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Abstract—In this paper, we present a ring referral scheme, by
which a user can publicly prove her knowledge of a valid signa-
ture for a private message that is signed by one of an ad hoc set
of authorized issuers, without revealing the signing issuer. Ring
referral is a natural extension to traditional ring signature by
allowing a prover to obtain a signature from a third-party
signer. Our scheme is useful for diverse applications, such
as certificate-hiding decentralized identity, privacy-enhancing
federated authentication, anonymous endorsement and privacy
-preserving referral marketing. In contrast with prior issuer-
hiding credential schemes, our ring referral scheme supports
more distinguishing features, such as (1) public verifiability
over an ad hoc ring, (2) strong user anonymity against collusion
among the issuers and verifier to track a user, (3) transparent
setup, (4) message hiding, (5) efficient multi-message logarith-
mic verifiability, (6) threshold scheme for requiring multiple
co-signing issuers. Finally, we implemented our ring referral
scheme with extensive empirical evaluation.1

Index Terms—Decentralized Identity, Issuer Hiding, Strong
User Anonymity, Logarithmic Verifiability, Ring Signatures

1. Introduction

In a traditional ring signature scheme [2], a prover (also a
signer) convinces a public verifier by a proof-of-knowledge
of a valid signature for a message that is signed by a secret
key corresponding to one of an ad hoc set of authorized
public keys (a.k.a. a ring). This paper presents a ring referral
scheme, a natural extension to a ring signature, by allowing
a prover to obtain a signature from a third-party signer,
without possessing the secret key. In a ring referral scheme,
a user (not necessarily a signer) convinces a public verifier
by a proof-of-knowledge of a valid signature for a message
that is signed by one of an ad hoc set of authorized issuers
(each of which is associated with a public key), without
revealing which the signer or the associated public key is.

A ring referral scheme is useful for a variety of appli-
cations, where the anonymity of the signer (a.k.a. issuer
anonymity) is an important consideration. We provide sev-
eral useful applications of a ring referral scheme as follows:
1) Certificate-hiding Decentralized Identity: In normal de-

centralized identity (e.g., OpenID [3]), a user (i.e., cre-

∗Corresponding author: Sid Chi-Kin Chau (sid.chau@acm.org)
1. This is an extended version of the paper in IEEE S&P ’25 [1].

Figure 1: Certificate-hiding decentralized identity.

dential holder) presents a proof of credentials along with
a certificate issued by an authorized issuer (as depicted
in Fig. 1a). For example, if requested for a proof-of-
adulthood (age 18+), a user presents a certificate of a
digital driving license issued by the authority, along with
a proof showing the date-of-birth in the certified driving
license within a valid range, without disclosing any
personal credentials (e.g., name, date-of-birth, address).
There are multiple authorized issuers of credentials, e.g.,
each state in the US issues driving licenses. Revealing the
identity of the issuer may leak sensitive personal infor-
mation, e.g., revealing the state of a driving license may
leak a user’s location. For stronger privacy protection, a
user needs to hide the certificate by showing only a proof
of a valid certificate from one of the authorized issuers,
along with a proof of credentials that are certified by the
hidden certificate (as depicted in Fig. 1b).

2) Privacy-enhancing Federated Authentication: To sup-
port a single sign-on and eliminate repetitive authen-
tication in distributed systems, federated authentication
enables a website to grant a user’s access, if the user
possesses an account from a set of authorized service
providers (e.g., Google, Facebook, Microsoft). OAuth [4]
is a popular protocol for federated authentication. An
authorized service provider first signs an access token
linked to the destined website, after authenticating the
user. The user then utilizes the signed access token,
verifiable by the public key of the authorized service
provider, to gain access to the destined website. To
enhance privacy, the user may not want to disclose the
identity of the authorized service provider to prevent the
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destined website from tracking her activities.
3) Privacy-preserving Referral Marketing: A business op-

erator (e.g., bookstore) would offer discounts to certain
shoppers with referrals from a list of recognized sources
(e.g., students enrolling in a recognized institute). But the
shoppers do not need to disclose the sources of referrals
(e.g., the name of the enrolled institute), by presenting
only a proof of eligibility for discounts.

4) Anonymous Endorsement: The notion of Decentralized
Autonomous Organizations (e.g., DAOs) is to allow gov-
ernance by a community without centralized leadership.
It is desirable that the members of a community can put
forward a motion, if there are sufficient endorsements
from the community. Anonymous endorsement allows
a motion to be triggered by the endorsements from a
quorum, without revealing the identities of the endorsers.

In general applications, there is a list of authorized issuers
(i.e., signers) who can sign a message for a user. The user
then presents a proof-of-knowledge to a verifier that the
message has been signed by an authorized issuer, without
revealing the identity of the issuer in the list.

Although a similar idea of issuer anonymity was studied
recently in the literature, such as issuer-hiding credential
schemes [5], [6], [7] and multi-issuer credential scheme [8],
this paper offers more distinguishing features with stronger
privacy protection, higher efficiency and more applicability.
Our ring referral scheme supports the following features:

• Public Verifiability over Ad hoc Ring: The issuer-hiding
credential schemes in [5], [6], [7] rely on private verifia-
bility over a verifier-defined static ring, whereas our ring
referral scheme supports public verifiability over an ad
hoc ring. Namely, any public member can verify a ring
referral without the interaction with a user, and anyone (a
user or third-party) can construct or update a ring without
the need for approval by a verifier. This especially enables
decentralized applications on permissionless blockchain
platforms for publicly verifiable certificate-hiding decen-
tralized identity and anonymous endorsement of DAOs.

• Issuer Oblivion: The issuers should be oblivious of what
applications of their signatures will be used for. Issuer
oblivion not only prevents the issuers from interference,
but also facilitates the setup without coordinating the
issuers and verifier. The issuer-hiding credential schemes
in [5], [6], [7] relies on issuers’ special signatures via
a verifier-defined master key, whereas our ring referral
scheme uses standard BBS signature, without letting the
issuers know if their signatures are used in a ring referral.

• Transparent Setup: The schemes in [6], [7] require a
trusted third-party for the setup of structured parameters,
which may incur security loopholes or additional over-
head. [8] requires a trusted setup for the accumulator in
its credential scheme, but not for signature verification.
Our scheme supports a transparent setup to eliminate any
trusted third-party in a decentralized setting.

• Message Hiding: To support comprehensive privacy, we
consider hiding the signed message from the verifier in a
ring referral. The schemes in [5], [6], [7], however, require

TABLE 1: Feature comparison of issuer-hiding/multi-issuer
credential schemes and our ring referral scheme RR.bbs.
♯[8] requires no trusted setup for signature verification.
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BEK+21 [5] Groth [10] ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
BFGP22 [6] PS [11] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ST23 [7] PS [11] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ECA21 [8] Groth [10] ✓ ✓ ✓ ✓ ✓♯ ✓ ✗ ✗ ✗
RR.bbs BBS [12] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

the revelation of the signed message to the verifier.
• Strong User Anonymity: While hiding the issuer can pro-

tect user anonymity, it is insufficient if there is a collusion
among the issuers and verifier to track a user. For instance,
when there is a data breach with the issuers, such that all
previously signed messages and signatures are exposed,
it may be possible to link a ring referral with an issuer.
We introduce the notion of strong user anonymity, which
unlinks a signed message and its signature from a ring
referral. None of the extant schemes can support strong
user anonymity, as [5], [6], [7] are not message-hiding
and [8] needs to reveal partial signature to the verifier.

• Multi-message Logarithmic Verifiability: The schemes in
[5], [7], [8] require linear-sized public keys or proofs for
proving multi-message signatures, while [6] does not sup-
port multi-message signatures. We apply a recursive com-
pression technique (Dory [9]) to attain an efficient log-
arithmically verifiable multi-message signature scheme,
which may be of independent interest, and improve the
verification efficiency of our multi-message scheme.

• Threshold Scheme: In anonymous endorsement, a motion
needs to be co-signed by at least k distinct endorsers.
Thus, we also provide a threshold version of ring referral
scheme that requires at least k distinct co-signing issuers
in a single ring referral. None of the extant schemes [5],
[6], [7], [8] can support threshold requirements.

To sum up, we compare the features of the issuer-
hiding/multi-issuer credential schemes [5], [6], [7], [8] and
our scheme in Table 1. Our scheme supports all the afore-
mentioned features.
Contributions: We make the following contributions:
1) We formalize the notion of a ring referral scheme and

the associated security properties, such as unforgeability,
issuer anonymity and strong user anonymity.

2) We present a ring referral scheme RR.bbs, based on BBS
signature, supporting all the features in Table 1.

3) We design a new succinct and logarithmically verifiable
multi-message BBS signature scheme, which enables
succinct and efficiently verifiable multi-message RR.bbs.

4) We extend RR.bbs to support threshold requirements.
5) We implemented our schemes and conducted extensive

empirical evaluation of RR.bbs.
Organization: Sec. 2 surveys the related work. Sec. 3 pro-
vides a technical overview. Sec. 4 presents the preliminaries
and Sec. 5 presents a formal model of ring referral scheme.
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Sec. 6 presents a novel succinct multi-message BBS signa-
ture scheme. Secs. 7, 8 and Appendix C present the single-
message, multi-message and threshold RR.bbs schemes, re-
spectively. Sec. 9 empirically evaluates our scheme. More
technical definitions and proofs are deferred to Appendix.

2. Related Work

▶ Anonymous Signatures: Group signatures [13] and ring
signatures [2] are two main types of anonymous signatures
to let a user sign a message on behalf of a group without
revealing her identity with respect to the group. Our ring
referral scheme is closely related to ring signatures by
allowing an ad hoc ring. But a ring referral also distinguishes
between an issuer (i.e. signer) and a user (i.e. not a signer)
and ensures anonymity for both issuer and user. There are
other privacy extensions to signature schemes, such as multi-
user blind signatures [14] and zero-knowledge credentials
[15]. But these schemes do not hide the signer with a ring.
▶ Compressed Anonymous Signatures: Constructions of
anonymous signatures often involve zero-knowledge proofs
of knowledge for group membership [16], [17]. One can
use compressed argument systems to design succinct ring
signatures. Our ring referral scheme draws on Dory [9] – a
pairing-based recursive argument system with a logarithmi-
cally verifiable (and logarithmic-sized) proof in transparent
setup. DualDory [18] and LLRing [19] are ring signature
schemes using Dory to achieve succinct signatures and
efficient verifiability. Omniring [20] is a ring signature based
on Bulletproofs [21] with a logarithmic-sized (but linearly
verifiable) proof. Our ring referral scheme is inspired by the
signature compression techniques in Omniring and LLRing.
▶ Issuer-hiding Credentials: In issuer-hiding credential
schemes [5], [6], [7], a verifier specifies a fixed set of
authorized issuers by a master key, and a user reveals to
the verifier a signed message with an anonymous signature
by an authorized issuer. Among the features in Table 1, our
ring referral scheme supports issuer anonymity, but allows
an ad hoc and publicly verifiable set of issuers.
▶ Multi-issuer Credentials: In multi-issuer credential
schemes [8], [22], [23], a credential is issued from a set
of issuers without a root authority, which support issuer
anonymity2. One-out-of-many proof [17] is used in [8] to
produce a logarithmic-sized (but linearly verifiable) proof
with respect to the ring. Unlike our scheme, these schemes
do not guarantee strong user anonymity against collusion
among the issuers and verifier. Our scheme based on Dory
yields a logarithmically verifiable proof with respect to both
the ring and message size, and is extensible to support
threshold requirements. There are other distributed creden-
tial schemes, e.g., [24], [25] are primarily designed to sup-
port fault-tolerance of issuers, rather than issuer anonymity.

3. Technical Overview

▶ Basic Notations: We first define some basic notations,
before providing a technical overview of our results. Denote

2. Note that [8] refers to issuer anonymity by “user anonymity”.

a cyclic group of prime order p by G, and a ring of integers
modulo p by Zp. 1G denotes the identity element in G.
Let Z∗p ≜ Zp\{0}. We denote a vector in bold font with
an arrow symbol and its coordinates in normal font. For
example, a⃗ ≜ (a1, ..., an) ∈ Zn

p denotes a scalar vector and
G⃗ ≜ (G1, ..., Gn) ∈ Gn denotes a vector of generators from
a finite group. Define the following basic vector operations:
• a⃗ ◦ b⃗ ≜ (a1 · b1, ..., an · bn) ∈ Zn

p ,

• G⃗ ◦ H⃗ ≜ (G1 ·H1, ..., Gn ·Hn) ∈ Gn,
• G⃗◦a⃗ ≜ (Ga1

1 , ..., Gan
n ) ∈ Gn,

• G⃗a⃗ ≜
∏

i∈[n] G
ai
i ∈ G.

Definition 3.1 (Bilinear Pairing). Given three cyclic groups
G1,G2,GT of prime order p, a bilinear pairing is a map
e : G1 × G2 7→ GT that satisfies the following properties:
(i) Bilinearity: for any Ω,Γ ∈ G1, Θ,Λ ∈ G2, α, β ∈ Zp,
we have e(Ωα ·Γβ ,Θ) = e(Ω,Θ)α ·e(Γ,Θ)β and e(Ω,Θα ·
Λβ) = e(Ω,Θ)α · e(Ω,Λ)β; (ii) Non-degeneracy: if Ω,Θ
are generators of G1,G2, then e(Ω,Θ) is a generator of
GT ; (iii) Efficiency: e(·, ·) is efficiently computable.

We also define the inner-product relation via bilinear
pairing for given (Ω⃗ ∈ Gn

1 , Θ⃗ ∈ Gn
2 , c⃗ ∈ Zn

p ) as follows:

e(Ω⃗ΩΩ, Θ⃗) ≜
∏
i∈[n]

e(Ωi,Θi), e(Ω⃗, Θ⃗)c⃗ ≜
∏
i∈[n]

e(Ωi,Θi)
ci .

▶ Overview: We next provide a high-level overview of our
results. For the brevity of presentation, here we omit zero
knowledge, which will be rectified in the full scheme.
1) Compressed Message-hiding Multi-message BBS Sig-

nature: Our ring referral scheme relies on a message-
hiding signature scheme, in which the signed message
m⃗ is not revealed during the verification, except a com-
mitment Cm(m⃗). The ramifications of a message-hiding
signature are three-fold: (1) it can be extended to a
subsequent proof-of-knowledge that also hides the signa-
ture and the public key, (2) it incorporates compression
of a vector message by a commitment, which enables
logarithmic verifiability of a multi-message signature via
Dory, (3) it enables strong user anonymity by hiding the
message that is known by the issuer from the verifier.
First, we adapt BBS signature scheme [12] to support
message hiding, which may be of independent interest.
The validity of a BBS signature (σ0, σ1) on message m⃗
with respect to public key pk can be checked by the
bilinear pairing equation:

e(σ0, Gσ1
2 · pk)

?
= e(G1, G2) · e(H⃗, G⃗2)

m⃗,

where G1, G2, G⃗2, H⃗ are generators from the setup. In
our scheme, the verifier outsources the computation of
e(H⃗, G⃗2)

m⃗ to the prover. To check the consistency of
the same message m⃗ in both e(H⃗, G⃗2)

m⃗ and Cm(m⃗),
we use Dory, a compressed zero-knowledge argument
system with logarithmic proof size and verification time.

2) Proof-of-Knowledge for BBS Signature: In addition
to Cm(m⃗), the prover also commits the public key and
signature to Cm(pk), Cm(σ0), Cm(σ1). We devise a way
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to validate a BBS signature based on these commitments
only. The basic idea is to use Dory to check if these com-
mitments relate to the same committed values. For exam-
ple, Dory can check the consistency of the same values
(σ0, σ1) in e(σ0, G

σ1
2 ) and (Cm(σ0), Cm(σ1)), and the

same values (σ0, pk) in e(σ0, pk) and (Cm(σ0), Cm(pk)).
As a result, we can validate the knowledge of a BBS
signature by checking the blinear pairing equation:

e(σ0, G
σ1
2 ) · e(σ0, pk)

?
= e(G1, G2) · e(H⃗, G⃗2)

m⃗.

3) Proof-of-Knowledge for a Ring: In our ring referral
scheme, we also ensure that Cm(pk) is within an desig-
nated ring (pki)i∈n. We adopt the binary selector tech-
nique from LLRing [19] and Omniring [20]. Suppose
i∗ ∈ [n] is the index of a secret issuer. We define a unit
basis vector b⃗, such that bi∗ = 1 and bi = 0 for i ̸= i∗.
As a result, we can validate the knowledge of Cm(pk) in
a ring by checking the bilinear pairing equation:∏

i∈[n]
e
(
G1, (pki ·G

hi
2 )bi

) ?
= e(G1, pk) · e(G1, G2)

hi∗ ,

where hi ≜ Hash[pki] and the well-formedness of
e(G1, G2)

hi∗ can be validated by a standard Schnorr
proof-of-knowledge. Note that

∏
i∈[n] e(G1, pki ·G

hi
2 )bi

is a commitment of b⃗, and hence, the satisfiability of b⃗
as a unit basis vector can also be checked by Dory.

4) Multi-message & Threshold Ring Referrals: Overall,
our multi-message ring referral scheme is an integration
of compressed message-hiding BBS signature, proof-of-
knowledge of BBS signature and proof-of-knowledge for
a ring. Our scheme can be extended to support the k-
issuer threshold requirement by allowing b⃗ to be a binary
vector with the sum of its coordinates equating to k.

3.1. Integration with Decentralized Identity System

To demonstrate a practical application, we discuss a po-
tential integration of our ring referral scheme with OpenID
[3], which is a framework of a third-party identity provider
for authentication. OpenID involves three parties: user, third-
party identity provider (IDP) who certifies users’ identity
and credentials for authentication, and relying party (RP)
website which requires users’ credential certification.

In OpenID, a user first registers an account with OpenID
identity providers and obtains unique identifiers. When the
user visits an RP website, the user is redirected to the
corresponding IDP based on its unique identifier. The IDP
validates the user’s information, like username, passwords,
then issues an OpenID – a certificate for the user’s identity
and credentials. Then, the user shows the OpenID to the RP
website for verification of the OpenID.

We can integrate our ring referral scheme with OpenID
as follows. First, the user will send a message to its IDP
asking for a signature to authenticate his identity and creden-
tials. This step can be performed before the user interaction
with an RP website. Second, when the user visits an RP
website, it collects a set of IDP providers as the ring of
issuers in the ring referral scheme, then generates a ring

referral proof as a certificate to access the RP website.
The user can generate a proof from the non-interactive ring
referral scheme. Finally, the RP website will run the ring
referral verification algorithm. Note that our ring referral
scheme can be readily integrated with other protocols like
OAuth [4] and SAML [26].

Moreover, the public verifiability over an ad hoc ring
allows our ring referral scheme to be deployed on permis-
sionless blockchain platforms for DAOs.

4. Preliminaries

We present the preliminaries for our scheme. Let λ be
the security level parameter and negl(λ) be a negligible
function of λ. PPT denotes “probabilistic polynomial time”.
“ $←−” denotes a uniformly random selection from a set.

Commitment. A commitment scheme is a mapping Cm :
Mn × R → C from a (vector) multi-message3 space Mn

and a random mask space R to a commitment space C. A
commitment scheme is homomorphic, if for any m⃗1, m⃗2 ∈
Mn, r1, r2 ∈ R:

Cm(m⃗1; r1) · Cm(m⃗2; r2) = Cm(m⃗1 + m⃗2; r1 + r2).

We use the well-known Pedersen commitment and AFGHO
commitment, both are homomorphic commitment schemes
that support usual perfect hiding and computational binding.

Definition 4.1 (Pedersen Commitment). LetM = Zn
p , R =

Z∗p and C = G of order p. G⃗ $←− Gn, Q
$←− G are randomly

selected generators. Define Pedersen commitment by

Cm(m⃗; r) ≜ G⃗m⃗ ·Qr =
(∏

i∈[n]
Gmi

i

)
·Qr.

Definition 4.2 (AFGHO Commitment [27]). Let M = Zn
p ,

R = Z∗p and C = GT of order p. G⃗ $←− Gn
1 , Λ⃗

$←− Gn
2 , Q1

$←−
G1, Q2

$←− G2 are randomly selected generators. Let Q ≜
e(Q1, Q2). Define AFGHO commitment by

Cm(m⃗; r) ≜ e(G⃗, Λ⃗)m⃗ · Qr =
(∏

i∈[n]
e(Gi,Λi)

mi

)
· Qr.

4.1. Zero-Knowledge Arguments of Knowledge

An argument system is consisted of three PPT algorithms
(G,P,V), where G is the setup algorithm for public param-
eters pp, P and V are the prover and verifier algorithms.
Denote the communication transcript between the prover
and verifier by tr← ⟨P(·),V(·)⟩. At the end, the transcript
will produce a binary decision: Accept[tr] ∈ {0, 1}. A key
class of argument systems are zero-knowledge arguments of
knowledge (e.g., ring signature, ring referral).

Definition 4.3 (Argument of Knowledge). An argument
system (G,P,V) is an argument of knowledge for a relation,
if it satisfies perfect completeness (Def. (B.1)) and compu-
tational witness-extended emulation (CWE) (Def. (B.2)).

3. For credential applications, messages are called “attributes”. A cre-
dential can be represented by a commitment of a list of private attributes.
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CWE captures the idea of knowledge-sound arguments.
Informally, if an adversary produces an acceptable argument
with some probability, there exists an emulator that produces
a similar argument and a witness with the same probability.

We are interested in Special Honest-Verifier Zero-
Knowledge (SHVZK) arguments (Def. (B.4)) that do not
leak the information about the witness beyond what can be
inferred from the truth of the statement.

An argument system (G,P,V) is called public-coin, if
the verifier chooses her messages uniformly at random,
independent from the messages sent by the prover. Let e be
the public-coin challenge. The transcript of a public-coin ar-
gument system is defined as tr = ⟨P(pp, x, ω),V(pp, x; e)⟩.

Definition 4.4 (Fiat-Shamir Transformation). A multi-move
interactive public-coin argument of knowledge can be con-
verted to a non-interactive argument of knowledge by re-
placing the public-coin challenges by the output of a cryp-
tographic hash function, which produces seemingly random
output and is regarded as a replacement for a verifier.

In this paper, we focus on multi-move interactive public-
coin protocols for arguments of knowledge. The Fiat-Shamir
transformation can be applied to convert our interactive
protocols to non-interactive arguments using the random
oracle model in the security proofs [28]. This is especially
useful for reducing a logarithmic number of moves to a
single move in a publicly verifiable scheme.

4.2. Dory: Compressed Arguments of Knowledge

New techniques have been developed to compress zero-
knowledge arguments of knowledge to obtain a smaller
proof size or faster verification. Recently, Dory [9] is a com-
pressive protocol with logarithmic verification efficiency and
proof size based on a recursion for checking the following
inner-product relations in the pairing setting:

D0
?
= e(Ω⃗, Θ⃗) · Qr0 ,

D1
?
= e(Ω⃗, Λ⃗) · Qr1 ,

D2
?
= e(Γ⃗, Θ⃗) · Qr2 ,

(1)

where D0, D1, D2 ∈ GT and random generators Γ⃗
$←− Gn

1 ,

Λ⃗
$←− Gn

2 are the given input, and (Ω⃗ ∈ Gn
1 , Θ⃗ ∈ Gn

2 ,
r0, r1, r2 ∈ Z∗p) are the private witness. We color the witness
in Eqn. (1) to enhance readability.

Dory produces a proof with 6 log n GT elements, 1 G1

element and 1 G2 element. The verification takes 1 pairing,
9 log n+ 9 GT exponentiations, 1 G1 exponentiation and 1
G2 exponentiation. The precomputation takes 3n pairings,
which only involves the a-priori known generators. The
proving takes 3n pairings, 2 log n G1 exponentiations and
2 log n G2 exponentiations.

We denote the syntax of interactive Dory protocol by

Πdo.ip[n, Γ⃗, Λ⃗, D0, D1, D2; Ω⃗, Θ⃗, r0, r1, r2].

We also denote the syntax of non-interactive Dory ar-
gument via Fiat-Shamir transformation by (Pdo.ip,Vdo.ip):

• Proving: Pdo.ip[n, Γ⃗, Λ⃗, D0, D1, D2; Ω⃗, Θ⃗, r0, r1, r2] 7→ π.
This produces a non-interactive proof π from the input
(n, Γ⃗, Λ⃗, D0, D1, D2) and witness (Ω⃗, Θ⃗, r0, r1, r2).

• Verification: Vdo.ip[n, Γ⃗, Λ⃗, D0, D1, D2, π] 7→ {0, 1}. This
takes the input (n, Γ⃗, Λ⃗, D0, D1, D2) and checks the validity
of proof π. It returns 1 for a valid proof or 0 otherwise.

We also denote a scalar version of Dory protocol by
Πdo.sp for checking the scalar-product relations:

D0
?
= e(Ω,Θ) · Qr0 , D1

?
= e(Ω,Λ) · Qr1 , D2

?
= e(Γ,Θ) · Qr2 ,

where Ω,Γ ∈ G1,Θ,Λ ∈ G2 are 1-dimensional elements.
The details of protocols Πdo.ip, Πdo.sp and argument

(Pdo.ip, Vdo.ip) are described in Appendix B.1. Note that it
is possible to batch multiple Dory arguments with common
generators into a single argument [9] (see Appendix B.1).

In the next sections, we will use Dory to produce com-
pressed multi-message signature and ring referral schemes.

5. Definitions & Properties of Ring Referrals

In this section, we formally define the syntaxes of sig-
nature and ring referral schemes and the security properties.

Let the feasible message space be M. In a ring referral
scheme, a user U obtains a base signature σ on a (vector)
multi-message m⃗ ∈ M from an issuer I ∈ {Ii}i∈[n] and
presents a ring referral proof π to a verifier V . Each issuer
Ii has a public key pki. We collectively denote the set of n
public keys (i.e., the ring) by p⃗k ≜ {pki}i∈[n].

5.1. Syntax of Base Signature Scheme

Definition 5.1 (Signature Scheme). We define a signature
scheme Sig used by the issuers by the following methods:
1) Setup[1λ] 7→ pp: This method is given a security level

parameter λ and produces a public set-up parameter pp.
For brevity, input pp to other methods is implicit.

2) KeyGen[pp] 7→ (pk, sk): Given a public parameter pp,
each application of this method produces a public key
pk and the corresponding secret key sk. Each issuer
generates his own key pair and keeps his secret key
private. We denote the vector public keys of issuers as
p⃗k and the corresponding vector of secret keys s⃗k.

3) Sign[pp, m⃗; sk] 7→ σ: Given a public parameter pp and
a message m⃗, this method produces a signature σ that
is signed by a secret key sk.

4) VfySig[pp, pk, m⃗, σ] 7→ {0, 1}: This method checks if
the message m⃗ and signature σ is signed by the secret
key corresponding to the public key pk. It returns 1 for
a valid signature or 0 otherwise.

Definition 5.2 (Compressed Message-hiding Signature
Scheme). We also define a compressed message-hiding sig-
nature scheme, where the message m⃗ can be compressed to a
commitment Cmm during verification, by additional methods:
1) Compress[pp, m⃗] 7→ (Cmm, π): Given a public parameter

pp and a message m⃗, this method compresses m⃗ to a
commitment Cmm with an commitment proof π.
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2) VfyCSig[pp, pk, Cmm, σ, π] 7→ {0, 1}: This method
checks if the compressed message in the commitment
Cmm and the signature σ is signed by the secret key
corresponding to the public key pk via the commitment
proof π. It returns 1 for a valid signature or 0 otherwise.

We present a concrete instantiation of compressed message-
hiding signature scheme based on BBS signature in Sec-
tion 6. See the Appendix E for further details.

5.2. Syntax of Ring Referral Scheme

Definition 5.3 (Basic Ring Referral Scheme). We first define
a basic ring referral scheme RR on a given base signature
scheme Sig by the following methods:
1) Setup[1λ] 7→ pp: This method is given a security level

parameter λ and produces a public parameter pp, which
is also used to set up base signature scheme Sig.

2) Prove[pp, p⃗k, m⃗, σ] 7→ π: This method produces a ring
referral proof π for a signature σ that is signed on
message m⃗ by a secret key corresponding to one of the
public keys in p⃗k using base signature scheme Sig.

3) Verify[pp, p⃗k, m⃗, π] 7→ {0, 1}: This method checks
based on proof π if message m⃗ has a valid signature
that is signed by a secret key corresponding to one of
the public keys in p⃗k using base signature scheme Sig.
It returns 1 if a valid signature exists or 0 otherwise.

Definition 5.4 (Message-Hiding Ring Referral Scheme).
We also define a general ring referral scheme support-
ing message hiding, which does not require the explicit
knowledge of the signed message at the verifier. Let a
message sub-space M∗ ⊂ M denote a set of feasible
messages of interest for the verifier. A common example
is MC = {m⃗ ∈ M | C = Cm(m⃗; r), r ∈ R} as the set
of feasible messages for a given commitment C. We define
a message-hiding ring referral scheme RR on a given base
signature scheme Sig by the following variant methods:
1) Prove[pp, p⃗k,M∗, m⃗, σ] 7→ π: This method produces a

ring referral proof π for a signature σ that is signed on
m⃗ ∈ M∗ by a secret key corresponding to one of the
public keys in p⃗k using base signature scheme Sig.

2) Verify[pp, p⃗k,M∗, π] 7→ {0, 1}: This method checks
based on proof π if there exists a message m⃗ ∈ M∗
having a valid signature that is signed by a secret key
corresponding to one of the public keys in p⃗k using base
signature scheme Sig. It returns 1 if message m⃗ ∈ M∗
with a valid signature exists or 0 otherwise.

Note that if we let M∗ = {m⃗} be a singleton set, then this
becomes a ring referral scheme without message hiding.

5.3. Security Properties of Ring Referrals

We define the desirable security properties of a ring
referral scheme, and prove these properties in our scheme.
For clarity, we consider the feasible message space as MC.
It is possible to generalize MC to be a feasible message

spaceM∗ subject to additional constraints (e.g., the feasible
messages are within a specific range for credentials).
▶ Completeness. This property captures the basic notion
of correctness, if the scheme is executed faithfully.
Definition 5.5 (Completeness). A ring referral scheme RR
satisfies completeness, if

Pr

Verify[pp, p⃗k,MC, π]
= 1

pp← Setup(1λ),

(p⃗k, s⃗k)← Sig.Gen[pp],
i∗ ∈ [n], C ∈ C, m⃗ ∈ MC ⊂M,

σ ← Sig.Sign[pp, m⃗, ski∗ ],

π←Prove[pp, p⃗k,MC, m⃗, σ]

 ≥ 1−negl(λ).

The ring referral scheme satisfies perfect completeness,
if the above probability is exactly 1.

▶ Unforgeability. This property means that without know-
ing a valid base signature signed by a private key in a ring
p⃗k on a message m⃗ ∈MC for some commitment value C,
it is infeasible for an adversary to convince the verifier to
accept (p⃗k,MC).

We allow an adversary’s possible access to a corruption
oracle CO, a base signature oracle BSO and a proving
oracle PO, as defined in the following.

Definition 5.6 (Corruption Oracle CO). Initialize the set of
corrupted keys by p⃗kCO = ∅. When CO is queried with
a public key pk, it returns the corresponding secret key sk,
and then adds pk to p⃗kCO.

Definition 5.7 (Base Signature Oracle BSO). Initialize the
set of queries by ΣBSO = ∅. When BSO is queried with
a public parameter pp, a public key pk and a message m⃗,
it returns a valid base signature σ on the message m⃗ using
the secret key of pk, then adds (pp, pk, m⃗, σ) to ΣBSO.

Definition 5.8 (Proving Oracle PO). Initialize the set of
queries by ΠPO = ∅. When PO is queried with a public
parameter pp, a ring p⃗k and a message space MC, it
returns a valid ring referral proof π on a message m⃗ inMC

with respect to p⃗k, then adds (pp, p⃗k,MC, π) to ΠPO.

Given a ring p⃗k, an adversary A can obtain certain
secret keys of corrupted issuers in p⃗k, and certain exposed
signatures and ring referral proofs with respect to a subset
of p⃗k. Unforgeability requires that it is infeasible for A
to convince the verifier that it has a valid signature with
respect to a subset of uncorrupted keys in p⃗k\p⃗kCO, with
unexposed signatures and ring referral proofs on these un-
corrupted keys and the given message space. The notion of
unforgeability is captured by the following security game:
1) First, a security game instance is set up by generating a

public parameter pp and a ring p⃗k.
2) Adversary A can query the oracles, and obtains the set

of corrupted keys p⃗kCO and the set of queries ΣSO.
3) A then chooses (p⃗k

′
,C, π′), where p⃗k

′
are not the

corrupted keys and no base signature has been queried
on (pp, p⃗k

′
, m⃗) for any m⃗ ∈ MC to the base signature

oracle before, as well as (pp, p⃗k
′
,MC, π

′) has not been
queried to the proving oracle before.
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4) A wins, if A can produce an accepted proof for the
ring referral scheme on (p⃗k

′
,MC). Unforgeability is

satisfied, if the probability of A winning is negligible.
Definition 5.9 (Unforgeability). A ring referral scheme RR
satisfies unforgeability, if for any PPT adversary A:

Pr


Verify[pp, p⃗k

′
,MC, π

′]=1

∧ p⃗k
′ ⊂ p⃗k\p⃗kCO

∧ (pp, pk, m⃗, ·) /∈ ΣBSO,

∀(pk, m⃗) ∈ p⃗k
′ ×MC

∧ (pp, p⃗k
′
,MC, π

′) /∈ ΠPO

pp← Setup(1λ),

(p⃗k, s⃗k)← Sig.Gen[pp],

(p⃗k
′
,C, π′)

← ACO,BSO,PO[pp, p⃗k]

 ≤ negl(λ).

Remark: The definition of unforgeability of ring referral
scheme extends the one of a ring signature scheme, but there
is a subtle difference between the two. The access to a base
signature oracle is insufficient to forge a ring signature, but
it is sufficient in a ring referral scheme. Hence, we need to
limit its access in the unforgeability of ring referral scheme.
▶ Issuer Anonymity. This property means that the verifier
cannot guess the signing issuer better than random guessing.
The notion of issuer anonymity is captured as follows:
1) First, a security game instance is set up by generating a

public parameter pp and a ring p⃗k.
2) Adversary A picks two distinct issuers (Ii1 , Ii2), a com-

mitment value C and a message m⃗ ∈MC.
3) Ii1 produces a base signature σ1 on m⃗, whereas Ii2

produces a base signature σ2 on m⃗.
4) Without A’s knowledge, a random b

$←− {1, 2} is se-
lected and a ring referral proof π is generated from
(MC, m⃗, σb).

5) A wins, if A can guess b from (σ1, σ2, π). Issuer
anonymity is satisfied, if the net probability of A winning
as compared with random guessing is negligible.

6) Note that A can access the corruption oracle CO to
obtain any secret keys in the ring p⃗k (i.e., full key
exposure), and the base signature oracle BSO to obtain
any message-base signature pair, including σ1 and σ2 of
Ii1 and Ii2 on m⃗ (i.e., full signature exposure).

Definition 5.10 (Issuer Anonymity). A ring referral scheme
RR satisfies issuer anonymity, if for any PPT adversary A:

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


i1 ̸= i2
∧ b′ = b

pp← Setup(1λ),

(p⃗k, s⃗k)← Sig.Gen[pp],

(i1, i2,C, m⃗∈MC)← A[pp, p⃗k],
σ1 ← Sig.Sign[pp, m⃗, ski1 ],
σ2 ← Sig.Sign[pp, m⃗, ski2 ],

b
$←− {1, 2},

π ← Prove[pp, p⃗k,MC, m⃗, σb],

b′ ← ACO,BSO,PO[pp, p⃗k, σ1, σ2, π]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

▶ Strong User Anonymity. This property unlinks the
message, signature and the ring referral proof, and hence
prevents the issuers and the verifier from jointly correlating
a ring referral with a particular user4. The notion of strong
user anonymity is captured by the following security game:
1) First, a security game instance is set up by generating a

public parameter pp and a ring p⃗k.

4. We only consider message-level anonymity, but not network-level
anonymity, which should be protected by anonymous routing.

2) Adversary A picks an issuer Ii, a commitment value C
and two distinct messages m⃗1, m⃗2 ∈MC.

3) Ii produces base signatures σ1 on m⃗1 and σ2 on m⃗2.
4) Without A’s knowledge, a random b

$←− {1, 2} is se-
lected and a ring referral proof π is generated from
(MC, m⃗b, σb).

5) A wins, if A can guess b from (σ1, σ2, π). Strong user
anonymity is satisfied, if the net probability of A winning
as compared with random guessing is negligible.

6) Note that A can access the corruption oracle CO to
obtain any secret keys in the ring p⃗k (i.e., full key
exposure), and the base signature oracle BSO to obtain
any message-base signature pair, including σ1 and σ2 on
m⃗1 and m⃗2, respectively (i.e., full signature exposure).

Definition 5.11 (Strong User Anonymity). A ring referral
scheme RR satisfies user anonymity, if for any PPT adver-
sary A:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


m⃗1 ̸= m⃗2

∧ b′ = b

pp← Setup(1λ),

(p⃗k, s⃗k)← Sig.Gen[pp],

(i,C, m⃗1, m⃗2∈MC)←A[pp, p⃗k],
σ1 ← Sig.Sign[pp, m⃗1, ski],
σ2 ← Sig.Sign[pp, m⃗2, ski],

b
$←− {1, 2},

π ← Prove[pp, p⃗k,MC, m⃗b, σb],

b′ ← ACO,BSO,PO[pp, p⃗k, σ1, σ2, π]


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Remark: The definition of strong user anonymity re-
quires message hiding (i.e., MC is not a singleton set). For
a scheme without message hiding, strong user anonymity
is not satisfiable by default. As compared with issuer
anonymity, the adversary needs to guess a randomly chosen
message (associated with a specific user), rather than a
randomly chosen issuer.

6. Multi-Message BBS Signature Schemes

In this section, we present the base signature scheme
for our ring referral scheme, based on multi-message BBS
signatures. Fig. 2a presents the standard multi-message BBS
signature scheme Sigbbs in [12], [29], [30]. Note that the
verification time is linear in the number of messages (M ),
because of M G1 exponentiations for H⃗m⃗. Next, we will
design a new compressed message-hiding BBS signature
scheme by outsourcing the computation of H⃗m⃗ to a third
party and verifying the third party’s computation by Dory,
as well as hiding the message from the verifier.

6.1. Compressed Multi-Message BBS Signature

Let m⃗′ ≜ (m⃗, rm) ∈ ZM+1
p , H⃗′ ≜ (H⃗,1G1

) ∈ GM+1
1 ,

Γ⃗′ ≜ (Γ⃗, P1) ∈ GM+1
1 , Λ⃗′ ≜ (Λ⃗,1G2) ∈ GM+1

2 . Given
G2 ∈ G2\{1G2}, denote G⃗2 ≜ (G2, ..., G2) ∈ GM+1

2 .
We outline the basic idea of a compressed message-

hiding multi-message BBS signature scheme as follows:
1) First, the signer produces a valid BBS signature (σ0, σ1)

on m⃗ and hides message m⃗ in a Pedersen commitment,
defined as Cmm ≜ Γ⃗m⃗ · P rm

1 = Γ⃗′m⃗
′
.
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Sigbbs = (Setupbbs, KeyGenbbs, Signbbs, VfySigbbs)

• Setupbbs[1
λ
] 7→ pp :

G1
$←− G1, G2

$←− G∗
2 , H⃗

$←− GM
1 , pp ≜ (G1, G2, H⃗)

RETURN pp

• KeyGenbbs[pp] 7→ (sk, pk) :

sk
$←− Zp, pk ≜ G

sk
2 ∈ G2

RETURN (sk, pk)

• Signbbs[pp, m⃗, sk] 7→ σ :

R ≜ G1 · H⃗m⃗ ∈ G1, σ1
$←− Zp, σ0 ≜ R

1
sk+σ1 ∈ G1

RETURN σ ≜ (σ0, σ1)

• VfySigbbs[pp, pk, m⃗, σ = (σ0, σ1)] 7→ {0, 1} :

RETURN e(σ0, G
σ1
2 · pk)

?
= e(G1 · H⃗m⃗

, G2) ∈ {0, 1}

(a) Standard multi-message BBS signature [12], [29], [30].

Sigc.bbs = (Setupc.bbs, KeyGenc.bbs, Signc.bbs, VfySigc.bbs)

• Setupc.bbs[1
λ
] 7→ pp :

G1, P1
$←− G1, G2

$←− G∗
2 , H⃗, Γ⃗

$←− GM
1 , Λ⃗

$←− GM
2

D1 ≜ e(H⃗, Λ⃗) ∈ GT , pp ≜ (G1, G2, P1, H⃗, Γ⃗, Λ⃗)

RETURN pp

• KeyGenc.bbs[pp] 7→ (sk, pk) :

RETURN KeyGenbbs[pp]

• Signc.bbs[pp, m⃗, sk] 7→ σ :

RETURN Signbbs[pp, m⃗, sk]

• Compressc.bbs[pp, m⃗] 7→ (Cmm, π) :

rm, rD, rR,
$←− Z∗

p, m⃗′ ≜ (m⃗, rm) ∈ ZM+1
p , H⃗

′ ≜ (H⃗, 1G1
) ∈ GM+1

1

Cmm ≜ Γ⃗
m⃗ · P rm

1 , D0 ≜ e(H⃗
′m⃗′

, G2) · QrD , R ≜ Q
rR , D2 ≜ e(Cmm, G2)

π
′ ≜ Pdo.ip

[
M+1, (Γ⃗, P1), (Λ⃗, 1G2 ), D0, D1, D2; G⃗

◦m⃗′
2 , H⃗

′
, rD, 0, 0

]
// Prove the same m⃗′ committed in both D0, D2 by Dory

θ ≜ Hash[Cmm, D0, R, π
′
] // Create public-coin challenge via Fiat-Shamir

r′ ≜ rD + θ · rR, π ≜ (D0, R, π
′
, r′)

RETURN (Cmm, π)

• VfyCSigc.bbs[pp, pk, Cmm, σ = (σ0, σ1), π = (D0, R, π
′
, r′)] 7→ {0, 1} :

D2 ≜ e(Cmm, G2), θ ≜ Hash[Cmm, D0, R, π
′
]

RETURN
(
e(σ0, G

σ1
2 · pk) · Q

r′ ?
= e(G1, G2) · D0 · Rθ ∧

Vdo.ip

[
M+1, (Γ⃗, P1), (Λ⃗, 1G2

), D0, D1, D2, π
′]) ∈ {0, 1}

(b) Compressed message-hiding multi-msg BBS signature scheme.

Figure 2: Multi-message BBS signature schemes.

2) Rather than standard BBS signature verification, the ver-
ifier outsources the task of computing D0 ≜ e(H⃗′m⃗

′
, G2)·

QrD . To relate Cmm and D0, we use Dory to check the
following:

D0
?
= e(H⃗′, G⃗◦m⃗

′

2 ) · QrD = e(H⃗′m⃗
′
, G2) · QrD ,

D1 ≜ e(H⃗′, Λ⃗′)
?
= e(H⃗, Λ⃗),

D2
?
= e(Γ⃗′, G⃗◦m⃗

′

2 ) = e(Cmm, G2),

(2)

where Γ⃗′, Λ⃗′ are known generators and H⃗′, G⃗◦m⃗
′

2 are the
witness. Note that D1 ≜ e(H⃗, Λ⃗) can be precomputed.

3) Given a public-coin challenge θ (via Fiat-Shamir trans-
formation), the signer provides r′ ≜ rD + θ · rR.

4) Finally, the verification of a BBS signature with respect
to Cmm and pk can be attained by checking the following:

e(σ0, Gσ1
2 · pk) · Qr

′ ?
= e(G1, G2) · D0 · Rθ

= e(G1, G2) · e(H⃗′m⃗
′
, G2) · QrD · QθrR ,

⇒ e(σ0, Gσ1
2 · pk)

?
= e(G1 · H⃗m⃗, G2), i.e. BBS check

The detailed compressed message-hiding multi-message
BBS signature scheme Sigc.bbs is presented in Fig. 2b.

Theorem 6.1. Assume the standard scheme Sigbbs is com-
plete and satisfies EU-CMA; AFGHO and Pedersen commit-
ments are complete, perfectly hiding and computationally
binding; Dory argument is complete and satisfies CWE,
SHVZH; Hash is modeled as a random oracle. Then, the
compressed scheme Sigc.bbs is complete and satisfies un-
forgeability, SHVZK in the random oracle model.

Proof. See Appendix F.

The verification of Sigc.bbs takes 3 pairings and
10 logM GT exponentiations, with signature-independent
precomputation, which is a significant improvement over
linearly verifiable standard multi-message BBS signature.

6.2. Application to User-Binding Credentials

For decentralized identity, we particularly apply multi-
message BBS signature scheme to sign user-binding cre-
dentials. The basic idea is that an issuer signs a credential
(i.e., a multi-message commitment) containing a secret key
that is only known to a user. The user can later prove that
the credential is binding to her by a proof-of-knowledge
of the secret key. First, each user generates a key pair
(upk, usk) ∈ G1×Z∗p, where usk

$←− Z∗p and upk ≜ Gusk for

a public parameter G
$←− G1. Then, an issuer is asked for

a multi-message signature by a user with public key upk,
he applies the method Signbbs in Fig. 2a, but returns the

signature σ′ ≜ (σ′0, σ1), where σ′0 ≜ (upk · R)
1

sk+σ1 ∈ G1.
Since upk · R = G1 · Gusk · H⃗m⃗, σ′ is a BBS signature on
the extended multi-message (usk, m⃗), for which the user can
produce a ring referral proof from our multi-message ring
referral scheme.

7. Single-Message Ring Referral Scheme

For the clarity of presentation, this section only presents
the single-message ring referral scheme considering single-
message BBS signatures. It basically consists of two parts:
(1) a proof-of-knowledge for a BBS signature that the user
possesses a valid tuple of public key, signed message and
corresponding signature; and (2) a proof-of-knowledge for
a ring that a privately known public key is within a ring.

8



7.1. Proof-of-Knowledge for BBS Signature

The prover knows a public key pk, a signed message m
and the corresponding signature σ = (σ0, σ1). She needs
to prove that (pk,m, σ) is a valid single-message BBS
signature tuple. We outline the basic idea of a proof-of-
knowledge protocol:
1) First, the prover commits (pk,m, σ0, σ1) to cmpk ≜

e(G1, pk) · Qrpk , cmm ≜ e(H,G2)
m · Qrm , cmσ0

≜
e(σ0, G2)·Qrσ0 , cmσ1

≜ e(G1, G2)
σ1 ·Qrσ1 , and additional

commitments Z1 ≜ e(σ0, G
σ1
2 )·QrZ1 , Z2 ≜ e(σ0, pk)·QrZ2 ,

which enables the checking of BBS signature.
2) The verifier then checks the well-formedness of these

commitments. First, the verifier can perform Schnorr
proof-of-knowledge check on cmm and cmσ1 using pro-
tocol Πchkcm (see Sec. 7.4). Next, the verifier can invoke
Dory scalar-product protocol to check as follows:

D0 ≜ Z1
?
= e(σ0, G

σ1
2 ) · QrZ1 ,

D1 ≜ cmσ0

?
= e(σ0, G2) · Qrσ0 ,

D2 ≜ cmσ1

?
= e(G1, G

σ1
2 ) · Qrσ1 ,

(3)

where G1, G2 are known generators and σ0, G
σ1
2 are the

witness. Since we fix the generators to be G1, G2, and
cmσ1

has been checked via Schnorr proof-of-knowledge,
the well-formedness of Z1 and cmσ0

follows from the
knowledge soundness of Dory. Similarly, the verifier
can check the well-formedness of cmpk and Z2 by Dory
scalar-product protocol. We also need to ensure that the
commitment cmpk contains a public key pk for a BBS
signature in Πbbs.pms. This is done in the first scalar Dory
call Πdo.sp in Πbbs.pms, which checks pk in cmpk and Z2.

3) Finally, the verification of a BBS signature with respect
to Cmm, Z2 and Z1 can be checked as follows:

Z1 · Z2
?
= e(G1, G2) · cmm · Qr

′
,

⇒ e(σ0, G
σ1
2 ) · e(σ0, pk)

?
= e(G1, G2) · e(H,G2)

m,

⇒ e(σ0, Gσ1
2 · pk)

?
= e(G1 ·Hm, G2),

where r′ ≜ rZ1 + rZ2 − rm is provided by the prover.
The detailed protocol Πbbs.pms is described in Fig. 3, which
checks the proof-of-knowledge of a valid tuple of (pk,m, σ)
in single-message BBS signature scheme.

7.2. Proof-of-Knowledge for a Ring

Given cmpk, the prover should prove that the committed
pk is one of the ring p⃗k ≜ (pki)i∈[n], such that pk = pki∗ .
We outline the basic idea of a proof-of-knowledge protocol:
1) In the setup, let hi ≜ Hash[pki] for i ∈ [n] and K⃗ ≜

(Ki ≜ pki ·G
hi
2 )i∈[n]. The setting of K⃗ is to prevent an

attack of manipulating p⃗k to create a false proof.
2) The prover defines a selector vector b⃗ = (bi)i∈[n] ∈
{0, 1}n, where bi∗ = 1 and bi = 0, ∀i ̸= i∗. Then she
commits b⃗ to an AFGHO commitment with commitment
keys (K⃗, Q) as cm1 ≜ e(G⃗1, K⃗)b⃗ · Qr1 .

Πbbs.pms

[
cmpk ∈ GT , cmm ∈ GT , cmσ0 ∈ GT , cmσ1 ∈ GT ;

pk ∈ G2,m ∈ Zp, σ = (σ0, σ1) ∈ G1 × Zp

]
P : PARSE cmpk = e(G1, pk) · Qrpk , cmm = e(H,G2)

m · Qrm

cmσ0 = e(σ0, G2) · Qrσ0 , cmσ1 = e(G1, G2)
σ1 · Qrσ1

rZ1 , rZ2
$←− Z∗

p

P ⇒ V : Z1 ≜ e(σ0, G2)
σ1 · QrZ1 ∈ GT , Z2 ≜ e(σ0, pk) · QrZ2 ∈ GT

V & P : Run Πchkcm[cmm, e(H,G2), Q; m, rm] // Check m in cmm

Run Πchkcm[cmσ1 , e(G1, G2), Q; σ1, rσ1 ] // Check σ1 in cmσ1

RUN Πdo.sp

[
G1, G2, Z1, cmσ0 , cmσ1 ; σ0, G

σ1
2 , rZ1 , rσ0 , rσ1

]
// Check (σ0, G

σ1
2 ) in Z1 given cmσ0 , cmσ1

RUN Πdo.sp

[
G1, G2, Z2, cmσ0

, cmpk; σ0, pk, rZ2 , rσ0
, rpk

]
// Check (σ0, pk) in Z2 given cmσ0

, cmpk

P ⇒ V : r′ ≜ rZ1 + rZ2 − rm

V : CHECK Z1 · Z2
?
= e(G1, G2) · cmm · Qr

′

// Equivalently checking e(σ0, G
σ1
2 · pk)

?
= e(G1 ·Hm, G2)

Figure 3: Protocol Πbbs.pms for the proof-of-knowledge of
(pk,m, σ) in single-message BBS signature scheme.

3) The prover then proves that b⃗ is a unit vector committed
in cm1 using protocol Πchkuv via Dory (see Sec. 7.4).
This proves the knowledge of the index i∗ ∈ [n], and it
remains to prove the knowledge of pki∗ .

4) The prover also commits hi∗ as cm2 ≜ e(G1, G2)
hi∗ ·

Qr2 . The verifier performs Schnorr proof-of-knowledge
to check cm2 using protocol Πchkcm.

5) The verification of pk = pki∗ can be checked as follows:

cm1
?
= cmpk · cm2 · Qr

′
1 ,

⇒ e(G⃗1, K⃗)b⃗
?
= e(G1, pk) · e(G1, G2)

hi∗ ,

⇒
∏

i∈[n]
e
(
G1, (pki ·G

hi
2 )bi

) ?
= e(G1, pk ·Ghi∗

2 ),

where r′1 ≜ r1 − rpk − r2 is provided by the prover.

7.3. Interactive Ring Referral Protocol

Given a ring of issuers with public keys p⃗k ≜ (pki)i∈[n],
the prover/user obtains a BBS signature σ = (σ0, σ1) on a
message m from an issuer pki∗ , i

∗ ∈ [n]. Define the relation
for ring referral of single-message BBS signature by

RRR.bbs ≜
{
p⃗k ∈ Gn

2 ; m ∈ Zp, σ = (σ0, σ1) ∈ G1 × Zp,

i∗ ∈ [n], pki∗ ∈ p⃗k
∣∣∣ e(σ0, G

σ1
2 · pki∗) = e(G1 ·Hm, G2)

}
.

We combine the proof-of-knowledge for a BBS signature
and a proof-of-knowledge for a ring in protocol ΠRR.bbs in
Fig. 3, as a proof-of-knowledge for RRR.bbs.

7.4. Auxiliary Protocols for Ring Referral

We complete the ring referral protocol by describing two
auxiliary protocols:
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ΠRR.bbs

[
p⃗k ∈ Gn

2 ; m ∈ Zp, σ = (σ0, σ1) ∈ G1 × Zp,

i
∗ ∈ [n], pki∗ ∈ p⃗k

]
SETUP : (hi ≜ Hash[pki] ∈ Zp)i∈[n]

K⃗ ≜ (Ki ≜ pki ·G
hi
2 )i∈[n] ∈ Gn

2

P : rpk, rm, rσ0 , rσ1

$←− Z∗
p

P ⇒ V : cmpk = e(G1, pki∗ ) · Q
rpk ∈ GT

cmm = e(H,G2)
m · Qrm ∈ GT

cmσ0
= e(σ0, G2) · Qrσ0 ∈ GT

cmσ1 = e(G1, G2)
σ1 · Qrσ1 ∈ GT

V & P : RUN Πbbs.pms[cmpk, cmm, cmσ0
, cmσ1

; pki∗ ,m, σ = (σ0, σ1)]

P : b⃗ ≜ (bi)i∈[n], where bi ≜
{
0, if i ̸= i∗

1, if i = i∗

r1, r2
$←− Z∗

p

P ⇒ V : cm1 ≜ e(G⃗
◦b⃗
1 , K⃗) · Qr1 ∈ GT

cm2 ≜ e(G1, G2)
hi∗ · Qr2 ∈ GT

r′1 ≜ r1 − rpk − r2 ∈ Zp

V & P : RUN Πchkuv[cm1, Γ⃗, K⃗, Q; G⃗
◦b⃗
1 , r1]

// Check b⃗ being a unit basis vector

RUN Πchkcm[cm2, e(G1, G2), Q; hi∗ , r2] // Check hi∗ in cm2

V : CHECK cm1
?
= cmpk · cm2 · Qr

′
1

// Equivalently checking e(G⃗1, K⃗)b⃗
?
= e(G1, pki∗ ·G

hi∗
2 )

Figure 4: Ring referral protocol ΠRR.bbs for single-message
BBS signature.

• Protocol Πchkcm: This is a standard Schnorr proof-of-
knowledge protocol for checking the knowledge of a
committed value in a Pedersen or AFGHO commitment.
The protocol is described in Fig. 5a.

• Protocol Πchkuv: This protocol checks if a committed
vector b⃗ is a unit basis vector, satisfying the following:{

⟨b⃗, 1⃗⟩ ?
= 1,

b⃗ ◦ (b⃗− 1⃗)
?
= 0⃗.

(4)

We adopt the technique from LLRing [19]. Note that
Eqn. (4) is equivalent to the following via bilinear pairing:{

e(G⃗◦b⃗1 , G⃗2) = e(G1, G2)
⟨b⃗,1⃗⟩ ?

= e(G1, G2),

e(Γ⃗◦b⃗, K⃗◦b⃗) = e(Γ⃗, K⃗)b⃗◦b⃗
?
= e(Γ⃗, K⃗)b⃗,

(5)

where Γ⃗
$←− Gn

1 , G1
$←− G1, G2

$←− G2, and K⃗
$←− Gn

2 are
public parameters. We write G⃗1 ≜ (G1, ...G1) ∈ Gn

1 and
G⃗2 ≜ (G2, ...G2) ∈ Gn

2 . Eqn. (5) can be re-expressed as
the following three sets of inner-product relations:

D0 ≜ e(G1, G2)
?
= e(G⃗◦b⃗1 , G⃗2) = e(G1, G2)

⟨b⃗,1⃗⟩

D1 ≜ cm1
?
= e(G⃗◦b⃗1 , K⃗) · Qr1 ,

D2 ≜ e(Γ⃗, G⃗2).

(6)


D′0 ≜ cm′′

?
= e(Γ⃗◦b⃗, K⃗◦b⃗) · Qr′′= e(Γ⃗, K⃗)b⃗◦b⃗·Qr′′

D′1 ≜ cm′′
?
= e(Γ⃗◦b⃗, K⃗) · Qr′′ ,

D′2 ≜ cm′′
?
= e(Γ⃗, K⃗◦b⃗) · Qr′′ .

(7)

Πchkcm

[
cm ∈ G, P ∈ G, Q ∈ G; x ∈ Zp, r ∈ Zp

]
P : x

′ $←− Zp, r′
$←− Z∗

p

P ⇒ V : cm
′ ≜ P

x′
·Qr′ ∈ G

P ⇐ V : α
$←− Z∗

p

P ⇒ V : z ≜ α · x + x
′
, r′z ≜ α · r + r′

V : CHECK P
z ·Qr′z ?

= cm
α · cm′

(a) Protocol Πchkcm for checking the knowledge
of committed value in Pedersen commitment.

Πchkuv

[
cm ∈ GT , Γ⃗ ∈ Gn

1 , K⃗ ∈ Gn
2 , Q ∈ GT ; b⃗ ∈ Zn

p , r ∈ Zp

]
P : r′′

$←− Zp

P ⇒ V : cm
′′ ≜ e(Γ⃗

◦b⃗
, K⃗) · Qr

′′

V & P : RUN Πdo.ip

[
n, Γ⃗, K⃗, e(G1, G2), cm, e(Γ⃗, G⃗2); G⃗

◦b⃗
1 , G⃗2, 0, r, 0

]
RUN Πdo.ip

[
n, Γ⃗, K⃗, cm

′′
, cm

′′
, cm

′′
; Γ⃗

◦b⃗
, K⃗

◦b⃗
, r′′, r′′, r′′

]
RUN Πdo.ip

[
n, Γ⃗, K⃗, cm, e(G⃗1, K⃗), cm

′′
; G⃗1, K⃗

◦b⃗
, r, 0, r′′

]
// Can be batched into a single Dory with generators (Γ⃗, K⃗)

(b) Protocol Πchkuv for checking the well-formedness of a unit
basis vector.

Figure 5: Auxiliary protocols.
D′′0 ≜ cm1

?
= e(G⃗1, K⃗

◦b⃗) · Qr1 ,
D′′1 ≜ e(G⃗1, K⃗),

D′′2 ≜ cm′′
?
= e(Γ⃗, K⃗◦b⃗) · Qr′′ .

(8)

Each of the above sets of inner-product relations
can be checked by a Dory argument. Each of the
terms e(Γ⃗, G⃗2) = e(

∏
i∈[n] Γi, G2) and e(G⃗1, K⃗) =

e(G1,
∏

i∈[n] Ki) can be pre-computed using 1 pairing
and n group multiplications, instead of naı̈vely applying
n pairings to compute pairing between vectors. Note that
Eqns. (6)-(8) share the common generators (Γ⃗, K⃗). Hence,
we can batch the three Dory arguments for checking
Eqns. (6)-(8) into a single Dory argument. The full pro-
tocol is described in Fig. 5b.

7.5. Security Proofs for Ring Referral Protocol

We prove that as a multi-round interactive argument of
knowledge for the relation RRR.bbs, the protocol ΠRR.bbs

satisfies CWE and SHVZK. Given these properties, we can
prove the ring referral security properties of ΠRR.bbs.

Lemma 7.1. The protocol Πchkcm satisfies completeness,
and knowledge soundness and SHVZK. The protocol Πchkuv

satisfies completeness, CWE and SHVZK.

Proof. See Appendix F.

Theorem 7.2. Assume the BBS signature scheme Sigbbs is
complete and satisfies EU-CMA; the AFGHO and Pedersen
commitment schemes are complete, perfectly hiding and
computationally binding; the scalar and recursive Dory
arguments satisfies completeness, CWE and SHVZK; the
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Schnorr proofs of knowledge in the commitment checking
protocols satisfies completeness, knowledge soundness and
SHVZK; and Hash is a collision-resistant pseudo-random
hash function. Then, the ring referral protocol ΠRR.bbs

satisfies completeness, unforgeability, issuer anonymity and
strong user anonymity.

Proof. See Appendix F.

Optimization by Batching. ΠRR.bbs calls the sub-protocol
Πchkuv once as a batched argument of three recursive Dory
arguments; the protocol Πchkcm is used three times for which
we can batch the two using generator e(G1, G2) together;
and finally, the two scalar Dory arguments Πdo.sp can be
batched into a single argument. Overall, ΠRR.bbs calls the
n-dimensional recursive Dory argument once, the Πchkcm

protocol 2 times, and the scalar Dory argument once.

8. Multi-Message Ring Referral Scheme

Building on Sec. 7, we present a full ring referral proto-
col ΠRR.bbs.m (Fig. 7) for the multi-message BBS signature
(Fig. 2a). ΠRR.bbs.m consists of two parts: (1) a proof-of-
knowledge for a multi-message BBS signature that the user
possess a valid tuple of public key, signed multi-message
and corresponding signature; and (2) a proof-of-knowledge
for a ring that a privately known public key is within a ring.

As the standard BBS signature (Fig. 2a) requires M G1

group exponentiation operations to verify signature on multi-
message of size M , a naı̈ve extension of the single-message
ring referral protocol ΠRR.bbs to multi-message case will
result in a protocol whose proof size and verification scale
linearly in M . Building upon the compressed multi-message
BBS signature scheme in Fig. 2b, we are able to construct
a more efficient ring referral protocol ΠRR.bbs.m which has
logarithmic proof size and logarithmic verification cost in
terms of both the number of messages and the ring size.

8.1. Proof-of-Knowledge for Multi-Msg BBS

The prover knows a public key pk, a signed multi-
message m⃗ and the corresponding signature σ. We outline a
proof-of-knowledge for the prover to prove that (pk, m⃗, σ)
is a valid multi-message BBS signature tuple as follows:
1) First, the prover commits (pk, σ0, σ1) to cmpk ≜

e(G1, pk) · Qrpk , cmσ0
≜ e(σ0, G2) · Qrσ0 , cmσ1

≜
e(G1, G2)

σ1 · Qrσ1 . For the multi-message m⃗, the prover
uses Pedersen vector commitment to commit m⃗ to cmm ≜
Γ⃗m⃗ · Γ′rm . The prover also provides additional commit-
ments Z1 ≜ e(σ0, G

σ1
2 ) · QrZ1 , Z2 ≜ e(σ0, pk) · QrZ2 and

D0 ≜ e(H⃗m⃗, G2) · QrD which enables the checking of
multi-message BBS signature σ.

The key to achieve efficient verification is that the
verifier can compute D2 ≜ e(cmm, G2) = e(Γ⃗′, G⃗◦m⃗

′

2 )
using only 1 pairing operation, then use D2 in a Dory
argument to check that the prover has computed D0
correctly. The cost of M group exponentiation operations
to compute D0 is outsourced to the prover.

2) The verifier can use an (M + 1)-dimensional recursive
Dory argument to check that e(H⃗m⃗, G2) = e(H⃗, G⃗◦m⃗2 )
is in D0 as follows:

D0
?
= e((H⃗,1G1), G⃗

◦(m⃗,rm)
2 ) · QrH ,

D1 ≜ H
?
= e((H⃗,1G1), Λ⃗

′),

D2
?
= e(Γ⃗′, G⃗

◦(m⃗,rm)
2 ),

(9)

where Γ⃗′, Λ⃗′ are known vector generators and
(H⃗,1G1), G⃗

◦(m⃗,rm)
2 ) are the witness. Since H is pub-

licly precomputed, and the verifier computes D2 herself,
soundness of Dory implies that e(H⃗, G⃗◦m⃗2 ) is in D0.

The verifier uses a Schnorr proof-of-knowledge to
check the well-formedness of the commitment cmσ1

.
Then, she can use a Dory scalar-product argument to
check that e(σ0, G

σ1
2 ) is in Z1 as follows:

D0 ≜ Z1
?
= e(σ0, G

σ1
2 ) · QrZ1 ,

D1 ≜ cmσ0

?
= e(σ0, G2) · Qrσ0 ,

D2 ≜ cmσ1

?
= e(G1, G

σ1
2 ) · Qrσ1 ,

(10)

where G1, G2 are known generators and σ0, G
σ1
2 are

the witness. As it has been checked that cmσ1
is well-

formed, the knowledge soundness of Dory implies that
e(σ0, G

σ1
2 ) is in Z1 where σ0, σ1 are committed in

cmσ0
, cmσ1

, respectively. Similarly, the verifier can also
check the well-formedness of Z2 using Dory scalar-
product check.

3) Finally, the verification of a multi-message BBS signa-
ture with respect to cmm, Z2 and Z1 can be checked by:

Z1 · Z2
?
= e(G1, G2) · D0 · Qr

′
,

⇒ e(σ0, G
σ1
2 ) · e(σ0, pk)

?
= e(G1, G2) · e(H⃗m⃗, G2),

⇒ e(σ0, Gσ1
2 · pk)

?
= e(G1 · H⃗m⃗, G2),

where r′ ≜ rZ1 + rZ2 − rD is provided by the prover.
The detailed protocol Πbbs.pms.m is described in Fig. 6,

which checks the proof-of-knowledge of a valid tuple of
(pk, m⃗, σ) in multi-message BBS signature scheme.

8.2. Proof-of-Knowledge for a Ring

For BBS signature (Fig. 2a), the multi-message and
single-message scheme uses the same public key format
pk = Gsk

2 ∈ G2. Consequently, a similar proof-of-
knowledge of a public key in a ring as in the single-message
BBS signature case (Sec. 7.2) can also be used for multi-
message BBS signature.

8.3. Interactive Ring Referral Protocol

Define the relation for ring referral of multi-message
BBS signature by

RRR.bbs.m ≜
{
p⃗k ∈ Gn

2 ; m⃗ ∈ ZM
p , σ = (σ0, σ1) ∈ G1 × Zp,

i∗ ∈ [n], pki∗ ∈ p⃗k
∣∣∣ e(σ0, G

σ1
2 · pki∗) = e(G1 · H⃗m⃗, G2)

}
.
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Πbbs.pms.m

[
cmσ0 ∈ GT , cmσ1 ∈ GT , cmpk ∈ GT , cmm ∈ GT ;

pk ∈ G2, m⃗ ∈ ZM
p , σ = (σ0, σ1) ∈ G1 × Zp

]
P : PARSE m⃗′

= (m⃗, rm) ∈ ZM+1
p , H = e(H⃗, Λ⃗) ∈ GT

cmσ0
= e(σ0, G2) · Qrσ0 ∈ GT

cmσ1
= e(G1, G2)

σ1 · Qrσ1 ∈ GT

cmpk = e(G1, pk) · Qrpk ∈ GT ,

cmm = Γ⃗
m⃗ · Γ′rm ∈ G1

V & P : RUN Πchkcm

[
cmσ1

, e(G1, G2), Q; σ1, rσ1

]
// Check σ1 in cmσ1

P : rZ1 , rZ2 , rD
$←− Z∗

p

P ⇒ V : Z1 ≜ e(σ0, G
σ1
2 ) · QrZ1 ∈ GT , Z2 ≜ e(σ0, pk) · QrZ2 ∈ GT

D0 ≜ e(H⃗
m⃗
, G2) · QrD ∈ GT

V : D2 ≜ e(cmm, G2) = e(Γ⃗
′
, G⃗

◦m⃗′
2 ) ∈ GT

V & P : RUN Πdo.ip

[
M+1, Γ⃗′

, Λ⃗
′
, D0, H, D2; (H⃗, 1G1

), G⃗
◦m⃗′
2 , rD, 0, 0

]
// Check the same G⃗◦m⃗′

1 is in D0, D2

RUN Πdo.sp

[
G1, G2, Z1, cmσ0

, cmσ1
; σ0, G

σ1
2 , rZ1 , rσ0

, rσ1

]
// Check e(σ0, G

σ1
2 ) in Z1, σ0 in cmσ0

, Gσ1
2 in cmσ1

RUN Πdo.sp

[
G1, G2, Z2, cmσ0

, cmpk; σ0, pk, rZ2 , rσ0
, rpk

]
// Check e(σ0, pk) in Z2, σ0 in cmσ0 , pk in cmpk

P ⇒ V : r′ ≜ rZ1 + rZ2 − rD

V : CHECK Z1 · Z2
?
= e(G1, G2) · D0 · Qr

′

// Equivalently checking e(σ0, G
σ1
2 · pk)

?
= e(G1 · H⃗m⃗, G2)

Figure 6: Protocol Πbbs.pms.m for the proof-of-knowledge of
(pk, m⃗, σ) in multi-message BBS signature scheme.

We combine the proof-of-knowledge for a multi-message
BBS signature and proof-of-knowledge for the ring in
protocol ΠRR.bbs.m in Fig. 6 as a proof-of-knowledge for
RRR.bbs.m.

Theorem 8.1. Assume the multi-message BBS signature
scheme is complete and satisfies EU-CMA; the AFGHO and
Pedersen commitment scheme are complete, perfectly hiding
and computationally binding; the recursive Dory arguments
are complete and satisfied CWE and SHVZK; the scalar
Dory arguments and Schnorr proof of knowledge satisfies
completeness, knowledge soundness and SHVZK; and Hash
is a collision-resistant pseudorandom function. Then, the
ring referral protocol ΠRR.bbs.m satisfies completeness, un-
forgeability, issuer anonymity and strong user anonymity.

Proof. See Appendix F.

Optimization by Batching. ΠRR.bbs.m calls the sub-protocol
Πchkuv once which is a batched version of three recursive
Dory arguments of dimension n; the committed value check-
ing protocol Πchkcm is used twice using the same generators
e(G1, G2), hence can be batched into a single call; the two
scalar Dory arguments Πdo.sp on the generators (G1, G2) can
also be batched into one; finally, we also call an (M + 1)-
dimensional recursive Dory argument. Overall, ΠRR.bbs.m

call 1 recursive Dory argument of dimension n, 1 recursive
Dory argument of dimension M+1, 1 Πchkcm protocol, and
1 scalar Dory argument.

ΠRR.bbs.m

[
p⃗k ∈ Gn

2 ,M ; m⃗ ∈ ZM
p , σ = (σ0, σ1) ∈ G1 × Zp,

i
∗ ∈ [n], pki∗ ∈ p⃗k

]
SETUP : (hi ≜ Hash[pki] ∈ Zp)i∈[n]

K⃗ ≜ (Ki ≜ pki ·G
hi
2 )i∈[n] ∈ Gn

2

Γ⃗
′ ≜ (Γ⃗,Γ

′
)

$←− GM+1
1 , Λ⃗

′ ≜ (Λ⃗,Λ
′
)

$←− GM+1
2

P : rσ0 , rσ1 , rpk, rm
$←− Zp, m⃗′ ≜ (m⃗, rm) ∈ ZM+1

p

P ⇒ V : cmσ0 ≜ e(σ0, G2) · Qrσ0 ∈ GT

cmσ1
≜ e(G1, G2)

σ1 · Qrσ1 ∈ GT

cmpk ≜ e(G1, pki∗ ) · Q
rpk ∈ GT

cmm ≜ Γ⃗
m⃗ · Γ′rm ∈ G1

V & P : RUN Πbbs.pms.m[cmσ0
, cmσ1

, cmpk, cmm; pki∗ , m⃗, σ]

P : b⃗ = (bi)i∈[n], where bi ≜
{
0, if i ̸= i∗

1, if i = i∗

r1, r2
$←− Zp

P ⇒ V : cm1 ≜ e(G⃗
◦b⃗
1 , K⃗) · Qr1 ∈ GT

cm2 ≜ e(G1, G2)
hi∗ · Qr2 ∈ GT

r′1 ≜ r1 − rpk − r2 ∈ Zp

V & P : RUN Πchkuv[cm1, Ω⃗, K⃗, Q; G⃗
◦b⃗
1 , r1] // Check b⃗ a unit vector

RUN Πchkcm[cm2, e(G1, G2), Q; hi∗ , r2] // Check hi∗ in cm2

V : CHECK cm1
?
= cmpk · cm2 · Qr

′
1

// Check e(G⃗◦b⃗
1 , K⃗)

?
= e(G1, pki∗ ·G

hi∗
2 )

Figure 7: Ring referral protocol ΠRR.bbs.m for multi-message
BBS signature.

9. Evaluation

We implemented our schemes [31], using Charm Crypto
[32] with curve MNT224. We evaluated the performance
with 100 independent trials on a desktop with Intel Core i5
processor (2500 MHz, 16GB of RAM).

TABLE 2: Analytic performance estimation of standard
multi-message BBS signature scheme (bbs) and compressed
scheme (c.bbs). M is the number of messages. |Zp| means
field elements, |G∗| means group elements, G∗ means group
exponentiations, P means pairing operations.

bbs c.bbs

Pr
oo

f
Si

ze

|G1| 1 3
|G2| 0 1
|GT | 0 6 log(M + 1) + 2
|Zp| M + 1 2

V
er

ifi
ca

tio
n P 2 4

G1 M 1
G2 1 2
GT 0 9 log(M + 1) + 11

Pr
ov

in
g P 0 3M + 5

G1 M + 1 3(M + 1) + 2 log(M + 1)
G2 0 2 log(M + 1)
GT 0 1

Pr
e-

co
m

p

P 0 3(M + 1)

9.1. Performance of Compressed BBS Signature

We provide the analytic performance estimation of the
dominated terms of standard bbs and compressed c.bbs
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(a) Performance evaluation of RR.bbs (b) Performance evaluation of RR.bbs.m (c) Performance evaluation of RR.bbs.th

Figure 8: Performance evaluation results of single-message ring referral (RR.bbs), multi-message ring referral (RR.bbs.m)
and threshold ring referral (RR.bbs.th) schemes.

TABLE 3: Evaluation of standard multi-message BBS sig-
nature scheme (bbs) and compressed scheme (c.bbs).

M
Sig/Proof Size (KB) Verification (sec) Signing/Proving (sec) Precomp (sec)

bbs c.bbs bbs c.bbs bbs c.bbs bbs c.bbs
127 3.6 5.4 0.5 0.13 0.55 3.6 0 1.8
255 7.2 6.1 1.1 0.14 1.1 7.1 0 3.7
511 14.4 6.7 2.2 0.16 2.2 14.2 0 7.5

schemes in Table 2. We compare the empirical performance
in Table 3. We observe that c.bbs has a smaller proof size
and significantly faster verification than bbs, when M is
large, though it incurs additional precomputation that is only
computed once at setup and independent of any signatures.

9.2. Performance of Ring Referral Schemes

Since the issuer-hiding credential schemes [5], [6], [7]
rely on private verifiability over a verifier-defined static ring,
they have an unfair advantage of performance5 in n over
publicly verifiable schemes. Thus, we use the multi-issuer
credential scheme ECA21 [8] as a baseline for comparison,
which is a publicly verifiable scheme similar to our schemes.
In baseline ECA216, an issuer signs the user’s public key
and a multi-message (upk, m⃗) ∈ G1+M

1 using multi-message
Groth signature scheme [10] (see Fig. 13 in Appendix).

We provide the analytic performance estimation and
evaluation of ring referral and baseline ECA21 in Tables 4-5.
We observe that ring referral scheme considerably outper-
forms ECA21 with only small precomputation overhead.

We highlight the empirical performance as follows:
▶ Single-Message Ring Referral (Sec. 7). Fig. 8a shows
the performance of the single-message ring referral scheme
RR.bbs. We observe that as the ring size increases, the ring-
dependent precomputation time and proving time increase

5. In terms of group exponentiations, the verification time of [5], [6],
[7] is constant in n, but linear in M . In terms of the number of pairings
for (verification, proving) of BEK+21 [5] is (13, 7), BFGP22 [6] is (8, 0),
ST23 [7] is (3, 1), ECA21 [8] is (26M, 0), RR.bbs is (1, 3n), where M,n
are the numbers of messages and issuers, respectively.

6. Note that [8] originally uses an accumulator with a trusted setup.
We use ElGamal commitment with a transparent setup for benchmarking,
although our schemes can also be adapted to incorporate accumulator.

TABLE 4: Analytic performance estimation of our schemes
and baseline ECA21. n is the ring size, M is the number
of messages, k is the threshold.

RR.bbs RR.bbs.th RR.bbs.m ECA21

Pr
oo

f
Si

ze

|G1| 2 4 4 4M
|G2| 2 3 3 8 logn + 4M
|GT | 6 logn 6 logn 6(logn + logM) 0

V
er

ifi
ca

tio
n P 1 5 4 26M

G1 2 2 3 0
G2 2 2 3 2n + 16M
GT 9 logn 9 logn + 2k 9 logn + 9 logM 0

Pr
ov

in
g P 3n 3n + 10k 3n + 3M 0

G1 2 logn 2 logn + 6k 2 logn + 2M 8M
G2 2 logn 2 logn + 3k 2 logn + 2 logM 2n + 9M
GT 15 9 16 0

Pr
e-

co
m

p P 3n 3n + 6k 3n + 4M 0
G2 n n n 0

TABLE 5: Evaluation of our scheme and baseline ECA21.

(n,M)
Proof Size (KB) Verification (sec) Proving (sec) Precomp (sec)

ECA21 RR.bbs.m ECA21 RR.bbs.m ECA21 RR.bbs.m RR.bbs.m
(8, 127) 87 7.4 17 0.18 4.9 3.1 2.6
(16, 255) 170 8.8 34 0.21 9.9 6.2 5.2
(32, 511) 335 10.2 69 0.25 20 12.5 10.5

linearly. In contrast, our verification time has a clear log-
arithmic advantage. Similarly, our proof size also exhibits
the expected logarithmic relation with the ring size.

▶ Multi-Message Ring Referral (Sec. 8). Fig. 8b shows
the performance of the multi-message ring referral scheme
RR.bbs.m for ring size 8. We observe that as the number of
messages increases, the ring-dependent precomputation time
and proving time increase linearly. However, our verification
time and proof size scale well, exhibiting a logarithmic
relation with the number of messages. This makes our
scheme more practical for verifying multiple messages in
one go, which is beneficial for light-weight verification.

▶ Threshold Ring Referral (Appendix C). Fig. 8c shows the
performance of the threshold ring referral scheme RR.bbs.th
for ring size 64. Similar to RR.bbs.m, the precomputation
and proving time increase linearly, while the verification
time and proof size scale logarithmically.
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10. Conclusion

In this paper, we presented an efficient cryptographic
primitive called ring referral scheme, by which a user can
publicly prove her knowledge of a valid signature for a
private message that is signed by one of an ad hoc set of au-
thorized issuers, assuring issuer and strong user anonymity
with logarithmic verifiability and transparent setup. Our ring
referral scheme supports many distinguishing features over
the extant schemes in [5], [6], [7], [8]. In particular, it
can be applied to certificate-hiding decentralized identity,
privacy-enhancing federated authentication, anonymous en-
dorsement and privacy-preserving referral marketing.

In future work, we will explore lattice-based ring refer-
ral schemes and incorporate blind signatures. A real-world
evaluation of ring referrals on OpenID will also be pursued.
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Appendix A.
Cryptographic Assumptions

Definition A.1 (Discrete Logarithm (DLog)). The DLog
assumption holds for any PPT adversary A:

Pr

[
x⃗← A[G⃗],

G⃗x⃗ = η

G← Setup[1λ],

G⃗
$←− G

]
≤ negl(λ).

As a result of the DLog assumption, non-trivial discrete
logarithm relations among random generators G⃗ cannot be
discovered by any PPT adversary.

Definition A.2 (Computational Diffie–Hellman (CDH)).
Given a random generator G

$←− G and a tuple (Ga, Gb),
where (a, b)

$←− Z∗2p are selected at random, the CDH
assumption holds, if Gab is computationally hard for any
PPT adversary.
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Definition A.3 (Decisional Diffie–Hellman (DDH)). Given
a random generator G

$←− G and a tuple (Ga, Gb, Gc),
where (a, b, c)

$←− Z∗3p are selected at random, the DDH
assumption holds, if Gc is computationally indistinguishable
from Gab for any PPT adversary.

Definition A.4 (Symmetric External Diffie-Hellman (SXDH)).
Given a bilinear pairing e : G1 × G2 → GT and random
generators G

$←− G1, H
$←− G2, the SXDH assumption

holds, if the DDH assumption holds for G1 and G2,
and the following distributions are computationally
indistinguishable for any PPT adversary:

1) Tuple (G,Ga, H,Hb, e(G,H)ab), where (a, b)
$←− Z∗2p .

2) Tuple (G,Ga, H,Hb, T ), where (a, b)
$←− Z∗2p , T

$←− GT .

Definition A.5 (Double Pairing (DPair)). Given a bilinear
pairing e : G1 × G2 → GT and a random element vector
G⃗

$←− Gn
1 , the DPair assumption holds, if it is computation-

ally hard to produce H⃗ ∈ Gn
2 for any PPT adversary, such

that e(G⃗, H⃗) = 1.

Appendix B.
Additional Definitions

Denote a polynomial-time decidable tertiary relation by
R ⊂ {0, 1}∗3. A language dependent on pp is defined as
L pp

R ≜ {x | ∃ω : (pp, x, ω) ∈ R}, where ω is a witness for
a statement x in the relation (pp, x, ω) ∈ R.

Definition B.1 (Completeness). Argument system (G,P,V)
satisfies completeness, if for any PPT adversary A:

Pr

Accept[tr]
= 1

pp← G(1λ),
(pp, x, ω) ∈ R,

tr← ⟨P(pp, x, ω),V(pp, x)⟩

 ≥ 1− negl(λ).

We call it perfect completeness, if negl(λ) = 0.

Definition B.2 (Computational Witness-Extended Emulation
(CWE)). Argument system (G,P,V) satisfies CWE, if there
exists an expected polynomial-time emulator E , such that
for any interactive adversaries A1,A2:∣∣∣∣∣Pr

A1[tr] = 1
pp← G(1λ),

(x, w̃, P̃)← A2[pp],

tr← ⟨P̃(pp, x, w̃),V(pp, x)⟩


−Pr

 A1[tr
′] = 1

∧
(
Accept[tr′] = 1 ⇒
(pp, x, w′) ∈ R

) pp← G(1λ),
(x, w̃, P̃)← A2[pp],
(tr′, w′)← EO[pp, x]

 ∣∣∣∣∣ ≤ negl(λ),

where P̃ is a deterministic polynomial-time algorithm,
A1[tr] recognizes the transcripts that are produced by P̃ ,
and O is a rewindable oracle that can rewind the transcript
⟨P̃(pp, x, w̃),V(pp, x)⟩ and control the randomness in V .

Definition B.3 (Public Coin). Argument system (G,P,V)
is called public-coin, if the verifier chooses her messages
uniformly at random, independent from the messages sent
by the prover. Let e be the public-coin challenge. The
transcript of a public-coin argument system is defined as
tr = ⟨P(pp, x, ω),V(pp, x; e)⟩.

Definition B.4 (Special Honest-Verifier Zero-Knowledge
(SHVZK)). A public-coin argument system (G,P,V) sat-
isfies SHVZK, if there exists an efficient simulator S, such
that for any PPT adversary A:∣∣∣∣∣Pr

 Accept[tr]
= 1

∧ (pp, x, ω) ∈ R

pp← G(1λ),
(x, ω, e)← A[pp],

tr← ⟨P(pp, x, ω),V(pp, x; e)⟩


−Pr

 Accept[tr]
= 1

∧ (pp, x, ω) ∈ R

pp← G(1λ),
(x, ω, e)← A[pp],
tr← S[pp, x; e]

 ∣∣∣∣∣ ≤ negl(λ).

Definition B.5 (Fiat-Shamir Transformation). A multi-move
interactive public-coin argument of knowledge can be con-
verted to a non-interactive argument of knowledge by re-
placing the public-coin challenges by the output of a cryp-
tographic hash function, which produces seemingly random
output and is regarded as a replacement for a verifier.

In this paper, we focus on multi-move interactive public-
coin protocols for arguments of knowledge. The Fiat-Shamir
transformation can be applied to convert our interactive
protocols to non-interactive arguments using the random
oracle model in the security proofs [28]. This is especially
useful for reducing a logarithmic number of moves to a
single move in a publicly verifiable scheme.

B.1. Detailed Dory Protocol

Denote [G⃗]L ≜ (G1, ..., Gn
2
) and [G⃗]R ≜

(Gn
2 +1, ..., Gn) as the left-half and right-half sub-vectors

of G⃗, respectively. Dory [9] is a compressive protocol
based on a recursive folding technique. Dory improves over
Bulletproofs [21] with logarithmic verification efficiency
and proof size. It checks

D0
?
= e(Ω⃗, Θ⃗) · Qr0 , D1

?
= e(Ω⃗, Λ⃗) · Qr1 , D2

?
= e(Γ⃗, Θ⃗) · Qr2 ,

given commitments D0, D1, D2 ∈ GT and known random
generators Γ⃗

$←− Gn
1 , Λ⃗

$←− Gn
2 , with some private witness

(Ω⃗ ∈ Gn
1 , Θ⃗ ∈ Gn

2 , r0, r1, r2 ∈ Z∗p). We describe the Dory
protocol Πdo.ip using a recursive argument in Fig. 9a. Note
that the choices of Γ⃗′, Λ⃗′ do not matter. One possible setting
is Γ⃗′ ≜ [Γ⃗]L, Λ⃗

′ ≜ [Λ⃗]L, and hence, ∆1L = ∆2L.
An n-dimensional Dory inner-product argument attains

the following:
• Proof size: 6 log n GT elements, 1 G1 element and 1
G2 element;

• Verification cost: 1 pairing, 9 log n+ 9 GT exponenti-
ations, 1 G1 exponentiation and 1 G2 exponentiation;

• Proving cost: 3n pairings, 2 log n G1 exponentiations
and 2 log n G2 exponentiations;

• Precomputation includes 3n pairings.

Batching. It is possible to batch multiple Dory argu-
ments into a single argument [9]. Given
D0 = e(Ω⃗, Θ⃗) · Qr0 , D1 = e(Ω⃗, Λ⃗) · Qr1 , D2 = e(Γ⃗, Θ⃗) · Qr2 ,

and
D′0 = e(Ω⃗′, Θ⃗′) ·Qr

′
0 , D′1 = e(Ω⃗′, Λ⃗) ·Qr

′
1 , D′2 = e(Γ⃗, Θ⃗′) ·Qr

′
2 ,

with shared generators (Γ⃗, Λ⃗), we define
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Πdo.ip

[
n ∈ Z+

, Γ⃗ ∈ Gn
1 , Λ⃗ ∈ Gn

2 , D0 ∈ GT , D1 ∈ GT , D2 ∈ GT ;

Ω⃗ ∈ Gn
1 , Θ⃗ ∈ Gn

2 , r0 ∈ Z∗
p, r1 ∈ Z∗

p, r2 ∈ Z∗
p

]
SETUP : X ≜ e(Γ⃗, Λ⃗) ∈ GT

∆1L ≜ e([Γ⃗]L, Λ⃗
′
) ∈ GT , ∆1R ≜ e([Γ⃗]R, Λ⃗

′
) ∈ GT

∆2L ≜ e(Γ⃗
′
, [Λ⃗]L) ∈ GT , ∆2R ≜ e(Γ⃗

′
, [Λ⃗]R) ∈ GT

IF n = 1

V & P : RUN Πdo.sp

[
Γ,Λ, D0, D1, D2; Ω,Θ, r0, r1, r2

]
ELSE n > 1

P : r1L, r1R, r2L, r2R, rW1, rW2
$←− Z∗

p

P ⇒ V : D1L ≜ e([Ω⃗]L, Λ⃗
′
) · Qr1L ∈ GT , D1R ≜ e([Ω⃗]R, Λ⃗

′
) · Qr1R ∈ GT

D2L ≜ e(Γ⃗
′
, [Θ⃗]L) · Qr2L ∈ GT , D2R ≜ e(Γ⃗

′
, [Θ⃗]R) · Qr2R ∈ GT

P ⇐ V : β
$←− Z∗

p

P : Ω⃗
◦ ≜ Ω⃗ ◦ Γ⃗β ∈ Gn

1 , Θ⃗
◦ ≜ Θ⃗ ◦ Λ⃗β-1

∈ Gn
2

P ⇒ V : W1 ≜ e([Ω⃗]
◦
L , [Θ⃗]

◦
R ) · Q

rW1 , W2 ≜ e([Ω⃗]
◦
R , [Θ⃗]

◦
L ) · Q

rW2 ∈ GT

r̃0 ≜ r0 + β · r1 + β
-1 · r2

P ⇐ V : α
$←− Z∗

p

P : Ω⃗
′ ≜ [Ω⃗

◦
]
α
L ◦ [Ω⃗

◦
]R ∈ G

n
2
1 , Θ⃗

′ ≜ [Θ⃗
◦
]
α-1
L ◦ [Θ⃗◦

]R ∈ G
n
2
2

r′0 ≜ r̃0 + α · rW1 + α
-1 · rW2

r′1 ≜ α · r1L + r1R, r′2 ≜ α
-1 · r2L + r2R

V : D
′
0 ≜ D0 · X · Dβ

-1
1 · Dβ2 · W

α
1 · W

α-1
2 ∈ GT

D
′
1 ≜ D

α
1L · D1R ·∆

αβ
1L ·∆

β
1R ∈ GT

D
′
2 ≜ D

α-1
2L · D2R ·∆

α-1β-1
2L ·∆β-1

2R ∈ GT

V & P : RUN Πdo.ip[
n
2 , Γ⃗

′
, Λ⃗

′
, D

′
0, D

′
1, D

′
2; Ω⃗

′
, Θ⃗

′
, r′0, r

′
1, r

′
2]

(a) Dory protocol Πdo.ip for checking inner-product relations
⟨D0

?
= e(Ω⃗, Θ⃗) · Qr0 , D1

?
= e(Ω⃗, Λ⃗) · Qr1 , D2

?
= e(Γ⃗, Θ⃗) · Qr2⟩.

Πdo.sp

[
Γ ∈ G1,Λ ∈ G2, D0 ∈ GT , D1 ∈ GT , D2 ∈ GT ;

Ω ∈ G1,Θ ∈ G2, r0 ∈ Z∗
p, r1 ∈ Z∗

p, r2 ∈ Z∗
p

]
SETUP : X ≜ e(Γ,Λ) ∈ GT

P : Ω
′ $←− G1, Θ

′ $←−∈ G2, rP1, rP2, rS, rR
$←− Z∗

p

P ⇒ V : P1 ≜ e(Ω
′
,Γ) · QrP1 ∈ GT , P2 ≜ e(Λ,Θ

′
) · QrP2 ∈ GT

S ≜ e(Ω
′
,Θ) · e(Ω,Θ

′
) · QrS ∈ GT , R ≜ e(Ω

′
,Θ

′
) · QrR ∈ GT

P ⇐ V : ϵ
$←− Z∗

p

P ⇒ V : E1 ≜ Ω
′ · Ωϵ ∈ G1, E2 ≜ Θ

′ ·Θϵ ∈ G2

r1 ≜ rP1 + ϵ · r1 ∈ Z∗
p, r2 ≜ rP2 + ϵ · r2 ∈ Z∗

p

r0 ≜ rR + ϵ · rQ + ϵ
2 · r0 ∈ Z∗

p

V : θ
$←− Z∗

p, r ≜ r0 + θ · r2 + θ
-1 · r1

CHECK e(E1 · Γθ
, E2 · Λθ-1

)
?
=

X · R · Sϵ · Dϵ
2

0 · P
θ
2 · D

θ·ϵ
2 · Pθ

-1
1 · Dθ

-1·ϵ
1 · Qr

(b) Dory protocol Πdo.sp for checking scalar-product relations
⟨D0

?
= e(Ω,Θ) · Qr0 , D1

?
= e(Ω,Λ) · Qr1 , D2

?
= e(Γ,Θ) · Qr2⟩.

Figure 9: Interactive Dory protocols

Π
th
chkuv

[
n, k, cm ∈ GT , Ω⃗ ∈ Gn

1 , K⃗ ∈ Gn
2 , Q ∈ GT ; d⃗ ∈ Zn

p , r ∈ Zp

]
P : r′′

$←− Zp

P ⇒ V : cm
′′ ≜ e(Ω⃗

◦d⃗
, K⃗) · Qr

′′

V & P : RUN Πdo.ip

[
n, Ω⃗, K⃗, e(G1, G2)

k
, cm, e(Ω⃗, G⃗2); G⃗

◦d⃗
1 , G⃗2, 0, r, 0

]
RUN Πdo.ip

[
n, Ω⃗, K⃗, cm

′′
, cm

′′
, cm

′′
; Ω⃗

◦d⃗
, K⃗

◦d⃗
, r′′, r′′, r′′

]
RUN Πdo.ip

[
n, Ω⃗, K⃗, cm, e(G⃗1, K⃗), cm

′′
; G⃗1, K⃗

◦d⃗
, r, 0, r′′

]
// Can be batched into a single Dory with generators (Ω⃗, K⃗)

Figure 10: Protocol Πth
chkuv for checking the well-formedness

of a binary vector of weight k.

X ≜ e(Ω⃗, Θ⃗′) · e(Ω⃗′, Θ⃗) · QrX ,

and

D′′0 ≜ D
γ2

0 · Xγ · D′0, D′′1 ≜ D
γ
1 · D′1, D′′2 ≜ D

γ
2 · D′2,

where γ
$←− Z∗p. Then the new witnesses to (D′′0 , D

′′
1 , D
′′
2) are

Ω⃗′′ ≜ Ω⃗ ◦ Ω⃗′γ , Θ⃗′′ ≜ Θ⃗ ◦ Θ⃗′γ ,

and
r′′0 ≜ γ2r0 + γrX + r′0, r

′′
1 ≜ γr1 + r′1, r

′′
2 ≜ γr2 + r′2.

Theorem B.1 ([9]). Πdo.ip satisfies perfect completeness,
SHVZK and CWE (or it breaks the SXDH assumption).

As we also use the 1-dimensional Dory scalar-product
arguments several times in our ring referral schemes, we
recall it in the protocol Πdo.sp (Fig. 9b) for convenience.
Dory scalar-product protocol Πdo.sp attains the following:
• Proof size: 4 GT elements, 1 G1 element and 1 G2

element;
• Verification cost: 1 pairing, 7 GT exponentiations, 1 G1

exponentiations and 1 G2 exponentiations;
• Proving cost: 4 pairings, 1 G1 exponentiations, 1 G2

exponentiations, and 4GT exponentiations;
• Precomputation of 1 pairing.

Appendix C.
Threshold Ring Referral Scheme

We give a concise description of a threshold variant
of ring referral for single-message BBS signature. In a k-
out-of-n threshold ring referral scheme, the prover needs
to show that she has k valid signatures from k different
issuers in a ring of size n. The construction of our threshold
ring referral scheme consists of two parts: (1) a proof-of-
knowledge for k BBS signatures that the user has a col-
lection of k valid tuples of public key, signed message and
corresponding BBS signature; and (2) a proof-of-knowledge
for a ring that a collection of k different public keys,
which are privately known only to the prover, is a subset
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Πbbs.pms.th

[
cmσ0 ∈ GT , cmσ1 ∈ G1, cmpk ∈ GT , cmm ∈ G2;

p⃗k⋆ ∈ Gk
2 , m⃗ ∈ Zk

p, σ⃗ ∈ Gk
1 × Zk

p

]
P : PARSE cmσ0

= e(σ⃗0, Λ⃗) · Qrσ0 ∈ GT

cmσ1
= Γ⃗

σ⃗1 · Γrσ1 ∈ G1

cmpk = e(Γ⃗, p⃗k
⋆
) · Qrpk ∈ GT

cmm = Λ⃗
m⃗ · Λrm ∈ G2

σ⃗ = (σ⃗0, σ⃗1) ∈ Gk
1 × Zk

p

P : σ⃗
′
0 ≜ (σ⃗0, 1G1

) ∈ Gk+1
1 , σ⃗

′
1 ≜ (σ⃗1, rσ1

) ∈ Zk+1
p

m⃗′ ≜ (m⃗, rm) ∈ Zk+1
p , p⃗k

′⋆
≜ (p⃗k

⋆
, 1G2

) ∈ Gk+1
2

P ⇐ V : θ⃗ ≜ (θj)j∈[k]
$←− Z∗k

p , θ⃗
′ ≜ (θ⃗, 0) ∈ Z∗k+1

p

V : D0 ≜
∏

j∈[k]
e(Γj ,Λj)

θj = e(Γ⃗, Λ⃗
◦θ⃗

) ∈ GT

D1 ≜ e(H1, cmm) = e(H⃗
◦m⃗′
1 , Λ⃗

′
) ∈ GT

D2 ≜ e(cmσ1 , G2) = e(Γ⃗
′
, G⃗

◦σ⃗′
1

2 ) ∈ GT

D3 ≜
∏

j∈[k]
e(Γj , G2)

θj = e(Γ⃗
′
, G⃗

◦θ⃗′
2 ) ∈ GT

P : rZ1 , rZ2 , rZ3 , r′σ0

$←− Z∗
p

P ⇒ V : cm
′
σ0

= e(σ⃗
◦θ⃗
0 , Λ⃗) · Qr

′
σ0 ∈ GT

Z1 ≜ e(σ⃗
◦θ⃗
0 , G⃗

◦σ⃗1
2 ) · QrZ1 ∈ GT

Z2 ≜ e(σ⃗
◦θ⃗
0 , p⃗k

⋆
) · QrZ2 ∈ GT

Z3 ≜ e(H⃗
◦m⃗
1 , G⃗

◦θ⃗
2 ) · QrZ3 ∈ GT

V & P : Run Πdo.ip

[
k+1, Γ⃗′

, Λ⃗
′
, cm

′
σ0

, cmσ0 , D0; σ⃗
′
0, Λ⃗

′◦θ⃗′
, r′σ0

, rσ0 , 0
]

// Check σ⃗◦θ⃗
0 in cm′σ0

Run Πdo.ip

[
k+1, Γ⃗′

, Λ⃗
′
, Z1, cm

′
σ0

, D2; σ⃗
′◦θ⃗′
0 , G⃗

◦σ⃗′
1

2 , rZ1 , r
′
σ0

, 0
]

// Check e(σ⃗◦θ⃗
0 , G⃗

◦σ⃗1
2 ) in Z1

Run Πdo.ip

[
k+1, Γ⃗′

, Λ⃗
′
, Z2, cm

′
σ0

, cmpk; σ⃗
′◦θ⃗′
0 , p⃗k

′⋆
, rZ2 , r

′
σ0

, rpk
]

// Check e(σ⃗◦θ⃗
0 , p⃗k

⋆
) in Z2

Run Πdo.ip

[
k+1, Γ⃗′

, Λ⃗
′
, Z3, D1, D3; H⃗

◦m⃗′
1 , G⃗

◦θ⃗′
2 , rZ3 , 0, 0

]
// Check e(H⃗◦m⃗

1 , G⃗◦θ⃗
2 ) in Z3

P ⇒ V : r′ ≜ rZ1 + rZ2 − rZ3 ∈ Zp

V : CHECK Z1 · Z2
?
= e(G1, G2)

∑
j∈[k] θk · Z3 · Qr

′

// Check e(σj,0, G
σj,1
2 · pkij ) = e(G1 ·H

mj
1 , G2), ∀j ∈ [k]

Figure 11: Proof-of-knowledge of k-tuple of public key,
message and signature of BBS signature.

of this ring. The relation for threshold ring referral of BBS
signature is defined as

RRR.bbs.th ≜
{
p⃗k ∈ Gn

2 ; m⃗ ∈ ZM
p , σ⃗ ∈ Gk

1 × Zk
p,

{ij}j∈[k] ⊂ [n], p⃗k
⋆
=

(
pkij ∈ p⃗k

)
j∈[k] ∈ Gk

2

∣∣∣
e(σj,0, G

σj,1

2 · pkij ) = e(G1 ·H
mj

1 , G2), ∀j ∈ [k]
}
.

Proof-of-Knowledge for k BBS signatures. The prover
has a collection of k single-message BBS signatures σ⃗ =
(σ⃗0, σ⃗1) ∈ Gk

1 × Zk
p on messages m⃗ = (m1, . . . ,mk) from

k different issuers with public keys p⃗k
⋆
= (pkij )j∈[k] in the

ring. The prover needs to prove that these k signatures are

ΠRR.bbs.th

[
p⃗k ∈ Gn

2 , k ∈ [n]; m⃗ ∈ Zk
p, σ⃗ = (σ⃗0, σ⃗1) ∈ Gk

1 × Zk
p,

{ij}j∈[k] ⊂ [n], p⃗k
⋆
= (pkij ∈ p⃗k)j∈[k] ∈ Gk

2

]
SETUP : h⃗ ≜ (hi ≜ Hash[pki])i∈[n] ∈ Zn

p

K⃗ ≜
(
Ki ≜ pki ·G

hi
2

)
∈ Gn

2

Γ⃗
′ ≜ (Γ⃗,Γ)

$←− Gk+1
1 , Λ⃗

′ ≜ (Λ⃗,Λ)
$←− Gk+1

2

P : rσ0
, rσ1

, rpk, rm
$←− Z∗

p

P ⇒ V : cmσ0 ≜ e(σ⃗0, Λ⃗) · Qrσ0 ∈ GT , cmσ1 ≜ Γ⃗
σ⃗1 · Γrσ1 ∈ G1

cmpk ≜ e(Γ⃗, p⃗k
⋆
) · Qrpk ∈ GT , cmm ≜ Λ⃗

m⃗ · Λrm ∈ G2

V & P : RUN Πbbs.pms.th

[
cmσ0 , cmσ1 , cmpk, cmm; p⃗k

⋆
, m⃗, σ⃗

]
P : d⃗ ≜ (di)i∈[n], where di ≜

{
0, if pki /∈ p⃗k

⋆

1, if pki ∈ p⃗k
⋆

h⃗⋆ ≜ (hi1 , . . . , hik ) ∈ Zk
p, K⃗

⋆ ≜ (Ki1
, . . . , Kik

) ∈ Gk
2

G⃗
′
1 ≜ (G⃗1, 1G1

) ∈ Gk+1
1 , K⃗

′⋆ ≜ (K⃗
⋆
, 1G2

) ∈ Gk+1
2

r1, r2, rD, r′D
$←− Zp

P ⇒ V : cm1 ≜ e(G⃗
◦d⃗
1 , K⃗) · Qr1 ∈ GT , cm2 ≜ e(Γ⃗, K⃗

⋆
) · Qr2 ∈ GT

cmh ≜ Γ⃗
h⃗⋆ · ΓrD ∈ G1, R ≜ e(Γ, G2)

r′D ∈ GT

r′2 ≜ r2 − rpk ∈ Zp

V & P : RUN Π
th
chkuv[n, k, cm1, Ω⃗, K⃗, Q; G⃗

◦d⃗
1 , r1]

// Check d⃗ being a binary vector of weight k

RUN Πdo.ip

[
k+1, Γ⃗′

, Λ⃗
′
, cm1, e(G⃗1, Λ⃗), cm2; G⃗

′
1, K⃗

′⋆
, r1, 0, r2

]
// Check K⃗⋆ in cm2

P ⇐ V : ε
$←− Z∗

p

P ⇒ V : r̃D ≜ rD + ε · r′D ∈ Zp

V : W ≜ e(cmh, G2) · Rε · e(Γ, G2)
−r̃D ∈ GT

CHECK cm2
?
= cmpk ·W · Qr

′
2

// Check e(Γ⃗, K⃗⋆)
?
= e(Γ⃗, p⃗k

⋆
) · e(Γ⃗, G⃗◦⃗h⋆

2 )

Figure 12: Threshold ring referral protocol ΠRR.bbs.th for
BBS signature.

valid simultaneously:

e(σj,0, G
σj,1

2 · pkij ) = e(G1 ·H
mj

1 , G2), ∀j ∈ [k], (11)

where σ⃗0 = (σj,0)j∈[k] and σ⃗1 = (σj,1)j∈[k], which can be
batchec into a single check as

e(σ⃗◦θ⃗0 , G⃗◦σ⃗1
2 ) · e(σ⃗◦θ⃗0 , p⃗k

⋆
)

?
= e(G⃗1 · H⃗◦m⃗1 , G⃗◦θ⃗2 ), (12)

with verifier’s random θ⃗ = (θ1, . . . , θk)
$←− Z∗kp . Our proof-

of-knowledge for k BBS signatures consists of four Dory
checks

cm′σ0

?
= e(σ⃗′0, Λ⃗

′◦θ⃗′
) · Qr

′
σ0 ,

cmσ1

?
= e(σ⃗′0, Λ⃗

′) · Qrσ1 ,

D0
?
= e(Γ⃗′, Λ⃗′◦θ⃗

′
).


Z1

?
= e(σ⃗′◦θ⃗

′

0 , G⃗
◦σ⃗′

1
2 ) · QrZ1 ,

cm′σ0

?
= e(σ⃗′◦θ⃗

′

0 , Λ⃗′) · Qrσ1 ,

D2
?
= e(Γ⃗′, G⃗

◦σ⃗′
1

2 ).
Z2

?
= e(σ⃗′◦θ⃗

′

0 , p⃗k
′⋆
) · QrZ2 ,

cm′σ0

?
= e(σ⃗′◦θ⃗

′

0 , Λ⃗′) · Qrσ1 ,

cmpk
?
= e(Γ⃗′, p⃗k

′⋆
) · Qrpk .


Z3

?
= e(H⃗◦m⃗

′

1 , G⃗◦θ⃗
′

2 ) · QrZ3 ,
D1

?
= e(H⃗◦m⃗

′

1 , Λ⃗′),

D3
?
= e(Γ⃗′, G⃗◦θ⃗

′

2 ).

The batched verification of k BBS signatures is

Z1 · Z2
?
= e(G1, G2)

∑
j∈[k] θk · Z3 · Qr

′
.
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Proof-of-Knowledge of k-out-of-n in a Ring. Given
the commitment cmpk of k public keys in p⃗k

⋆
, the prover

needs to prove that the committed vector p⃗k
⋆

is a subset of
k elements in the ring p⃗k ≜ (pki)i∈[n]. We need to prove
knowledge of a binary vector d⃗ such that d⃗◦(d⃗−1⃗) = 0⃗ and
⟨d⃗, 1⃗⟩ = k, and the public setup of the ring is well-formed.
This is done with two Dory checks

E0
?
= e(G⃗◦d⃗1 , G⃗2),

cm1
?
= e(G⃗◦d⃗1 , K⃗) · Qr1 ,

E2
?
= e(Ω⃗, G⃗2).


cm1

?
= e(G⃗′1, K⃗

′⋆) · Qr1 ,
F1

?
= e(G⃗′1, Λ⃗

′),

cm2
?
= e(Γ⃗′, K⃗′⋆) · Qr2 .

We construct a proof-of-knowledge for k-out-of-n public
keys in a ring as follows:
1) In the setup, let hi ≜ Hash[pki] for i ∈ [n] and K⃗ ≜

(Ki ≜ pki ·G
hi
2 )i∈[n].

2) The prover defines a selector vector d⃗ ≜ (di)i∈[n] ∈
{0, 1}n, where di = 1 if pki appears in p⃗k⋆, and di = 0
otherwise. Note that

∑
i∈[n] di = k. Then the prover

commits d⃗ to cm1 ≜ e(G⃗◦d⃗1 , K⃗) · Qr1 .
3) We can slightly modify the unit basis checking protocol

Πchkuv in Sec. 7.4 to prove the knowledge of d⃗ by
checking {

d⃗ ◦ (d⃗− 1⃗) = 0⃗,

⟨d⃗, 1⃗⟩ = k,
(13)

We can equivalently check the relation ⟨d⃗, 1⃗⟩ = k as

e(G⃗◦d⃗1 , G⃗2) = e(G1, G2)
⟨d⃗,1⃗⟩ ?

= e(G1, G2)
k, (14)

using the following Dory check
E0

?
= e(G⃗◦d⃗1 , G⃗2),

cm1
?
= e(G⃗◦d⃗1 , K⃗) · Qr1 ,

E2
?
= e(Ω⃗, G⃗2),

(15)

with (Ω⃗, K⃗) are known generators, (G⃗◦d⃗1 , G⃗2) are the
witness; and E0 ≜ e(G1, G2)

k and E3 ≜ e(Ω⃗, G⃗2) can
be precomputed.
For checking the relation d⃗ ◦ (d⃗ − 1⃗) = 0⃗, we can use
the same approach as in Πchkuv for checking unit vector,
which requires two additional Dory arguments with the
same random generators (Ω⃗, K⃗). We obtain the protocol
Πth

chkuv

[
n, k, cm1, Ω⃗, K⃗, Q; G⃗◦d⃗1 , r1

]
for checking the rela-

tions in Eqn. (13) from the unit basis checking protocol
Πchkuv in Fig. 5b by changing the term e(G1, G2) in
Πchkuv to e(G1, G2)

k.
4) The prover also commits K⃗⋆ = (Ki1 , . . . ,Kik), h⃗

⋆ =

(hi1 , . . . , hik) to cm2 ≜ e(Γ⃗, K⃗⋆) · Qr2 , cmh ≜ Γ⃗h⃗⋆ · Γrh .
She also sends an additional term R ≜ e(Γ, G2)

r′h to the
verifier. The verifier can check that K⃗⋆ is committed in
cm2 by using the following Dory check

cm1
?
= e(G⃗′1, K⃗

′⋆) · Qr1 ,
F1

?
= e(G⃗′1, Λ⃗

′),

cm2
?
= e(Γ⃗′, K⃗′⋆) · Qr2 ,

(16)

Πeca21

[
[ipk1, . . . , ipkn] ∈ Gn

2 , m⃗ ∈ ZM
p , msg ∈ {0, 1}∗, σ0 ∈ G2;

i
∗ ∈ [n], ipki∗ , upk, usk, σ1, (τi)i∈[1+M]

]
P : r, t

$←− Zp

P ⇒ V : c⃗ ≜ (ipki∗ · Y
r
, G

r
2) ∈ G2

2, upk′ ≜ upkt ∈ G1

V & P : c⃗i ≜ (
c⃗[1]
ipki∗

, c⃗[2]) ∈ G2
2, i = 1, . . . , n.

P ⇒ V : π1/n ← Π1/n[n, (⃗c1, . . . , c⃗n); (i
∗
, r)]

π
1
gs ← Πgs-G1[m = 1, n

′
= 0, T1 = upk′; X1 = upk, b1 = t]

π
2
gs ← Πgs-PPE[m = 1, n = 1, B1 = σ0, A1 = G1,

T = e(Y1, G2); X1 = σ1,Y1 = ipki∗ ]

π
3
gs ← Πgs-PPE[m = 2, n = 1, B1 = σ0, B2 = G2, A1 = Y1,

T = 1GT
; X1 = τ1, X2 = upk,Y1 = ipki∗ ]

π
4,k
gs ← Πgs-PPE[m = 2, n = 1, B1 = σ0, B2 = G2, A1 = Yk+1,

T = 1GT
; X1 = τk+1, X2 = mk,Y1 = ipki∗ ], k ∈ [M ]

V : CHECK Π1/n.Verify[π1/n]
?
= 1, Πgs-PPE.Verify[π

i
gs]

?
= 1, i = 2, 3,

Πgs-G1 .Verify[π
1
gs]

?
= 1, Πgs-PPE.Verify[π

4,k
gs ]

?
= 1, k ∈ [M ]

Figure 13: Multi-issuer anonymous credential scheme
ECA21 ([8]) with transparent setup.

where (Γ⃗′, Λ⃗′) are known generators, G⃗′1 ≜ (G⃗1,1G1
) ∈

Gk+1
1 and K⃗′⋆ ≜ (K⃗⋆,1G2) are the witness; and F1 ≜

e(G⃗′1, Λ⃗
′) can be precomputed. Next, the verifier can

compute e(cmh, G2) = e(Γ⃗, G⃗◦⃗h
⋆

2 ) · e(Γ, G2)
rh herself.

The prover sends to the verifier r̃h ≜ rh + ε · r′h where
ε

$←− Z∗p is provided by the verifier. Using R and r̃h, the
verifier can compute W ≜ e(cmh, G2)·Rε ·e(Γ, G2)

−̃rh =

e(Γ⃗, G⃗◦⃗h
⋆

2 ).
5) The verification of k public keys in p⃗k

⋆
can be checked

as follows:

cm2
?
= cmpk ·W · Qr

′
2 ,

⇒ e(Γ⃗, K⃗⋆)
?
= e(Γ⃗, p⃗k

⋆
) · e(Γ⃗, G⃗◦⃗h

⋆

2 ),

where r′2 ≜ r2 − rpk is provided by the prover.

Optimization by Batching. Using batching for Dory
protocols, ΠRR.bbs.th is optimized to calling only 2 batched
Dory arguments of dimension n and (k + 1). Note that for
threshold k and ring size n, the proof size and verification
cost of ΠRR.bbs.m is logarithmic in n, but scales linearly in
k.

Appendix D.
The multi-issuer anonymous credential scheme
ECA21

We recall the version with transparent setup of the
ECA21 multi-issuer anonymous credential scheme from [8]
in Fig.13. We refer to the original paper [8] for details on the
primitives and the Groth-Sahai proof used in this scheme.
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Appendix E.
Security of Digital Signature Schemes

In this section, we first recall the security properties of
a standard digital signature scheme in Definition 5.1. This
is standard material and can be found, for example, in the
book [33]. Then, we present the security model for our
compressed message-hiding signature scheme in Definition
5.2, which is new in this work. In particular, we need to
extend the unforgeability property in this case to account for
an additional attack vector induced by compression proof.

E.1. Standard Digital Signature

The security model of a digital signature scheme in
Definition 5.1 consists of Completeness and Existential
Unforgeability under Chosen Message Attack (EU-CMA)
properties [33].
Definition E.1 (Completeness). A digital signature scheme
Sig = (Setup, KeyGen, Sign, VfySig) satisfies complete-
ness, if for any message m⃗:

Pr

VfySig[pp, pk, m⃗, σ]
= 1

pp← Setup[1λ],
(pk, sk)← KeyGen[pp],
σ ← Sign[pp, m⃗; sk]

 ≥ 1− negl(λ).

An adversary against the signature unforgeability prop-
erty is given access to a signing oracle.

Definition E.2 (Signing Oracle SO). Initialize the set of
queried messages as MSO = ∅. When SO is queried with
a message m⃗, the oracle uses the secret key sk to sign σ =
Sign[pp, m⃗; sk]. It returns σ to the adversary, and adds m⃗ to
MSO(pk). The adversary can adaptively make polynomially
many signing queries.
Definition E.3 (EU-CMA). A digital signature scheme
Sig = (Setup, KeyGen, Sign, VfySig) satisfies existen-
tial unforgeability under chosen message attack (EU-CMA)
property, if for any PPT adversary A:

Pr

VfySig[pp, pk, m⃗∗, σ∗]=1
∧ m⃗∗ /∈ MSO(pk)

pp← Setup[1λ],
(pk, sk)← KeyGen[pp],

(m⃗∗, σ∗)← ASO[pp, pk]

 ≤ negl(λ).

E.2. Compressed Message-hiding Signature

In Definition 5.2, we define a com-
pressed message-hiding signature CSig =
(Setup, KeyGen, Sign, Compress, VfyCSig) by adding
a compression method and changing the verification
accordingly.
Definition E.4 (Completeness). A compressed message-
hiding signature scheme CSig satisfies completeness, if

Pr

VfyCSig[pp, pk, Cmm, σ, π]= 1

pp← Setup(1λ),
(pk, sk)← KeyGen[pp],
σ ← Sign[pp, m⃗; sk],

Cmm, π←Compress[pp, m⃗]

 ≥ 1− negl(λ).

In this case, due to the message-hiding property the
signing oracle BSO of the underlying signature returns both
the message m⃗ and the queried signature σ. It is required

that the adversary must produce a fresh, unqueried signature
to win. In addition, the unforgeability adversary against the
compressed message-hiding signature CSig also has access
to a proving oracle which returns valid compression proof.

Definition E.5 (Base Signature Oracle). Initialize the set of
queried signature as ΣBSO = ∅. When BSO is queried
with a message m⃗, the oracle uses the secret key sk to sign
σ = Sign[pp, m⃗; sk]. It returns σ to the adversary, and adds
(m⃗, σ) to ΣBSO(pk).

Definition E.6 (Proving Oracle PO). Initialize the set of
queries by ΠPO = ∅. When PO is queried with a message
m⃗, it runs the compression method to generate Cmm, π on
pp, m⃗. PO then returns Cmm, π to the adversary, and adds
(Cmm, π) to ΠPO.

Definition E.7 (Unforgeability). A compressed message-
hiding signature CSig satisfies unforgeability, if for any PPT
adversary A:

Pr

VfyCSig[pp, pk, Cmm∗, σ∗, π∗]=1
∧(·, σ∗) /∈ ΣBSO
∧ (Cmm

∗, π∗) /∈ ΠPO

pp← Setup[1λ],
(pk, sk)← KeyGen[pp],

(σ∗, Cmm
∗, π∗)← ABSO,PO[pp, pk]


≤ negl(λ).

Note that if the underlying signature scheme is EU-
CMA, the commitment scheme is binding and hiding, and
the compression proof satisfies soundness and SHVZK prop-
erties, then the unforgeability property of CSig follows by
a generic security reduction. We will provide details of this
security reduction for our compressed message-hiding multi-
message BBS signature in Section F.2.

Appendix F.
Security Proofs

We provide security proofs for the compressed multi-
message BBS signature scheme Sigbbs.c, the ring referral
protocol ΠRR.bbs for single-message BBS signature, the ring
referral protocol ΠRR.bbs.m for multi-message BBS signa-
ture, and the threshold ring referral protocol ΠRR.bbs.th for
BBS signature. The high level ideas of the proofs are:
(1) Firstly, we will prove soundness and zero-knowledge
properties of the underlying arguments of knowledge; (2)
Secondly, we will prove security properties using sound-
ness and zero-knowledge properties with standard security
reduction arguments; (3) Finally, the security properties for
non-interactive versions of our protocols follows from the
general security of the Fiat-Shamir transform in the random
oracle model.

F.1. Relaxed Soundness

Among our four protocols, only ΠRR.bbs has the witness
extractability property, meaning that we can construct a
polynomial time algorithm to extract the witness of the
corresponding relation RRR.bbs from a valid transcript by
rewinding the prover. The other three protocols Sigbbs.c,
ΠRR.bbs.m, ΠRR.bbs.th satisfies a weaker soundness property
which we call relaxed soundness. In particular, instead
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of extracting all elements of the witness w, we consider
w = (w1, w⃗2) for some w⃗2 ∈ Zq

p for which a protocol
has the relaxed soundness property if there is a polynomial
time algorithm which can extract w1 and G⃗′ ∈ Gq such that
G⃗′ = G⃗◦w⃗2 = (Gw2,j )j∈[q] ∈ Gq for a public group G, a
group generator G and some unknown w⃗2 ∈ Zq

p. Assume
that G is cyclic and the Dlog problem is hard for G, then
the relaxed soundness property will be enough for proving
unforgeability property of Sigbbs.c, ΠRR.bbs.m and ΠRR.bbs.th.

Definition F.1 (Relaxed Soundness). Argument system
(G,P,V) satisfies relaxed soundness with respect to G ∈ G,
if there exists an expected polynomial-time extractor E , such
that for any interactive adversaries A1,A2:

∣∣∣∣∣Pr
A1[tr] = 1

pp← G(1λ),
(x, w̃, P̃)← A2[pp],

tr← ⟨P̃(pp, x, w̃),V(pp, x)⟩



−Pr


A1[tr

′] = 1

∧G⃗′ = G⃗◦w⃗2

∧
(
Accept[tr′] = 1 ⇒

(pp, x, (w1, w2)) ∈ R
)

pp← G(1λ),
(x, w̃, P̃)← A2[pp],

(tr′, (w1, G⃗
′))← EO[pp, x]


∣∣∣∣∣ ≤ negl(λ),

where P̃ is a deterministic polynomial-time algorithm,
A1[tr] recognizes the transcripts that are produced by P̃ ,
and O is a rewindable oracle that can rewind the transcript
⟨P̃(pp, x, w̃),V(pp, x)⟩ and control the randomness in V .

F.2. Security Proofs of Sigbbs.c

Lemma F.1 (Relaxed Soundness of the Compressed Mes-
sage-hiding Signature Sigbbs.c). Assume the standard sig-
nature scheme Sigbbs is complete and satisfies EU-CMA;
AFGHO and Pedersen vector commitments are complete
and computational binding; Dory argument is complete and
satisfies CWE; Hash is a collision resistant hash function.
Then, the interactive protocol underlying Sigbbs.c satisfies
relaxed soundness property with respect to G2 ∈ G2.

Proof. Consider the underlying interactive protocol of
Sigbbs.c, we describe a polynomial time algorithm Extbbs.c
which after rewinding the prover in Sigbbs.c polynomially
many times on a valid transcript tr will output a valid
relaxed witness w = m⃗ ∈ ZM

p for the verification relation
of Sigbbs.c.

Since the (M+1)-dimensional recursive Dory argument
Πdo.ip the CWE property in Compressbbs.c, Extbbs.c can run
its witness emulator to obtain G⃗′2 ∈ GM+1

2 , H⃗ ′ ∈ GM+1
1

and rD ∈ Z∗p. That the transcript tr is valid for the recursive
Dory argument also implies that G⃗′2 = G⃗◦m⃗

′

2 ∈ GM+1
2 for

some unknown m⃗′ ∈ ZM+1
p committed in D0 and D2. By

rewinding the randomness θ once, Extbbs.c can extract the
values of rD and rR. The final equation check guarantees
that the extracted elements satisfy the verification equation
of BBS signature and pass the verification of Dory argu-
ment. Thus, Extbbs.c has extracted a relaxed witness of
Compressbbs.c for the transcript tr by rewinding the prover
polynomially many times.

Lemma F.2 (SHVZK of Sigbbs.c). Assume the standard
signature scheme Sigbbs is complete and satisfies EU-CMA;
AFGHO and Pedersen vector commitments are complete
and perfectly hiding; Dory argument is complete and satis-
fies SHVZH; Hash is a pseudo random hash function. Then,
the interactive protocol underlying Sigbbs.c satisfies SHVZK
property.

Proof. We construct a polynomial time simulator algorithm
Simbbs.c which, without knowing the witness, will have out-
put distribution that is indistinguishable from the distribution
of real executions of Compressbbs.c.

Simbbs.c first samples Ĉmm
$←− G1, D̂0, D̂1

$←− GT ,
and computes D̂2 ≜ e(Ĉmm, G2). Using the SHVZK
property of Dory, Simbbs.c can simulate the proof π̂′

of the (M + 1)-dimensional Dory argument on input
(Γ⃗, P1), (Λ⃗,1G2), D̂0, D̂1, D̂2. Next, Simbbs.c samples r̂′, θ̂

$←−
Zp, and computes R̂ ≜

(
e(σ0, G

σ1
2 ·pk) · Q̂r

′ ·e(G1, G2)
−1 ·

D̂−10

)θ̂−1

. It then defines π̂ ≜ (D̂0, R̂, π̂
′, r̂′).

By the definition of R̂ and π̂′, the output of Simbbs.c
passes the verification in VfyCSigbbs.c. The hiding property
of commitment schemes implies that Ĉmm and D̂0 are in-
distinguishable from real commitments. The pseudorandom
property of Hash implies that θ̂ is indistinguishable from
the distribution of θ. By the SHVZK property of Dory, π̂′ is
indistinguishable from the distribution of the real transcript
of the recursive Dory argument. We conclude that Simbbs.c
is a valid SHVZK simulator for Compressbbs.c.

Theorem F.3. Assume the standard signature scheme Sigbbs
is complete and satisfies EU-CMA; AFGHO and Pedersen
vector commitments are complete, perfectly hiding and com-
putational binding; Dory argument is complete and satisfies
CWE, SHVZH; Hash is modeled as a random oracle. Then,
the compressed signature scheme Sigbbs.c is complete and
satisfies unforgeability and SHVZK in the random oracle
model.

Proof. Completeness. As the recursive Dory argument is
complete, we can check that the verification will almost
surely return accept, if we execute the protocol in Sigbbs.c
honestly.

Unforgeability. We recall the security game between
challenger C and adversary A for the unforgeability property
(Definition E.7) as follows.
• C generates the public parameters pp ←−
Setupbbs.c[1

λ], and a key pair (pk, sk) ←−
KeyGenbbs.c[pp, rc] using random coin rc. C then
sends pp and pk to A.

• C initializes the set of base signature queries
ΣBSO(pk) ≜ ∅, and the set of compression proof
queries ΠPO ≜ ∅.

• A can make signing and proving queries polynomially
many times to which C responds as follows:
– BSO[m⃗]: C signs the message m⃗ as σ =
Signbbs.c[pp, m⃗; sk] using the secret key sk. It returns
σ to A, and adds (m⃗, σ) to ΣBSO(pk).
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– PO[m⃗]: C runs the compression method
Compressbbs.c[pp, m⃗] to generate Cmm, π on m⃗.
C then returns Cmm, π to the adversary A, and adds
(Cmm, π) to ΠPO.

• A outputs (σ∗, Cmm
∗, π∗).

If VfyCSigbbs.c[pp, pk, Cmm
∗, σ∗, π∗] = 1, σ∗ has not

been queried on any message before, and (Cmm
∗, π∗) /∈

ΠPO, then we say that the adversary A wins the
unforgeability game.

SHVZK. Since the interactive protocol underlying
Sigbbs.c satisfies SHVZK, the challenger C can replace tran-
scripts of all honest executions of the protocol by output of
the zero-knowledge simulator Simbbs.c which the adversary
A can notice the difference with only negligible probability.

Suppose that we have some adversary A who wins
against this challenger C with non-negligible probability in
the unforgeability game above. Consider a winning round
of A, we can fix the randomness of A up to this round,
and rewinds A using new randomness starting from this
round. The adversary A will output a new valid signature-
compression proof with non-negligible probability.

At this point, we use the relaxed soundness property
of Sigbbs.c: by using this rewinding procedure polynomial
number of times, we obtain enough valid transcripts for the
relaxed witness extractor Extbbs.c of Sigbbs.c to extract a
relaxed witness G⃗′2 = G⃗◦m⃗

′

2 . Note that the map m⃗ 7→ G⃗◦m⃗2
is one to one, and computational binding under the Dlog
assumption in G2.

But the transcript has been simulated in zero-knowledge
without using witness at the beginning, so the adversary A
must either break the EU-CMA of the base BBS signature
scheme, or break the discrete logarithm assumption in G2 to
find an uncorrupted multi-message m⃗′ such that G⃗′2 = G⃗◦m⃗

′

2 ,
or break the binding property of the Pedersen commitment
scheme and CWE property of Dory to forge a new compres-
sion proof, with non-negligible probability. The unforge-
ability property of the non-interactive compressed multi-
message signature scheme Sigbbs.c follows in the random
oracle model by applying the Fiat-Shamir transform.

F.3. Security Proofs of ΠRR.bbs

We show that as a multi-round interactive argument of
knowledge for the relation RRR.bbs, the protocol ΠRR.bbs has
CWE and SHVZK properties. We then use these properties
to prove the ring referral security of ΠRR.bbs.

Lemma F.4 (CWE of ΠRR.bbs). Assume that in the setting
of the ring referral protocol ΠRR.bbs, AFGHO and Pedersen
commitments are complete and computationally binding;
the scalar and vector Dory arguments are complete and
satisfies CWE; the Schnorr protocol for commitment checks
is complete and satisfies knowledge soundness, and Hash is
a collision resistant hash function. Then, as a multi-round
interactive argument of knowledge for the relation RRR.bbs,
ΠRR.bbs satisfies CWE.

Proof. We describe a polynomial time extractor algorithm
ExtRR.bbs which, after rewinding the prover in ΠRR.bbs poly-

nomially many times on a valid transcript tr, will output a
valid witness for the relation RRR.bbs.

First, we will use the fact that the sub-protocol Πbbs.pms

also accepts its part of the transcript tr to extract the part
of witness in Πbbs.pms. Using the knowledge soundness
assumption on the Schnorr protocols Πchkcm for checking
commitment values, ExtRR.bbs can extract m in cmm and
σ1 in cmσ1

. Since the two scalar Dory arguments Πdo.sp

also have the CWE property, ExtRR.bbs can run their witness
emulator to extract σ0, pk in cmσ0

, cmpk. Due to the binding
property of the commitment schemes, the extracted values
from various protocols are consistent. The final equation
check in Πbbs.pms guarantees that the extracted elements
satisfy the verification equation of single-message BBS sig-
nature.

Second, in the main protocol ΠRR.bbs, Πchkuv is a batched
recursive Dory argument of dimension n which has the
CWE property, so ExtRR.bbs can run the witness emulator of
the Dory argument to obtain a unit basis vector b⃗ ∈ {0, 1}n
such that L⃗◦b⃗ is committed in cm1. Then, ExtRR.bbs extracts
the index i∗ as the non-zero index of b⃗. Next, ExtRR.bbs can
run the witness extractor of the Schnorr protocol Πchkcm to
extract h from cm2.

Finally, the final checking equation of ΠRR.bbs ensures
that for the extracted index i∗, public key pk, and h, we have
Ki∗ = pk ·Gh

2 which shows that pk is indeed the public key
of the issuer with index i∗: pk = pki∗ and h = hi∗ , by the
assumption that Hash is collision resistant.

We conclude that ExtRR.bbs has extracted a valid witness
for RRR.bbs for the transcript tr by rewinding the prover
polynomially many times.

Lemma F.5 (SHVZK of ΠRR.bbs). Assume that in the setting
of the ring referral protocol ΠRR.bbs, AFGHO and Pedersen
commitments are complete and perfectly hiding, the scalar
and vector Dory arguments and Schnorr protocols for com-
mitment checks are complete and have SHVZK property, and
Hash is a collision-resistant pseudo random hash function.

Then, as a multi-round interactive argument of knowl-
edge for the relation RRR.bbs, ΠRR.bbs satisfies SHVZK.

Proof. We construct a polynomial time simulator algorithm
SimRR.bbs which, without knowing the witness, will have
output distribution that is indistinguishable from the distri-
bution of real executions of ΠRR.bbs.

First, SimRR.bbs samples î∗
$←− [n], picks the public

key pk̂i∗ of the issuer î∗ from the ring p⃗k, and computes
ĥ ≜ Hash[pk̂i∗ ]. In the sub-protocol Πbbs.pms, the simulator

SimRR.bbs uniformly randomly samples σ̂0
$←− G1, m̂ $←− Zp.

Then, SimRR.bbs samples uniformly random scalar r̂σ0
, r̂pk,

r̂m from Z∗p, and computes the corresponding AFGHO and
Pedersen commitment values ĉmσ0

, ĉmpk, ĉmm. Note that
σ1 and ĉmσ1

are not yet defined. The simulator SimRR.bbs

then samples a new randomness r̂′pk
$←− Z∗p and computes

ĉm
′
pk ≜ e(σ̂0, p̂k) · Q̂r

′
pk . Next, SimRR.bbs samples r̂′

$←− Z∗p,
and defines ĉm

′
σ1

≜ e(G1, G2) · ĉmm · Q̂r
′ · (ĉm′pk)−1.
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Second, SimRR.bbs uses the SHVZK simulator of the
two scalar Dory arguments to simulate their transcripts on
ĉmσ0

, ĉmσ1
, ĉm′σ1

, ĉmpk and ĉm
′
pk. In addition, SimRR.bbs also

uses the SHVZK simulator of the two Schnorr protocols
Πchkcm on ĉmm and ĉmσ1

. Thanks to the hiding property of
the commitment schemes and the SHVZK property of the
sub-protocols, the distribution of the simulated transcripts
defined by SimRR.bbs above is indistinguishable from the
distribution of the transcripts of real executions of Πbbs.pms.

Finally, the simulator SimRR.bbs uses î∗ to define the
unit basis vector ̂⃗b, then uses ̂⃗b in the place of b⃗ to compute
ĉm1 with a new random r̂1 which SimRR.bbs samples from
Z∗p. The hiding property of commitment schemes implies
that the distribution of ĉm1 is indistinguishable from ran-
dom. Then, by using the SHVZK property of the batched
n-dimensional Dory argument Πchkuv, SimRR.bbs uses its
SHVZK simulator to simulate the transcript of Πchkuv on
input ĉm1, ̂⃗

b, r̂1. Next, SimRR.ps samples r̂′1
$←− Z∗p, and

defines ĉm2 ≜ ĉm1 · ĉm−1pk · Q−̂r
′
1 which makes the final

checking equation valid. By using the SHVZK property
of Schnorr protocol Πchkcm, SimRR.bbs can simulate the
transcript of Πchkcm on input ĉm2 which completes the full
description of the simulator SimRR.bbs.

Theorem F.6 (Security of the ring referral protocol ΠRR.bbs).
Assume in the setting of the ring referral protocol ΠRR.bbs

(Fig. 4), the single-message BBS signature scheme Sigbbs
is correct and EU-CMA; AFGHO and Pedersen commit-
ment schemes are complete, computationally binding and
perfectly hiding; the scalar and vector Dory arguments
are complete and have CWE and SHVZK properties; the
Schnorr protocol for commitment checks is complete, and
has knowledge soundness and SHVZK properties, and Hash
is a collision-resistant pseudo random hash function.

Then, the ring referral protocol ΠRR.bbs is complete,
unforgeable, and has issuer anonymity against exposed sig-
nature and message-hiding user anonymity properties.

Proof. Completeness. In ΠRR.bbs, suppose that σ is a valid
single-message BBS signature from an issuer pki∗ ∈ p⃗k
on a message m, and all computations are performed cor-
rectly as prescribed in ΠRR.bbs. Then, the checks by Dory
arguments and the Schnorr protocols for commitment check
will return 1 by the completeness. The equation checking in
the sub-protocol Πbbs.pms returns 1 as the signature is valid.
The final checking equation of ΠRR.bbs also passes since
Ki∗ is correctly generated from the public key pki∗ .

Unforgeability. We recall the security game between
challenger C and adversary A for the ring referral unforge-
ability property as follows:
• C setups the game by generating the public param-

eters pp ←− Setup(1λ), and key pairs (pki, ski) ←−
Sig.Gen[pp, rci] for each issuer Ii, i ∈ [n], using
random coin rci. Then, C defines p⃗k ≜

(
pki

)
i∈[n], and

initializes the set of corruption queries p⃗kCO ≜ ∅, the
set of base signature queries ΣBSO ≜ ∅, and the set
of ring referral proof queries ΠPO ≜ ∅.

• C sends the public parameters pp and the ring of issuers
p⃗k to A.

• A can make corruption, base signature and proving
queries polynomially many times to which C responds
as follows:
– CO[pki]: C returns the random coin rci to A, and

adds pki to p⃗kCO.
– BSO[pp, pki, m⃗]: C uses the secret key ski of the

issuer in pki to sign m⃗, and returns a valid signature
σ to A. Then, C adds (pp, pki, m⃗, σ) to ΣBSO.

– PO[pp, p⃗k,M∗]: C uses the secret key of a random
issuer in the ring pk to sign a random message
m⃗ ∈ M∗, then runs the ring referral protocol on
this message, signature, issuer tuple, and returns
a valid ring referral proof π to A. Then, C adds
(pp, p⃗k,M∗, π) to ΠPO.

• A outputs a forged ring referral proof π′ with respected
to a sub-ring p⃗k′ ⊂ p⃗k and a message space M∗. If
Verify[pp, p⃗k′,M∗, π′] = 1; and p⃗k′ ⊂ p⃗k\p⃗kCO;
and (pp, pk, m⃗, ·) /∈ ΣBSO for any pk ∈ p⃗k′ and any
m⃗ ∈ M; and (pp, p⃗k′,M∗, π′) /∈ ΠPO, then we say
that the adversary A wins the unforgeability game.

Since the ring referral protocol ΠRR.bbs satisfies SHVZK,
the challenger C can replace transcripts of all honest exe-
cutions of the protocol by output of the zero-knowledge
simulator SimRR.bbs with negligible probability of being
noticed by the adversary A.

Suppose that we have some adversary A who wins
against this challenger C with non-negligible probability in
the unforgeability game above. After checking for corrupted
public keys and base signature queries, under the DLog
and unforgeability of the base signature assumptions, the
adversary A gives an algorithm to output valid, unqueried
ring referral proofs with non-negligible advantage. Consider
a winning round of A, we can fix the randomness of A up
to this round, and rewinds A using new randomness starting
from this round. The adversary A will output a new valid
transcript of the ring referral protocol with non-negligible
probability.

At this point, we use the CWE property of ΠRR.bbs: by
using this rewinding procedure polynomial number of times,
we obtain enough valid transcripts for the witness extractor
ExtRR.bbs of the ring referral protocol to extract a witness of
the relation RRR.bbs. But the transcript has been simulated
without using witness at the beginning, so the adversary A is
able to guess valid message, signature and public key tuples
of the ring referral scheme with non-negligible probability,
which breaks either the hiding property of the commitment
scheme, or the EU-CMA of the BBS signature, or the DLog
assumption.

Issuer Anonymity. We recall the security game between
challenger C and adversary A for issuer anonymity against
exposed signatures as follows:
• C setups the game by generating the public param-

eters pp ←− Setup(1λ), and key pairs (pki, ski) ←−
Sig.Gen[pp, rci] for each issuer Ii, i ∈ [n], using
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random coin rci. Then, C defines p⃗k ≜
(
pki

)
i∈[n], and

initializes the set of corruption queries p⃗kCO ≜ ∅, the
set of base signature queries ΣBSO ≜ ∅, and the set
of ring referral proof queries ΠPO = ∅.

• C sends the public parameters pp and the ring of issuers
p⃗k to A.

• A picks two distinct indices i1, i2 from [n] and a
message m⃗ ∈M∗, then sends (i1, i2, m⃗,M∗) to C.

• C signs the message m⃗ using secret keys ski1 , ski2 to
obtain signatures σ1, σ2, respectively. C sends σ1, σ2 to
A.

• C randomly samples b
$←− {1, 2}, and produces the

transcript π of the ring referral protocol on the signature
σb with respected to the ring p⃗k and message space
M∗. Then C sends π to A.

• A can make corruption, base signature and proving
queries polynomially many times to which C replies
as specified in the unforgeability proof above.

• A outputs a guess b′ ∈ {1, 2}. If i1 ̸= i2 and b′ =
b, then we say that the adversary A wins the issuer
anonymity game.

Next, we show that the issuer anonymity property fol-
lows from the SHVZK property of the ring referral protocol
ΠRR.bbs. In the issuer anonymity game above, independently
of the bit b, the challenger C simulates valid transcripts of
the protocol and sends them to the adversary A. As the
protocol transcript is generated without using the secret bit
b, A cannot win better than random guessing. Note that
in this case, even when the signatures are given to A, it
still cannot distinguish between transcripts of the simulated
and real executions, which implies the anonymity property
against full signature exposure.

User Anonymity. We recall the security game for the
message-hiding user anonymity property as follows:

• C setups the game by generating the public param-
eters pp ←− Setup(1λ), and key pairs (pki, ski) ←−
Sig.Gen[pp, rci] for each issuer Ii, i ∈ [n], using
random coin rci. Then, C defines p⃗k ≜

(
pki

)
i∈[n], and

initializes the set of corruption queries p⃗kCO ≜ ∅, the
set of base signature queries ΣBSO ≜ ∅, and the set
of ring referral proof queries ΠPO = ∅.

• C sends the public parameters pp and the ring of issuers
p⃗k to A.

• A picks an index i ∈ [n] and two distinct messages
m⃗1, m⃗2 ∈M∗. Then A sends (i,M∗, m⃗1, m⃗2) to C.

• C signs the messages m⃗1, m⃗2 using the secret key ski
to obtain signatures σ1, σ2, respectively. Then C sends
σ1, σ2 to A.

• C randomly samples b $←− {1, 2} and produces the tran-
script π of the ring referral protocol on the message-
signature pair (m⃗b, σb) with respected to the ring p⃗k
and message space M∗. Then, C sends π to A.

• A can make corruption, base signature and proving
queries polynomially many times to which C replies
as specified in the unforgeability proof above.

• A outputs a guess b′ ∈ {1, 2}. If m⃗1 ̸= m⃗2 and
b′ = b, then we say that the adversary A wins the
user anonymity game.

The user anonymity property also follows from the
SHVZK property of the ring referral protocol ΠRR.bbs as
the message is also part of the witness. This is because in
the user anonymity game, independently of the bit b, the
challenger C can simulate valid transcripts of the protocol
to send to the adversary A without knowing mb. As the
protocol transcript is generated without using the secret bit
b , A cannot win better than random guessing.

F.4. Security Proofs of ΠRR.bbs.m

We show that as a multi-round interactive argument of
knowledge for the relation RRR.bbs.m, the protocol ΠRR.bbs.m

has relaxed soundness and SHVZK properties. The ring
referral security properties of ΠRR.bbs.th then follows from
these properties by blackbox security reductions similar to
the proofs in Appendices F.2 and F.3.

Lemma F.7 (Relaxed Soundness of ΠRR.bbs.m). Assume
that in the setting of the ring referral protocol ΠRR.bbs.m

for multi-message BBS signature, AFGHO and Pedersen
commitments are complete and computationally binding;
the scalar and vector Dory arguments are complete and
satisfies CWE; the Schnorr protocol for commitment checks
is complete and satisfies knowledge soundness; and Hash
is a collision resistant hash function. Then, as a multi-
round interactive argument of knowledge for the relation
RRR.bbs.m, ΠRR.bbs.m satisfies relaxed soundness property
with respect to G2 ∈ G2.

Proof. We can build a polynomial time extractor algorithm
ExtRR.bbs.m in a similar way as in the proofs of Lemma F.1
and Lemma F.4, with the exception that by using the CWE
property of the (M + 1)-dimensional recursive Dory argu-
ment in Πbbs.pms.m, one can extract only the exponentiation
vector G⃗′2 = G⃗◦m⃗

′

2 ∈ GM+1
2 , not the multi-message m⃗

itself.

Lemma F.8 (SHVZK of ΠRR.bbs.m). Assume that in the
setting of the ring referral protocol ΠRR.bbs.m for multi-
message BBS signature, AFGHO and Pedersen commitments
are complete and perfectly hiding, the scalar and vector
Dory arguments and Schnorr protocols for commitment
checks are complete and have SHVZK property, and Hash
is a collision-resistant pseudo random hash function.

Then, as a multi-round interactive argument of knowl-
edge for the relation RRR.bbs.m, ΠRR.bbs.m satisfies SHVZK.

Proof. We can construct a polynomial time SHVZK simula-
tor algorithm SimRR.bbs.m in two steps: (i) we can construct
a SHVZK simulator for the sub-protocol Πbbs.pms.m in a
similar way as in the proof of the SHVZK property of
Sigbbs.c in Lemma F.2; (ii) a similar construction to the
SHVZK simulation of the main protocol of ΠRR.bbs in the
proof of Lemma F.5 can simulate the remaining part in the
main protocol of ΠRR.bbs.m.
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Theorem F.9 (Security of the ring referral protocol
ΠRR.bbs.m). Assume in the setting of the ring referral pro-
tocol ΠRR.bbs.m (Fig. 7), the multi-message BBS signature
scheme Sigbbs is correct and EU-CMA; AFGHO and Ped-
ersen commitment schemes are complete, computationally
binding and perfectly hiding; the scalar and vector Dory
arguments are complete and have CWE and SHVZK prop-
erties; the Schnorr protocol for commitment checks is com-
plete, and has knowledge soundness and SHVZK properties,
and Hash is a collision-resistant pseudo random hash func-
tion. In addition, we also assume the Dlog problem on G2

is intractable.
Then, the ring referral protocol ΠRR.bbs.m is complete,

unforgeable, and has issuer Anonymity against exposed
signature and message-hiding user Anonymity properties.

Proof. The security proofs follows the black box security
reductions based on the relaxed soundness and SHVZK
properties of ΠRR.bbs.m in a similar way as in the proofs
of Theorem F.6 and Theorem F.3 (for the use of relaxed
soundness property instead of CWE).

F.5. Security Proofs of ΠRR.bbs.th

We show that as a multi-round interactive argument of
knowledge for the relation RRR.bbs.th, the protocol ΠRR.bbs.th

has relaxed soundness and SHVZK properties. The ring
referral security properties of ΠRR.bbs.th then follows from
arguments similar to the previous proofs in this appendix.

Lemma F.10 (Relaxed Soundness of ΠRR.bbs.th). Assume
that in the setting of the threshold ring referral protocol
ΠRR.bbs.th, AFGHO and Pedersen commitments are complete
and computationally binding; the scalar and vector Dory
arguments are complete and satisfies CWE; the Schnorr
protocol for commitment checks is complete and satisfies
knowledge soundness; and Hash is a collision-resistant hash
function. Then, as a multi-round interactive argument of
knowledge for the relation RRR.bbs.th, ΠRR.bbs.th satisfies
relaxed soundness property with respect to H1 ∈ G1 and
G2 ∈ G2.

Proof. We note that that the sub-protocol Πbbs.pms.th is
similar to batched version of k protocol Πbbs.pms for single-
message signature, and the part just before the final veri-
fication check in the main protocol ΠRR.bbs.th is basically
a Schnorr protocol. Therefore, we can build a polynomial
time extractor algorithm ExtRR.bbs.th in a similar way as in
the proofs of Lemma F.1 and Lemma F.4, with the exception
that by using the CWE property of the (k+1)-dimensional
recursive Dory arguments in Πbbs.pms.th, one can extract
only the exponentiation vectors H⃗ ′1 = H⃗◦m⃗

′

1 ∈ Gk+1
1 and

G⃗′2 = G⃗◦m⃗
′

2 ∈ Gk+1
2 , not the vectors m⃗ and σ⃗1 themself.

Lemma F.11 (SHVZK of ΠRR.bbs.th). Assume that in the
setting of the threshold ring referral protocol ΠRR.bbs.th

for BBS signature, AFGHO and Pedersen commitments are
complete and perfectly hiding, the scalar and vector Dory
arguments and Schnorr protocols for commitment checks are

complete and have SHVZK property, and Hash is a collision-
resistant pseudo random hash function.

Then, as a multi-round interactive argument of knowl-
edge for the relation RRR.bbs.th, ΠRR.bbs.th satisfies SHVZK.

Proof. We can construct a polynomial time SHVZK simu-
lator algorithm SimRR.bbs.th by (i) constructing a SHVZK
simulator for the sub-protocol Πbbs.pms.th in a similar way
as in the proof of the SHVZK property of Sigbbs.c in
Lemma F.2; (ii) then simulating the remaining part in
the main protocol of ΠRR.bbs.th using the SHVZK of the
recursive Dory arguments and Schnorr protocol.

Theorem F.12 (Security of the ring referral protocol
ΠRR.bbs.th). Assume in the setting of the threshold ring
referral protocol ΠRR.bbs.th (Fig. 11), the single-message
BBS signature scheme Sigbbs is correct and EU-CMA;
AFGHO and Pedersen commitment schemes are complete,
computationally binding and perfectly hiding; the scalar
and vector Dory arguments are complete and have CWE
and SHVZK properties; the Schnorr protocol for commit-
ment checks is complete, and has knowledge soundness and
SHVZK properties, and Hash is a collision-resistant pseudo
random hash function. In addition, we also assume the Dlog
problem on G1 and G2 is intractable.

Then, the threshold ring referral protocol ΠRR.bbs.th is
complete, unforgeable, and has issuer Anonymity against
exposed signature and message-hiding user Anonymity prop-
erties.

Proof. The security proofs follows the security reductions
based on the relaxed soundness and SHVZK properties of
ΠRR.bbs.th in a similar way as in the proofs of Theorem F.6
and Theorem F.3. Here, we use the intractability of Dlog
problem on G1 and G2 for deducing the unforgeability
property of ΠRR.bbs.th from the relaxed soundness property
instead of CWE.
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