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ABSTRACT
Blockchain technology and smart contracts have revolutionized dig-

ital transactions by enabling trustless and decentralized exchanges

of value. However, the inherent transparency and immutability

of blockchains pose significant privacy challenges. On-chain data,

while pseudonymous, is publicly visible and permanently recorded,

potentially leading to the inadvertent disclosure of sensitive infor-

mation. This issue is particularly pronounced in smart contract

applications, where contract details are accessible to all network

participants, risking the exposure of identities and transactional

details.

To address these privacy concerns, there is a pressing need for

privacy-preserving mechanisms in smart contracts. To showcase

this need even further, in our paper we bring forward advanced

use-cases in economics which only smart contracts equipped with

privacy mechanisms can realize, and show how fully-homomorphic

encryption (FHE) as a privacy enhancing technology (PET) in smart

contracts, operating on a public blockchain, can make possible the

implementation of these use-cases. Furthermore, we perform a

comprehensive systematization of FHE-based approaches in smart

contracts, examining their potential to maintain the confidentiality

of sensitive information while retaining the benefits of smart con-

tracts, such as automation, decentralization, and security. After we

evaluate these existing FHE solutions in the context of the use-cases

we consider, we identify open problems, and suggest future research

directions to enhance privacy in blockchain smart contracts.
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1 INTRODUCTION
One of the significant challenges of blockchain-based (but also gen-

erally all digital-based) transactions is the issue of privacy. The

decentralized and transparent nature of blockchains especially is

at odds with privacy, as all on-chain data is widely distributed and

publicly visible, evenwhen hidden behind pseudonymous addresses.

Moreover, the immutable and permanent nature of blockchain

records can exacerbate such privacy concerns. Once information

is written into a block, it cannot be altered or deleted, which can

potentially lead to permanent disclosure of sensitive information.

These privacy concerns inherently extend to blockchain smart

contract applications. In traditional contract law, the terms and con-

ditions of a contract are usually known only to the parties involved.

In contrast, smart contracts are typically visible to all participants

of the blockchain network. This transparency, while beneficial for

verifying transactions and ensuring accountability, can inadver-

tently disclose sensitive information. This can include the identities

of the parties involved, the value, and nature of the transactions,

among other details, which can be exploited by malicious actors or

even lead to competitive disadvantage in business scenarios.

Therefore, there is a need for privacy-preserving mechanisms in

smart contracts, and this need has been growing even further after

recent works [9, 40, 67, 68] have highlighted how smart contracts

with those mechanisms can make novel protocols in economics

possible. In short, privacy-preserving smart contracts would allow

the benefits of this technology, such as programmability, decen-

tralization, and security, ensure that sensitive information remains

confidential, and facilitate new protocols in economics which are

not feasible today.

Our contributions. In this paper, we perform a systematization

on solutions that adopt fully-homomorphic encryption (FHE) as

the main ingredient to enable privacy-preserving smart contracts.

We first make a comprehensive study on existing FHE solutions

in a smart contract setting, highlighting the nuances that might

become a constraining factor in real-world deployments. We then

discuss how FHE can uniquely make novel use-cases possible in

economics that extend beyond the standard tokenized deposit use-

case, and provide the protocols of such cases in detail. Given the

above available tools and the use-cases, we examine if and how these

tools can indeed realize these use-cases in practice by performing

a comprehensive evaluation. Finally, based on our findings, we

identify open problems and suggest future research directions.

1.1 What about other PETs?
In the context of smart contracts and economic applications, sev-

eral privacy-preserving technologies (PETs) such as zero knowl-

edge proofs, homomorphic encryption, trusted execution environ-

ment (TEE) and secure multi-party computation (MPC) have been

explored to address these privacy challenges. However, it turns

out that fully-homomorphic encryption (FHE) in particular, can
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make new protocols in economics possible in a smart-contract

setting [40, 67, 68], allowing the contract to make the needed com-

putations over encrypted data directly. Other technologies in such

scenarios might introduce undesireable tradeoffs for these cases.

For instance TEEs shift the assumption from the consensus safety

to trusted hardware, while general purpose MPC might assume

non-collusion and liveness of servers instead of the liveness and the

decentralized nature of a blockchain. Looking ahead, in Sections

4.3 and 4.4 we provide more reasons on why our use-case mecha-

nisms are a better fit for FHE. Finally, FHE is in a unique position

to address blockchain-related problems such as Miner Extracrable

Value (MEV) [26], which is associated with centralization, fairness

and security concerns [42], and is generally considered a desireable

and sought-after technology in blockchain applications [31] as well

as in machine learning [52].

1.2 Smart contract operations
One of the most common standards in Ethereum smart contracts

is ERC-20 [71], a standardized framework for creating and han-

dling tokens on the Ethereum blockchain. ERC-20 specifies a set

of functions and events that a contract must implement to be con-

sidered compliant, allowing different tokens to be easily integrated

into decentralized applications (dApps), wallets, and exchanges.

It defines several key functions, such as transferFrom(address,
address, uint256) which transfers tokens from one address to

another, using the approved amount. However, transferFrom()
does not preserve the privacy of the sender and receiver, nor of

the amount. Since all transactions and contract interactions are

publicly recorded on the blockchain, the sender’s and receiver’s ad-

dresses, the amount transferred, and other associated metadata are

visible to anyone observing the Ethereum’s blockchain. In fact, the

amounts any participants hold of that ERC-20 token (represented as

a mapping of amounts to addresses in the ERC-20 smart contracts)

are public too.

One of the first proposed solutions to address this was Zether [19],

adding confidential transactions capabilities into smart contracts. It

introduced a layer of privacy using zero-knowledge proofs (ZKPs)

and the additively-homomorphic variant of ElGamal encryption

scheme, which enabled users to hide the transaction amount while

still enabling the contract (and its validators) to validate the correct-

ness of those transactions without needing to learn their details.

However, it introduced additional complexity and resource require-

ments, increasing the gas costs per transaction. In the variant of

Zether hiding the sender and the receiver as well (i.e., anonymity)

beyond just hiding the transferred amount (i.e., confidentiality),

is considered impractical for deployment in the public Ethereum

blockchain, despite its subsequent efficiency improvements [29].

Regardless, approaches such as Zether do not provide any addi-

tional privacy-preserving functionalities on smart contracts besides

token transfers. In fact, smart contracts have much more pow-

erful functionalities such as digital bonds [3], or more advanced

standards such as ERC1155, ERC1440, ERC2020 [1, 2, 50], etc. In

addition, even in standard tokenized asset contracts, there is a need

for additional functionalities beyond simply minting, burning and

transferring assets, such as applying interest over balance sheets,

exchange assets with different rates, etc. As a result, protocols such

as Zether using additive homomorphic encryption fall short of en-

abling more advanced smart contract functions and fulfilling more

complex use cases. Therefore fully-homomorphic encryption (FHE)

would be required to realize these in a privacy-preserving way.

1.3 Related Works
Works in the Computer Science field.

A recent SoK paper [49] surveyed the potential of realizing

privacy-preserving smart contracts with PETs such as homomor-

phic encryption, multi-party computation (MPC), zero-knowledge

proofs (ZKPs) trusted execution environments (TEEs). However,

this work is a much more high-level landscape overview without

focusing on the details of actual deployments of these PETs in a

smart-contract environment, and without considering advanced

use-cases in economics beyond standard ones such as tokeniza-

tions or auctions. In contrast, our work has a narrower scope on

applying FHE in a smart contract setting, considers existing imple-

mentations, and shows the potential of this technology to realize

novel applications in economics. Another SoK work investigated

the integration of PETs in blockchain applications, including smart

contracts [7]. While this work extended beyond confidentiality in

blockchains and considered applications which hide the compu-

tation itself (“Function Privacy"), it is limited to SmartFHE [58]

as an FHE implemenation in smart contracts, without specifying

how FHE can be deployed in practice in a smart contract environ-

ment or considering actual use-cases to further support the need

of Function Privacy. Other works include Zkay [60] which extends

Solidity smart contracts by data privacy annotations using addi-

tive homomorphic encryption and non-interactive zero-knowledge

(NIZK) proofs, and ZeeStar [59], which provides a compiler to en-

able instantiation of privacy preserving smart contracts without

substantial expertise, however it also only supports additive ho-

momorphisms. Zexe [16] similarly implements a privacy-oriented

scripting language for digital currencies similar to Zerocash [13],

without however a direct support for stateful computations such

as those in smart contracts.

In a more general setting, outside the field of blockchains and

smart contracts, there is a plethora of works in implementing or

improving FHE computations. A recent SoK paper [80] focused on

the inefficiencies of FHE computations stemming from complex

polynomial multiplications and maintenance operations such as

bootstrapping, and how these can be improved using GPUs or Field

Programmable Gate Arrays (FPGAs). In fact, several recent works

have proposed methods for accelerating various FHE computations

using FPGAs, such as [48, 61, 72] for the BGV FHE scheme [18], [36,

44, 62, 63] for the BFV scheme [17], [54, 73, 74] for CKKS [20] and

[32, 45] for THFE [21]. These methods utilizing FGPAs can enable

acceleration of FHE computations over a few orders of magnitude

depending on the FPGA hardware, the encryption parameters and

the FHE scheme itself. Other related works include a survey on the

existing FHE compilers [70], implementing an open-source library

(OpenFHE) which offers support for a wide range of FHE schemes

such as leveled and bootstrappable FHE [11] and implementing

libraries utilizing GPUs for efficiency [82]. Finally, [10] proposes the

use of FHE to facilitate privacy in “Dark Pools", however with the

absence of publicly available evaluation data it is unclear how this
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would perform in a smart contract setting. Other papers followed

an MPC approach for the same problem [23, 47].

Works in the Economics field.
There is a nascent literature in economics leveraging encryption

for privacy-preserving computations. Previous research that has

usedMPC include a double auction for the Danish sugar beet market

[15]; securely link Estonian education and tax databases [14]; a

proposed method for protecting privacy in large-scale genome-

wide association studies [37]; a simulation of a decentralized and

privacy-preserving local electricity trading market [6]; an analysis

of the gender wage gap in Boston using data from a large set of

Boston employers [39]; use of FHE-MPC to collect financial risks

[5] and cybersecurity data [27].

The combination of cryptography, distributed ledger technolo-

gies (“DLTs”) and FHE can expand the frontier of feasible resource

allocations. The unique elements that create this possibility are

smart contracts, selective privacy and verifiable computing. The

smart contract carries out instructions that are pre-agreed between

participants, thereby preventing opportunistic ex-post renegotia-

tion. Selective privacy overcomes trust deficits by controlling the

disclosure of messages and information. Ensuring privacy of mes-

sages prevents third-parties from making opportunistic use of pri-

vate information. FHE on a (trusted) DLT contributes to overcoming

the trust deficit by enabling agents to verify that the smart contract

has implemented the correct algorithmwithout revealing the under-

lying elements of the computations or the output. The combination

of these attributes enable implementations of resource allocation

schemes, carried out by the smart contract, that meet the incentive

compatibility constraints of truth-telling revelation mechanisms

[35]. We illustrate here with the concrete examples fromMIT LEAD

(2025) [40] of how smart contracts with FHE on DLT can improve

resource allocation.

• We start with the implementation of a simple model from

Lee, Martin, Townsend (2024) [41] which illustrates the

differences between the “legacy settlement system” and a

DLT-based one. In that simple model, a broker needs to de-

cide whether he agrees to carry inventory (hence, financial

risks) to facilitate trade between two parties which do not

know of each other’s coincidental needs, and who could

renege or renegotiate the terms for this trade. In today’s

systems the broker has to earmark portions of its balance

sheet to insure against these risks. In a DLT world the bro-

ker can enter into atomic and composed smart contracts

with both parties, such that the asset never touches its bal-

ance sheet (as the asset can flow atomically along reverse

payment flows from the buyer to the seller).

• We then show how a smart contract can implement a self-

reporting insurancemechanism, with a version of themodel

first described in Townsend (1988) [66], then described with

FHE in [67] and finally inscribed in the context of DLT and

FHE in [68].

• We finally extend this example by adding a repayment leg,

which corresponds to a repo market. The FHE on DLT

solution presented here is the tokenized implementation of

MIT LEAD (2025) [40] inspired by the economic model in

Aronoff and Townsend (2022) [9].

All three examples show how FHE on DLT can potentially reduce

frictions in financial intermediation by facilitating multilateral co-

ordination with limited commitment. A privacy-preserving smart

contract with verifiability of computation on a public blockchain

solves trust issues thereby incentivizing agents to reveal their pref-

erences to the smart contract. This, in turn, enables the design of

smart contracts that simultaneously increase trade volume (and in

the case of self-reporting insurance, make feasible an entirely new

market) and reduce the level of inventories an intermediary must

carry.

2 CRYPTOGRAPHIC PRIMITIVES - FULLY
HOMOMORPHIC ENCRYPTION

We now provide a basic background on FHE as a cryptographic

primitive and the schemes used by the smart contract FHE solutions.

A public key encryption scheme for a message spaceM is a triple

of (probabilistic polynomial time) algorithms (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)
given by

• The key generation algorithm 𝐾𝑒𝑦𝐺𝑒𝑛 which, on input a

security parameter 1
𝜆
, outputs a pair of secret and public

keys (𝑠𝑘, 𝑝𝑘).
• The encryption algorithm 𝐸𝑛𝑐 which, on input the public

key 𝑝𝑘 and message𝑚 ∈ M, outputs a ciphertext 𝑐 . When

clear from context, we suppress the input 𝑝𝑘 to 𝐸𝑛𝑐 .

• The decryption algorithm 𝐷𝑒𝑐 which, on input the secret

key 𝑠𝑘 and a ciphertext 𝑐 , outputs either a message𝑚 ∈ M
or ⊥.

We say that the encryption scheme is correct if

𝐷𝑒𝑐 (𝑠𝑘, 𝐸𝑛𝑐 (𝑝𝑘,𝑚)) =𝑚
for all messages𝑚 ∈ M and key pairs (𝑠𝑘, 𝑝𝑘) ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆).

We say that the encryption scheme is IND-CPA secure if for any

probabilistic polynomial time adversary A, the probability that A
wins the following game is at most

1

2
+ 𝑛𝑒𝑔𝑙 (𝜆):

• Sample 𝑏 ← {0, 1}, (𝑠𝑘, 𝑝𝑘) ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆).
• Send 𝑝𝑘 to A and receive𝑚0,𝑚1 ∈ M from A.

• Send 𝐸𝑛𝑐 (𝑚𝑏 ) to A and receive 𝑏′ ∈ {0, 1} from A.

• A wins if 𝑏 = 𝑏′.

Let F ⊆ ∪𝑤>0{𝑓 : M𝑤 → M} be a set of functions over

message tuples. A public key encryption scheme isF -homomorphic

if it has an evaluation algorithm 𝐸𝑣𝑎𝑙 which, on input the public

key 𝑝𝑘 , a function 𝑓 ∈ F with 𝑓 :M𝑤 →M for some𝑤 > 0, and

a ciphertext tuple ®𝑐 = (𝑐1, . . . , 𝑐𝑤), outputs a ciphertext 𝑐 . We say

that the homomorphic encryption scheme is correct if

𝐷𝑒𝑐 (𝑠𝑘, 𝐸𝑣𝑎𝑙 (𝑝𝑘, 𝑓 , ®𝑐)) = 𝑓 ( ®𝑚)
for all functions 𝑓 ∈ F with 𝑓 : M𝑤 → M for some 𝑤 > 0,

message tuples ®𝑚 = (𝑚1, . . . ,𝑚𝑤) ∈ M𝑤
, key pairs (𝑠𝑘, 𝑝𝑘) ←

𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆), and ®𝑐 = (𝑐1, . . . , 𝑐𝑤) where 𝑐𝑖 ← 𝐸𝑛𝑐 (𝑝𝑘,𝑚𝑖 ) for all
𝑖 ∈ {1, . . . ,𝑤}.

A homomorphic encryption scheme is fully homomorphic if it is

F -homomorphic, where F is the set of all (efficiently computable)

functions.

A homomorphic encryption scheme is leveled homomorphic if all

algorithms take in an auxiliary parameter ℓ , run in time polynomial

in ℓ (and 𝜆), and are (say) Fℓ -homomorphic, where Fℓ is the set
3
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of all “depth-ℓ computations”. Since the details of this will not be

pertinent to our discussion, we do not elaborate further and instead

refer the reader to [34] for further details. The standard technique

of bootstrapping (homomorphically decrypting and re-encrypting)

can be used to turn leveled homomorphic encryption schemes into

fully homomorphic ones. However, the bootstrapping is extremely

time consuming.

There are several homomorphic encryption schemes known to-

day. Of relevance to our discussion, the BFV encryption scheme [17]

is a homomorphic encryption scheme based on the Ring-Learning

with Errors (RLWE) assumption [43], while the TFHE encryption

scheme [21] is a homomorphic encryption scheme based on the

Learning with Errors (LWE) assumption [51]. Different homomor-

phic encryption schemes have distinct advantages. BFV is efficient

when it comes to integer arithmetic, while TFHE is efficient when

it comes to Boolean operations. Both support Single Instruction

Multiple Data (SIMD) batching, which allows a vector of messages

to be encrypted as a single ciphertext. TFHE can implement not

only (linear) additions and multiplications, but also non-linear op-

erations, e.g., ReLU (rectified linear unit) activations. Also, TFHE

performs very fast bootstrapping after every homomorphic opera-

tion (a TFHE bootstrapping requires only about 10ms on a CPU).

Thus, depending on the application at hand, one picks the appro-

priate encryption scheme with which to work.

3 SMART CONTRACT FHE SOLUTIONS
3.1 Sunscreen
Sunscreen implements an FHE compiler to enable web3 (and web2)

engineers to write programs using FHE without requiring extensive

knowledge of the underlying FHE mechanics (such as arithmetic

circuits, polynomial parameters, etc.) while remaining efficient. The

compiler is based on Microsoft’s SEAL library [53] and uses the

BFV-FHE scheme [18]. Its core cryptographic library [65] (written

in Rust) implements the compiler (Rust decorator) to compile cir-

cuits into a program, a runtime to evaluate the generated program

on encrypted values, and a codec to encrypt and decrypt 256-bit

numbers. Sunscreen’s technology also includes an Ethereum Vir-

tual Machine (Rust EVM) [64] with adds two additional opcodes:

FHE_ADD and FHE_MULTIPLY.
The SmartFHE framework [57, 58] is similar to Sunscreen be-

cause it utilizes the same underlying cryptography (e.g., BFV). The

difference is that SmartFHE adds zero-knowledge proof systems to

prove the properties of ciphertexts. Therefore, for our systemati-

zation purposes, we treat SmartFHE in a fashion similar to that of

Sunscreen.

3.2 Zama
Zama offers a comprehensive software suite to make FHE accessible

and practical. Zama’s technology includes the following compo-

nents:

• The core cryptographic library TFHE-rs (written in Rust) [78]

which uses Fully Homomorphic Encryption over the Torus

(TFHE) encryption scheme [21], and includes:

– A codec to encrypt and decrypt 32-bit numbers

– API to run FHE operations in Rust

• An SDK [24, 77] to develop and compile FHE enabled smart

contracts in Solidity

• An SDK to develop and compile FHE programs written in

Python [75]

• An Ethereum client (Go-lang) [76] that can understand

execute the smart contracts.

Zama’s cryptographic library offers a wide range of programma-

bility features, such as high-precision encrypted integers (up to

256 bits), a full range of operators (such as ‘+’, ‘-’, ‘*’, ‘/’, ‘<’, ‘>’,

‘==’ etc.), encrypted “if-else" conditionals to check conditions on

encrypted states, on-chain PRNG to generate secure randomness

without using oracles, unbounded compute depth for consecutive

FHE operations and a look-up table optimization [22].

A vital feature also is “Configurable Decryption”, which users

can instantiate with threshold [25], centralized, or on a “Key Man-

agement System" (KMS) based decryption [79]. The purpose is to

alleviate the problem of having a single “global” public key used

for FHE operations, where a naive approach would require a single

centralized private key contradicting the decentralized setting of a

blockchain. Zama’s KMS combines a threshold MPC protocol [25]

to facilitate key generation and decryption, a Proof of Authority

consensus [8] to ensure the integrity of decryptions, and TEEs to

store private key shares. However, at the time of writing, KMS is

still in the early stages and is not deployed by Zama.

Fhenix [81] is a similar framework built on top of Zama’s TFHE-

rs; however, it serves as a layer-2 blockchain solution rather than a

layer-1. Therefore, we treat Fhenix similarly to Zama’s layer-1 SDK

for our systematization purposes.

4 APPLICATIONS
We now consider use-cases where implementations with FHE and

smart contracts on distributed ledgers enable improvements in

resource allocations that are not otherwise obtainable. After re-

viewing the basics of FHE applied to exchanges of tokenized assets

in Section 4.1, we compare the performance of Sunscreen and Zama

on trading protocols in two domains with significant economic

impact. Section 4.2 presents a first and very general model of fi-

nancial intermediation. Section 4.3 extends the previous model to a

more automated situation without intermediaries, and links that to

insurance. Section 4.4 extends the previous models with also future

repayment legs, and links that to repo and collateral markets.

4.1 Some first use-cases with privacy
A straightforward application for FHE would be to implement

privacy-preserving tokenized assets in smart contracts, such as

ERC20, ERC1155 extensions [50, 71]. In such contracts, the asset

values are hidden with FHE, therefore providing confidentiality

for the sender and receiver. Essentially this approach would en-

hance existing confidential smart contracts [30, 56], i.e. it would

not be limited to only adding and subtracting amounts (e.g. when

minting, burning, sending or receiving assets) but also performing

multiplication operations (e.g., applying interest, or performing

computation as in Automated Market Makers (AMMs) [12]). The

costs of these operations is typically associated with the cost of

a single add() or mul(). Note that one could still implement such

contracts using semi-homomorphic encryption instead of FHE, if

4
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the expected mul() operations will be sparse - in this approach

semi-homomorphic encryption would be used for everyday add()
operations while ZK proofs would be used for showing correct

transitions between states for mul() operations.
Other potential use-cases for privacy-preserving smart contracts

include a collateral pledge between funds with ERC1155 token

contracts [46], dark pools in securities trading [10, 23, 47], or infor-

mation flows to deal with crisis contagion [55].

4.2 A model of intermediation without
inventories

Lee, Martin, Townsend (2024) [41] describe a model where a smart

contract on a DLT eliminates the requirement of intermediaries

to pre-fund trades between clients. The model demonstrates how

these technologies enable an expansion of trade and reduction of

inventories at the same time. The model is as follows:

• Participant A has an asset that participant C desires.

• A and C do not interact directly with each other.

• A broker B intermediates between A and C, interacting

with either one first with equal probability (50%).

If B interacts with A first, B must decide whether to take on risk

and purchase the asset to sell it to C later (potentially profiting if C

buys it or incurring losses if C does not). Conversely, if B interacts

with C first, they can agree that B will acquire the asset from A for

C. However, this leads to a hold-up problem. After B has purchased

the asset from A, C could opportunistically reneg and lower its bid,

knowing that B will suffer a loss if it is unable to resell the asset. In

response, C could mitigate its risk of loss by lowering the price at

which it is willing to purchase from A. This will reduce the volume

of trade.
1

Building on the set up of Lee, Martin, Townsend (2024), [40]

show that the hold-up problem can be eliminated and the trade

volume increased if the following two conditions are obtained;

(i) C does not know whether B has acquired the asset when it

agrees to the price and (ii) B and C place the asset and money in

escrow. There are two obstacles to implementing this solution. One

is that B must trust that the escrow will not leak information to C.

The other is that the transaction must be executed atomically, so

that C’s money is not locked in escrow without consummating a

transaction. Under current technology trust is reputational. One

way to overcome these obstacles is with an FHE smart contract that

moves tokenized financial objects on a blockchain. In that case trust

resides in the guaranteed execution of the smart contract and the

guaranteed atomicity. [40] propose the following simplest smart

contract implementation, which effectively leveraged blockchain-

based programmability and privacy-preserving smart contracts:

Assume the tokenized asset resides on the blockchain as an

ERC20 token. The ERC20 contract employs Fully Homomorphic

Encryption (FHE), keeping allocations private. Initially, A owns the

token, as shown in Figure 1:

A and B meet. They can agree on conditions for B to potentially

sell to C later, but B may not want to commit to buying the asset

outright. They draft a smart contract specifying the conditions

under which B would buy the asset (e.g., a minimum price). A also

1
There is an analogous hold-up problem in A’s transaction with B. If A knows that B

has a buyer (C) lined up, then A can strategically renegotiate its price with B.

Figure 1: Initial allocation before any trade.

A’s address on-chain B’s address on-chain C’s address on-chain

001 unit of that asset

In blue here is the DLT world; outside of this box is off-chain

The ERC20 tokenized asset smart contract (deployed on a “trusted" DLT)

authorizes the ERC20 smart contract to transfer 1 unit of the asset

from A to B when the conditions are met, as illustrated in Figure 2:

Figure 2: Smart contract negotiated between A and B

A’s address on-chain B’s address on-chain C’s address on-chain

00

The ERC20 tokenized asset smart contract (deployed on a “trusted" DLT)

1 unit of that asset approved

to be spent by smart contract

between A & B

Smart contract between A and B

IF & WHENEVER is deposited here THEN execute the ERC20 transferFrom()

function to move the 1 unit of asset from A’s account to C’s account on-chain

& transfer from here to A’s account on-chain, all these ATOMICALLY

A tells the ERC20 token contract to approve Smart contract between

A & B to transferFrom his account to anyone at anytime up to

1 unit of that asset

A B

A & B negotiate off-chain on price(A), and someone

deploys Smart contract between A and B on-chain

B and C meet later. If they agree on a deal, C deposits the price

into the smart contract B drafted with A. This smart contract will

then transfer 1 unit of the asset from A to B. The transaction can be

made atomic, ensuring that either both transfers (price from C to B

and asset from A to B) occur simultaneously, or neither happens.

This atomicity can also be extended to the transfer of the price from

C to B and the asset from B to C. This mitigates the risk of reneging

and incentivizes all participants to announce their true prices, as

illustrated in Figure 3:

4.3 Smart contracts to replace B of the previous
example, and links to the insurance industry

One can ask the question of how A and C could negotiate directly

without having B in the middle. This is similar to a problem asked in

Townsend (1988) [66] and Townsend and Zhang (2020) [67] aiming

at creating incentive compatible “self-reporting” contracts. Indeed,

we want A and C to share with each other their true preferences,

so that the trade they end up with is jointly optimal. This prob-

lem is quite general; in fact, this forms the basis of negotiating the

terms of any risk sharing contract between adverse parties. Here

5
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Figure 3: B andCusing the smart contract negotiated between
A and B

A’s address on-chain B’s address on-chain C’s address on-chain

+1

The ERC20 tokenized asset smart contract (deployed on a “trusted" DLT)

0 (the asset doesn’t need to

touch B’s balance sheet)

Smart contract between A and B

IF & WHENEVER is deposited here THEN execute the ERC20 transferFrom

function to move the 1 unit of asset from A’s account to C’s account on-chain

& transfer from here to A’s account on-chain, all these ATOMICALLY

B

If C agrees C (or it can be B, it would work the same)

just need to deposit price(A) to smart contract between

A & B and this triggers atomic settlements for all steps

-1

C

the specificity of Lee, Martin Townsend’s model is that to encour-

age C to share its real preference, A must not be able to know

how much C wants the asset, so that A doesn’t take advantage

of that knowledge. So this "self-reporting" contract must also be

non-verifiable, e.g. A shouldn’t be able to verify whether C is in bad

need for that asset. This can be related to the insurance industry,

in which historically contracts have required that claims must be

verifiable e.g. building damage, hospitalization, or drop in asset

price. It is desirable however to provide an insurance mechanism

for unverifiable claims, or for claims that participants would want

to keep private even if these could be verified by third parties (for

instance when a bank that has a liquidity shortfall). Examples of

such claims could be “the data I got hacked is worth $𝑥 to me" or

“I held $𝑦 of Bitcoin and lost my secret key". Insuring such claims

is difficult since self-reporting of loss creates incentives to either

overstate claims (for instance to get more insurance payouts), or

to understate claims (for instance if reputation could be affected

negatively). An especially impactful area of potential application

of self-reporting claims is the provision of loans and contingent

money transfers to low wealth people in amounts that are too small

to justify incurring the cost of verification [38]. A key feature that

has, up to the present time, prevented the development of a self-

reporting insurance market is the difficulty of designing a market

mechanism wherein a policyholder is assured that its claim will

not be revealed to any party, including the insurer.

We delegate the details of the exact incentives to [66]
2
and trust

here (from the results of [66]) that C, who is now equivalent to a

policyholder, reveals their true need for the asset A has, in one of

either two prices for simplicity - a high need ℎ which is higher than

the price A wants to sell the asset, and a low need 𝑙 which would

be lower than the priccec A wants to sell the asset.

The FHE smart contract scheme description. As in Lee Mar-

tin Townsend (2024), there are two time periods, time 1 before A

and C meets, and time 2 for delivery of the asset if the trade was

agreed upon; two agents, C (now akin to a policyholder) and A (now

2
Appendix A.1 contains a description of the model in [66].

akin to an insurer, who deploys a smart contract to negotiate with

C). As stated above, C has two policyholder states (ie of how much

C needs the asset, akin to whether C incurred high losses requiring

high disbursement from the insurer, or low losses requiring less

disbursement from the insurer) ℎ and 𝑙 , where ℎ > 𝑙 . At time 1 the

agents agree to contract terms that will be encoded (for instance

by equation 6 from Figure 4 with all the encrypted parameters into

the smart contract’s transferFrom() function), which determine the

contingent payouts at 𝑡2, (ℎ or 𝑙 ). At time 2 the policyholder C mes-

sages the insurer A loss claim ℎ or 𝑙 (which, by assumption, is its

true state)
3
and the payout is a random function of the policyholder

claim. The high need, ℎ, which is higher than the price A wants

to sell the asset, is imperfectly correlated with the policyholder

reporting a large claim (i.e. there is a small probability the policy-

holder will receive the asset even for a low price or in the insurance

analogy in the case of claim of small loss). This is a salient point of

[66], as this small probability, encoded as a random variable in the

smart contract, that the policyholder receives the asset regardless

of its true need, which makes it impossible to infer with certainty

the policyholder’s state. A accepts this small probability to provide

the incentives for C to announce its true need without fearing that

A can infer it (and say broadcast to competitors that C needs that

asset badly). The smart contract algorithm is the following:

The smart contract payout formula is 𝐸𝑛𝑐 (ℎ) .𝐸𝑛𝑐 (𝑏) + [𝐸𝑛𝑐 (1) −
𝐸𝑛𝑐 (𝑏)] .(𝐸𝑛𝑐 (𝑙) + [𝐸𝑛𝑐 (ℎ − 𝑙)] .𝐸𝑛𝑐 (𝑟3)), where 𝑟3 is the Bernoulli
random variable deciding if even a good state of the world will lead

to high payout
4
, and where 𝑏 is sent by the policyholder with a

value 1 if they are in a bad state of the world, and 0 if not.

This encoding of the terms into the smart contract is shown as

step 1 on Figure 4. Then, still at the first contracting period, the

insurer needs to make a deposit
5
(in the forms of ERC tokens for

instance, or tokenized deposits, or wCBDC) to the smart contract

that can accommodate themaximumpayout possible corresponding

to those 2 states of the world, i.e. max(ℎ,𝑙)=ℎ (step 2 on Figure 4),

to ensure that the smart contract can make the payment to match

the loss reported by the policyholder at time 2.

At the second period, the policyholder sends to the smart con-

tract an FHE encrypted dummy value 𝑏, corresponding to 1 if the

policyholder is in the high loss state of the world, and to 0 if the

policyholder is in the low loss state of the world (step 3), as well as

a random bit 𝑟1 (step 4) sampled uniformly. The contract then adds

another layer of randomization through the sampling of 𝑟2 (step 5),

which can be an external randomness source, to ensure that neither

the policyholder nor the insurer can bias
6
the final random bit 𝑟3

3
We limit the policyholder to 2 states WLOG. Townsend (1988) [66] shows the state

space can be an arbitrarily large number of discrete losses.

4
Townsend and Zhang (2020)[67] shows how this random value should be drawn by

the "central planner" under FHE encryption given a fixed probability distribution. Here

this randomization is proxied via sampling of randomness generated by both parties,

due to limitations of smart contracts not being able to generate randomness on their

own. In general, the underlying distributions and the necessary operations can be

picked to fulfill the requirements of [67].

5
In the case of negative payouts such as insurance premium, the policyholder is

required to make a deposit

6
Townsend (1988) [66] designs a self-reporting insurance contract where policyholders

have an incentive to truthfully report their loss state. A key element is the random-

ization of payouts, which blocks inference about policyholder loss reporting. This

ensures the integrity of loss reporting by preventing policyholders from gaming the

system with their own loss reporting.
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(step 6). Finally, the smart contract through the homomorphic oper-

ations shown step 6 in Fig. 4 computes the payout and transfers the

corresponding amount to the policy holder. Note that the random

probability that the low losses state to the world also leads to a

payout ℎ obscures to the outside observers if the high payout was

indeed due to a high or low loss state of the policyholder.

The mechanism requires three things to make it viable; (i) pri-

vacy of the messages sent from agents to the mechanism operator,

(ii) trust that the mechanism operator will not leak information

on one agent’s message to another agent and (iii) trust that the

mechanism operator will implement the agreed upon algorithm to

determine and send money to agents. These three requirements are

met when using FHE-based smart contracts on a public blockchain:

Encrypting messages solves (i). FHE computation on the ciphertext

by the smart contract solves (ii). Verification of the smart contract

computation on a public blockchain solves (iii) (contingent on trust

in the integrity of the blockchain).

4.4 Adding a repayment leg: a repo trade with a
coordination problem

If we add a future repayment leg (the "second-leg") to our model, so

that A repurchases the asset, we are describing a repo market. The

smart contract delineating the terms of sale of the asset for the first

leg (from section I) can now also include a second transferFrom()

(the standardized ERC20 function), this time to be activated at the

second-leg. The second-leg introduces a complication. At least one

of A or B is motivated to enter into a repo trade in order to use

the financial object it acquires at the first-leg. This means that, say

C, will have transferred the object and the second transferFrom()

function in this smart contract would have nothing left to withdraw

from C’s account. One possible function of a broker-dealer in a repo

trade is to ensure delivery of the object to its client at the second-

leg. To bring the example closer to the empirical structure of repo

market we introduce a second-broker-dealer, as in the economic

model in Aronoff and Townsend (2022) [9] used for the FHE on DLT

presented below, from MIT LEAD (2025) [40] (inspired similarly by

Aronoff and Townsend (2022) [9]). A is then the client of 𝐵1 and C

is the client of 𝐵2.

Figure 5: Illustration of the payment and the repayment legs,
with different "insurers" - eg broker dealers - for each leg

Protocol description. A is now a repo borrower who wants to

sell a financial asset, 𝑇 , in exchange for money,𝑀 , at the first-leg

and who wants to repurchases the asset at a the second-leg.

So 𝐴 owns the financial asset 𝑇 and desires to sell it. 𝐶 desires

to purchase 𝑇 in exchange for money𝑀 . 𝐴 trades with its broker-

dealer 𝐵 and 𝐶 trades with its broker 𝐵2. The intermediated chain

is depicted in Figure 8. We set as the objective to trade to maximize

the volume of 𝑇 at which the two broker-dealer price/volume pairs

match. The protocol proceeds in the following sequential order:

Step 1, 𝑡1 [off-chain, or in separate sets of on-chain smart con-

tracts ]: each client and its broker-dealer agree to a schedule of

money,𝑀 , and volume of financial asset,𝑇 , denoted {𝑀,𝑇 }𝑐,𝑖 where
𝑐 = {𝐴,𝐶} indicates the client and 𝑖 ∈ {1, ..., 𝑛} indicates how many

units𝑀 (resp. how many units 𝑇 ) the client is willing to trade for i

units of𝑇 (resp. for i units of𝑀). For simplicity and without loss of

generality we assume both schedules have the same size 𝑛. Below

we represent a visual example where n=3, with two examples of

schedules from 𝐴 and 𝐶 . A client 𝑐 = {𝐴,𝐶} agrees to transact at

any pair {𝑀,𝑇 } ∈ {𝑀,𝑇 }𝑐,𝑖 that gets matched in the inter dealer

market as in steps 2 to 4.

Figure 6: Steps 0 and 1

Step 2, 𝑡2: [on-chain] Each broker-dealer then encrypts the sched-
ule of its client and sends 𝐸𝑛𝑐 (𝑝𝑘, {𝑀,𝑇 }𝑐𝑑 ,𝑖 ) 𝑖 ∈ {1, ..., 𝑛} to the

smart contract. To ensure compliance, a broker-dealer may be re-

quired to send a deposit of the financial object it intends to trade

into the smart contract escrow, and the client may be the source of

the deposit object.

Step 3, 𝑡3: [on-chain] the smart contract compares the encrypted

schedules under FHE and selects from the two schedules the {𝑀,𝑇 }
that matches between the two broker-dealers.

Step 4, 𝑡4: [on-chain] 𝐵 and 𝐵2 send their requisite financial

objects to the smart contract (if not sent already at Step 2) and

the smart contract swaps the objects to 𝐴 and 𝐶 , and sends excess

balances back to the broker-dealers if there are any.

Figure 7: Steps 2,3 and 4

There are two key insights to be learned from this exercise. One

insight that using FHE to compare the trading schedules ensures

7
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Policyholder Insurer Contract

1. ℎ, 𝑙

2. deposit 𝑣 = 𝑚𝑎𝑥 (ℎ, 𝑙)=ℎ
3. 𝐸𝑛𝑐 (𝑏)
4. 𝐸𝑛𝑐 (𝑟1)

6. 𝐸𝑛𝑐 (ℎ) .𝐸𝑛𝑐 (𝑏) + [𝐸𝑛𝑐 (1) − 𝐸𝑛𝑐 (𝑏)] .(𝐸𝑛𝑐 (𝑙) + [𝐸𝑛𝑐 (ℎ − 𝑙)] .𝐸𝑛𝑐 (𝑟3))

5. sample 𝑟2,

𝐸𝑛𝑐 (𝑟3) = 𝐸𝑛𝑐 (𝑟1) ⊕ 𝑟2

Figure 4: Policy holder - insurer protocol.

that broker-dealers can protect the privacy of their client infor-

mation, which overcomes their reluctance to reveal their trading

preferences. The other insight is that the smart contract encourages

broker-dealer participation to solve the coordination problem and

enables the attainment of a socially, higher desired trading volume.

5 EVALUATION
With the motivation for the two economic use cases described in

sections 4.3 and 4.4 that utilize FHE and smart contracts, we perform

a series of evaluation experiments using the solutions available

today as discussed in section 3. We first perform microbenchmarks

for all operations and all data types offered by both. Then, we

benchmark the FHE smart contract operations costs for each use

case and the FHE smart contract solution.

Environments.We used two environments for our experiments:

(i) a CPU environment that uses a 16-inch Macbook Pro (2021) with

32 GB memory and 1 TB Hard Disk running Sequoia 15.1, and (ii)

a GPU environment on AWS using p2x.large instance running

Amazon Linux OS.We used the versions of the Rust libraries [65, 78]

used in production by Sunscreen and Zama on their test networks.

For Sunscreen, sometimes we use an enhanced version that adds

more operations to the production version.
7
For Zama, we use

the last version (v0.5), which compiles without errors in the GPU

environment.

In our evaluations, we ignore the gas costs of the FHE operations

in the respective systems and instead focus on the CPU running

time as a measurement metric. We do this because the gas costs

used in the existing test networks are arbitrary and unrelated to

the CPU measurement costs. We used the Criterion Benchmark

framework [28] to generate data points for our benchmarks.

5.1 Sunscreen Performance
Sunscreen takes a Rust function as input and creates a circuit after

compiling it. They call these circuits ‘applications’. The applications

define the parameters from which the private and public keys are

generated.

In their test network, they compile two functions: (i) a function

that adds two encrypted 64-bit integers, and (ii) a function that

7
We are not sure why Sunscreen chose not to add these features on their test networks.

multiplies two encrypted 64-bit integers. They expose these two

functions to smart contracts via the precompiled contracts interface

provided by Ethereum. We use these functions in our “production”

version of the benchmarks.

We create a second version called the “enhanced” version that

adds a subtraction function, a negation function, and scalar versions

of the addition, subtraction, and multiplication functions. Using the

compiled circuits, we can generate keys, encrypt inputs, run the

circuit on encrypted inputs, and decrypt the outputs.

We evaluated the time consumed for all supported operations:

key generation, encryption, addition, multiplication, subtraction,

negation, and decryption. We benchmark the above across the six

data types offered by Sunscreen: Signed, Rational, Fractional64,

Fractional128, Fractional256, and Fractional512.

Micro Benchmarks. We present the results of our microbench-

marks in fig. 9. We observe that the key-generation operation takes

the longest time. We also observe that the homomorphism property

is usually very efficient for one operation, which is the addition

operation in this case, and expensive in the other (multiplication).

We observe that the Rational type is the most expensive operation.

This is because this type supports division by encrypted cipher-

texts, but as a result requires choosing larger parameters for the

circuit, i.e., application, resulting in poorer performance. Finally,

we observe that enhancing the application with more operations

did not affect the performance by statistically significant amounts.

Thus, we use this version of the circuit for the other parts of the

benchmarks.

5.2 Zama Performance
Zama has a publicly available test network where 𝑛 = 1 and 𝑡 = 0

threshold servers implement the FHE operations. We used these

system parameters for our experiments. Zama supports unsigned

and signed integers of 8, 16, 32, 64, 128, and 256 bits, and we present

microbenchmarks for them.
8
We also evaluated them in the CPU

and GPU environments.

Micro Benchmarks. We present the results of our microbench-

marks in fig. 10. Like Sunscreen, we observe that the multiplication

8
In our benchmarks, the GPU version of the Zama library failed when running opera-

tions involving integers.
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𝐴 𝐵

1. {𝑀, 𝑇 }𝐴,𝑖

𝐵2 𝐶Smart

contract

2. 𝑒𝑛𝑐 ({𝑀, 𝑇 }𝐴,𝑖 )

1. {𝑀,𝑇 }𝐶,𝑖

2. 𝑒𝑛𝑐 ({𝑀, 𝑇 }𝐶,𝑖 )

3. 𝑒𝑛𝑐 ({𝑀, 𝑇 }) 3. 𝑒𝑛𝑐 ({𝑀, 𝑇 })

Figure 8: Intermediated Markets protocol. Note this figure represents the determination of contractual terms of trade, not the
exchange of financial objects.
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Figure 9: Microbenchmarks for all operations and all data types supported by Sunscreen

operation is more expensive than the addition operation. We ob-

serve that the cost of using larger bit sizes in data types increases

the running times of operations. Another important observation

is the effect of GPU acceleration; while GPU indeed provides sub-

stantial benefits for high-precision data types (roughly one order of

magnitude benefit for u256 or i256), the benefits for low-precision

data types is negligible, if any.

5.3 Comparison between Zama and Sunscreen
Both Zama and Sunscreen support operations over 64 bit-signed

integers. Both of them also support key generation, encryption,

decryption, addition, subtraction, negation, and multiplication over

it. For the GPU environment, we used the unsigned 64-bit data type.

We measured the performance of these common operations and

presented our results in fig. 11.

We observe that the operations in Sunscreen are substantially

cheaper when compared to the operations in Zama. This is due to

the fact that Sunscreen uses BFV which is based on RLWE, working

directly with integers; hence more efficient at integer arithmetic.

Zama, on the other hand, uses TFHE, which while better at boolean

operations and nonlinear operations, is less efficient when it comes

to integer arithmetic and is hence less suitable with regards to

our applications. We also see the impact of GPU acceleration on

improving performance in general.

5.4 Unverifiable losses protocol
We now benchmark an FHE smart contract that insures unverifi-

able losses as discussed in section 4.3. While the most appropriate

data type for this use-case would be an unsigned 8 bit integer (as it

requires an encryption of a single bit), we benchmark other data

types as well for a fair comparison (Sunscreen only supports 64 bits).

We present our benchmark results in fig. 12. Although these overall

indicate that the application is within practical limits for a permis-

sioned blockchain (which typically has few validators controlled by

9
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Figure 10: Microbenchmarks for all operations and all data-types supported by Zama
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Figure 11: Comparing Zama and Sunscreen for common data type: Signed 64-bit integers and common operations.

the blockchain consortium), the smart contract computation for a

permissionless blockchain is still considered expensive. In fact, we

estimate Sunscreen would require about 4 million gas
9
(or about

9
This is based on a rough translation of computation time to gas costs given that one

keccak256 hash takes about 0.8 microseconds on a typical Macbook and costs about

40k gas in Ethereum blockchain.

$80 based on today’s gas fees and exchange rates), while Zama

would exceed the maximum gas per Ethereum block (30 million),

which would not be possible to deploy in a permissionless Ethereum

blockchain as of today. We also observe that GPU acceleration in

Zama is not offering any substantial benefits, as the use-case only

10
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requires encrypting low-bit data types where GPU is not helpful,

as discussed in section 5.2.

5.5 Coordination in an intermediated market
protocol

We estimate the timing costs of the use-case discussed in Section

4.4, in particular, the cost of calculating and outputting the matches.

For efficiency purposes, we let the broker-dealers 𝐴𝑑 and 𝐵𝑑 sort

the {𝑀,𝑇 }𝑐,𝑖 pairs before encrypting them and submitting them

to the contract. Note that it is reasonable to assume the broker-

dealers will perform the sort honestly, as they do not have any

incentive to do otherwise. Therefore, the contract would make FHE

comparisons in a descending order, andwould stop at the first match

which would, as explained in Section 4.4, maximize the joint profit.

For our benchmarking purposes, we take a sample of 100 sorted

matches of type 32 bit unsigned integers in Zama (note comparison

is only supported in Zama).
10

We find that comparisons for these

parameters would takes about 25 seconds on average using CPU,

which again might be feasible in a permissioned blockchain, but not

scalable or deployable in a permissionless blockchain like public

Ethereum (as of today).

Operation Zama (CPU) Zama (GPU)

Generate Orders 7.4777 s 4.4861 s

Match Orders 25.336 s 16.215 s

Table 1: Benchmarking the order matching application for
Zama using encrypted 32-bit unsigned data type on CPU and
GPU systems.

6 INSIGHTS AND RESEARCH GAPS
Having considered the available FHE implementations in Section

3, the use-cases in Section 4 and our benchmarks in Section 5, we

now provide our overall findings in the form of research insights,

as well a number of interesting research directions in the space

of FHE used in smart contracts as a privacy tool, in the form of

research gaps.

One of the first nuances with FHE operations in smart contracts

is the issue of key issuance and management. All encryptions cur-

rently need to be performed under a “global" public key in order

to make homomorphic computations possible. However, a single

centralized party holding the corresponding private key would in-

herently defeat the whole of having decentralized computation with

smart contracts. Therefore, a natural first approach is to distribute

key shares among some of the blockchain validators.

Insight 1. Both in Sunscreen and Zama, the validators hold the
shares of the secret key for a global public key. Although a (n,t) thresh-
old structure is described, both are implemented only for 𝑛 = 1 and
10
Our choice of 100 {𝑀,𝑇 } pairs was motivated by the observation that the dispersion

of quoted rates in the US Treasuries repo market, and prices in the US Treasuries

secondary market - which are priced in terms of yield - have historically been within

this range, except during financial crises. Rates and yields are quoted at intervals

("ticks") of 1/32 of a percentage. 100 ticks exceeds 3%. The spread between the 1st

percentile and the 90th percentile of daily repo rates reported to the Federal Reserve

Bank of New York has not exceeded 0.4% from January 1, 2021 - November 27, 2024

[4].

𝑡 = 0. It is unclear at this point if for 𝑛 > 1 and 𝑡 > 0 if it will be
scalable and decentralizeable.

Gap 1. FHE additions and multiplications are performed under a
single global key. Having protocols to perform these operations with a
mixed key would make even more unique cases possible, and would
not require distributing key shares to validators or other parties.

While Zama’s KMS works as an approach to avoid needing a

single private key, the question remains how theMPC parties would

first be selected and then granted the authority to keep those shares.

Those parties/validators would likely have a much greater incentive

to collude compared to a standard MPC wallet - here it is not just a

wallet’s assets at stake, but the whole FHE ecosystem, and having

validator reputation as the single criterion is not sufficient to ensure

security.

Gap 2. While combining a “Proof of Authority” with threshold
MPC would avoid having a single centralized private key, the question
remains on how the validators in the proof of authority consensus
would be selected, in a way that would be acceptable by all participants
in a permissionless setting. More research is required to make such
approaches compatible with a decentralized Proof of Stake blockchain
ecosystem.

We now consider the results of our experiments from Section

5, where we observe significant variations between the available

solutions for their corresponding data types.

Insight 2. For some data types, FHE operations are more efficient
in Sunscreen than Zama. On the other hand, Zama has more rich data
types and operations available for use.

While Sunscreen is more efficient, because it does not support

comparison, we could not use it to implement the coordination

in intermediate market application. In general, the richness of the

operation (or lack thereof) determines the number of supported

applications.

From considering the use-cases and the benchmark results pre-

sented in section 5, and our rough estimates on the needed gas

costs, we see that making the needed computation by smart con-

tracts would be infeasible in a permissionless blockchain such as

Ethereum. However these use-cases would still be feasible in a per-

missioned blockchain run by a few validators, where gas costs is

not an issue.

Still, this is merely an estimate based on other computations and

their gas costs as of today. It remains to be seen what the commu-

nity will consider reasonable gas costs for such computations, and

how these will evolve. However, validators utilizing specialized

hardware suitable for FHE acceleration such as GPUs or FPGAs

might change those costs dramatically.

Insight 3. The gas costs in both Zama and Sunscreen are arbitrar-
ily defined. Actual costs will depend on the community supply and
demand after deployment. Potentially, FHE operations can be acceler-
ated by special hardware and therefore gas costs can be improved.

Introducing such hardware however in a permissioned blockchain

is a double-edged sword. While such hardware would make FHE

(and the desired use-cases we presented) possible, that would come

at the cost of substantially raising the bar for the required hardware
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Figure 12: Benchmarking the operations for the unverifiable losses protocol.

from the validators (as of today, more than 1 million validators

maintain the Ethereum blockchain). This would make participation

in the proof-of-stake consensus even harder for the typical user, as

joining the validator pool would require not only staking Ethereum

coins, but also a substantial invenstment in hardware (a validator

today requires relatively basic hardware). This would inadvertently

lead to a higher degree of centralization, more energy usage from

the Ethereum ecosystem, and eventually defeating the purpose of

the proof-of-stake consensus algorithm.

Gap 3. Based on our benchmarks, FHE would not be scalable today
in smart contracts. While GPUs, FPGAs and ASICs could accelerate
FHE computations, validators would need to adopt such hardware, po-
tentially leading into more centralization in the system and defeating
the original purpose of Proof of Stake. More research is required to
accelerate FHE in smart contracts without inducing such centraliza-
tion. At this point, it is unclear if true decentralization is possible, i.e,
implement FHE smart contracts in a permissionless setting.

We also notice the absence of mechanisms to verify the correct-

ness and integrity of submitted FHE ciphertexts to smart contracts.

Existing solutions like Sunscreen and Zama operate under the im-

plicit assumption that users provide well-formed ciphertexts repre-

senting valid plaintext values. However, in adversarial settings, ma-

licious actors could submit malformed or invalid ciphertexts—such

as random data or ciphertexts encoding erroneous values, with the

goal to manipulate the contract’s execution or produce invalid re-

sults. This highlights the need for verifiable FHE schemes that allow

smart contracts to ascertain the validity of ciphertexts without com-

promising their encrypted nature. There exist potential approaches

to address this issue, such as zero-knowledge proofs (ZKPs) to en-

able users to prove certain properties about their ciphertexts (e.g.,

correct formation or bounds on the plaintext) without revealing

any sensitive information, leveraging trusted execution environ-

ments (TEEs), or potentially integrating other cryptographic tools

such as homomorphic Message Authentication Codes (MACs) and

homomorphic signatures [33, 69]. Nevertheless, the combination of

FHE and such tools poses challenges in terms of computational and

communication overhead, and the extent of this overhead remains

largely unexplored. Developing efficient verifiable FHE protocols is

thus an open research area critical to ensuring secure and reliable

use of FHE in smart contract applications.

Gap 4. Further research is needed to design homomorphic authen-
tication schemes that minimize computational overhead and are fully
compatible with existing FHE systems to enable secure and scalable
verification of encrypted data in decentralized applications.

7 CONCLUSION
In this paper, we explored the intersection of fully-homomorphic en-

cryption (FHE) and smart contracts towards the support of privacy-

preserving computation in blockchains. Our systematization high-

lights the critical need for privacy-preserving mechanisms in smart

contracts, especially for advanced economic use-cases that require

performing decentralized, secure and confidential computations.

Through our comprehensive systematization of currently avail-

able FHE-based approaches in smart contracts, we examined the

potential of these methods to maintain the privacy of sensitive

information while retaining the benefits of smart contracts, such

as automation, decentralization, and security.

We then identified several key insights and research gaps that

pave the way for future work in this domain. Key insights include
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the challenges of key issuance and management in FHE opera-

tions, the varying efficiencies of current FHE solutions, and the

significant gas costs associated with FHE computations on per-

missionless blockchains like Ethereum. These findings underscore

the complexity of integrating FHE into smart contracts and the

need for further innovation to achieve scalable and decentralized

privacy-preserving solutions. We also identified several research

gaps, such as the need for protocols to perform FHE operations

with mixed keys, the challenge of selecting validators in a Proof of

Authority consensus, and the potential centralization risks posed

by specialized hardware for FHE computations.

Overall, our study provides a foundation for future research to

enhance privacy in blockchain smart contracts. By addressing these

research gaps and continuing to innovate in the field of FHE, we

can move closer to realizing the full potential of privacy-preserving

smart contracts in decentralized applications and making advanced

use-cases a reality.
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A ECONOMIC MOTIVATIONS FOR FHE
SMART CONTRACT APPLICATIONS

In this appendix we provide additional motivation and context for

the latter two mechanisms presented in Section 4. Each mechanism

addresses a circumstance where agents have private information

which they are reluctant to reveal truthfully to a counterparty who

could make strategic use of the disclosures to increase its payoff at

the expense of the disclosing party. The trust deficit is overcome by

using FHE on a public blockchain to prevent leakage of information

while enabling verification of the computation on the data. Infor-

mation leakage is prevented by computation on encrypted data.

Verification of computation is enabled by the immutable record

on the blockchain of the smart contract operation. The examples

in Sections 4.3 and 4.4 are derived from mechanisms that contain

incentives for agents to send truthful reports of the information

they are instructed to submit, provided they are assured that their

data remain private and the data transformations that determine

resource allocations are correct. The truthful reporting enables each

mechanism to achieve a Pareto improvement in resource allocation

compared to the situation where leakage occurs. The protocols are

examples of how application of FHE, distributed ledgers, smart

contracts and relevant mechanism design can improve welfare.

A.1 Private loss insurance smart contract -
general model

Here we discuss the generalization of of the toy example in Section

4.3. The general protocol applies to an insurance market where

policyholders (in the case of private insurance) and citizens (in

the case of public insurance) experience idiosyncratic shocks that

are not common knowledge. The model in Townsend (1988) [66],

from which the example in the text is derived, has the follow-

ing features. There are two agents, 𝑎 and 𝑏 two dates, 𝑡0 and

𝑡1 and a smart contract, denoted the "Contract". At each date 𝑎

and 𝑏 experience private shocks 𝜃𝑎𝑡 and 𝜃𝑏𝑡 . The joint distribution

of shocks {𝜃𝑎
0
, 𝜃𝑏

0
, 𝜃𝑎

1
, 𝜃𝑏

1
} is over a finite set Ω which is common

knowledge. The joint distribution has two salient properties. One

is that an agent is not able to infer with certainty the counter-

party’s date 0 shock based on its own shocks; e.g. for agent 𝑎,

𝑃𝑟 (𝜃𝑎
𝑡=0
|𝜃𝑏
𝑡=0
, 𝜃𝑏

𝑡=1
) > 0 for every possible value of 𝜃𝑎 . It is also

supposed that date 1 shocks cannot be inferred with certainty from

date 0 values. That is 𝑃𝑟 (𝜃𝑎
1
, 𝜃𝑏

1
|𝜃𝑎
0
, 𝜃𝑏

0
) > 0 over the set Ω.11 The

Contract allocates resources 𝑐𝑡 (which is common knowledge) to

agents in each period. The resources can be premiums in the case of

private insurance and endowments in the case of public insurance.

Agents communicate with the Contract via a message space𝑀𝑖
0
at

date 𝑡0 for each agent (𝑖 = 𝑎, 𝑏) and a message space 𝑀𝑖
1
(𝑚𝑖

0
, 𝑐0).

The key idea is that the message sent by agent 𝑎 at date 𝑡1 cannot

be known to agent 𝑏 at date 1 (and vice versa). At date 1 each agent

knows only its own past message and its payout at date 𝑡0. The

Contract computes payouts based solely on the messages it receives

from the agents, and does not receive any other information related

to the true state of the agents.

An insurance contract that achieved a social welfare optimum

would condition payouts on the realized shocks. But since the

shocks are private (or costly to verify) the achievement of the so-

cial welfare optimum would require each agent to truthfully reveal

the value of the shock to its counterparty or to an operator of the

insurance mechanism. That, in turn, requires the agents be given

an incentive to truthfully report their shock, because an agent will

report whatever shock value maximizes its payout. This can prevent

a viable market from coming into existence. Townsend (1988) [66]

overcomes this limitation with a payout algorithm that creates an

incentive for truthful reporting. Agents are not paid the amount of

their claims, but rather are paid amounts that are functions of the

collective (i.e. agent and counterparty) claims sent in the current

and past time period plus a random variable. The precise formula

in [66] (a) prevents inference of the counterparty’s message, which

is a necessary condition to incentivize truth revelation and (b) is

calibrated to incentivize an agent to send a truthful message to the

Contract. The resulting payout to an agent is correlated with its

realized shock value in expectation, which is what enables an in-

surance market to exist. However, the randomized payout function

induces an imperfect correlation between payout and loss. Con-

sequently, the Contract achieves a Pareto improvement versus no

self-reporting insurance, but it does not achieve a social optimum.

11
The example in the text sets degenerate shocks for 𝑏 at date 0 and 𝑎 at date 𝑡1 . See

Townsend (1988) [JME] for details.
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