponds to k ą k1
def
“

`

mr
2

˘

´
mpr´1qpr´2q

2 with k1 “
1´ 1

m

2 m2r2 ` o
`

m2r2q
˘

as r Ñ 8 and if m goes to infinity as well, k1 „ m2r2

2 .

Comparison with the distinguisher given in [Ran24] The syzygy distin-
guisher given in [Ran24], like the Pfaffian distinguisher we consider here, can be
viewed as a broad generalization of the original distinguisher given in [FGO`11].
However it relies on a distinct approach and is the first one that has been shown
to be able to distinguish constant rate alternant or Goppa codes with subexpo-
nential complexity. This is quite an achievement. It is worthwhile to compare
both distinguishers for parameters for which they have roughly the same com-
plexity. Both distinguishers rely on computing the rank of certain matrices. In



the case of the distinguisher we consider here, we compute the rank of a matrix
of size a ˆ b where a and b are of order O

`

prmq4
˘

when n is say of order prmq2

which will be our assumption to make the comparison. To make a fair compari-
son between both approaches it makes sense to consider the syzygy distinguisher
proposed in [Ran24] without the additional trick of shortening the dual of the
alternant/Goppa code, since the Pfaffian distinguisher could also benefit from
this trick but it remains to analyze its impact precisely.

The syzygy distinguisher considers the rank of matrices with a number of
rows and columns of size O

`

prmq4
˘

when computing the Betti number βp´1,p

when p “ 4. In both cases, computing the distinguisher can be achieved with
time complexity O

`

prmq4ω`ε
˘

for any ε ą 0 where ω is the exponent of matrix
multiplication [BCS97, §16.5]. It distinguishes an alternant code from a random
code when the Betti number corresponding to the dual of the alternant code is
different from the Betti number of the random code. In the parameter regime we
consider, namely n of order prmq2, m of order logq n and letting n go to infinity,
it turns out by using Theorem 1 of [Ran24] giving a lower bound on the Betti
number βp´1,p of an alternant code together with [Ran24, Prop. 10] estimating
the Betti number βp´1,p of a generic linear code, one is able to distinguish up to
values of n satisfying n ě

prmq
2

4 p1´ op1qq, which gives in terms of the dimension
k of the code k ě

prmq
2

4 p1 ` op1qq. This is slightly worse than the Pfaffian
distinguisher in this regime of parameters.

6 Concluding Remarks

This work shows that the lower bound HFAp2q ą 0 of [CMT23b, Prop. 18] is
very pessimistic and can be significantly improved. Understanding the precise
behavior of HFApdq is really desirable not only to assess precisely the power of
the Pfaffian distinguisher given in [CMT23b] but should also be very helpful
in understanding this distinguisher if instead of applying it to the dual of the
alternant or Goppa code we want to distinguish, we apply it to a shortening
of this latter code. This paper can be seen as a first step towards this goal.
It is tempting to conjecture that similarly to what happened in [Ran24] which
resulted in a much improved distinguisher, we should observe the same behavior
for the Pfaffian distinguisher. This work also shows that the Pfaffian distinguisher
at degree 2 seems a little bit more powerful than the syzygy distinguisher of
[Ran24] at degree 4 which has a similar complexity. In light of this result and
the fact that the syzygy distinguisher is of subexponential complexity when
applied to the right shortened code, this raises the issue whether the same also
applies to the Pfaffian distinguisher studied here when applied to the suitable
shortened code.
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A Proof of Theorem 2: a slightly more general version

As we have already mentioned, several equivalent modelings can be applied to
find rank ď 2 matrices in Cmat. However, we are not interested in solving the al-
gebraic system yet, but rather in computing algebraic quantities such as Hilbert
functions. It is then mandatory to wonder whether the Hilbert function of all
these modelings are the same. The varieties produced by each ideals being iso-
morphic is not sufficient at all to conclude that their Hilbert series coincide,
since this object strongly depends on how the equations defining the variety are
written. In this appendix, we will be interested in two different modelings of
the same problem and will show that they are equivalent, i.e produce the same
Hilbert series. The problem in question is to find the intersection between an
algebraic variety and a linear subspace. This is formally defined in the following.

Problem 1. Let f1, . . . , fN be homogeneous polynomials in FrX1, . . . , Xns and
V Ă Fn a linear subspace of Fn. The goal is to compute

V pf1, . . . , fN q X V “ tx P V | @i P J1, NK, fipxq “ 0u .

Example 1. The linear MinRank problem, i.e the problem aiming at finding rank
ď r matrices in some subspace, can be seen as an instance of Problem 1.

We will be interested in two modelings of Problem 1.

Modeling 4 (Implicit modeling) Let k def
“ dimFpV q. There exists linearly in-

dependent linear forms L1, . . . , Ln´k such that

V “ tx P Fn | @i P J1, n ´ kK, Lipxq “ 0u .

The implicit algebraic modeling corresponding to Problem 1 is defined by the
ideal

I
def
“ pf1, . . . , fN , L1, . . . , Ln´kq.

I is an ideal of FrX1, . . . , Xns.

Modeling 5 (Explicit modeling) Let k
def
“ dimFpV q and let tv1, . . . ,vku be

an F-basis of V . The explicit algebraic modeling corresponding to Problem 1,
with respect to the basis tv1, . . . ,vku, is defined by the ideal

J
def
“ pf1pY1v1 ` . . . ` Ykvkq, . . . , fN pY1v1 ` . . . ` Ykvkqq .

J is an ideal of FrY1, . . . , Yks.

Modeling 4 corresponds to the implicit modeling detailed in Section 3, and Mod-
eling 5 corresponds to the explicit modeling of Section 3. The first thing to notice
here is that if f1, . . . , fN are homogeneous (which is required by the specifica-
tion of Problem 1), then both modelings produce homogeneous ideals. Therefore,
both ideals have a structure of graded F-algebra. From now on, we will denote
with R (resp. S) the polynomial ring in X1, . . . , Xn (resp. Y1, . . . , Yk) over F.
The equivalence between the two modelings is stated by the following.



Theorem 4. Let f1, . . . , fN P R be homogeneous polynomials, and let V Ă Fn

be a subspace of dimension k ă n. Let I (resp. J) denote the ideal produced by
the implicit (resp. explicit) modeling. There exists a map

Φ : R{I ÝÑ S{J

which defines an isomorphism of graded F-algebras.

This statement clearly implies that the Hilbert functions associated with both
modelings are equal, and therefore ensures the validity of Theorem 2.
Note that the change of modelings, from the implicit version to the explicit one,
is nothing but a change of variables :

pX1, . . . , Xnq “ pY1, . . . , YkqP ,

where each row of P P Fkˆn corresponds to the coordinates of a vector of a
basis of V . In a more coding-theoretic vocabulary, P is a generator matrix of
V . This implies that P is necessarily of rank k. We will assume, without loss of
generality, that P is in systematic form, i.e P “ pIk | ˚q.

In the following, we will try to construct the isomorphism Φ. To begin with,
let us introduce the map

Φ :

$

’

&

’

%

R ÝÑ S

f ÞÝÑ f

˜

k
ÿ

j“1

Pj,1Yj , . . . ,
k

ÿ

j“1

Pj,nYj

¸

.

Applying Φ is actually doing the change of variables. Before proving Theorem
4, we need the following auxiliary results.

Lemma 4. The map Φ is a surjective morphism of graded F-algebras.

Proof. It is clear that Φ is a morphism of F-algebras. Furthermore, applying Φ
on a polynomial f boils down to composing f with homogeneous polynomials of
degree 1, therefore Φ preserves the degree, i.e sends homogeneous components
onto homogeneous components of same degree. Hence Φ is a morphism of graded
F-algebras.
Finally, since P is in systematic form, we have ΦpXiq “ Yi for all 1 ď i ď k. Since
all generators of S as an F-algebra lie in the image of the F-algebra morphism
Φ, we conclude that Φ is surjective. [\

Lemma 5. J “ ΦpIq.

Proof. Since J “ pΦpf1q, . . . , ΦpfN qq, we know that any element of J can be
written as the image of an element of I by the map Φ, i.e J Ď ΦpIq. To prove
that ΦpIq is not strictly bigger that J , it only remains to show that ΦpLiq P J
for all i “ 1, . . . , n ´ k.



Remember that the rows of P are the vectors of a basis of V . Hence, for all
py1, . . . , ykq P Fk, we have

@1 ď i ď n ´ k, Li

˜

k
ÿ

j“1

yjP j

¸

“ 0,

where P j denotes the j-th row of P . In other words, the polynomials ΦpLiq are
linear forms that vanish over Fk entirely. This implies that ΦpLiq “ 0 for all
i P J0, n ´ kK. As a consequence, we have both Φpfiq P J and ΦpLiq P J for all i,
therefore ΦpIq Ď J . [\

Now that we know how the image of Φ behaves, it only remains to investigate
its kernel.

Lemma 6. kerΦ “ pL1, . . . , Ln´kq.

Proof. This fact is not trivial because we cannot assume that F is algebraically
closed4. To deal with it, we introduce

V “ tx P Fn
| @1 ď i ď n ´ k, Lipxq “ 0u “ xV yF ,

where F is the algebraic closure of F. By Hilbert’s Nullstellensatz, we have

IpV q “
a

pL1, . . . , Ln´kq “ pL1, . . . , Ln´kq,

the last equality comes from the fact that all the Li’s have degree 1. Now, let
f P kerΦ. By definition,

f

˜

k
ÿ

j“1

Pj,1Yj , . . . ,
k

ÿ

j“1

Pj,nYj

¸

“ 0.

We may apply this polynomial on any element y P Fk
, which means that

@x P V , fpxq “ 0.

This implies that f P pL1, . . . , Ln´kq, as an ideal of FrX1, . . . , Xns, but since the
coefficients of f lie in F, we have f P pL1, . . . , Ln´kq as an ideal of R. We have
thus proven that kerΦ Ď pL1, . . . , Ln´kq. The other inclusion is already proven
in the previous lemma. [\

We are now ready to provide a proof of Theorem 4.

Proof (Proof of Theorem 4). Lemma 5 implies that if f is defined modulo an
element of I, then Φpfq is well-defined modulo an element of J . In other words,
Φ induces a morphism Φ which is the only one such that the following diagram
commutes :
4 In our case, F “ Fq is a finite field which is not algebraically closed.



R S

R{I S{J

π

Φ

π

Φ

On the above diagram, we used the symbol π to write both canonical projections.
Since Φ is a surjective morphism of graded F-algebras, and since ΦpIq “ J
(Lemma 5), so is Φ. Finally, let us prove that Φ is injective. Let f P R such that
Φ ˝ πpfq “ 0, or equivalently, Φpfq P J . Since J “ ΦpIq, there exists g P I such
that Φpfq “ Φpgq, hence f ´ g P kerΦ. By Lemma 6, we have kerΦ Ď I, which
implies that f P I, or equivalently πpfq “ 0.
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