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Abstract
Zero-knowledge range arguments are a fundamental cryptographic

primitive that allows a prover to convince a verifier of the knowl-

edge of a secret value lying within a predefined range. They have

been utilized in diverse applications, such as confidential transac-

tions, proofs of solvency and anonymous credentials. Range argu-

ments with a transparent setup dispense with any trusted setup

to eliminate security backdoor and enhance transparency. They

are increasingly deployed in diverse decentralized applications on

blockchains. One of the major concerns of practical deployment of

range arguments on blockchains is the incurred gas cost and high

computational overhead associated with blockchain miners. Hence,

it is crucial to optimize the verification efficiency in range arguments

to alleviate the deployment cost on blockchains and other decentral-

ized platforms. In this paper, we present VeRange with several new

zero-knowledge range arguments in the discrete logarithm setting,

requiring only 𝑐
√︁
𝑁 /log𝑁 group exponentiations for verification,

where 𝑁 is the number of bits to represent a range and 𝑐 is a small

constant, making them concretely efficient for blockchain deploy-

ment with a very low gas cost. Furthermore, VeRange is aggregable,
allowing a prover to simultaneously prove 𝑇 range arguments in a

single argument, requiring only𝑂 (
√︁
𝑇𝑁 /log(𝑇𝑁 )) +𝑇 group expo-

nentiations for verification.We deployed VeRange on Ethereum and

measured the empirical gas cost, achieving the fastest verification

runtime and the lowest gas cost among the discrete-logarithm-based

range arguments in practice.
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1 Introduction
In modern cryptographic protocols, it is often that one party has

to commit to a secret value (or a witness to a statement) in a cryp-

tographic commitment and is required to subsequently reveal a

certain property of the secret value to another party, without com-

pletely disclosing it. One of the most fundamental properties in

real-world applications is the property of a value lying within a

given range. A zero-knowledge range argument allows a prover to
convince a verifier that the committed value 𝜔 in a prior com-

mitment Cm(𝜔) is within [0, 2𝑁 -1], without revealing 𝜔 . In this

paper, we consider a range given in form of [0, 2𝑁 -1], which can

be generalized to a general range [𝜔,𝜔] straightforwardly.
There is a growing list of real-world scenarios for zero-knowledge

range arguments in practice:
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(1) Confidential Transactions: Typical cryptocurrencies (e.g., Bit-
coin, Ethereum) feature a public ledger that exposes the trans-

action records to the public. To avoid public scrutiny, one can

hide the account balances in cryptographic commitments [22].

To ensure correctness and consistency, a transaction request

must attest that the sum of the output amounts does not exceed

the input amounts, namely, the net transfer is not a deficit.

(2) Proofs of Solvency: Nowadays cryptocurrency exchanges are

required by regulators to certify that the amount in reserves

should be able to cover the amount in liabilities (including

payouts to customers), and hence, maintaining solvency [16].

It is desirable that the proofs of solvency do not reveal any

holding accounts, which may become a target for attacks.

(3) e-Voting: Electronic votes can be cast to an election authority

in a privacy-preserving manner by encryption. At the end of

the election, the votes are tallied by homomorphic encryption

and decrypted by the electoral commission [23]. To ensure its

correctness, each encrypted vote is verified for its positivity.

(4) Anonymous Credentials: Sensitive personal attributes, such
as date of birth and income, should be protected securely [9].

Often, some proofs of sensitive personal attributes (e.g., age,

income) meeting certain criteria thresholds are required to gain

access (e.g., for liquor) or privilege (e.g., social welfare).

(5) Verifiable Auctions: In a second-price auction, the winning

bidder pays the second-highest price of all bids. In a verifi-

able auction [1], the auctioneer provides a proof of the second-

highest price of bids, without revealing the prices of all other

bids (including the winning bid).

(6) Data Sovereignty: In many data-driven applications (e.g., fed-

erated learning [2]), distributed parties coordinate each other

by a protocol to utilize local data. To ensure protocol adherence,

each party proves certain properties of their data (e.g., within a

certain range) without sacrificing data privacy.

Furthermore, decentralized applications are increasingly popular,

which operate on blockchain platforms and are executed by publicly

verifiable smart contracts via a network of distributed miners. Many

of the above scenarios are relevant to the context of decentralized

applications, such as confidential transactions, proofs of solvency,

e-voting, anonymous credentials. For decentralized applications,

a trustless setting without a trusted setup is crucial. Although a

trusted setup can be established by multi-party computation [7, 24],

there is no publicly verifiable mechanism to eliminate collusion

among the setup parties, particularly for blockchains. Hence, this

paper focuses on range arguments with a transparent setup that

enhances transparency and enables trustless decentralized applica-

tions without entrusting to any third-party for setup.

On a blockchain platform (e.g., Ethereum), distributed miners

usually replicate the execution of smart contracts independently to
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achieve global consistency. As a result, miners charge cryptocur-

rencies (so-called gas fees) to smart contract invokers per smart

contract execution for the incurred resources (i.e, computation and

memory storage). Gas cost is used to measure the amount of com-

putational resources to execute the required operations in a smart

contract. One of the major concerns of practical deployment of

range arguments is the incurred gas cost and high computational

overhead associated with miners. Based on our measurements of

empirical gas cost over Ethereum, we observe that the majority of

gas cost of the existing range arguments is attributed to the compu-

tational tasks, rather than the memory storage. Traditional range

arguments (e.g., Bulletproofs) can incur over USD$100 gas fee on

Ethereum for the verification of a 128-bit range (see an empirical

study in Sec. 6). Hence, it is crucial to optimize the verification
efficiency in range arguments to alleviate the deployment cost on

blockchains and other decentralized platforms. In this paper, we

devise practically efficient zero-knowledge range arguments with

a transparent setup and a very low gas cost on blockhains.

1.1 Related Work
We survey the zero-knowledge range arguments in the literature:

(1) Zero-knowledge Set Membership: This class of zero-knowledge
range arguments prove a value lying in an arbitrary set [9].

Every element in the set is associated with a signature published

by the verifier. A prover can prove the set membership by a

proof of knowledge of a signature of an element. A drawback

of this approach is the signatures for a range scaling linearly

with its size, making it very inefficient for a large range.

(2) Four-square Decomposition: Lagrange’s four square theorem

states that every integer can be decomposed into a sum of

squares of integers. Early range arguments of this class were

based on integer commitments of unknown order groups [6],

which require a trusted setup or ideal class group
2
. Recent

bounded integer commitments [14, 15] follow a weaker sound-

ness model (called “relaxed soundness”) and hence cannot be

applied to confidential transactions on blockchains. Although

[14] proposes a way to strengthen relaxed soundness, this still

requires a trusted setup or ideal class group.

(3) Hash Chains: A hash chain is sequential evaluation of a hash

function on an unknown random input for 𝑥 times, which can

be regarded as a commitment on 𝑥 . Hash chains were utilized in

micropayments [29] and location hiding [10]. But hash chains

are not homomorphic commitments, which are unsuitable for

confidential transactions and e-voting.

(4) Binary/𝐵-ary Digital Decomposition: If 𝜔 ∈ [0, 2𝑁 − 1], then 𝜔
can be expressed by bit decomposition as 𝜔 =

∑
𝑖∈[𝑁 ] 𝑏𝑖 · 2𝑖−1

,

where𝑏𝑖 ∈ {0, 1}. In general, if𝜔 ∈ [0, 𝐵𝑁̃ −1], then𝜔 can be ex-

pressed by𝜔 =
∑
𝑖∈[𝑁̃ ] 𝑑𝑖 ·𝐵

𝑖−1
, where 𝑑𝑖 ∈ {0, 1, ..., 𝐵−1}. The

range arguments based on binary/𝐵-ary digital decomposition

2
Unknown order group by ideal class group with a transparent setup is not yet con-

cretely efficient to implement for practical applications. For example, at the 128-bit

security level, [17] suggests that ≈ 6656-bit is required. There is a performance com-

parison between unknown order groups and pairing-friendly groups in [26]. The

state-of-the-art practical implementation of unknown order groups using ideal class

group takes 27000µs for a group multiplication, whereas the same study shows that a

finite group multiplication takes only 42µs. Moreover, there is no existing class group

implementation on today’s blockchain platforms (e.g., Ethereum). Hence, it is not

practical to use unknown order groups with a transparent setup on blockchains.

Table 1: A comparison of range arguments with transparent
setup in discrete logarithm settings.

Scheme Proof Size Verification Time Proving Time
Bulletproofs [8] 2 log𝑁 |G| 2𝑁 + 2 log𝑁 G Exp 9𝑁 + 4 log𝑁 G Exp

Bulletproofs+ [13] 2 log𝑁 |G| 2𝑁 + 2 log𝑁 G Exp 9𝑁 + 4 log𝑁 G Exp

SwiftRange [31] 4 log𝑁 |G| 𝑁 + 4 log𝑁 G Exp 8𝑁 G Exp

Bulletproofs++[18] 𝑂 (log( 𝑁
log𝑁
)) |G| 𝑂 ( 𝑁

log𝑁
) G Exp 𝑂 ( 𝑁

log𝑁
) G Exp

Flashproofs [30]
𝑁

2/3+3𝑁 1/3
2

|G| + 𝑁 2/3 |Z𝑝 | 3(𝑁 2/3+𝑁 1/3 )
2

G Exp
𝑁

4/3+𝑁+3𝑁 2/3+5𝑁 1/3
2

G Exp

BG18 [5] 𝑂 ( 𝑁
log𝑁
) |G| + 𝑂 ( 𝑁

log𝑁
) |Z𝑝 | 𝑂 (𝑁 ) G Exp 𝑂 (𝑁 ) G Exp

BCCGP
𝑎
[4] 𝑂 (

√
𝑁 ) |G| + 𝑂 (

√
𝑁 ) |Z𝑝 | 𝑂 (

√
𝑁 ) G Exp 𝑂 (𝑁 ) G Exp

BFGW20
𝑏
[3] 𝑂 (log𝑁 ) |G𝑈 | 𝑂 (log𝑁 ) G𝑈 Exp 𝑂 (𝑁 log𝑁 ) G𝑈 Exp

LLRing
𝑐
[25] 6 log𝑁 |G𝑇 | 9 log𝑁 G𝑇 Exp 10𝑁 P + 4𝑁 G Exp

(PreComp: 2𝑁 P + 𝑁 G Exp)

VeRange Type-1 2𝑁
1/2 |G| + 𝑁 |Z𝑝 | 3𝑁

1/2 G Exp 𝑁 + 4𝑁
1/2 G Exp

VeRange Type-2 5.2( 𝑁
log𝑁
)

1/2 |G| +4 𝑁
log𝑁

|Z𝑝 | 6.7( 𝑁
log𝑁
)

1/2
G Exp 2

𝑁
log𝑁

+ +10.5( 𝑁
log𝑁
)

1/2
G Exp

VeRange Type-2B 1.7( 𝑁
log𝑁
)2/3 + 2.9( 𝑁

log𝑁
)1/3 |G| 3.8( 𝑁

log𝑁
)2/3 8.9( 𝑁

log𝑁
)2/3 +2.9( 𝑁

log𝑁
)1/3 G Exp

+2.6( 𝑁
log𝑁
)2/3 |Z𝑝 | +1.7( 𝑁

log𝑁
)1/3 G Exp

VeRange Type-3 4.2( 𝑁
log𝑁
)

1/2 |G| +2.8( 𝑁
log𝑁
)

1/2 |Z𝑝 | 6.6( 𝑁
log𝑁
)1/2 G Exp 3.4 𝑁

log𝑁
+7.1( 𝑁

log𝑁
)1/2 G Exp

Note: In our performance estimation, we only state the most significant terms. |G | means group

elements, |Z𝑝 | means field elements, G Exp means group exponentiations.
𝑎
BCCGP scheme can

generate unoptimized range arguments from arithmetic circuits.
𝑏
BFGW20 requires an unknown

order group (G𝑈 ) to yield logarithmic verification time.
𝑐
LLRing requires precomputation and

pairing operations (P) on a pairing-friendly target group (G𝑇 ) to yield logarithmic verifiability.

validate the satisfiability of witness 𝑏𝑖 (or 𝑑𝑖 ) in a constraint sys-

tem. Although one can apply general zk-SNARKs (e.g., [4, 21])

to automate the generation of zero-knowledge range arguments

via general arithmetic circuits, this approach either requires a

trusted setup, or results in inefficient range arguments because

of the overhead of translation from general arithmetic circuits.

Hence, we optimize the efficiency to a large extent by designing

specific zero-knowledge proofs for range arguments.

See [12] for a recent survey of zero-knowledge range arguments.

In this paper, we focus on zero-knowledge proofs specifically op-
timized for range arguments, which yield the most efficient and

cost-effective solutions for practical deployments. Since range ar-

guments are a fundamental primitive, it is worthwhile to optimize

their efficiency for many applications.

In Table 1, we compare with the existing range arguments with

transparent setup in discrete logarithm settings based on specific

zero-knowledge proof systems. We omit other studies that rely on

a trusted setup to enable efficient range arguments (e.g., [27]).

Bulletproofs [8] is a general proof system for inner-product rela-

tions with logarithmic proof size and linear verification time based

on a recursive folding technique. Bulletproofs includes a specific

proof system for range arguments based on binary decomposition

that takes around 2𝑁 group exponentiations for verification. Bullet-

proofs+ [13] makes slight improvement over the verification time.

Bulletproofs++ [18] extends Bulletproofs to 𝐵-ary digital decomposi-

tion based on a reciprocal relation, which results in𝑂 ( 𝑁
log𝑁
) group

exponentiations. But their approach relies on arithmetic circuits,

which is not optimized specifically for range arguments. Recently,

SwiftRange [31] improves Bulletproofs by halving the group expo-

nentiations to 𝑁 at the expense of doubling the proof size. Dory

[26] improves upon Bulletproofs’ recursive folding technique by

leveraging precomputation and pairing, which yields logarithmic

verification time. LLRing [25] developed a logarithmic linkable ring

scheme based on Dory. Their technique also applies to range ar-

guments to give logarithmic verifiable range arguments. But Dory

uses pairing, which is not as concretely efficient as the basic dis-

crete logarithm setting and the empirical runtime is far higher than

Bulletproofs for typical ranges (see our comparison in Sec. 6). BG18
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[5] and BFGW20 [3] present specific proof systems for range ar-

guments. BG18 is designed for batch verification, and takes linear

verification time. BFGW20 yields logarithmic verification time but

needs an unknown order group that requires a trusted setup or

ideal class groups. The most practically verification-efficient range

argument so far is Flashproofs [30] (range argument) that yields

𝑂 (𝑁 2/3) group exponentiations and is empirically measured to have

a low gas cost on Ethereum.

1.2 Our Contributions
In this paper, we devise VeRange, consisting of three types of

verification-efficient zero-knowledge range arguments with trans-

parent setup in the discrete logarithm setting. VeRange contains

multiple types of range arguments, two of which require only

𝑐
√︃

𝑁
log𝑁

group exponentiations for verification, where 𝑐 < 7 is

a small constant, making them concretely efficient for blockchain

deployment with a very low gas cost. Although one can apply

general zk-SNARKs (e.g., [4]) to an arithmetic circuit representing

binary decomposition of a number to achieve 𝑂 (
√
𝑁 ) verification

time, this results in unoptimized range arguments that are not as

concretely efficient as our specific range argument systems.

In many applications, a single prover needs to prove multiple

range arguments simultaneously. For example, a confidential trans-

action contains multiple output amounts. In proofs of solvency,

a cryptocurrency exchange needs to show range arguments for

every holding account. Given the sub-linear verification time and

proof size of VeRange, we aggregate 𝑇 arguments that is more

efficient than verifying 𝑇 individual arguments. We provide aggre-

gable VeRange, two of which require only 𝑂 (
√︃

𝑇𝑁
log(𝑇𝑁 ) ) +𝑇 group

exponentiations in the verification of 𝑇 arguments together.

We deployed VeRange on Ethereum and measured the empirical

gas cost, achieving the fastest verification runtime and the lowest

gas cost among the discrete-logarithm-based range arguments in

practice, particularly for aggregating multiple range arguments.

Table 1 compares the theoretical performance of VeRange with
the extant range arguments of transparent setup. VeRange attains
the lowest number of group exponentiations for verification among

the range arguments without pairing or unknown order groups.

In the following, we outline each type of VeRange and its novelty:

▶ VeRangeType-1:We optimize Flashproofs to reduce from𝑂 (𝑁 2/3)
group exponentiations for verification to only 3𝑁

1/2
at the ex-

pense of a linear number of field elements in the proof. It

achieves the fastest verification time in the recent discrete loga-

rithm setting with a transparent setup.

▶ VeRange Type-2: We utilize the reciprocal relation from Bullet-

proofs++ to realize𝐵-ary digital decompositionwith𝑂 (( 𝑁
log𝑁
)1/2)

group exponentiations for verification. It achieves the fastest

proving time in the recent discrete logarithm setting.We also de-

velop VeRange type-2B that combines the ideas of Flashproofs

and Bulletproofs++ to yield a lower gas-cost alternative at the

expense of𝑂 (( 𝑁
log𝑁
)2/3) group exponentiations for verification.

▶ VeRange Type-3: We design an efficient range argument based

on efficient batch verification of polynomial evaluation. Al-

though our approach is based on BG18 [5], our approach differs

from BG18, as we optimize batch verification to reduce group

exponentiations for verification from 𝑂 (𝑁 ) to 𝑂 (( 𝑁
log𝑁
)1/2). It

achieves the lowest gas cost with a transparent setup.

Paper Organization. Sec. 2 presents the preliminaries. Secs. 3-5

present the three types of VeRange, respectively. Sec. 6 empirically

evaluates the performance of VeRange on Ethereum and compares

with the extant range arguments. Due to the page limit, some defi-

nitions and technical proofs are deferred to the Appendix.

2 Preliminaries
In this section, we present the preliminaries and definitions for

our work. Let 𝜆 be the security level parameter and negl(𝜆) be
a negligible function of 𝜆. PPT denotes “probabilistic polynomial

time”. “

$←−” denotes a uniformly random selection from a set.

Vectors. Denote a cyclic group of prime order 𝑝 by G, and a ring

of integers modulo 𝑝 by Z𝑝 . Let Z∗𝑝 ≜ Z𝑝\{0}. Denote a vector

in bold font with an arrow symbol and its coordinates in normal

font with subscripts (e.g., ®a ≜ (𝑎1, ..., 𝑎𝑛) ∈ Z𝑛𝑝 denotes a vector of

field elements and ®G ≜ (𝐺1, ...,𝐺𝑛) ∈ G𝑛 denotes a vector of group

generators).

Commitment Scheme. A commitment scheme is a mapping Cm :

M𝑛 × R → C from a (vector) message spaceM𝑛
and a random

mask space R to a commitment space C. A commitment scheme is

homomorphic, if for any ®m1, ®m2 ∈ M𝑛, r1, r2 ∈ R:

Cm( ®m1; r1) · Cm( ®m2; r2) = Cm( ®m1 + ®m2; r1 + r2)

Pedersen commitment scheme is a homomorphic commitment

scheme that is perfectly hiding and computationally binding.

Definition 2.1 (Pedersen Commitment). Let M = Z𝑛𝑝 , R = Z∗𝑝

and C = G of order 𝑝 . Let ®G $←− G𝑛, 𝑄
$←− G be randomly selected

generators. Define Pedersen commitment by

Cm( ®m; r) ≜ ®G ®m ·𝑄r =
( ∏
𝑖∈[𝑛]

𝐺
m𝑖
𝑖

)
·𝑄r

Definition 2.2 (Discrete Logarithm Relation (DLR)). The DLR as-

sumption holds for any PPT adversary A for a given 𝜂:

Pr

[
®x← A[ ®G],
®G®x = 𝜂

G← Setup[1𝜆],
®G $←− G

]
≤ negl(𝜆)

Namely, non-trivial discrete logarithm relations among random

generators ®G cannot be discovered by a PPT adversary.

Zero-Knowledge Arguments of Knowledge. An argument sys-
tem is consisted of three PPT algorithms (G,P,V), where G is the

setup algorithm for public parameters pp, P andV are the prover

and verifier algorithms. Denote the communication transcript be-

tween the prover and verifier by tr ← ⟨P(·),V(·)⟩. At the end,
the transcript will produce a binary decision: Accept[tr] ∈ {0, 1}.
Range arguments belong to zero-knowledge arguments of knowledge.
See Appendix B for more detailed definitions.

Definition 2.3 (Argument of Knowledge). Argument system (G,P,
V) is an argument of knowledge for a relation, if it satisfies per-

fect completeness (Def. (B.2)) and computational witness-extended
emulation (CWE) (Def. (B.3)).
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Essentially, CWE captures the idea of knowledge-sound argu-

ments. Informally, if an adversary produces an acceptable argu-

ment with some probability, there exists an emulator that produces

a similar argument and a witness with the same probability.

We are interested in Special Honest-Verifier Zero-Knowledge (SHVZK)
arguments (Def. (B.5)) that do not leak the information of the wit-

ness beyond what can be inferred from the truth of the statement.

Argument system (G,P,V) is called public-coin (Def. (B.4)), if

the verifier chooses her messages uniformly at random, indepen-

dent from the messages sent by the prover.

In this paper, we focus on multi-move interactive public-coin pro-
tocols for arguments of knowledge. The Fiat-Shamir transformation

can be applied to convert interactive protocols to non-interactive

arguments using the random oracle model by replacing the public-

coin challenges by the output of a cryptographic hash function [20].

This reduces multiple moves in an interactive protocol to a single

move in a publicly verifiable scheme.

3 VeRange Type-1 Range Argument
In this section, we introduce the type-1 range argument. First, we

describe the main ideas at a high level, before presenting the range

argument protocol and aggregated range argument.

3.1 Technical Overview
If 𝜔 ∈ [0, 2𝑁 − 1], we can write 𝜔 =

∑
𝑖∈[𝑁 ] 𝑏𝑖 · 2𝑖−1

by bit decom-

position, where 𝑏𝑖 ∈ {0, 1}. Hence, one can check if 𝜔 ∈ [0, 2𝑁 − 1]
by checking if there exists a vector

®b = (𝑏1, ..., 𝑏𝑁 ) ∈ Z𝑁𝑝 , such that
𝑏𝑖 (1 − 𝑏𝑖 )

?

= 0, ∀𝑖 ∈ [𝑁 ]∑
𝑖∈[𝑁 ]

𝑏𝑖 · 2𝑖−1
?

= 𝜔
(1)

We next outline the basic idea of an efficient zero-knowledge

proof protocol that checks Eqn. (1) with respect to a (Pedersen)

scalar commitment of 𝜔 , i.e., Cm(𝜔) ≜ 𝐺𝜔 ·𝑄r𝜔
, where r𝜔

$←− Z∗𝑝 is

a random mask, without revealing
®b.

We arrange
®b in a 𝐽 × 𝐾 matrix

(
ˆ𝑏 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾
𝑘=1

, as defined by

ˆ𝑏 𝑗,𝑘 ≜
{
𝑏 𝐽 (𝑘−1)+𝑗 , if 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑁

0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑁

Also, define a 𝐽 × 𝐾 matrix

(
2̂𝑗,𝑘

)
𝐽
𝑗=1,

𝐾
𝑘=1

by

2̂𝑗,𝑘 ≜
{

2
𝐽 (𝑘−1)+𝑗−1, if 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑁

0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑁

Then, define

(
𝑤 𝑗,𝑘 ≜ ˆ𝑏 𝑗,𝑘 · 2̂𝑗,𝑘

)
𝐽
𝑗=1,

𝐾
𝑘=1

, namely,

©­­«
𝑤1,1 . . . 𝑤1,𝐾

.

.

.
. . .

.

.

.

𝑤 𝐽 ,1 . . . 𝑤 𝐽 ,𝐾

ª®®¬ ≜
©­­­­­­­«

𝑏1 · 20 𝑏 𝐽 +1 · 2𝐽 . . . 𝑏 𝐽 (𝐾−1)+1 · 2𝐽 (𝐾−1)

.

.

.

.

.

.
.
.
.

.

.

.

𝑏 𝐽 −𝜂 · 2𝐽 −𝜂−1 𝑏
2𝐽 −𝜂 · 22𝐽 −𝜂−1 . . . 𝑏𝑁 · 2𝑁 −1

𝑏 𝐽 −𝜂+1 · 2𝐽 −𝜂 𝑏
2𝐽 −𝜂+1 · 22𝐽 −𝜂 . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

𝑏 𝐽 · 2𝐽 −1 𝑏
2𝐽 · 22𝐽 −1 . . . 0

ª®®®®®®®¬

where 𝜂 = 𝐽𝐾 mod 𝑁 , such that 𝜂 < 𝐽 . Hence, Eqn. (1) becomes
𝑤 𝑗,𝑘 (2̂𝑗,𝑘 −𝑤 𝑗,𝑘 )

?

= 0, ∀𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾]∑
𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

𝑤 𝑗,𝑘
?

= 𝜔
(2)

In this range argument, the prover first commits (∑𝑗∈[ 𝐽 ] 𝑤 𝑗,𝑘 )𝑘∈[𝐾 ]
as (𝑊𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] 𝑤𝑗,𝑘 · 𝑄r(𝑊 )

𝑘 )𝑘∈[𝐾 ] , where the random masks

(r(𝑊 )
𝑘
)𝑘∈[𝐾 ] are set to satisfy r𝜔 =

∑
𝑘∈[𝐾 ] r

(𝑊 )
𝑘

. Then, the verifier

can check if 𝜔 ∈ [0, 2𝑁 − 1] by checking

Cm(𝜔) ?

=
∏
𝑘∈[𝐾 ]

𝑊𝑘 and𝑤 𝑗,𝑘
?∈ {0, 2̂𝑗,𝑘 }, ∀𝑘 ∈ [𝐾], 𝑗 ∈ [𝐽 ] (3)

Next, we proceed to check the satisfiability of (𝑤 𝑗,𝑘
?∈ {0, 2̂𝑗,𝑘 }) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

by the below zero-knowledge protocol:

1 In addition to (𝑊𝑘 )𝑘∈[𝐾 ] , the prover also commits

(
(𝑇𝑘 )𝑘∈[𝐾 ] , 𝑆, 𝑅

)
,

which will be defined in the following.

2 The verifier then sends a random challenge vector ®𝜖 $←− Z∗𝐾𝑝 to

the prover.

3 The prover replies with (𝑣 𝑗,𝑘 ≜ 𝑤 𝑗,𝑘 · 𝜖𝑘 + r𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] ,

where r𝑗,𝑘
$←− Z∗𝑝 is a random mask.

4 The verifier then computes (𝑢 𝑗,𝑘 ≜ 2̂𝑗,𝑘 · 𝜖𝑘 − 𝑣 𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] .
5 Next, the satisfiability of (𝑤 𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] can be checked by

the following:∑︁
𝑘∈[𝐾 ]

𝑣 𝑗,𝑘 · 𝑢 𝑗,𝑘
?

=
∑︁
𝑘∈[𝐾 ]

(2̂𝑗,𝑘 −𝑤 𝑗,𝑘 )𝑤 𝑗,𝑘︸                ︷︷                ︸
= 0 if 𝑤𝑗,𝑘 ∈{0,2̂𝑗,𝑘 }

·𝜖2

𝑘

+
∑︁
𝑘∈[𝐾 ]

r𝑗,𝑘 (2̂𝑗,𝑘 − 2𝑤 𝑗,𝑘 ) · 𝜖𝑘 −
∑︁
𝑘∈[𝐾 ]

(r𝑗,𝑘 )2

By the DLR assumption, one can equivalently check the follow-

ing equation:∏
𝑗∈[ 𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 ·𝑢 𝑗,𝑘

𝑗
·𝑄𝜂1

?

=
∏
𝑘∈[𝐾 ]

𝑇
𝜖𝑘
𝑘
· 𝑆 (4)

where (𝑇𝑘 ≜
∏
𝑗∈[ 𝐽 ] 𝐻

r𝑗,𝑘 (2̂𝑗,𝑘−2𝑤𝑗,𝑘 )
𝑗

· 𝑄r(𝑇 )
𝑘 )𝑘∈[𝐾 ] and 𝑆 ≜∏

𝑗∈[ 𝐽 ] 𝐻
−∑𝑘∈ [𝐾 ] (r𝑗,𝑘 )2
𝑗

·𝑄r𝑆
should be committed by the prover

at 1 before knowing ®𝜖 and the prover provides 𝜂1 ≜ ®r(𝑇 ) · ®𝜖+r𝑆 .
6 To relate (𝑣 𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] and (𝑊𝑘 )𝑘∈[𝐾 ] , one can check the

following:∑︁
𝑘∈[𝐾 ]

∑︁
𝑗∈[ 𝐽 ]

𝑣 𝑗,𝑘
?

=
∑︁
𝑘∈[𝐾 ]

(
𝜖𝑘 ·

∑︁
𝑗∈[ 𝐽 ]

𝑤 𝑗,𝑘 +
∑︁
𝑗∈[ 𝐽 ]

r𝑗,𝑘
)

(5)

By the DLR assumption, one can equivalently check the follow-

ing equation:

𝐺
∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 ·𝑄𝜂2

?

=
∏
𝑘∈[𝐾 ]

𝑊
𝜖𝑘
𝑘
· 𝑅 (6)

where 𝑅 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] r𝑗,𝑘 · 𝑄r𝑅

should be committed by the

prover at 1 before knowing ®𝜖 and the prover provides 𝜂2 ≜
®r(𝑊 ) · ®𝜖 + r𝑅 .

4



Figure 1: VeRange type-1 range argument protocol

Πty1

[
Cm(𝜔 ) ∈ G; 𝜔 ∈ Z𝑝 , r𝜔 ∈ Z∗𝑝

]
P :
®b ∈ {0, 1}𝑁 is the bit-decomposition of𝜔 such that𝜔 =

∑︁
𝑖∈ [𝑁 ]

𝑏𝑖 · 2𝑖−1

(
r𝑗,𝑘

$←− Z∗𝑝
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

, ®r(𝑊 ) ,®r(𝑇 ) $←− Z∗𝐾𝑝 , r𝑅 , r𝑆
$←− Z∗𝑝 ,

r(𝑊 )
𝐾

≜ r𝜔 −
∑︁

𝑘∈ [𝐾−1]
r(𝑊 )
𝑘

,

(
𝑤𝑗,𝑘 ≜ ˆ𝑏 𝑗,𝑘 · 2̂𝑗,𝑘

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ](

𝑡 𝑗,𝑘 ≜ r𝑗,𝑘 · (2̂𝑗,𝑘 − 2𝑤𝑗,𝑘 )
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

1 P ⇒ V :

(
𝑊𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] 𝑤𝑗,𝑘 · 𝑄r(𝑊 )

𝑘 , 𝑇𝑘 ≜
∏
𝑗 ∈ [𝐽 ]

𝐻
𝑡 𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾 ]

(7)

𝑅 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] r𝑗,𝑘 · 𝑄r𝑅 , 𝑆 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
−∑𝑘∈ [𝐾 ] (r𝑗,𝑘 )2
𝑗

· 𝑄r𝑆 (8)

2 P ⇐ V : ®𝜖 $←− Z∗𝐾𝑝 (9)

3 P ⇒ V :

(
𝑣𝑗,𝑘 ≜ 𝑤𝑗,𝑘 · 𝜖𝑘 + r𝑗,𝑘

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

, 𝜂1 ≜ ®r(𝑇 ) · ®𝜖 + r𝑆 , 𝜂2 ≜ ®r(𝑊 ) · ®𝜖 + r𝑅
(10)

4 V :

(
𝑢 𝑗,𝑘 ≜ 2̂𝑗,𝑘 · 𝜖𝑘 − 𝑣𝑗,𝑘

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

Check



5

∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 ·𝑢𝑗,𝑘

𝑗
· 𝑄𝜂1

?

=
∏

𝑘∈ [𝐾 ]
𝑇
𝜖𝑘
𝑘
· 𝑆

6 𝐺

∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 · 𝑄𝜂2

?

=
∏

𝑘∈ [𝐾 ]
𝑊
𝜖𝑘
𝑘
· 𝑅

Cm(𝜔 ) ?

=
∏

𝑘∈ [𝐾 ]
𝑊𝑘

(11)

Although type-1 argument resembles Flashproofs (see Appen-

dix F), it sets different values of 𝐽 , 𝐾 , resulting in less group expo-

nentiations at the expense of more field elements in the proof.

3.2 Type-1 Range Argument Protocol
The full protocol of VeRange type-1 range argument is described

in Fig. 1, with the steps 1 - 6 labeled in the protocol.

Theorem 3.1. VeRange type-1 range argument protocol Πty1 sat-
isfies perfect completeness, SHVZK and CWE.

The complete proof can be found in Appendix C.

Remarks: VeRange type-1 range argument differs from Flashproofs

(see Appendix F) in the way of checking the satisfiability of (𝑤 𝑗,𝑘 ),
as to reduce the required group exponentiations. The proof size of

includes 2𝐾 group elements and 𝐽𝐾 field elements. The verification

takes 𝐽 + 2𝐾 group exponentiations. The proving takes 𝐽𝐾 + 3𝐾 + 𝐽
group exponentiations. To minimize the number of group expo-

nentiations in verification, we set 𝐽 ≈ 𝐾 ≈
⌈
𝑁

1/2⌉
. Hence, the

verification takes around 3𝑁
1/2

group exponentiations and proving

takes around 𝑁 + 4𝑁
1/2
. The proof size includes around 2𝑁

1/2
group

elements and 𝑁 field elements. See Table 1 for a comparison.

3.3 Aggregating Type-1 Range Arguments
Given (𝜔 (𝑡 ) )𝑡 ∈[𝑇 ] , the prover commits to Cm(𝜔 (𝑡 ) ) ≜ 𝐺𝜔

(𝑡 ) ·𝑄r𝜔 (𝑡 )

and aims to prove 𝜔 (𝑡 ) ∈ [0, 2𝑁 − 1] for all 𝑡 ∈ [𝑇 ]. Rather proving
the bit-decomposition of each 𝜔 (𝑡 ) separately, one can prove the

bit-decomposition of (𝜔 (𝑡 ) )𝑡 ∈[𝑇 ] together in a single argument.

Figure 2: Aggregated VeRange type-1 range argument protocol

Πa.ty1

[ (
Cm(𝜔 (𝑡 ) ) ∈ G

)
𝑡 ∈ [𝑇 ] ;

(
𝜔 (𝑡 ) ∈ Z𝑝 , r𝜔 (𝑡 ) ∈ Z∗𝑝

)
𝑡 ∈ [𝑇 ]

]
P ⇐ V : 𝛾

$←− Z∗𝑝

P :
®b(𝑡 ) ∈ {0, 1}𝑁 is the bit-decomposition of𝜔 (𝑡 ) such that𝜔 (𝑡 ) =

∑︁
𝑖∈ [𝑁 ]

𝑏
(𝑡 )
𝑖
· 2𝑖−1

(
r𝑗,𝑘

$←− Z∗𝑝
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

, ®r(𝑊 ) ,®r(𝑇 ) $←− Z∗𝐾𝑝 , r𝑅 , r𝑆
$←− Z∗𝑝 ,

r(𝑊 )
𝐾

≜
∑︁
𝑡 ∈ [𝑇 ]

𝛾𝑡 · r𝜔 (𝑡 ) −
∑︁

𝑘∈ [𝐾−1]
r(𝑊 )
𝑘

,

(
¯̄𝑤𝑗,𝑘 ≜ ¯̄𝑏 𝑗,𝑘 · ¯̄2𝑗,𝑘

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ](

𝑡 𝑗,𝑘 ≜ r𝑗,𝑘 · ( ¯̄2𝑗,𝑘 − 2 ¯̄𝑤𝑗,𝑘 )
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

P ⇒ V :

(
𝑊𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] ¯̄𝑤𝑗,𝑘 · 𝑄r(𝑊 )

𝑘 , 𝑇𝑘 ≜
∏
𝑗 ∈ [𝐽 ]

𝐻
𝑡 𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾 ]

(12)

𝑅 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] r𝑗,𝑘 · 𝑄r𝑅 , 𝑆 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
−∑𝑘∈ [𝐾 ] (r𝑗,𝑘 )2
𝑗

· 𝑄r𝑆 (13)

P ⇐ V : ®𝜖 $←− Z∗𝐾𝑝 (14)

P ⇒ V :

(
𝑣𝑗,𝑘 ≜ ¯̄𝑤𝑗,𝑘 · 𝜖𝑘 + r𝑗,𝑘

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

, 𝜂1 ≜ ®r(𝑇 ) · ®𝜖 + r𝑆 , 𝜂2 ≜ ®r(𝑊 ) · ®𝜖 + r𝑅
(15)

V :

(
𝑢 𝑗,𝑘 ≜𝑗,𝑘 ·𝜖𝑘 − 𝑣𝑗,𝑘

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

Check



∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 ·𝑢𝑗,𝑘

𝑗
· 𝑄𝜂1

?

=
∏

𝑘∈ [𝐾 ]
𝑇
𝜖𝑘
𝑘
· 𝑆

𝐺

∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 · 𝑄𝜂2

?

=
∏

𝑘∈ [𝐾 ]
𝑊
𝜖𝑘
𝑘
· 𝑅∏

𝑡 ∈ [𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏

𝑘∈ [𝐾 ]
𝑊𝑘

(16)

Let
®b(𝑡 ) be the bit-decomposition of𝜔 (𝑡 ) .We arrange (®b(𝑡 ) )𝑡 ∈[𝑇 ]

in a 𝐽 × 𝐾 matrix

(
¯̄𝑏 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾
𝑘=1

, as defined by

¯̄𝑏 𝑗,𝑘 ≜

{
𝑏
(𝑡 )
𝐽 (𝑘−1)+𝑗−(𝑡−1)𝑁 , if (𝑡 − 1)𝑁 < 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑡𝑁

0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑇𝑁

Given 𝛾
$←− Z∗𝑝 , define a 𝐽 × 𝐾 matrix

(
¯̄2𝑗,𝑘

)
𝐽
𝑗=1,

𝐾
𝑘=1

by

¯̄2𝑗,𝑘 ≜
{
𝛾𝑡 · 2𝐽 (𝑘−1)+𝑗−1−(𝑡−1)𝑁 , if (𝑡 − 1)𝑁 < 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑡𝑁

0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑇𝑁

Also, define

(
¯̄𝑤 𝑗,𝑘 ≜ ¯̄𝑏 𝑗,𝑘 · ¯̄2𝑗,𝑘

)
𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

.

Hence, given a challenge 𝛾
$←− Z∗𝑝 , one can check if 𝜔 (𝑡 ) ∈

[0, 2𝑁 −1] for all 𝑡 ∈ [𝑇 ] via random linear combination by checking∏
𝑡 ∈[𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏
𝑘∈[𝐾 ]

𝑊𝑘 and𝑤 𝑗,𝑘
?∈ {0, ¯̄2𝑗,𝑘 }, ∀𝑘 ∈ [𝐾], 𝑗 ∈ [𝐽 ]

where (𝑊𝑘 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] ¯̄𝑤𝑗,𝑘 · 𝑄r(𝑊 )

𝑘 )𝑘∈[𝐾 ] and the random masks

(r(𝑊 )
𝑘
)𝑘∈[𝐾 ] are set to satisfy

∑
𝑡 ∈[𝑇 ] 𝛾

𝑡 · r𝜔 (𝑡 ) =
∑
𝑘∈[𝐾 ] r

(𝑊 )
𝑘

.

We provide the full protocol of aggregated type-1 range argu-

ment in Fig. 2. The verification takes around 3(𝑇𝑁 )1/2 +𝑇 group

exponentiations and proving takes 𝑇𝑁 + 4(𝑇𝑁 )1/2. The proof size
includes around 2(𝑇𝑁 )1/2 group elements and 𝑇𝑁 field elements.

The aggregated type-1 range argument protocol Πa.ty1 can be

shown to satisfy perfect completeness, SHVZK and CWE, by ex-

tending Theorem 3.1 straightforwardly.
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4 VeRange Type-2 Range Argument
In this section, we present the type-2 range argument

3
, which is

inspired by Bulletproofs++’s approach of reciprocal relation.

4.1 Technical Overview
Instead of bit decomposition, we can also use 𝐵-ary digit decom-

position, such that if 𝜔 ∈ [0, 𝐵𝑁̃ − 1], then we can express 𝜔 by

𝜔 =
∑
𝑖∈[𝑁̃ ] 𝑑𝑖 · 𝐵

𝑖−1
, where 𝑑𝑖 ∈ {0, 1, ..., 𝐵 − 1}. Vector ®d is called

the 𝐵-ary digital decomposition of 𝜔 . For each possible symbol

𝑐 ∈ {0, 1, ..., 𝐵 − 1} in a 𝐵-ary digital decomposition, let𝑚𝑐 be the

multiplicity of symbol 𝑐 appearing in ®d, i.e.,𝑚𝑐 ≜
∑
𝑖∈[𝑁̃ ] 1(𝑑𝑖 = 𝑐).

It was observed in Bulletproofs++ [18] that ®d and ®m should satisfy

the following reciprocal relation:∑︁
𝑖∈[𝑁̃ ]

1

𝛼 + 𝑑𝑖
=

𝐵−1∑︁
𝑐=0

𝑚𝑐

𝛼 + 𝑐 (17)

for any 𝛼
$←− Z∗𝑝 . Equivalently, one can check if 𝜔 ∈ [0, 𝐵𝑁̃ − 1] by

checking if there exist vectors (®d ∈ Z𝑁̃𝑝 , ®m ∈ Z𝐵𝑝 ), such that one

can always find
®f ∈ Z𝑁̃𝑝 for any 𝛼

$←− Z∗𝑝 satisfying the following:

𝑓𝑖 (𝛼 + 𝑑𝑖 )
?

= 1, ∀𝑖 ∈ [𝑁̃ ]∑
𝑖∈[𝑁̃ ]

𝑓𝑖
?

=
𝐵−1∑
𝑐=0

𝑚𝑐
𝛼+𝑐 ,∑

𝑖∈[𝑁̃ ]
𝑑𝑖 · 𝐵𝑖−1

?

= 𝜔

(18)

We next outline the basic idea of an efficient zero-knowledge

proof protocol that checks Eqn. (18) with respect to a commitment

of 𝜔 , i.e., Cm(𝜔) ≜ 𝐺𝜔 ·𝑄r𝜔
, without revealing

®d or ®m.

We arrange
®d in a 𝐽 × 𝐾̃ matrix

(
ˆ𝑑 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

, as defined by

ˆ𝑑 𝑗,𝑘 ≜

{
𝑑
𝐽 (𝑘−1)+𝑗 , if 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑁̃

0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑁̃
(19)

Also, define a 𝐽 × 𝐾̃ matrix

(
𝐵̂ 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

by

𝐵̂ 𝑗,𝑘 ≜

{
𝐵 𝐽 (𝑘−1)+𝑗−1, if 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑁̃

0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑁̃
(20)

Let B ≜
{
( 𝑗, 𝑘) ∈ [𝐽 ] × [𝐾̃] : 𝐵̂𝑖, 𝑗 ≠ 0

}
.

Then, define

(
𝑤̃ 𝑗,𝑘 ≜ ˆ𝑑 𝑗,𝑘 · 𝐵̂ 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

, namely,

©­­­«
𝑤̃1,1 . . . 𝑤̃

1,𝐾̃
.
.
.

. . .
.
.
.

𝑤̃
𝐽 ,1

. . . 𝑤̃
𝐽 ,𝐾̃

ª®®®¬ ≜
©­­­­­­­­­«

𝑑1 · 𝐵0 𝑑
𝐽
· 𝐵 𝐽 +1 . . . 𝑑

𝐽 (𝐾̃−1)+1 · 𝐵
𝐽 (𝐾̃−1)

.

.

.

.

.

.
.
.
.

.

.

.

𝑑
𝐽 −𝜂̃ · 𝐵

𝐽 −𝜂̃−1 𝑑
2𝐽 −𝜂̃ · 𝐵2𝐽 −𝜂̃−1 . . . 𝑑

𝑁̃
· 𝐵𝑁̃ −1

𝑑
𝐽 −𝜂̃+1 · 𝐵

𝐽 −𝜂̃ 𝑑
2𝐽 −𝜂̃+1 · 𝐵2𝐽 −𝜂̃ . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

𝑑
𝐽
· 𝐵 𝐽 −1 𝑑

2𝐽
· 𝐵2𝐽 −1 . . . 0

ª®®®®®®®®®¬
where 𝜂 = 𝐽 𝐾̃ mod 𝑁̃ , such that 𝜂 < 𝐽 .

Given 𝛼
$←− Z∗𝑝 , let 𝑓𝑗,𝑘 ≜ 1

𝛼+ ˆ𝑑 𝑗,𝑘
. We then can re-express the

first equation of Eqn. (18) by the following to relate 𝑓𝑗,𝑘 and 𝑤̃ 𝑗,𝑘 :

3
We also present the type-2B range argument in Appendix G.1.

1

?

= 𝐵−𝑖+1 · 𝑓𝑖 · (𝛼 · 𝐵𝑖−1 + 𝑑𝑖 · 𝐵𝑖−1), ∀𝑖 ∈ [𝑁̃ ]

⇒ 1

?

= 𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · (𝛼 · 𝐵̂ 𝑗,𝑘 + ˆ𝑑 𝑗,𝑘 · 𝐵̂ 𝑗,𝑘 ), ∀( 𝑗, 𝑘) ∈ B

= 𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃ 𝑗,𝑘 ) (21)

Hence, Eqn. (18) becomes

𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃ 𝑗,𝑘 )

?

= 1, ∀( 𝑗, 𝑘) ∈ B∑
( 𝑗,𝑘 ) ∈B

𝑓𝑖,𝑘
?

=
𝐵−1∑
𝑐=0

𝑚𝑐
𝛼+𝑐 ,∑

𝑗∈[ 𝐽 ],𝑘∈[ 𝐽 ]
𝑤̃ 𝑗,𝑘

?

= 𝜔

(22)

In this range argument, the prover first commits (∑𝑗∈[ 𝐽 ] 𝑤̃ 𝑗,𝑘 )𝑘∈[𝐾 ]
as (Ω𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] 𝑤̃𝑗,𝑘 · 𝑄r(Ω)

𝑘 )
𝑘∈[𝐾̃ ] , where the random masks

(r(Ω)
𝑘
)
𝑘∈[𝐾̃ ] are set to satisfy r𝜔 =

∑
𝑘∈[𝐾̃ ] r

(Ω)
𝑘

. Then, the veri-

fier can check if 𝜔 ∈ [0, 𝐵𝑁̃ − 1] by checking

Cm(𝜔) ?

=
∏
𝑘∈[𝐾̃ ]

Ω𝑘 and 𝑤̃ 𝑗,𝑘
?∈ {0, 𝐵̂ 𝑗,𝑘 , ..., (𝐵−1)·𝐵̂ 𝑗,𝑘 },∀( 𝑗, 𝑘) ∈ B

Next, we proceed to check the satisfiability of (𝑤̃ 𝑗,𝑘 ∈ {0, 𝐵̂ 𝑗,𝑘 , ..., (𝐵−
1) · 𝐵̂ 𝑗,𝑘 }) ( 𝑗,𝑘 ) ∈B by the below zero-knowledge protocol:

1 In addition to (Ω𝑘 )𝑘∈[𝐾̃ ] , the prover also commits (𝑀𝑐 ≜ 𝐺𝑚𝑐 ·

𝑄r(𝑀 )𝑐 )𝐵−1

𝑐=0
and

(
(𝑉𝑘 )𝑘∈[𝐾̃ ] , 𝑅̃, 𝑆

)
, which will be defined in the

following.

2 The verifier then sends a random number 𝛼
$←− Z∗𝑝 to the prover.

3 The prover next computes 𝑓𝑗,𝑘 ≜ 1

𝛼+ ˆ𝑑 𝑗,𝑘
and commits (𝑇𝑘 )𝑘∈[𝐾̃ ] ,

which will be defined in the following.

4 The verifier then sends a random challenge vector ®𝜖 $←− Z∗𝐾̃𝑝 to

the prover.

5 The prover replies with the following:(
𝜈 𝑗,𝑘 ≜ (𝛼 ·𝐵̂ 𝑗,𝑘+𝑤̃ 𝑗,𝑘 )·𝜖𝑘+r

(𝜈 )
𝑗,𝑘
, 𝜇 𝑗,𝑘 ≜ 𝐵̂−1

𝑗,𝑘
·𝑓𝑗,𝑘 ·𝜖𝑘+r

(𝜇 )
𝑗,𝑘

)
( 𝑗,𝑘 ) ∈B

where r(𝜇 )
𝑗,𝑘
, r(𝜈 )
𝑗,𝑘

$←− Z𝑝 are random mask numbers.

6 Next, the satisfiability of the first equation of Eqn. (22) can be

checked by the following:∑︁
𝑘∈[𝐾̃ ]:( 𝑗,𝑘 ) ∈B

𝜈 𝑗,𝑘 · 𝜇 𝑗,𝑘
?

=
∑︁

𝑘∈[𝐾̃ ]:( 𝑗,𝑘 ) ∈B
𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃ 𝑗,𝑘 )︸                              ︷︷                              ︸

= 1 if Eqn. (21) is satisfied

·𝜖2

𝑘

+
∑︁
𝑘∈[𝐾̃ ]

(
𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · r

(𝜈 )
𝑗,𝑘
+ (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃ 𝑗,𝑘 ) · r

(𝜇 )
𝑗,𝑘

)
· 𝜖𝑘

+
∑︁

𝑘∈[𝐾̃ ]:( 𝑗,𝑘 ) ∈B
r(𝜇 )
𝑗,𝑘
· r(𝜈 )
𝑗,𝑘

By the DLR assumption, one can equivalently check the follow-

ing equation:∏
𝑗∈[ 𝐽 ] 𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B 𝜈𝑗,𝑘 ·𝜇 𝑗,𝑘+

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 )∉B 𝜖

2

𝑘

𝑗

?

=

(∏
𝑗∈[ 𝐽 ] 𝐻 𝑗

)∑
𝑘∈ [𝐾̃ ] 𝜖

2

𝑘 ·∏
𝑘∈[𝐾̃ ] 𝑇

𝜖𝑘
𝑘
· 𝑆,

6



where

𝜏 𝑗,𝑘 ≜

{
𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · r

(𝜈 )
𝑗,𝑘
+ (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃ 𝑗,𝑘 ) · r

(𝜇 )
𝑗,𝑘
, if ( 𝑗, 𝑘) ∈ B

0, if ( 𝑗, 𝑘) ∉ B
,

𝑇𝑘 ≜
∏
𝑗∈[ 𝐽 ] 𝐻

𝜏 𝑗,𝑘
𝑗
·𝑄r(𝑇 )

𝑘 , 𝑆 ≜
∏
𝑗∈[ 𝐽 ] 𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B r

(𝜇)
𝑗,𝑘
·r(𝜈 )
𝑗,𝑘

𝑗
·𝑄r𝑆

(𝑇𝑘 )𝑘∈[𝐾̃ ] and 𝑆 should be committed by the prover at 1 , 3

before knowing ®𝜖 and the prover provides 𝜂1 ≜ ®r(𝑇 ) · ®𝜖 + r𝑆 .
7 The satisfiability of the second equation of Eqn. (22) can be

checked by the following:∑︁
( 𝑗,𝑘 ) ∈B

𝐵̂ 𝑗,𝑘 · 𝜇 𝑗,𝑘 · 𝜖−1

𝑘

?

=

𝐵−1∑︁
𝑐=0

𝑚𝑐

𝛼 + 𝑐 +
∑︁
( 𝑗,𝑘 ) ∈B

𝐵̂ 𝑗,𝑘 · r
(𝜇 )
𝑗,𝑘
· 𝜖−1

𝑘

(23)

By the DLR assumption, one can equivalently check the follow-

ing equation:

𝐺
∑
( 𝑗,𝑘 ) ∈B 𝐵̂ 𝑗,𝑘 ·𝜇 𝑗,𝑘 ·𝜖−1

𝑘 ·𝑄𝜂̃2
?

=

𝐵−1∏
𝑐=0

𝑀

1

𝛼+𝑐
𝑐 ·

∏
𝑘∈[𝐾̃ ]

𝑉
𝜖−1

𝑘

𝑘
(24)

where 𝑉𝑘 ≜ 𝐺

∑
( 𝑗,𝑘 ) ∈B 𝐵̂ 𝑗,𝑘 ·r

(𝜇)
𝑗,𝑘 · 𝑄r(𝑉 )

𝑘 should be committed by

the prover at 1 before knowing 𝛼 and the prover provides

𝜂2 ≜
∑𝐵−1

𝑐=0

r(𝑀 )𝑐

𝛼+𝑐 +
∑
𝑘∈[𝐾̃ ] r

(𝑉 )
𝑘
· 𝜖−1

𝑘
.

4.2 Type-2 Range Argument Protocol
The full protocol of VeRange type-2 range argument is described

in Fig. 3, with the steps 1 - 7 labeled in the protocol.

Theorem 4.1. VeRange type-2 range argument protocol Πty2 sat-
isfies perfect completeness, SHVZK and CWE.

The complete proof can be found in Appendix D.

Remarks: The proof size of VeRange type-2 range argument

includes 3𝐾̃ + 𝐵 group elements and 2𝐽 𝐾̃ field elements. The verifi-

cation takes 𝐽 + 3𝐾̃ + 𝐵 group exponentiations. The proving takes

𝐽 𝐾̃ +5𝐾̃ + 𝐽 +2𝐵 group exponentiations. To minimize the number of

group exponentiations in verification, we set 𝐵 ≈ ( 𝑁
log𝑁
)1/2. Since

𝐵𝑁̃ = 2
𝑁
, we obtain 𝑁̃ = 𝑁

log𝐵
≈ 2𝑁

log𝑁
and set 𝐽 ≈ 𝐾̃ ≈

⌈
( 2𝑁

log𝑁
)

1/2⌉
.

Hence, the verification takes around (4
√

2+1) ( 𝑁
log𝑁
)

1/2
group expo-

nentiations and proving takes around 2
𝑁

log𝑁
+ (6
√

2 + 2) ( 𝑁
log𝑁
)

1/2
.

The proof size includes around (3
√

2 + 1) ( 𝑁
log𝑁
)

1/2
group elements

and 4
𝑁

log𝑁
field elements. See Table 1 for a comparison.

4.3 Aggregating Type-2 Range Arguments
Multiple type-2 range arguments can be aggregated in a similar

manner as type-1 in Sec. 3.3. Given (𝜔 (𝑡 ) )𝑡 ∈[𝑇 ] , the prover commits

to Cm(𝜔 (𝑡 ) ) ≜ 𝐺𝜔
(𝑡 ) ·𝑄r𝜔 (𝑡 )

and aims to prove 𝜔 (𝑡 ) ∈ [0, 𝐵𝑁̃ − 1]
for all 𝑡 ∈ [𝑇 ]. Let ®d(𝑡 ) be the 𝐵-ary digit decomposition of 𝜔 (𝑡 ) .

We arrange (®d(𝑡 ) )𝑡 ∈[𝑇 ] in a 𝐽 × 𝐾̃ matrix

(
¯̄𝑑 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

, defined by

¯̄𝑑 𝑗,𝑘 ≜

{
𝑑
(𝑡 )
𝐽 (𝑘−1)+𝑗−(𝑡−1)𝑁̃

, if (𝑡 − 1)𝑁̃ < 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑡 𝑁̃
0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑇 𝑁̃

Figure 3: VeRange type-2 range argument protocol

Πty2

[
Cm(𝜔 ) ∈ G; 𝜔 ∈ Z𝑝 , r𝜔 ∈ Z∗𝑝

]
Setup :𝐻

𝐽
≜

∏
𝑗 ∈ [𝐽 ]

𝐻 𝑗

P :
®d ∈ ({0, ..., 𝐵 − 1})𝑁̃ is the 𝐵-ary digit decompo. of𝜔 such that𝜔 =

∑︁
𝑖∈ [𝑁̃ ]

𝑑𝑖 · 𝐵𝑖−1

(
r(𝜇)
𝑗,𝑘
, r(𝜈 )
𝑗,𝑘

$←− Z𝑝
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾̃ ]

, ®r(Ω) ,®r(𝑇 ) ,®r(𝑉 ) $←− Z∗𝐾̃𝑝 , ®r(𝑀 ) $←− Z∗𝐵𝑝

r𝑅 , r𝑆
$←− Z∗𝑝 , r(Ω)

𝐾̃
≜ r𝜔 −

∑︁
𝑘∈ [𝐾̃−1]

r(Ω)
𝑘(

𝑤̃𝑗,𝑘 ≜ ˆ𝑑 𝑗,𝑘 · 𝐵̂ 𝑗,𝑘
)
𝐽
𝑗=1,

𝐾̃
𝑘=1

,

(
𝑚𝑐 ≜

∑︁
𝑖∈ [𝑁̃ ]

1(𝑑𝑖 = 𝑐 )
)𝐵−1

𝑐=0

1 P ⇒ V :

(
Ω𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] 𝑤̃𝑗,𝑘 · 𝑄r(Ω)

𝑘

)
𝑘∈ [𝐾̃ ]

,

(
𝑀𝑐 ≜ 𝐺𝑚𝑐 · 𝑄r(𝑀 )𝑐

)𝐵−1

𝑐=0

(25)(
𝑉𝑘 ≜ 𝐺

∑
( 𝑗,𝑘 ) ∈B 𝐵̂ 𝑗,𝑘 ·r

(𝜇)
𝑗,𝑘 · 𝑄r(𝑉 )

𝑘

)
𝑘∈ [𝐾̃ ]

(26)

𝑅̃ ≜ 𝐺
∑
( 𝑗,𝑘 ) ∈B r(𝜈 )

𝑗,𝑘 · 𝑄r𝑅 , 𝑆 ≜
∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B r

(𝜇)
𝑗,𝑘
·r(𝜈 )
𝑗,𝑘

𝑗
· 𝑄r𝑆 (27)

2 P ⇐ V : 𝛼
$←− Z∗𝑝 (28)

3 P :

(
𝑓𝑗,𝑘 ≜ 1

𝛼+ ˆ𝑑𝑗,𝑘

)
( 𝑗,𝑘 ) ∈B

𝜏 𝑗,𝑘 ≜

{
𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · r

(𝜈 )
𝑗,𝑘
+ (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃𝑗,𝑘 ) · r

(𝜇)
𝑗,𝑘
, if ( 𝑗, 𝑘 ) ∈ B

0, if ( 𝑗, 𝑘 ) ∉ B

P ⇒ V :

(
𝑇𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝜏𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾̃ ]

4 P ⇐ V : ®𝜖 $←− Z∗𝐾̃𝑝 (29)

5 P ⇒ V :

(
𝜈𝑗,𝑘 ≜ (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃𝑗,𝑘 ) · 𝜖𝑘 + r

(𝜈 )
𝑗,𝑘
, 𝜇 𝑗,𝑘 ≜ 𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · 𝜖𝑘 + r

(𝜇)
𝑗,𝑘

)
( 𝑗,𝑘 ) ∈B

(30)

𝜂̃1 ≜ ®r(𝑇 ) · ®𝜖 + r𝑆 , 𝜂̃2 ≜
𝐵−1∑︁
𝑐=0

r(𝑀 )𝑐

𝛼 + 𝑐 +
∑︁

𝑘∈ [𝐾̃ ]
r(𝑉 )
𝑘
· 𝜖−1

𝑘
, 𝜂̃3 ≜ ®r(Ω) · ®𝜖 + r𝑅 (31)

V : Check



6

∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B 𝜈𝑗,𝑘 ·𝜇𝑗,𝑘 +

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 )∉B 𝜖

2

𝑘
𝑗

· 𝑄𝜂̃1

?

= 𝐻

∑
𝑘∈ [𝐾̃ ] 𝜖

2

𝑘

𝐽
· ∏
𝑘∈ [𝐾̃ ]

𝑇
𝜖𝑘
𝑘
· 𝑆

7 𝐺

∑
( 𝑗,𝑘 ) ∈B 𝐵̂ 𝑗,𝑘 ·𝜇𝑗,𝑘 ·𝜖

−1

𝑘 · 𝑄𝜂̃2
?

=
𝐵−1∏
𝑐=0

𝑀

1

𝛼+𝑐
𝑐 · ∏

𝑘∈ [𝐾̃ ]
𝑉
𝜖−1

𝑘
𝑘

𝐺

∑
( 𝑗,𝑘 ) ∈B 𝜈𝑗,𝑘 −𝛼 ·𝐵̂ 𝑗,𝑘 ·𝜖𝑘 · 𝑄𝜂̃3

?

=
∏

𝑘∈ [𝐾̃ ]
Ω
𝜖𝑘
𝑘
· 𝑅̃

Cm(𝜔 ) ?

=
∏

𝑘∈ [𝐾̃ ]
Ω𝑘

(32)

Given 𝛾
$←− Z∗𝑝 , define a 𝐽 × 𝐾̃ matrix

(
¯̄𝐵 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

by

¯̄𝐵 𝑗,𝑘 ≜

{
𝛾𝑡 · 𝐵 𝐽 (𝑘−1)+𝑗−1−(𝑡−1)𝑁̃ , if (𝑡 − 1)𝑁̃ < 𝐽 (𝑘 − 1) + 𝑗 ≤ 𝑡 𝑁̃

0, if 𝐽 (𝑘 − 1) + 𝑗 > 𝑇 𝑁̃

Also, define

(
¯̄𝑤 𝑗,𝑘 ≜ ¯̄𝑑 𝑗,𝑘 · ¯̄𝐵 𝑗,𝑘

)
𝑗∈[ 𝐽 ],𝑘∈[𝐾̃ ]

.

Given a challenge 𝛾
$←− Z∗𝑝 , one can check if 𝜔 (𝑡 ) ∈ [0, 𝐵𝑁̃ − 1]

for all 𝑡 ∈ [𝑇 ] via random linear combination by checking∏
𝑡 ∈[𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏
𝑘∈[𝐾̃ ]

Ω𝑘 and ¯̄𝑤 𝑗,𝑘

?∈ {0, ¯̄𝐵 𝑗,𝑘 , ..., (𝐵-1)· ¯̄𝐵 𝑗,𝑘 },∀( 𝑗, 𝑘) ∈ B

7



where (Ω𝑘 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] ¯̄𝑤𝑗,𝑘 · 𝑄r(Ω)

𝑘 )
𝑘∈[𝐾̃ ] and the random masks

(r(Ω)
𝑘
)
𝑘∈[𝐾̃ ] are set to satisfy

∑
𝑡 ∈[𝑇 ] 𝛾

𝑡 · r𝜔 (𝑡 ) =
∑
𝑘∈[𝐾̃ ] r

(Ω)
𝑘

.

Extending the type-2 range argument protocol, we can construct

the full protocol of aggregated type-2 range argument in Fig. 11 in

Appendix G.2. The verification takes𝑂 (
√︃

𝑇𝑁
log(𝑇𝑁 ) ) +𝑇 group expo-

nentiations and proving takes 𝑂 ( 𝑇𝑁
log(𝑇𝑁 ) ). The proof size includes

𝑂 (
√︃

𝑇𝑁
log(𝑇𝑁 ) ) group elements and field elements.

The aggregated type-2 range argument protocol can be shown

to satisfy perfect completeness, SHVZK and CWE, by extending

Theorem 4.1 straightforwardly.

5 VeRange Type-3 Range Argument
In this section, we present the type-3 range argument, which is

based on the idea of efficient batch verification of polynomial eval-

uation. Although our approach is based on BG18 [5], our approach

differs from BG18, as we especially optimize the batch verification

to reduce group exponentiations in verification.

5.1 Technical Overview
By 𝐵-ary digit decomposition, one can check if 𝜔 ∈ [0, 𝐵𝑁̃ − 1] by
checking if there exists a vector

®d ∈ Z𝑁̃𝑝 , such that
𝑑𝑖 · (𝑑𝑖 − 1) · · · (𝑑𝑖 − 𝐵 + 1) ?

= 0, for all 𝑖 ∈ [𝑁̃ ]∑
𝑖∈𝑁̃

𝑑𝑖 · 𝐵𝑖−1
?

= 𝜔
(33)

Checking Eqn. (33) can be thought of as performing polynomial

evaluation. We will utilize efficient batch verification of polynomial

evaluation through a polynomial commitment to check Eqn. (33).

Next, we introduce the basics of a polynomial commitment scheme

and its application for batch verification of polynomial evaluation.

Polynomial Commitment: A polynomial commitment scheme

allows a prover to commit to a polynomial (as a secret) in advance

and to open the evaluation at a specific point subsequently with a

proof to show that the evaluated polynomial is identical to the one

committed. A generic polynomial commitment scheme consists of

four methods (Setup, PolyCm, PolyEv, PolyVf).
Given polynomial F[𝑋 ] ≜ ∑𝐷

𝑖=0
ℎ𝑖𝑋

𝑖
, we randomly generate

r1, ..., r𝑉
$←− Z𝑝 as random masks. Define a (𝑈 + 1) × (𝑉 + 1) matrix

( ˆℎ𝑢,𝑣)𝑈𝑢=0,
𝑉
𝑣=0

as follows:

©­«
ˆℎ0,0 . . . ˆℎ

0,𝑉

.

.

.
.
.
.

.

.

.
ˆℎ𝑈 ,0 . . . ˆℎ𝑈 ,𝑉

ª®¬ ≜
©­­­­­­­­«

ℎ0 r1 . . . r𝑉 −1
r𝑉

ℎ1 ℎ𝜉+1 . . . ℎ𝑈 (𝑉 −2)+𝜉+1 ℎ𝑈 (𝑉 −1)+𝜉+1
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
ℎ𝜉 − r1 ℎ

2𝜉 . . . ℎ𝑈 (𝑉 −2)+𝜉 ℎ𝑈 (𝑉 −1)+2𝜉
0 ℎ

2𝜉+1 . . . ℎ𝑈 (𝑉 −2)+𝜉+1 ℎ𝑈 (𝑉 −1)+2𝜉+1
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
0 ℎ𝑈 +𝜉 − r2 . . . ℎ𝑈 (𝑉 −1)+𝜉 − r𝑉 ℎ𝐷

ª®®®®®®®®¬
where 𝜉 = (𝑈 + 1) (𝑉 + 1) mod (𝐷 + 1). Note that we can re-express

F[𝑋 ] as

F[𝑋 ] =
𝑈∑︁
𝑢=0

ˆℎ𝑢,0𝑋
𝑢 +

𝑉∑︁
𝑣=1

( 𝑈∑︁
𝑢=0

ˆℎ𝑢,𝑣𝑋
𝑢
)
𝑋 (𝑣−1)𝑈 +𝜉

In this range argument, we will utilize the BCCGP polynomial

commitment scheme [4] (as described in Fig. 4), which satisfies

Figure 4: BCCGP polynomial commitment scheme [4]
• SetupBCCGP : The public parameters for BCCGP scheme are (𝑉 + 1) random generators from G:

pp←
(
𝐺𝑣

$←− G
)𝑉
𝑣=0

• PolyCmBCCGP : Given a polynomial F[𝑋 ] ≜ ∑𝐷
𝑖=0

ℎ𝑖𝑋
𝑖
, the commitment of F has (𝑈 +1) group

elements:

CmF ←
(
𝐻𝑢 ≜

𝑉∏
𝑣=0

𝐺
ˆℎ𝑢,𝑣
𝑣

)𝑈
𝑢=0

∈ G𝑈 +1

• PolyEvBCCGP : The proof 𝜋F to the evaluation 𝑦 = F[𝑥 ] for commitment CmF has (𝑉 + 1) field
elements:

𝜋F ←
(
f𝑣 ≜

𝑈∑︁
𝑢=0

ˆℎ𝑢,𝑣 · 𝑥𝑢
)𝑉
𝑣=0

∈ Z𝑉 +1𝑝

• PolyVfBCCGP : To verify (pp, CmF, 𝑥, 𝑦, 𝜋F ) , the verifier checks the following equations:
𝑉∏
𝑣=0

𝐺
f𝑣
𝑣

?

=
𝑈∏
𝑢=0

𝐻𝑥
𝑢
𝑢

f0 +
𝑉∑
𝑣=1

f𝑣 · 𝑥 (𝑣−1)𝑈 +𝜉 ?

= 𝑦

(34)

PolyVfBCCGP returns 1, if the above equations are equal, or 0 otherwise.

computational binding and perfect hiding. BCCGP polynomial com-

mitment scheme takes (𝑈 +𝑉 + 2) group exponentiations to verify

an evaluation of a committed polynomial with degree 𝐷 , with a

commitment size of𝑈 + 1 group elements and a proof size of 𝑉 + 1

field elements. BCCGP commitment generation takes (𝑈 +1) (𝑉 +1)
group exponentiations. To minimize group exponentiations in ver-

ification, we set 𝑈 ≈ 𝑉 ≈ ⌈
√
𝐷⌉. Hence, verification of BCCGP

polynomial commitment takes around 2

√
𝐷 group exponentiations

and proving takes around 𝐷 group exponentiations. The commit-

ment size includes around

√
𝐷 group elements and the proof size

includes around

√
𝐷 field elements.

Lagrange Polynomials: We will also utilize Lagrange polynomials

as a way to enable batch verification of polynomial evaluation. Let

{𝑧𝑖 ∈ Z𝑝 }𝑚𝑖=0
be a set of𝑚 + 1 distinct values in Z𝑝 . We define a

Lagrange basis polynomial by

L𝑖 [𝑋 ] ≜
∏

𝑗∈{0,...,𝑚}\{𝑖 }

𝑋 − 𝑧 𝑗
𝑧𝑖 − 𝑧 𝑗

where 𝑖 ∈ [𝑚] is an index of Lagrange basis polynomials. Note that

L𝑖 [𝑧 𝑗 ] = 0, if 𝑖 ≠ 𝑗 , and L𝑖 [𝑧𝑖 ] = 1. We also define

L0 [𝑋 ] ≜
∏
𝑗∈[𝑚]

(𝑋 − 𝑧 𝑗 )

Note that {𝑧𝑖 }𝑖∈[𝑚] are the roots of L0 [𝑋 ]. As a result, there is a way
to efficiently aggregate the evaluation of multiple input values for a

polynomial. Suppose {𝑎 (𝑖 ) ∈ Z𝑝 }𝑖∈[𝑚] are the roots of polynomial

F[𝑋 ], i.e., F[𝑎 (𝑖 ) ] = 0 for all 𝑖 ∈ [𝑚]. We encode {𝑎 (𝑖 ) }𝑖∈[𝑚] into a

polynomial as follows:

𝑎[𝑋 ] ≜
∑︁
𝑖∈[𝑚]

𝑎 (𝑖 ) · L𝑖 [𝑋 ]

Note that {𝑧𝑖 }𝑖∈[𝑚] are also the roots of F
[
𝑎[𝑋 ]

]
, i.e., F

[
𝑎[𝑧𝑖 ]

]
=

F[𝑎 (𝑖 ) ] = 0 for all 𝑖 ∈ [𝑚]. Then, this implies that

F
[
𝑎[𝑋 ]

]
mod L0 [X ] = 0

Hence, rather than checking F[𝑎 (𝑖 ) ] ?

= 0 for all 𝑖 ∈ [𝑚], one can
probabilistically check F

[
𝑎[𝑥]

]
mod L0 [x]

?

= 0, given a random

challenge 𝑥
$←− Z𝑝 .
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Efficient Batch Verification of Polynomial Evaluation: By the

factor theorem of polynomials, given {(𝑎 (𝑖 ) , 𝑐 (𝑖 ) )}𝑖∈[𝑚] , if( ∑︁
𝑖∈[𝑚]

𝑐 (𝑖 ) · L𝑖 [𝑋 ] − F
[
𝑎[𝑋 ]

] )
mod L0 [X ] = 0 (35)

then F[𝑎 (𝑖 ) ] = 𝑐 (𝑖 ) for all 𝑖 ∈ [𝑚]. Note that Eqn. (35) is equivalent
to

∑
𝑖∈[𝑚] 𝑐

(𝑖 ) · L𝑖 [𝑋 ] − F
[
𝑎[𝑋 ]

]
being divisible by L0 [𝑋 ]. Define

P[𝑋 ] ≜
∑
𝑖∈ [𝑚] 𝑐

(𝑖 ) ·L𝑖 [𝑋 ]−F
[
𝑎[𝑋 ]

]
L0 [𝑋 ]

We now apply Lagrange polynomials to enable efficient batch

verification of polynomial evaluation in the following scenarios:

1 Open Input Values: We consider the evaluation of multiple

open input values {𝑎 (𝑖 ) }𝑖∈[𝑚] on a known polynomial F[𝑋 ]
with open output values {𝑐 (𝑖 ) }𝑖∈[𝑚] . To check F[𝑎 (𝑖 ) ] ?

= 𝑐 (𝑖 )

for all 𝑖 ∈ [𝑚], the prover should first commit P[𝑋 ] by CmP ≜

PolyCm[P]. Then the verifier issues a random challenge 𝑥
$←− Z𝑝

and asks the prover to evaluate 𝑦P = P[𝑥] and produce a proof

𝜋P ≜ PolyEv[P, 𝑥]. The prover also returns 𝑎 ≜ 𝑎[𝑥]. The
verifier can verify (𝑎, {𝑐 (𝑖 ) }𝑖∈[𝑚] ) by checking the following

1

?

= PolyVf[CmP, 𝑥,𝑦P, 𝜋P]
𝑦P · L0 [𝑥]

?

=

( ∑
𝑖∈[𝑚] 𝑐

(𝑖 ) · L𝑖 [𝑥] − F[𝑎]
)

2 Secret Input Values:We consider the evaluation of multiple

secret input values {𝑎 (𝑖 ) }𝑖∈[𝑚] on a known polynomial F[𝑋 ]
with open output values {𝑐 (𝑖 ) }𝑖∈[𝑚] . To mask {𝑎 (𝑖 ) }𝑖∈[𝑚] , the
prover sets a new function for 𝑎[𝑋 ]:

𝑎[𝑋 ] ≜
∑︁
𝑖∈[𝑚]

𝑎 (𝑖 ) · L𝑖 [𝑋 ] + ra · L0 [𝑋 ]

where ra
$←− Z𝑝 is a randommask. The prover commits {𝑎 (𝑖 ) }𝑖∈[𝑚]

and ra by (𝐴𝑖 ≜ 𝐺𝑎
(𝑖 ) · 𝑄r𝑖 )𝑖∈[𝑚] and 𝑅 ≜ 𝐺ra · 𝑄r

. Then the

verifier issues a random challenge 𝑥
$←− Z𝑝 . The prover returns

𝑦P = P[𝑥], 𝜋P ≜ PolyEv[P, 𝑥] and 𝑎 ≜ 𝑎[𝑥], as in the above

scenario. The verifier can verify {𝐴𝑖 , 𝑐 (𝑖 ) }𝑖∈[𝑚] by checking the
following

1

?

= PolyVf[CmP, 𝑥,𝑦P, 𝜋P]
𝐺𝑎 ·𝑄𝜂 ?

=
∏
𝑖∈[𝑚] 𝐴

L𝑖 [𝑥 ]
𝑖

· 𝑅L0 [𝑥 ]

𝑦P · L0 [𝑥]
?

=

( ∑
𝑖∈[𝑚] 𝑐

(𝑖 ) · L𝑖 [𝑥] − F[𝑎]
)

where 𝜂 ≜
∑
𝑖∈[𝑚] r𝑖 ·L𝑖 [𝑥] +r ·L0 [𝑥] is provided by the prover.

3 Secret Input and Output Values: We consider the evalua-

tion of multiple secret input values {𝑎 (𝑖 ) }𝑖∈[𝑚] on known F[𝑋 ]
with secret output values {𝑐 (𝑖 ) }𝑖∈[𝑚] . In addition to committing

{𝑎 (𝑖 ) }𝑖∈[𝑚] and ra by (𝐴𝑖 )𝑖∈[𝑚] and 𝑅, the prover also commits

{𝑐 (𝑖 ) }𝑖∈[𝑚] by (𝐶𝑖 = 𝐺𝑐
(𝑖 ) ·𝑄r(𝑐 )

𝑖 )𝑖∈[𝑚] . In addition to masking

{𝑎 (𝑖 ) }𝑖∈[𝑚] , the prover masks P[𝑋 ] by

P[𝑋 ] ≜ s +
∑
𝑖∈ [𝑚] 𝑐

(𝑖 ) ·L𝑖 [𝑋 ]−F
[
𝑎[𝑋 ]

]
L0 [𝑋 ]

where s
$←− Z𝑝 is a random mask. The prover returns 𝑦P = P[𝑥],

𝜋P ≜ PolyEv[P, 𝑥] and 𝑎 ≜ 𝑎[𝑥], as in the above scenarios. The

verifier can verify {𝐴𝑖 ,𝐶𝑖 }𝑖∈[𝑚] by checking the following
1

?

= PolyVf[CmP, 𝑥,𝑦P, 𝜋P]
𝐺𝑎 ·𝑄𝜂1

?

=
∏
𝑖∈[𝑚] 𝐴

L𝑖 [𝑥 ]
𝑖

· 𝑅L0 [𝑥 ]
1

𝐺𝑦P ·L0 [𝑥 ]+F[𝑎] ·𝑄𝜂2
?

=
∏
𝑖∈[𝑚] (𝐶𝑖 )L𝑖 [𝑥 ] · 𝑅

L0 [𝑥 ]
2

(36)

where 𝑅2 ≜ 𝐺s ·𝑄r2
should be committed by the prover before

knowing challenge 𝑥 and 𝜂2 ≜
∑
𝑖∈[𝑚] r

(𝑐 )
𝑖
· L𝑘 [𝑥] + r2 · L0 [𝑥]

is provided by the prover.

Application to Range Arguments: We next apply efficient batch

verification of polynomial evaluation to design an efficient range

argument and optimize the batch verification to reduce group ex-

ponentiations in verification.

Let
®d ≜ (𝑑1, ...𝑑𝑁̃ ) be the 𝐵-ary digit decomposition of 𝜔 . Sup-

pose
˜𝜉 = 𝐽 𝐾̃ mod 𝑁̃ . As in type-2 argument, we arrange

®d and ®B
in 𝐽 × 𝐾̃ matrices ( ˆ𝑑 𝑗,𝑘 )

𝐽
𝑗=1,

𝐾̃
𝑘=1

and (𝐵̂ 𝑗,𝑘 )
𝐽
𝑗=1,

𝐾̃
𝑘=1

, respectively (see

Eqns (19)-(20)). We define the following functions B𝑗,𝑘 [·],S𝑘 [·]:
B𝑗,𝑘 [ ˆ𝑑 𝑗,𝑘 ] ≜ ˆ𝑑 𝑗,𝑘 · ( ˆ𝑑 𝑗,𝑘 − 1) · · · ( ˆ𝑑 𝑗,𝑘 − 𝐵 + 1)

S𝑘

[
( ˆ𝑑 𝑗,𝑘 ) 𝑗∈[ 𝐽 ] , (𝐵̂ 𝑗,𝑘 ) 𝑗∈[ 𝐽 ]

]
≜

∑
𝑗∈ 𝐽

ˆ𝑑 𝑗,𝑘 · 𝐵̂ 𝑗,𝑘

(37)

One can check if 𝜔 ∈ [0, 𝐵𝑁̃ − 1] by checking if there exist vectors(
( ˆ𝑑 𝑗,𝑘 )

𝐽
𝑗=1,

𝐾̃
𝑘=1

, (𝑤̃𝑘 )𝑘∈[𝐾̃ ]
)
, such that

B𝑗,𝑘 [ ˆ𝑑 𝑗,𝑘 ]
?

= 0, ∀𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾̃]
S𝑘

[
( ˆ𝑑 𝑗,𝑘 ) 𝑗∈[ 𝐽 ] , (𝐵̂ 𝑗,𝑘 ) 𝑗∈[ 𝐽 ]

]
?

= 𝑤̃𝑘 , ∀𝑘 ∈ [𝐾̃]∑
𝑘∈[𝐾̃ ]

𝑤̃𝑘
?

= 𝜔

(38)

To optimize verification, we utilize two levels of aggregation:

(1) We first aggregate the verification of (B𝑗,𝑘 [·], S𝑘 [·])𝑘∈[𝐾̃ ] via
batch verification. Let

¯𝑑 𝑗 [𝑋 ] ≜ r(d)
𝑗
· L0 [𝑋 ] +

∑
𝑘∈[𝐾̃ ]

ˆ𝑑 𝑗,𝑘 · L𝑘 [𝑋 ]

𝐵 𝑗 [𝑋 ] ≜
∑
𝑘∈[𝐾̃ ] 𝐵̂ 𝑗,𝑘 · L𝑘 [𝑋 ]

B𝑗 [𝑋 ] ≜
¯𝑑 𝑗 [𝑋 ] · ( ¯𝑑 𝑗 [𝑋 ]−1) ·· · ( ¯𝑑 𝑗 [𝑋 ]−𝐵+1)

L0 [𝑋 ]

S[𝑋 ] ≜ s +
∑
𝑘∈ [𝐾̃ ] 𝑤̃𝑘 ·L𝑘 [𝑋 ]−

∑
𝑗 ∈ [𝐽 ]

¯𝑑 𝑗 [𝑋 ] ·𝐵̄ 𝑗 [𝑋 ]
L0 [𝑋 ]

where B𝑗 [𝑋 ] and S[𝑋 ] are batched versions of (B𝑗,𝑘 [·])𝑘∈[𝐾̃ ]
and (S𝑘 [·])𝑘∈[𝐾̃ ] , and s, r(d)

𝑗

$←− Z𝑝 are random masks.

Suppose the prover commits

(
( ˆ𝑑 𝑗,𝑘 )

𝐽
𝑗=1,

𝐾̃
𝑘=1

, (𝑤̃𝑘 )𝑘∈[𝐾̃ ]
)
to

(
𝐷𝑘 ≜∏

𝑗∈[ 𝐽 ] 𝐺
ˆ𝑑 𝑗,𝑘
𝑗
·𝑄r(𝐷 )

𝑘 ,Ω𝑘 ≜ 𝐺 𝑤̃𝑘 ·𝑄r(Ω)
𝑘

)
𝑘∈[𝐾̃ ] in the beginning.

Then the verifier can apply scenarios 2 and 3 to check B𝑗 [𝑋 ]
and S[𝑋 ], respectively.

(2) If we simply check B𝑗 [𝑋 ] for each 𝑗 ∈ [𝐽 ], then it requires 𝐽

polynomial commitments. Thus, we aggregate the verification

of (B𝑗 [𝑋 ]) 𝑗∈[ 𝐽 ] via random linear combination that requires

9



only one polynomial commitment. Let

B[𝑋 ] ≜
∑︁
𝑗∈[ 𝐽 ]

𝛽 𝑗 · B𝑗 [𝑋 ]

where 𝛽
$←− Z∗𝑝 is a random challenge. Note that

B[𝑥] =
∑︁
𝑗∈[ 𝐽 ]

𝛽 𝑗 · B𝑗 [𝑥] =
∑
𝑗 ∈ [𝐽 ] 𝛽

𝑗 · ¯𝑑 𝑗 [𝑥 ] · ( ¯𝑑 𝑗 [𝑥 ]−1) ·· · ( ¯𝑑 𝑗 [𝑥 ]−𝐵+1)
L0 [𝑥 ]

where 𝑥
$←− Z𝑝 is a random challenge. Suppose the prover

commits B[𝑋 ] to CmB ≜ PolyCmBCCGP [B] and provides

(
𝜋B ≜

PolyEvBCCGP [B, 𝑥], 𝑦B ≜ B[𝑥], ( ¯𝑑 𝑗 ≜ ¯𝑑 𝑗 [𝑥]
)
𝑗∈[ 𝐽 ]

)
. Then the

verifier can check (B𝑗 [𝑥]) 𝑗∈[ 𝐽 ] by checking the following
PolyVfBCCGP [CmB, 𝑥,𝑦B, 𝜋B]

?

= 1∏
𝑗∈[ 𝐽 ]

𝐺
¯𝑑 𝑗
𝑗
·𝑄𝜂̃1

?

=
∏

𝑘∈[𝐾̃ ]
(𝐷𝑘 )L𝑘 [𝑥 ] · 𝑅

L0 [𝑥 ]
1∑

𝑗∈[ 𝐽 ]
𝛽 𝑗 · ¯𝑑 𝑗 · ( ¯𝑑 𝑗 − 1) · · · ( ¯𝑑 𝑗 − 𝐵 + 1) ?

= 𝑦B · L0 [𝑥]

where 𝑅1 ≜
∏
𝑗∈[ 𝐽 ] 𝐺

r(d)
𝑗

𝑗
· 𝑄r1

should be committed by the

prover before knowing 𝛽 and 𝜂1 ≜
∑
𝑘∈[𝐾̃ ] r

(𝐷 )
𝑘
· L𝑘 [𝑥] + r1 ·

L0 [𝑥] is provided by the prover.

5.2 Type-3 Range Argument Protocol
The full protocol of type-3 range argument is described in Fig. 5.

Theorem 5.1. VeRange type-3 range argument protocol Πty3 sat-
isfies perfect completeness, SHVZK and CWE.

The complete proof can be found in Appendix E.

Remarks: The degree of polynomial B𝑗 [𝑋 ] and S[𝑋 ] are (𝐵 −
1)𝐾̃ and 2𝐾̃ , respectively. Hence, BCCGP polynomial commitment

verification takes around 2

√︁
𝐵𝐾̃ + 2

√︁
2𝐾̃ group exponentiations.

In addition, Step (44) takes 𝐽 + 2𝐾̃ group exponentiations. Since

𝐽 𝐾̃ ≈ 𝑁̃ = 𝑁
log𝐵

. The total number of group exponentiations

is 2

√︁
𝐵𝐾̃ + 𝐽 + 2𝐾̃ . To minimize group exponentiations, we set

𝐽 = 𝐾̃ ≈ ( 2𝑁
log𝑁
)1/2 and 𝐵 ≈ ( 𝑁

log𝑁
)1/2. The resulting number of

group exponentiations is (3
√

2+ 2
5/4) ( 𝑁

log𝑁
)1/2. BCCGP polynomial

commitment generation takes around 𝐵𝐾̃ + 𝐾̃ group exponentia-

tions. It takes 𝐽 𝐾̃ + 𝐽 + 3𝐾̃ group exponentiations for proving. The

number of group exponentiations is (2 +
√

2) 𝑁
log𝑁

+ 5

√
2( 𝑁

log𝑁
)1/2.

The proof size includes

√︁
𝐵𝐾̃ group elements for BCCGP polyno-

mial commitment and 2𝐾̃ group elements additionally, and

√︁
𝐵𝐾̃

field elements for BCCGP polynomial commitment and 𝐽 field ele-

ments additionally. In total, there are 3

√
2( 𝑁

log𝑁
)

1/2
group elements

and 2

√
2( 𝑁

log𝑁
)

1/2
field elements.

5.3 Aggregating Type-3 Range Arguments
Multiple type-3 range arguments can be aggregated in a similar

manner as type-2 in Sec. 4.3. Given (𝜔 (𝑡 ) )𝑡 ∈[𝑇 ] , the prover commits

to Cm(𝜔 (𝑡 ) ) ≜ 𝐺𝜔
(𝑡 ) ·𝑄r𝜔 (𝑡 )

and aims to prove 𝜔 (𝑡 ) ∈ [0, 𝐵𝑁̃ − 1]

Figure 5: VeRange type-3 range argument protocol

Πty3

[
Cm(𝜔 ) ∈ G; 𝜔 ∈ Z𝑝 , r𝜔 ∈ Z∗𝑝

]
Setup : Distinct 𝑧0, 𝑧1, ...., 𝑧𝐾̃ ∈ Z𝑝

L𝑘 [𝑋 ] ≜
∏

𝑘′ ∈{0,...,𝐾̃ }\{𝑘}

𝑋 − 𝑧𝑘′
𝑧𝑘 − 𝑧𝑘′

, L0 [𝑋 ] ≜
∏
𝑘∈ [𝐾̃ ]

(𝑋 − 𝑧𝑘 ),

𝐵̄ 𝑗 [𝑋 ] ≜
∑︁

𝑘∈ [𝐾̃ ]
𝐵̂ 𝑗,𝑘 · L𝑘 [𝑋 ]

P :
®d ∈ ({0, ..., 𝐵 − 1})𝑁 is the 𝐵-ary digit decompo. of𝜔 such that𝜔 =

∑︁
𝑖∈ [𝑁̃ ]

𝑑𝑖 · 𝐵𝑖−1

®r(d) $←− Z∗𝐽𝑝 , ®r(Ω) ,®r(𝐷 )
$←− Z∗𝐾̃𝑝 , s, r1, r2

$←− Z∗𝑝 , r(Ω)
𝐾̃

≜ r𝜔 −
∑︁

𝑘∈ [𝐾̃−1]
r(Ω)
𝑘

(
𝑤̃𝑗,𝑘 ≜ ˆ𝑑 𝑗,𝑘 · 𝐵̂ 𝑗,𝑘 ∈ Z𝑝

) 𝐽
𝑗=1,

𝐾̃
𝑘=1

, ¯𝑑 𝑗 [𝑋 ] ≜ r(d)
𝑗
· L0 [𝑋 ] +

∑︁
𝑘∈ [𝐾̃ ]

ˆ𝑑 𝑗,𝑘 · L𝑘 [𝑋 ]

B𝑗 [𝑋 ] ≜
¯𝑑 𝑗 [𝑋 ] · ( ¯𝑑 𝑗 [𝑋 ] − 1) · · · ( ¯𝑑 𝑗 [𝑋 ] − 𝐵 + 1)

L0 [𝑋 ](
𝑤̃𝑘 ≜

∑︁
𝑗 ∈ 𝐽

𝑤̃𝑗,𝑘

)
𝑘∈𝐾̃

, S[𝑋 ] ≜ s +

∑
𝑘∈ [𝐾̃ ]

𝑤̃𝑘 · L𝑘 [𝑋 ] −
∑

𝑗 ∈ [𝐽 ]
¯𝑑 𝑗 [𝑋 ] · 𝐵̄ 𝑗 [𝑋 ]

L0 [𝑋 ]

P ⇒ V :

(
𝐷𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐺
ˆ𝑑𝑗,𝑘
𝑗

· 𝑄r(𝐷 )
𝑘

)
𝑘∈ [𝐾̃ ]

, 𝑅1 ≜
∏
𝑗 ∈ [𝐽 ]

𝐺
r(d)
𝑗
𝑗
· 𝑄r

1 , 𝑅2 ≜ 𝐺s · 𝑄r
2 (39)

(
Ω𝑘 ≜ 𝐺𝑤̃𝑘 · 𝑄r(Ω)

𝑘

)
𝑘∈ [𝐾̃ ]

, CmS ≜ PolyCmBCCGP [S] ∈ G𝑈 +1 (40)

P ⇐ V : 𝛽
$←− Z∗𝑝

P : B[𝑋 ] ≜
∑︁
𝑗 ∈ [𝐽 ]

𝛽 𝑗 · B𝑗 [𝑋 ]

P ⇒ V : CmB ≜ PolyCmBCCGP [B] ∈ G𝑈 +1

P ⇐ V : 𝑥
$←− Z𝑝 \{𝑧0, 𝑧1, ..., 𝑧𝐾̃ }

P ⇒ V :

(
¯𝑑 𝑗 ≜ ¯𝑑 𝑗 [𝑥 ] ∈ Z𝑝

)
𝑗 ∈ [𝐽 ] , 𝑦B ≜ B[𝑥 ], 𝜋B ≜ PolyEvBCCGP [B, 𝑥 ] ∈ Z𝑉 +1𝑝 (41)

𝑦S ≜ S[𝑥 ] ∈ Z𝑝 , 𝜋S ≜ PolyEvBCCGP [S, 𝑥 ] ∈ Z𝑉 +1𝑝 (42)

𝜂̃1 ≜
∑︁

𝑘∈ [𝐾̃ ]
r(𝐷 )
𝑘
· L𝑘 [𝑥 ] + r1 · L0 [𝑥 ], 𝜂̃2 ≜

∑︁
𝑘∈ [𝐾̃ ]

r(Ω)
𝑘
· L𝑘 [𝑥 ] + r2 · L0 [𝑥 ] (43)

V :

(
𝐵̄ 𝑗 ≜ 𝐵̄ 𝑗 [𝑥 ] ∈ Z𝑝

)
𝑗 ∈ [𝐽 ]

Check



PolyVfBCCGP [CmB, 𝑥, 𝑦B, 𝜋B ]
?

= 1

PolyVfBCCGP [CmS, 𝑥, 𝑦S, 𝜋S ]
?

= 1∏
𝑗 ∈ [𝐽 ]

𝐺
¯𝑑𝑗
𝑗
· 𝑄𝜂̃1

?

=
∏

𝑘∈ [𝐾̃ ]
(𝐷𝑘 )L𝑘 [𝑥 ] · 𝑅

L
0
[𝑥 ]

1∑
𝑗 ∈ [𝐽 ]

𝛽 𝑗 · ¯𝑑 𝑗 · · · ( ¯𝑑 𝑗 − 𝐵 + 1) ?

= 𝑦B · L0 [𝑥 ]

𝐺
(𝑦S ·L0

[𝑥 ]+∑
𝑗 ∈ [𝐽 ]

¯𝑑𝑗 ·𝐵̄ 𝑗 ) · 𝑄𝜂̃2
?

=
∏

𝑘∈ [𝐾̃ ]
(Ω𝑘 )L𝑘 [𝑥 ] · 𝑅

L
0
[𝑥 ]

2

Cm(𝜔 ) ?

=
∏

𝑘∈ [𝐾̃ ]
Ω𝑘

(44)

for all 𝑡 ∈ [𝑇 ]. Define
(

¯̄𝑑 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

,

(
¯̄𝐵 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

,

(
¯̄𝑤 𝑗,𝑘 ≜ ¯̄𝑑 𝑗,𝑘 ·

¯̄𝐵 𝑗,𝑘

)
𝑗∈[ 𝐽 ],𝑘∈[𝐾̃ ]

the same manner as in Sec. 4.3.

Given a challenge 𝛾
$←− Z∗𝑝 , one can check if 𝜔 (𝑡 ) ∈ [0, 𝐵𝑁̃ − 1]

for all 𝑡 ∈ [𝑇 ] via random linear combination by checking

∏
𝑡 ∈[𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏
𝑘∈[𝐾̃ ]

Ω𝑘 and ¯̄𝑤 𝑗,𝑘

?∈ {0, ¯̄𝐵 𝑗,𝑘 , ..., (𝐵-1) · ¯̄𝐵 𝑗,𝑘 },
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∀( 𝑗, 𝑘) ∈ [𝐽 ] × [𝐾̃], where (Ω𝑘 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] ¯̄𝑤𝑗,𝑘 · 𝑄r(Ω)

𝑘 )
𝑘∈[𝐾̃ ] and

the random masks (r(Ω)
𝑘
)
𝑘∈[𝐾̃ ] are set to satisfy

∑
𝑡 ∈[𝑇 ] 𝛾

𝑡 · r𝜔 (𝑡 ) =∑
𝑘∈[𝐾̃ ] r

(Ω)
𝑘

.

We can extend the type-3 range argument protocol to construct

the full protocol of aggregated type-3 range argument, in a sim-

ilar fashion as from the type-2 range argument protocol to the

aggregated type-2 range argument protocol in Appendix G.2. The

verification takes 𝑂 (
√︃

𝑇𝑁
log(𝑇𝑁 ) ) + 𝑇 group exponentiations and

proving takes 𝑂 ( 𝑇𝑁
log(𝑇𝑁 ) ). The proof size includes 𝑂 (

√︃
𝑇𝑁

log(𝑇𝑁 ) )
group elements and field elements.

The aggregated type-3 range argument protocol can be shown

to satisfy perfect completeness, SHVZK and CWE, by extending

Theorem 5.1 straightforwardly.

6 Empirical Evaluation
In this section, we provide an empirical evaluation of each type

of VeRange and a comparison with the state-of-the-art range argu-

ments (e.g., Bulletproofs, Bulletproof++, Flashproofs, SwiftRange,
LLRing). Our experiments utilized the standard elliptic curve group

BN-128 on the Ethereum platform for both Pedersen commitment

schemes and polynomial commitment schemes.

For the smart contract implementation on Ethereum, we rely on

pre-compiled contract (EIP-196), which is limited to BN-128 elliptic
curve. To accommodate the commitment of a larger number (≥
128bit) on BN-128 elliptic curve, we decompose the number into

two smaller parts and prove the bit-decomposition of each part.

For example, if 𝜔 ∈ [0, 2256], then we let 𝜔 = 𝜔1 · 2128 + 𝜔2, where

𝜔1, 𝜔2 ∈ [0, 2128]. A range argument of𝜔 can be realized by proving

the bit-decomposition of 𝜔1 and 𝜔2 separately
4
.

6.1 Computational Overhead
Wemeasured the runtime of proving and verification of Flashproofs,

Bulletproofs, Bulletproofs++, SwiftRange, LLRing and VeRange,
where the pre-computation optimization was applied to these ar-

guments and the multi-exponentiation optimization was applied

to the compression-friendly ones for fair efficiency comparisons.

Note that we omit some measurement data for clarity. For a single

4
Since all types of VeRange rely on bit or 𝐵-ary digit decomposition, they can also be

used to prove a larger range (≥ 128bit), despite the limitation of BN-128.

Table 2: Runtime (ms) comparison of VeRange and other range
arguments

𝑁 32bit 64bit 128bit 256bit 512bit 2×128bit 4×128bit
Bulletproofs 187.2 355.9 673.3 1296.6 2533.2 - -

Bulletproof++ 77.0 137.7 217.7 275.2 484.6 - -

SwiftRange 83.9 160.8 302.4 590.6 1151.0 - -

LLRing 958 1115 1337 - - - -

Verification Flashproofs 27.1 35.5 65.0 88.6 150.9 93.0 166.0

VeRange Type-1 24.9 30.7 40.7 56.8 78.8 58.9 85.1

VeRange Type-2 33.6 43.9 54.0 68.4 87.3 61.9 84.0

VeRange Type-2B 31.1 41.1 50.2 64.7 84.8 64.8 97.3

VeRange Type-3 37.4 43.6 53.7 64.7 82.2 65.5 87.6

Bulletproofs 482.0 950.4 1885.8 3753.6 7487.3 - -

Bulletproof++ 147.5 270.1 432.5 540.6 907.1 - -

SwiftRange 206.2 484.1 1020.2 2120.5 4286.1 - -

LLRing 19999 39586 83278 - - - -

Proving Flashproofs 64.4 111.5 221.3 443.2 875.2 465.4 962.7

VeRange Type-1 60 98.6 173.6 329.2 617.0 335.4 626.1

VeRange Type-2 48.2 71.5 114.2 146.9 234.8 150.2 240.7

VeRange Type-2B 55.4 98.3 143.0 275.9 436.4 254.2 487.0

VeRange Type-3 52.3 71.6 116.0 179.6 380.8 175.1 412.2

argument, Table 2 shows all range arguments runtime of proving

and verification in milliseconds. Fig. 6b and 6a graphically show the

runtime of Flashproofs and VeRange. Fig. 7b illustrates the number

of G exponentiations as this operation dominates the computa-

tional overhead. Our experimental results show that VeRange type-

2 runs the fastest at 64bit and above, followed by VeRange type-3,
type-2B, type-1 then Flashproofs, Bulletproofs++. Bulletproofs and
SwiftRange compare unfavorably with all VeRange arguments in

terms of verification computational efficiency. Specifically, type-2

achieves 1.56× and 1.94× proving efficiency for 64bit and 128bit

ranges, respectively, as fast as Flashproofs. Type-1 runs 1.16× and

1.60× as fast as Flashproofs in verification for 64bit and 128bit

ranges, respectively. All VeRange arguments are better than Flash-

proofs regarding the number of G exponentiations of proving, for

bit length of range from 32bit. In addition, VeRange type-1 has the

best performance in verification.

In Table 2, we compare the performance of aggregated Flash-

proofs and VeRange arguments for aggregating two and four 128bit

range arguments (i.e., 2×128bit, 4×128bit).We observe that VeRange
outperforms Flashproofs considerably in verification and proving

time, when aggregating a large number of arguments

6.2 Communication Overhead
We assessed the proof sizes in bytes of a 256bit field. To optimize

space utilization, we employed the compressed representation of el-

liptic curve points. This format consists of a 256bit value along with

an additional bit indicating one of the two possible y coordinates.

We provided line plots in Fig. 6c to demonstrate a more straight-

forward comparison of single arguments than Table 3. Bulletproof

stands out as the most communication-efficient proof across vari-

ous range sizes, including 64bit, and 128bit. The proof sizes grow

logarithmically and square root-ly as 𝑁 increases, whereas that

of Flashproofs, VeRange type-1 and type-2 grows far quicker than

SwiftRange and type-3. VeRange type-3 exhibits a slightly sharper

growth in the proof size from the smallest 1168 bytes for 32bit as

𝑁 grows. The proof size of type-3 increases as 𝑂 ( 𝑁
log𝑁
).

Table 3: Proof size (byte), gas cost (Wei) and gas fee (USD$)
comparison of VeRange and other range arguments

𝑁 32bit 64bit 128bit 256bit 512bit 2×128bit 4×128bit
Bulletproofs 610 674 739 804 868 - -

Bulletproof++ 379 416 480 544 608 - -

SwiftRange 610 738 867 995 1123 - -

Proof Flashproofs 738 1040 1544 2294 3472 2409 3819

Size VeRange Type-1 1664 2688 5056 9344 18528 9811 20381

VeRange Type-2 1696 2720 4576 5920 10144 6216 11158

VeRange Type-2B 1088 1376 1824 2368 3392 2486 3731

VeRange Type-3 1168 1395 1654 2144 2825 2251 3108

Bulletproofs 2046K 3704K 5463K 7182K 9012K - -

Bulletproof++ 1364K 2170K 2952K 3903K 5006K - -

SwiftRange 960K 2142K 3524K 4703K 5886K - -

Gas Flashproofs 233K 314K 450K 663K 1122K 696K 1234K

Cost VeRange Type-1 253K 351K 545K 864K 1475K 954K 1655K

VeRange Type-2 347K 458K 643K 822K 1207K 873K 1313K

VeRange Type-2B 301K 392K 487K 711K 999K 759K 1216K

VeRange Type-3 376K 440K 542K 660K 879K 798K 1092K

Bulletproofs $45.0 $81.4 $120.1 $157.9 $198.1 - -

Bulletproof++ $30.0 $47.7 $64.9 $85.8 $110.0 - -

SwiftRange $21.1 $47.1 $77.5 $103.4 $129.4 - -

Gas Flashproofs $5.1 $6.9 $9.9 $14.6 $24.7 $15.3 $27.2

Fee VeRange Type-1 $5.6 $7.7 $12.0 $19.0 $32.4 $21.0 $36.4

VeRange Type-2 $7.6 $10.1 $14.1 $18.1 $26.5 $19.2 $28.9

VeRange Type-2B $6.6 $8.6 $10.7 $15.6 $22.0 $16.7 $26.7

VeRange Type-3 $8.3 $9.7 $11.9 $14.5 $19.3 $17.5 $24.0

Note: Gas fees are calculated based on gas price and ETH/USD$ rate as 7 GWei and $3140 USD

from [19] on 15 Apr 2024.
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(a) Verification runtime (ms) (b) Proving runtime (ms) (c) Proof size (byte)

Figure 6: Runtime and proof size comparison

(a) Gas cost on smart contract (Wei) (b) Number of G exps in verification (c) Number of G exps in proving

Figure 7: Gas cost and number of G exps comparison

In Table 3, we compare the proof size and gas cost of aggregated

Flashproofs and aggregated VeRange arguments for aggregating

two and four 128bit range arguments. We observe that VeRange
type-2B and type-3 attain lower proof sizes and gas costs, which con-

firms VeRange more suitable for aggregating multiple arguments.

6.3 Gas Costs
The estimation of gas costs is based on Solidity programming lan-

guage and Truffle framework. For overall comparison of verification

gas cost on smart contracts, refer to “Gas Cos” section in Table 3,

which presents the gas costs of 32bit to 128bit ranges. Additionally,

we present three pie charts in Fig. 8, providing a straightforward

breakdown of gas costs for VeRange of different ranges.

In our evaluation, we computed gas costs for SwiftRange, Bullet-

proofs and VeRange by executing our implemented smart contracts.

Notably, Bulletproofs incurred the highest gas consumption, signif-

icantly surpassing Flashproofs and VeRange, starting from 2046K

for 32bit to 6144K for 128bit. Similarly, SwiftRange exhibited higher

gas costs compared to VeRange, from 960K for 32bit to 4919K for

128bit. However, practical considerations lead us to conclude that

Bulletproofs-like arguments and SwiftRange are less suitable for

blockchain applications due to their gas inefficiency. Our VeRange,
on the other hand, outperformed Flashproofs. Also, VeRange type-1
surpasses other three types of VeRange from 32bit to 64bit. Im-

portantly, type-2B demonstrated increasing gas savings as bit size

expanded. We also analyzed the breakdown of VeRange arguments’

total gas cost, including initial cost, hashing, field operations, group

exponentiation, and group multiplications. Fig. 8 and Table 4 illus-

trate this breakdown of 32bit to 128bit. They both clearly show that

the group exponentiation dominates the gas cost. Conversely, field

operations and group multiplications occupied relatively marginal

proportions in both arguments. Type-1’s efficiency shines through

in group exponentiations, ultimately yielding comprehensive gas

cost efficiency under 64bit range, then type-2B saves more gas

above 128bit, and outperforms Flashproofs when the range size

reaches to 512bit and above.

Table 4: Details of gas cost breakdown
𝑁 Deployment Data storage Hashing Field ops Group exps Group muls Total

Flashproofs 21K 27K 8K 21K 147K 8K 233K

VeRange Type-1 21K 49K 10K 38K 126K 8K 253K

32bit VeRange Type-2 21K 56K 19K 82K 162K 7K 347K

VeRange Type-2B 21K 37K 14k 63K 159K 8K 301K

VeRange Type-3 21K 46K 11k 44K 245K 8K 376K

Flashproofs 21K 34K 10K 37K 201K 11K 314K

VeRange Type-1 21K 73K 14K 67K 166K 10K 351K

64bit VeRange Type-2 21K 78K 22K 135K 192K 9K 458K

VeRange Type-2B 21K 47K 21k 108K 186K 10K 392K

VeRange Type-3 21K 53K 13K 56K 288K 10K 440K

Flashproofs 21K 44K 10K 90K 295K 14K 473K

VeRange Type-1 21K 124K 17K 141K 224K 17K 545K

128bit VeRange Type-2 21K 122K 28K 219K 242K 11K 643K

VeRange Type-2B 21K 56K 22k 139K 235K 13K 487K

VeRange Type-3 21K 63K 16K 98K 332K 12K 542K

Figure 8: Breakdown of gas costs for VeRange.
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Appendix
A Discussion and Conclusion
This paper presents VeRange, zero-knowledge range arguments in

the discrete logarithm setting for blockchain deployment with a

very low gas cost. In our evaluation, the majority of gas cost of

the existing range arguments is attributed to the computational

tasks, rather than the memory storage. On the other hand, all types

of VeRange have a very low gas cost compared to Bulletproofs

and SwiftRange. VeRange type-1 is well-suited for computation-

critical applications, while Bulletproofs++, and VeRange type-3 are

preferable for communication-critical scenarios. For 32-bit and

smaller ranges, VeRange entirely outperforms Bulletproofs. For

64-bit ranges, VeRange type-1, type-2, and type-2B have a signifi-

cant advantage over Bulletproofs and Flashproofs for verification

efficiency. For ranges larger than 64-bit, VeRange type-1 is the opti-

mal choice, for even larger than 256-bit, type-2 becomes the best

when computational efficiency takes precedence over communi-

cation efficiency. VeRange type-3 outperforms Flashproofs in gas

cost and proof size for above 256-bit ranges. Furthermore, if we

consider aggregating multiple range arguments, VeRange type-2B
and type-3 provide better aggregation gains, because of their lower

asymptotic order of magnitude. Hence, VeRange type-2B and type-

3 are the most cost-effective solution for blockchain applications

among the recent discrete logarithmic range arguments for a suffi-

ciently large 𝑁 . Overall, VeRange incurs merely ∼ 10% of the gas

cost of Bulletproofs.

In future work, we will apply VeRange to a wide range of privacy-

preserving blockchain-enabled applications [11, 28, 32–34, 36].

B Additional Definitions
Denote a polynomial-time decidable tertiary relation by R ⊂
{0, 1}∗3. A language dependent on pp is defined as L

pp
R

≜ {𝑥 | ∃𝜔 :

(pp, 𝑥, 𝜔) ∈ R}, where 𝜔 is a witness for a statement 𝑥 in the

relation (pp, 𝑥, 𝜔) ∈ R.

Definition B.1 (Argument of Knowledge). Argument system (G,P,V)
is called an argument of knowledge for relation R, if it satisfies the

perfect completeness (Definition (B.2)) and Computational Witness-

Extended Emulation (Definition (B.3)).

Definition B.2 (Completeness). Argument system (G,P,V) sat-
isfies completeness, if for any PPT adversary A:

Pr

Accept[tr]= 1

pp← G(1𝜆),
(pp, 𝑥, 𝜔) ∈ R,

tr← ⟨P(pp, 𝑥, 𝜔),V(pp, 𝑥)⟩

 ≥ 1 − negl(𝜆)

We call it perfect completeness, if negl(𝜆) = 0.

Definition B.3 (Computational Witness-Extended Emulation (CWE)
[8]). Argument system (G,P,V) satisfies CWE, if there exists an

expected polynomial-time emulator E, such that for any interactive

adversaries A1,A2:�����PrA1 [tr] = 1

pp← G(1𝜆 ),
(𝑥, 𝑤̃, ˜P) ← A2 [pp],

tr← ⟨ ˜P(pp, 𝑥, 𝑤̃ ),V(pp, 𝑥 ) ⟩


−Pr


A1 [tr′ ] = 1

∧
(
Accept[tr′ ] = 1 ⇒
(pp, 𝑥, 𝑤′ ) ∈ R

) pp← G(1𝜆 ),
(𝑥, 𝑤̃, ˜P) ← A2 [pp],
(tr′, 𝑤′ ) ← EO [pp, 𝑥 ]


����� ≤ negl(𝜆)
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where
˜P is a deterministic polynomial-time algorithm,A1 [tr] rec-

ognizes the transcripts that are produced by
˜P, and O is a rewind-

able oracle that can rewind the transcript ⟨ ˜P(pp, 𝑥, 𝑤̃),V(pp, 𝑥)⟩
and control the randomness inV .

Definition B.4 (Public Coin). Argument system (G,P,V) is called
public-coin, if the verifier chooses her messages uniformly at ran-

dom, independent from the messages sent by the prover. Let 𝑒 be

the public-coin challenge. The transcript of a public-coin argument

system is defined as tr = ⟨P(pp, 𝑥, 𝜔),V(pp, 𝑥 ; 𝑒)⟩.
Definition B.5 (Special Honest-Verifier Zero-Knowledge (SHVZK)).

A public-coin argument system (G,P,V) satisfies SHVZK, if there

exists an efficient simulator S, such that for any PPT adversary A:�����Pr
Accept[tr]

= 1

∧ (pp, 𝑥,𝜔 ) ∈ R

pp← G(1𝜆 ),
(𝑥,𝜔, 𝑒 ) ← A[pp],

tr← ⟨P(pp, 𝑥,𝜔 ),V(pp, 𝑥 ;𝑒 ) ⟩


−Pr


Accept[tr]

= 1

∧ (pp, 𝑥,𝜔 ) ∈ R

pp← G(1𝜆 ),
(𝑥,𝜔, 𝑒 ) ← A[pp],
tr← S[pp, 𝑥 ;𝑒 ]


����� ≤ negl(𝜆)

Definition B.6 (Fiat-Shamir Transformation). A multi-move in-

teractive public-coin argument of knowledge can be converted to

a non-interactive argument of knowledge by replacing the public-

coin challenges by the output of a cryptographic hash function,

which produces seemingly random output and is regarded as a

replacement for a verifier.

C Proofs for VeRange Type-1 Range Argument
Theorem C.1. VeRange type-1 range argument protocol Πty1 sat-

isfies perfect completeness, SHVZK and CWE.

Proof. Perfect Completeness: Πty1 satisfies perfect complete-

ness by following Eqns. (3)-(6).

SHVZK: We define a simulator as follows. First, the simulator

generates group elements

(
(𝑊𝑘 )𝑘∈[𝐾−1] , (𝑇𝑘 )𝑘∈[𝐾 ]

)
at Step (7) and

field elements

(
(𝑣 𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] , 𝜂1, 𝜂2

)
at Step (10) at uniformly

random. Then the simulator sets

𝑊𝐾 ≜ Cm(𝜔) ·
( ∏
𝑘∈[𝐾−1]

𝑊𝑘

)−1

Next, after learning the challenge ®𝜖 from the verifier, the simulator

rewinds to Step (8) to set
𝑆 ≜

∏
𝑗∈[ 𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 ·𝑢 𝑗,𝑘

𝑗
·𝑄𝜂1 ·

( ∏
𝑘∈[𝐾 ]

𝑇
𝜖𝑘
𝑘

)−1

𝑅 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑣𝑗,𝑘 ·𝑄𝜂2 ·

( ∏
𝑘∈[𝐾 ]

𝑊
𝜖𝑘
𝑘

)−1

One can check that the above settings of

(
(𝑊𝑘 ,𝑇𝑘 )𝑘∈[𝐾 ] , 𝑅, 𝑆

)
and(

(𝑣 𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] , 𝜂1, 𝜂2

)
can successfully pass the verification at

the verifier without the witness𝜔 . Moreover, the transcripts appear

to be uniformly random.

CWE: We define an emulator as follows. The emulator emulates

the prover with random challenge ®𝜖 $←− Z∗𝐾𝑝 to generate a transcript

and if the transcript is accepting it rewinds in the protocol with

new different challenges until it has generated L different accepting
arguments. If the prover probabilistically produces an accepting

argument with probability 𝛿 , then we expect the emulator to rewind

L · 1

𝛿
times to obtain L accepting arguments. The emulator also

emulates the prover’s probability 𝛿 for producing an accepting

argument. Hence, the emulator is expected to rewind 𝛿 · L
𝛿

= L
times, which runs in expected polynomial time. Next, we describe

how to extract a valid witness to statement 𝜔 ∈ [0, 2𝑁 ] from L
accepting arguments.

Given the initial message

(
(𝑊𝑘 ,𝑇𝑘 )𝑘∈[𝐾 ] , 𝑅, 𝑆

)
from the prover

in an honest execution of Πty1, we rewind L times to Step (9) with

L different random challenges

(
®𝜖 (ℓ ) $←− Z∗𝐾𝑝

)
ℓ∈[L] to obtain tran-

scripts

(
(𝑣 (ℓ )
𝑗,𝑘
, 𝑢
(ℓ )
𝑗,𝑘
) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] , 𝜂

(ℓ )
1
, 𝜂
(ℓ )
2

)
ℓ∈[L] which the verifier

checks at Step (11) to satisfy the following for each ℓ ∈ [L]:∏
𝑗∈[ 𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] 𝑣

(ℓ )
𝑗,𝑘
·𝑢 (ℓ )
𝑗,𝑘

𝑗
·𝑄𝜂

(ℓ )
1 =

∏
𝑘∈[𝐾 ]

𝑇
𝜖
(ℓ )
𝑘

𝑘
· 𝑆 and

𝐺

∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑣

(ℓ )
𝑗,𝑘 ·𝑄𝜂

(ℓ )
2 =

∏
𝑘∈[𝐾 ]

𝑊
𝜖
(ℓ )
𝑘

𝑘
· 𝑅 (45)

Suppose Eqns. (45) are satisfied for all ℓ ∈ [L].We extract

(
m𝑅, r′𝑅, r

′
𝑆
,

(𝑤 ′
𝑘
, r′(𝑊 )
𝑘

, r′(𝑇 )
𝑘
)𝑘∈[𝐾 ] , (m

(𝑆 )
𝑗
) 𝑗∈[ 𝐽 ] , (𝑡 ′𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

)
from Eqns.(45) by

©­­­­­­­­«

∑
𝑘∈[𝐾 ] 𝑣

(1)
1,𝑘
· 𝑢 (1)

1,𝑘
· · · ∑

𝑘∈[𝐾 ] 𝑣
(1)
𝐽 ,𝑘
· 𝑢 (1)
𝐽 ,𝑘

𝜂
(1)
1

.

.

.
. . .

.

.

.
.
.
.∑

𝑘∈[𝐾 ] 𝑢
(L)
1,𝑘
· 𝑣 (L)

1,𝑘
· · · ∑

𝑘∈[𝐾 ] 𝑣
(L)
𝐽 ,𝑘
· 𝑢 (L)
𝐽 ,𝑘

𝜂
(L)
1

ª®®®®®®®®¬
=

©­­­«
𝜖
(1)
1

· · · 𝜖
(1)
𝐾

1

.

.

.
. . .

.

.

.
.
.
.

𝜖
(L)
1

· · · 𝜖
(L)
𝐾

1

ª®®®¬ ·
©­­­­­­«

𝑡 ′
1,1

· · · 𝑡 ′
𝐽 ,1

r′(𝑇 )
1

.

.

.
. . .

.

.

.
.
.
.

𝑡 ′
1,𝐾

· · · 𝑡 ′
𝐽 ,𝐾

r′(𝑇 )
𝐾

m(𝑆 )
1

· · · m(𝑆 )
𝐽

r′
𝑆

ª®®®®®®¬
(46)

©­­­­«
∑
𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] 𝑣

(1)
𝑗,𝑘

𝜂
(1)
2

.

.

.
.
.
.∑

𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] 𝑣
(L)
𝑗,𝑘

𝜂
(L)
2

ª®®®®¬
=

©­­­«
𝜖
(1)
1

· · · 𝜖
(1)
𝐾

1

.

.

.
. . .

.

.

.
.
.
.

𝜖
(L)
1

· · · 𝜖
(L)
𝐾

1

ª®®®¬ ·
©­­­­­«
𝑤 ′

1
r′(𝑊 )
1

.

.

.
.
.
.

𝑤 ′
𝐾

r′(𝑊 )
𝐾

m𝑅 r′
𝑅

ª®®®®®¬
(47)

If L = 𝐾 + 1 and

(
®𝜖 (ℓ ) $←− Z∗𝐾𝑝

)
ℓ∈[L] are chosen at uniformaly

random, then the probability that the following matrix E:

E ≜
©­­­«
𝜖
(1)
1

· · · 𝜖
(1)
𝐾

1

.

.

.
. . .

.

.

.
.
.
.

𝜖
(L)
1

· · · 𝜖
(L)
𝐾

1

ª®®®¬
has zero determinant is negligible in the size of Z𝑞 by an argument

based on Schwartz–Zippel Lemma.

Hence, E is invertible with high probability and(
m𝑅, r′𝑅, r

′
𝑆
, (𝑤 ′

𝑘
, r′(𝑊 )
𝑘

, r′(𝑇 )
𝑘
)𝑘∈[𝐾 ] , (m

(𝑆 )
𝑗
) 𝑗∈[ 𝐽 ] , (𝑡 ′𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

)
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can be uniquely determined by multiplying E−1
to both sides of

Eqns. (46)-(47).

Note that if we let

(
(𝑊𝑘 ,𝑇𝑘 )𝑘∈[𝐾 ] , 𝑅, 𝑆

)
by the following

𝑊𝑘 = 𝐺𝑤
′
𝑘 ·𝑄r′(𝑊 )

𝑘 , 𝑇𝑘 =
∏
𝑗∈[ 𝐽 ]

𝐻
𝑡 ′
𝑗,𝑘

𝑗
·𝑄r′(𝑇 )

𝑘

𝑅 = 𝐺m𝑅 ·𝑄r′
𝑅 , 𝑆 =

∏
𝑗∈[ 𝐽 ]

𝐻
m(𝑆 )
𝑗

𝑗
·𝑄r′

𝑆

then by Eqns. (46)-(47)

(
(𝑊𝑘 ,𝑇𝑘 )𝑘∈[𝐾 ] , 𝑅, 𝑆

)
can satisfy Eqn. (45) as

follows:∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] 𝑣

(ℓ )
𝑗,𝑘
·𝑢 (ℓ )
𝑗,𝑘

𝑗
· 𝑄𝜂

(ℓ )
1 =

∏
𝑘∈ [𝐾 ]

( ∏
𝑗 ∈ [𝐽 ]

𝐻
𝑡 ′
𝑗,𝑘
𝑗
· 𝑄r′(𝑇 )

𝑘
)𝜖 (ℓ )
𝑘 ·

∏
𝑗 ∈ [𝐽 ]

𝐻
m(𝑆 )
𝑗

𝑗
· 𝑄r′

𝑆

=
∏
𝑘∈ [𝐾 ]

𝑇
𝜖
(ℓ )
𝑘
𝑘

· 𝑆 (48)

𝐺

∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑣

(ℓ )
𝑗,𝑘 ·𝑄𝜂

(ℓ )
2 =

∏
𝑘∈[𝐾 ]

(
𝐺𝑤

′
𝑘 ·𝑄r′(𝑊 )

𝑘
)𝜖 (ℓ )
𝑘 ·𝐺m𝑅 ·𝑄r′

𝑅

=
∏
𝑘∈[𝐾 ]

𝑊
𝜖
(ℓ )
𝑘

𝑘
· 𝑅 (49)

Namely,

(
m𝑅, r′𝑅, r

′
𝑆
, (𝑤 ′

𝑘
, r′(𝑊 )
𝑘

, r′(𝑇 )
𝑘
)𝑘∈[𝐾 ] , (m

(𝑆 )
𝑗
) 𝑗∈[ 𝐽 ] , (𝑡 ′𝑗,𝑘 ) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

)
are satisfying witness.

Next, pick ®𝜖 (1) and ®𝜖 (2) from {®𝜖 (ℓ ) }ℓ∈[L] . Note that there is
negligible probability in the size of Z𝑞 that 𝜖

(1)
𝑘

= 𝜖
(2)
𝑘

for any 𝑘 .

One can extract witness (𝑤 ′
𝑗,𝑘
, r′
𝑗,𝑘
) by solving the following

𝑣
(1)
𝑗,𝑘

= 𝑤 ′
𝑗,𝑘
· 𝜖 (1)
𝑘
+ r′

𝑗,𝑘
, 𝑣

(2)
𝑗,𝑘

= 𝑤 ′
𝑗,𝑘
· 𝜖 (2)
𝑘
+ r′

𝑗,𝑘

We substitute (𝑤 ′
𝑗,𝑘
, r′
𝑗,𝑘
) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] into (𝑣

(1)
𝑗,𝑘
, 𝑢
(1)
𝑗,𝑘
) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

by(
𝑣
(1)
𝑗,𝑘

= 𝑤 ′
𝑗,𝑘
·𝜖 (1)
𝑘
+r′
𝑗,𝑘

)
𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] ,

(
𝑢
(1)
𝑗,𝑘

= 2̂𝑗,𝑘 ·𝜖
(1)
𝑘
−𝑣 ( 𝑗,1)
𝑘

)
𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

We then obtain∏
𝑗∈[ 𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] 𝑣

(1)
𝑗,𝑘
·𝑢 (1)
𝑗,𝑘

𝑗
·𝑄𝜂

(1)
1

=
∏
𝑗∈[ 𝐽 ]

𝐻

∑
𝑘∈ [𝐾 ] (2̂𝑗,𝑘−𝑤′𝑗,𝑘 )𝑤

′
𝑗,𝑘
· (𝜖 (1)

𝑘
)2+r′

𝑗,𝑘
(2̂𝑗,𝑘−2𝑤′

𝑗,𝑘
) ·𝜖 (1)

𝑘
−(r′

𝑗,𝑘
)2

𝑗
·𝑄𝜂

(1)
1

(50)

We compare Eqn. (50) with Eqn. (48) (setting ℓ = 1). Based on the

DLR assumption, we obtain the exponent of each 𝐻 𝑗 in Eqn. (50)

and Eqn. (48) as∑︁
𝑘∈[𝐾 ]

(2̂𝑗,𝑘 −𝑤 ′𝑗,𝑘 )𝑤
′
𝑗,𝑘
· (𝜖 (1)

𝑘
)2 + r′

𝑗,𝑘
(2̂𝑗,𝑘 − 2𝑤 ′

𝑗,𝑘
) · 𝜖 (1)

𝑘
− (r′

𝑗,𝑘
)2

=
∑︁
𝑘∈[𝐾 ]

𝑡 ′
𝑗,𝑘
𝜖
(1)
𝑘
+m(𝑆 )

𝑗
(51)

Note that ®𝜖 (1) is selected at uniformly random. Hence, Eqn. (51) is

always true with high probability, only if the coefficients of (𝜖 (1)
𝑘
)2

and 𝜖
(1)
𝑘

for all 𝑘 ∈ [𝐾] and constant terms of LHS and RHS are

equivalent, namely,

(2̂𝑗,𝑘 −𝑤 ′𝑗,𝑘 )𝑤
′
𝑗,𝑘

= 0 and r′
𝑗,𝑘
(2̂𝑗,𝑘 − 2𝑤 ′

𝑗,𝑘
) = (𝑡 ′

𝑗,𝑘
)

Hence, this implies𝑤 ′
𝑗,𝑘
∈ {0, 2̂𝑗,𝑘 }.

Also, we substitute (𝑤 ′
𝑗,𝑘
, r′
𝑗,𝑘
) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] into (𝑣

(1)
𝑗,𝑘
) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ]

to obtain

𝐺

∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑣

(ℓ )
𝑗,𝑘 ·𝑄𝜂

(ℓ )
2 = 𝐺

∑
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ] 𝑤

′
𝑗,𝑘
·𝜖 (1)
𝑘
+r′
𝑗,𝑘 ·𝑄𝜂

(ℓ )
2 (52)

We compare Eqn. (52) with Eqn. (49) (setting ℓ = 1). By equating

the coefficient of 𝜖
(1)
𝑘

for all 𝑘 ∈ [𝐾], we obtain∑︁
𝑗∈[ 𝐽 ]

𝑤 ′
𝑗,𝑘

= 𝑤 ′
𝑘

Finally, we obtain

𝐺𝜔 ·𝑄r𝜔 = Cm(𝜔) =
∏
𝑘∈[𝐾 ]

𝑊𝑘 =
∏
𝑘∈[𝐾 ]

𝐺𝑤
′
𝑘 ·𝑄r′(𝑊 )

𝑘

= 𝐺

∑
𝑘∈ [𝐾 ]

𝑤′
𝑘

·𝑄
∑

𝑘∈ [𝐾 ]
r′(𝑊 )
𝑘

= 𝐺

∑
𝑘∈ [𝐾 ]

∑
𝑗 ∈ [𝐽 ]

𝑤′
𝑗,𝑘

·𝑄
∑

𝑘∈ [𝐾 ]
r′(𝑊 )
𝑘

(53)

By the DLR assumption, we obtain𝜔 =
∑
𝑘∈[𝐾 ]

∑
𝑗∈[ 𝐽 ] 𝑤

′
𝑗,𝑘

. There-

fore, this proves that the extracted (𝑤 ′
𝑗,𝑘
∈ {0, 2̂𝑗,𝑘 }) 𝑗∈[ 𝐽 ],𝑘∈[𝐾 ] is

a valid witness to 𝜔 ∈ [0, 2𝑁 ]. □

D Proofs for VeRange Type-2 Range Argument
Theorem D.1. VeRange type-2 range argument protocol Πty2 sat-

isfies perfect completeness, SHVZK and CWE.

Proof. Perfect Completeness: Πty2 satisfies perfect complete-

ness by following Eqns. (21)-(24).

SHVZK: We define a simulator as follows. First, the simulator

generates group elements

(
(Ω𝑘 )𝑘∈[𝐾̃−1] , (𝑉𝑘 ,𝑇𝑘 )𝑘∈[𝐾̃ ] , {𝑀𝑐 }

𝐵−1

𝑐=1

)
at Steps (25)-(27) and field elements

(
(𝜈 𝑗,𝑘 , 𝜇 𝑗,𝑘 ) ( 𝑗,𝑘 ) ∈B , 𝜂1, 𝜂2

)
at

Steps (30)-(31) at uniformly random. Then the simulator sets

Ω
𝐾̃
≜ Cm(𝜔) ·

( ∏
𝑘∈[𝐾̃−1]

Ω𝑘

)−1

Next, after learning the challenge ®𝜖 from the verifier, the simulator

rewinds to Step (27) to set

𝑆 ≜
∑
𝑗∈[ 𝐽 ] 𝐻

∑
𝑘∈ [𝐾̃ ] 𝜈̃𝑗,𝑘 ·𝜇̃ 𝑗,𝑘

𝑗
·𝑄𝜂̃1 ·

( ( ∏
𝑗∈[ 𝐽 ]

𝐻 𝑗
)∑

𝑘∈ [𝐾̃ ] 𝜖
2

𝑘 · ∏
𝑘∈[𝐾̃ ]

𝑇
𝜖𝑘
𝑘

)−1

𝑀0 ≜ 𝐺
∑
( 𝑗,𝑘 ) ∈B 𝜇

′
𝑗,𝑘 ·𝑄𝜂̃2 ·

( 𝐵−1∏
𝑐=1

𝑀

1

𝛼+𝑐
𝑐 · ∏

𝑘∈[𝐾̃ ]
𝑉
𝜖−1

𝑘

𝑘

)−1

𝑅̃ ≜ 𝐺
∑
( 𝑗,𝑘 ) ∈B 𝜈𝑗,𝑘 ·𝑄𝜂̃3 ·

( ∏
𝑘∈[𝐾̃ ]

Ω𝜖𝑘
𝑘

)−1

One can check that the above settings of

(
(Ω𝑘 ,𝑉𝑘 ,𝑇𝑘 )𝑘∈[𝐾̃ ] , {𝑀𝑐 }

𝐵−1

𝑐=0
,

𝑅̃, 𝑆
)
and

(
(𝜈 𝑗,𝑘 , 𝜇 𝑗,𝑘 ) ( 𝑗,𝑘 ) ∈B , 𝜂1, 𝜂2, 𝜂3

)
can successfully pass the

verification at the verifier without the witness 𝜔 . Moreover, the

transcripts appear to be uniformly random.

CWE: We define an emulator as follows in a similar manner as

in Theorem C.1. The emulator emulates a probabilistic prover with

a number of random challenges and rewinding to generate multiple

accepting arguments. The emulator is expected to run in expected

polynomial time. Next we describe how to extract a valid witness

to statement 𝜔 ∈ [0, 2𝑁̃ ].
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Given the initial message

(
(Ω𝑘 ,𝑉𝑘 ,𝑇𝑘 )𝑘∈[𝐾̃ ] , {𝑀𝑐 }

𝐵−1

𝑐=0
, 𝑅̃, 𝑆

)
from

the prover in an honest execution of Πty2, we proceed to a 2-stage

rewinding:

(1) Stage 1: We first obtain a random challenge 𝛼 (1)
$←− Z∗𝑝 .

Then, we rewind L times to Step (29) to obtain different

random challenges

(
®𝜖 (1,ℓ ) $←− Z∗𝐾̃𝑝

)
ℓ∈[L] . For each challenge

tuple (𝛼 (1) , ®𝜖 (1,ℓ ) ), we obtain accepting transcript

(
(𝜈 (1,ℓ )
𝑗,𝑘

,

𝜇
(1,ℓ )
𝑗,𝑘
) ( 𝑗,𝑘 ) ∈B , 𝜂

(1,ℓ )
1

, 𝜂
(1,ℓ )
2

, 𝜂
(1,ℓ )
3

)
which the verifier checks

at Step (32) to satisfy the following:
∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ] 𝜈̃

(1,ℓ )
𝑗,𝑘

·𝜇̃ (1,ℓ )
𝑗,𝑘

𝑗
· 𝑄𝜂̃

(1,ℓ )
1

?

=
( ∏
𝑗 ∈ [𝐽 ]

𝐻 𝑗
)∑
𝑘∈ [𝐾̃ ] (𝜖

(1,ℓ )
𝑘

)2
· ∏
𝑘∈ [𝐾̃ ]

𝑇
𝜖
(1,ℓ )
𝑘
𝑘

· 𝑆

𝐺

∑
( 𝑗,𝑘 ) ∈B 𝜈

(1,ℓ )
𝑗,𝑘 · 𝑄𝜂̃

(1,ℓ )
3

?

=
∏

𝑘∈ [𝐾̃ ]
Ω
𝜖
(1,ℓ )
𝑘
𝑘

· 𝑅̃

(54)

Next, we extract

(
m𝑅, r′𝑅, r

′
𝑆
, (𝑤̃ ′

𝑘
, r′(Ω)
𝑘

, r′(𝑇 )
𝑘
)
𝑘∈[𝐾̃ ] , (m

(𝑆 )
𝑗
)
𝑗∈[ 𝐽 ] ,

(𝜏 ′
𝑗,𝑘
) 𝐽
𝑗=1,

𝐾̃
𝑘=1

)
by

©­­­­­­­­­«

∑
𝑘∈ [𝐾̃ ]

𝜈̃
(1,1)
1,𝑘

· 𝜇̃ (1,1)
1,𝑘

− ∑
𝑘∈ [𝐾̃ ]

(𝜖 (1,1)
𝑘
)2 · · · ∑

𝑘∈ [𝐾̃ ]
𝜈̃
(1,1)
𝐽 ,𝑘

· 𝜇̃ (1,1)
𝐽 ,𝑘

− ∑
𝑘∈ [𝐾̃ ]

(𝜖 (1,1)
𝑘
)2 𝜂̃

(1,1)
1

.

.

.
.
.
.

.

.

.

.

.

.∑
𝑘∈ [𝐾̃ ]

𝜈̃
(1,L)
1,𝑘

· 𝜇̃ (1,L)
1,𝑘

− ∑
𝑘∈ [𝐾̃ ]

(𝜖 (1,L)
𝑘
)2 · · · ∑

𝑘∈ [𝐾̃ ]
𝜈̃
(1,L)
𝐽 ,𝑘

· 𝜇̃ (1,L)
𝐽 ,𝑘

− ∑
𝑘∈ [𝐾̃ ]

(𝜖 (1,L)
𝑘
)2 𝜂̃

(1,L)
1

ª®®®®®®®®®¬
=

©­­­­­«
𝜖
(1,1)
1

· · · 𝜖
(1,1)
𝐾̃

1

.

.

.
.
.
.

.

.

.

.

.

.

𝜖
(1,L)
1

· · · 𝜖
(1,L)
𝐾̃

1

ª®®®®®¬
·

©­­­­­­­­«

𝜏 ′
1,1

· · · 𝜏 ′
𝐽 ,1

r′(𝑇 )
1

.

.

.
.
.
.

.

.

.

.

.

.

𝜏 ′
1,𝐾̃

· · · 𝜏 ′
𝐽 ,𝐾̃

r′(𝑇 )
𝐾̃

m(𝑆 )
1

· · · m(𝑆 )
𝐽

r′
𝑆

ª®®®®®®®®¬
(55)

©­­­­­«

∑
( 𝑗,𝑘 ) ∈B 𝜈

(1,ℓ )
𝑗,𝑘

𝜂̃
(1,1)
3

.

.

.

.

.

.∑
( 𝑗,𝑘 ) ∈B 𝜈

(1,ℓ )
𝑗,𝑘

𝜂̃
(1,L)
3

ª®®®®®¬
=

©­­­­­«
𝜖
(1,1)
1

· · · 𝜖
(1,1)
𝐾̃

1

.

.

.
.
.
.

.

.

.

.

.

.

𝜖
(1,L)
1

· · · 𝜖
(1,L)
𝐾̃

1

ª®®®®®¬
·

©­­­­­­«

𝑤̃′
1

r′(Ω)
1

.

.

.

.

.

.

𝑤̃′
𝐾̃

r′(Ω)
𝐾̃

m𝑅 r′
𝑅

ª®®®®®®¬
(56)

If L = 𝐾̃+1 and

(
®𝜖 (1,ℓ ) $←− Z∗𝐾̃𝑝

)
ℓ∈[L] are chosen at uniformly

random, then the probability that the following matrix E:

E ≜

©­­­­«
𝜖
(1)
1

· · · 𝜖
(1)
𝐾̃

1

.

.

.
.
.
.

. . .
.
.
.

𝜖
(L)
1

· · · 𝜖
(L)
𝐾̃

1

ª®®®®¬
has zero determinant is negligible in the size ofZ𝑞 by an argu-
ment based on Schwartz–Zippel Lemma. Hence,

(
m𝑅, r′𝑅, r

′
𝑆
,

(𝑤̃ ′
𝑘
, r′(Ω)
𝑘

, r′(𝑇 )
𝑘
)
𝑘∈[𝐾̃ ] , (m

(𝑆 )
𝑗
)
𝑗∈[ 𝐽 ] , (𝜏

′
𝑗,𝑘
) 𝐽
𝑗=1,

𝐾̃
𝑘=1

)
can be

uniquely determined by multiplying E−1
to both sides of

Eqns. (55)-(56). Note that if we let

(
(Ω𝑘 ,𝑇𝑘 )𝑘∈[𝐾̃ ] , 𝑅̃, 𝑆

)
by

the following

Ω𝑘 = 𝐺 𝑤̃
′
𝑘 ·𝑄r′(Ω)

𝑘 , 𝑇𝑘 =
∏
𝑗∈[ 𝐽 ]

𝐻
𝜏 ′
𝑗,𝑘

𝑗
·𝑄r′(𝑇 )

𝑘 ,

𝑅̃ = 𝐺m𝑅 ·𝑄r′
𝑅 , 𝑆 =

∏
𝑗∈[ 𝐽 ]

𝐻
m(𝑆 )
𝑗

𝑗
·𝑄r′

𝑆 (57)

Then by Eqns. (55)-(56), one can check that

(
(Ω𝑘 ,𝑇𝑘 )𝑘∈[𝐾̃ ] , 𝑅̃, 𝑆

)
can satisfy Eqns. (54). Hence,

(
m𝑅, r′𝑅, r

′
𝑆
, (𝑤̃ ′

𝑘
, r′(Ω)
𝑘

, r′(𝑇 )
𝑘
)
𝑘∈[𝐾̃ ] ,

(m(𝑆 )
𝑗
)
𝑗∈[ 𝐽 ] , (𝜏

′
𝑗,𝑘
) 𝐽
𝑗=1,

𝐾̃
𝑘=1

)
is a satisfying witness.

(2) Stage 2:We first obtain additional random challenges (𝛼 (𝜌 ) $←−
Z∗𝑝 )P𝜌=2

by rewinding P−1 times to Step (28). Then, we obtain

different random challenges (®𝜖 (𝜌,1) $←− Z∗𝑝 )P𝜌=2
, correspond-

ingly. For each challenge tuple (𝛼 (𝜌 ) , ®𝜖 (𝜌,1) ) where 𝜌 ∈
[P], we obtain accepting transcript

(
(𝜈 (𝜌,1)
𝑗,𝑘

, 𝜇
(𝜌,1)
𝑗,𝑘
) ( 𝑗,𝑘 ) ∈B ,

𝜂
(𝜌,1)
1

, 𝜂
(𝜌,1)
2

, 𝜂
(𝜌,1)
3

)
which the verifier checks at Step (32)

to satisfy the following:

𝐺

∑
( 𝑗,𝑘 ) ∈B 𝜇

′(𝜌,1)
𝑗,𝑘 ·𝑄𝜂̃

(𝜌,1)
2

?

=

𝐵−1∏
𝑐=0

𝑀

1

𝛼 (𝜌 )+𝑐
𝑐 ·

∏
𝑘∈[𝐾̃ ]

𝑉
(𝜖 (𝜌,1)
𝑘
)−1

𝑘
(58)

We extract

(
(𝑣 ′
𝑘
, r′(𝑉 )
𝑘
)
𝑘∈[𝐾̃ ] , (𝑚

′
𝑐 , r
′(𝑀 )
𝑐 )𝐵−1

𝑐=0

)
by

©­­­­­«

∑
( 𝑗,𝑘 ) ∈B 𝜇

′(1,1)
𝑗,𝑘

𝜂̃
(1,1)
3

.

.

.

.

.

.∑
( 𝑗,𝑘 ) ∈B 𝜇

′(P,1)
𝑗,𝑘

𝜂̃
(P,1)
3

ª®®®®®¬

=

©­­­­­«
1

𝛼 (1)
· · · 1

𝛼 (1) +𝐵−1

(𝜖 (1,1)
1
)−1 · · · (𝜖 (1,1)

𝐾̃
)−1

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
1

𝛼 (P)
· · · 1

𝛼 (P) +𝐵−1

(𝜖 (P,1)
1
)−1 · · · (𝜖 (P,1)

𝐾̃
)−1

ª®®®®®¬
·

©­­­­­­­­­­­­­­«

𝑚′
0

r′(𝑀 )
0

.

.

.

.

.

.

𝑚′
𝐵−1

r′(𝑀 )
𝐵−1

𝑣′
1

r′(𝑉 )
1

.

.

.

.

.

.

𝑣′
𝐾̃

r′(𝑉 )
𝐾̃

ª®®®®®®®®®®®®®®¬
(59)

If P = 𝐵+ 𝐾̃ and

(
𝛼 (𝜌 )

$←− Z∗𝑝 , ®𝜖 (𝜌,1)
$←− Z∗𝐾̃𝑝

)P
𝜌=1

are chosen

at uniformly random, then the probability that the following

matrix A:

A ≜

©­­­­«
1

𝛼 (1)
· · · 1

𝛼 (1)+𝐵−1

(𝜖 (1,1)
1
)−1 · · · (𝜖 (1,1)

𝐾̃
)−1

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

1

𝛼 (P)
· · · 1

𝛼 (P)+𝐵−1

(𝜖 (P,1)
1
)−1 · · · (𝜖 (P,1)

𝐾̃
)−1

ª®®®®¬
has zero determinant negligible in the size of Z𝑞 by an argu-

ment based Schwartz–Zippel Lemma. Hence,

(
(𝑣 ′
𝑘
, r′(𝑉 )
𝑘
)
𝑘∈[𝐾̃ ] ,

(𝑚′𝑐 , r
′(𝑀 )
𝑐 )𝐵−1

𝑐=0

)
can be uniquely determined by multiplying

A−1
to both sides of Eqns. (59). Note that if we let

(
(𝑉𝑘 )𝑘∈[𝐾̃ ] ,

(𝑀𝑐 )𝐵−1

𝑐=0

)
by the following

𝑀𝑐 = 𝐺
𝑚′𝑐 ·𝑄r′(𝑀 )𝑐 , 𝑉𝑘 = 𝐺𝑣

′
𝑘 ·𝑄r′(𝑉 )

𝑘 (60)

then by Eqns. (55)-(56)

(
(𝑉𝑘 )𝑘∈[𝐾̃ ] , (𝑀𝑐 )

𝐵−1

𝑐=0

)
can satisfy

Eqn. (32). Namely,

(
m𝑉 , r′𝑅 , (𝑣

′
𝑘
, r′(𝑉 )
𝑘
)
𝑘∈[𝐾̃ ] , (𝑚

′
𝑐 , r
′(𝑀 )
𝑐 )𝐵−1

𝑐=0

)
is a satisfying witness.
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Together, we extracted

(
m𝑅, r′𝑅, r

′
𝑆
, (𝑤̃ ′

𝑘
, r′(Ω)
𝑘

, r′(𝑇 )
𝑘
)
𝑘∈[𝐾̃ ] , (m

(𝑆 )
𝑗
)
𝑗∈[ 𝐽 ] ,

(𝜏 ′
𝑗,𝑘
) 𝐽
𝑗=1,

𝐾̃
𝑘=1

,m𝑉 , r′𝑅 , (𝑣
′
𝑘
, r′(𝑉 )
𝑘
)
𝑘∈[𝐾̃ ] , (𝑚

′
𝑐 , r
′(𝑀 )
𝑐 )𝐵−1

𝑐=0

)
as a satisfy-

ing witness.

Next, consider𝛼 (1) and pick ®𝜖 (1,1) and ®𝜖 (1,2) from {®𝜖 (𝜌,ℓ ) }ℓ∈[L] .
One can extract witness (𝑤̃ ′

𝑗,𝑘
, r′ (𝜈 )

𝑗,𝑘
, 𝑓 ′
𝑗,𝑘
, r′ (𝜇 )

𝑗,𝑘
) by solving

𝜈
(1,1)
𝑗,𝑘

≜ 𝑤̃ ′
𝑗,𝑘
· 𝜖 (1,1)
𝑘
+ r′ (𝜈 )

𝑗,𝑘
, 𝜈

(1,2)
𝑗,𝑘

≜ 𝑤̃ ′
𝑗,𝑘
· 𝜖 (1,2)
𝑘
+ r′ (𝜈 )

𝑗,𝑘

𝜇
(1,1)
𝑗,𝑘

≜ 𝐵̂−1

𝑗,𝑘
· 𝑓 ′
𝑗,𝑘
·𝜖 (1,1)
𝑘
+r′ (𝜇 )

𝑗,𝑘
, 𝜇

(1,2)
𝑗,𝑘

≜ 𝐵̂−1

𝑗,𝑘
· 𝑓 ′
𝑗,𝑘
·𝜖 (1,2)
𝑘
+r′ (𝜇 )

𝑗,𝑘

We substitute (𝑤̃ ′
𝑗,𝑘
, r′ (𝜈 )

𝑗,𝑘
, 𝑓 ′
𝑗,𝑘
, r′ (𝜇 )

𝑗,𝑘
)
𝑗∈[ 𝐽 ],𝑘∈[𝐾̃ ] into

(𝜈 (1,1)
𝑗,𝑘

, 𝜇̃
(1,1)
𝑗,𝑘
)
𝑗∈[ 𝐽 ],𝑘∈[𝐾̃ ] to obtain

∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ] 𝜈̃

(1,1)
𝑗,𝑘

·𝜇̃ (1,1)
𝑗,𝑘

𝑗
· 𝑄𝜂̃

(1,1)
1

=
∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B 𝐵̂

−1

𝑗,𝑘
·𝑓 ′
𝑗,𝑘
· (𝛼 (1) ·𝐵̂ 𝑗,𝑘 +𝑤̃′𝑗,𝑘 ) · (𝜖

(1,1)
𝑘

)2

𝑗
·
∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 )∉B (𝜖

(1,1)
𝑘

)2

𝑗

·
∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B (𝐵̂

−1

𝑗,𝑘
·𝑓 ′
𝑗,𝑘
·r′ ( 𝑗 )
𝜈,𝑘
+(𝛼 (1) ·𝐵̂ 𝑗,𝑘 +𝑤̃′𝑗,𝑘 ) ·r

′ ( 𝑗 )
𝜇,𝑘
) ·𝜖 (1,1)
𝑘

+∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B r′ (𝜇)

𝑗,𝑘
·r′ (𝜈 )
𝑗,𝑘

𝑗

· 𝑄𝜂̃
(1,1)
1 (61)

We then compare Eqn. (61) with Eqn. (54) (setting ℓ = 1) and

Eqn. (57). Based on the DLR assumption, we obtain the exponent

of each 𝐻 𝑗 as∑︁
𝑘∈[𝐾̃ ]:( 𝑗,𝑘 ) ∈B

𝐵̂−1

𝑗,𝑘
· 𝑓 ′
𝑗,𝑘
· (𝛼 (1) · 𝐵̂ 𝑗,𝑘 + 𝑤̃ ′𝑗,𝑘 ) · (𝜖

(1,1)
𝑘
)2

+
∑︁

𝑘∈[𝐾̃ ]:( 𝑗,𝑘 )∉B
(𝜖 (1,1)
𝑘
)2

+
∑︁

𝑘∈[𝐾̃ ]:( 𝑗,𝑘 ) ∈B
(𝐵̂−1

𝑗,𝑘
· 𝑓 ′
𝑗,𝑘
· r′ ( 𝑗 )

𝜈,𝑘
+ (𝛼 (1) · 𝐵̂ 𝑗,𝑘 + 𝑤̃ ′𝑗,𝑘 ) · r

′ ( 𝑗 )
𝜇,𝑘
) · 𝜖 (1,1)

𝑘

+
∑︁

𝑘∈[𝐾̃ ]:( 𝑗,𝑘 ) ∈B
r′ (𝜇 )
𝑗,𝑘
· r′ (𝜈 )

𝑗,𝑘

=
∑︁
𝑘∈[𝐾̃ ]

(𝜖 (1,1)
𝑘
)2 +

∑︁
𝑘∈[𝐾̃ ]

𝜏 ′
𝑗,𝑘
· 𝜖 (1,1)
𝑘
+m(𝑆 )

𝑗
(62)

Note that ®𝜖 (1,1) is selected at uniformly random. Hence, Eqn. (62) is

always true with high probability, only if the coefficients of (𝜖 (1,1)
𝑘
)2

and 𝜖
(1,1)
𝑘

for all 𝑘 ∈ [𝐾̃] and constant terms of LHS and RHS are

equivalent. Particular, we consider the coefficient of (𝜖 (1,1)
𝑘
)2 for

each ( 𝑗, 𝑘) ∈ B, and obtain

𝐵̂−1

𝑗,𝑘
· 𝑓 ′
𝑗,𝑘
· (𝛼 (1) · 𝐵̂ 𝑗,𝑘 + 𝑤̃ ′𝑗,𝑘 ) = 1

Similarly, we substitute (𝑓 ′
𝑗,𝑘
, r′ (𝜇 )

𝑗,𝑘
) ( 𝑗,𝑘 ) ∈B into (𝜇′ (1,1)

𝑗,𝑘
) ( 𝑗,𝑘 ) ∈B

to obtain

𝐺

∑
( 𝑗,𝑘 ) ∈B 𝜇

′ (1,1)
𝑗,𝑘 ·𝑄𝜂̃

(1,1)
2 = 𝐺

∑
( 𝑗,𝑘 ) ∈B 𝑓

′
𝑗,𝑘
+𝐵̂ 𝑗,𝑘 ·r′ (𝜇)𝑗,𝑘 ·𝜖

−1

𝑘 ·𝑄𝜂̃
(1,1)
2 (63)

We compare Eqn. (63) with Eqn. (58) (setting 𝜌 = 1) and Eqn. (60).

Based on the DLR assumption, and comparison with the constant

terms (that are independent of 𝜖−1

𝑘
), we obtain∑︁

( 𝑗,𝑘 ) ∈B
𝑓 ′
𝑗,𝑘

=

𝐵−1∑︁
𝑐=0

𝑚′𝑐
𝛼 (1) + 𝑐

Overall, we obtain
𝐵̂−1

𝑗,𝑘
· 𝑓 ′
𝑗,𝑘
· (𝛼 (1) · 𝐵̂ 𝑗,𝑘 + 𝑤̃ 𝑗,𝑘 ) = 1, ∀( 𝑗, 𝑘) ∈ B∑

( 𝑗,𝑘 ) ∈B
𝑓 ′
𝑗,𝑘

=
𝐵−1∑
𝑐=0

𝑚′𝑐
𝛼 (1)+𝑐

(64)

Hence, this implies 𝑤̃ 𝑗,𝑘 ∈ {0, 𝐵̂ 𝑗,𝑘 , ..., (𝐵 − 1) · 𝐵̂ 𝑗,𝑘 }.
Finally, we substitute (𝑤̃ ′

𝑗,𝑘
, r′
𝑗,𝑘
)
𝑗∈[ 𝐽 ],𝑘∈[𝐾̃ ] into (𝜈

(1,1)
𝑗,𝑘
)
𝑗∈[ 𝐽 ],𝑘∈[𝐾̃ ]

to obtain ∑︁
𝑗∈[ 𝐽 ]

𝑤̃ ′
𝑗,𝑘

= 𝑤̃ ′
𝑘

As in type-1 argument, we obtain

𝐺𝜔 ·𝑄r𝜔 = Cm(𝜔) =
∏
𝑘∈[𝐾̃ ]

Ω𝑘 = 𝐺

∑
𝑘∈ [𝐾̃ ]

∑
𝑗 ∈ [𝐽 ] 𝑤̃

′
𝑗,𝑘 ·𝑄

∑
𝑘∈ [𝐾̃ ] r

′(Ω)
𝑘

By the DLR assumption, we obtain𝜔 =
∑
𝑘∈[𝐾̃ ]

∑
𝑗∈[ 𝐽 ] 𝑤̃

′
𝑗,𝑘

. There-

fore, this proves that the extracted (𝑤̃ 𝑗,𝑘 ∈ {0, 𝐵̂ 𝑗,𝑘 , ..., (𝐵 − 1) ·
𝐵̂ 𝑗,𝑘 }) ( 𝑗,𝑘 ) ∈B is a valid witness to 𝜔 ∈ [0, 𝐵𝑁̃ ].

□

E Proofs for VeRange Type-3 Range Argument
Lemma E.1. BCCGP polynomial commitment scheme satisfies per-

fect completeness and (𝑉 + 1)-special soundness.

See the proofs of perfect completeness and special soundness

in [4]. We need the following slightly stronger SHVZK lemma of

BCCGP polynomial commitment scheme.

Lemma E.2. Given a fixed output value 𝑦F, BCCGP polynomial
commitment scheme satisfies SHVZK.

Proof. We define a simulator as follows. Given𝑦F, the simulator

first generates part of the commitment (𝐻𝑢 )𝑈𝑢=1
and part of the proof

(f𝑣)𝑉𝑣=1
at uniformly random. Next, after learning the challenge 𝑥

from the verifier, the simulator rewinds to set

f0 ≜ 𝑦F −
𝑉∑︁
𝑣=1

f𝑣 · 𝑥 (𝑣−1)𝑈 +𝜉

and then set

𝐻0 ≜

∏𝑉
𝑣=0

𝐺
f𝑣
𝑣∏𝑈

𝑢=1
𝐻𝑥

𝑢

𝑢

One can check that the above settings of CmF = (𝐻𝑢 )𝑈𝑢=0
and 𝜋F =

(f𝑣)𝑉𝑣=0
can successfully pass the verification at the verifier without

the witness F. Moreover, the transcripts appear to be uniformly

random. □

Theorem E.3. VeRange type-3 range argument protocol Πty3 sat-
isfies perfect completeness, SHVZK and CWE.
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Proof. Perfect Completeness: Πty3 satisfies perfect complete-

ness by following the perfect completeness of BCCGP polynomial

commitment scheme and Eqns. (37)-(38).

SHVZK: We define a simulator as follows. First, by SHVZK of

BCCGP polynomial commitment scheme in Lemma E.2, given any

𝑦B and 𝑦S the simulator can generate valid (CmB, 𝜋B) and (CmS, 𝜋S)
without knowing the truewitnesses B[𝑋 ] and S[𝑋 ] to any challenge
𝑥 . Then the simulator generates group elements(
(𝐷𝑘 )𝑘∈[𝐾̃ ] , (Ω𝑘 )𝑘∈[𝐾̃−1] ,

)
at Steps (39)-(40) and field elements(

( ¯𝑑 𝑗 ) 𝑗∈[ 𝐽 ] , 𝜂1, 𝜂2, 𝑦S
)
at Steps (41)-(43) at uniformly random. Then

the simulator sets

Ω
𝐾̃
≜ Cm(𝜔) ·

( ∏
𝑘∈[𝐾̃−1]

Ω𝑘

)−1

Next, after learning the challenges (𝛽, 𝑥) from the verifier, the sim-

ulator rewinds to Steps (39),(40),(41) to set



𝑅1 ≜
( ∏
𝑗∈[ 𝐽 ]

𝐺
¯𝑑 𝑗
𝑗
·𝑄𝜂̃1 · ∏

𝑘∈[𝐾̃ ]
(𝐷𝑘 )−L𝑘 [𝑥 ]

)−L0 [𝑥 ]

𝑦B ≜ 1

L0 [𝑥 ] ·
( ∑
𝑗∈[ 𝐽 ]

𝛽 𝑗 · ¯𝑑 𝑗 · ( ¯𝑑 𝑗 − 1) · · · ( ¯𝑑 𝑗 − 𝐵 + 1)
)

𝑅2 ≜
(
𝐺
(𝑦S ·L0 [𝑥 ]+

∑
𝑗 ∈ [𝐽 ]

¯𝑑 𝑗 ·𝐵̄ 𝑗 ) ·𝑄𝜂̃2 · ∏
𝑘∈[𝐾̃ ]

(Ω𝑘 )−L𝑘 [𝑥 ]
)−L0 [𝑥 ]

One can check that the above settings of(
(𝐷𝑘 )𝑘∈[𝐾̃ ] , (Ω𝑘 )𝑘∈[𝐾̃ ] , 𝑅1, 𝑅2, CmB, CmS

)
and(

(𝜈 𝑗,𝑘 , 𝜇 𝑗,𝑘 ) ( 𝑗,𝑘 ) ∈B , 𝜂1, 𝜂2, 𝜂3, 𝑦B, 𝑦S, 𝜋B, 𝜋S
)
can successfully pass

the verification at the verifier without the witness 𝜔 . Moreover, the

transcripts appear to be uniformly random.

CWE: We define an emulator as follows. Given the initial mes-

sage

(
(Ω𝑘 , 𝐷𝑘 )𝑘∈[𝐾̃ ] , 𝑅1, 𝑅2, CmS

)
from the prover in an honest exe-

cution ofΠty3, we proceed to rewinding.We generate P×L challenge
tuples {(𝛽 (𝜌 ) , 𝑥 (ℓ ) )}𝜌∈[P],ℓ∈[L] . For each challenge tuple, we ob-

tain the corresponding transcript

(
Cm
(𝜌 )
B , ( ¯𝑑

(𝜌,ℓ )
𝑗
)
𝑗∈ 𝐽 , 𝑦

(𝜌,ℓ )
B , 𝜋

(𝜌,ℓ )
B ,

𝑦
(𝜌,ℓ )
S , 𝜋

(𝜌,ℓ )
S , 𝜂

(𝜌,ℓ )
1

, 𝜂
(𝜌,ℓ )
2

)
which the verifier checks at Step (44) to

satisfy the following:



PolyVfBCCGP [Cm
(𝜌 )
B , 𝑥 (ℓ ) , 𝑦 (𝜌,ℓ )B , 𝜋

(𝜌,ℓ )
B ] ?

= 1

PolyVfBCCGP [CmS, 𝑥 (ℓ ) , 𝑦
(𝜌,ℓ )
S , 𝜋

(𝜌,ℓ )
S ] ?

= 1∏
𝑗 ∈ [𝐽 ]

𝐺

¯𝑑
(𝜌,ℓ )
𝑗
𝑗

· 𝑄𝜂̃
(𝜌,ℓ )
1

?

=
∏

𝑘∈ [𝐾̃ ]
(𝐷𝑘 )L𝑘 [𝑥

(ℓ ) ] · 𝑅L0
[𝑥 (ℓ ) ]

1∑
𝑗 ∈ [𝐽 ]

(𝛽 (𝜌 ) ) 𝑗 · ¯𝑑
(𝜌,ℓ )
𝑗

· ( ¯𝑑
(𝜌,ℓ )
𝑗

− 1) · · · ( ¯𝑑
(𝜌,ℓ )
𝑗

− 𝐵 + 1) ?

= 𝑦
(𝜌,ℓ )
B · L0 [𝑥 (ℓ ) ]

𝐺
(𝑦 (𝜌,ℓ )S ·L

0
[𝑥 (ℓ ) ]+∑

𝑗 ∈ [𝐽 ]
¯𝑑
(𝜌,ℓ )
𝑗

·𝐵̄ 𝑗 ) · 𝑄𝜂̃
(𝜌,ℓ )
2

?

=
∏

𝑘∈ [𝐾̃ ]
(Ω𝑘 )L𝑘 [𝑥

(ℓ ) ] · 𝑅L0
[𝑥 (ℓ ) ]

2

Cm(𝜔 ) ?

=
∏

𝑘∈ [𝐾̃ ]
Ω𝑘

(65)

Next, considering

(
𝛽 (1) , (𝑥 (ℓ ) )

ℓ∈ 𝐽
)
, we extract ( ˆ𝑑′

𝑗,𝑘
)
𝑗∈[ 𝐽 ],𝑘∈[𝐾̃ ] ,

such that

©­­­­«
¯𝑑
(1,1)
1

· · · ¯𝑑
(1,1)
𝐽

𝜂
(1,1)
1

.

.

.
. . .

.

.

.
.
.
.

¯𝑑
(1,L)
1

· · · ¯𝑑
(1,L)
𝐽

𝜂
(1,L)
1

ª®®®®¬

=

©­­­«
L1 [𝑥 (1) ] · · · L

𝐾̃
[𝑥 (1) ] L

0̃
[𝑥 (1) ]

.

.

.
. . .

.

.

.
.
.
.

L1 [𝑥 (L) ] · · · L
𝐾̃
[𝑥 (L) ] L

0̃
[𝑥 (L) ]

ª®®®¬
·

©­­­­­­­«

ˆ𝑑′
1,1

· · · ˆ𝑑′
𝐽 ,1

r′(D)
1

.

.

.
. . .

.

.

.
.
.
.

ˆ𝑑′
1,𝐾̃

· · · ˆ𝑑′
𝐽 ,𝐾̃

r′(D)
𝐾̃

r′(d)
1

· · · r′(d)
𝐽

r′
1

ª®®®®®®®¬
(66)

by noting that the following matrix L is invertible with high proba-

bility based on Schwartz–Zippel Lemma, when L = 𝐾̃ + 1:

L ≜
©­­­«
L1 [𝑥 (1) ] · · · L

𝐾̃
[𝑥 (1) ] L

0̃
[𝑥 (1) ]

.

.

.
. . .

.

.

.
.
.
.

L1 [𝑥 (L) ] · · · L
𝐾̃
[𝑥 (L) ] L

0̃
[𝑥 (L) ]

ª®®®¬
Note that if

¯𝑑
(1,1)
𝑗

≠ ¯𝑑
(𝜌,1)
𝑗

for some 𝜌, 𝑗 , then we would obtain a

non-trivial logarithmic relation:∏
𝑗∈[ 𝐽 ]

𝐺
¯𝑑
(1,1)
𝑗

𝑗
·𝑄𝜂̃

(1,1)
1 =

∏
𝑘∈[𝐾̃ ]

(𝐷𝑘 )L𝑘 [𝑥
(1) ] ·𝑅L0 [𝑥 (1) ]

1
=

∏
𝑗∈[ 𝐽 ]

𝐺
¯𝑑
(𝜌,1)
𝑗

𝑗
·𝑄𝜂̃

(𝜌,1)
1

By the DLR assumption, we conclude that
¯𝑑
(1,ℓ )
𝑗

= ¯𝑑
(𝜌,ℓ )
𝑗

for all

𝜌, 𝑗 . In the following, we write
¯𝑑
(ℓ )
𝑗

= ¯𝑑
(𝜌,ℓ )
𝑗

, by dropping the

dependence on 𝜌 .

We can extract B(𝜌 ) [𝑋 ] from Cm
(𝜌 )
B because of the special sound-

ness of BCCGP polynomial commitment. Note that the extracted

polynomial B(𝜌 ) [𝑋 ] does not depend on 𝑥 (ℓ ) . We can re-express

B(𝜌 ) [𝑋 ] by B(𝜌 ) [𝑥 (ℓ ) ] = ∑
𝑗∈[ 𝐽 ] (𝛽

(𝜌 ) ) 𝑗 ·B𝑗 [𝑥 (ℓ ) ] for inputs {𝑥 (ℓ ) }ℓ∈[L] .

Recall that 𝑦
(𝜌,ℓ )
B ≜ B(𝜌 ) [𝑥 (ℓ ) ]. We also define 𝑦

(ℓ )
B𝑗

≜ B𝑗 [𝑥 (ℓ ) ],
which can be extracted from

©­­­«
𝑦
(1,1)
B · · · 𝑦

(1,L)
B

.

.

.
. . .

.

.

.

𝑦
(P,1)
B · · · 𝑦

(P,L)
B

ª®®®¬ =
©­­­«
𝛽 (1) · · · (𝛽 (1) ) 𝐽
.
.
.

. . .
.
.
.

𝛽 (P) · · · (𝛽 (P) ) 𝐽

ª®®®¬ ·
©­­­­«
𝑦
(1)
B1

· · · 𝑦
(L)
B1

.

.

.
. . .

.

.

.

𝑦
(1)
B
𝐽
· · · 𝑦

(L)
B
𝐽

ª®®®®¬
(67)

(𝑦 (ℓ )B𝑗
)ℓ∈[L] can uniquely determined, when the following Vander-

monde matrix B is invertible with high probability, P = 𝐽

B ≜
©­­­«
𝛽 (1) · · · (𝛽 (1) ) 𝐽
.
.
.

. . .
.
.
.

𝛽 (P) · · · (𝛽 (P) ) 𝐽

ª®®®¬
Note the degree of B[𝑋 ] is no more than 𝐵𝐾̃ . If L > 𝐵𝐾̃ , then

interpolating {(𝑥 (ℓ ) , 𝑦 (ℓ )B𝑗
)}ℓ∈[L] can uniquely determine B𝑗 [𝑋 ].

Next, by the fourth equation in Eqn. (65), we obtain∑︁
𝑗∈[ 𝐽 ]
(𝛽 (𝜌 ) ) 𝑗 · ¯𝑑

(ℓ )
𝑗
· ( ¯𝑑
(ℓ )
𝑗
− 1) · · · ( ¯𝑑

(ℓ )
𝑗
− 𝐵 + 1)

= 𝑦
(𝜌,ℓ )
B · L0 [𝑥 (ℓ ) ]
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=

( ∑︁
𝑗∈[ 𝐽 ]
(𝛽 (𝜌 ) ) 𝑗 · B𝑗 [𝑥 (ℓ ) ]

)
· L0 [𝑥 (ℓ ) ] (68)

Since 𝛽 (𝜌 )
$←− Z𝑝 is selected at random, by comparing the coeffi-

cients of (𝛽 (𝜌 ) ) 𝑗 , we obtain

¯𝑑
(ℓ )
𝑗
· ( ¯𝑑
(ℓ )
𝑗
− 1) · · · ( ¯𝑑

(ℓ )
𝑗
− 𝐵 + 1) = B𝑗 [𝑥 (ℓ ) ] · L0 [𝑥 (ℓ ) ]

for 𝑗 ∈ [𝐽 ]. Since ¯𝑑
(ℓ )
𝑗

= r′(d)
𝑗
· L0 [𝑥 (ℓ ) ] +

∑
𝑘∈[𝐾̃ ]

ˆ𝑑′
𝑗,𝑘
· L𝑘 [𝑥 (ℓ ) ].

Note that L > 𝐵𝐾̃ . Hence, interpolating {(𝑥 (ℓ ) )}ℓ∈[L] can uniquely

determine the whole polynomial. Therefore, we obtain(
r′(d)
𝑗
· L0 [𝑋 ] +

∑︁
𝑘∈ [𝐾̃ ]

ˆ𝑑′
𝑗,𝑘
· L𝑘 [𝑋 ]

)
·
(
r′(d)
𝑗
· L0 [𝑋 ] +

∑︁
𝑘∈ [𝐾̃ ]

ˆ𝑑′
𝑗,𝑘
· L𝑘 [𝑋 ] − 1

)
· · ·

(
r′(d)
𝑗
· L0 [𝑋 ] +

∑︁
𝑘∈ [𝐾̃ ]

ˆ𝑑′
𝑗,𝑘
· L𝑘 [𝑋 ] − 𝐵 + 1

)
= B𝑗 [𝑋 ] · L0 [𝑋 ]

By substituting 𝑋 ∈ {𝑧1, ..., 𝑧𝐾̃ }, we obtain

ˆ𝑑′
𝑗,𝑘
· ( ˆ𝑑′

𝑗,𝑘
− 1) · · · ( ˆ𝑑′

𝑗,𝑘
− 𝐵 + 1) = 0

for 𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾̃].
Similarly, we can extract S[𝑋 ] from CmS because of the special

soundness of BCCGP polynomial commitment. Next, we extract(
s′, r′

2
, (𝑤̃ ′

𝑘
, r′(Ω)
𝑘
)
𝑘∈[𝐾̃ ]

)
by

©­­­­­­«

𝑦
(1,1)
S · L0 [𝑥 (1) ] +

∑
𝑗∈[ 𝐽 ]

¯𝑑
(1)
𝑗
· 𝐵 𝑗 𝜂

(1,1)
2

.

.

.
.
.
.

𝑦
(1,L)
S · L0 [𝑥 (L) ] +

∑
𝑗∈[ 𝐽 ]

¯𝑑
(L)
𝑗
· 𝐵 𝑗 𝜂

(1,L)
2

ª®®®®®®¬
=

©­­­«
L1 [𝑥 (1) ] · · · L

𝐾̃
[𝑥 (1) ] L

0̃
[𝑥 (1) ]

.

.

.
. . .

.

.

.
.
.
.

L1 [𝑥 (L) ] · · · L
𝐾̃
[𝑥 (L) ] L

0̃
[𝑥 (L) ]

ª®®®¬ ·
©­­­­­«
𝑤̃ ′

1
r′(Ω)
1

.

.

.
.
.
.

𝑤̃ ′
𝐾̃

r′(Ω)
𝐾̃

s′ r′
2

ª®®®®®¬
(69)

By interpolating {(𝑥 (ℓ ) )}ℓ∈[L] can uniquely determine the whole

polynomial. Therefore, we obtain

S[𝑋 ] · L0 [𝑋 ] +
∑︁
𝑗∈[ 𝐽 ]

( ∑︁
𝑘∈[𝐾̃ ]

ˆ𝑑′
𝑗,𝑘
· L𝑘 [𝑋 ]

)
·
( ∑︁
𝑘∈[𝐾̃ ]

𝐵̂ 𝑗,𝑘 · L𝑘 [𝑋 ]
)

=
∑︁
𝑘∈[𝐾̃ ]

𝑤̃ ′
𝑘
· L𝑘 [𝑋 ] + s′ · L0 [𝑋 ] (70)

By substituting 𝑋 ∈ {𝑧1, ..., 𝑧𝐾̃ }, we obtain
∑
𝑗∈[ 𝐽 ]

ˆ𝑑′
𝑗,𝑘
· 𝐵̂ 𝑗,𝑘 =

𝑤̃ ′
𝑘
for 𝑘 ∈ [𝐾̃].
Finally, as in type-1 argument, we obtain

𝐺𝜔 ·𝑄r𝜔 = Cm(𝜔) =
∏
𝑘∈[𝐾̃ ]

Ω𝑘 = 𝐺

∑
𝑘∈ [𝐾̃ ]

∑
𝑗 ∈ [𝐽 ]

ˆ𝑑 ′
𝑗,𝑘
·𝐵̂ 𝑗,𝑘 ·𝑄

∑
𝑘∈ [𝐾̃ ] r

′(Ω)
𝑘

By the DLR assumption, we obtain 𝜔 =
∑
𝑘∈[𝐾̃ ]

∑
𝑗∈[ 𝐽 ]

ˆ𝑑′
𝑗,𝑘
· 𝐵̂ 𝑗,𝑘 .

Therefore, this proves that the extracted (𝑤̃ 𝑗,𝑘 ∈ {0, 𝐵̂ 𝑗,𝑘 , ..., (𝐵 −
1) · 𝐵̂ 𝑗,𝑘 }) ( 𝑗,𝑘 ) ∈B is a valid witness to 𝜔 ∈ [0, 𝐵𝑁̃ ]. □

Figure 9: Flashproofs range argument protocol

Π
flash

[
Cm(𝜔 ) ∈ G; 𝜔 ∈ Z𝑝 , r𝜔 ∈ Z∗𝑝

]
P :
®b ∈ {0, 1}𝑁 is the bit-decomposition of𝜔 such that𝜔 =

∑︁
𝑖∈ [𝑁 ]

𝑏𝑖 · 2𝑖−1

®r $←− Z∗𝐽𝑝 , ®r(𝑊 ) ,®r(𝑇 )
$←− Z∗𝐾𝑝 , ®r(𝑇 ) $←− Z∗𝐾 (𝐾 -1)/2

𝑝 , r𝑅 , r𝑆
$←− Z∗𝑝

r(𝑊 )
𝐾

≜ r𝜔 −
∑︁

𝑘∈ [𝐾−1]
r(𝑊 )
𝑘(

𝑤𝑗,𝑘 ≜ ˆ𝑏 𝑗,𝑘 · 2̂𝑗,𝑘
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

,

(
𝑡 𝑗,𝑘 ≜ r𝑗 · (2̂𝑗,𝑘 − 2𝑤𝑗,𝑘 )

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ](

𝑡
( 𝑗 )
𝑘,𝑘′ ≜

∑︁
𝑗 ∈ [𝐽 ]

𝑤𝑗,𝑘′ (2̂𝑗,𝑘 − 𝑤𝑗,𝑘 ) + 𝑤𝑗,𝑘 (2̂𝑗,𝑘′ − 𝑤𝑗,𝑘′ )
)
𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}

P ⇒ V :

(
𝑊𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] 𝑤𝑗,𝑘 · 𝑄r(𝑊 )

𝑘

)
𝑘∈ [𝐾 ]

,

(
𝑇𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝑡 𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾 ]

(
𝑇𝑘,𝑘′ ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝑡
( 𝑗 )
𝑘,𝑘′
𝑗

· 𝑄
r(𝑇 )
𝑘,𝑘′

)
𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}

𝑅 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] r𝑗 · 𝑄r𝑅 ∈ G, 𝑆 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
−(r𝑗 )2
𝑗

· 𝑄r𝑆

P ⇐ V : ®𝜖 $←− Z∗𝐾𝑝

P ⇒ V :

(
𝑣𝑗 ≜

∑︁
𝑘∈ [𝐾 ]

𝑤𝑗,𝑘 · 𝜖𝑘 + r𝑗
)
𝑗 ∈ [𝐽 ]

, 𝜂2 ≜ ®r(𝑊 ) · ®𝜖 + r𝑅

𝜂1 ≜
∑︁

𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}
r(𝑇 )
𝑘,𝑘′𝜖𝑘𝜖𝑘′ + ®r

(𝑇 ) · ®𝜖 + r𝑆

V :

(
𝑢 𝑗 ≜

∑︁
𝑘∈ [𝐾 ]

2̂𝑗,𝑘 · 𝜖𝑘 − 𝑣𝑗
)
𝑗 ∈ [𝐽 ]

Check



∏
𝑗 ∈ [𝐽 ]

𝐻
𝑣𝑗 ·𝑢𝑗
𝑗

· 𝑄𝜂1
?

=
∏

𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}
𝑇
𝜖𝑘𝜖𝑘′
𝑘,𝑘′ · ∏

𝑘∈ [𝐾 ]
𝑇
𝜖𝑘
𝑘
· 𝑆

𝐺

∑
𝑗 ∈ [𝐽 ] 𝑣𝑗 · 𝑄𝜂2

?

=
∏

𝑘∈ [𝐾 ]
𝑊
𝜖𝑘
𝑘
· 𝑅

Cm(𝜔 ) ?

=
∏

𝑘∈ [𝐾 ]
𝑊𝑘

F Flashproofs Range Argument
We include the Flashproofs range argument for completeness. Flash-

proofs range argument [30] utilizes a bit-decomposition approach

for proving a number in a range in a similar fashion of VeRange
type-1. But Flashproofs rely on a different aggregation technique.

The Flashproofs range argument protocol is described in Fig. 9. The

proof size includes
𝐾2+3𝐾

2
+2 group elements and 𝐽 +2 field elements.

The verification time takes 𝐽 + 𝐾2+3𝐾
2
+ 3 group exponentiations.

The proving time takes
𝐾 (𝐾−1) ( 𝐽 +1)

2
+𝐾 (𝐽 + 1) + 2𝐾 + 𝐽 + 3 group

exponentiations. To minimize group exponentiations in verification,

we set 𝐽 ≈ 𝑁 2/3
and 𝐾 ≈ 𝑁 1/3

.

G More on VeRange Type-2 Range Argument
G.1 Type-2B Range Argument
While VeRange type-2 has only 𝑂 (( 𝑁

log𝑁
)1/2) group exponentia-

tions, there are considerably more field operations, which incur

additional gas cost in practice. Therefore, we develop VeRange type-
2B by combining the ideas of Flashproofs in Appendix F and the

reciprocal relation from Bulletproofs++, which yields a lower gas

cost alternative at the expense of 𝑂 (( 𝑁
log𝑁
)2/3) group exponen-

tiations in verification. Note that in Sec. 6, we observe that the

empirical gas cost of VeRange type-2B is considerably lower than

type-2. The full protocol of VeRange type-2B range argument is
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described in Fig. 10. The perfect completeness, SHVZK and CWE

of the type-2B range argument can be proved in a similar manner

as the type-2 range argument.

Remarks: The proof size of VeRange type-2B range argument

includes 3𝐾̃ + 𝐵 + 3 + 𝐾̃ (𝐾̃−1)
2

group elements and 2𝐽 + 4 field

elements. The verification takes 𝐽 + 2𝐾̃ + 𝐾̃ (𝐾̃−1)
2

+ 𝐵 + 7 group

exponentiations. The proving takes 𝐽 + 5𝐾̃ + 𝐾̃2 + 2𝐵 + 5 group

exponentiations. To minimize the number of group exponentia-

tions in verification, we set 𝐵 ≈ ( 𝑁
log𝑁
)2/3 and 𝐽 ≈

⌈
( 3𝑁

2 log𝑁
)

2/3⌉
and 𝐾̃ ≈

⌈
( 3𝑁

2 log𝑁
)

1/3⌉
. Hence, the verification takes around (1 +

( 3
2
)5/2) ( 𝑁

log𝑁
)2/3 + ( 3

2
)4/3 ( 𝑁

log𝑁
)1/3 G group exponentiations and

proving takes around (2+18
2/3) ( 𝑁

log𝑁
)2/3 + 5

2
( 3

2
)1/3 ( 𝑁

log𝑁
)1/3 G. Then,

the proof size includes around (1+( 9

32
)1/3) ( 𝑁

log𝑁
)2/3 + 5

2
( 3

2
)1/3 ( 𝑁

log𝑁
)1/3

group elements and around 2.6( 𝑁
log𝑁
)2/3 + 4 field elements.

We can also construct the aggregated type-2B range argument

protocol in a similar manner as the aggregated type-2 range argu-

ment protocol in Appendix G.2. We skip the full description of the

aggregated type-2B range argument protocol because of page limit.

Figure 10: VeRange type-2B range argument protocol

Π
ty2b

[
Cm(𝜔 ) ∈ G; 𝜔 ∈ Z𝑝 , r𝜔 ∈ Z∗𝑝

]
Setup : 𝐵̂𝑘 ≜

∑︁
𝑗 ∈ [𝐽 ]:( 𝑗,𝑘 ) ∈B

𝐵̂ 𝑗,𝑘 , 𝐻
𝐽
≜

∏
𝑗 ∈ [𝐽 ]

𝐻 𝑗

P :
®d ∈ ({0, ..., 𝐵 − 1})𝑁̃ is the 𝐵-ary digit decompo. of𝜔 such that𝜔 =

∑︁
𝑖∈ [𝑁̃ ]

𝑑𝑖 · 𝐵𝑖−1

®r(𝜇) ,®r(𝜈 ) $←− Z𝐽𝑝 , ®r(Ω) ,®r(𝑇 ) ,®r(𝐹 )
$←− Z∗𝐾̃𝑝 , ®r(𝑀 ) $←− Z∗𝐵𝑝 , r(Ω)

𝐾̃
≜ r𝜔 −

∑︁
𝑘∈ [𝐾̃−1]

r(Ω)
𝑘

𝑅 , 𝑆 ,𝑈
$←− Z∗𝑝 ,

(
𝑤̃𝑗,𝑘 ≜ ˆ𝑑 𝑗,𝑘 · 𝐵̂ 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

,

(
𝑚𝑐 ≜

∑︁
𝑖∈ [𝑁̃ ]

1(𝑑𝑖 = 𝑐 )
)𝐵−1

𝑐=0

P ⇒ V :

(
Ω𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] 𝑤̃𝑗,𝑘 · 𝑄r(Ω)

𝑘

)
𝑘∈ [𝐾̃ ]

,

(
𝑀𝑐 ≜ 𝐺𝑚𝑐 · 𝑄r(𝑀 )𝑐

)𝐵−1

𝑐=0

𝑅̃ ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] r

(𝜈 )
𝑗 · 𝑄r𝑅 ∈ G, 𝑆 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
r
(𝜇)
𝑗
·r(𝜈 )
𝑗

𝑗
· 𝑄r𝑆 ∈ G,

𝑈̃ ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] 𝐵

𝑗−1 ·r(𝜇)
𝑗 · 𝑄r𝑈

P ⇐ V : 𝛼
$←− Z∗𝑝

P :

(
𝑓𝑗,𝑘 ≜ 1

𝛼+ ˆ𝑑𝑗,𝑘

)
( 𝑗,𝑘 ) ∈B

,

𝜏 𝑗,𝑘 ≜

{
𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · r

(𝜈 )
𝑗
+ (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃𝑗,𝑘 ) · r

(𝜇)
𝑗
, if ( 𝑗, 𝑘 ) ∈ B

0, if ( 𝑗, 𝑘 ) ∉ B

𝜏
( 𝑗 )
𝑘,𝑘′ ≜


𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · (𝛼 · 𝐵̂ 𝑗,𝑘′ + 𝑤̃𝑗,𝑘′ )+

𝐵̂−1

𝑗,𝑘′ · 𝑓𝑗,𝑘′ · (𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃𝑗,𝑘 ), if ( 𝑗, 𝑘 ) ∈ B ∧ ( 𝑗, 𝑘′ ) ∈ B
0, otherwise

P ⇒ V :

(
𝐹𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ]:( 𝑗,𝑘 ) ∈B 𝑓𝑗,𝑘 · 𝑄r(𝐹 )

𝑘

)
𝑘∈ [𝐾̃ ]

,

(
𝑇𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝜏𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾̃ ]

(
𝑇𝑘,𝑘′ ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝜏
( 𝑗 )
𝑘,𝑘′
𝑗

· 𝑄
r(𝑇 )
𝑘,𝑘′

)
𝑘∈ [𝐾̃ ],𝑘′ ∈ [𝐾̃ ]\{𝑘}

P ⇐ V : ®𝜖 $←− Z∗𝐾̃𝑝

P ⇒ V :

(
𝜈𝑗 ≜

∑︁
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B

(𝛼 · 𝐵̂ 𝑗,𝑘 + 𝑤̃𝑗,𝑘 ) · 𝜖𝑘 + r
(𝜈 )
𝑗
∈ Z𝑝

)
𝑗 ∈ [𝐽 ](

𝜇 𝑗 ≜
∑︁

𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B
𝐵̂−1

𝑗,𝑘
· 𝑓𝑗,𝑘 · 𝜖𝑘 + r

(𝜇)
𝑗

)
𝑗 ∈ [𝐽 ]

𝜂̃1 ≜
∑︁

𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}
r(𝑇 )
𝑘,𝑘′𝜖𝑘𝜖𝑘′ + ®r

(𝑇 ) · ®𝜖 + r𝑆 ∈ Z𝑝 , 𝜂̃4 ≜ ®r(Ω) · ®𝜖 + r𝑅

𝜂̃2 ≜ r(𝐹 )
1

𝜖1 +
𝐾̃∑︁
𝑘=2

r(𝐹 )
𝑘
· 𝜖𝑘 · 𝐵− 𝐽 (𝑘−2)−𝜂̃ + r𝑈 , 𝜂̃3 ≜

𝐵−1∑︁
𝑐=0

r(𝑀 )𝑐

𝛼 + 𝑐 −
∑︁

𝑘∈ [𝐾̃ ]
r(𝐹 )
𝑘

V : Check



∏
𝑗 ∈ [𝐽 ]

𝐻
(𝜈𝑗 ·𝜇𝑗 +

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 )∉B 𝜖

2

𝑘
)

𝑗
· 𝑄𝜂̃1

?

= 𝐻

∑
𝑘∈ [𝐾̃ ] 𝜖

2

𝑘

𝐽
· ∏
𝑘∈ [𝐾̃ ],𝑘′ ∈ [𝐾̃ ]\{𝑘}

𝑇
𝜖𝑘𝜖𝑘′
𝑘,𝑘′ · ∏

𝑘∈ [𝐾̃ ]
𝑇
𝜖𝑘
𝑘
· 𝑆

𝐺

∑
𝑗 ∈ [𝐽 ] 𝐵

𝑗−1 ·𝜇𝑗 · 𝑄𝜂̃2
?

= (𝐹1 )𝜖1 ·
𝐾̃∏
𝑘=2

(𝐹𝑘 )𝜖𝑘 ·𝐵
− 𝐽 (𝑘−2)−𝜂̃ · 𝑈̃∏

𝑘∈ [𝐾̃ ]
𝐹𝑘 · 𝑄𝜂̃3

?

=
𝐵−1∏
𝑐=0

𝑀

1

𝛼+𝑐
𝑐

𝐺

∑
𝑗 ∈ [𝐽 ] 𝜈𝑗 −

∑
𝑘∈ [𝐾̃ ] 𝛼 ·𝐵̂𝑘 ·𝜖𝑘 · 𝑄𝜂̃4

?

=
∏

𝑘∈ [𝐾̃ ]
(Ω𝑘 )𝜖𝑘 · 𝑅̃

Cm(𝜔 ) ?

=
∏

𝑘∈ [𝐾̃ ]
Ω𝑘

20



G.2 Aggregating Type-2 Range Arguments
By extending the type-2 range argument protocol, we can construct

the aggregated type-2 range argument protocol in Fig. 11.

Figure 11:Aggregated VeRange type-2 range argument protocol

Πa.ty2

[ (
Cm(𝜔 (𝑡 ) ) ∈ G

)
𝑡 ∈ [𝑇 ] ;

(
𝜔 (𝑡 ) ∈ Z𝑝 , r𝜔 (𝑡 ) ∈ Z∗𝑝

)
𝑡 ∈ [𝑇 ]

]
Setup :𝐻

𝐽
≜

∏
𝑗 ∈ [𝐽 ]

𝐻 𝑗

P ⇐ V : 𝛾
$←− Z∗𝑝

P :
®d(𝑡 ) ∈ ({0, ..., 𝐵 − 1})𝑁̃ is the 𝐵-ary digit decompo. of𝜔 : 𝜔 (𝑡 ) =

∑︁
𝑖∈ [𝑁̃ ]

𝑑
(𝑡 )
𝑖
· 𝐵𝑖−1

(
r(𝜇)
𝑗,𝑘
, r(𝜈 )
𝑗,𝑘

$←− Z𝑝
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾̃ ]

, ®r(Ω) ,®r(𝑇 ) ,®r(𝑉 ) $←− Z∗𝐾̃𝑝 , ®r(𝑀 ) $←− Z∗𝐵𝑝

r𝑅 , r𝑆
$←− Z∗𝑝 , r(Ω)

𝐾̃
≜

∑︁
𝑡 ∈ [𝑇 ]

𝛾𝑡 · r𝜔 (𝑡 ) −
∑︁

𝑘∈ [𝐾̃−1]
r(Ω)
𝑘(

¯̄𝑤 𝑗,𝑘 ≜ ¯̄𝑑 𝑗,𝑘 · ¯̄𝐵 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

,

(
𝑚𝑐 ≜

∑︁
𝑖∈ [𝑁̃ ]

1(𝑑𝑖 = 𝑐 )
)𝐵−1

𝑐=0

P ⇒ V :

(
Ω𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ]

¯̄𝑤𝑗,𝑘 · 𝑄r(Ω)
𝑘

)
𝑘∈ [𝐾̃ ]

,

(
𝑀𝑐 ≜ 𝐺𝑚𝑐 · 𝑄r(𝑀 )𝑐

)𝐵−1

𝑐=0(
𝑉𝑘 ≜ 𝐺

∑
( 𝑗,𝑘 ) ∈B

¯̄𝐵𝑗,𝑘 ·r
(𝜇)
𝑗,𝑘 · 𝑄r(𝑉 )

𝑘

)
𝑘∈ [𝐾̃ ]

𝑅̃ ≜ 𝐺
∑
( 𝑗,𝑘 ) ∈B r(𝜈 )

𝑗,𝑘 · 𝑄r𝑅 , 𝑆 ≜
∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B r

(𝜇)
𝑗,𝑘
·r(𝜈 )
𝑗,𝑘

𝑗
· 𝑄r𝑆

P ⇐ V : 𝛼
$←− Z∗𝑝

P :

(
𝑓𝑗,𝑘 ≜ 1

𝛼+ ¯̄𝑑 𝑗,𝑘

)
( 𝑗,𝑘 ) ∈B

𝜏 𝑗,𝑘 ≜

{
¯̄𝐵
−1

𝑗,𝑘 · 𝑓𝑗,𝑘 · r
(𝜈 )
𝑗,𝑘
+ (𝛼 · ¯̄𝐵 𝑗,𝑘 + ¯̄𝑤 𝑗,𝑘 ) · r

(𝜇)
𝑗,𝑘
, if ( 𝑗, 𝑘 ) ∈ B

0, if ( 𝑗, 𝑘 ) ∉ B

P ⇒ V :

(
𝑇𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝜏𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾̃ ]

P ⇐ V : ®𝜖 $←− Z∗𝐾̃𝑝

P ⇒ V :

(
𝜈𝑗,𝑘 ≜ (𝛼 · ¯̄𝐵 𝑗,𝑘 + ¯̄𝑤 𝑗,𝑘 ) · 𝜖𝑘 + r

(𝜈 )
𝑗,𝑘
, 𝜇 𝑗,𝑘 ≜ ¯̄𝐵

−1

𝑗,𝑘 · 𝑓𝑗,𝑘 · 𝜖𝑘 + r
(𝜇)
𝑗,𝑘

)
( 𝑗,𝑘 ) ∈B

𝜂̃1 ≜ ®r(𝑇 ) · ®𝜖 + r𝑆 , 𝜂̃2 ≜
𝐵−1∑︁
𝑐=0

r(𝑀 )𝑐

𝛼 + 𝑐 +
∑︁

𝑘∈ [𝐾̃ ]
r(𝑉 )
𝑘
· 𝜖−1

𝑘
, 𝜂̃3 ≜ ®r(Ω) · ®𝜖 + r𝑅

V : Check



∏
𝑗 ∈ [𝐽 ]

𝐻

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B 𝜈𝑗,𝑘 ·𝜇𝑗,𝑘 +

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 )∉B 𝜖

2

𝑘
𝑗

· 𝑄𝜂̃1

?

= 𝐻

∑
𝑘∈ [𝐾̃ ] 𝜖

2

𝑘

𝐽
· ∏
𝑘∈ [𝐾̃ ]

𝑇
𝜖𝑘
𝑘
· 𝑆

𝐺

∑
( 𝑗,𝑘 ) ∈B

¯̄𝐵𝑗,𝑘 ·𝜇𝑗,𝑘 ·𝜖−1

𝑘 · 𝑄𝜂̃2
?

=
𝐵−1∏
𝑐=0

𝑀

1

𝛼+𝑐
𝑐 · ∏

𝑘∈ [𝐾̃ ]
𝑉
𝜖−1

𝑘
𝑘

𝐺

∑
( 𝑗,𝑘 ) ∈B 𝜈𝑗,𝑘 −𝛼 ·

¯̄𝐵𝑗,𝑘 ·𝜖𝑘 · 𝑄𝜂̃3
?

=
∏

𝑘∈ [𝐾̃ ]
Ω
𝜖𝑘
𝑘
· 𝑅̃∏

𝑡 ∈ [𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏

𝑘∈ [𝐾̃ ]
Ω𝑘

Finally, we can also construct the aggregated type-3 range argu-

ment protocol in a similar manner as the aggregated type-2 range

argument protocol.

Figure 12:Aggregated VeRange type-2B range argument protocol

Π
a.ty2b

[ (
Cm(𝜔 (𝑡 ) ) ∈ G

)
𝑡 ∈ [𝑇 ] ;

(
𝜔 (𝑡 ) ∈ Z𝑝 , r𝜔 (𝑡 ) ∈ Z∗𝑝

)
𝑡 ∈ [𝑇 ]

]
Setup :

¯̄𝐵𝑘 ≜
∑︁

𝑗 ∈ [𝐽 ]:( 𝑗,𝑘 ) ∈B

¯̄𝐵 𝑗,𝑘 , 𝐻
𝐽
≜

∏
𝑗 ∈ [𝐽 ]

𝐻 𝑗

P ⇐ V : 𝛾
$←− Z∗𝑝

P :
®d(𝑡 ) ∈ ({0, ..., 𝐵 − 1})𝑁̃ is the 𝐵-ary digit decompo. of𝜔 : 𝜔 (𝑡 ) =

∑︁
𝑖∈ [𝑁̃ ]

𝑑
(𝑡 )
𝑖
· 𝐵𝑖−1

®r(𝜇) ,®r(𝜈 ) $←− Z𝐽𝑝 , ®r(Ω) ,®r(𝑇 ) ,®r(𝐹 )
$←− Z∗𝐾̃𝑝 , ®r(𝑀 ) $←− Z∗𝐵𝑝

r(Ω)
𝐾̃

≜
∑︁
𝑡 ∈ [𝑇 ]

𝛾𝑡 · r𝜔 (𝑡 ) −
∑︁

𝑘∈ [𝐾̃−1]
r(Ω)
𝑘

𝑅 , 𝑆 ,𝑈
$←− Z∗𝑝 ,

(
𝑤𝑗,𝑘 ≜ ¯̄𝑑 𝑗,𝑘 · ¯̄𝐵 𝑗,𝑘

)
𝐽
𝑗=1,

𝐾̃
𝑘=1

,

(
𝑚𝑐 ≜

∑︁
𝑖∈ [𝑁̃ ]

1(𝑑𝑖 = 𝑐 )
)𝐵−1

𝑐=0

P ⇒ V :

(
Ω𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] 𝑤̃𝑗,𝑘 · 𝑄r(Ω)

𝑘

)
𝑘∈ [𝐾̃ ]

,

(
𝑀𝑐 ≜ 𝐺𝑚𝑐 · 𝑄r(𝑀 )𝑐

)𝐵−1

𝑐=0

𝑅̃ ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] r

(𝜈 )
𝑗 · 𝑄r𝑅 ∈ G, 𝑆 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
r
(𝜇)
𝑗
·r(𝜈 )
𝑗

𝑗
· 𝑄r𝑆 ∈ G,

𝑈̃ ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] 𝐵

𝑗−1 ·r(𝜇)
𝑗 · 𝑄r𝑈

P ⇐ V : 𝛼
$←− Z∗𝑝

P :

(
𝑓𝑗,𝑘 ≜ 1

𝛼+ ¯̄𝑑 𝑗,𝑘

)
( 𝑗,𝑘 ) ∈B

,

𝜏 𝑗,𝑘 ≜

{
¯̄𝐵
−1

𝑗,𝑘 · 𝑓𝑗,𝑘 · r
(𝜈 )
𝑗
+ (𝛼 · ¯̄𝐵 𝑗,𝑘 + 𝑤𝑗,𝑘 ) · r

(𝜇)
𝑗
, if ( 𝑗, 𝑘 ) ∈ B

0, if ( 𝑗, 𝑘 ) ∉ B

𝜏
( 𝑗 )
𝑘,𝑘′ ≜


¯̄𝐵
−1

𝑗,𝑘 · 𝑓𝑗,𝑘 · (𝛼 · ¯̄𝐵 𝑗,𝑘′ + 𝑤𝑗,𝑘′ )+
¯̄𝐵
−1

𝑗,𝑘′ · 𝑓𝑗,𝑘′ · (𝛼 · ¯̄𝐵 𝑗,𝑘 + 𝑤𝑗,𝑘 ), if ( 𝑗, 𝑘 ) ∈ B ∧ ( 𝑗, 𝑘′ ) ∈ B
0, otherwise

P ⇒ V :

(
𝐹𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ]:( 𝑗,𝑘 ) ∈B 𝑓𝑗,𝑘 · 𝑄r(𝐹 )

𝑘

)
𝑘∈ [𝐾̃ ]

,

(
𝑇𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝜏𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾̃ ]

(
𝑇𝑘,𝑘′ ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝜏
( 𝑗 )
𝑘,𝑘′
𝑗

· 𝑄
r(𝑇 )
𝑘,𝑘′

)
𝑘∈ [𝐾̃ ],𝑘′ ∈ [𝐾̃ ]\{𝑘}

P ⇐ V : ®𝜖 $←− Z∗𝐾̃𝑝

P ⇒ V :

(
𝜈𝑗 ≜

∑︁
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B

(𝛼 · ¯̄𝐵 𝑗,𝑘 + 𝑤𝑗,𝑘 ) · 𝜖𝑘 + r
(𝜈 )
𝑗
∈ Z𝑝

)
𝑗 ∈ [𝐽 ](

𝜇 𝑗 ≜
∑︁

𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 ) ∈B

¯̄𝐵
−1

𝑗,𝑘 · 𝑓𝑗,𝑘 · 𝜖𝑘 + r
(𝜇)
𝑗

)
𝑗 ∈ [𝐽 ]

𝜂̃1 ≜
∑︁

𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}
r(𝑇 )
𝑘,𝑘′𝜖𝑘𝜖𝑘′ + ®r

(𝑇 ) · ®𝜖 + r𝑆 ∈ Z𝑝 , 𝜂̃4 ≜ ®r(Ω) · ®𝜖 + r𝑅

𝜂̃2 ≜ r(𝐹 )
1

𝜖1 +
𝐾̃∑︁
𝑘=2

r(𝐹 )
𝑘
· 𝜖𝑘 · 𝐵− 𝐽 (𝑘−2)−𝜂̃ + r𝑈 , 𝜂̃3 ≜

𝐵−1∑︁
𝑐=0

r(𝑀 )𝑐

𝛼 + 𝑐 −
∑︁

𝑘∈ [𝐾̃ ]
r(𝐹 )
𝑘

V : Check



∏
𝑗 ∈ [𝐽 ]

𝐻
(𝜈𝑗 ·𝜇𝑗 +

∑
𝑘∈ [𝐾̃ ]:( 𝑗,𝑘 )∉B 𝜖

2

𝑘
)

𝑗
· 𝑄𝜂̃1

?

= 𝐻

∑
𝑘∈ [𝐾̃ ] 𝜖

2

𝑘

𝐽
· ∏
𝑘∈ [𝐾̃ ],𝑘′ ∈ [𝐾̃ ]\{𝑘}

𝑇
𝜖𝑘𝜖𝑘′
𝑘,𝑘′ · ∏

𝑘∈ [𝐾̃ ]
𝑇
𝜖𝑘
𝑘
· 𝑆

𝐺

∑
𝑗 ∈ [𝐽 ] 𝐵

𝑗−1 ·𝜇𝑗 · 𝑄𝜂̃2
?

= (𝐹1 )𝜖1 ·
𝐾̃∏
𝑘=2

(𝐹𝑘 )𝜖𝑘 ·𝐵
− 𝐽 (𝑘−2)−𝜂̃ · 𝑈̃∏

𝑘∈ [𝐾̃ ]
𝐹𝑘 · 𝑄𝜂̃3

?

=
𝐵−1∏
𝑐=0

𝑀

1

𝛼+𝑐
𝑐

𝐺

∑
𝑗 ∈ [𝐽 ] 𝜈𝑗 −

∑
𝑘∈ [𝐾̃ ] 𝛼 ·𝐵̂𝑘 ·𝜖𝑘 · 𝑄𝜂̃4

?

=
∏

𝑘∈ [𝐾̃ ]
(Ω𝑘 )𝜖𝑘 · 𝑅̃∏

𝑡 ∈ [𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏

𝑘∈ [𝐾̃ ]
Ω𝑘
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Figure 13:Aggregated VeRange type-3 range argument protocol

Πa.ty3

[ (
Cm(𝜔 (𝑡 ) ) ∈ G

)
𝑡 ∈ [𝑇 ] ;

(
𝜔 (𝑡 ) ∈ Z𝑝 , r𝜔 (𝑡 ) ∈ Z∗𝑝

)
𝑡 ∈ [𝑇 ]

]
Setup : Distinct 𝑧0, 𝑧1, ...., 𝑧𝐾̃ ∈ Z𝑝

L𝑘 [𝑋 ] ≜
∏

𝑘′ ∈{0,...,𝐾̃ }\{𝑘}

𝑋 − 𝑧𝑘′
𝑧𝑘 − 𝑧𝑘′

, L0 [𝑋 ] ≜
∏
𝑘∈ [𝐾̃ ]

(𝑋 − 𝑧𝑘 ),

𝐵̄ 𝑗 [𝑋 ] ≜
∑︁

𝑘∈ [𝐾̃ ]

¯̄𝐵 𝑗,𝑘 · L𝑘 [𝑋 ]

P ⇐ V : 𝛾
$←− Z∗𝑝

P :
®d(𝑡 ) ∈ ({0, ..., 𝐵 − 1})𝑁̃ is the 𝐵-ary digit decompo. of𝜔 : 𝜔 (𝑡 ) =

∑︁
𝑖∈ [𝑁̃ ]

𝑑
(𝑡 )
𝑖
· 𝐵𝑖−1

®r(d) $←− Z∗𝐽𝑝 , ®r(Ω) ,®r(𝐷 )
$←− Z∗𝐾̃𝑝 , s, r1, r2

$←− Z∗𝑝

r(Ω)
𝐾̃

≜
∑︁
𝑡 ∈ [𝑇 ]

𝛾𝑡 · r𝜔 (𝑡 ) −
∑︁

𝑘∈ [𝐾̃−1]
r(Ω)
𝑘

(
𝑤𝑗,𝑘 ≜ ¯̄𝑑 𝑗,𝑘 · ¯̄𝐵 𝑗,𝑘 ∈ Z𝑝

) 𝐽
𝑗=1,

𝐾̃
𝑘=1

, ¯𝑑 𝑗 [𝑋 ] ≜ r(d)
𝑗
· L0 [𝑋 ] +

∑︁
𝑘∈ [𝐾̃ ]

¯̄𝑑 𝑗,𝑘 · L𝑘 [𝑋 ]

B𝑗 [𝑋 ] ≜
¯𝑑 𝑗 [𝑋 ] · ( ¯𝑑 𝑗 [𝑋 ] − 1) · · · ( ¯𝑑 𝑗 [𝑋 ] − 𝐵 + 1)

L0 [𝑋 ](
𝑤𝑘 ≜

∑︁
𝑗 ∈ 𝐽

𝑤𝑗,𝑘

)
𝑘∈𝐾̃

, S[𝑋 ] ≜ s +

∑
𝑘∈ [𝐾̃ ]

𝑤𝑘 · L𝑘 [𝑋 ] −
∑

𝑗 ∈ [𝐽 ]
¯𝑑 𝑗 [𝑋 ] · 𝐵̄ 𝑗 [𝑋 ]

L0 [𝑋 ]

P ⇒ V :

(
𝐷𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐺

¯̄𝑑 𝑗,𝑘
𝑗

· 𝑄r(𝐷 )
𝑘

)
𝑘∈ [𝐾̃ ]

, 𝑅1 ≜
∏
𝑗 ∈ [𝐽 ]

𝐺
r(d)
𝑗
𝑗
· 𝑄r

1 , 𝑅2 ≜ 𝐺s · 𝑄r
2

(
Ω𝑘 ≜ 𝐺𝑤̃𝑘 · 𝑄r(Ω)

𝑘

)
𝑘∈ [𝐾̃ ]

, CmS ≜ PolyCmBCCGP [S] ∈ G𝑈 +1

P ⇐ V : 𝛽
$←− Z∗𝑝

P : B[𝑋 ] ≜
∑︁
𝑗 ∈ [𝐽 ]

𝛽 𝑗 · B𝑗 [𝑋 ]

P ⇒ V : CmB ≜ PolyCmBCCGP [B] ∈ G𝑈 +1

P ⇐ V : 𝑥
$←− Z𝑝 \{𝑧0, 𝑧1, ..., 𝑧𝐾̃ }

P ⇒ V :

(
¯𝑑 𝑗 ≜ ¯𝑑 𝑗 [𝑥 ] ∈ Z𝑝

)
𝑗 ∈ [𝐽 ] , 𝑦B ≜ B[𝑥 ], 𝜋B ≜ PolyEvBCCGP [B, 𝑥 ] ∈ Z𝑉 +1𝑝

𝑦S ≜ S[𝑥 ] ∈ Z𝑝 , 𝜋S ≜ PolyEvBCCGP [S, 𝑥 ] ∈ Z𝑉 +1𝑝

𝜂̃1 ≜
∑︁

𝑘∈ [𝐾̃ ]
r(𝐷 )
𝑘
· L𝑘 [𝑥 ] + r1 · L0 [𝑥 ], 𝜂̃2 ≜

∑︁
𝑘∈ [𝐾̃ ]

r(Ω)
𝑘
· L𝑘 [𝑥 ] + r2 · L0 [𝑥 ]

V :

(
𝐵̄ 𝑗 ≜ 𝐵̄ 𝑗 [𝑥 ] ∈ Z𝑝

)
𝑗 ∈ [𝐽 ]

Check



PolyVfBCCGP [CmB, 𝑥, 𝑦B, 𝜋B ]
?

= 1

PolyVfBCCGP [CmS, 𝑥, 𝑦S, 𝜋S ]
?

= 1∏
𝑗 ∈ [𝐽 ]

𝐺
¯𝑑𝑗
𝑗
· 𝑄𝜂̃1

?

=
∏

𝑘∈ [𝐾̃ ]
(𝐷𝑘 )L𝑘 [𝑥 ] · 𝑅

L
0
[𝑥 ]

1∑
𝑗 ∈ [𝐽 ]

𝛽 𝑗 · ¯𝑑 𝑗 · · · ( ¯𝑑 𝑗 − 𝐵 + 1) ?

= 𝑦B · L0 [𝑥 ]

𝐺
(𝑦S ·L0

[𝑥 ]+∑
𝑗 ∈ [𝐽 ]

¯𝑑𝑗 ·𝐵̄ 𝑗 ) · 𝑄𝜂̃2
?

=
∏

𝑘∈ [𝐾̃ ]
(Ω𝑘 )L𝑘 [𝑥 ] · 𝑅

L
0
[𝑥 ]

2∏
𝑡 ∈ [𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏

𝑘∈ [𝐾̃ ]
Ω𝑘

Figure 14: Aggregated Flashproofs range argument protocol

Π
a.flash

[ (
Cm(𝜔 (𝑡 ) ) ∈ G

)
𝑡 ∈ [𝑇 ] ;

(
𝜔 (𝑡 ) ∈ Z𝑝 , r𝜔 (𝑡 ) ∈ Z∗𝑝

)
𝑡 ∈ [𝑇 ]

]
P ⇐ V : 𝛾

$←− Z∗𝑝

P :
®b(𝑡 ) ∈ {0, 1}𝑁 is the bit-decomposition of𝜔 such that𝜔 (𝑡 ) =

∑︁
𝑖∈ [𝑁 ]

𝑏
(𝑡 )
𝑖
· 2𝑖−1

®r $←− Z∗𝐽𝑝 , ®r(𝑊 ) ,®r(𝑇 )
$←− Z∗𝐾𝑝 , ®r(𝑇 ) $←− Z∗𝐾 (𝐾 -1)/2

𝑝 , r𝑅 , r𝑆
$←− Z∗𝑝

r(𝑊 )
𝐾

≜
∑︁
𝑡 ∈ [𝑇 ]

𝛾𝑡 · r𝜔 (𝑡 ) −
∑︁

𝑘∈ [𝐾−1]
r(𝑊 )
𝑘(

¯̄𝑤 𝑗,𝑘 ≜ ¯̄𝑏 𝑗,𝑘 · ¯̄2𝑗,𝑘
)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ]

,

(
𝑡 𝑗,𝑘 ≜ r𝑗 · ( ¯̄2𝑗,𝑘 − 2 ¯̄𝑤 𝑗,𝑘 )

)
𝑗 ∈ [𝐽 ],𝑘∈ [𝐾 ](

𝑡
( 𝑗 )
𝑘,𝑘′ ≜

∑︁
𝑗 ∈ [𝐽 ]

¯̄𝑤 𝑗,𝑘′ ( ¯̄2𝑗,𝑘 − ¯̄𝑤 𝑗,𝑘 ) + ¯̄𝑤 𝑗,𝑘 ( ¯̄2𝑗,𝑘′ − ¯̄𝑤 𝑗,𝑘′ )
)
𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}

P ⇒ V :

(
𝑊𝑘 ≜ 𝐺

∑
𝑗 ∈ [𝐽 ] ¯̄𝑤𝑗,𝑘 · 𝑄r(𝑊 )

𝑘

)
𝑘∈ [𝐾 ]

,

(
𝑇𝑘 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝑡 𝑗,𝑘
𝑗
· 𝑄r(𝑇 )

𝑘

)
𝑘∈ [𝐾 ]

(
𝑇𝑘,𝑘′ ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
𝑡
( 𝑗 )
𝑘,𝑘′
𝑗

· 𝑄
r(𝑇 )
𝑘,𝑘′

)
𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}

𝑅 ≜ 𝐺
∑
𝑗 ∈ [𝐽 ] r𝑗 · 𝑄r𝑅 ∈ G, 𝑆 ≜

∏
𝑗 ∈ [𝐽 ]

𝐻
−(r𝑗 )2
𝑗

· 𝑄r𝑆

P ⇐ V : ®𝜖 $←− Z∗𝐾𝑝

P ⇒ V :

(
𝑣𝑗 ≜

∑︁
𝑘∈ [𝐾 ]

¯̄𝑤 𝑗,𝑘 · 𝜖𝑘 + r𝑗
)
𝑗 ∈ [𝐽 ]

, 𝜂2 ≜ ®r(𝑊 ) · ®𝜖 + r𝑅

𝜂1 ≜
∑︁

𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}
r(𝑇 )
𝑘,𝑘′𝜖𝑘𝜖𝑘′ + ®r

(𝑇 ) · ®𝜖 + r𝑆

V :

(
𝑢 𝑗 ≜

∑︁
𝑘∈ [𝐾 ]

¯̄2𝑗,𝑘 · 𝜖𝑘 − 𝑣𝑗
)
𝑗 ∈ [𝐽 ]

Check



∏
𝑗 ∈ [𝐽 ]

𝐻
𝑣𝑗 ·𝑢𝑗
𝑗

· 𝑄𝜂1
?

=
∏

𝑘∈ [𝐾 ],𝑘′ ∈ [𝐾 ]\{𝑘}
𝑇
𝜖𝑘𝜖𝑘′
𝑘,𝑘′ · ∏

𝑘∈ [𝐾 ]
𝑇
𝜖𝑘
𝑘
· 𝑆

𝐺

∑
𝑗 ∈ [𝐽 ] 𝑣𝑗 · 𝑄𝜂2

?

=
∏

𝑘∈ [𝐾 ]
𝑊
𝜖𝑘
𝑘
· 𝑅∏

𝑡 ∈ [𝑇 ]

(
Cm(𝜔 (𝑡 ) )

)𝛾𝑡 ?

=
∏

𝑘∈ [𝐾 ]
𝑊𝑘
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