
Deniable Secret Sharing

Ran Canetti1, Ivan Damg̊ard2, Sebastian Kolby2, Divya Ravi3, and
Sophia Yakoubov2

1 Boston University, USA; canetti@bu.edu
2 Aarhus University, Denmark; {ivan, sk, sophia.yakoubov}@cs.au.dk

3 University of Amsterdam, Netherlands; d.ravi@uva.nl

Abstract. We introduce deniable secret sharing (DSS), which, anal-
ogously to deniable encryption, enables shareholders to produce fake
shares that are consistent with a target “fake message”, regardless of
the original secret. In contrast to deniable encryption, in a DSS scheme
an adversary sees multiple shares, some of which might be real, and some
fake. This makes DSS a more difficult task, especially in situations where
the fake shares need to be generated by individual shareholders, without
coordination with other shareholders.
We define several desirable properties for DSS, and show both positive
and negative results for each. The strongest property is fake hiding, which
is a natural analogy of deniability for encryption: given a complete set of
shares, an adversary cannot determine whether any shares are fake. We
show a construction based on Shamir secret sharing that achieves fake
hiding as long as (1) the fakers are qualified (number t or more), and
(2) the set of real shares which the adversary sees is unqualified. Next
we show a construction based on indistinguishability obfuscation that
relaxes condition (1) and achieves fake hiding even when the fakers are
unqualified (as long as they comprise more than half of the shareholders).
We also extend the first construction to provide the weaker property of
faker anonymity for all thresholds. (Faker anonymity requires that given
some real shares and some fake shares, an adversary should not be able to
tell which are fake, even if it can tell that some fake shares are present.)
All of these constructions require the fakers to coordinate in order to
produce fake shares.
On the negative side, we first show that fake hiding is unachievable when
the fakers are a minority, even if the fakers coordinate. Further, if the
fakers do not coordinate, then even faker anonymity is unachievable as
soon as t < n (namely the reconstruction threshold is smaller than the
number of parties), if faking is not unanimous. (If faking is unanimous,
we show a construction based on indistinguishability obfuscation.)

1 Introduction

A recent line of work [4,16,5] studies how to efficiently outsource the storage
of (and computation on) secrets to a large-scale network in the presence of an
adaptive adversary. We can give shares of the secret to all the parties in the
network, but that can have prohibitive communication cost. The trick is to only

2 Canetti et al.

give shares of the secret to some of the parties, while hiding their identities to
protect them from adaptive corruption. However, what if instead of trying to
find — and corrupt — relevant parties, our adversary posts a bounty, and waits
for parties who have information to come forward and sell it?

Motivated by the prospect of countering such an attack, we introduce a new
primitive which we call deniable secret sharing (DSS). In addition to the Share
and Rec algorithms, deniable secret sharing is equipped with a Fake algorithm,
which enables a shareholder to turn their real secret share into a fake share which
looks like a real share, but doesn’t contribute to the recovery of the secret.

Indeed, if such a deniable secret sharing scheme is used, the adversary will
have nothing to gain from offering a bounty for shares, because parties are likely
to take her money and give her fake shares. Similarly, if we consider a scenario
where an adversary is using a stick rather than a carrot — is demanding at
gun-point that a shareholder give up her share — DSS enables the shareholder
to appease the adversary without betraying the dealer’s trust. In the rest of this
paper, we call shareholders who hand over their real shares to the adversary
snitches, and shareholders who give the adversary fake shares fakers.

1.1 Related Work

Deniable secret sharing is analogous to receiver-deniable encryption [9], where
a message receiver is able to produce a fake secret key that decrypts a given
ciphertext to a target fake message. However, in a deniable secret sharing scheme
there are multiple shareholders, not all of whom will fake their shares. This
introduces additional consistency challenges.

Deniable primitives have proven very useful against adversaries which seek
to coerce parties into revealing their private state and inputs after participating
in a protocol [10]. Such attacks are a significant concern for functionalities like
voting [3,1] where individuals could be forced to vote in a particular way if the
protocol allowed obtaining a receipt when voting. Protocols defending against
such attacks are known as receipt-free or incoercible. This setting distinguishes
itself from the closely related notion of adaptive security, as coerced parties must
equivocate their state using a local faking algorithm, rather than relying on a
global simulator.

Canetti and Gennaro [10] showed that incoercible MPC protocols exist given
trapdoor permutations as long as fewer than half the parties are coerced. Canetti
and Poburinnaya [13] later strengthened this to the setting where all parties are
coerced, providing an incoercible protocol as long as all parties follow the pre-
scribed faking procedure. Existing incoercible protocols are built using powerful
primitives such as fully deniable encryption [12] and indistinguishability obfus-
cation [2,20]. For DSS we make stronger requirements, considering an adversary
that always receives some share from each party and demanding security hold
even in the presence of snitches who deviate from the faking algorithm (by giving
the adversary their real share).

Anamorphic encryption [19] achieves deniability by alternative means. Rather
than constructing novel schemes with the express goal of deniability, anamor-

Deniable Secret Sharing 3

phic encryption aims to subvert existing cryptosystems, introducing a double
key which allows hiding an additional message within a ciphertext. Plausible de-
niability comes from sender and recipient claiming that they were legitimately
using the unmodified scheme, where no double key ever existed. This argument
does not transfer to primitives such as deniable secret sharing, as the adversary
would reasonably expect key material like the double key to exist and demand
it be handed over.

Secret sharing with snitching [14] and traceable secret sharing [18] both aim
to incentivize shareholders not to participate in premature reconstruction of the
secret by ensuring that such participation gives the adversary evidence against
them, which can be used to implicate them as premature reconstructors. We take
the other extreme: rather than making participation proveable, deniable secret
sharing aims to make it undetectable, even to the adversary gathering the shares.
In some scenarios, this is more powerful, since it lifts all incentive to cooperate
with an adversary’s demands for premature reconstruction.

1.2 Technical Overview

The contributions of this paper are three-fold: we present new definitions, demon-
strate lower bounds that preclude schemes that meet these definitions in some
contexts, and build constructions that meet the definitions in other contexts.

1.2.1 Definitions A deniable secret sharing (DSS) scheme consists of three
algorithms: Share and Rec, as in any secret sharing scheme, and an additional
algorithm Fake, which shareholders can run in order to generate a fake share
(upon inputting their real share).

Notions of Faking. We consider several notions of faking. The first is dealer
specified faking, where the dealer has a fake message in mind as a fall-back plan
when she creates the shares. She encodes the fake message within the shares, so
that when the shareholders apply the Fake algorithm to their shares, they obtain
shares of the fake message (without necessarily knowing what that fake message
is). We immediately rule dealer specified faking out (Section 1.2.2), and instead
focus on the following notions:

– In DSS with shareholder specified faking, when running the Fake algorithm,
shareholders specify a fake message to which they want the resulting fake
shares to reconstruct.

– In DSS with random faking, no-one chooses the fake message; rather, it is
implicitly chosen from a fixed distribution via the randomness of the faking
process.

– In DSS with denial-of-service faking, there is no fake message at all, and in-
stead reconstruction simply fails if sufficiently many fake shares are present.

On an orthogonal axis, we consider whether shareholders coordinate while faking
their shares (that is, whether Fake takes in a single share, or a set of shares).

4 Canetti et al.

Properties. We introduce three new properties for DSS.

– A DSS scheme has fake-real indistinguishability (FRI) if, given two sets of
(possibly fake) shares — of m0 and of m1 — it is hard to determine which
set of shares is real and which set is fake (and thus what the real message
was).

– A DSS scheme has faker-anonymity (FA) if, given a set of shares (some of
which are fake), it is hard to determine which of them are fake (even if the
real message is known).

– A DSS scheme is fake-hiding (FH) if a set of shares (some of which are fake)
looks exactly like a fresh sharing of the fake message, and the adversary
cannot even tell that any faking took place.

As a minimal condition for shareholder specified faking (whether coordinated
or uncoordinated) and random faking, we require FRI for the case where one of
the two sets is empty, and the other contains all n shares (where n is the number
of shareholders). That is, we require that when all shareholders fake their shares,
the resulting set of fake shares be indistinguishable from a fresh sharing of the
fake message4. On the other hand, in the context of denial of service faking, this
is unnecessary (since if reconstruction fails, this is naturally distinguishable from
a correct reconstruction using real shares).

Intuitively, the standard notion of privacy and our new notion of faker anonymity
are orthogonal: privacy protects the message, and faker anonymity protects the
fakers. Fake-real indistinguishability is a fall-back notion for both: it creates some
uncertainty about the real message if the adversary does not know who the fak-
ers are, and it creates some uncertainty about the fakers if the adversary does
not know the real message. Fake-hiding is a more powerful property that implies
both privacy and faker anonymity; interestingly, the relationship of fake-hiding
and fake-real indistinguishability is more complex (see Section 2.4.4).

We do not explicitly consider the additional presence of corrupt parties who
always give the adversary their real share. Corrupt parties differ from snitches,
since the adversary does not necessarily know that a snitch’s share is real; how-
ever, the adversary would be certain that a corrupt party’s share is real. FA is
still meaningful in the presence of such corrupt parties; in fact, our construc-
tions still attain FA if the snitches are corrupt. However, exploring other flavors
of DSS in the presence of corrupt parties is an interesting avenue for future work.

1.2.2 Dealer Specified Faking We can immediately rule out the notion of
dealer specified faking. This is because, given a set of n shares, repeatedly ap-
plying the Fake algorithm allows the extraction of the fallback fake message,
as well as any additional fake messages (if the dealer provided more than one
layer of fallbacks). Given knowledge of the number of fallbacks, an adversary
can determine whether a set of shares is real by extracting — and counting —

4 FRI and FH are equivalent for the case where either all of the shares or none of
them are fake.

Deniable Secret Sharing 5

the fallbacks. A way around this is to create uncertainty about the number of
fallbacks, but the only way for this to offer reasonable security is to have an
exponential upper bound on this number, which precludes an efficient construc-
tion, since the sum of the share sizes must scale linearly with the number of
fallbacks encoded in the shares.

1.2.3 Shareholder Specified Faking In the setting of shareholder specified
faking, we have two possibilities: the shareholders either run the Fake algorithm
locally, or they coordinate.

Uncoordinated Shareholder Faking. In Section 5.5, we show a DSS scheme with
uncoordinated shareholder faking that achieves the minimal condition: FRI when
either everyone is a faker or everyone is a snitch. However, if there is at least
one faker and at least one snitch, the picture is bleak. If t < n, nothing can be
achieved when snitches are qualified; fakers run Fake locally, without knowledge
of whether the snitches are qualified or not, so they cannot return their real
shares without violating privacy. Then, an adversary can identify fake shares by
attempting reconstruction with different subsets of the shares it holds. In Sec-
tion 3, we show that even if snitches are unqualified, we cannot have any notion
of deniability (FRI, FA, FH) when the shareholders do not act in unison (that
is, if at least one faker and one snitch is present). We move to the coordinated
setting for a more interesting picture.

Coordinated Shareholder Faking. Figure 1 summarizes the thresholds t and num-
bers nfake of fakers for which FRI, FA and FH are achievable. We have two
constructions in this setting. The first (Theorem 9) is an information-theoretic
construction based on Shamir secret sharing. The Share and Rec algorithms are
exactly the ones used by Shamir secret sharing. In order to create fake shares,
the fakers do the following:

– If the snitches are unqualified:
• If the fakers are qualified: they interpolate their Shamir shares to recover
the snitches’ shares, and return points on a new polynomial that contains
the snitches’ shares and intersects the y-axis at the target fake message.
Here we have all of FRI, FA and FH.

• Otherwise, if the fakers are unqualified: they return random points.
Here we have FRI and FA, but not FH, since the resulting set of snitch and faker shares

will not lie on a polynomial of degree t − 1.

– Otherwise, if the snitches are qualified (that is, |snitches| ≥ t), the fakers
known that the adversary will learn the real message anyways, so they re-
turn their original (real) shares. We cannot hope for FH here. However, we have the

remaining two properties: FRI and FA.

The Fake algorithm from this construction is summarized in Figure 1c. It
provides almost the best possible guarantees; the only gap is the lack of FH
when both the fakers and the snitches are unqualified. In Theorem 4, we show

6 Canetti et al.

0
t

nfake

n
2

n

n
2

n

snitches

fakers

snitches

fakers

snitches

fakers

snitches

fakers

n
fa
ke

n
sn
it
ch

t

(a) Guide to where fakers and snitches
are qualified. snitches means the
snitches are qualified; snitches means
that they are not. fakers means the
fakers are qualified; fakers means that
they are not. Fake-hiding and faker
anonymity are both unachievable when
the snitches are qualified.

0
t

nfake

n
2

n

n
2

n

IT ✗(Theorem 4)

✗(Theorem 5)

✗(Theorem 6)

✓(Theorem 9)

✓(Theorem 8)

(b) Landscape of feasibility of fake-
hiding.

0
t

nfake

n
2

n

n
2

n

real share

(no privacy needed,

no FH possible)

random share

(no FH)

share on fake

polynomial

(c) Both fake-real indistinguishability
(FRI) and faker anonymity (FA) are
possible for all thresholds (Theorem 9).
This figure maps what the Fake algo-
rithm from Theorem 9 outputs.

Fig. 1: Landscape of feasibility for shareholder specified faking with coordina-
tion. On each graph, t (the number of shares necessary for reconstruction) is
on the x-axis, and nfake (the number of faker shares) is on the y-axis. Figure 1a
summarizes where on the graphs each of the fakers and snitches are qualified.
Figure 1b summarizes where fake-hiding is feasible. Fake-real indistinguishabil-
ity and faker anonymity are feasible for all thresholds; Figure 1c summarizes
how the construction from Theorem 9 achieves them.

Deniable Secret Sharing 7

that when both fakers and snitches are unqualified, no information-theoretic
construction can achieve FH. In Theorem 5, we show that when there are n

2 or
fewer fakers, even a computational construction cannot achieve FH.

We complete the picture with a construction that uses obfuscation and
achieves FH as long as more than half of the shareholders are fakers, and the
snitches are not qualified (Theorem 8).

Optimally Fake-Hiding Coordinated Shareholder DSS from Obfuscation. In our
optimally fake-hiding construction, there is a common reference string in the
form of an obfuscated program which holds a secret authenticated encryption
key. Each secret share is an encryption of the message and the shareholder iden-
tity, decryptable only by the program. In order to reconstruct or to generate fake
shares, the program takes as input a set of shares. In order to reconstruct, the
program checks that the set has t or more valid ciphertexts. If there are enough,
the program decrypts the ciphertexts. Some of these ciphertexts might decrypt
to a fake message, and a counter that indicates how “new” the fake message is;
the program returns either the newest fake message, or, if all of the messages
are real, it returns the real message.

In order to generate fake shares, the program checks that the set of shares it is
given contains more than max(n2 , n− t) valid ciphertexts. If it does, the program
returns encryptions of the fake message — together with an incremented counter
— as the fake shares. Requiring more than half of the shares in order to fake
ensures that sequential applications of faking, on potentially different subsets of
shares, will always result in a strict ordering of fake messages.

1.2.4 Random and Denial of Service Faking

Random Faking. When the fakers don’t coordinate and threshold t = n, additive
secret sharing — where to fake, a shareholder chooses a fresh random share
— gets us all of privacy, FRI, FA and FH. For t < n − 1, the impossibility
of uncoordinated random faking can be shown in much the same way as the
impossibility of uncoordinated shareholder faking (Appendix D.2).

When shareholders coordinate, we can modify the Shamir construction for
coordinated shareholder faking to get a construction with random faking that
gets privacy, FRI and FA for all thresholds, and FH for all thresholds where FH is
possible. When the snitches are qualified, as before, the fakers return their real
shares. When the snitches are unqualified, whether the fakers are themselves
qualified or not, they choose a random value ρ and a random degree-(t − 1)
polynomial f such that f(i) = 0 for all snitches i, and f(0) = ρ. Each faker i
computes their fake share by adding f(i) to their real share.

Denial of Service (DoS) Faking. In the context of DoS faking, our goal is to get
reconstruction to fail if sufficiently many shares are fake. Strong properties like
FH are not relevant here, but FRI and FA are. In settings where random faking
is possible, we can bootstrap a random faking construction to get a DoS faking

8 Canetti et al.

construction: First, map messages to a subspace of a random distribution dist in
such a way that a randomly chosen element of dist will only be a valid message
with negligible probability. Then, use a random faking construction with FRI
and/or FA for distribution dist.

For t < n − 1, random faking is impossible unless the fakers coordinate.
However, if the snitches are unqualified, we can get DoS faking even if the fakers
do not coordinate. This can again be built from Shamir sharing: each faker
simply takes a random value as its fake share. All of the (snitch and faker)
shares look like independent random values, giving us both FRI and FA.

1.3 Future Work and Open Problems

It would be interesting to see what changes when some of the shareholders are
corrupt. Such corrupt shareholders would naturally give the adversary their true
shares, but the adversary would additionally have certainty that the corrupt
shareholders’ shares are, in fact, real. Another avenue for future work is addi-
tionally considering a dealer’s deniability (rather than just the shareholders’).

2 Definitions

In this section, we formally define deniable secret sharing.

2.1 Notation and Syntax

Parameters. Our schemes are parametrized by the following:

n: Number of shares.
nfake: Number of fakers.
t: The number of shares necessary for reconstruction. Any fewer shares should
reveal nothing about the secret.

Throughout the paper, we assume that each of the n parties delivers one share
to the coercing or bribing adversary (and is thus either a faker or a snitch); so,
the number of snitches is n− nfake.

Types of Faking. Having ruled out dealer-specified faking (Section 1.2.2), we
consider three flavors of faking, differing based on where the fake message comes
from:

Shareholder-specified faking, where each faker alters her share with a
specific target fake message in mind.
Random faking, where there is no target fake message; rather, the fake
message is random (from some distribution).
Denial-of-service faking, where there is no fake message; rather, the fak-
ers aim to prevent the coercer from learning the original message, without
intending to fool him into thinking that everyone snitched.

Deniable Secret Sharing 9

Coordination. Another parameter is whether the fakers communicate with one
another or not. Each of the above flavors of faking by default requires faking to be
a local process; however, each can be modified to allow the fakers to coordinate.
In some cases, this coordination can even be independent of the fakers’ shares,
and can thus be done before sharing.

Algorithms. A deniable secret sharing scheme comprises the following algo-
rithms, where elements present only for shareholder-specified faking appear high-
lighted in grey .

Share(m)→ (s1, . . . , sn) is the secret sharing algorithm.
Rec({si}i∈Q)→ m takes in a set of shares belonging to parties Q, and out-
puts a secret (as long as |Q| ≥ t).

Fake(si ,m
fake)→ sfakei takes in a share, and outputs a fake share.

When faker coordination is allowed, the Fake algorithm takes in a set of
shares instead of a single share, as follows:

Fake({si}i∈fakers ,m
fake)→ {sfakei }i∈fakers

Matrix Notation. We will use the following pictorial notation: columns of a
matrix refer to the shares held by disjoint sets of parties. The first row is all m’s
if m was shared. (Because the first row refers to the initial sharing, it will always
consist of one replicated entry.) Subsequent rows refer to fakings (and, for rows
three and on, re-fakings).

As an example, the following matrix describes the case where 0 was shared
to partyset0 ∪ partyset1, and partyset1 then faked their shares to 1:[

0 0
1

]

2.2 Properties

Informally, we would like the following properties:

Correctness: t or more honest shares enable the recovery of the secret.
Privacy: Fewer than t real shares reveal nothing about secret. This should
hold even in the presence of fake shares.
Fake-Real Indistinguishability (FRI): If snitches report their real shares
and fakers report fake shares, this should be indistinguishable from the mirror
case (where snitches fake and fakers report their real shares).
Faker-Anonymity (FA): The adversary should not be able to tell which
shares are fake and which are real.
Fake-Hiding (FH): The adversary should not be able to tell whether any-
one faked.

10 Canetti et al.

Privacy vs. FRI vs. FA vs. FH. Intuitively, privacy protects the message, FA
protects the identities of the fakers, and FRI protects both. Privacy protects the
message even if the identities of the fakers are known; FRI does not. However,
unlike privacy, FRI can be meaningful even if t or more real shares are available
(that is, if the snitches are qualified), as a fallback: even if the adversary is able
to recover the real message, FRI guarantees that she won’t be convinced that it
is the real message and not a fake.

FA and FRI are in some sense orthogonal. FRI does not protect the fakers
if the adversary knows (though some external channel) which message is real,
while FA does. On the other hand, FA does not protect the message; it makes
no guarantee that the adversary cannot be sure that a reconstructed message is
real. Finally, FRI is only meaningful when both the set of fakers and the set of
snitches could plausibly be either, while FA can hold even in a setting where a
majority of fakers is guaranteed.

Fake-hiding is the strongest guarantee; when it is achievable, it implies pri-
vacy, FRI and FA. However, we only consider FH and FA when the snitches are
unqualified (see Remark 1), while FRI is interesting even when the snitches are
qualified.

Remark 1. Both FA and FH are uninteresting when the snitches are qualified.
This is because, if the fakers do not coordinate (and thus do not know how
many fellow fakers they have, and whether the snitches will be qualified or not),
FA and FH both contradict privacy: an adversary can reconstruct the secret
by looking at the qualified set of snitch shares, so by FA and FH should also
reconstruct the same secret by looking at a different set of shares of the same
size that includes faker shares. However, if such a set — containing fewer than t
real snitch shares — returns the secret as well, this is a contradiction of privacy
(since both faking and reconstruction should do the same thing whether or not
other, unused snitch shares exist).

On the other hand, if the fakers do coordinate (and thus know that the
snitches will be qualified), the Fake algorithm can simply return the original,
real shares, trivially achieving both FA and FH.

Figure 2 gives a pictorial summary (in our matrix notation) of the properties
(other than correctness) of deniable secret sharing. More details can be found
below.

2.2.1 Privacy Informally, a DSS scheme has privacy if an unqualified set of
real shares reveals nothing about the shared message, even in the presence of
additional fake shares.

Definition 1 (t-Privacy). A scheme is t-private if the following holds. For
any:

– partition of the parties into fakers and snitches s.t. |snitches| < t;

– messages m0,m1 , {mfake
i }i∈fakers s.t. |m0| = |m1|= |mfake

i | for all i ∈ fakers;

Deniable Secret Sharing 11

Privacy Fake-Real Indistinguishability[
m0 m0

mfake

]
priv∼

[
m1 m1

mfake

] [
m0 m0

m1

]
FRI∼

[
m1 m1

m0

]

Faker Anonymity Fake Hiding[
mr mr mr mr

mf mf

]
FA-2∼

[
mr mr mr mr

mf mf

] [
m0 m0

m1

]
FH∼

[
m1 m1

]

Fig. 2: The Properties of Deniable Secret Sharing

– PPT adversary A,

Run the following experiment:

– b← {0, 1};
– (sreal1 , . . . , srealn)← Share(mb);

– For i ∈ fakers: si ← Fake(sreali ,mfake
i);

– For i ∈ snitches: si := sreali .

The adversary’s distinguishing advantage should be negligible:

Pr[A(m0,m1, {mfake
i }i∈fakers, fakers, snitches, {si}i∈[n]) = b] =

1

2
+ negl

In the case of shareholder specified faking, our privacy definition allows the
fake shares to be formed with respect to different target messages, which is
desirable in practice. One could also consider a weaker notion of privacy, which
restricts the fake messages to be the same: mfake

i = mfake for some mfake, for
all i ∈ fakers. All of our lower bounds in Section 3 hold even with respect to this
weaker definition of privacy.

Privacy in Matrix Notation. Pictorially, privacy can be represented as follows,
where the left-most column refers to an unqualified set snitches and the right-
most column refers to fakers:[

m0 m0

mfake

]
priv∼

[
m1 m1

mfake

]

Privacy for Other Flavors. In order to adapt this definition to random or denial-
of-service faking, we remove the message mfake from the first bullet point. In
order to adapt it to the setting where fakers coordinate, we use the version of
the Fake algorithm that takes in and returns a set of shares rather than a single
share, and we only give it a single fake message (mfake).

12 Canetti et al.

2.2.2 FRI: Fake-Real Indistinguishability Informally, a DSS scheme has
fake-real indistinguishability if, given a partition of the shareholders into fakers
and snitches, it is hard to tell which is which.

Definition 2 ((partyset0, partyset1)-Fake-Real Indistinguishability). A scheme
is (partyset0, partyset1)-fake-real indistinguishable if the following holds. Limit
partyset0, partyset1 to be a partition of [n]. For any:

– messages m0,m1 s.t. |m0| = |m1|;
– PPT adversary A,

Run the following experiment:

– b← {0, 1};
– (sreal1 , . . . , srealn)← Share(mb);
– For i ∈ partysetb: si := sreali ;
– For i ∈ partyset1−b: si ← Fake(sreali ,m1−b).

The adversary’s distinguishing advantage should be negligible:

Pr[A(m0,m1, partyset0, partyset1, {si}i∈[n]) = b] =
1

2
+ negl

Definition 3 (FRI: Fake-Real Indistinguishability). A scheme is Fake-
Real Indistinguishable if it is (fakers, snitches)-Fake-Real Indistinguishable for
every partition of [n] into fakers and snitches.

FRI in Matrix Notation. Pictorially, FRI can be represented as follows, where
the left-most column refers to partyset0 and the right-most column refers to
partyset1: [

m0 m0

m1

]
FRI∼

[
m1 m1

m0

]
FRI for Other Flavors. This definition does not apply to denial-of-service faking.
In order to adapt it to random faking, we parametrize the definition by a distri-
bution dist, and do not quantify over all m0,m1. Instead, we draw mb ← dist,
and allow the faking process to implicitly determine m1−b. We do not give either
message to the adversary, since depending on the number of fakes one of them
may be undefined.

In order to adapt this definition to the setting where fakers coordinate, we
use the version of Fake algorithm that takes in and returns a set of shares rather
than a single share.

2.2.3 FA: Faker Anonymity We give a few versions of faker anonymity.
Definition 4 considers a concrete pair of potential faker sets; the adversary should
not know which one faked. (The two sets may overlap, so there may be parties
who fake in both cases, as well as parties who fake in neither case.) Definition 5
limits the pair of faker sets to differ by only one party. Definition 6 extends
Definition 5 to any pair of potential faker sets of a given size that only differ by
one party; Definition 7 lifts the size restruction.

Deniable Secret Sharing 13

Definition 4 ((fakers0, fakers1)-Faker Anonymity). A scheme is (partyset0,
partyset1)-faker anonymous if the following holds. Limit fakers0 and fakers1 to be
subsets of [n]. For any:

– messages mreal,mfake s.t. |mreal| = |mfake|;
– PPT adversary A,

Run the following experiment:

– b← {0, 1};
– (s1, . . . , sn)← Share(mreal);
– For i ∈ fakersb: si ← Fake(si ,m

fake).

The adversary’s distinguishing advantage should be negligible:

Pr[A(mreal,mfake, fakers0, fakers1, {si}i∈[n]) = b] =
1

2
+ negl

Definition 5 (FA-2: (fakers, i∗, j∗)-Faker Anonymity). A scheme is (fakers,
i∗, j∗)-faker anonymous for fakers ⊂ [n], and i∗, j∗ ̸∈ fakers if it is (fakers ∪
{i∗}, fakers ∪ {j∗})-faker anonymous.

Definition 6 (tFA-Faker Anonymity). A scheme is tFA-faker anonymous if
it is (fakers, i∗, j∗)-faker anonymous (Definition 5) for every i∗, j∗ and fakers ⊂
[n] \ {i∗, j∗} where |fakers| = tFA − 1.

Definition 7 (Faker Anonymity). A scheme is faker enonymous if it is
(fakers, i∗, j∗)-Faker Anonymous (Definition 5) for every i∗, j∗ and fakers ⊂ [n]\
{i∗, j∗}.

FA in Matrix Notation. Pictorially, FA-2 (Definition 5) can be represented as
follows, where

– column 1 refers to fakers,
– column 2 refers to [n] \ (fakers ∪ {i∗, j∗}),
– column 3 refers to party i∗, and
– column 3 refers to party j∗.

[
mr mr mr mr

mf mf

]
FA-2∼

[
mr mr mr mr

mf mf

]
FA for Other Flavors. In order to adapt this definition to denial-of-service faking,
we remove mfake everywhere. In order to adapt this definition to random faking,
we additionally remove the quantification over all mreal. We instead parametrize
the definition by a distribution dist, and draw mreal ← dist. The faking process
implicitly determines mfake. We don’t give mfake to the adversary, since de-
pending on the number of fakes it may be undetermined.

In order to adapt this definition to the setting where fakers coordinate, we
use the version of Fake algorithm that takes in and returns a set of shares rather
than a single share.

14 Canetti et al.

2.2.4 FH: Fake-Hiding Informally, a DSS scheme has fake hiding if, given
a set of shares, it is hard to tell whether any of them are fake.

Definition 8 (fakers-Fake Hiding). A scheme is fakers-fake hiding if the fol-
lowing holds. Limit fakers to be a subset of [n]. For any:

– messages m0,m1 s.t. |m0| = |m1|;
– PPT adversary A,

Run the following experiment:

– b← {real, fake};
– If b = real: (s1, . . . , sn)← Share(m1);
– If b = fake:
• (s1, . . . , sn)← Share(m0);
• for i ∈ fakers: si ← Fake(si ,m1).

The adversary’s distinguishing advantage should be negligible:

Pr[A(m0,m1, fakers, {si}i∈[n]) = b] =
1

2
+ negl

Definition 9 (tFH-Fake Hiding). A scheme is tFH-Fake Hiding if it is (fakers)-
fake hiding for every subset fakers of [n] where |fakers| > tFH .

FH in Matrix Notation. Pictorially, FH can be represented as follows, where
column 1 refers to fakers, and column 2 refers to snitches:[

m0 m0

m1

]
FH∼

[
m1 m1

]
FH for Other Flavors. This definition does not apply to denial-of-service faking.
In order to adapt this definition to random faking, we additionally remove the
quantification over all mreal,mfake. We instead parametrize the definition by a
distribution dist, and draw a single message m ← dist. Depending on the value
of b we either apply faking or we don’t. The faking process implicitly determines
the second message. We no longer give the adversary either message, since one
message is guaranteed to be extractable for both values of b, and giving him
both would make the game trivial.

In order to adapt this definition to the setting where fakers coordinate, we
use the version of Fake algorithm that takes in and returns a set of shares rather
than a single share.

2.2.5 Deniable Secret Sharing In order for it deniable secret sharing with
shareholder specified or random faking to be meaningful, a minimal condition is
that a set of shares all of which are fake should look like a set of real shares.

Definition 10. A scheme (Share,Rec,Fake) is a threshold t deniable secret shar-
ing with shareholder specified or random faking if it has t-privacy (Definition 1)
and (∅, [n])-FRI (Definition 2).

Deniable Secret Sharing 15

Of course, this really is minimal; in practice, we would want stronger notions
of deniability, and protection for fakers in the presence of snitches. Additional
desirable properties include more general FRI, faker anonymity (Definitions 7
and 6) and fake hiding (Definition 9).

2.3 Proofs with the Matrix Notation

Throughout the following sections we will use the matrix notation as a conve-
nient shorthand for our proofs. In the uncoordinated setting security properties
may be used to show that sets of shares with various degrees of faking are indis-
tinguishable from one another by replacing earlier fakes.

Consider a partition of our parties into partyset0 and partyset1. We may show
that two cases are indistinguishable given (partyset0, partyset1)-FRI. In the first
m1 is shared, with the shares for partyset1 being faked to m0 and then re-faked
to m0. In the second, m0 is shared initially, after which the shares of partyset0 are
faked to m1, while shares for partyset1 are faked to m0. Pictorially, for columns
partyset0 and partyset1,

case 1 :

m1 m1

m0

m0

 , case 2 :

[
m0 m0

m1 m0

]
.

In our notation (partyset0, partyset1)-FRI may be represented as,[
m1 m1

m0

]
(partyset0, partyset1)-FRI∼

[
m0 m0

m1

]
.

Suppose an adversary is able to distinguish case 1 and 2. Such an adversary
would break (partyset0, partyset1)-FRI. An adversary distinguishing the cases
may be transformed into one breaking (partyset0, partyset1)-FRI, simply by ap-
plying “fake to m0” to the shares for partyset1. Therefore, (partyset0, partyset1)-
FRI implies case 1 and 2 are indistinguishable. In our proofs we will represent
the argument above visually as:m1 m1

m0

m0

 (partyset0, partyset1)-FRI∼
[
m0 m0

m1 m0

]
.

In the above, m0 shown in blue is the extra fake to m0 added in the reduction.
More generally, indistinguishability is preserved for any polynomial sequence of
fakes applied on top of the cases of (partyset0, partyset1)-FRI. In the coming
sections we will on occasion use color to clarify which applications of fake are
being interchanged.

2.4 Relationships

In this section, we study the relationships amongst the definitions which we
present above.

16 Canetti et al.

2.4.1 FA Self Implications If a scheme has tFA-FA then any two sets of
tFA fakers will be indistinguishable.

Lemma 1. A scheme has (fakers0, fakers1)-faker anonymity for all fakers0, fakers1
where |fakers0| = |fakers1| = tFA if it is tFA-Faker Anonymous (Definition 6).

See Appendix A.1 for a proof.
FA for a smaller thresholds implies FA for larger thresholds in the uncoordi-

nated setting.

Lemma 2. In the uncoordinated setting a scheme has tFA-FA if it has t′FA-FA
for t′FA < tFA.

This follows as an adversary may perform additional faking to transform one
case to the other. For a proof see Appendix A.2.

2.4.2 FH Implies FA When the snitches are unqualified (which is the only
setting in which FH makes sense), FH implies FA.

Lemma 3. A scheme which is tFH-fake hiding is also tFH-faker anonymous.

Proof (of Lemma 3). For all distinct i∗, j∗ ∈ [n], and fakers ⊂ [n] \ {i∗, j∗}
where |fakers| ≥ tFH − 1, we must show that the scheme is (fakers, i∗, j∗)-faker
anonymous. Let snitches = [n] \ (fakers ∪ {i∗, j∗}) be the remaining parties.

In the matrix notation below, from left to right we let the columns represent
sets fakers, snitches, {i∗}, {j∗}. We apply tFH -fake hiding:[

m0 m0 m0 m0

m1 m1

]
(fakers ∪ {i∗})-FH∼

[
m1 m1 m1 m1

]
[
m1 m1 m1 m1

] (fakers ∪ {j∗})-FH∼
[
m0 m0 m0 m0

m1 m1

]
.

Given m0,m1 and the shares, no adversary can distinguish a fresh sharing of m1

from a sharing of m0 where fakers ∪ {i∗} have faked to m1. The same holds for
fakers ∪ {j∗}, implying the scheme is (fakers, i∗, j∗)-Faker Anonymous. ⊓⊔

2.4.3 Privacy and Faker Anonymity Intuitively, these properties aim to
hide different things. Privacy aims to hide the original message when enough
shares are faked, while faker anonymity aims to hide which parties have faked.

In fact, it is possible to construct schemes which have privacy, but not faker
anonymity and vice versa. To achieve privacy one could simply take any regular
secret sharing scheme and make faking output the share ⊥. This scheme does
not have faker anonymity as the faked shares are clearly identifiable. On the
other hand, if the faking procedure is just the identity, causing fakers to send
their original share, then privacy is not achieved, but the fakers are perfectly
anonymous.

Deniable Secret Sharing 17

2.4.4 FH and FRI Only constructions that are symmetric with respect to the
nfake = n

2 line in the graphs in Figure 1 can achieve FRI. Because shareholder
specified constructions with fake hiding are limited to occupying the top half
of such graphs (Theorem 6), a single construction cannot achieve these two
properties.

3 Uncoordinated Shareholder Faking: Lower Bounds

In this section, we show that very little is possible when shareholders are the ones
to specify the fake message, but do not coordinate. In particular, when faking
is not unanimous (that is, there is at least one faker and at least one snitch),
we rule out DSS with FRI (Section 3.1) and DSS with FA (Section 3.2). Since
FH implies FA, this also (indirectly) rules out FH. (When faking is unanimous,
in Section 5.5 we show a DSS scheme with FH based on indistinguishability
obfuscation.)

3.1 Fake-Real Indistinguishability

Theorem 1 rules out DSS with FRI when neither the fakers nor the snitches are
qualified. Theorem 2 similarly rules out DSS with FRI when one of the two sets
is qualified.

Theorem 1 (Lower Bound on FRI When Neither Set Has t Parties).
Say we have DSS with uncoordinated shareholder-specified faking (Definition 10).
Consider a specific partition of the parties into non-empty sets partyset0 and
partyset1 such that |partyset0| < t and |partyset1| < t. Then, the scheme does not
have (partyset0, partyset1)-FRI.

Proof (of Theorem 1). Recall that DSS with shareholder-specified faking must
have (a) t-privacy (Definition 1), and (b) (∅, [n])-FRI (Definition 2; if everyone
fakes, the set of fake shares should be indistinguishable from a fresh sharing).

Towards contradiction, assume the scheme has (partyset0, partyset1)-FRI: that
is, we have [

m0 m0

m1

]
∼

[
m1 m1

m0

]
for messages m0,m1 of the same length.

Lemma 4. Consider messages m2,m3,m4 s.t. |m2| = |m3| = |m4|.
The following two sets of shares (depicted using our matrix notation) recon-

struct to m4: m2 m2

m3

m4

 ,

m2 m2

m3

m4



18 Canetti et al.

Proof (of Lemma 4).
Below, we examine only the case of the left-hand matrix; the same holds for

the right-hand matrix by symmetry. We can say the following:

[
m2 m2

m3

]
privacy∼

[
m4 m4

m3

]
(partyset0, partyset1)-FRI∼

[
m3 m3

m4

]
privacy∼

[
m4 m4

m4

]
Note that the left-most set of shares contains no information about m4. Since[

m4 m4

m4 m4

]
(∅, [n])-FRI∼

[
m4 m4

]

which reconstructs to m4 (by correctness), we can conclude that

m2 m2

m3

m4

 also

reconstructs to m4 with overwhelming probability, and, in fact, partyset0 can
cause reconstruction to output an arbitrary message of their choice by re-faking
their shares to that message.

Now, we will use Lemma 4 to prove Theorem 1.
Consider the following indistinguishability, which is true by FRI (which we

assumed for contradiction).m1 m1

m0

m0

 (partyset0, partyset1)-FRI∼
[
m0 m0

m1 m0

]
The definition of FRI implies the indistinguishability for the matrix entries in
black; given those shares, the adversary can always alter the matrix by re-faking,
giving us the entries in blue. Indistinguishability should still hold. By Lemma 4,
the left-hand side should reconstruct tom0. (Note that Lemma 4 does not restrict
the messages considered to be different; we can use it here with m2 = m1, and
m3 = m4 = m0.) Therefore, the right-hand side should reconstruct to m0 as
well.

We can similarly consider the following indistinguishability.m0 m0

m0

m1

 (partyset0, partyset1)-FRI∼
[
m0 m0

m1 m0

]

By Lemma 4 with m2 = m3 = m0 and m4 = m1, the left-hand side should
reconstruct to m0, and therefore the right-hand side should as well.

This gives us a contradiction, since we have now shown that

[
m0 m0

m1 m0

]
must

reconstruct to both m0 and m1. ⊓⊔

Theorem 2 (Lower Bound on FRI in the Uncoordinated Setting When
One Set Has at Least t Parties). Say we have DSS with uncoordinated

Deniable Secret Sharing 19

shareholder-specified faking (Definition 10). Consider a specific partition of the
parties into non-empty sets partyset0 and partyset1 such that |partyset1| ≥ t.
Then, the scheme does not have (partyset0, partyset1)-FRI.

Proof (of Theorem 2). We assume towards contradiction that our scheme has
(partyset0, partyset1)-FRI.

Consider messages m0,m1,m2 s.t. |m0| = |m1| = |m2| and m1 ̸= m2. For
b ∈ {0, 1}, we further partition the sets partysetb into partyset0b and partyset1b ,
such that |partyset11| = t − 1 and |partyset10| = 1. Note, partyset00 may be empty.
In matrix notation we will now have four columns representing

partyset00, partyset
1
0, partyset

0
1, partyset

1
1,

from left to right. We will show that for[
m0 m0 m0 m0

m1 m1 m2 m2

]
reconstructing from the shares of partyset10∪partyset11 must both give m1 and m2,
providing a contradiction. By construction partyset10 and partyset11 will together
provide sufficient shares to reconstruct, while neither is qualified individually.

First we show the shares of partyset10 ∪ partyset11 must reconstruct to m1:[
m0 m0 m0 m0

m1 m1 m2 m2

]
(partyset0, partyset1)-FRI∼

m2 m2 m2 m2

m0 m0

m1 m1


At this point we cannot exploit privacy with respect to the shares from partyset1
as they are qualified. However, we may consider the related case where the
members of partyset01 have also faked, i.e.m2 m2 m2 m2

m0 m0 m0

m1 m1

 Privacy∼

m1 m1 m1 m1

m0 m0 m0

m1 m1

 .

Naturally, the behaviour of reconstruction excluding the shares of partyset01 must
be invariant, regardless of the behavior of partyset01. (This is true since in the
uncoordinated setting faking is an entirely local procedure. If a particular recon-
struction output is required when partyset01 have faked, it must also occur when
they have not.) Applying (partyset0, partyset1)-FRI, we seem1 m1 m1 m1

m0 m0 m0

m1 m1

 (partyset0, partyset1)-FRI∼

m0 m0 m0 m0

m1 m1 m1 m1

m0

 ,

and by (∅, [n])-FRI, it follows,m0 m0 m0 m0

m1 m1 m1 m1

m0

 (∅, [n])-FRI∼
[
m1 m1 m1 m1

m0

]
.

20 Canetti et al.

The shares of partyset10 and partyset11 are not affected by the faking by partyset01.
Therefore, by correctness, reconstructing from the shares in partyset10 ∪ partyset11
must give m1 with overwhelming probability.

The case for m2 follows analogously,[
m0 m0 m0 m0

m1 m1 m2 m2

]
(partyset0, partyset1)-FRI∼

m1 m1 m1 m1

m0 m0

m2 m2

 .

Then,m1 m1 m1 m1

m0 m0 m0

m2 m2

 Privacy∼

m2 m2 m2 m2

m0 m0 m0

m2 m2

 (partyset0, partyset1)-FRI∼

m0 m0 m0 m0

m2 m2 m2 m2

m0

 .

Once again, m0 m0 m0 m0

m2 m2 m2 m2

m0

 (∅, [n])-FRI∼
[
m2 m2 m2 m2

m0

]
.

Showing that the shares of partyset10 ∪ partyset11 must reconstruct to m2 with
overwhelming probability, by correctness. This gives a contradiction. ⊓⊔

3.2 Faker Anonymity

Theorem 12 rules out faker anonymity (FA) when all but one party is a faker.
Corollary 1 then rules out FA for any number of fakers, which follows since FA
for t fakers always implies FA for t+ 1 fakers.

Theorem 3 (Lower Bound on FA in the Uncoordinated Setting). Say
we have DSS with uncoordinated shareholder-specified faking (Definition 10).
Then, the scheme does not have (n− 1)-FA (Definition 6).

Proof (of Theorem 12). Assume toward contradiction the scheme has (n − 1)-
FA. We begin with some simple observations. For any partition of [n] into
fakers, {i}, {j}, {k}, represented left to right, (n− 1)-FA gives,[
m0 m0 m0 m0

m1 m1 m1

]
(fakers ∪ {i}, j, k)-FA∼

[
m0 m0 m0 m0

m1 m1 m1

]
(fakers ∪ {k}, i, j)-FA∼

[
m0 m0 m0 m0

m1 m1 m1

]
.

Applying the indistinguishability twice it follows thatm0 m0 m0 m0

m1 m1 m1

m1

 (fakers ∪ {j}, i, k)-FA∼
[
m0 m0 m0 m0

m1 m1 m1 m1

]

=

[
m0 m0 m0 m0

m1 m1 m1 m1

]
(fakers ∪ {i}, k, j)-FA∼

m0 m0 m0 m0

m1 m1 m1

m1

 .

Deniable Secret Sharing 21

For the remainder of this proof will use (i, j)-FA as a shorthand for this indis-
tinguishability. As a step towards our contradiction, for columns {i}, [n]\{i} we
will show we will show an equivalence which we call FA∗:


m0 m0

m1 m1

n


m0

..
.

m0

 FA∗

∼
[
m0 m0

m1 m1

]
.

Jumping ahead, this results in a contradiction, in the case where all shares
have been faked once to m1 and then n times to m0. By FRI in the extreme
(∅, [n]) case this should be indistinguishable from a fresh sharing of m0. At the
same time FA∗ implies faking the share of a party n times to m0 should be
indistinguishable from not applying these fakes, in which case the shares should
be indistinguishable from a fresh sharing of m1. Pictorially,

[
m0 m0

] (n + 1)×

(∅, [n])-FRI
∼


m0 m0

m1 m1

n


m0

..
.

m0

m0

..
.

m0

 FA∗

∼


m0 m0

m1 m1

m0

..
.

m0


(n − 1)×

FA∗

∼
[
m0 m0

m1 m1

]
(∅, [n])-FRI∼

[
m1 m1

]
.

To obtain the desired contradiction we must now prove FA∗. Without loss
of generality, consider columns {1}, {2, . . . , n − 1}, {n}. Our strategy will be to
move the fakings to m0 below the fakes to m1, allowing them to be eliminated
by FRI. Using faker anonymity, we may move the fakes to m1:

m0 m0 m0

m1 m1 m1

n


m0

..
.

m0


({2, . . . , n − 1}, 1, n)-FA∼


m0 m0 m0

n


m0

..
.

m0

m1 m1

m1

 .

Our next step is to move the fakes for m0. However, before we do this we must
first apply FRI:


m0 m0 m0

n


m0

..
.

m0

m1 m1

m1

 (∅, [n])-FRI∼


m2 m2 m2

m0 m0 m0

n


m0

..
.

m0

m1 m1

m1

 .

22 Canetti et al.

Now we are ready to shift the first faking to m0 under the fakings to m1:
m2 m2 m2

m0 m0 m0

n


m0

..
.

m0

m1 m1

m1


({2, . . . , n − 1}, 1, n)-FA∼


m2 m2 m2

m0 m0 m0

n−1


m0

..
.

m0

m1 m0

m1

m1

 .

We wish to move the fakes applied to party 1 to create a whole row of fakes to
m0, under the fakes to m1. In the matrix notation, we split the middle column
in two, now having columns:

{1}, [2, n− 2], {n− 1}, {n}.

We may apply our observation from earlier, applying (1, n− 1)-FA to move one
fake from party 1 to party n− 1:

m2 m2 m2 m2

m0 m0 m0 m0

n−1


m0

..
.

m0

m1 m1 m0

m1

m1


(1, n − 1)-FA∼


m2 m2 m2 m2

m0 m0 m0 m0

n−2


m0

..
.

m0

m1 m0

m1

m0

m1

m1

 .

This process may in fact be repeated, moving one fake at a time to each party.
Splitting our columns into

{1}, [2, i− 1], {i}, [i+ 1, n− 1], {n},

this may be shown as:
m2 m2 m2 m2 m2

m0 m0 m0 m0 m0

i


m0

..
.

m0

m1 m1 m0

m1

m0

m1

m1


(1, i)-FA∼


m2 m2 m2 m2 m2

m0 m0 m0 m0 m0

i−1


m0

..
.

m0

m1 m0

m1

m0

m1

m0

m1

m1

 .

By this sequence of hybrids, the applications of faking to m0 have now been
distributed across the parties. If we once again consider columns

{1}, [2, n− 1], {n},

this may be visualised as
m2 m2 m2

m0 m0 m0

n


m0

..
.

m0

m1 m1

m1

 ∼

m2 m2 m2

m0 m0 m0

m0 m0 m0

m1 m1

m1

 .

Deniable Secret Sharing 23

We obtain the final indistinguishability by moving the fakes to m1 back.

2 × (∅, [n])-FRI∼

m0 m0 m0

m1 m1

m1

 ([2, n − 1], 1, n)-FA∼
[
m0 m0 m0

m1 m1 m1

]
.

FA∗ therefore follows, completing our proof. ⊓⊔

If a scheme with uncoordinated shareholder-specified faking has t-FA then it
must also have (n− 1)-FA (Lemma 2). Since, by Theorem 12, this is impossible,
Corollary 1 follows.

Corollary 1. Say we have a DSS scheme with uncoordinated shareholder-specified
faking (Definition 10). Then, the scheme does not have t-FA (Definition 5) for
any t < n.

4 Coordinated Shareholder Faking: Lower Bounds for
Fake-Hiding

In this section, we show that even when the shareholders coordinate, DSS with
fake-hiding is not always achievable. We start with Theorem 4, which rules out
information-theoretic DSS with fake-hiding if the fakers are not qualified. We
then rule out even computational DSS with fake-hiding if the fakers are not a
majority (Theorem 5) and if the snitches are qualified (Theorem 6).

Theorem 4 (Information-Theoretic Lower Bound on FH). If there are
fewer than t fakers, then no information theoretic DSS scheme with coordinated
shareholder-specified faking can achieve fake-hiding.

Proof. Consider the set of shares (s1, . . . , sn), which are either the real sharing
of m1 or a sharing of m0 where fakers used fake shares instead. Let S be the set
of snitch shares (known to be real) and S∗ denote the unqualified set of shares
(which could be either fake or real). We analyze each of the possibilities for S∗.

1. Suppose S∗ comprises of real shares. Then, by information-theoretic privacy
and the fact that S∗ is unqualified, the following must hold: Fix the shares in
S∗. Then, for any fixed message m there exist the same number r of possible
ways of choosing the remaining shares, such that it corresponds to a sharing
of m. If there are a total of k possible messages, then there are rk total ways
of choosing the remaining shares such that it corresponds to a valid sharing.

2. Suppose S∗ comprises of fake shares. These must have been derived by the
fakers from their original (real) shares, say S̃. We note that for a scheme
with fake hiding, any of the rk versions of the remaining shares that define
a valid sharing together with S̃ must now result in a valid sharing of m1

together with S∗. This is because any of these rk versions could be potential
snitch shares. Therefore, for the fixed S∗, there must be rk possible ways of
choosing the remaining shares such that it corresponds to a valid sharing of
m1.

24 Canetti et al.

Based on the above, we note that an unbounded adversary looking at S∗ can
count the number of complementary shares yielding m1, which tells it whether
S∗ is real or fake. There would be r such ways in the former case, but rk in the
latter. The above argument assumes perfect fake hiding, but it can be extended
to the statistical case as well. This is because the distribution of messages yielded
by the complementary shares must be statistically close to uniform distribution
in the real case, but is biased towards m1 in the fake case (as it results in m1

with overwhelming probability).

Theorem 5 (Lower Bound on FH when |fakers| ≤ n
2). If tFH < n

2 then no
DSS scheme with coordinated or uncoordinated shareholder-specified faking with
correctness can achieve tFH-Fake Hiding.

Proof. This follows by the observation that there may be two competing fakes,
which both should be reconstructed to. Consider a partition of [n] into partyset0
and partyset1, both of which are of size at least tFH . Such a partition must exist
as tFH < n/2.

Throughout this proof we will let column 1 refer to partyset0 and column 2
refer to partyset1. If partyset0 fakes to m1 and partyset1 fakes to m2 we arrive at
a contradiction, shown pictorially:[

m0 m0

m1 m2

]
(partyset0)-FH∼

[
m1 m1

m2

]
(partyset1)-FH∼

[
m2 m2

]
while, [

m0 m0

m1 m2

]
(partyset1)-FH∼

[
m2 m2

m1

]
(partyset0)-FH∼

[
m1 m1

]
.

In this case, correctness implies that the shares should both reconstruct to m2

and m1 with overwhelming probability, a contradiction when m2 ̸= m1. (For
schemes with binary messages the problem remains for m2 = m0.)

Theorem 6 (Lower Bound on FH when |snitches| ≥ t). If a DSS scheme
has reconstruction threshold t, then it cannot be correct and tFH-Fake Hiding for
tFH ≤ n− t.

Proof. Let fakers and snitches be a partition of [n], where |fakers| ≥ tFH and
|snitches| = t. (This is possible as tFH ≤ n − t.) Consider the case where the
message m0 is shared, and the fakers then fake to m1. By tFH -Fake Hiding, this
must be indistinguishable from a fresh sharing of m1:[

m0 m0

m1

]
(fakers)-FH∼

[
m1 m1

]
where any subset of at least t shares reconstructs to m1. However, by correctness
the shares of snitches must reconstruct to m0, giving a contradiction.

Deniable Secret Sharing 25

5 Coordinated Shareholder Faking from
Indistinguishability Obfuscation

In this section, we show that DSS with coordinated shareholder faking with
fake hiding is feasible in the computational setting when nfake < t, unlike in the
information-theoretic case (as shown by the impossibility in Theorem 4). More
specifically, using computational assumptions and indistinguishability obfusca-
tion we are able to construct a secret sharing scheme which allows nfake < t,
albeit still requiring nfake > n/2 and nfake+ t > n, as imposed by Theorem 5 and
Theorem 6 respectively.

When nfake < t the fakers are unable to appropriately correlate their shares
(at least information theoretically) with those held by the snitches, allowing an
adversary to detect any faking. We wish to restrict the adversary by constructing
an obfuscated program for sharing, reconstructing, and faking, only allowing the
adversary to manipulate its shares as specified by the program. As the program
cannot be stateful, the shares themselves must contain all the information re-
quired to perform these operations. Clearly, these messages must be encrypted
as sending them in the clear would render the obfuscated program pointless. Our
impossibility results provide insight when designing our programs.

Reconstruction from snitches. In Theorem 6 we observe that the origi-
nal message cannot be hidden if it is possible to reconstruct using only the
snitch shares. If we want to be tight to this bound, then exactly one faker
share must be enough to force reconstruction to the fake message.
Competing fakes. When reconstructing from shares where faking has oc-
curred multiple times Theorem 5 shows the importance of imposing an order-
ing on the fakes. With no ordering it may be ambiguous which of the faked
messages should be reconstructed to, contradicting fake hiding.

We will define programs which when obfuscated allow deniable secret sharing.
The programs communicate to themselves by sending messages encapsulated
under asymmetrically constrained encryption (Definition 15). For correctness
these shares must collectively have enough information to specify the message
m itself. As reconstruction is controlled by the program we can simply include
m in every share along with the index of its recipient.

We ensure that shares from different instances cannot be mixed by deriving
a session identifier τ from the provided sharing randomness. (An injective one
way function (Definition 13) may be used to ensure that no sessions collide.)

An ordering is imposed on fakes by introducing a level system in the style of
[12] as inspired by [6], essentially introducing a counter ℓ describing the extent of
faking thus far, where real shares start at level ℓ = 0. This gives us the plaintext
pi = (τ,m, ℓ, i). When a set of shares of level at most ℓ are input to the faking
algorithm, the new shares produced will be of level ℓ + 1. We ensure the most
recent fake takes precedence by reconstructing the message of the share with
the highest level. The latest fake will have this highest level, since sequential
applications of fake must always overlap (as we have nfake > n/2).

26 Canetti et al.

For shares to be of fixed size, regardless of the extent of faking, levels must
always remain within some fixed range [0, T]. If the adversary were able to reach
the upper bound T by repeated applications of fake it would clearly be able
to distinguish a set of shares with level 0 from a set of level 1. In prior work
[6,12] it has been shown that if T is exponentially large an adversary cannot
distinguish these worlds. However, these existing approaches require T hybrids,
necessitating sub-exponential hardness assumptions.

We observe that our setting is somewhat relaxed and therefore allows an
alternate approach. Rather than starting levels counter at 0 we start at a pseu-
dorandom point 0τ derived from the session identifier τ using a PRF. This allows
us to rely on the statistical closeness of uniform values in [0, T] and [1, T +1] for
exponential T .

5.1 Circuit Obfuscation

In [2] Barak et al. proposed the notion of indistinguishability obfuscation, al-
lowing a circuit to be transformed into an obfuscated form perfectly preserving
functionality, but hiding implementation details. Security requires the obfusca-
tions of any two circuits of the same size with identical functionalities to be
computationally indistinguishable. Several years later Garg et al. [15] proposed
the first candidate construction for general (boolean) circuits.

Definition 11 (Indistinguishability Obfuscation[15]). A uniform PPT ma-
chine iO is called an indistinguishability obfuscator for the circuit class {Cλ} if
the following hold,

– For all λ ∈ N and all circuits C ∈ Cλ and all inputs x

Pr[C ′ ← iO(λ,C) : C(x) = C ′(x)] = 1.

– For any PPT distinguisher D there exists a negligible function negl such that
for all λ, and any two circuits C0, C1 ∈ Cλ where C0(x) = C1(x) for all x
then

|Pr[D(iO(λ,C0))]− Pr[D(iO(λ,C1))]| ≤ negl(λ).

We will further require a weak variant of extractability obfuscation introduced in
[8]. In contrast to indistinguishability obfuscation, this considers programs which
differ at a small, polynomially bounded, number of inputs. Such programs are not
guaranteed to be indistinguishable after obfuscation, however the existence of a
distinguisher with polynomial advantage implies an extractor which efficiently
finds an input at which the programs differ, also with polynomial advantage.

Definition 12 (Weak Extractability Obfuscation [8, Definition 6.1]).
A uniform PPT machine O is a weak extractability obfuscator for a class of
turing machines M = {Mk} if it satisfies the following. For every PPT adver-
sary A and polynomial p(k), there exists a PPT algorithm E and polynomials

Deniable Secret Sharing 27

pE(k), tE(k) for which the following holds. For every polynomial d(k) and suf-
ficiently large k, and ever pair M0,M1 ∈ Mk differing on at most d(k) inputs,
and every auxiliary input z,

Pr
[
b← {0, 1}; M̃ ← O(1k,Mb) : A(1k, M̃ ,M0,M1, z) = b

]
≥ 1

2
+

1

p(k)

=⇒ Pr
[
x← E(1k,M0,M1, z) : M0(x) ̸= M1(x)

]
≥ 1

pE(k)

where the runtime of E is tE(k, d(k)).

For the circuits we are interested in indistinguishability obfuscation and weak
extractability obfuscation are closely linked. Informally, if finding an input at
which two programs differ helps solve a hard computational problem then ob-
fuscating the two programs with iO is sufficient to achieve indistinguishability,
despite their functionalities differing.

Theorem 7 ([8, Theorem 6.2]). Let iO be an indistinguishability obfuscator
for P/poly, then iO is also a weak extractability obfuscator for P/poly.

5.2 Indistinguishability Obfuscation Friendly primitives

To construct our deniable secret sharing scheme from indistinguishability obfus-
cation we will follow the punctured programs paradigm introduced by Sahai and
Waters [20].

Puncturable Pseudorandom Functions. Puncturable pseudorandom functions,
realised by the GGM PRF [17], enable puncturing the key K of a PRF F for
a polynomially bounded set S. The punctured key K{S} allows evaluating the
PRF at all points outside S, while all evaluations FK(x) for x ∈ S appear
pseudorandom even given K{S}.

Definition 13 (Puncturable Pseudorandom Function). For input size n =
n(λ) and output size m = m(λ) a puncturable pseudorandom function (PPRF)
family is defined by a tuple of PPT algorithms {Sample,Puncture,Eval}. Using
FK(x) as a shorthand for Eval(K,x), a PPRF must satisfy the two following
properties.
Functionality preserved under puncturing: For any S ⊂ {0, 1}n where |S| =
poly(λ) and x ̸∈ S,

Pr
[
FK(x) = FK{S}(x) | K ← Sample(1λ);K{S} ← Puncture(K,S)

]
= 1.

Pseudorandomness at punctured points: For any S ⊂ {0, 1}n where |S| =
poly(λ), and any PPT adversary A,∣∣∣Pr [A (K{S}, (FK(xi))xi∈S) = 1]− Pr

[
A
(
K{S}, U |S|

m(λ)

)
= 1

]∣∣∣ = negl(λ),

28 Canetti et al.

Injective OWF. As shown in [7] injective one-way functions can be constructed
from iO and one-way functions.

Definition 14 (Injective One-Way Function [7]). For polynomially bounded
length functions k, τ , let

{OWFK : {0, 1}λ → {0, 1}τ(λ)}K∈{0,1}k(λ)

be an injective one-way function family if it has an efficient key sampling algo-
rithm Sample such that

– for every K ∈ {0, 1}k(λ) the function OWFK is injective, and
– for every polysize adversary A,

Pr
[
K ← Sample(1λ);x← {0, 1}λ : A(K,OWFK(x)) = x

]
= negl(λ).

5.3 Asymmetrically Constrained Encryption

Introduced in [11] asymmetrically constrained encryption (ACE) is a determinis-
tic authenticated encryption scheme which allows puncturing both at encryption
and decryption. The encryption key may be constrained for a message m to ob-
tain EK{m} which does not allow encrypting m. The decryption key may also
be punctured, possibly for different messages, where DK{m} does not allow
decrypting the encryption of m. Informally, an ACE scheme must satisfy:

– Equivalence of constrained keys: Constrained keys, EK{S}, DK{S}, should
be equivalent to their unconstrained counterparts on all messages outside
the set S.

– Unique ciphertexts: There should only be one ciphertext which decrypts to
a message m under a particular decryption key DK.

– Security of Constrained Decryption: An adversary given EK{U} should not
be able to distinguish two decryption keysDK{S0} andDK{S1} where S0 ⊆
S1 ⊆ U . The adversary may also receive ciphertexts for chosen messages
m ̸∈ S1 \ S0.

– Selective Indistinguishability of Ciphertexts: Given EK{U}, DK{S} an ad-
versary should not be able to distinguish, the ciphertexts for two messages
m0,m1 ∈ U ∩ S, even in the presence of encryptions of other messages.

For the sake of completeness, we recall ACE formally as described by [12] in
Appendix C.1.

5.4 The iO Construction

We construct a secret sharing scheme for messages m ∈ M where |M| is poly-
nomially bounded in λ. The scheme may be composed in parallel in the straight-
forward way for an exponential message space. Let T ∈ N be a positive integer
which is exponentially large in λ, and R = {0, 1}λ be a set of random tapes for
Share. The obfuscated programs are produced as follows.

Deniable Secret Sharing 29

– Generate a key for an injective one-way function

G : KOWF ×R → {0, 1}τ(λ)

as K1 ← OWF.Sample(1λ).

– Further sample a key K2 for the puncturable PRF

H : KPPRF × {0, 1}τ(λ) → [T]

as K2 ← PPRF.Sample(1λ).

– For the asymmetrically constrained encryption generate a secret key SK ←
ACE.Setup(1λ, 1m, 1s), settingm large enough that the plaintext space {0, 1}m
may encode all

(τ,m, ℓ, i) ∈
(
{0, 1}τ(λ) ×M× [0, T + 1]× [n]

)
.

In our reductions we will only ever constrain ACE by message sets polynomial
in n and |M|, allowing s = poly(m,n, |M|). Use SK to produce encryption
and decryption keys EK ← GenEK(SK,C∅);DK ← GenDK(SK,C∅).

– Let C = (Share,Fake,Rec) be the circuit allowing the evaluation of the cir-
cuits specified in Figure 3. For some appropriate padding pad let C ′ ←
iO(1λ, pad(C)). Instantiate tfake s.t. tfake > max{n2 , n− t}.

The circuit C ′ may either be produced by a trusted setup and given as a common
reference string, or by the dealer at the time of sharing: distributing the obfus-
cated programs with the shares. To share a secret m simply sample randomness
ρ← R and compute

{(i, si)}i∈[n] ← C ′.Share(m; ρ),

obtaining shares si for i ∈ [n]. Reconstruction and faking similarly proceed in
the straightforward way by invoking the corresponding obfuscated programs.

At a very high-level, when faking (Fake) takes as input a set of shares, say
S, of size at least tfake, it checks that the shares at the highest level (say ℓ) are
consistent with respect to the message and if so, it updates each of the shares in
S to level ℓ+1 and corresponding to the fake message. Reconstruction (Rec), on
the other hand, takes as input any qualified set of shares and simply returns the
message corresponding to the highest level. Intuitively, this approach prevents
adversary from gaining information about whether faking occurred due to the
following: even if the adversary repeatedly attempts Fake with different potential
sets S, any attempt at Rec would always correspond to the message it used in
the latest faking. This is because any two consecutive faking attempts must have
a common party (as tfake > n/2 holds) which will correspond to the highest level.
Further since shares of at least tfake parties will have the highest level, Rec which
requires t shares must necessarily include a share of the highest level (otherwise
n ≥ t + tfake must hold, which contradicts our assumption). We can thus infer
that any attempts to Rec must reconstruct the message corresponding to the
most recent fake.

30 Canetti et al.

Share(m; ρ)

1 : τ ← GK1(ρ) // Generate session id

2 : 0τ ← HK2(τ) // Starting level

3 : for i ∈ [n] :

4 : si ← EncEK((τ,m, 0τ , i))

5 : return {(i, si)}i∈[n]

Rec({(i, si)}i∈partyset)

1 : (τ,m, ℓ, partyset′)

← Decrypt({(i, si)}i∈partyset)

2 : if |partyset′| ≤ t then return ⊥
3 : return m

Fake({(i, si)}i∈partyset,m
fake)

1 : (τ,m, ℓ, partyset′)

← Decrypt({(i, si)}i∈partyset)

2 : if |partyset′| ≤ tfake then return ⊥
3 : for i ∈ partyset′ :

4 : s′i ← EncK2((τ,m
fake, ℓ+ 1, i))

5 : return {(i, s′i)}i∈partyset′

Decrypt({(i, si)}i∈partyset) (Subcircuit only)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK(si)

4 : if p = ⊥ then continue

5 : else parse (τi,mi, ℓi, j) := p

6 : 0τi ← HK2(τi)

7 : if j ̸= i ∨ ℓi ̸∈ [0τi , T] then continue

8 : partyset′ ← partyset′ ∪ {i}
9 : j ← argmaxi∈partyset′ ℓi

10 : τ ← τj ; m← mj ; ℓ← ℓj

// Check all shares are derived from

11 : // the same sharing.

12 : if ∃ i ∈ partyset′, τi ̸= τ

13 : then return (⊥,⊥,⊥, ∅)
// Check consistency accross the highest level.

14 : if ∃ i ∈ partyset′, ℓi = ℓ ∧ (mi ̸= m)

15 : then return (⊥,⊥,⊥, ∅)
16 : return (τ,m, ℓ, partyset′)

Fig. 3: Circuits for coordinated faking from iO, using Decrypt as a subcircuit.

Theorem 8. Let tfake > max{n/2, n− t}. Then this construction is nfake-Fake-
Hiding (Definition 9) for nfake ≥ tfake if G is an injective one-way function, H
is a puncturable pseudorandom function, ACE is an asymmetrically constrained
encryption scheme, and iO is an indistinguishability obfuscator.

We provide a high level sketch of our proof strategy, postponing a formal proof
to Appendix C.2.

Proof sketch. We will gradually modify the branch where faking has occurred,
b = fake, until it is distributed identically to the branch with no faking, b = real.
For randomness ρ∗ the adversary receives the ciphertexts,

{EncEK((τ∗,m0, 0τ∗ , i))}i∈snitches, {EncEK((τ∗,m1, 0τ∗ + 1, i))}i∈fakers

where τ∗ = GK1
(ρ∗) and 0τ∗ = HK2

(τ∗).
We must ensure that the real shares obtained by the adversary from the

snitches cannot be used to reconstruct the real secret. When faking has taken
place we know the n − tfake snitch shares are insufficient to reconstruct. How-
ever, the adversary may be able to reconstruct if it can obtain more level 0τ∗

shares, e.g. by finding the randomness used during the original sharing. We may

Deniable Secret Sharing 31

prevent this by modifying Share to output ⊥ when τ∗ = GK1(ρ). This alters the
functionality of Share, preventing the use of iO security directly. Instead, using
Theorem 7 it may be shown that an adversary distinguishing the two programs
may be used to break the one-wayness of G by finding a preimage of τ∗.

Perhaps counterintuitively, our strategy will start by increasing the level of
the snitch shares, so all shares are of level 0τ∗ + 1. Allowing the levels to be
addressed at once, later in the proof. Our goal is to substitute the ciphertexts
for i ∈ snitches as

s∗i = EncEK((τ∗,m0, 0τ∗ , i)) =⇒ ŝi = EncEK((τ∗,m1, 0τ∗ + 1, i)).

However, before selective indistinguishability may apply, we must first have to
constrain the encryption and decryption key for the involved plaintexts, prevent-
ing any trivial distinguishers.

1. Due to the previous modifications to Share, constraining encryption of all
plaintexts in {(τ∗,m, 0τ∗ , i)}i∈[n],m∈M has no effect on functionality, and is
indistinguishable by iO security.

2. Decryption may be constrained similarly, taking care to appropriately hard-
code the decryption of s∗i = EncEK((τ∗,m0, 0τ∗ , i)) for i ∈ snitches. This
must be done in two steps, as security of constrained decryption does not
allow constraining plaintexts for which the adversary receives ciphertexts.

3. At this point we may be sure that the only shares which decrypt with level
0τ∗ are those in {s∗i }i∈snitches. Since tfake > n/2, we know n− tfake shares are
insufficient for faking, the programs will never encrypt shares of level 0τ∗ +1
for the adversary. We may therefore restrict encryption and then decryption
for the set,

{(τ∗,m, 0τ∗ + 1, i)}i∈[n],m∈M \ {(τ∗,m1, 0τ∗ + 1, i)}i∈fakers

respectively applying iO security and the security of constrained decryption
once again.

4. At this point we may modify the hardcoded decryption:

(τ∗,m0, 0τ∗ , i) =⇒ (τ∗,m1, 0τ∗ + 1, i)

for i ∈ snitches. Importantly, the functionalities of Fake and Rec are invariant
of this change, as {(τ∗,m1, 0τ∗ +1, i)}i∈fakers are the only other plaintexts of
level 0τ∗ + 1 that will ever decrypt.
Any call to Fake and Rec with shares of level ℓ > 0τ∗ + 1 will clearly be
unaffected by this change. This leaves calls with a mix of levels 0τ∗ and
0τ∗ +1. Calls of this type with at least tfake or t shares must contain at least
one share of level 0τ∗ + 1, as nfake ≥ tfake > max{n/2, n− t}. Increasing the
other shares from level 0τ∗ to 0τ∗ + 1 has no effect on the maximal level,
preserving the functionality of the Decrypt subcircuit and therefore also the
functionalities of Fake and Rec

32 Canetti et al.

5. Having appropriately constrained encryption and decryption the cipher-
texts s∗i may be exchanged with ŝi, relying on selective indistinguishability.
After this change we may undo the hardcoded decryption without affect-
ing functionality, and relax the constraints on decryption to only be for
{(τ∗,m, 0τ∗ , i)}i∈[n],m∈M.

We are now ready to address the levels. The constraints which remain on decryp-
tion enforce that all shares in Rec and Fake have levels in the range [0τ∗ +1, T].
Meanwhile, the ciphertexts given to the adversary are

{EncEK((τ∗,m1, 0τ∗ + 1, i))}i∈[n].

If we puncture the key for H at τ∗, then it follows by pseudorandomness that
this starting level 0τ∗ + 1 is indistinguishable from uniform in [1, T + 1]. In the
branch without faking the starting level is indistinguishable from uniform over
[0, T]. For exponential T these distributions are statistically close, allowing the
level to be replaced:

{EncEK((τ∗,m1, 0τ∗ , i))}i∈[n].

All that remains is to undo the puncturing and constrianing of keys, and remov-
ing the check for τ∗ = GK1

(ρ) from Share. Once the programs are restored the
branch for b = fake will be identical to b = real.

5.5 Extreme FRI and Privacy Without Coordination

The construction in Section 5.4 may be modified to allow uncoordinated faking
and achieve (∅, [n])-FRI. Simply alter Fake to only require one share. Given a
ciphertext, the program decrypts it, increments the level by one and replaces
the message with the new mfake. Reconstruction should require all shares to be
of the same level and have the same message, needing at least t shares to ensure
t-privacy.

To have (∅, [n])-FRI the adversary must be unable to distinguish the distri-
butions

{EncEK((τ∗,m, 0τ∗ , i))}i∈[n]

and
{EncEK((τ∗,m, 0τ∗ + 1, i))}i∈[n].

This may be shown by a similar argument as for the proof of Theorem 8, if G is
an injective one-way function, H is a puncturable PRF, ACE is an asymmetrically
constrained encryption scheme, and iO is an indistinguishability obfuscator. Note
that this construction does not achieve any notion of deniability when fakers ̸= ∅
AND snitches ̸= ∅.

References

1. Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Incoercible
multi-party computation and universally composable receipt-free voting. In

Deniable Secret Sharing 33

Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryptology
– CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science,
pages 763–780, Santa Barbara, CA, USA, August 16–20, 2015.

2. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 1–18, Santa Barbara, CA, USA, Au-
gust 19–23, 2001.

3. Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections
(extended abstract). In 26th Annual ACM Symposium on Theory of Computing,
pages 544–553, Montréal, Québec, Canada, May 23–25, 1994. ACM Press.

4. Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain
keep a secret? In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th
Theory of Cryptography Conference, Part I, volume 12550 of Lecture Notes in
Computer Science, pages 260–290, Durham, NC, USA, November 16–19, 2020.

5. Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin.
Threshold cryptography as a service (in the multiserver and YOSO models). In
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022:
29th Conference on Computer and Communications Security, pages 323–336, Los
Angeles, CA, USA, November 7–11, 2022. ACM Press.

6. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness
of finding a Nash equilibrium. In Venkatesan Guruswami, editor, 56th Annual
Symposium on Foundations of Computer Science, pages 1480–1498, Berkeley, CA,
USA, October 17–20, 2015. IEEE Computer Society Press.

7. Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge
of chaos - trapdoor permutations from indistinguishability obfuscation. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography
Conference, Part I, volume 9562 of Lecture Notes in Computer Science, pages
474–502, Tel Aviv, Israel, January 10–13, 2016.

8. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation.
In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,
volume 8349 of Lecture Notes in Computer Science, pages 52–73, San Diego, CA,
USA, February 24–26, 2014.

9. Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable en-
cryption. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97,
volume 1294 of Lecture Notes in Computer Science, pages 90–104, Santa Barbara,
CA, USA, August 17–21, 1997.

10. Ran Canetti and Rosario Gennaro. Incoercible multiparty computation (extended
abstract). In 37th Annual Symposium on Foundations of Computer Science, pages
504–513, Burlington, Vermont, October 14–16, 1996. IEEE Computer Society
Press.

11. Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. In-
distinguishability obfuscation of iterated circuits and RAM programs. Cryptology
ePrint Archive, Report 2014/769, 2014.

12. Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully deniable interactive
encryption. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture Notes in Computer
Science, pages 807–835, Santa Barbara, CA, USA, August 17–21, 2020.

34 Canetti et al.

13. Ran Canetti and Oxana Poburinnaya. Towards multiparty computation with-
standing coercion of all parties. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020: 18th Theory of Cryptography Conference, Part II, volume 12551 of
Lecture Notes in Computer Science, pages 410–438, Durham, NC, USA, Novem-
ber 16–19, 2020.

14. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk.
Secret sharing with snitching. In ACM CCS 2024: 31st Conference on Computer
and Communications Security, pages 840–853. ACM Press, November 2024.

15. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual Symposium on Foundations of Computer Science, pages
40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

16. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,
Tal Rabin, and Sophia Yakoubov. YOSO: You only speak once - secure MPC with
stateless ephemeral roles. In Tal Malkin and Chris Peikert, editors, Advances in
Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes in Computer
Science, pages 64–93, Virtual Event, August 16–20, 2021.

17. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic appli-
cations of random functions. In G. R. Blakley and David Chaum, editors, Advances
in Cryptology – CRYPTO’84, volume 196 of Lecture Notes in Computer Science,
pages 276–288, Santa Barbara, CA, USA, August 19–23, 1984.

18. Vipul Goyal, Yifan Song, and Akshayaram Srinivasan. Traceable secret sharing and
applications. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –
CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer Science,
pages 718–747, Virtual Event, August 16–20, 2021.

19. Giuseppe Persiano, Duong Hieu Phan, and Moti Yung. Anamorphic encryption:
Private communication against a dictator. Cryptology ePrint Archive, Report
2022/639, 2022.

20. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Sym-
posium on Theory of Computing, pages 475–484, New York, NY, USA, May 31 –
June 3, 2014. ACM Press.

A Omitted details from Section 2

A.1 Proof of Lemma 1

Proof (of Lemma 1). For all messages mreal,mfake s.t. |mreal| = |mfake|, and
subsets fakers of [n], we define the random variable

D(mreal,mfake, fakers) := (mreal,mfake, fakers, {si}i∈[n])

where the distribution of the shares is taken over the random coins of the process

– (s1, . . . , sn)← Share(mreal);
– For i ∈ fakers: si ← Fake(si,m

fake).

We will show that if a scheme has tFA-Faker Anonymity then

D(mreal,mfake, fakers0) ≈ D(mreal,mfake, fakers1)

Deniable Secret Sharing 35

for any pair of partitions s.t. |fakers0| = |fakers1| ≥ tFA. First, let

addedfakers = fakers1 \ fakers0, removedfakers = fakers0 \ fakers1.

Clearly, if |fakers0| = |fakers1| then |addedfakers| = |removedfakers|. Let k be the
size of these sets, and define an arbitrary ordering on their elements

addedfakers = {a1, . . . , ak}, removedfakers = {r1, . . . , rk}

For i = 0, . . . , k, where fakersi = (fakers \ {r1, . . . , ri}) ∪ {a1, . . . , ai},

D(mreal,mfake, fakersi−1) ≈ D(mreal,mfake, fakersi)

would be implied exactly by ((fakers0 \ {r1, . . . , ri}) ∪ {a1, . . . , ai−1}, ri, ai)-FA.
As we assume tFA -Faker Anonymity as |(fakers\{r1, . . . , ri})∪{a1, . . . , ai−1}| ≥
tFA − 1. Indistinguishability follows by a simple hybrid argument, giving

D(mreal,mfake, fakers0 = fakers0) ≈ D(mreal,mfake, fakers1 = fakersk).

A.2 Proof of Lemma 2

Proof (of Lemma 2). Assume our scheme has t′FA-FA and consider any partition
of [n] into fakers, i, j. Let m0,m1 be any two messages of the same length. For

the sake of our proof, further partition fakers into fakerst
′
FA and fakersn−(t′FA+2),

where |fakerst
′
FA | = t′FA. From left to right, we let our columns be,

fakerst
′
FA , fakersn−(t′FA+2), {i}, {j}.

By assumption, [
m0 m0 m0 m0

m1 m1

]
t′FA-FA∼

[
m0 m0 m0 m0

m1 m1

]
,

(n− 1)-FA follows as,[
m0 m0 m0 m0

m1 m1 m1

]
t′FA-FA∼

[
m0 m0 m0 m0

m1 m1 m1

]
.

An adversary distinguishing in the case of (n−1)-FA may be used to break t′FA-

FA, simply by faking for the shares of fakersn−(t′FA+2) to m1 first. Therefore, the
scheme must have (n− 1)-FA.

Proof (of Lemma 3). For all distinct i∗, j∗ ∈ [n], and fakers ⊂ [n] \ {i∗, j∗}
where |fakers| ≥ tFH − 1, we must show that the scheme is (fakers, i∗, j∗)-faker
anonymous. Let snitches = [n] \ (fakers ∪ {i∗, j∗}) be the remaining parties.

In the matrix notation below, from left to right we let the columns represent
sets fakers, snitches, {i∗}, {j∗}. We apply tFH -fake hiding:[

m0 m0 m0 m0

m1 m1

]
(fakers ∪ {i∗})-FH∼

[
m1 m1 m1 m1

]

36 Canetti et al.

[
m1 m1 m1 m1

] (fakers ∪ {j∗})-FH∼
[
m0 m0 m0 m0

m1 m1

]
.

Given m0,m1 and the shares, no adversary can distinguish a fresh sharing of m1

from a sharing of m0 where fakers ∪ {i∗} have faked to m1. The same holds for
fakers ∪ {j∗}, implying the scheme is (fakers, i∗, j∗)-Faker Anonymous. ⊓⊔

B Coordinated Shareholder Faking: Information-
Theoretic Construction

In this section, we describe the information theoretic DSS scheme with coordi-
nated shareholder faking.

Theorem 9. There is an information theoretic DSS scheme with coordinated
shareholder faking that

1. achieves fake-hiding when n− nfake < t and nfake ≥ t.
2. achieves fake-real indistinguishability and faker anonymity for all thresholds.

Proof. Consider the following construction based on Shamir-secret sharing (say,
over a finite field Fq of integers modulo q, with prime q > n).

1. Share(m; ρ): Computes (s1, . . . , sn)← Shamir.Share(m, t) as a shamir-sharing
of the message m ∈ Fq with threshold t. Here, Shamir.Share involves sam-
pling a polynomial p(x) of degree (t − 1) such that p(0) = m and setting
si = p(i) mod q. Return {(i, si)}i∈[n].

2. Fake({si}i∈fakers,m
fake):

– If n − |fakers| ≥ t (that is, the snitches are qualified), return the real
shares {si}i∈fakers.

– Else: If |fakers| ≥ t

(a) Use Lagrange interpolation to compute the (t−1)-degree polynomial
p(x) that is consistent with {si}i∈fakers.

(b) Next, sample a uniform (t − 1)-degree polynomial p′(x) such that
p′(j) = p(j) for each j ∈ [n] \ fakers and p′(0) = mfake.

(c) Set s′i = p′(i) for i ∈ fakers. Return {(i, s′i)}i∈fakers.

– Else (i.e. when |fakers| < t and n−|fakers| < t, sample s′i ∈ Fq uniformly
at random for each i ∈ fakers. Return {(i, s′i)}i∈fakers.

3. Rec({si}i∈partyset): Computesm′ ← Shamir.Rec({si}i∈partyset, t). Here, Shamir.Rec
involves using Lagrange interpolation to identify a (t−1)-degree polynomial
p′′(x) consistent with {si}i∈partyset. Return p′′(0) if such a polynomial exists
and ⊥ otherwise.

We analyze the properties achieved by the above construction below.

Deniable Secret Sharing 37

– When n − |fakers| ≥ t (that is, the snitches are qualified), the construction
achieves FRI and FA. Since the fakers are also providing their real shares,
these properties follow directly. Note that privacy is applicable only for set-
tings where snitches are not qualified, therefore this does not contradict pri-
vacy. Further, fake hiding is also not applicable to this setting (Theorem 6).

– Next, when n − |fakers| < t and |fakers| ≥ t (that is, the snitches are un-
qualified and fakers are qualified), the construction achieves FRI, FA and
fake hiding as well. This is because the fake shares provided by the coordi-
nated fakers are such that they are consistent with the real shares given by
the snitches. Therefore, the adversary’s view is identically distributed in the
cases where a real sharing of mfake occurred or faking occurred.

– Lastly, when n − |fakers| < t and |fakers| < t (that is, both snitches and
fakers are unqualified), the construction achieves FRI and FA as the ran-
domly sampled fake shares cannot be distinguished from the real shares.
However, this does not achieve fake hiding, as the reconstruction will output
⊥ when faking occurs. It follows from Theorem 4 that we could not hope for
information-theoretic fake hiding in this setting.

C Omitted details from Section 5

C.1 Formal ACE security definitions

We restate the formal security definitions of ACE as described in [12]. Through-
out the following definitions we will use ∆ as the binary operator for the sym-
metric difference of two sets, i.e. S0∆S1 = (S1 \ S0) ∪ (S0 \ S1).

Definition 15 (Asymmetrically Constrained Encryption [11]). An asym-
metrically constrained encryption (ACE) scheme consists of the tuple of algo-
rithms (Setup,Gen,GenEK,GenDK,Enc,Dec) with the syntax:

Setup Setup(1λ, 1n, 1s)→ SK, is a randomised algorithm taking unary ar-
guments security parameter λ, the message length n, and circuit succinctness
s. It outputs a secret key SK for which encryption and decryption keys may
be derrived from. We let the message spaceM = {0, 1}n.

Constrained Key Generation Let S be a set S ⊂ M whose membership
is deciable by a circuit CS. The set is considered admissible if |CS | ≤ s where
s is the succinctness parameter from Setup. The succinctness parameter re-
stricts the complexity of the sets for which keys may be constrianed.

GenEK(SK,CS)→ EK{S} Given the secret key SK and a circuit CS for
an admissible set S, outputs a constrained encryption key EK{S}.

GenDK(SK,CS)→ DK{S} Given the secret key SK and a circuit CS

for an admissible set S, outputs a constrained decryption key DK{S}.

38 Canetti et al.

When keys are constrained for the empty set we will simply write EK,DK.

Encryption Enc(EK ′,m) → c/⊥, A deterministic algorithm taking a pos-
sibly constrained key EK ′ and message m ∈M, outputting a ciphertext c or
reject ⊥.
Decryption Dec(DK ′, c) → m/⊥, A deterministic algorithm taking a pos-
sibly constrained key DK ′ and ciphertext c, outputting a message m ∈M or
reject ⊥.

An ACE scheme has the security properties, Correctness (Appendix C.1.1) Secu-
rity of Constrained Decryption (Appendix C.1.2), and Selective Indistinguisha-
bility of Ciphertexts (Appendix C.1.3).

C.1.1 Correctness of ACE [12] A correct ACE scheme satisfies,

(a) Correctness of Decryption: For all sets S, S′ ⊂ M and messages m ∈ M,
m ̸∈ S ∪ S′,

Pr
[
SK ← Setup(1λ);Dec(GenDK(SK,CS),Enc(GenEK(SK,CS′),m)) = m

]
= 1

(b) Equivalence of constrained encryption: For all sets S, S′ ⊂M and messages
m ∈M, m ̸∈ S∆S′,

Pr
[
SK ← Setup(1λ);Enc(GenEK(SK,CS),m) = Enc(GenEK(SK,C∅),m)

]
= 1.

(c) Unique Ciphertexts With overwhelming probability over SK ← Setup(1λ)
and s ⊂M for DK = GenDK(SK,CS) it holds for c, c

′ that if Dec(DK, c) =
Dec(DK, c′) ̸= ⊥ then c = c′.

(d) Safety of Constrained Decryption: For all c, and all S ⊂M,

Pr
[
SK ← Setup(1λ);DK = GenDK(SK,CS) : Dec(DK, c) ∈ S

]
= 0

(e) Equivalence of Constrained Decryption: If Dec(DK{S}, c) = m ̸= ⊥ and
m ̸∈ S then Dec(DK{S′}, c) = m.

C.1.2 Security of Constrained Decryption for ACE [12] For all PPT
adversaries A, the adversary initially outputs circuits (CS0

, CS1
, U) to the chal-

lenger, specifying sets S0, S1, U ← A subject to S0∆S1 ⊆ U ⊆M.
The adversary also provides polynomially many messages m1, . . . ,mt where

mi ̸∈ S0∆S1. The challenger samples b← {0, 1} and performs the following,

– SK ← Setup(1λ)
– DK{Sb} ← GenDK(SK,CSb

)
– EK ← GenEK(SK,C∅)
– For every i ∈ [t], ci ← Enc(EK,mi)
– EK{U} ← GenEK(SK,CU)

The challenger then sends (EK{U}, DK{Sb}, {ci}i∈[t]). Finally, the adversary
outputs b′ ∈ {0, 1}. Let AdvA = |Pr[b−b′]−1/2|, we require AdvA = |S1 \S0| ·
negl(λ). That is an adversary will have negligible advantage for all polynomial
|S1 \ S0|.

Deniable Secret Sharing 39

C.1.3 Selective Indistinguishability of Ciphertexts for ACE [12] For
all S,U ⊆ M, for all m∗

0,m
∗
1 ∈ S ∩ U and all m1, . . . ,mt ∈ M \ {m∗

0,m
∗
1}, the

distrbution
EK{S}, DK{U}, c∗0, c∗1, c1, . . . ct

is indistinguishable from

EK{S}, DK{U}, c∗1, c∗0, c1, . . . ct

with randomness taken over SK ← Setup(1λ);EK ← GenEK(SK,CS);DK{U} ←
GenDK(SK,CU), giving ciphertexts c∗b ← Enc(EK,m∗

b) and ci ← Enc(EK,mi).

C.2 Security proof for Theorem 8

Proof. We will prove that our construction is tfake-Fake Hiding (Definition 9).
Our proof proceeds through a series of hybrids, modifying the case when fak-
ing occurs (b = fake) until it is identical to the case where all shares are real
(b = real).

Hybrid-0. When b = fake, the original sharing is run for message m∗ = m0

using randomness ρ∗. The adversary is given ciphertexts

{s∗i = EncEK((τ∗,m∗, 0τ∗ , i))}i∈snitches {s∗i = EncEK((τ∗,m1, 0τ∗ + 1, i))}i∈fakers

where τ∗ = GK1
(ρ∗) and 0τ∗ = HK2

(τ∗).

Hybrid-1. Add a check making Share return ⊥ if τ = τ∗ = GK1(m
∗, ρ∗). Note

this changes the functionality of the program, but only when sharing with ran-
domness ρ∗ as G is injective.

Share(m; ρ)

1 : τ ← GK1(ρ)

2 : if τ = τ∗ then return ⊥
3 : 0τ ← HK2(τ)

4 : for i ∈ [n] :

5 : si ← EncK2((τ,m, 0, i))

6 : return {(i, si)}i∈[n]

Hybrid-0 ≈ Hybrid-1: As G is injective, then only the inputs {(m; ρ∗)}m∈M
to s which will cause τ = τ∗ = G(ρ∗). That is there are exactly |M| = poly(λ)
inputs for which the programs differ between the hybrids.

By Theorem 7 ([8, Theorem 6.2]), any distinguisher ofHybrid-0 andHybrid-1
with polynomial advantage implies an efficient extractor finding a point at which
the programs differ. This extractor runs in time polynomial in the circuit size of
the programs, and the number of differing inputs, |M| = poly(λ).

Given an extractor finding the point at which Share differs betweenHybrid-0
and Hybrid-1, we may construct an adversary which breaks the one-wayness

40 Canetti et al.

of G. Observe, for Hybrid-1 the challenger does not need to know what the
preimage of τ∗ is to provide the programs and ciphertexts to the adversary, as
the ciphertexts are,

{EncEK((τ∗,m∗, 0τ∗ , i))}i∈snitches, {EncEK((τ∗,m1, 0τ∗ + 1, i))}i∈fakers.

We may set τ∗ to be the challenge of the one-wayness game for G (Definition 14),
i.e. τ∗ = G(ρ̂) where ρ̂ ← R. This is distributed identically to Hybrid-1.
An extractor successfully finding where this modified Share differs from that
of Hybrid-0 clearly wins the one-wayness game. This follows as it finds (m′; ρ′)
where G(ρ′) = τ∗. Thus if G is an injective one-way function and iO is an indis-
tinguishability obfuscator, these hybrids are indistinguishable.

Hybrid-2. At this point we are sure that the adversary may never independently
produce shares with session identifier τ∗ and level 0τ∗ . We proceed to constrain
the encryption key in the Share and Fake programs for the set

S = {(τ∗,m, 0τ∗ , i)}i∈[n],m∈M.

If the message space M is of polynomial (or constant) size then S will also be
polynomially bounded.

Share(m; ρ)

1 : τ ← GK1(ρ)

2 : if τ = τ∗ then return ⊥
3 : 0τ ← HK2(τ)

4 : for i ∈ [n] :

5 : si ← EncEK{S}((τ,m, 0, i))

6 : return {(i, si)}i∈[n]

Fake({(i, si)}i∈S ,m
fake)

1 : (τ,m, ℓ, partyset′)

← Decrypt({(i, si)}i∈partyset)

2 : if |partyset′| ≤ tfake then return ⊥
3 : for i ∈ partyset′ :

4 : s′i ← EncEK{S}((τj ,m
fake, ℓ+ 1, i))

5 : return {(i, s′i)}i∈partyset′

Hybrid-1 ≈ Hybrid-2: Due to the check introduced back in Hybrid-1 we may
be sure that Share never produces an encryption of any element in S, as all
encryptions are of (τ,m, 0τ∗ , i) for τ ̸= τ∗.

For input shares to Fake with session identifier τ∗, the Decrypt sub-circuit
will ensure that all levels are in the interval [0τ∗ , T]. If ℓ is the maximal level
of the input shares, then Fake will always produce encryptions of level ℓ+ 1. It
follows that any encryptions of (τ∗,m, ℓ′, i) will have ℓ′ ∈ [0τ∗ + 1, T + 1]. We
may conclude that Fake never encrypts an element of S.

As neither Share nor Fake ever encrypts an element of S the hybrids are
indistinguishable by equivalence of constrained encryption (Section C.1.1) and
the security of iO.
Hybrid-3. Our next step is to ensure that the adversary cannot make the pro-
grams decrypt ciphertexts with session identifier τ∗ of level 0τ∗ , other than those
provided to it by parties in snitches. To do so constrain decryption for

S′ = S \ {(τ∗,m∗, 0τ∗ , i)}i∈snitches.

Deniable Secret Sharing 41

Note, we cannot yet constrain decryption for the entire set S, as we need to
produce ciphertexts for the messages in {(τ∗,m∗, 0τ∗ , i)}i∈snitches in form of the
shares given to the adversary.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S′}(si)

...

Hybrid-2 ≈ Hybrid-3: In Hybrid-2 we constrained the encryption key for the
set S. Security of constrained decryption allows changing a decryption key from
DK{S0} to DK{S1} under the condition that S0∆S1 ⊆ S where S is the set
the encryption key is constrained for. In our case S0 = ∅ and S1 = S′, satisfying
∅∆S′ = S′ ⊆ S. Crucially the messages mi ∈ {(τ∗,m∗, 0τ∗ , i)}i∈snitches, which
are encrypted to produce shares s∗i for i ∈ fakers are not included in S0∆S1 = S′.
Indistinguishability follows by the security of constrained decryption, see Sec-
tion C.1.2.

Hybrid-4. We wish to constrain decryption further, to include the plaintexts in
{(τ∗,m∗, 0τ∗ , i)}i∈snitches. To achieve this we must first hardcode the decryption
for the shares of level 0τ∗ which the adversary has received: U = {s∗i }i∈snitches.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : if ∃j ∈ snitches, si = s∗j ∈ U then p← (τ∗,mreal, 0, j)

4 : else p← DecDK{S}(si)

...

Hybrid-2 ≈ Hybrid-4: By correctness of decryption of ACE, hardcoding the
decryption of ciphertexts in U will preserve the functionality. Moreover, due
to unique ciphertexts (Section C.1.1), with overwhelming probability over the
choice of DK no ciphertexts other than those in U will decrypt to a plain-
text in {(τ∗,m∗, 0τ∗ , i)}i∈snitches. By equivalence of constrained decryption (Sec-
tion C.1.1) it follows that constraining DK by S rather than S′ will preserve
functionality with overwhelming probability. With functionality preserved, we
may apply iO security to conclude indistinguishability of the hybrids.

Hybrid-5. Further, constrain encryption during faking and sharing for the set

Z = {(τ∗,m, 0τ∗ + 1, i)}i∈[n],m∈M \ {(τ∗,m1, 0τ∗ + 1, i)}i∈fakers.

Giving,

42 Canetti et al.

Share(m; ρ)

1 : τ ← GK1(ρ)

2 : if τ = τ∗ then return ⊥
3 : 0τ ← HK2(τ)

4 : for i ∈ [n] :

5 : si ← EncEK{S∪Z}((τ,m, 0, i))

6 : return {(i, si)}i∈[n]

Fake({(i, si)}i∈S ,m
fake)

1 : (τ,m, ℓ, partyset′)←
Decrypt({(i, si)}i∈partyset)

2 : if |partyset′| ≤ tfake then return ⊥
3 : for i ∈ partyset′ :

4 : s′i ← EncEK{S∪Z}((τj ,m
fake, ℓ+ 1, i))

5 : return {(i, s′i)}i∈partyset′

Note Z will always be a set of messages in the plaintext space, as all levels in
[0, T + 1] are permitted,

(τ,m, ℓ, i) ∈
(
{0, 1}τ(λ) ×M× [0, T + 1]× [n]

)
.

Hybrid-4 ≈ Hybrid-5: The functionality of Share is unchanged, by equivalence
of constrained encryption, as it would never encrypt any plaintext in Z.

We may now consider Fake. After constraining decryption in Decrypt, the
elements of

U = {s∗i = EncEK((τ∗,m∗, 0τ∗ , i))}i∈snitches

are the only ciphertexts with session identifier τ∗ and level 0τ∗ which will suc-
cessfully decrypt. By assumption, we know |snitches| ≤ tfake, therefore for τ = τ∗,
the level ℓ cannot be 0τ∗ while |partyset′| > tfake holds. Therefore, Fake will never
encrypt an element of Z, allowing its functionality to be preserved by equivalence
of constrained encryption (Section C.1.1). Indistinguishability simply follows by
the security of iO as the functionalities of Share and Fake are unchanged.

Hybrid-6. Constrain decryption further from S to S ∪ Z,

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : if ∃i ∈ partyset0, si = s∗i then p← (τ∗,m1, 0τ∗ , i)

4 : else p← DecDK{S∪Z}(si)

...

Hybrid-5 ≈ Hybrid-6: Indistinguishability follows by the security of con-
strained decryption (Section C.1.2). As required S∆(S ∪ Z) = Z ⊆ S ∪ Z.
Furthermore, the messages for faker and snitch shares {(τ∗,m1, 0τ∗+1, i)}i∈fakers

are not contained in Z.

Hybrid-7. Modify the hardcoded decryption to be of level 0τ∗ + 1 and change
the message to be m1.

Deniable Secret Sharing 43

Before.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : if ∃j ∈ snitches, si = s∗j then

p← (τ∗,mreal, 0τ∗ , j)

4 : else p← DecDK{S∪Z}(si)

...

After.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : if ∃j ∈ snitches, si = s∗j then

p← (τ∗,mfake, 0τ∗ + 1, j)

4 : else p← DecDK{S∪Z}(si)

...

Hybrid-6 ≈ Hybrid-7: To employ the security of iO we must argue that the
above modification has no effect on the functionality of the program. We may
restrict ourselves to inputs to decrypt where at least one share si = s∗j . If any
share has a session identifier different from τ∗ both Fake and Rec would output
⊥ regardless of this change. Similarly, if any share is provided with the wrong
party index ⊥ will always be returned.

Assuming all shares have session identifier τ∗ we may move on to considering
the level of the shares. If any share has level greater than 0τ∗ + 1 changing the
level and message when decrypting s∗i will have no effect on functionality, as
Decrypt only checks the messages for shares of the highest level.

This leaves us considering inputs where all shares are of level 0τ∗ or 0τ∗ +1.
Safety of constrained decryption tells us that decryption with DK{S ∪ Z} we
will never output a plaintext in S∪Z (Section C.1.1). Prior to the changes in the
hybrid the only shares which may decrypt of level 0τ∗ are s∗i ∈ U , this follows
as decryption is constrained for S = {(τ∗,m, 0τ∗ , i)}i∈[n],m∈M. As |U | ≤ tfake
and |U | ≤ t, any input containing only ciphertexts from U will result in Rec and
Fake returning ⊥. This is unaffected by the changes between these hybrids.

Finally, we are left with the case where shares s∗i ∈ U are mixed with shares
of level 0τ∗ + 1. Recall, decryption is also constrained for

Z = {(τ∗,m, 0τ∗ + 1, i)}i∈[n],m∈M \ {(τ∗,m1, 0τ∗ + 1, i)}i∈fakers.

This means that prior to the changes the only plaintexts which could decrypt of
level 0τ∗ + 1 are in W = {(τ∗,m1, 0τ∗ + 1, i)}i∈fakers. Let

V = {(τ∗,m0, 0τ∗ , i)}i∈snitches, V ′ = {(τ∗,m1, 0τ∗ + 1, i)}i∈snitches.

Consider a set P of plaintexts drawn fromW∪V and P ′ fromW∪V ′ taking plain-
texts with identical indices I, i.e. for i ∈ I if i ∈ snitches then (τ∗,m0, 0τ∗ , i) ∈ P .
By inspection the functionality of Decrypt is identical between P and P ′, as it
will return (τ∗,m1, 0τ∗ + 1, I) in either case. We may conclude that the func-
tionality of the program between the two hybrids is identical.

Hybrid-8. One-by-one, replace the ciphertexts

s∗i = EncEK((τ∗,m0, 0τ∗ , i)) with ŝi = EncEK((τ∗,m1, 0τ∗ + 1, i))

44 Canetti et al.

for i ∈ snitches. Ciphertexts are replaced in both the obfuscated programs (in
Decrypt) and where they are given to the adversary directly.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : if ∃i ∈ snitches, si = ŝi then p← (τ∗,mreal, 0τ∗ + 1, i)

4 : else p← DecDK{S∪Z}(si)

...

Hybrid-7 ≈ Hybrid-8: For selective indistinguishability of ciphertexts for ACE
to apply (Section C.1.3) we require that both encryption and decryption are con-
strained for the plaintexts we wish to swap. Both encryption and decryption are
constrained for the set S ∪ Z. The plaintext (τ∗,m0, 0τ∗ , i) for s∗i is in S, while
the plaintext (τ∗,m1, 0τ∗ + 1, i) for ŝi is in Z, implying s∗i ≈ ŝi.

Hybrid-9. In Decrypt change decryption key from being constrained by S ∪ Z
to S ∪ Z ′ for Z ′ = Z \ {(τ∗,m1, 0τ∗ + 1, i)}i∈fakers.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : if ∃i ∈ snitches, si = ŝi then p← (τ∗,mreal, 0τ∗ + 1, i)

4 : else p← DecDK{S∪Z′}(si)

...

Hybrid-8 ≈ Hybrid-9: The set {(τ∗,m1, 0τ∗ +1, i)}i∈fakers being removed from
puncturing is exactly the set of plaintexts for the ciphertexts ŝi for i ∈ fakers.
With overwhelming probability over the choice of secret key the ciphertexts ŝi for
i ∈ fakers are the only ciphertexts for the plaintexts in {(τ∗,m1, 0τ∗+1, i)}i∈fakers.
In the case where ciphertexts are unique changing Z to Z ′ does not affect the
functionality of Decrypt as no ciphertexts distinct from ŝi for i ∈ fakers will de-
crypt to anything in {(τ∗,m1, 0τ∗ + 1, i)}i∈fakers. Indistinguishability follows be
the security of iO.

Hybrid-10. Reduce the constraints on the decryption key, going from S ∪Z ′ to
S.

Deniable Secret Sharing 45

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : if ∃i ∈ snitches, si = ŝi then p← (τ∗,m0, 0τ∗ + 1, i)

4 : else p← DecDK{S}(si)

...

Hybrid-9 ≈ Hybrid-10: Indistinguishability follows by the security of con-
strained decryption (Section C.1.2). Encryption is constrained for S ∪ Z, satis-
fying (S ∪ Z ′)∆S = Z ′ ⊆ S ∪ Z. Furthermore, none of the ciphertexts provided
as shares to the adversary have plaintexts in Z ′ = (S ∪ Z ′)∆S.

Hybrid-11. Remove the special case for ŝi where i ∈ snitches, allowing these to
be decrypted normally,

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

...

Hybrid-10 ≈ Hybrid-11: By correctness of decryption and equivalence of con-
strained decryption (Section C.1.1) the ciphertexts ŝi will be correctly decrypted
after this modification. As such the functionality of Decrypt is unchanged, with
indistinguishability following by the security of iO.

Hybrid-12. Puncture the key for PRF H on input τ∗, and hardcoding this output
in Share and Decrypt. Let 0τ∗ = HK2(τ

∗).

46 Canetti et al.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

4 : if p = ⊥ then continue

5 : parse (τi,mi, ℓi, j) := p

6 : if τi = τ∗

7 : if j ̸= i ∨ ℓi ̸∈ [0τ∗ , T] then continue

8 : partyset′ ← partyset′ ∪ {i}
9 : else

10 : 0τi ← HK2{τ∗}(τi)

11 : if j ̸= i ∨ ℓi ̸∈ [0τi , T] then continue

12 : partyset′ ← partyset′ ∪ {i}
13 : j ← argmaxi∈partyset′ ℓi

...

Share(m; ρ)

1 : τ ← GK1(ρ)

2 : if τ = τ∗ then return ⊥
3 : 0τ ← HK2{τ∗}(τ)

4 : for i ∈ [n] :

5 : si ← EncK2((τ,m, 0, i))

6 : return {(i, si)}i∈[n]

Hybrid-11 ≈ Hybrid-12: The functionality of s is unchanged as then function-
ality of H is preserved under puncturing (Definition 13) and H is never evaluated
on τ∗. The functionality of Decrypt is similarly identical as functionality is pre-
served under puncturing and 0τ∗ = HK2

(τ∗). Indistinguishability follows by the
security of iO.

Hybrid-13. Replace 0τ∗ by randomly sampled ℓ0 ← [0, T], both in Decrypt and
the ciphertexts (shares) provided to the adversary.

Deniable Secret Sharing 47

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

4 : if p = ⊥ then continue

5 : parse (τi,mi, ℓi, j) := p

6 : if τi = τ∗

7 : if j ̸= i ∨ ℓi ̸∈ [ℓ0, T] then continue

8 : partyset′ ← partyset′ ∪ {i}
9 : else

10 : 0τi ← HK2{τ∗}(τi)

11 : if j ̸= i ∨ ℓi ̸∈ [0τi , T] then continue

12 : partyset′ ← partyset′ ∪ {i}
13 : j ← argmaxi∈partyset′ ℓi

...

{ŝi = EncEK((τ∗,m0, ℓ0 + 1, i))}i∈snitches,

{s∗i = EncEK((τ∗,m0, ℓ0 + 1, i))}i∈fakers,

S = {(τ∗,m, ℓ0, i)}i∈[n],m∈M.

Hybrid-12 ≈ Hybrid-13: Pseudorandomness at punctured points of H implies
that these hybrids are indistinguishable.

Hybrid-14. For τi = τ∗ increase the lower bound of the accepted level range by
one.

48 Canetti et al.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

4 : if p = ⊥ then continue

5 : parse (τi,mi, ℓi, j) := p

6 : if τi = τ∗

7 : if j ̸= i ∨ ℓi ̸∈ [ℓ0+1, T] then continue

8 : partyset′ ← partyset′ ∪ {i}
9 : else

10 : 0τi ← HK2{τ∗}(τi)

11 : if j ̸= i ∨ ℓi ̸∈ [0τi , T] then continue

12 : partyset′ ← partyset′ ∪ {i}
13 : j ← argmaxi∈partyset′ ℓi

...

Hybrid-13 ≈ Hybrid-14: We argue this does not affect the functionality of
Decrypt. Recall,

S = {(τ∗,m, ℓ0, i)}i∈[n],m∈M.

As the decryption key is punctured by S, no ciphertext can decrypt to a plain-
text of the form (τ∗,m, ℓ0, i), allowing ℓi ̸∈ [ℓ0, T] to be changed to ℓi ̸∈ [ℓ0+1, T]
without affecting the functionality. Indistinguishability follows by the security
of iO.

Hybrid-15. Let ℓ′0 = ℓ0 + 1, observe ℓ′0 is uniform in [1, T + 1]. Replace ℓ′0 by
ℓ′′0 ← [0, T].
Before.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

4 : if p = ⊥ then continue

5 : parse (τi,mi, ℓi, j) := p

6 : if τi = τ∗

7 : if j ̸= i ∨ ℓi ̸∈ [ℓ′0, T] then

8 : continue

9 : partyset′ ← partyset′ ∪ {i}
10 : else

...

{ŝi = EncEK((τ∗,m1, ℓ
′
0, i))}i∈snitches

{s∗i = EncEK((τ∗,m1, ℓ
′
0, i))}i∈fakers

S = {(τ∗,m, ℓ′0 − 1, i)}i∈[n],m∈M

After.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

4 : if p = ⊥ then continue

5 : parse (τi,mi, ℓi, j) := p

6 : if τi = τ∗

7 : if j ̸= i ∨ ℓi ̸∈ [ℓ′′0 , T] then

8 : continue

9 : partyset′ ← partyset′ ∪ {i}
10 : else

...

{ŝi = EncEK((τ∗,m1, ℓ
′′
0 , i))}i∈snitches

{s∗i = EncEK((τ∗,m1, ℓ
′′
0 , i))}i∈fakers

S = {(τ∗,m, ℓ′′0 − 1, i)}i∈[n],m∈M

Deniable Secret Sharing 49

Hybrid-14 ≈ Hybrid-15: For T an exponentially large in the security param-
eter the distributions of ℓ′0 and ℓ′′0 are statistically close and therefore indistin-
guishable.

Hybrid-16. Restore the PRF output 0τ∗ = HK2
(τ∗) in place of ℓ′′0 in the program

and ciphertexts.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

4 : if p = ⊥ then continue

5 : parse (τi,mi, ℓi, j) := p

6 : if τi = τ∗

7 : if j ̸= i ∨ ℓi ̸∈ [0τ∗ , T] then continue

8 : partyset′ ← partyset′ ∪ {i}
9 : else

10 : 0τi ← HK2{τ∗}(τi)

11 : if j ̸= i ∨ ℓi ̸∈ [0τi , T] then continue

12 : partyset′ ← partyset′ ∪ {i}
13 : j ← argmaxi∈partyset′ ℓi

...

{ŝi = EncEK((τ∗,m1, 0τ∗ , i))}i∈snitches

{s∗i = EncEK((τ∗,m1, 0τ∗ , i))}i∈fakers

S = {(τ∗,m, 0τ∗ − 1, i)}i∈[n],m∈M

Hybrid-15 ≈ Hybrid-16: Indistinguishability follows by the pseudorandomness
of H at punctured points (Definition 13).

Hybrid-17. Restore the key for H to its unpunctured state, removing the seper-
ate branch for τ∗.

50 Canetti et al.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK{S}(si)

4 : if p = ⊥ then continue

5 : parse (τi,mi, ℓi, j) := p

6 : 0τi ← HK2(τi)

7 : if j ̸= i ∨ ℓi ̸∈ [0τi , T] then continue

8 : partyset′ ← partyset′ ∪ {i}
9 : j ← argmaxi∈partyset′ ℓi

...

Hybrid-16 ≈ Hybrid-17: These changes do not affect the functionality of
Decrypt as the functionality of H is preserved under puncturing. Indistinguisha-
bility follows from the security of iO.

Hybrid-18. Remove constraints on the decryption key for the set

S = {(τ∗,m, 0τ∗ − 1, i)}i∈[n],m∈M.

Decrypt({(i, si)}i∈partyset)

1 : partyset′ ← ∅
2 : for i ∈ partyset

3 : p← DecDK(si)

4 : if p = ⊥ then continue

...

Hybrid-17 ≈ Hybrid-18: Indistinguishability follows by the security of con-
strained decryption, as encryption is constrained for the set S and no ciphertexts
with plaintexts in S are given to the adversary.

Hybrid-19. Remove constraints on the encryption key for the set

S = {(τ∗,m, 0τ∗ − 1, i)}i∈[n],m∈M.

Deniable Secret Sharing 51

Share(m; ρ)

1 : τ ← GK1(ρ)

2 : if τ = τ∗ then return ⊥
3 : 0τ ← HK2(τ)

4 : for i ∈ [n] :

5 : si ← EncEK((τ,m, 0τ , i))

6 : return {(i, si)}i∈[n]

Fake({(i, si)}i∈S ,m
fake)

1 : (τ,m, ℓ, partyset′)

← Decrypt({(i, si)}i∈partyset)

2 : if |partyset′| ≤ tfake then return ⊥
3 : for i ∈ partyset′ :

4 : s′i ← EncEK((τj ,m
fake, ℓ+ 1, i))

5 : return {(i, s′i)}i∈partyset′

Hybrid-18 ≈ Hybrid-19: The functionality of Share is clearly unchanged as
no plaintext in S is ever encrypted. The same holds true for Fake as the level ℓ
given by Decrypt for a session identifier τ must be in the range [0τ , T]. Indistin-
guishability then follows from the security of iO.

Hybrid-20. Remove the check for τ = τ∗.

Share(m; ρ)

1 : τ ← GK1(ρ)

2 :
(((((((((((hhhhhhhhhhh
if τ = τ∗ then return ⊥

3 : 0τ ← HK2(τ)

4 : for i ∈ [n] :

5 : si ← EncK2((τ,m, 0τ , i))

6 : return {(i, si)}i∈[n]

Having restored the programs and transformed the ciphertexts we are finally left
in the world with where no faking occurs,

{ŝi = EncEK((τ∗,m1, 0τ∗ , i))}i∈snitches

{s∗i = EncEK((τ∗,m1, 0τ∗ , i))}i∈fakers.

Hybrid-19 ≈ Hybrid-20: Indistinguishability follows by the same reasoning
as for Hybrid-0 ≈ Hybrid-1. When G is injective the programs differ at |M|
points, a distinguisher with polynomial advantage allows efficiently finding one
of these points, breaking the one-wayness of G. Using Theorem 7 the hybrids
are indistinguishable if G is an injective one-way function and iO is an indistin-
guishability obfuscator. ⊓⊔

D Random Faking

In this section, we show a few simple deniable secret sharing schemes with ran-
dom faking. In Section D.1 and Section D.2, we consider the setting where fakers
don’t coordinate. In Section D.3 we consider the coordinated setting.

52 Canetti et al.

The notion of random faking is defined with respect to a distribution dist. We
consider dist to be the uniform distribution; messages from other distributions
can be encoded as uniform elements.

D.1 Uncoordinated Random Faking: Full-Threshold Construction

Consider the following construction for t = n, which uses additive secret sharing
i.e. an n-out-of-n secret sharing scheme over any finite group, such as Zq (set of
integers modulo q).

Share(m): Additively share m ∈ Zq to get s1, . . . , sn, where the shares are
sampled uniformly at random subject to

∑n
i=1 si mod q = m. Return {(i, si)}i∈[n].

Fake(si): Choose a random value ρi, and let s′i = si + ρi mod q. Return s′i.

Rec(s1, . . . , sn): Return m′ =
∑

i∈{1,...,n} si mod q.

This construction clearly offers correctness and privacy (Definition 1), as
well as all of fake-real indistinguishability (Definition 3), faker anonymity (Def-
inition 7), and even fake-hiding (Definition 9). This is because the uniform dis-
tribution of shares and the full threshold ensures that there is no way for the
adversary to be able to distinguish fake shares from the real ones. However, this
approach works only for full threshold and it is not clear how to modify it for
t < n.

D.2 Uncoordinated Random Faking: Lower Bounds

In the following theorem we prove that schemes with uncoordinated random
faking cannot achieve FRI for unqualified sets. We specifically prove this for
thresholds t ≤ n − 2, in this case the smallest n where [n] can be partitioned
into two unqualified sets is 6, for t = 4.

Theorem 10 (Lower Bound on FRI in the Uncoordinated Setting When
Neither Set Has t Parties). Say we have a scheme with uncoordinated random
faking with n ≥ 6 shareholders, which requires (∅, [n])-FRI (Definition 2; if ev-
eryone fakes, the set of fake shares should be indistinguishable from a fresh shar-
ing) and has a privacy threshold t ≤ n−2. Consider some k < t, then the scheme
cannot have (partyset0, partyset1)-FRI for all partitions partyset0, partyset1 where
|partyset0| = k.

Proof. Assume for contradiction that the scheme has (partyset0, partyset1)-FRI
for all partitions partyset0, partyset1 where |partyset0| = k.

Consider some specific partition partyset0, partyset1 where |partyset0| = k.
First, partition partyset0 further into partyset00 and partyset10, s.t. |partyset00| = 1
and |partyset00| = k−1. Then partition partyset1 into four sets, partyset

0
1, partyset

1
1,

partyset21, partyset
3
1,

|partyset01| = t− k, |partyset11| = |partyset21| = 1, |partyset31| = n− t− 2.

Deniable Secret Sharing 53

Observe, the sets

S1 = partyset10∪partyset01∪partyset11 and S2 = partyset10∪partyset01∪partyset21

are qualified, while may be partyset31 empty. In our matrix notation we now con-
sider columns partyset00, partyset

1
0 followed by partyset01, partyset

1
1, partyset

2
1, partyset

3
1,

from left to right. By FRI we have, r r r r r r
f f
f f

 (partyset0, partyset1)-FRI∼
[
r r r r r r
f f f f f f

]
(∅, [n])-FRI∼

[
r r r r r r

]
.

Similarly, for S = partyset10 ∪ partyset11 and R = partyset00 ∪ partyset01 ∪ partyset21 ∪
partyset31,  r r r r r r

f f
f f

 (S,R)-FRI∼
[
r r r r r r
f f f f f f

]
(∅, [n])-FRI∼

[
r r r r r r

]
.

Let us study the shares  r r r r r r
f f
f f


more closely. As they are indistinguishable from a fresh sharing, all subsets of
size t must reconstruct to the same message. In particular, reconstructing from
the sets S1 and S2, must give the same message. To reach our contradiction,
consider the shares with additional faking for partyset00, r r r r r r

f f f
f f f

 .

Reconstructing from S1 and S1 must exhibit identical behaviour here, as partyset00
is disjoint from S1 and S2. r r r r r r

f f f
f f f

 (partyset0, partyset1)-FRI∼


r r r r r r
f f f f f f

f
f

 (∅, [n])-FRI∼

 r r r r r r
f
f

 .

We had previously shown that the shares of S1 and S2 must reconstruct to the
same message. Shown visually, the shares marked in blue for S1 on the left and
in blue for S2 on the right r r r r r r

f
f

 and

 r r r r r r
f
f



54 Canetti et al.

must reconstruct to the same message. By correctness S2 will allow recovering the
original message. This contradicts privacy as S1 contains fewer than t real shares.
Formally, the adversary could recover the original message for the following
shares, [

r r r r r r
f f f f

]
given only t− 1 = |partyset10 ∪ partyset01| real shares, by faking for partyset11 and
reconstructing for S1. ⊓⊔

Theorem 11 (Lower Bound on FRI in the Uncoordinated Setting When
One Set Has at Least t Parties). Say we have a scheme with uncoordinated
random faking, which requires (∅, [n])-FRI (Definition 2; if everyone fakes, the
set of fake shares should be indistinguishable from a fresh sharing) and has a pri-
vacy threshold t < n. Consider a specific partition of the parties into non-empty
sets partyset0 and partyset1 such that |partyset1| ≥ t. Then, the scheme does not
have (partyset0, partyset1)-FRI.

Proof. Partition partyset1 into partyset01 and partyset01, such that the parties in
partyset0 ∪ partyset01 are qualified, i.e. |partyset0 ∪ partyset01| = t. We consider
columns partyset0, partyset

0
1 and partyset01 and assume (partyset0, partyset1)-FRI

for contradiction, [
r r r
f

]
(partyset0, partyset1)-FRI∼

[
r r r
f f

]
.

In the random faking case, the real message is sampled within the security game,
and the fake message is chosen implicitly by the faking algorithm. We must
therefore consider distributions of shares where the message is taken from some
distribution itself. Observe the following, r r r

f
f

 (partyset0, partyset1)-FRI∼
[
r r r
f f f

]
(∅, [n])-FRI∼

[
r r r

]
.

In the case of a real sharing correctness requires that any subset of at least t
shares reconstruct to the same message. By privacy this cannot be true for: r r r

f
f

 .

Suppose we attempted to reconstruct from the set partyset0 ∪ partyset01, by our
reasoning above this should reconstruct to the original message with overwhelm-
ing probability. This poses a problem as faking should hide the message when
the snitches (in this case partyset0) are unqualified. If the distribution is non-
trivial, meaning there are at least two messages which occur with non-negligible

Deniable Secret Sharing 55

probability, this would allow the adversary a non-negligible advantage in distin-
guishing the distributions,m0 m0 m0

f f
f

 and

m1 m1 m1

f f
f

 ,

contradicting privacy. ⊓⊔

Theorem 12. Say we have a scheme with uncoordinated random faking, which
requires (∅, [n])-FRI (Definition 2) with threshold t ≤ n − 2. Then, the scheme
does not have (n− 1)-FA (Definition 5).

Proof. Assume towards contradiction that the scheme has (n− 1)-FA. Consider
distinct indices i, j, k ∈ [n]. Let partyset0 ⊂ [n]\{i, j, k} be a set s.t. |partyset0| =
t− 1. For the remainder of this proof, our columns will be

partyset0, {i}, {j}, {k}, partyset1 = [n] \ ({i, j, k} ∪ partyset0).

Note, partyset1 may be empty. The sets partyset0 ∪ {i} and partyset0 ∪ {j} are
both qualified. By extreme FRI, if a fake is applied to every share, the resulting
distribution must be indistinguishable from a fresh sharing, where all qualified
subsets reconstruct to the same message.[

r r r r r
f f f f f

]
(∅, [n])-FRI∼

[
r r r r r

]
.

We observe the following sequence of indistinguishabilities, r r r r r
f f f f f

f

 ([n] \ {j}, [n] \ {k})-FA∼

 r r r r r
f f f f f

f

 (∅, [n])-FRI∼
[
r r r r r

f

]
.

In the leftmost case partyset0 ∪ {i} and partyset0 ∪ {j} must reconstruct to the
same value. This contradicts privacy, as the shares of partyset0 ∪ {j} (columns
shown in blue) must allow recovering the original message for the shares,[

r r r r r
f f f f

]
.

⊓⊔

D.3 Coordinated Random Faking

With coordination, it is possible to get random faking with privacy, FRI and FA
for all thresholds, and FH for all thresholds where FH is possible. Consider the
following construction for arbitrary threshold t based on Shamir-secret sharing
(say, over a finite field Fq of integers modulo q, with prime q > n).

56 Canetti et al.

Share(m): Computes (s1, . . . , sn) ← Shamir.Share(m, t) as a shamir-sharing
of the message m ∈ Fq with threshold t. Here, Shamir.Share involves sampling
a polynomial p(x) of degree (t− 1) such that p(0) = m and setting si = p(i)
mod q. Return {(i, si)}i∈[n].

Fake({si}i∈fakers): If n−|fakers| ≥ t (that is, the snitches are qualified), return
the real shares {si}i∈fakers. Else,

1. Choose a random value ρ.
2. Choose a polynomial p′(x) of degree t−1 such that p′(0) = ρ and p′(i) = 0

for i ∈ [n] \ fakers.
3. For i ∈ fakers, let s′i = si + p′(i) mod q.

Rec({si}i∈partyset): Computesm′ ← Shamir.Rec({si}i∈partyset, t). Here, Shamir.Rec
involves using Lagrange interpolation to identify a (t− 1)-degree polynomial
p′′(x) consistent with {si}i∈partyset. Return p′′(0) if such a polynomial exists
and ⊥ otherwise.

This construction clearly offers correctness and privacy which follows directly
from the properties of Shamir secret sharing. Next, we observe that if snitches
are qualified, similar to the construction in Theorem 9, the fakers gain nothing
from altering their shares. In such a setting, while FH is impossible to achieve
(Theorem 6), we obtain fake-real indistinguishability and faker anonymity by
outputting original shares.

However, in the more interesting case where snitches are unqualified, this con-
struction offers correctness, privacy, fake-real indistinguishability, faker anonymity
and fake-hiding (when possible). This is because the fakers’ fake shares together
with the snitches’ real shares constitutes a valid sharing of m+ ρ. Notably, this
construction works even if the fakers coordinate before sharing occurs, since the
polynomial p′(x) does not depend on the fakers’ shares (only their identities need
to be known).

E Denial-of-Service Faking

In this section, we discuss denial-of-service (DoS) faking. For denial-of-service
faking, the fake-hiding guarantee does not make any sense; it is unreasonable to
hope to hide the fact that someone faked their share, when the goal of faking is
to cause reconstruction to detectably abort. For the same reason, extreme FRI
is not applicable as well. Instead, in the context of DoS faking, the focus is on
(non-extreme) fake-real indistinguishability and faker anonymity.

We can get both of these properties by generically compiling any random
faking scheme. We turn random faking into a denial-of-service by restricting
the set of valid messages to be a sparse subset of the distribution from which
the random message is drawn (e.g. by requiring that a valid message have λ
trailing zeros). We say that if a message outside that subset is reconstructed,
this is equivalent to an abort. The message yielded by random faking should be

Deniable Secret Sharing 57

uniform in the distribution, and will almost certainly not be in the sparse subset
of valid messages, giving us DoS faking.

In Section D.3, we saw an optimal random faking construction with coordi-
nation, which worked as long as the snitches were unqualified. However, when
the fakers can’t coordinate, Section D.1 only shows how to get the desired prop-
erties when t = n. However, it is possible to achieve DoS faking when t < n, as
we elaborate below.

E.1 Uncoordinated DoS Faking

Consider the following construction for arbitrary threshold t based on Shamir-
secret sharing (say, over a finite field Fq of integers modulo q, with prime q > n),
that achieves fake-real indistinguishability and faker anonymity as long as the
snitches are unqualified (|snitches| < t):

Share(m): Computes (s1, . . . , sn) ← Shamir.Share(m, t) as a shamir-sharing
of the message m ∈ Fq with threshold t. Here, Shamir.Share involves sampling
a polynomial p(x) of degree (t− 1) such that p(0) = m and setting si = p(i)
mod q. Return {(i, si)}i∈[n].

Fake(si): Return a random share s′i ∈ Fq.

Rec({si}i∈partyset): Computesm′ ← Shamir.Rec({si}i∈partyset, t). Here, Shamir.Rec
involves using Lagrange interpolation to identify a (t− 1)-degree polynomial
p′′(x) consistent with {si}i∈partyset. Return p′′(0) if such a polynomial exists
and ⊥ otherwise.

This construction clearly offers correctness and privacy which follows directly
from the properties of Shamir secret sharing. Next, we observe that if snitches
are unqualified and faking occurs, since all the shares are randomly sampled
from Fq, it is not possible for the adversary to distinguish the fake shares from
the real ones. This allows us to achieve fake-real indistinguishability and faker
anonymity. We point that once the snitches are qualified, we lose both fake-real
indistinguishability and faker anonymity, but that cannot be helped.

	Deniable Secret Sharing
	Introduction
	Related Work
	Technical Overview
	Future Work and Open Problems

	Definitions
	Notation and Syntax
	Properties
	Proofs with the Matrix Notation
	Relationships

	Uncoordinated Shareholder Faking: Lower Bounds
	Fake-Real Indistinguishability
	Faker Anonymity

	Coordinated Shareholder Faking: Lower Bounds for Fake-Hiding
	Coordinated Shareholder Faking from Indistinguishability Obfuscation
	Circuit Obfuscation
	Indistinguishability Obfuscation Friendly primitives
	Asymmetrically Constrained Encryption
	The iO Construction
	Extreme FRI and Privacy Without Coordination

	Omitted details from Section 2
	Proof of Lemma 1
	Proof of Lemma 2

	Coordinated Shareholder Faking: Information-Theoretic Construction
	Omitted details from Section 5
	Formal ACE security definitions
	Security proof for Theorem 8

	Random Faking
	Uncoordinated Random Faking: Full-Threshold Construction
	Uncoordinated Random Faking: Lower Bounds
	Coordinated Random Faking

	Denial-of-Service Faking
	Uncoordinated DoS Faking

