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Abstract

Since the introduction of TLS 1.3, which includes X25519 and X448 as key exchange algorithms, one could
expect that high efficient implementations for these two algorithms become important as the need for power
efficient and secure IoT devices increases. Assembly optimised X25519 implementations for low end processors
such as Cortex-M4 have existed for some time but there has only been scarce progress on optimised X448
implementations for low end ARM processors such as Cortex-M4 and Cortex-M33. This work attempts to fill
this gap by demonstrating how to design a constant time X448 implementation that runs in 2 273 479 cycles on
Cortex-M4 and 2 170 710 cycles on Cortex-M33 with DSP. An X25519 implementation is also presented that
runs in 441 116 cycles on Cortex-M4 and 411 061 cycles on Cortex-M33 with DSP.

1 Introduction

Curve25519 was introduced in 2005 by Daniel J. Bernstein [3] as a faster and safer alternative to the NIST curve
P-256. Later in 2015, Mike Hamburg designed Curve448 [5] as a similar and direct replacement for Curve25519
when stronger security is required. Since both are Montgomery curves, the same high-level scalar multiplication
algorithm can be used. The difference lies in the prime for the curve’s field. Curve25519 uses 2255 − 19, while
Curve448 uses 2448 − 2224 − 1. Curve25519 has a security level of 128 bits, while Curve448 has a security level of
224 bits. Both curves have been standardised for use with TLS. In particular, the X25519 key exchange function
”SHOULD” be supported by TLS 1.3-compliant applications [9].

Curve25519 and Curve448 commonly refer to the particular elliptic Montgomery curve, while X25519 and X448
refer to Diffie Hellman functions using these curves. These two functions are specified in RFC 7748 [6]. Birationally
equivalent (un)twisted Edwards curve variants are called edwards25519 and edwards448 (or Ed448-Goldilocks),
respectively.

1.1 Related work

Multiple papers have been written about Curve25519 optimisations for Cortex-M4. One of the more recent that is
of particular interest, due to its demonstrated performance, is written by Haase et al. [4]. Their implementation
is a combination of code written in C with inline Assembly and Assembly and is reported to run in 609 779 cycles
on STM32L476 at 16 MHz.

The earliest work found that targets Cortex-M4 for Curve448 is an implementation by Seo et al. [10]. It is
reported to run in 6 218 135 cycles on an STM32F4 discovery board at 24 MHz. The implementation uses Edwards
curve formulae, which results in a larger amount of field multiplications compared to the Montgomery ladder, that
is otherwise commonly used. It uses a common field multiplication routine for both field multiplication and field
squaring. There is thus potential for a more optimised approach that uses the Montgomery ladder with a specialised
squaring routine.

Anastasova et al. proposed in 2023 [2] improved field arithmetics for Curve448 targeting Cortex-M4F (Cortex-
M4 with FPU), resulting in a scalar multiplication implementation that is reported to run in 3 220 682 cycles on
STM32F407VG at 24 MHz.

2 ARMv7 and the Thumb-2 instruction set

ARM Cortex-M4 and Cortex-M33 are ARMv7E-M and ARMv8-M designs, respectively, which implement the
Thumb-2 instruction set, which is an extension to the Thumb instruction set.
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A program written in ARM Assembly can be assembled into the standard ARM 32-bit encoding (fixed width).
To get a more compact representation, an instruction set called Thumb has been developed, which uses a 16-bit
instruction encoding (fixed width). This is a reduced instruction set where only the most common instructions can
be represented. Thumb encoding also restricts what operands can be used. For most instructions, the destination
register must be the same as the first source register. Additionally, most Thumb instructions can only operate on
the lower half of the ARM register set (r0-r7). In most cases, only the flag-setting variant of the instruction is
available, such as adcs.

The Thumb-2 instruction set was developed to get the code density benefits of the Thumb instruction set, while
still being able to use (almost) all instructions in the ARM instruction set. This has been achieved by extending
the Thumb instruction set with 32-bit encoded instructions for the instructions that cannot be represented in the
16-bit Thumb encoding. This means the Thumb-2 instruction set is variable in size, where an instruction uses
either 16 bits or 32 bits.

A processor only supporting the Thumb instruction set is the ARM Cortex-M0 (with the exception of a few
32-bit Thumb-2 instructions).

When writing code targeting Thumb-2, it is important to know which instructions that can be represented in
16 bits, in order to optimise for code size. Generally, if there is both a flag-setting variant and a non-flag-setting
variant of an instruction, picking the flag-setting variant and using registers from the lower half of the register set
is usually desired, since that results in that the smaller 16-bit instruction is being emitted.

3 Cortex-M4

The Cortex-M4 uses a 3-stage pipeline. The three stages are fetch, decode, and execute. Almost all instructions
can be executed in one cycle. Due to this design, there are generally no pipeline stalls when one could expect
a data hazard (i.e. the result from one instruction is used in the next one). In practice, the only exceptions for
non-branch instructions are load and store instructions, which execute in 1 + n cycles, where n is the number
of words to transfer. The core performs the address calculation during the first cycle and transfers one word per
successive cycle. A sequence of ldr instructions can be pipelined so that the data load of an instruction can be
performed in parallel with the address calculation of the following instruction. This, however, means that if the
address for an ldr instruction depends on data loaded from the previous ldr instruction, the cpu will stall for one
cycle, i.e. the pipeline optimisation will not be used and thus two ldr instructions in sequence take four cycles.
The str instruction in practice always executes in one cycle, due to the write buffer, which transparently buffers
a write and executes it in the background during the next cycle. Multiword store instructions (strd and stm) can
however not use this optimisation. One str instruction can also be pipelined after a sequence of one or more ldr

instructions, which means the str instruction can be considered ”free”, assuming the write buffer is used. Thus, in
general, ldr + str takes two cycles. The str instruction can even store what the ldr instruction loaded without
any penalty. For some reason, a nop can also be pipelined after ldr in the same way. There are general data
hazards for the address used in any load or store instruction. If the address, address base, or offset is generated
during the previous instruction, the cpu will stall for one cycle. What has been stated in this paragraph (except
pipelining of nop) is documented in the Cortex-M4 Technical Reference Manual [1].

The manual could have been even more precise about data hazards. It seems more correct to say that the data
hazards for memory addresses apply when the address is generated during the previous cycle, rather than during
the previous instruction. For example, a chain of ldm or stm with writeback, where the same address register
is used for every instruction, will not result in additional stalls. If a core register destination for a four-operand
vmov instruction is used as an address in a following memory instruction, there will be a stall if the second vmov

destination register is used but not if the first destination register is used.
The core cannot fetch 16-bit instructions directly, nor can it fetch an unaligned 32-bit instruction directly from

memory. Instead, it has a prefetch-unit FIFO of three 32-bit words, which reads from the memory system one
32-bit word per cycle. This unit can hence store up to six 16-bit instructions or three 32-bit instructions. The
core can prefetch instructions ahead of execution and even speculatively from branch target addresses. What
is not documented is how the alignment of 32-bit instructions can cause additional, unexpected, pipeline stalls.
In particular, through experiments, it appears that a multi-cycle instruction followed by three unaligned 32-bit
instructions (i.e. they start at addresses which are all 2 modulo 4), where at least the first two are single-cycle
instructions, causes the core to stall for one cycle. In particular, this kind of sequence can easily occur when a
memory load instruction is followed by three long multiplication instructions such as umaal. For this scenario, an
str instruction can be the initial multi-cycle instruction even in situations the write buffer is used, i.e. takes one
cycle. If instructions cannot be reordered to avoid this situation, an easy workaround is to add the .w suffix to

2



some 16-bit instruction to force the assembler to use the 32-bit variant of that instruction, to change the alignment
of the following instructions.

Branch instructions, including instructions that modify pc, are multi-cycle instructions, assuming the branch is
taken. The Technical Reference Manual does not describe every branch instruction’s cycle count in detail. What
has been observed are the following details:

• A load instruction that has pc as the last destination register takes three cycles longer than if the destination
would have been an ordinary register.

• Unconditional and conditional branches to a label, including bl, take two cycles if the branch is taken
(otherwise one cycle).

• The ”add pc, pc, rn” operation takes four cycles.

• Branch instructions with a register containing the target, including ”mov pc, rn”, take three cycles, except
if the register is lr (and lr is not updated in the previous instruction), in which case the instruction takes
two cycles. The execution of a leaf function containing the only instruction ”bx lr” that is called by ”bl
label”, however, takes in total only four cycles (bl label and bx lr). In general, very small leaf functions
seem to be optimised.

All these cycle counts correspond to when the target instruction is either a 16-bit instruction or an aligned
32-bit instruction, otherwise one extra cycle must always be added. As an example, ”pop {pc}” will take six cycles
if the target address is an unaligned 32-bit instruction. A one cycle faster alternative to ”pop {pc}” is to pop to
lr and then execute ”bx lr”, assuming some meaningful instruction can be inserted between those two.

Unless otherwise stated, cycle counts for various algorithms and operations described in this paper will refer to
the number of cycles the operation takes on a Cortex-M4 processor with zero wait states.

3.1 Cortex-M4F

Cortex-M4F is a variant of Cortex-M4 that contains an FPU. The floating point instructions do not have much value
for this application, but we can use the floating point registers as an alternative to using the stack for temporary
data. The vmov instruction can move one or a pair of registers between the core register file and the floating point
register file. The instruction takes one cycle per word to transfer and is thus one cycle faster than using ldr,
ldrd, or ldm instructions to load the same amount of data from the stack, assuming the ldr instruction cannot be
pipelined. There are 32 floating point registers, 32 bits each, that can be used.

4 Cortex-M33

The types of Cortex-M33 processors that will be studied are those that have the DSP option. The DSP option
includes the umaal instruction. Cortex-M4 designs require DSP instructions to be available, but those are optional
in Cortex-M33 designs.

Despite being an ARMv8 architecture, Cortex-M33 has many similarities with Cortex-M4. Cortex-M33 uses
a 3-stage pipeline, just like Cortex-M4. Compared to the Cortex-M4 documentation, which documents the cycle
count for every instruction and how to pipeline memory instructions in the most efficient way, little is documented
about the precise timings for Cortex-M33. Experiments, however, show that most instructions execute in one cycle,
just as on Cortex-M4. Memory instructions, on the other hand, appear to have been optimised to execute in only
n cycles, where n is the number of words to transfer, which is an improvement of one cycle. There are therefore
generally no benefits of using FPU registers as temporary storage on this processor.

There are also cases when the performance is worse on Cortex-M33 than on Cortex-M4: data hazards stalling
the pipeline for one cycle, in particular. Examples are when the result of a umaal instruction is used by a following
arithmetic instruction such as adds or adcs, or when the result of an ldr instruction is used as a multiplication
operand by a umaal instruction.

5 Multiplication and squaring

To perform multiplication of arbitrarily big numbers, the instructions umull RdLo, RdHi, Rn, Rm and umaal

RdLo, RdHi, Rn, Rm are used. For the umull instruction, Rn and Rm are multiplied and the 64-bit result is written
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to the register pair RdLo, RdHi. The umaal instruction multiplies Rn by Rm, adds RdLo, adds RdHi, and writes
the 64-bit result to the register pair RdLo, RdHi. Since all four source registers are 32-bit integers, the maximum
result is (232 − 1)2 + 2(232 − 1) = 264 − 1, which fits in 64 bits. This means that no overflows will occur. There
is also a less useful umlal instruction that treats the two accumulator operands as a 64-bit value, which is added
to the 64-bit product of the last two operands. This can easily overflow, and the carry flag is unfortunately not
updated. Apart from memory instructions, the umull and umaal instructions are sufficient to calculate arbitrarily
big numbers. The following diagram demonstrates ”schoolbook multiplication” of two 160-bit integers, stored as
little endian arrays a0, a1, a2, a3, a4 and b0, b1, b2, b3, b4.

umull umull umull umull umull

umaal umaal umaal umaal umaal

umaal umaal umaal umaal umaal

umaal umaal umaal umaal umaal

umaal umaal umaal umaal umaal

From right to left, each row i represents multiplications of aib0, aib1, aib2, aib3 and aib4. The standard approach
is to perform the calculations row by row, which is commonly called operand-scanning. All bj words can be kept in
registers and do not need to be reloaded during the computation, while a new ai word is loaded and discarded for
every row. (Performing the calculations column by colmun, called product-scanning, would require more registers
to hold the operands.) For each row, we execute the multiplication instructions from right to left. Note that after
the first row, we have in total ten result registers containing the partial products. The lowest word of the first
multiplication can however be stored in memory as the final result, but the other nine result words should stay
in registers, if possible, so that they can be used as inputs to the umaal instructions on the next row without
overhead of spilling to and restoring from the stack. With the described approach, when performing a umaal, there
will always be exactly two available addends from the temporary registers. After each row is complete, the least
significant register can be written to memory as the final result, and hence one register less is needed after each
row. At the final row, the six registers are all written to memory as the final result. In total, ten words in memory
make up the 320-bit result.

Note that there is no single instruction for performing a 32x32 → 64-bit multiplication with one 32-bit accu-
mulate operand. Instead, we can first zero a register and then use it as one of the two accumulate operands to
umaal. However, the zeroing of registers unfortunately costs additional instructions. A trick to zero two registers
if we already know one third register contains zero is to use umull and multiply zero by zero.

This strategy can be used to create an algorithm requiring fewer temporary registers. After processing every
row that is not the last, we will have five temporary registers and one result word:

umaal* umaal* umaal* umaal* umull

umaal umaal umaal umaal umaal*

umaal umaal umaal umaal umaal*

umaal umaal umaal umaal umaal*

umaal umaal umaal umaal umaal*

Here, umaal* denotes that one accumulate operand is a new register containing zero.
We would however like to avoid all those additional instructions required to set registers to zero. A different

approach that avoids zeroing registers is the following.

umaal umaal umaal umull umull

umaal umaal umaal umull umaal

umaal umaal umaal umull umaal

umaal umaal umaal umull umaal

umaal umaal umaal umaal umaal

It is not possible to perform the above instructions strictly row by row. Whenever we encounter a umaal where
only one addend is available, we first execute the multiplication on the next row, one column to the right. This is
done recursively when needed. In total, six temporary registers are needed in this algorithm, and at most three
aj words need to stay in registers at the same time (if we want to avoid reloading them). However, at the time
during the algorithm runs when as many as six temporary registers are needed, only one aj word needs to stay in
registers. To make it clear, the following diagram shows the order the multiplications are performed, with number
of temporaries and aj words needed in registers at most during the calculation of the corresponding partial product
in parentheses. Bold indicates umull, rather than umaal.
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9 (3, 3) 6 (4, 2) 4 (2, 2) 2 (3, 1) 1 (2, 1)
12 (5, 2) 11 (5, 2) 8 (3, 3) 5 (4, 2) 3 (3, 2)

16 (4, 2) 15 (4, 2) 14 (4, 2) 10 (5, 2) 7 (4, 3)
20 (6, 1) 19 (6, 1) 18 (6, 1) 17 (6, 1) 13 (5, 2)

25 (2, 1) 24 (3, 1) 23 (4, 1) 22 (5, 1) 21 (6, 1)

With this algorithm, we hence need in total 12 registers, including temporaries and space for the operands.
ARM has 14 usable data registers, so we have two spare ones. The principle of this algorithm will be used as the
basis for Curve25519 field multiplication, namely that umaal instructions are used in a column, from top to bottom,
until there are two remaining, when a umull will be followed by a umaal.

5.1 256-bit multiplication

For Curve25519, we will need a multiplier that multiplies two 256-bit values and outputs a 512-bit result. Eight
words are needed for 256 bits, which is three more than in the algorithm shown above. It is easy to extend the
algorithm for any sized multiplication (when a and b have the same size), but doing so either increases the number
of required registers or introduces the need to spill to memory. The chosen approach is to split the calculation into
two parts, one operating on the first five words of b and one operating on the last three words of b. This means
every word in a will need to be loaded twice from memory but the words in b need only be loaded once. Note
that only the lower result words of the first part can be stored immediately to the stack as the final result. The
upper result words are kept in registers and will be used as addends to umaal in the second part. The register
pressure will be smaller during the second part, since we only operate on three words of b, as well as result words
can be written to the stack as they become complete. The increased register pressure during the first part, due to
we cannot write the results yet to memory, will be a problem. To earlier finish the sixth column and be able to
store its result word to memory, we calculate a0b5 during the first part instead of the second part (we load a0 and
b5 exclusively for this multiplication). This saves two temporary registers that would otherwise need to be alive
when we transition between the two parts. The final chosen order of the partial multiplications is shown below in
Figure 1.

42 43 26 9 7 4 2 1
46 45 44 12 11 8 5 3

49 48 47 16 15 14 10 6
52 51 50 20 19 18 17 13

55 54 53 25 24 23 22 21
58 57 56 31 30 29 28 27

61 60 59 36 35 34 33 32
64 63 62 41 40 39 38 37

Figure 1: 256-bit multiplication order. Bold indicates umull, rather than umaal.

To save registers, the multiplication a7b0 (#37) overwrites the register where b0 is stored and the multiplication
a0b6 (#43) overwrites the register where a0 is stored. The multiplication a0b5 (#26) overwrites both source
registers. Except after the calculation of a0b6 (#43), where the multiplication also overwrites the address of a,
there is always an available register for the address of a.

Note that in every column, the second last partial product calculation uses umull, except for the middle column,
where this must be done earlier. Thanks to the early calculation of a0b5 (#26), we have an additional register to
use as accumulate operand for the following column, which allows us to not need to perform a umull in this column
during the first part. When we are about to calculate a7b0 (#37), we have only one accumulate operand, forcing
us to use umull this early.

In total, 111 cycles are required for the 256-bit multiplication, assuming the addresses for a and b are already
in registers, as well as spilled to the stack as copies. The 512-bit result will be stored as eight words on the stack
at a fixed offset (lower words) and eight words in registers (upper words).

One could think that an approach splitting b into two equal-sized parts (four words each) would be good. It
turns out to be worse, since that would require two more temporary registers when the first part is done, as well
as the need to have b4 stored in a register during the second part.

The use of umull instructions instead of umaal instructions with zeroing of registers constitutes most of the
performance improvements over the method used in the work by Haase et al. [4].
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5.2 480-bit multiplication

For Curve448 we will need a 480-bit multiplier. Why a 448-bit multiplier is not enough will be explained later.
With such large operands, most of the working state will not fit in registers and we will be required to spill and
restore temporaries to the stack, as well as load some operand words more than once. A 480-bit value is represented
as 15 words. In total 15 · 15 = 225 partial products must be calculated, requiring 225 umull/umaal instructions
and hence 225 cycles. The majority of the rest of the cycles will be spent in memory instructions, at least one cycle
per transferred word. Depending on how optimised these memory instructions are, they will each add additionally
either zero or one cycle spent during a pipeline stall. Recall that a chain of n ldr instructions require 1 + n cycles
and each str instruction requires one cycle. An optimisation opportunity arises when we have one or more ldr

instructions followed by one str instruction, which saves one cycle. These chains require n cycles, where n is the
total number of words to transfer. Unfortunately, an algorithm where we have an str instruction followed by one
or more ldr instructions can only be reordered if the register used in the str instruction is not among the set of
loaded registers. In this case, we need an extra spare register and load to that one instead. If we do not reorder
such a sequence of instructions, due to the lack of an available spare register, we will get an extra cycle while the
pipeline is stalled during the last ldr instruction. If we minimise the number of memory transfers and always try
to fill the end of each ldr chain with an str instruction, we will get the best performance.

Operand scanning, i.e. calculating row by row, operating on the whole operation at once, will result in bad
performance. Since all 15 bj words are used in every row, along with an additional 15 temporaries per row, which
are accessed one by one from right to left, the least recently used words are to be used when we start the next
row. Due to the limitation of only having 14 registers, most of the 30 values will need to be spilled and restored for
every row, causing significant memory overhead. Product scanning, i.e. calculating column by column, seems hard
to make something useful of, since we only have 64-bit accumulators with no carry flag when using umlal, and if
we instead use umaal, we will produce one extra carry word per row that must be saved until the next column.

The proposed solution is to use operand scanning where the b operand is split into three equal-sized parts of five
words each. Operand scanning with five words in b and any number of words in a can be performed efficiently. The
technique is simple: the five words in b are all loaded to registers. We will then process the calculation iteratively
row by row, producing one result word that will be stored to the stack per iteration. At the beginning, we set t = 0,
where t is a 160-bit number stored in five registers, using one mov and two umull instructions. Each iteration loads
the next word s from the stack (which contains one word of the calculated result so far at this position) as well as
ai into registers. Using a chain of five umaal instructions, the 192-bit value ai · bj..j+4 + t + s is calculated. The
upper 160 bits are the new t and the lower 32 bits are stored to the same stack word. After the last iteration, t is
appended to the stack after the last stored word. Each part thus accumulates its partial products into the stack at
the correct position. Before we start calculating the parts, the stack is initialised to 15 zero words (or alternatively,
we could replace the loads from the stack in the first part with mov instructions, clearing the registers instead).
Note how this algorithm uses eight instructions per iteration, five of which are ”useful work”, and the other three
are memory overhead. We need five registers for storing the five b words, one register for ai, five registers for t, one
temporary register for s, and one for the address of a, which is 13 in total. The spare register is used to be able to
delay the store until after the loads in the next iteration. Thus, the register used for s is alternating between each
iteration. This means that these eight instructions will execute in eight cycles. The address for the next words in
b is spilled to the stack after five words have been loaded (and the address has been incremented) and is restored
when the next five words are to be loaded. Conveniently, the first iteration in a part calculation does not store
anything to the stack after its ldr instructions, so this is where we place the spill of the b address. Similarly, the
restore is performed just before the five t words are stored to the stack at the end of a part calculation. The last
str of t for the second part is moved to after the two ldr instructions of the first iteration in the last part.

To avoid pipeline stalls, remember that any ldr/str that is followed by at least three unaligned 32-bit single-
cycle instructions (such as umaal) requires an extra cycle. This situation arises in every inner loop, except in the
first part where we have a 16-bit movs instruction before the multiplication instructions. We thus add the .w suffix
to an ldr/str instruction when appropriate, to avoid this extra pipeline stall.

Two iterations of the inner loop are shown in Algorithm 1.
To optimise away eight cycles during the beginning of the first part, note that we use many umaal instructions

with one or both accumulate operands being zero. We therefore directly replace the five first iterations with the 25
first partial product calculations from the 256-bit multiplication routine (which completes in 25 cycles), since both
perform the same operation. In total, 398 cycles are needed for the calculation, assuming that the two addresses
for a and b are already in registers and that the stack is allocated. At the end, the 960-bit result is placed on the
stack.

In total, 3 · 15 words from a, 3 · 5 words from b, and 2 · 15 words from the stack are loaded, and the b address
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is restored two times, which means 92 words are loaded from memory. We store 3 · 20 words to the stack and spill
the b address two times, which means that 62 words are stored to memory. 2 · 3 cycles are spent setting t to zero,
and we have additionally 10 mov instructions for clearing registers during the last 10 iterations of the first part.
For each of the three parts, one cycle is spent during stall when ldm is used to load the next five words from b
(with post-increment), to save some code space instead of using five ldr instructions (which would remove these
three cycles). Together with the 225 umull/umaal partial product calculations, we now have the full explanation
for all 398 cycles. This result corresponds to a fully unrolled implementation. An implementation optimised for
size where the same code is run for each of the three parts uses around 1/3 of the code size of the fully unrolled
variant, but adds 50 cycles of execution time, mainly due to words containing zero having to be initially stored to
the stack, which are then loaded during the first part. Between each part, the stack pointer is decreased by five
words.

Note that the described algorithm is scalable and works for any sizes of a and b. If a is not divisible by five,
either simply pad it with zeros after the most significant word or modify the last part to operate on the correct
number of words. The algorithm uses n2 + (3n + 16)n/5 − 10 cycles for any n by n-word multiplication, when n
is divisible by 5 and n > 5. For any n by m-word multiplication, where n is the number of words in a and m is
the number of words in b, the algorithm uses n ·m + (3n + 3)dm/5e + 3bm/5c + b(m mod 5) · 0.76e + 2m − 10
cycles when n ≥ 5 and m > 5. The expression b(m mod 5) · 0.76e corresponds to how many cycles it takes to set
m mod 5 registers to zero (0, 1, 2, 2 or 3 cycles).

On Cortex-M33, this general algorithm could be optimised further by using six words per part instead of five.
This is possible because the last ldr instruction in an ldr chain does not have to be paired with an str instruction
to avoid an extra cycle. Thus, the spare register can be used to hold the sixth operand. To free a register for use as
the sixth word in t, we could discard the address register for a, which then requires us to copy a to a fixed location
on the stack (if this is not already the case). This can, for example, be performed during the first part (we use five
words in the first part) since we already load the entire a during the first part. If m is a multiple of six, however,
it is more efficient to copy a to the stack before starting the algorithm, to avoid an extra part.

On both Cortex-M4F and Cortex-M33F, we can achieve six words per part without any pipeline stalls by having
the a operand in FPU registers, if the sequence ldr, str, vmov is used between rows (the ldr instruction overwrites
the register where the a operand word was previously used).

Using six words for a part can still be a useful strategy on Cortex-M4 (without FPU) to save around n cycles,
when m ≡ 1 (mod 5). In this case, use six words in the last part, but otherwise use five words per part. We avoid
3n cycles by avoiding the last part having only one word in b (spill, load operand word, restore), but instead add
one cycle to store a copy of ai in the first part and get one extra cycle when the cpu is stalled in the last part, per
row.

In [11], Seo et al. propose a method they call ”Refined Operand Caching”, that requires 2dn2/(e+1)e+3bn/(e+
1)c loads and dn2/(e+1)e+n stores, with the constant e = 3, in addition to the n2 partial products. Their method
is then used in their Curve448 implementation [10] as a 448-bit multiplier. It uses four registers for operand words
in a, four registers for operand words in b, four registers for intermediate results, one temporal register, and one
register for either the address of a or b. As this method does not have a spare register, it will suffer from many
pipeline stalls at the end of ldr sequences. Additionally, we see that the formula of the total memory overhead
is similar to our proposed method, with the important difference that e + 1 = 4 is used as divisor instead of 5.
Our proposed method thus has lower memory overhead, which is directly translatable to fewer cycles. With our
method, it is also possible to decide how much the loops should be unrolled, to save code space, thanks to the more
regular pattern.

The work by Anastasova et al. [2] also uses five words in the inner loop. The inner loop consists of five umaal

instructions, one ldr instruction and two vmov instructions. The ldr instruction loads the next operand word and
the two vmov instructions load and store intermediate results from and to the floating point register set, respectively.
This is very similar to our method, but uses floating point registers instead of the stack. However, the order of the
instructions is different: each load is scheduled just before the loaded value is required, and the store is scheduled
immediately after the value to store was produced. In any case, ldr instructions not followed by another ldr or
str instruction suffer from pipeline stalls on Cortex-M4, which makes our method one cycle faster per inner loop.
It is unclear if ldr is used rather than ldr.w. This difference would also cause an extra cycle, in case the following
32-bit instructions are not 32-bit aligned.
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Algorithm 1 Multiplication, inner loop, two iterations, fully unrolled, 16 cycles

// start row 1 at col 10

ldr r0,[r1,#4*1]

ldr r2,[sp,#4*11]

str.w r3,[sp,#4*10]

umaal r2,r4,r0,r6

umaal r4,r8,r0,r7

umaal r8,r12,r0,r9

umaal r12,lr,r0,r10

umaal lr,r5,r0,r11

// start row 2 at col 10

ldr r0,[r1,#4*2]

ldr r3,[sp,#4*12]

str.w r2,[sp,#4*11]

umaal r3,r4,r0,r6

umaal r4,r8,r0,r7

umaal r8,r12,r0,r9

umaal r12,lr,r0,r10

umaal lr,r5,r0,r11

5.3 256-bit squaring

We use the fact that 28 of the 64 products are computed twice, since aibj = ajbi when a = b. Only products where
i = j are computed once. Two different algorithms will now be described.

5.3.1 Variant 1

Let <<, >> indicate left and right logical shift, respectively. The first algorithm is to calculate the result as 2X + Y
where X =

∑6
i=0

∑7
j=i+1(aiaj << 32(i + j)) and Y =

∑7
i=0(a2i << 64i). Since there is only one operand a, all

its eight words can fit into registers during the entire calculation, as long as they are needed. When calculating
X colmun by column from right to left, it happens six times that a column has the same number of products to
calculate as the next column. When such a column has n products to calculate, n temporary registers, holding the
upper 32 bits of each 64-bit product, will be produced. We cannot perform a chain of n umaal instructions in the
next column with only n accumulate inputs. We need n+ 1 inputs, so therefore extra instructions are necessary to
zero out a free register. Replacing umaal instructions by umull instructions will not help, as it will not change the
parity of the number of needed inputs.

The diagram in Figure 2 shows an optimised ordering of the multiplications that allows us to keep as many
result words in registers as possible, while not sacrificing cycles in other ways.

15 13 9 7 5 3* 2 (1)
18 17 14 11 8* 6 (4)

22 20 19 16* 12 (10)
25 24 23 21 (26)

29 28 27* (30)
32 31* (33)

34 (35)
(36)

Figure 2: Multiplication order. A star indicates a umaal instruction where one of the accumulator registers is
zero, bold indicates umull, and parentheses that this product shall not be doubled. The strategy is, just as with
the multiplication case, to calculate row by row as much as is possible, to free up the registers used for the inputs

at the earliest possible time.

X is doubled using a chain of 15 adds/adcs instructions (since 2X = X + X) and the result fits in 16 words
(the first implicit word is always zero and thus never calculated). When calculating Y , we multiply-accumulate
directly into 2X using a sequence of umaal instructions where we alternately multiply ai by ai and 0 by 0. The
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latter zero-products are required to get the carry chain correct. We interleave the calculation of 2X and Y as
shown in the diagram above. As the calculation proceeds, ai operands start to become dead, and these registers
can instead be used to hold result words to avoid storing them to the stack.

Assuming the a operand is already placed in registers, the calculation requires in total 69 cycles. Six result
words will be stored on the stack at a fixed offset (lower words), and ten result words will be stored in registers
(upper words). It is possible to store only the first five words on the stack and have eleven in registers, but that
results in higher register pressure, resulting in a two cycle penalty of lost optimisation opportunities (using umull

to zero two registers and keeping one register zeroed during the entire calculation).

5.3.2 Variant 2

A second, faster, algorithm will now be described, which has not been observed in any previous work on Curve25519
for Cortex-M4. The algorithm above uses 15 adds/adcs instructions for doubling. An additional eight instructions
are required where 0 is multiplied by 0 to keep the carry chain correct. We would like an algorithm which reduces
the overhead of these 23 cycles.

In the algorithm above, the doubling in 2X is performed after the partial multiplications. The other ap-
proach is to double one of the two operands before the partial multiplications. Let us rewrite 2X as 2X =
2
∑7

j=1

∑j−1
i=0 (aiaj << 32(i+ j)) =

∑7
j=1(2(

∑j−1
i=0 (ai << 32i))aj << 32j) =

∑7
j=1((2a0..j−1)aj << 32j).

The solution is therefore to initially calculate 2a and then multiply (2a)i by aj for i < j and aiaj for i = j,
i.e. 36 multiplications. We additionally need to multiply aj by the top bit of 2a0..j−1, which can efficiently be
calculated in one cycle using ”and Rd,Rn,Rm, asr #31”, where Rn is aj and Rm is aj−1. The result of each and

operation is used as an accumulate operand to a following appropriate umaal instruction. It is otherwise sufficient
to calculate the first seven words of 2a, which is performed using a chain of adds/adcs instructions. Together with
the seven and instructions, this algorithm has a computational overhead of only 14 cycles, which is 9 cycles less
than the first algorithm variant which had 23 cycles of overhead.

We show the order the multiplications are performed to minimize register usage in Figure 3.

14 12 10 7 5 3+ 2* 1
18 17 13+ 11 8+ 6* 4*

22 21 20* 16 15* 9*
26 25 24 23 19*

30 29 28 27+
33 32 31+

35 34+
36+

Figure 3: Multiplication order. A star indicates a umaal instruction where one of the accumulator registers is
zero, bold indicates umull, and a plus sign indicates that we here use the result of the and instruction as one of

the accumulate operands.

As an example in the multiplication order above, the third multiplication operation multiplies (2a)0 by a2 using
a umaal instruction having the high result from the second multiplication operation as the first accumulate operand,
and the result of the multiplication (a0 >> 31)a1 as the second accumulate operand.

Just as in the first variant, we have seven accumulate operands that need to be zero. One movs and three umull

instructions are used to produce these.
Note that the adds/adcs operation for ai is performed after the calculation a2i . This way, we never have to

keep both ai and (2a)i in registers at the same time.
In total, the algorithm uses 59 cycles, assuming the a operand is already placed in registers. At the end, the five

lower result words are located on the stack (whose str instructions account for five cycles) and the upper eleven
are located in registers.

The work by Haase et al. [4] uses the approach in Variant 1 for optimising the 2X + Y calculation while this
work uses Variant 2, which is what mainly improves the performance for the squaring operation compared to their
work.
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5.4 480-bit squaring

We use the same technique as in the 256-bit squaring case (the second variant), but with 15 input words this time.
Due to the larger operand, we cannot keep both the full operand and temporaries in registers anymore.

We will instead split up the operation into three parts. The first part handles the first four rows, the second
part handles the next five rows, and the last part handles the last six rows. For each part, we initially load the next
four, five, or six words of the input. These words stay in registers during that part. Each part will then process
one word at a time from the full a where one temporary word will be loaded and stored, as shown in the algorithm
below.

Algorithm 2 480-bit squaring

INPUT: An input operand a, stored as an array of 32-bit words ai.
OUTPUT: a2.
t0..14 = 0
d0 = 0
for (start, end) in (0, 3), (4, 8), (9, 14) do

# Load astart..end to registers
v = 0
for j = start to 14 do

# Load aj to register (if j /∈ [start..end])
v = v + tj # v is stored using multiple words, and this addition is deferred until the next umaal
for i = start to end do

if i ≤ j then
v = v + (aiaj << 32(i− start))
if i = j then

v = v + (di << 32(i− start)) # combined with previous addition in a umaal

di+1 = (ai >> 31)ai+1

ai = 2ai mod 232

end if
end if

end for
tj = v mod 232

v = v >> 32
end for
t15+start..15+end = v

end for
return t0..29

The above algorithm is fully unrolled and is slightly adjusted. The exact order of the operations is shown in
Figure 4, using the same notation as in the 256-bit case.
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Part 1:
51* 47* 43* 39* 35* 31* 27+ 23* 19* 15* 11* 7* 4* 2* 1

52 48 44 40 36 32 28 24 20 16 12 8 5 3+
53 49 45 41 37 33 29 25 21 17 13 9 6+

54 50 46 42 38 34 30 26 22 18 14 10+

Part 2:
95 90 85 80 75 70 65 61 58 56 55*

96 91 86 81 76 71 66 62 59 57+
97 92 87 82 77 72 67 63 60+

98 93 88 83 78 73 68 64+
99 94 89 84 79 74 69+

Part 3:
115 110 106 103 101 100+

116 111 107 104 102+
117 112 108 105+

118 113 109+
119 114+

120+

Figure 4: Multiplication order for 480-bit squaring. A star indicates a umaal instruction where one of the
accumulator registers is zero, bold indicates umull, and a plus sign indicates that we here use the result of the

and instruction as one of the accumulate operands.

A group of five rows is generally the maxmium we can process at once, due to the number of registers available.
For the first part, we would like to have zero in a spare register so we can set two other registers to zero using
umull. Therefore, for the best performance, we use four rows in this part. For the last part, we can process six
rows at once, since there is no need to load a different operand register than the six belonging to this part. It turns
out that the last part does not need any loads from the stack, and the second part does not need to spill anything
to memory at its exit, since what is needed for subsequent calculations can fit in registers at this point.

In total, 250 cycles are needed, assuming the address of the a operand is present in a register. At the end, the
23 lower words of the result are stored on the stack, and the upper seven words are stored in registers.

6 Curve448 field arithmetic

A compact representation of a field element of 15 words is used. It would have been enough with 14 words, but an
extra word has been added to simplify partial reductions. This will cost some extra time during multiplication and
squaring operations, but will reduce the time performing field reductions. In particular, we skip field reductions
altogether for addition and subtraction. Note that this puts constraints on how many additions or subtractions
that can be performed in sequence before the value is consumed by a multiplication or squaring operation. This
idea has not been observed in any previous work for Curve448 that targets Cortex-M processors.

Other implementations might use 228 as radix, but due to the availability of umaal, which essentially performs
two additions for free, and also carries bits over the 32-bit boundary, a radix of 232 is a better choice on Cortex-M
processors.

6.1 Subtraction

To subtract two values a and b modulo p, we calculate (a + 2p) − b. The result will always be non-negative, and
thus correct, when b is at most 2p. If also a is small enough, the result will fit in 15 words. To allow for two carry
chains simultaneously and thus be able to perform the operation in one single pass, we use umaal to calculate a+2p
and subs/sbcs to then subtract b. No modular reduction is performed.

6.2 Addition and multiplication by small constant

To save code space, addition and ”multiply by a small constant and add” uses the same code. We calculate a+ cb,
where a and b are the inputs and c is a constant that fits in one word. The constant is 1 for normal addition
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and 39082 for multiplication by (A + 2)/4, where A is the curve constant 156326. The operation is performed
efficiently using umaal without performing any modular arithmetic. Given inputs that are small enough, the result
will always fit in 15 words. It would require at least one extra pass if we would reduce fully modulo p, or reduce
the result to fit in 448 bits.

6.3 Multiplication and squaring

Hamburg hints that Karatsuba multiplication can be used for field multiplication [5]. Let φ = 2224. Then

(a+ bφ) · (c+ dφ)

= ac+ (ad+ bc)φ+ bdφ2

≡ (ac+ bd) + (ad+ bc+ bd)φ (mod p)

= (ac+ bd) + ((a+ b)(c+ d)− ac)φ

This algorithm has been implemented and uses 540 cycles. It performs one 224-bit multiplication followed by
two 256-bit multiplications, and finally a reduction part. It turned out this approach uses around 40 cycles more
than the more simple operand scanning approach and was thus abandoned.

The 480-bit multiplication and squaring algorithms described earlier are used, resulting in 960-bit values. To
slightly enhance the performance, we discard the upper 32 bits of the result and reduce the lower 928 bits modulo
p. The input operands must hence be small enough (at most in total 928 significant bits) for the result to be
correct. When squaring, the operand must be at most 464 bits. With φ = 2224, we will use the fact that φ2 ≡ φ+ 1
(mod p), φ3 ≡ 2φ+ 1 (mod p), and φ4 ≡ 3φ+ 2 (mod p).

Then, with the 928-bit result written as A+Bφ+ Cφ2 +Dφ3 + Eφ4, where A, B, C, D are all 224 bits each,
and E is 32 bits, we reduce as (A + C + D + 2E) + (B + C + 2D + 3E)φ. To make the result fit in 449 bits, we
start the reduction by adding the upper 32-bit words in B, C, D and D, resulting in 34 bits. The upper two bits
F are removed and will instead be added as F + Fφ to the result.

The additions are processed using two chains in parallel. First, word 0 and word 7 are produced by first loading
the needed words from the stack and then using umaal followed by umlal instructions to add words (using the
constant 1 or 2 as one of the multiplicands). Then, word 1 and word 8 are produced and so on. Words 0 to 6 can be
stored immediately to the destination. When all words have been computed, we must use a sequence of adds/adcs
to add and propagate the carry from word 6. Despite the instructions needed for this carry propagation, it is still
cheaper than producing the words from lowest to highest in sequence, since C and D then need to be loaded twice.
The result will fit in 449 bits and be less than 2p. To save a few memory operations, some of the most significant
words in the 928-bit multiplication result are never stored to the stack, but just kept in memory until they are to
be used. The reduction code is shared and used for both multiplication and squaring and uses in total 90 cycles.

6.4 Inversion

Side-channel resistant field inversion is implemented using Fermat’s little theorem a−1 ≡ ap−2 (mod p). To perform
the modular exponentiation, a sequence of 447 squarings and 13 multiplications is used.

6.5 Final reduction

Final reduction is performed after the last multiplication operation. We may thus reduce the top bit to make the
result fit in 448 bits. To handle the case when the value is still larger than or equal to p, we subtract by p and
then conditionally in constant time add p if the result becomes negative, or 0 otherwise. The reduction of the top
bit and the subtraction of p is merged into a single pass.

7 Curve25519 field arithmetic

Similarly to Curve448, we use a compact representation with 8 words for a field element. The stored field element is
an integer less than 2256−38. This allows us to partially reduce either using modulo p = 2255−19 or 2p = 2256−38.
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7.1 Subtraction

First, the two operands are subtracted. If the result becomes negative, we add 2p to make it positive. To make the
timing independent of the values being subtracted, a mask is created using the resulting borrow bit to either add
0 or 2p.

7.2 Addition and multiplication by small constant

Just as for Curve448, we can see addition as a special case of ”multiply by a small constant and add” thanks to
the powerful umaal. The constants that will be used for Curve25519 are 1 and 121666.

First, we use umaal on the highest word in each operand, resulting in a value spanning two words. The lower
31 bits are saved for later use, and the upper bits are multiplied by 19, which will be used as carry-in for the rest
of the addition, starting from the first word. After the addition of the seven lowest words, the resulting carry word
will be added to the 31 bits we saved earlier, producing a 256-bit result less than 2256 − 38.

7.3 Multiplication and squaring

The 256-bit multiplication and squaring algorithms return a 512-bit result. Since 2256 ≡ 38 (mod p), reduction can
use the ”multiply by a small constant and add” algorithm with the constant 38, where the operands are the upper
half and the lower half of the 512-bit result, respectively. Conveniently, the multiplication and squaring algorithms
we use leave the upper words in registers and can be consumed directly by the reduction algorithm without having
to be spilled to and restored from the stack.

7.4 Inversion

Side-channel resistant field inversion is implemented using Fermat’s little theorem a−1 ≡ ap−2 (mod p). To perform
the modular exponentiation, a sequence of 254 squarings and 11 multiplications is used.

7.5 Final reduction

The result is stored using 256 bits, modulo 2p = 2256 − 38. We need to reduce this value modulo p = 2255 − 19.
This is done by simply subtracting p from the value. If the result becomes negative, we add p. This is done using
a mask by either adding 0 or p, to avoid branches.

8 Montgomery ladder

To perform elliptic curve scalar multiplication with a variable base point, the Montgomery ladder is used [7]. The
Montgomery ladder is commonly used when it is desired to mitigate side-channel attacks, since the same operations
are performed regardless of the secret scalar bits. Algorithm 3 shows the Montgomery ladder in its basic form.

Algorithm 3 Montgomery ladder

INPUT: A scalar k ∈ [0, 2m − 1] and a point P .
OUTPUT: kP .
R0 = 0
R1 = P
Treat bits in k as b0, b1, · · · , bm−1 from LSB to MSB
for i = m− 1 to 0, step −1 do

if bi = 0 then
(R0, R1) = (2R0, R0 +R1)

else
(R1, R0) = (2R1, R0 +R1)

end if
end for
return R0
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Each iteration will either double the current point R0 if the bit was zero or double the point and add P if the
bit was one, which thus constitutes the scalar multiplication kP .

Initially R1−R0 = P . After every iteration, regardless of bi, we can observe that this property always continue
to hold.

We will use x/z representation of curve points and will not need the y component. This representation has
efficient known operations for calculating point addition P0 +P1 when P1 −P0 is known, and for calculating point
doubling 2P . These operations, in particular the addition operation, work with the Montgomery ladder, since we
know that R1−R0 is always P . Note that on Montgomery curves, if P = (x, y), then −P = (x,−y). Thus, we can
swap R0 and R1 in the addition formula and still get the same result, since R0 − R1 and R1 − R0 have the same
representation when the y coordinate is not used.

We would like to avoid the branches in the algorithm above. The bit bi decides which of R0 and R1 to use for
point doubling as well as in what order to store the results. For the point addition, it does not matter whether the
operands are swapped or not. We can rewrite the algorithm to always store the results of the point doubling and the
point addition to the same locations if we swap the operands at the beginning of the next iteration. Therefore, we
need to save the bit for the next iteration. Since the point doubling uses only one of the operands, the conditional
swap can be optimised to a conditional select operation. If the current bit and the previous bit are equal, R0 is
chosen, otherwise R1 is chosen as the input for point doubling. Algorithm 4 shows this amended variant. The
CSEL function takes a condition as the first parameter. If the condition is true, the second parameter is returned.
If the condition is false, the third parameter is returned.

Algorithm 4 Side-channel resistant Montgomery ladder

INPUT: A scalar k ∈ [0, 2m − 1] and a point P .
OUTPUT: kP .
R0 = 0
R1 = P
lastbit = 0
Treat bits in k as b0, b1, · · · , bm−1 from LSB to MSB
for i = m− 1 to 0, step −1 do

T = CSEL(bi 6= lastbit, R1, R0)
(R0, R1) = (2T,R0 +R1)
lastbit = bi

end for
return CSEL(lastbit = 1, R1, R0)

Note that for X25519 and X448, the least significant bit is always 0, due to clamping of the scalar, so the last
CSEL can be optimised away so that R0 is always returned.

The steps for performing point addition and point doubling are shown below in Algorithms 5 and 6, respectively.

Algorithm 5 Point addition

INPUT: Points (X2 : Z2), (X3 : Z3), (X1 : 1), where (X1 : 1) = (X2 : Z2)− (X3 : Z3)
OUTPUT: The point (X5 : Z5) = (X2 : Z2) + (X3 : Z3)
A = X2 + Z2
B = X2− Z2
C = X3 + Z3
D = X3− Z3
DA = D ·A
CB = C ·B
T1 = DA− CB
T3 = T12

T2 = DA+ CB
X5 = T22

Z5 = X1 · T3
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Algorithm 6 Point doubling

INPUT: Point (X2 : Z2)
OUTPUT: The point (X4 : Z4) = 2(X2 : Z2)
A = X2 + Z2
B = X2− Z2
AA = A2

BB = B2

E = AA−BB
T = BB + a24 · E
X4 = AA ·BB
Z4 = E · T

After inlining these operations into the Montgomery ladder, we get Algorithm 7, which also uses the minimal
number of temporary field elements.

Algorithm 7 Side-channel resistant Montgomery ladder

INPUT: An even scalar k ∈ [0, 2m − 1] and a point X1.
OUTPUT: kX1.
X2 = 1
Z2 = 0
X3 = X1
Z3 = 1
Treat bits in k as b0, b1, · · · , bm−1 from LSB to MSB
lastbit = 0
for i = m− 1 to 0, step −1 do

A = X2 + Z2
B = X2− Z2
C = X3 + Z3
D = X3− Z3
DA = D ·A
AA = CSEL(bi 6= lastbit, C,A)2

CB = C ·B
BB = CSEL(bi 6= lastbit,D,B)2

T1 = DA− CB
T3 = T12

T2 = DA+ CB
X5 = T22

Z5 = X1 · T3
E = AA−BB
T = BB + a24 · E
X4 = AA ·BB
Z4 = E · T
Z2 = Z4
X2 = X4
Z3 = Z5
X3 = X5
lastbit = bi

end for
return (X2, Z2)

Table 1 shows what variables occupy the same memory space:
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0 A, AA
1 B, E
2 X2, C, BB, X4
3 Z2, D, T1, T3, T, Z4
4 X3, CB, T2, X5
5 Z3, DA, Z5
6 X1

Table 1: Register allocation for field registers

It is important to note that the CSEL operation can either be performed by selecting what pointer to use as input
to the subsequent squaring function, or alternatively, by loading both values to registers, conditionally selecting
words, writing the results to memory, and then using that memory location as input to the subsequent squaring
routine. On processors with data caches for the RAM (not flash data caches), the latter is usually suggested since
it avoids cache timing leakage. If the processor does not have a data cache, however, it is not only faster with the
former approach, but also potentially exhibits less leakage [8]. Since Cortex-M4 and Cortex-M33 devices do not
have data caches, this former approach is chosen.

This work aims to be resistant against timing side-channel attacks, which is the same type of attacks that the
original Curve25519 reference implementation claims to be resistant against, as mentioned in the original paper
[3]. Note that it might in some cases be required to have an implementation that is resistant to attacks using other
side-channels than timing. The work by Nascimento et al. [8] uses power analysis to attack the conditional move
of either the entire field value or the pointer that contains the address of the field value to load. The authors claim
that typical countermeasures such as adding a random multiple of the curve’s order to the scalar are inefficient to
their attack, since they only need one trace to recover the secret scalar, and that randomising the Z coordinate for
the initial base point is also inefficient to their attack, since they extract the secret scalar using the leakage from the
conditional moves only. Instead, they propose other countermeasures, such as randomly swapping addresses for the
field registers in the inner loop of the Montgomery ladder. What are the best and most efficient countermeasures
are most likely dependent on the target system in question, and such a study is out of scope for this work.

9 Implementations

The X25519 and X448 functions have been implemented using the techniques above, targeting both Cortex-M4 and
Cortex-M33. Separate implementations have not been created for the two processors. Instead, the implementations
are optimised primarily for Cortex-M4 and secondarily for Cortex-M33. The optimisations for Cortex-M33 have
mainly been done by reordering instructions to avoid data hazards while never decreasing the performance for
Cortex-M4.

The implementations are written in 100% handwritten Assembly language, except for most of the 480-bit
multiplier, which could be generated by a script due to its regular pattern. One could suggest to implement the
field operations in Assembly while implementing the high-level Montgomery ladder in a higher-level language like
C. The main reason for having everything in Assembly is to be able to use custom ABIs for every function.

The standard ABI used in C requires the callee to save registers r4 to r11 at entry and restore them at exit.
If the function uses all these registers, this will incur an overhead of at least 16 cycles per function invocation,
which would decrease performance by around 15% for X25519. Additionally, for X25519, field operations return
the result in registers, rather than storing it at an address passed as an argument to the function. Specifically for
the squaring function, the eight input words are also passed in registers, rather than passing a pointer. This will,
under the right circumstances, avoid extra memory instructions for loading from and storing to the stack.

To save code space, the sequence of multiplication and square operations that inverts a field element is not
stored as a sequence of individual function calls. Instead, a table containing all those operations has been written,
using one 16-bit word per operation. A tiny interpreter then processes this table to perform the operations. Since
only one inversion is performed per scalar multiplication and the number of operations is relatively small, this has
negligible impact on performance.

For each curve, ”speedopt” and ”sizeopt” variants have been created. The sizeopt variant is intended to save
code space while sacrificing some performance. This is mainly done by omitting the squaring function. The
multiplication function is then used for both squaring and multiplication. For the Curve448 field multiplication,
the ”inner loop” is not unrolled in the sizeopt variant but is executed three times.
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For X25519 on Cortex-M4F, a variant that makes use of the FPU has also been created. In this variant, some
memory instructions are replaced by vmov instructions in the multiplication and squaring functions. This variant
is pointless on Cortex-M33 since memory instructions are optimised to only use one cycle per word.

9.1 Performance

The work has been tested on nRF52840 (Cortex-M4F), nRF5340 (Cortex-M33 with FPU and DSP extensions) and
STM32G431KBT6 (Cortex-M4F).

The nRF52840 uses a constant CPU frequency of 64 MHz, features a 2 kB instruction cache (I-Cache) and can
also run code from ”Code RAM”, which is an alias of the system RAM mapped at 0x08000000 for the ICode bus.
Running code from Code RAM will result in zero wait states. Running code from flash will result in instructions
being fetched with zero wait states, assuming the cache is turned on and there is a cache hit.

The nRF5340 can be configured to a CPU frequency of either 64 or 128 MHz. Compared to nRF52840, it has
a larger 8 kB, two-way set associative instruction/data cache (CACHE) that caches flash accesses. This cache is
large enough for each of our implementations to get a negligible amount of cache misses.

The STM32G431KBT6 has a configurable CPU frequency up to 170 MHz. It features a 1 kB flash instruction
cache and a 256 byte flash data cache. It is equipped with a proprietary Adaptive real-time (ART) memory
accelerator that implements an instruction prefetch queue and branch cache which can increase execution speed
when running from flash. The instruction prefetch queue can accelerate sequential flash reads when cache misses
occur by speculatively reading the next word from flash before the CPU requests it. This block must be manually
enabled after boot. The number of wait states added when running from flash is configurable, but the minimum
allowed value depends on the configured CPU frequency and voltage level. The reference manual contains a table
that shows all the allowed combinations. In the boost mode (voltage range 1), zero wait states can be configured
for up to 34 MHz, two wait states can be configured for up to 102 MHz, and four wait states can be configured for
up to 170 MHz (the maximum possible speed). The device also has a dedicated block of 10 kB RAM called CCM
SRAM that can be accessed on the I-bus, that allows zero wait states execution even at 170 MHz.

9.1.1 Results

Here, execution times are shown, measured in clock cycles. Code size and stack usage are measured in bytes. For
X25519, ”fpu” here indicates that optimisations that utilise the FPU register file are used and ”dcache” indicates
that the code is side-channel protected for devices having a data cache for RAM, i.e. the RAM access pattern is
not dependent on the secret scalar. The ”dcache” implementations are primarily made for performance comparison
and are not intended to be used in practice when targeting Cortex-M4 and Cortex-M33 processors for the reasons
discussed in Section 8.

Implementation CPU mul sqr add sub

X25519 nRF52840 Code RAM 147 91 39 41
X25519 + fpu nRF52840 Code RAM 140 88 39 41

X25519 nRF5340 CACHE 137 89 39 39

X448 speedopt nRF52840 Code RAM 501 356 81 104
X448 sizeopt nRF52840 Code RAM 554 554 81 104

X448 speedopt nRF5340 CACHE 492 339 65 88
X448 sizeopt nRF5340 CACHE 545 545 67 90

Table 2: Field arithmetic cycle counts

Table 2 shows cycle counts for various field operations, including function call overhead. For X25519, the cycle
counts do not include the time needed to set the input registers nor the time needed to store the result to memory,
which must be performed by the caller. For multiplication, addition and subtraction, this corresponds to setting
two pointers as inputs and storing eight result words to memory. For squaring, this corresponds to loading eight
words from memory and storing eight words to memory. For X448, the cycle counts include the time needed to set
pointers for the input and output.

Table 3 shows the performance of the full X25519 or X448 function.
The FPU optimisations result in some speedups on Cortex-M4, but as explained in earlier sections, do not

increase the performance on Cortex-M33. The performance drop that instead occurs is not due to vmov being
slower than memory instructions, but that the multiplication routine is modified to initially copy the full a operand
into FPU registers, so that we can then load the same 32-bit values multiple times in one cycle each (on Cortex-M4).
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Implementation Code size Stack usage nRF52840 nRF52840 nRF5340
Code RAM I-Cache CACHE

X25519 speedopt 1 472 348 441 116 441 332 411 061
X25519 speedopt + fpu 1 484 312 428 283 428 470 418 769

X25519 speedopt + dcache 1 544 348 457 434 457 615 425 085
X25519 speedopt + fpu + dcache 1 556 312 444 603 444 914 432 794

X25519 sizeopt 1 132 348 520 750 520 874 479 243

X448 speedopt 3 074 644 2 273 479 2 551 377 2 170 710
X448 sizeopt 1 548 664 2 836 304 2 836 673 2 744 689

Implementation STM32G431 STM32G431 STM32G431 STM32G431 STM32G431
CCM SRAM Cache Cache/Prefetch Cache/Prefetch Cache/Prefetch

170 MHz 170 MHz 170 MHz 102 MHz 32 MHz

X25519 speedopt 441 401 496 255 481 121 450 108 441 117
X25519 speedopt + fpu 428 570 483 189 472 901 439 836 428 286

X25519 speedopt + dcache 457 721 555 666 526 007 472 543 457 438
X25519 speedopt + fpu + dcache 444 890 550 511 519 322 462 535 444 606

X25519 sizeopt 521 045 521 112 521 032 520 824 520 751

X448 speedopt 2 273 520 4 943 967 4 172 126 2 691 806 2 273 479
X448 sizeopt 2 836 342 3 407 184 3 229 748 2 923 710 2 836 305

Table 3: Full scalarmult code size, stack usage, and cycle counts

The total cost, despite more transfer operations compared to the non-FPU based approach, is less on Cortex-M4,
but more on Cortex-M33.

The effect on cache size and code size is particularly noticeable on the STM32G431. The performance when
running code from flash with cache will decrease as the CPU frequency is increased, in terms of number of cycles.
But the performance will also decrease as the code size increases (selecting speedopt instead of sizeopt) — even
though the algorithm optimised for speed should be faster — due to an increased amount of cache misses. The
X448 sizeopt implementation is significantly faster than the speedopt implementation at 170 MHz when running
from flash. For the X25519 sizeopt implementation, the main loop apparently fits in the 1 kB instruction cache,
resulting in about the same number of cycles regardless of CPU frequency, while the speedopt implementations
get slower as the CPU frequency is increased. On nRF52840, the only implementation that has a negative impact
when running from flash with the instruction cache enabled instead of from Code RAM is the X448 speedopt
implementation, which is larger than the 2 kB cache size. The results thus show the importance of optimising not
only for ”performance”, but also for size.

10 Conclusion

This work has shown that accurate knowledge about the Cortex-M4 and Cortex-M33 processors is of great im-
portance when designing highly efficient implementations for cryptographic algorithms, as well as well-thought
optimisations at every possible level. The implementations presented should be close to optimal performance as is
theoretically possible within the code size and stack usage budget used, at least for Cortex-M4.

It is expected that the presented multiplication and squaring algorithms could be useful in other applications
as well that require fast big integer arithmetic on Cortex-M4 and Cortex-M33. The findings about cycle timings
not found in ARM’s manuals should be of interest for an even further range of applications.

This work only evaluates performance for variable base scalar multiplication. Using the same field arithmetic
functions and multiplication algorithms, it should be possible to implement other high-level algorithms as well, e.g.
fixed base point scalar multiplication for Ed25519, or implementations for the NIST curves.

11 Acknowledgements

Thanks to Björn Haase for giving useful feedback on this paper.

18



References

[1] Arm® Cortex®-M4 Processor Technical Reference Manual. https://developer.arm.com/documentation/
100166/0001.

[2] Mila Anastasova, Reza Azarderakhsh, Mehran Mozaffari Kermani, and Lubjana Beshaj. Time-Efficient Finite
Field Microarchitecture Design for Curve448 and Ed448 on Cortex-M4. Cryptology ePrint Archive, Paper
2023/168, 2023. https://ia.cr/2023/168.

[3] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, pages 207–228, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.
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