
On the Anonymity in “A Practical Lightweight Anonymous

Authentication and Key Establishment Scheme for

Resource-Asymmetric Smart Environments”

Zhengjun Cao, Lihua Liu

Abstract. We show that the anonymous authentication and key establishment
scheme [IEEE TDSC, 20(4), 3535-3545, 2023] fails to keep user anonymity, not as
claimed. We also suggest a method to fix it.
Keywords: Mutual authentication, Key agreement, Rabin cryptosystem, User anonymity.

1 Introduction

Recently, Bai et al. [1] presented an anonymous authentication and key establishment scheme for
resource-asymmetric smart environments. It is designed to meet many security requirements,
including mutual authentication, secure session key agreement, user anonymity and untrace-
ability, forward and backward security, resistance to mobile device loss attacks, impersonation
attacks, privileged-insider attack, replay attacks, man-in-the-middle attacks, and offline guessing
attacks. In this note, we show that the scheme fails to keep user anonymity, not as claimed. We
also suggest a remedy.

2 Review of the authentication and key agreement protocol

In the considered scenario, there are three entities: user, gateway, and smart device (SD). SD is in
a smart environment, containing sensitive data. Only authenticated users can obtain data from
SD. The user can communicate with gateway node to obtain SD data. Before accessing SD data,
user should register with the third-party. User’s real ID is encrypted by Rabin cryptosystem [2].

The protocol consists of four phases: system initialization phase, registration phase, login
and authentication phase, and modify password offline phase. The third-party initializes the
entire system, by selecting two large primes P , Q to set N = P ∗ Q, and a hash function
H(·) : {0, 1}∗ → {0, 1}` where the positive integer ` is a security parameter. Publish N and
H(·). The involved notations are listed below (Table 1).

The registration and session key agreement phases can be depicted as follows (Table 2).

Z. Cao, Department of Mathematics, Shanghai University, Shanghai, 200444, China.
L. Liu, Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China.
Email: liulh@shmtu.edu.cn

1

Table 1: Notations and descriptions
Notation Description

N RSA modulus
H(·) hash function
‖ string concatenation operator
⊕ bitwise XOR operator
SD smart device/sensor
SIDk SD identification
RabinDec(·) Rabin decryption function
IDi, PWi user identification and password
Ai, Bi, Ci, Ra, Rb, Rc random numbers

3 Loss of user anonymity

In the considered scenario, it assumes that the adversary A may be a legitimate user, knowing
the entire steps of the key establishment scheme, and having the capabilities [1]:

• Be able to intercept, forge, delete and replay the information transmitted in the public
channel, to get the parameters transmitted during the registration phase from the third-
party, to steal the parameters stored in the user device, to get the session key used in the
past, but only get one of user device and user password.

• Master identity space and password space, and can enumerate all the correspondences.

In order to mask the user’s identity IDi, it adopts the following transformations:

(pseudonym) DIDi = (IDi‖t1)2 mod N,

(real identity) IDi = RabinDec(P,Q,DIDi)

where the pseudonym DIDi and the timestamp t1 are sent via the open channel. So, the
adversary can obtain DIDi, t1 by eavesdropping the channel. Besides, by the threat model
assumption, we know, the adversary can access to the identity space Υ and the system public
parameter N . Therefore, the adversary can choose any identity λ to test

DIDi
?
= (λ‖t1)2 mod N, λ ∈ Υ (1)

Once the equation holds, the target identity IDi will be retrieved. If the size of identity space
Υ is moderate, the success probability of above testing is not negligible.

4 A remedy

In order to estimate the protocol’s communication overhead, it assumes that (see §6.2, Ref.[1])

• the length of timestamp is 32 bits;

• the length of the user identity, user password and sensor identity are 128 bits;

2

Table 2: The Bai et al.’s authentication and key agreement protocol
User (Ui) Third-party SD

Choose IDi, PWi. Generate
random Ai. Compute
HPWi = H(Ai‖PWi).

IDi, HPWi
============⇒

[secure channel]

Compute
Ti = Ai ⊕H(IDi‖PWi),
Authi = H(Ai‖Bi) mod M .
Store (Ei, Ti, Authi).

Generate random Bi. Compute
Ei = HPWi ⊕Bi. Store
{IDi, Bi, HoneyList} into the
gateway’s memory.

Ei⇐=========

Generate random Ci. Store
(SIDK,Ci) into the gateway’s
memory.

Ci========⇒

Send SIDK
SIDK⇐========

Store Ci.

User Gateway SD

Input IDi, PWi. Compute
Ai = H(IDi‖PWi)⊕ Ti,
HPWi = H(Ai‖PWi),
Bi = HPWi ⊕ Ei,
Auth′i = H(Ai‖Bi) mod M .
If Auth′i = Authi, generate a
timestamp t1 and random
Ra. Compute
DIDi = (IDi‖t1)2 mod N ,
M0 = (SIDK‖Ra)⊕Bi,
V erify1 = h(IDi‖Bi‖Ra‖t1).

DIDi, M0, t1, V erify1−−−−−−−−−−−−−−−−−−−→
[open channel]

Check the timestamp t7.
Compute
(R′b‖SKt2) = M3 ⊕Bi,
V erify4′ = H(SKt2‖Bi‖t7).
If V erify4′ = V erify4,
compute
SKt1 = H(IDi‖Ra‖R′b),
SK = SKt1⊕ SKt2.

Check the timestamp t1. Compute
ID′i = RabinDec(P,Q,DIDi),
Bi = get(IDi,UserTable),
(SIDK ′, R′a) = M0 ⊕Bi,
V erify1′ = H(ID′i‖Bi‖R′a‖t1). If
V erify1′ = V erify1, generate
random Rb, timestamp t3.
Compute
Ci = get(SIDK ′,SensorTable),
SKt1 = H(ID′i‖R′a‖Rb),
M1 = (Rb‖SKt1)⊕ Ci,
V erify2 = H(SKt1‖SIDK ′‖t3).
M1, t3, V erify2−−−−−−−−−−−→

Check the timestamp t5. Compute
R′c = M2 ⊕ Ci,
SKt2 = H(SIDK‖R′c‖Rb),
SK = SKt1⊕ SKt2,
V erify3′ = H(R′c‖SK‖t5). Check
if V erify3′ = V erify3. Generate
timestamp t7. Compute
M3 = (Rb‖SKt2)⊕Bi,
V erify4 = H(SKt2‖SK‖Bi‖t7).
M3, t7, V erify4←−−−−−−−−−−−

Check the timestamp t3.
Compute
(R′b‖SKt1′) = M1 ⊕ Ci,
V erify2′ =
H(Skt1′‖SIDK‖t3). If
V erify2′ = V erify2,
generate random Rc,
timestamp t5. Compute
SKt2 = H(SIDK‖Rc‖R′b),
SK = SKt1′ ⊕ SKt2,
M2 = Rc ⊕ Ci,
V erify3 = H(Rc‖SK‖t5).
M2, t5, V erify3←−−−−−−−−−−−

3

• the length of secret key, random number, hash function, and message authentication code
are 160 bits;

• the length of modular exponentiation operation is 1024 bits.

Namely, we have
DIDi = (IDi︸︷︷︸

128-bit

‖ t1︸︷︷︸
32-bit

)2 mod N︸︷︷︸
1024-bit

(2)

The square (IDi‖t1)2 is strictly less than the modular N , i.e.,

DIDi = (IDi‖t1)2 (3)

which is a common equation. The adversary can recover IDi‖t1 by general calculations.
Based on this observation, we now suggest a method to fix the loss of user anonymity. To

generate the pseudonym, the user can compute

DIDi =(IDi︸︷︷︸
128-bit

‖ t1︸︷︷︸
32-bit

‖ Ai︸︷︷︸
160-bit

‖ Bi︸︷︷︸
160-bit

‖

H(Ai‖Bi‖t1)︸ ︷︷ ︸
160-bit

‖H(Ai‖PWi‖t1)︸ ︷︷ ︸
160-bit

)2 mod N

In this case, the plaintext is of 800 bits. It is a true congruence equation, not a common
equation. An adversary cannot construct a testing equation for any target identity even if the
identity space Υ has a moderate size, because the substring

Ai‖Bi‖H(Ai‖Bi‖t1)‖H(Ai‖PWi‖t1)

is strictly unaccessible to the adversary.

5 Conclusion

We show that the Bai et al.’s authentication and key agreement scheme cannot provide user
anonymity. We also suggest a method to fix the flaw. The analysis techniques developed in the
note could be helpful for the future work on designing such schemes.

References

[1] L. Bai, C. Hsu, L. Harn, J. Cui, Z. Zhao: A practical lightweight anonymous authentication
and key establishment scheme for resource-asymmetric smart environments, IEEE Trans.
Dependable Secur. Comput., 20(4), 3535-3545 (2023)

[2] M. Rabin: Digitalized signature as intractable as factorization, technical report
MIT/LCS/TR-212, MIT Laboratory for Computer Science, January (1978)

4

	Introduction
	Review of the authentication and key agreement protocol
	Loss of user anonymity
	A remedy
	Conclusion

