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Abstract

Solitary output secure computation allows a set of mutually distrustful parties to compute a
function of their inputs such that only a designated party obtains the output. Such computations
should satisfy various security properties such as correctness, privacy, independence of inputs,
and even guaranteed output delivery. We are interested in full security, which captures all of
these properties. Solitary output secure computation has been the study of many papers in
recent years, as it captures many real-world scenarios.

A systematic study of fully secure solitary output computation was initiated by Halevi et al.
[TCC 2019]. They showed several positive and negative results, however, they did not char-
acterize what functions can be computed with full security. Alon et al. [EUROCRYPT 2024]
considered the special, yet important case, of three parties with Boolean output, where the
output-receiving party has no input. They completely characterized the set of such functionali-
ties that can be computed with full security. Interestingly, they also showed a possible connection
with the seemingly unrelated notion of fairness, where either all parties obtain the output or
none of them do.

We continue this line of investigation and study the set of three-party solitary output Boolean
functionalities where all parties hold private inputs. Our main contribution is defining and
analyzing a family of “special-round” protocols, which generalizes the set of previously proposed
protocols. Our techniques allow us to identify which special-round protocols securely compute
a given functionality (if such exists). Interestingly, our analysis can also be applied in the two-
party setting (where fairness is an issue). Thus, we believe that our techniques may prove useful
in additional settings and deepen our understanding of the connections between the various
settings.
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†Department of Computer Science, Ariel University. Ariel Cyber Innovation Center (ACIC).
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1 Introduction
Solitary output secure computation allows a set of mutually distrustful parties to compute a function
of their inputs such that only a single party obtains the output. Such computation should preserve
several security properties. These include correctness, privacy, independence of inputs, fairness,
and even guaranteed output delivery. Full security captures all of these security properties.1

Solitary output secure computation appears in many real-life scenarios. For instance, consider
a data analyst who wishes to perform statistics on users’ data while maintaining the privacy of
the data. Solitary output secure computation is further considered in many cryptographic settings,
such as privacy-preserving federated learning [15, 13, 30], private simultaneous messages (PSM)
protocols [22] and its robust version [11, 1], and in the setting of very large-scale computations for
tech giants [6].

Solitary output secure computation also eliminates the need to achieve fairness, where, intu-
itively, it is required that either all parties obtain the output or none of them do. Indeed, fairness
is not an issue in the case that only a single party obtains the output. This implies that the im-
possibility result of Cleve [17], which shows that achieving fairness is impossible in general without
an honest majority, does not apply to the solitary output setting. This motivated Halevi et al. [27]
to initiate a systematic study of solitary output secure computation. Although they showed sev-
eral positive results, they also showed that there are solitary output functionalities that cannot be
securely computed. However, their results do not characterize what functionalities can be securely
computed. This motivated Alon et al. [7] to analyze the special case of three-party Boolean output
functionalities, where the output-receiving party has no input. Interestingly, their results show
that there might be a deep connection between fairness and solitary output secure computation.
Indeed, both their techniques and results strongly resemble the techniques and results from the
fairness literature [26, 8, 31, 9]. Thus, studying one setting could help better understand the other
(seemingly unrelated) setting.

We continue this line of investigation, hoping to deepen our understanding of the connection
between the two settings. Specifically, we ask the following question.

What solitary output functionalities can be computed with full security?
How is this related to fairness?

Assuming an honest majority, classical results show that any functionality can be computed with
full security [24, 14, 34]. In the dishonest majority setting, Halevi et al. [27] showed there exists
a solitary output functionality that cannot be securely computed, however, their results leave a
gap between the positive and negative results. Alon et al. [7] considered the three-party setting,
where the output-receiving party has no input. They provided a complete characterization of the
set of such Boolean functionalities that can be securely computed. However, the case where the
output-receiving party also has an input remained open.

1.1 Our Results

We consider the already challenging case of three parties with a Boolean output. Unlike in [7],
we also let the output-receiving party hold an input. Our main contribution is an analysis of a
natural generalization of the protocol of [7]. Interestingly, our analysis is also applicable to a natural

1Formally, security is defined using the real vs. ideal world paradigm, where security requires the real world to
emulate an ideal world.
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generalization of the two-party GHKL protocol [26, 9]. We believe our analysis can also be applied
to other settings in addition to those specified. In addition to our positive result, we present a
negative result, generalizing that of [7].

We next describe our results in more detail. Before doing so, following [4], we first introduce
the dealer model for three-party solitary output computation,2 which simplifies the proofs and
descriptions of the protocols.

The dealer model. The dealer model is a middle ground between the real and ideal worlds. Here,
similarly to the ideal world, the parties interact via a trusted dealer. However, the computation
proceeds in rounds, and the (malicious) adversary can abort the computation. This model proves
useful for simplifying the description of protocols and their proof of security. This is because the
model allows us to abstract away the technicalities of implementing cryptographic primitives, which
allows for protocols in this model to achieve information-theoretic security. Additionally, the model
limits the adversary’s capabilities, allowing it only to abort the protocol based on what it learned
from the dealer (and change the inputs it sends to the dealer). This makes the security analysis
of such protocols much simpler. Finally, we show that any protocol in the dealer model already
satisfies several security properties (e.g., the output-receiving party cannot attack alone). This
further simplifies the analysis. We refer the reader to Section 3.1 for more details.

We define a dealer model for the solitary output three-party setting and show how to compile
a protocol from the dealer model into a real-world protocol and vice versa. Denote the parties by
A, B, and C, and let C be the output-receiving party. Protocols in the dealer model are roughly
defined as follows. First, the parties send their inputs to the trusted dealer. The dealer then
computes backup values for each pair (A, C) and (B, C). This will later be used as the output of C
in case party B or A, respectively, aborts. The dealer then proceeds to interact with the parties
in a way that allows each pair to learn its backup values one after the other. The parties A and
B can respond to the dealer with either continue or abort, indicating whether they can continue to
the next round, or if the computation should halt and C should receive an output (which will be
either the last backup value it received or a default value). We stress that an honest party always
responds with continue. We show that secure protocols in the dealer model can be compiled into
a secure real-world protocol assuming oblivious transfer (OT). We further show that the converse
also holds. That is, we show that secure protocols in the real world can be compiled into secure
protocols in the dealer model.

Theorem 1.1 (Informal). Let f : X × Y × Z → W be a solitary output three-party functionality.
Then, assuming secure protocols for OT exist, f can be computed with full security in the real world
if and only if it can be computed with full security in the dealer model.

Having this result at hand, we can restrict the discussion to protocols in the dealer model. We
formally provide the formal description of the model in Section 3 and prove the theorem.

Positive result for solitary output Boolean three-party functionalities. We identify a
family of solitary output three-party functionalities that can be securely computed. Towards prov-
ing the result, we describe a general family of protocols, which follow the special-round paradigm
[25, 26]. We then show that each such protocol is secure if a certain system of linear equations and

2The dealer model described in [4] is for the friends and foes setting, where the two dishonest parties are not
colluding and one of them is semi-honest.
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inequalities can be satisfied. Thus, we describe a collection of systems and show that if there exists
a solvable system from our collection, then there exists a protocol from the family that securely
computes a given functionality.

Theorem 1.2 (Informal, a sufficient condition). Let f : X × Y × Z → {0, 1} be a solitary output
Boolean three-party functionality. Assume that secure protocols for OT exist. Then, there exists a
family of systems of linear equations and inequalities, such that if any of them admit a solution,
then f can be computed with full security.

The formal description of the family of systems is given in Section 4. We note that our family
of protocols generalizes the one constructed by [7] in a non-trivial way. We further show that a
solution for the system of linear equations is necessary for such protocols (see Section 4.2 for more
details).

We next show an example. Consider the following solitary output Boolean three-party func-
tionality f described by the two matrices below.

M0 =



0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


and M1 =



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1


.

We can think of the inputs of A and B as a subset of {1, 2, 3} of size either 1 or 2, and of the input of
C as either 0 or 1. Then, for S, T ⊆ {1, 2, 3} such that 1 ≤ |S| , |T | ≤ 2 it holds that f(S, T , 0) = 1
if S ∩ T = ∅ and f(S, T , 0) = 0 if S ∩ T ̸= ∅, and f(S, T , 1) = 1 if |S| = |T | and f(S, T , 1) = 0 if
|S| ≠ |T |.

We stress that the 2-ary functionality f0(x, y, λ) = f(x, y, 0) where λ is the empty string (i.e.,
where C’s input is fixed to 0), was shown to be impossible to compute with full security [7]. However,
we show that f can be computed with full security (see Example 4.7).

An analysis of the system of equations. Reducing the existence of a secure protocol to the
existence of a solution to some system is unsatisfactory. Indeed, it is preferable to know when a
secure protocol exists, rather than when a given protocol is secure. Therefore, we initiate an analysis
of the family of systems that arise from Theorem 1.2. As this turns out to be very challenging,
we consider only the system of linear equations (without the inequalities) and analyze when a
solution for such a system exists. This, in turn, allows us to identify when one of the systems
is solvable, thus giving a sufficient condition for the existence of a secure special-round protocol.
Since our analysis is general enough, we believe that our techniques can be useful in analyzing
other settings. To exemplify this, we show how to apply our analysis to the two-party setting for
Boolean functionalities. Although a full characterization for this setting is already known [9], this
shows that there might be a connection between the two settings, and perhaps other settings as
well.3

To simplify the introduction, we describe our result for a special case of the system (the general
case is given below in Section 1.2). Although it is a very limited result, it allows us to show the

3One may argue that the connection is only because we analyze the system that arises from the family of special-
round protocols. However, the only fully secure protocols we are aware of are special-round protocols.
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main techniques of our analysis. Fix a matrix M and a vector β. Let B be the diagonal matrix
whose entries are that of β. Consider a system of the form

X ·M = M ·B, (1)

where X is the unknown of the system. Roughly speaking, M encodes a function, β encodes a
protocol in the dealer model for computing the function (i.e., it encodes the distributions for the
possible outputs of an honest C in case another party aborts in some round), and X encodes the
strategy by which the simulators sample the inputs of the corrupted parties in the ideal world.
In particular, Theorem 1.2 roughly states that a solution X implies the security of the protocol.4
Thus, we ask the following question:

For what values of β there exists a solution X to System (1)?

To state our result, we first define an equivalence relation between two columns of M. More
concretely, we look at the reduced row echelon form of M, and we are interested in when two
columns have a non-zero entry at some (common) row in the reduced row echelon form of M. Since
such a relation is not transitive, we will consider its transitive closure.

Definition 1.3 (Informal, equivalence relation between columns). Given a matrix M over R, we
let R be its reduced row echelon form. For two columns y, y′ in R we write y ∼ y′ if there exists a
row x in R such that R(x, y), R(x, y′) ̸= 0. Finally, we define the equivalence relation ≡ to be the
transitive closure of ∼. That is, y ≡ y′ if there exists a series of columns y1, . . . , yk such that

y ∼ y1 . . . yk ∼ y′.

Consider for example the following matrix M

M =

 0 1/4 1/2
1/4 1/2 3/4
1/2 3/4 1

 .

The reduced row echelon form R of M is

R =

1 0 −1
0 1 2
0 0 0

 .

Observe that y1 ∼ y3, and that y2 ∼ y3. Then by transitivity, it also holds that y1 ≡ y2. Thus, all
columns are equivalent.

We now state the result that characterizes when System (1) is solvable.

Theorem 1.4 (Informal, analysis of the system of equations). There exists a matrix X such that
X ·M = M ·B if and only if for all columns y and y′ in M such that y ≡ y′ it holds that βy = βy′.

For the example above, Theorem 1.4 asserts that a solution exists if and only if β1 = β2 = β3.
In Section 5 we consider the more general system that arises from the security requirements, and
show when it admits a solution.

4Technically, Theorem 1.2 requires a solution for a more complicated system that also includes inequalities. We
ignore this to simplify this introduction.
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Application to fair two-party computation. We show how the above analysis can be applied
to fairness in the two-party setting. In more detail, similarly to the solitary output setting, we
generalize previous protocols [26, 9], which follow the “special-round” paradigm. We call these
special-round protocols. We then analyze when a protocol from this family securely computes a
given Boolean two-party functionality, by reducing the security properties to the existence of a
solution to a system of linear equations (with no inequalities).

Interestingly, our result “almost” characterizes the set of special-round protocols that securely
compute a given functionality. In the following, for a function f we let Mf denote its associated
matrix.

Theorem 1.5 (Informal, almost characterization of special-round protocols in the two-party set-
ting). Let f : X × Y → {0, 1} be a Boolean two-party functionality with an associated matrix Mf ,
and fix a vector β. Then, if a secure protocol for oblivious transfer exists, and there exist a matrix
X and a vector p over R such that

X · (Mf ||1) = (Mf ||1) ·
(

B 0
0T 1

)
pT ·Mf = βT

pT · 1 = 1

.

Then there exists a special-round protocol that computes f with full security. Conversely, assume
there exists a special round protocol that computes f with full security. Then there exist a matrix
X and a vector p over R such that 

X ·Mf = Mf ·B
pT ·Mf = βT

pT · 1 = 1
.

We can now combine Theorem 1.5 and Theorem 1.4 to analyze when the matrix X exists for the
above systems. Note that Theorem 1.5 “almost” characterizes the set of special-round protocols
that securely compute a given Boolean two-party functionality. Indeed, the equations for X in first
system can be written as X ·Mf = Mf ·B and X · 1 = 1. Thus, the only difference between the
two systems is the latter condition for X. We formally state and prove the theorem in Section 5.2.

Impossibility of computing strong semi-balanced functionalities. We generalize the im-
possibility result of Alon et al. [7] to include the case where the output-receiving party has an
input. In more detail, [7] identified a class of solitary output Boolean functionalities that cannot
be securely computed. They called this class strong semi-balanced. We first generalize the notion
of strong semi-balanced functionalities to the case where the output-receiving party also holds an
input. Let f : X × Y × Z → {0, 1} be a Boolean solitary output Boolean three-party functional-
ity. Assume for simplicity that f is deterministic. For z ∈ Z we let Mz be the matrix defined as
Mz(x, y) = f(x, y, z) for all x ∈ X and y ∈ Y. We refer to the collection {Mz}z∈Z as the associated
matrices of f . Strong semi-balanced functionalities are defined as follows.

Definition 1.6 (Informal, strong semi-balanced functionalities). Let f : X × Y × Z → {0, 1} be a
solitary output Boolean three-party functionality, and let {Mz}z∈Z be its associated matrices. We
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call f strong semi-balanced if there exist two vectors p and q over R, and there exists z ∈ Z such
that for all x, y, and z′ it holds that

pT ·Mz = 1T ,

1T · p < 1,

−1 + 1T · p ≤ pT ·Mz′(·, y) ≤ 1
and


Mz · q = 1T ,

1T · q < 1,

−1 + 1T · q ≤Mz′(x, ·) · q ≤ 1
.

Intuitively, the vectors p and q encode strategies for (A, C) and (B, C), respectively, for “locking”
the output distribution of C when it has input z. That is, the vectors encode strategies for sampling
inputs for A and B, and strategies for performing local operations on the output. If a pair plays
with its strategy, then the output distribution of C is independent of the third party’s input (i.e.,
it is locked).

The two inequalities limit the amount of information an ideal-world simulator (corrupting C and
an additional party) can obtain from the trusted party on the input of the honest party (assuming
it sampled its input according to its strategy). We stress that the vectors p and q might contain
non-negative entries.

Theorem 1.7 (Informal, impossibility for strong semi-balanced functionalities). Let f : X × Y ×
Z → {0, 1} be a strong semi-balanced solitary output three-party functionality. Then, f cannot be
computed with full security.

The formal proof appears in Section 6. We next give an example. Consider the following solitary
output Boolean three-party functionality f whose associated matrices are

M0 =



0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


and M1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Similarly to the example of the possibility result, we can think of the inputs of A and B as a subset
of {1, 2, 3} of size between 1 to 2, and of the input of C as 0 or 1. Then, for S, T ⊆ {1, 2, 3} such
that 1 ≤ |S| , |T | ≤ 2 it holds that f(S, T , 0) = 1 if S ∩ T = ∅ and f(S, T , 0) = 0 if S ∩ T ̸= ∅, and
it also holds that f(S, T , 1) = 1 if S = T and f(S, T , 1) = 0 if S ≠ T .

Note that the functionality f0(x, y) = f(x, y, 0) (i.e., where C’s input is fixed to 0) was shown to
be impossible to compute with full security [7]. However, their result is not applicable in our setting.
Intuitively, this is because the ideal world simulator that controls C can change its input, which
might help him to simulate. Our result essentially shows that this does not help the simulator.

We next show that f is a strong semi-balanced functionality, thus by Theorem 1.7, it cannot
be computed securely. Let

p = q = (1, 1, 1,−1,−1,−1)T .

Then, it holds that pT ·M0 = 1T , and that M0 · q = 1T . Additionally, note that the sum of the
entries in p and q is strictly less than 1. Finally, it holds that

−1 ≤ pT ·M1(·, T ) ≤ 1 and that − 1 ≤M1(S, ·) · q ≤ 1

for all T ,S ⊆ {1, 2, 3} such that 1 ≤ |T |, |S| ≤ 2. Therefore, f is strong semi-balanced, hence by
Theorem 1.7 it cannot be computed with full security.
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1.2 Our Techniques

We now describe our techniques. We begin by describing the construction of the dealer model.
Throughout the rest of this section, we denote the parties by A, B, and C, their inputs by x, y, and
z, respectively, and we let C be the output-receiving party.

The dealer model. We show that a solitary output Boolean three-party functionality f can be
computed with full security in the real world (against malicious adversaries) if and only if it can
be computed with full security in the dealer model (against fail-stop adversaries). We start by
describing the interaction in the dealer model. An r-round protocol in the dealer model is defined
as follows. First, all parties send their input to the dealer. Then, the dealer computes the backup
values a0, . . . , ar and b0, . . . , br (recall that the ith backup value determines the output of the honest
party in case a party aborts at round i) such that a0 and b0 do not depend on the inputs of A and
B respectively. The dealer then needs to send these values to the parties. It does so by sharing the
backup values it computed in a 2-out-of-2 secret-sharing scheme, and sends C it shares of a0, . . . , ar

and b0, . . . , br. Then, for i = 1 to r the dealer does the following.

1. Approach party A and send its share ai[A]. Party A then responds with either continue or
abort.

2. If A responds with abort, then approach party B that also responds with either continue or
abort.

• If B responds with continue, then send bi−1 to C and halt. Party C then outputs bi−1.
• If B responds with abort, then send a default value to C and halt. Party C then outputs

the default value.

3. If A responds with continue, then approach party B and send its share bi[B]. Party B then
responds with either continue or abort.

4. If B responds with abort, then approach party A that also responds with either continue or
abort.

• If A responds with continue, then send ai to C and halt. Party C then outputs ai.
• If A responds with abort, then send a default value to C and halt. Party C then outputs

the default value.

If no party sent abort, then the dealer sends ar = f(x, y, z) to C and halts. Party C then outputs
f(x, y, z).

We next show how to eliminate the dealer from the computation. More concretely, the parties
share their backup values using a secret sharing scheme, and sign the shares using a signature
scheme. This procedure is done using a secure-with-identifiable-abort protocol (i.e., the adversary
can abort the execution and prevent the honest part from learning the output at the cost of revealing
its identity). If A or B abort at the secure-with-identifiable-abort phase, then the remaining honest
party computes a function of its and C’s input, and C outputs the result. If no abort occurred,
then in every round i = 1 to r each party A and B broadcast their share bi[A] and ai[B] and the
corresponding their signatures respectively. We stress that this process is done one after the other.
If the wrong share was sent (i.e., the verification failed) or a party aborted, then the remaining
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party helps C to reconstruct the last backup value they can reconstruct by sending to C its share
of the last backup value it knows. We refer the reader to Section 3 for more details.

It remains to describe how we compile a real-world protocol into a dealer model protocol. For
that, the dealer samples randomness for each party and runs the real-world protocol in its head.
For every round i ∈ {0, . . . , r} it computes the output of C in case party A or B aborted the
computation at round i. It then sets the backup values for every round i as the values it computed
in its head. See Section 3 for more details.

Overview of the positive result. For the positive result, for a given solitary output Boolean
three-party functionality f : X × Y × Z → {0, 1}, we construct a family of systems of linear
equalities and inequalities and show that if at least one system of the family can be satisfied, then
f can be computed with full security. We derive the systems by presenting a family of protocols for
computing such functionalities with full security and reducing the security properties into a system
of linear equalities and inequalities.

We next describe the family of protocols. Inspired by previous works [26, 9, 7], the protocols
follow the “special-round” paradigm. Loosely speaking, the parties sample together a special ran-
dom round i∗ that is unknown to any strict subset of them. Before round i∗ is reached, the backup
values of (A, C) and (B, C) are sampled at random and independently. After round i∗ is reached
these backup values are equal to the output (i.e., f(x, y, z)). Asharov et al. [9] were the first to
modify this approach in the two-party setting. In their protocol, if A aborts in round i∗ then B
outputs a constant that is either 0 or 1. Crucially, this constant depends only on the functionality
and not the inputs. This approach helped them to characterize the set of Boolean two-party func-
tionalities that can be securely computed. Alon et al. [7] used a more general idea in the solitary
output three-party setting. Specifically, if A aborts in round i∗ then the output of C will be from a
constant distribution (rather than a constant value) that depends only on the functionality. This
allowed them to characterize the set of solitary output Boolean three-party functionalities where
the output-receiving party does not hold an input.

As we show below, in our setting where C holds an input, the protocol of Alon et al. [7] will not
be secure for some functionalities. That is, there exists a functionality that can be computed with
full security, but only if the backup value bi∗−1 depends on the input of B. Thus, we introduce a
family of protocols, where each is parametrized by a vector β = (βy,z)y∈Y,z∈Z ∈ [0, 1]|Y|·|Z|.5 Each
βy,z is the probability that C outputs 1 if A aborts in round i∗, on inputs y and z for B and C,
respectively.

We now describe a special-round protocol in more detail. Following Theorem 1.1, we may do
so in the dealer model. Recall that a protocol in the dealer model is defined by the backup values.
Given a round i < i∗ − 1, we let ai = f(x, ỹi, z), where ỹi ← Y, and we let bi = f(x̃i, y, z), where
x̃i ← X . If i = i∗ − 1, we let ai = f(x, ỹi, z), where ỹi ← Y, and we set bi = 1 with probability
βy,z and bi = 0 with probability 1 − βy,z. Finally, if i ≥ i∗, then we let ai = bi = f(x, y, z).
Reinterpreting the protocols of previous works, in the protocol of [7] βy,z is set to be independent
of y, in the two-party protocol of [9] βy,z is set to be in {0, 1}, and in the two-party protocol of
[26, 8] βy,z is defined as βy,z = Pr [f(x̃, y) = 1] where x̃← X .

To demonstrate the need for β to depend on both y and z, consider the equality functionality

5Formally, the protocol is also parametrized by another real number α ∈ (0, 1] that corresponds to the distribution
of the special round i∗. See Section 4 for more details.
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eq : X × Y × Z → {0, 1} defined as

eq(x, y, z) =
{

1 if x = y = z

0 otherwise
.

We argue that β that is independent of y results in an insecure protocol. Specifically, a direct
calculation shows that an adversary that corrupts only A and always aborts in the first round
(without learning a1) cannot be simulated. We formalize the argument in Proposition 4.5. We
further observe that if we set βy,z = Pr [f(x̃, y, z) = 1] for x← X , then the protocol is secure. We
refer to Section 4 for more detail.

It is left to analyze the security of the protocol. Similarly to previous works [26, 8, 31], we show
that the protocol is secure if a certain system of linear equalities and inequalities has a solution.6
Specifically, we obtain the following system. Let Mr be the concatenation of all the associated
matrices Mz by rows, and for every z ∈ Z let Bz be the diagonal matrix whose diagonal consists
of (βy,z)T

y∈Y . We show that the protocol is secure if for all z ∈ Z, there exists matrices X0
z and X1

z

and there exists a vector p over R such that

p ·Mz = (βy,z)T
y∈Y

pT · 1 = 1
X1

z ·Mr = Mz ·Bz

X0
z · (J−Mr) = (J−Mz) · (I−Bz)

0 ≤ Xw
z · 1 ≤ 1, for all w ∈ {0, 1}

Xw
z (x, (x′, z′)) ≥ 0 for all x, x′ ∈ X , z′ ̸= z, and w ∈ {0, 1}

,

where J is the all-one matrix (of appropriate dimensions) and I is the identity matrix. These con-
straints are obtained by defining a simulator for any adversary in the dealer model and comparing
them to ensure security. Since the simulators can only change their inputs, they can be completely
described using probability vectors (i.e., vectors whose entries are non-negative and whose entries
sum to 1). These are encoded in the above system using the matrices {Xw

z }z∈Z,w∈{0,1} and the
vector p.7 Since the matrices {Bz}z∈Z encode a protocol in the dealer model, identifying for what
collection {Bz}z∈Z a solution exists would imply which special-round protocols are secure. The
formal proof can be found in Section 4.1.

Overview of the analysis of the system of equations. We next demonstrate our techniques
for analyzing the system of linear equations. To simplify the introduction, we consider the following
special case. Let M ∈ Rm×ℓ and β ∈ Rℓ. Define B ∈ Rℓ×ℓ to be the diagonal matrix whose entries
on the main diagonal are the values in β. Following the security requirements of our protocols, we
consider the system

X ·M = M ·B, (2)

6We stress that in the two-party setting, there are only equations. See Section 5.2.
7Note that the columns in X0

z and X1
z, and the vector p are not probability vectors. The choice of encoding

the simulator in this way is because encoding directly using probability vectors results in a more complicated system
with additional constraints.
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where the matrix X ∈ Rm×ℓ consists of the unknowns. Recall that our goal is to characterize the
set of all β’s for which a solution to Equation (2) exists. We prove that X exists if and only if for
all y ≡ y′ (as in Definition 1.3) it holds that βy = βy′ .

We first show how to simplify the system. Let R be the reduced row echelon form of M. We
show that there exists a solution X to Equation (2) if and only if there exists X̃ such that

X̃ ·R = R ·B.

To see this, first observe that since R resulted by performing elementary row operations on M,
there exists an invertible matrix E such that E ·M = R. Multiplying both sides of Equation (2)
by E from the left side results in

E ·X ·E−1 ·E ·M = E ·M ·B.

Let X̃ = E ·X ·E−1. Then a solution to Equation (2) exists if and only if there exists X̃ such that

X̃ ·E ·M = X̃ ·R = R ·B.

We argue that the system can be further simplified by removing rows x such that R(x, ·) is the
all-zero vector. Indeed, for such a row the right-hand side is 0, hence we can always set X̃(x, ·) to
be the all-zero vector. We conclude that there exists a solution to Equation (2) if and only if there
exists X̂ such that

X̂ · R̂ = R̂ ·B, (3)

where R̂ is the matrix R with the rows of zeros removed. Note that since R̂ is the matrix R with
the zero-rows removed, it holds that if a solution X̂ for Equation (3) exists, then it is unique. In
what follows, we let m′ denote the number of rows in R̂.

We now show that there exists a solution to Equation (3) if and only if for all y ≡ y′ it holds
that βy = βy′ . For the first direction, assume that for all y ≡ y′ it holds that βy = βy′ . A column
y ∈ [ℓ] is called a pivot in R̂ if there exists a row x ∈ [m′] such that R̂(·, y) = ex and for all y′ < y
it holds that R̂(·, y′) ̸= ex, where ex is the xth standard basis vector. Let ptr(·) denote the bijection
that for a pivot column y returns the unique row x such that R̂(·, y) = ex. We show that the
unique solution X̂ is given by

X̂(x, x′) = βptr−1(x′) · R̂(x, ptr−1(x′)),

for all x, x′ ∈ [m′].
Fix x ∈ [m′] and consider the xth row of the system. Then, for every column y ∈ [ℓ] it holds

that

X̂(x, ·) · R̂(·, y) =
∑

x′∈[m′]
X̂(x, x′) · R̂(x′, y) =

∑
x′∈[m′]

βptr−1(x′) · R̂(x, ptr−1(x′)) · R̂(x′, y).

Now, if y is a pivot column then there exists exactly one row x′ for which it holds that R̂(x′, y) = 1
and for all other x′′ ̸= x′ it holds that R̂(x′′, y) = 0. Thus, for such y the right-hand side equals
βy · R̂(x, y) = R̂(x, ·) ·B(·, y), as required.
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Assume now that y is a free column in R̂. Let P ⊆ [ℓ] denote the set of pivot columns in R̂.
Since ptr is a bijection it follows that

X̂(x, ·) · R̂(·, y) =
∑

x′∈[m′]
βptr−1(x′) · R̂(x, ptr−1(x′)) · R̂(x′, y)

=
∑

ypiv∈P
βypiv · R̂(x, ypiv) · R̂(ptr(ypiv), y).

Now, observe that there exists exactly one pivot column ypiv for which it holds that R̂(x, ypiv) ̸= 0.
This is because ptr is a bijection. Hence, there exists at most one column ypiv for which it holds
that R̂(x, ypiv) ̸= 0 and R̂(x, y) ̸= 0. Therefore

X̂(x, ·) · R̂(·, y) = βypiv · R̂(x, ypiv) · R̂(ptr(ypiv), y).

Furthermore, it holds that x = ptr(ypiv), hence

X̂(x, ·) · R̂(·, y) = βypiv · R̂(x, ypiv) · R̂(x, y).

Now, if R̂(x, y) = 0 then X̂(x, ·) · R̂(·, y) = 0 and R̂(x, y) · B(x, y) = 0, hence they are equal.
Otherwise, it follows that ypiv ∼ y. Since R̂(x, ypiv) = 1, it follows that X̂(x, ·) · R̂(·, y) = βypiv ·
R̂(x, y). As we assume that for all y ≡ y′ it holds that βy = βy′ , it also holds that X̂(x, ·) ·R̂(·, y) =
βy · R̂(x, y) = R̂(x, ·) ·B(·, y).

The second direction is implied by the first one. First, note that for any y for which R̂(·, y) = 0,
it holds that y is not equivalent to any other y′. Thus, the constraints on βy hold vacuously. For
any other y, either it is a pivot column, or y ∼ ypiv for some pivot column ypiv. We next show that
for all free columns y, it holds that βy = βypiv . By an inductive argument, this implies the result.

Fix a free column y and a pivot column ypiv such that y ∼ ypiv. Since the solution X̂ is unique,
as we showed in the first direction of the proof, it must be of the form

X̂(x, x′) = βptr−1(x′) · R̂(x, ptr−1(x′)), (4)

for all x, x′ ∈ [m′]. Now, since we assume that X̂ solves the system, it must hold that X̂(x, ·) ·
R̂(·, y) = βy · R̂(x, y) for all x ∈ [m] and y ∈ [ℓ]. By Equation (4),

X̂(x, ·) · R̂(·, y) =
∑

ypiv∈P
βypiv · R̂(x, ypiv) · R̂(ptr(ypiv), y).

Now, as discussed in the previous direction of the proof, the sum on the right-hand side equals
βypiv · R̂(x, ypiv) · R̂(x, y). Since R̂(x, ypiv) = 1 and R̂(x, y) ̸= 0, it follows that

βy · R̂(x, y) = βypiv · R̂(x, ypiv) · R̂(x, y)

implying that βy = βypiv .
We formally prove both directions of the theorem in Section 5.2.
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Overview of the impossibility result. For the impossibility result, fix a strong-semi balanced
solitary output Boolean three-party functionality f : X × Y × Z → {0, 1}. Then, by assumption
there exist vectors p and q and there exists z ∈ Z, such that for every z′ ∈ Z, for every x ∈ X ,
and for every y ∈ Y, it holds that

pT ·Mz = δ1 · 1T , where δ1 > 0
1T · p < δ1,∑

x∈X |px| = 1,

−δ1 + 1T · p ≤ pT ·Mz′(·, y) ≤ δ1

and


Mz · q = δ2 · 1, where δ2 > 0
1T · q < δ2,∑

y∈Y |qy| = 1,

−δ2 + 1T · q ≤Mz′(x, ·) · q ≤ δ2

.

Alon et al. [7] showed that if C doesn’t hold an input then for every real-world protocol there exists
an adversary that can attack the protocol and guess a certain property associated with the input
of the honest party. We use the same technique of Alon et al. [7] by constructing an adversary that
fixes the input of C to be z and works as the adversary defined by [7]. We stress that fixing the
input of C is not enough for the attack to succeed as in the ideal world the simulator controlling C
can change the input it sends to the trusted party. For that, we require the third constraint of f
to hold for every z′ ∈ Z. We refer the reader to Section 6 for more details and formal arguments.

1.3 Related Works

The celebrated work of Cleve [17] showed that fair two-party coin-tossing is impossible to achieve.
This implies the impossibility of computing fairly functions that imply coin-tossing such as XOR.
Surprisingly, Gordon et al. [26] showed there is a non-trivial two-party functionality (i.e., it contains
an embedded XOR) that can be securely computed. Their protocol follows the “special-round”
paradigm, which we analyze in our paper. The work of Gordon et al. [26] was generalized [8,
31, 9]. In particular, Asharov et al. [9] characterized the set of symmetric two-party Boolean
functionalities (where both parties output the same bit) that can be computed fairly. Finally, Daza
and Makriyannis [21], Makriyannis [32] further generalize the results to include non-Boolean and
asymmetric functionalities (i.e., the parties might obtain different functions applied to their inputs).

In the multiparty setting, Rabin and Ben-Or [34] showed that if there is an honest majority, and
the parties are connected with secure point-to-point channels and are given access to a broadcast
channel, then full security can be obtained without any cryptographic assumptions. Cohen and
Lindell [18] studied the relation between fairness and guaranteed output delivery in the multiparty
setting. They showed that any functionality that can be computed with guaranteed output delivery
using a broadcast channel can be computed with fairness over point-to-point channels. Secure
multiparty computation without broadcast was studied by [19, 5, 3]. In particular, [3] considered
the solitary output three-party setting without broadcast, and completely characterized the case
where the output-receiving party has no input, and the case where the output is one of three values
(and the output-receiving party might have an input).

Gordon and Katz [25] were the first to consider the possibility of obtaining full security in
the multiparty setting without an honest majority. They showed that the three-party majority
functionality and n-party OR can be computed with full security. The case where exactly half of
the parties are corrupted was considered by [9]. Finally, Dachman-Soled [20] considered the setting
of a non-constant number of parties.

Relevant to our positive results, Lindell and Rabin [29] showed that protocols that admit a
committal round (i.e., a fixed round by which the parties are committed to their inputs) could
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not be fully secure without an honest majority. Note that special round protocols do not have a
committal round.

1.4 Organization

In Section 2, we provide the notations and model of computation. In Section 3, we describe the
dealer model for solitary output three-party functionalities. We also prove it is equivalent to the
real model, and we prove some simple security properties. In Section 4, we introduce the family
of special-round protocols, and we reduce their security to the solvability of a system of linear
constraints. In Section 4.2, we show a necessary condition for the security of the protocols. In
Section 5, we provide the full analysis of the system of linear equations and show an application to
the two-party setting. Finally, in Section 6 we state and prove our impossibility result for securely
computing strong semi-balanced functionalities.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and distributions, low-
ercase for values, and we use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2, . . . , n}.
For a set S we write s← S to indicate that s is selected uniformly at random from S. ppt is short
for probabilistic polynomial time. We let λ denote the empty string.

A function µ(·) is negligible if for every positive polynomial p(·) there exists an N such that for
every n > N it holds that µ(n) < 1/p(n). We will write neg for an unspecified negligible function.
For a randomized function (or an algorithm) f we write f(x) to denote the random variable induced
by the function on input x, and write f(x; r) to denote the value when the randomness of f is fixed
to r.

In this paper, all vectors are column vectors over R. We denote by 1n and 0n the all-one and
all-zero vectors of dimension n, respectively. We will remove n when its value is clear from the
context. For i ∈ [n] and vector v ∈ Rn we denote the ith entry in v by v(i) or vi. Let v, w ∈ Rn be
two vectors. We say that v ≤ w if for every i ∈ [n] it holds that v(i) ≤ w(i). A vector p ∈ Rn is
called a probability vector if for every i ∈ [n] it holds that 0 ≤ p(i) ≤ 1, and ∑n

i=1 p(i) = 1. For such
vectors, we write v ← p to indicate that v is sampled according to the distribution that corresponds
to p, namely, v = i with probability p(i). We will sometimes denote coordinates for a vector v
with a pair of integers (i, j). We will write v(i, j) instead of v((i, j)). An affine combination is a
linear combination where the sum of the coefficients is 1. Finally, we let |v| denote the vector that
is created by taking the absolute value in every entry of v, i.e., its ith position is |vi|.

For a matrix M ∈ Rn×m, we let M(·, i) denote the ith column of M, and let M(i, ·) denote
the ith row. We denote its transpose by MT , its image by Im(M), and its kernel by ker(M).
For two matrices M and N we let (M||N) be the matrix obtained by concatenating them by
columns. We further denote by (M||rN) the concatenation of the matrices by rows. That is,
(M||rN) = (MT ||NT )T . Finally, we let Jn,m be the all-ones matrix of size n ×m. We remove n
and m when their value is clear from the context.

A distribution ensemble X = {X(a, n)}a∈Dn,n∈N is an infinite sequence of random variables
indexed by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. We define
computational indistinguishability and statistical distance as follows.
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Definition 2.1 (Computational indistinguishability). Let X = {X(a, n)}a∈Dn,n∈N and Y =
{Y (a, n)}a∈Dn,n∈N be two distribution ensembles. We say that X and Y are computationally indis-
tinguishable, denoted X

C≡ Y , if for every non-uniform polynomial-time algorithm D, there exists a
negligible function µ(·) such that for every a ∈ Dn and n ∈ N it holds that

|Pr [D(X(a, n)) = 1]− Pr [D(Y (a, n)) = 1] | ≤ µ(n).

Definition 2.2 (Statistical distance). The statistical distance between two random variables X and
Y is defined as

SD (X(a, n), Y (a, n)) = 1
2 ·
∑

s

|Pr[X(a, n) = s]− Pr[Y (a, n) = s]| .

If X = {X(a, n)}a∈Dn,n∈N and Y = {Y (a, n)}a∈Dn,n∈N are two distribution ensembles, we say
that X and Y are statistically close, denoted X

S≡ Y , if for all a ∈ Dn and n ∈ N it holds that

SD(X(a, n), Y (a, n)) = neg(n).

Throughout the paper, we use the notion of the associated matrices of a solitary output Boolean
three-party functionality f : X × Y × Z → {0, 1}.

Definition 2.3 (Associated matrices of a 3-ary function). Fix a (possibly randomized) function
f : X ×Y×Z → {0, 1} and let Z = {z1, . . . , zk}. We associate k matrices Mz1 , . . . , Mzk

∈ R|X |×|Y|
with the function f as follows. For every z ∈ Z, the rows and columns of Mz are indexed with the
elements of X and Y, respectively, and each entry is defined as Mz(x, y) = Pr[f(x, y, z) = 1], for
all x ∈ X and y ∈ Y. We refer to the collection {Mz}z∈Z as the associated matrices of f .

2.2 The Model of Computation

We introduce the basic definitions for secure multi-party computation according to the real/ideal
paradigm. We refer to [23] for more details. In short, a protocol is secure if whatever an adversary
can do in the real world (i.e., a real execution of the protocol), can be done in the ideal world
where the parties communicate with an uncorrupted trusted party that assists the computation.
In this paper, we consider solitary output three-party functionalities. A solitary output three-party
functionality is a sequence of a function f = {fκ}κ∈N, where fκ : Xκ × Yκ × Zκ → Wκ (for every
value of the security parameter κ ∈ N) is a random process that maps three-tuples of inputs to
single random variable called output. We denote the parties by A, B, and C, where A holds x ∈ X ,
B holds y ∈ Y, and C holds z ∈ Z. We let C be the party that receives the output. To alleviate
notations, we remove κ from f and its domains and range and write it as f : X × Y × Z →W.

The Real Model

Let A, B, and C denote the parties. A three-party protocol π is defined by a set of three ppt turning
machines which are A, B, and C. Each party holds at the beginning of the execution the common
security parameter 1κ, a private input, and random coins. We denote the adversary by A. The
adversary is a ppt algorithm, which corrupts a subset of the parties and given an auxiliary input
aux and the input of the corrupted parties. The adversary is static, that is, it chooses the subset it
corrupts prior to the execution of the protocol. The adversary is assumed to be malicious, i.e., it
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can instruct parties to deviate from the protocol in any arbitrary way during the execution, and is
computationally bounded.

The parties execute the protocol over a synchronous network. That is, the execution proceeds in
rounds, where each round consists of a send phase where parties send their messages for this round
followed by a receive phase, where they receive messages from other parties. We consider a fully
connected point-to-point network, where every pair of parties is connected by a communication line.
We will further assume the parties have access to a broadcast channel. Throughout the execution
of the protocol, all the honest parties follow the instructions of the prescribed protocol, whereas
the corrupted parties receive their instructions from the adversary. The adversary has full access
to the view of the corrupted parties, which consists of their inputs, their random coins, and the
messages they see throughout this execution. At the end of the execution, the honest parties output
their prescribed output from the protocol, the corrupted parties output nothing, and the adversary
outputs a function of its view.

Finally, we let REALπ,A(aux)(κ, (x, y, z)) denote the view of the adversary and the output of the
honest parties, in an execution of π on inputs (x, y, z) and security parameter κ, interacting with
A with auxiliary input aux.

The Ideal Model

We consider an ideal computation with guaranteed output delivery, which is also referred to as
full security, where a trusted party, denoted by T, performs the computation on behalf of the
parties, and the ideal-model adversary cannot abort the computation. An ideal computation of a
solitary output three-party functionality f , on inputs x ∈ X , y ∈ Y, z ∈ Z, and security parameter
κ, with an ideal-world adversary A running with an auxiliary input aux and corrupting a subset
I ⊆ {A, B, C} of the parties, proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input to T. For each
corrupted party, the adversary A sends a value v from its domain as its input. Let (x′, y′, z′)
denote the inputs received by T.

Trusted party performs computation: If any v ∈ {x′, y′, z′} is not in the appropriate domain
(or was not sent at all), then T reassigns the aberrant input to some default value. Write
(x′, y′, z′) for the tuple of inputs after (possible) reassignment. The trusted party then chooses
a random string r and computes w = f(x′, y′, z′; r).

Trusted party sends outputs: T sends w to C. If C ∈ I, then A receives w as well.

Outputs: If C is honest, then it outputs w. Otherwise, it outputs nothing. Both A and B output
nothing, and the adversary A outputs a function of its view (i.e., the auxiliary input, its
randomness, and the input and output of the corrupted parties).

We let IDEALπ,A(aux)(κ, (x, y, z)) denote the joint view of A, being its output in a random
execution of the above ideal-world process, and the output of the honest parties.

The Security Definition

Following the real vs. ideal paradigm, we next define security of protocols in the above model.

15



Definition 2.4 (Malicious security). Let f be a three-party functionality and let π be a three-party
protocol. For a non-uniform adversary A corrupting controlling a subset I ⊆ {A, B, C}, we say
that π is secure against A if there exists a non-uniform polynomial time adversary S (called the
simulator) controlling I in the ideal world such that{

REALπ,A(aux)(κ, (x, y, z))
}

κ∈N,x∈X ,y∈Y,z∈Z,aux∈{0,1}∗

C≡
{

IDEALπ,A(aux)(κ, (x, y, z))
}

κ∈N,x∈X ,y∈Y,z∈Z,aux∈{0,1}∗
.

We say that π computes f with full security if it is secure against any adversary corrupting a set
of size at most 2.

We now define the notion of backup values. In short, backup values are the values the honest
parties use to recover their outputs when a corrupted party aborts after sending its previous mes-
sages honestly. In our case, only C learns the backup values. The backup values are well-defined
for any fully secure protocol since such protocols must handle the case where a party aborts the
computation.

Definition 2.5 (Backup values). Let f be a solitary-output three-party functionality, and let π
be an r-round protocol computing f with full security. Sample the randomness of the parties, and
consider an honest execution of π with the sampled randomness. For every i ∈ {0, . . . , r}, the ith

backup value of (A, C), denoted ai, is the output of an honest C in case party B aborted after sending
i messages honestly (and party A remains honest). Similarly, the ith backup value of (B, C), denoted
bi, is the output of an honest C in case party A aborted after sending i messages honestly.

Although we are interested in full security, we will also use the weaker security notion called
security-with-identifiable-abort.

Security-With-Identifiable-Abort

We now define an ideal computation with security-with-identifiable-abort. This model is somewhat
similar to the ideal model where a trusted party performs the computation on behalf of the parties,
but here the ideal-model adversary can abort the computation after learning the output, but with
the cost of revealing the identity of a corrupted party. An ideal computation of a solitary output
three-party functionality f , on inputs x ∈ X , y ∈ Y, z ∈ Z and security parameter κ, with an
ideal-world adversary A running with an auxiliary input aux and corrupting a subset I ⊆ {A, B, C}
of the parties, proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input to T. For each
corrupted party, the adversary A sends a value v from its domain as its input. Let (x′, y′, z′)
denote the inputs received by T.

Trusted party performs computation: If any v ∈ {x′, y′, z′} is not in the appropriate domain
(or was not sent at all), then T reassigns the aberrant input to some default value. Write
(x′, y′, z′) for the tuple of inputs after (possible) reassignment. The trusted party then chooses
a random string r and computes w = f(x′, y′, z′; r).

Trusted party sends output to the adversary: If C ∈ I, then T sends w to A.
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Malicious adversary instructs the trusted party to continue or abort: The adversary A
sends either continue or (abort, P) for some party P ∈ I. If it sends continue, then T sends
w to C if C /∈ I. Otherwise, if A sends (abort, P), then T sends (abort, P) to the all honest
parties.

Outputs: If C is honest, then it outputs whatever it received from the trusted party. Otherwise,
it outputs nothing. Both A and B output whatever they got from T, and the adversary A
outputs a function of its view (i.e., the auxiliary input, its randomness, and the input and
output of the corrupted parties).

The Hybrid Model

The hybrid model is a model that combines both the real and ideal models. In this model, the parties
can use an ideal trusted party to compute certain functionalities. The parties can communicate
with this trusted party in the same way they can in the ideal model. Let f be a functionality.
Then, an execution of a protocol π computing a functionality g in the f -hybrid model involves
the parties sending normal messages to each other (as in the real model) and in addition, having
access to a trusted party computing f . The invocations of f are done sequentially, that is before
an invocation of f begins, the preceding invocation of f must finish. In particular, there is at most
a single call to f per round, and no other messages are sent during any round in which f is called.

Let ρ be a protocol that securely computes f . The sequential composition theorem of Canetti
[16] states that if a protocol π computes g in the f -hybrid model, then πρ securely computes g
in the real model, where πρ is the protocol that is obtained by replacing all the ideal calls to the
trusted party of π for computing f with the protocol ρ.

Proposition 2.6. Let f : X × Y × Z → W be a three-party functionality, let ρ be a protocol that
computes f with security-with-identifiable-abort, and let π be a protocol that computes g with full
security in the f -hybrid model. Then, πρ computes g with full security.

Oblivious Transfer

We next define 1-out-of-2 oblivious transfer (OT). Intuitively, an OT protocol allows a sender
holding two messages, m0 and m1, to send mb to a receiver that holds the choice bit b. Secu-
rity requires that the receiver learns only mb (and nothing about m1−b), and the sender learns
nothing about b. Formally, the OT functionality OT : {0, 1}2 × {0, 1} → {0, 1} is defined as
OT((m0, m1), b) = (⊥, mb). A secure protocol for OT is one that computes OT with full security.

3 The Dealer Model for Solitary Output Three-Party Functional-
ities

Following previous similar works, it will be easier to describe our results in a dealer model. Here,
the real world is augmented with a trusted dealer, which is a ppt algorithm that can interact
with the parties in a limited way. Furthermore, the adversary is also limited when compared to a
real-world adversary. Specifically, the adversary is assumed to be fail-stop, i.e., it acts honestly but
may decide to abort prematurely. Additionally, it may change the input it sends to the dealer.
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We formally describe the model below and show that it is equivalent to the real world (assuming
OT), namely, any secure protocol in one model can be compiled into a secure protocol in the other
model. The benefit of using this model is its simplicity in describing the protocols and the simpler
security analysis. Additionally, our constructions achieve information-theoretic security. A similar
model was already considered in the two-party setting [33, 8, 9], the multiparty setting [10, 12],
and the security with friends and foes model [4].

We next describe a blueprint for an r-round protocol in the dealer model. The blueprint instructs
the dealer to compute several backup values but does not specify how to compute these backup
values. A protocol in the dealer model is obtained from the blueprint by defining the functions for
computing these backup values. The interaction in the dealer model is as follows.

Definition 3.1 (Interaction in the dealer model).
Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.
Common inputs: All the parties hold the security parameter 1κ.

1. The honest parties send their inputs to the dealer, and the malicious adversary sends a value
for every corrupted party. If the adversary does not send any input, the dealer replaces it with
a default value.

2. The dealer first computes backup values a0, . . . , ar for (A, C) and b0, . . . , br for (B, C). It is
required that b0 and a0 do not depend on the inputs of A and B respectively.

3. For every i ∈ {0, . . . , r}, we let ai[A] and ai[C] denote the shares of ai, and let bi[B] and
bi[C] denote the shares of bi. The dealer then shares each backup value in a 2-out-of-2 secret
sharing scheme.

4. The dealer sends to C the shares (ai[C], bi[C])r
i=0.

5. For i = 1 to r:

(a) The dealer sends the share ai[A] to party A. A then responds with either continue or
abort.

i. If A responds with abort, then the dealer approaches B, which responds with either
continue or abort.

ii. If B responds with continue, then the dealer sends bi−1 to C and halts. Party C
outputs bi−1.

iii. If B responds with abort, then the dealer sends w = f(x0, y0, z) for default values
x0 ∈ X and y0 ∈ Y to C and halts. Party C outputs w.

(b) The dealer sends the share bi[B] to party B. B then responds with either continue or
abort.

i. If B responds with abort, then the dealer approaches A, which responds with either
continue or abort.

ii. If A responds with continue, then the dealer sends ai to C and halts. Party C outputs
ai.

iii. If A responds with abort, then the dealer sends w = f(x0, y0, z) for default values
x0 ∈ X and y0 ∈ Y to C and halts. Party C outputs w.
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6. If no party aborted, the dealer approaches A, which responds with either continue or abort.

(a) If A responds continue, then the dealer sends ar to C and halts. C outputs ar.
(b) If A responds abort, then the dealer approaches to B, which responds with either continue

or abort.
(c) If B responds continue, then the dealer sends br to C and halts. C outputs br.
(d) If no party responds with continue, then the dealer sends w = f(x0, y0, z) for default

values x0 ∈ X and y0 ∈ Y to C and halts. C outputs w in this case.

We stress that the dealer is always honest in this model. It is also important to note that
no adversary can force a corrupted C to deviate from the protocol, except for changing its input.
Intuitively, this is because C is the only party to learn the output. Fix a protocol in the dealer
model that is defined by the above definition. The security of the protocol is defined by comparing
the execution in the dealer model to the ideal world defined previously. However, unlike the real
world, here the malicious adversary is only fail-stop. Thus, we say the protocol computes f in the
dealer model with full security if it computes f with full security against fail-stop adversaries. We
next state the theorem that asserts that the dealer model is equivalent to the real model and prove
it.

Theorem 3.2. Let f : X × Y × Z → W be a solitary output three-party functionality. Then,
assuming secure protocols for OT exist, f can be computed with full security in the real world if
and only if it can be computed with full security in the dealer model.

We prove the theorem by proving two lemmas, each handling a different direction of the state-
ment.

Lemma 3.3. Let f : X×Y×Z →W be a solitary output three-party functionality. Then, assuming
secure protocols for OT exist and that f can be computed with full security in the dealer model.
Then f can be computed with full security in the real world.

Proof. Assume there is a protocol πD computing f with full security in the dealer model against fail-
stop adversaries. We construct a protocol πR that computes f with full security in the real world.
Fix a signature scheme Sig = (Gen, Sign, Ver) (since OT implies one-way functions [28] and one-way
functions imply signature schemes [34], the assumption of the lemma implies signature schemes).
Let ShrGen denote the three-party functionality roughly, given the parties’ inputs, outputs a 3-out-
of-3 secret sharing for each of the backup values computed by the dealer, each signed using the
signature scheme. Formally, we define ShrGen as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functionality 3.4 (ShrGen).
Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.
Common inputs: All the parties hold the security parameter 1κ.

1. Sample signature scheme keys (pk, sk)← Gen(1κ)

2. For every i ∈ {0, . . . , r}, compute the backup values (ai)r
i=0, (bi)r

i=0 as the dealer computes
them.

3. Share the backup values a0 and b0 in a 2-out-of-2 secret sharing scheme. Then, compute the
signatures
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• σa0,A ← Signsk(a0[A])
• σb0,B ← Signsk(b0[B]).

4. For all i ∈ {1, . . . , r} share the backup values ai and bi in a 3-out-of-3 secret sharing scheme.
Then, compute the signatures

• σai,A ← Signsk(ai[A])
• σbi,A ← Signsk(bi[A])
• σai,B ← Signsk(ai[B])
• σbi,B ← Signsk(bi[B]).

5. The parties obtain the following output.

• A receives the public key pk, the shares of the backup values a0[A] and (ai[A], bi[A])r
i=1,

and the signatures (σai,A, σbi,A)r
i=1 and σa0,A.

• B receives the public key pk, the shares of the backup values b0[B] and (ai[B], bi[B])r
i=1,

and the signatures (σai,B, σbi,B)r
i=1 and σb0,B.

• C receives the public key pk, and the shares of the backup values (ai[C], bi[C])r
i=0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We are now ready to describe the real-world protocol. For each party P ∈ {A, B}, we let f−P
denote the two-party solitary output functionality between the other two parties, obtained from f
by fixing the input of P to a default value (x0 if P = A and y0 if P = B). We consider the following
three-party protocol πR for computing f , described in the {ShrGen, f−A, f−B}-hybrid model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 3.5.
Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.
Common inputs: All the parties hold the security parameter 1κ.

1. The parties call ShrGen with security-with-identifiable-abort, with their inputs.

2. If C aborts the execution, then the other parties halt.

3. If P ∈ {A, B} aborts, then the remaining two parties call f−P with their inputs and C outputs
the result.

4. Otherwise, the parties do the following. For i = 1 to r:

(a) Party B broadcasts (ai[B], σai,B).
(b) If B did not send any message or if Verpk(ai[B], σai,B) = Fail, then do the following.

i. A sends (ai−1[A], σai−1,A), to C.
ii. If A did not send any message or Verpk(ai−1[A], σai−1,A) = Fail, then C outputs

f(x0, y0, z) for some default values x0 ∈ X and y0 ∈ Y.
iii. Otherwise, C outputs the backup value ai−1.

(c) Party A broadcasts (bi[A], σbi,A).
(d) If A did not send any message or Verpk(bi[A], σbi,A) = Fail, then do the following.
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i. B sends (bi−1[B], σbi−1,B), to C.
ii. If B did not send any message or Verpk(bi−1[B], σbi−1,B) = Fail, then C outputs

f(x0, y0, z) for some default values x0 ∈ X and y0 ∈ Y.
iii. Otherwise, C outputs the backup value bi−1.

5. If no abort occurred, then do the following.

(a) A broadcasts (ar[A], σar,A). If Verpk(ar[A], σar,A) = Success, then C outputs ar = ar[A] +
ar[B] + ar[C].

(b) If A did not send any message or Verpk(ar[A], σar,A) = Fail, then B broadcasts
(br[B], σbr,B). If Verpk(br[B], σbr,B) = Success, then C outputs br = br[A] + br[B] + br[C].

(c) If B did not send any message or Verpk(br[B], σbr,B) = Fail, then C outputs f(x0, y0, z)
for some default values x0 ∈ X and y0 ∈ Y.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, note that correctness is immediately implied by the correctness of the protocol in the
dealer model stating that ar = f(x, y, z) except with negligible probability. We next show the
security of the protocol. Observe that corrupting A or B (or both) will not provide the adversary
any advantage since both A and B learn only random shares and the signatures corresponding to the
shares. Thus, a simulator can generate random shares and signatures as the view of the adversary
and send to the trusted party either default inputs or the inputs that were sent to ShrGen. Note
that if C is the only corrupted party we can handle this case easily. This is due to the fact that
the view of C until the last round consists only of random shares and signatures, and if it did not
abort then also the output. Thus, a simulator can generate random shares and signatures as the
view of C and send its input to the party depending if the adversary aborts or not.

We now focus on the case where both C and a party P ∈ {A, B} are corrupted. Note that in
this case, the adversary can learn two backup values if C acts honestly and P aborts at some round.
This could “help” the adversary to decide when to abort the protocol (if needed) based on the
backup values it learned. We may only consider the case where P = A since the case where P = B
is analogous. Let AR be an adversary corrupting both A and C in the real world.

We separate the proof into two cases. For the first case, let us assume that AR aborts a party
(or two) during the call to ShrGen. If C aborts then the protocol halts, hence the view of AR does
not include any messages. On the other hand, if only A aborts during the call, then the view of AR

includes only the value f−A(y, z) = f(x0, y, z) (in addition to the corrupted parties’ inputs). This
can be simulated by sending (x0, z) to T.

For the second case, we assume that AR does not abort during the call to ShrGen. We construct
an adversary AD corrupting A and C in the dealer model that emulates AR. The adversary AD

works as follows. First, it samples signature scheme keys (pk, sk)← Gen(1n). Then, in each round
i ∈ [r], after the adversary AD receives shares (ai[A], ai[C]) from the dealer, it computes the share
ai[B] as ai[B] = ai − (ai[A] + ai[C]) and sign it. AD sends ai[B] and the signature to AR, which
responds with its messages for A and C to the next round. If AR instructs C (and possibly also
A) to abort or to change its (signed) message, then AD replies to the dealer with abort, outputs
whatever AR outputs and halts. If only A aborts or changes its message at some round i, then
AD sends abort to the dealer, and receives the backup value bi−1 from the dealer. It computes the
message bi−1[B] = bi−1− (bi−1[A] + bi−1[C]), sign it, send it to AR, output whatever it outputs, and
halts.
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Observe that the output of AD is identically distributed to the output of AR. Hence, the
simulator for AD (assumed to exist), also simulates AR.

We now state and prove the second direction of the claim.

Lemma 3.6. Let f : X × Y × Z → W be a solitary output three-party functionality. Then, if f
can be computed with full security in the real world, then f can be computed with full security in
the dealer model.

Proof. Assume there is a secure protocol πR computing f in the real world. To describe a protocol
in the dealer model, it suffices to describe the distribution of the backup values ai and bi for every
i ∈ {0, . . . , r}. The dealer computes these backup values by executing the protocol πR in its head,
and evaluating the backup values of each pair. That is, the dealer samples random coins for the
parties and runs (an honest) execution of the protocol πR in its head to compute the backup values
ai and bi. To compute ai it emulates the execution with the fixed random coins, assuming Party B
aborts before sending the message in round i. Similarly, to compute bi it emulates the execution
with the fixed random coins, assuming Party A aborts before sending the message in round i + 1.

After computing the backup values, the dealer proceeds with the computation, as described in
Definition 3.1. Let πD be the resulting protocol. Note that correctness is immediately implied by
the fact that ar = f(x, y, z) except with negligible probability.

We prove that πD is secure. Observe that corrupting either A or B or even both of them will
not provide the adversary any advantages. This is true since in every round both A and B receive
a random share of ai and bi, respectively. Thus, a simulator can simply sample these shares until
the adversary aborts. Note that a corrupted C can be handled easily as well since C cannot abort
during the computation in the dealer model (since the dealer never approaches C, but only sends
to it its shares of ai and bi). Therefore, C’s view can be simulated by sampling random shares as
the view of C and send to T the same value it sends to the dealer.

We now focus on the case where both C and a party P ∈ {A, B} are corrupted. We consider
only the case where P = A since the case of P = B is analogous. Let AD be an adversary corrupting
both A and C in the dealer model. Note that the adversary can instruct only A to abort. This is
because by definition, the dealer never approaches C. We construct an adversary AR corrupting
A and C that emulates AD in the real-world protocol πR. First, it queries the dealer model
adversary AD to obtain the inputs it sends to the dealer. If AD did not send an input for A or C,
then AR replaces the inputs of the appropriate parties with a default value. Then, AR generates
random shares (ai[C], bi[C])r

i=0, sends them to AD and computes the backup value a0 and the share
a0[A] = a0− a0[C] (recall that we require that a0 and b0 to be independent the input of B). It then
queries AD with a0[A] which replies with either continue or abort. If it responds with abort, then
AR instructs A to abort the computation and C to act honestly until the end of the computation.
Otherwise, if AD responds with continue, then AR instructs A to send the next message as an
honest party would. Then, for i ∈ {1, . . . , r}, AR does the following.

1. Given the ith message, AR computes the backup value ai and the share ai[A] = ai − ai[C].

2. AR queries AD with ai[A] which replies with either continue or abort.

3. If AD replies with abort, then AR instructs A to abort the computation and C to act honestly
until the end of the computation.
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4. If AD replies with continue, then AR instructs A to send the next message as an honest party
would.

Let b be the value that an honest C would have computed in the above computation. Observe
that AR can compute it because it does not instruct C to abort the computation. AR queries AD

with b, outputs whatever AD outputs, and halts. Note that like in the proof of Lemma 3.3, it
is easy to see that the output of AR is identically distributed to the output of AD. Hence, the
simulator for AR assumed to exist, also simulates AD.

3.1 Simple Security Properties of the Dealer Model

We now state and prove two claims asserting certain security properties of the dealer model. The
first claim asserts that protocols in the dealer model that were constructed as described in Defi-
nition 3.1 are secure against any adversary corrupting only C, and the second claim reduces the
security against an adversary corrupting both A and B to the case where exactly one of these parties
is corrupted. For the rest of the section, we fix a solitary output Boolean three-party functionality
f : X × Y × Z → {0, 1}.

Proposition 3.7. Let π be a protocol in the dealer model following Definition 3.1 for computing
f . Then, π is (perfectly) secure against any adversary corrupting only C.

Proof. Let A be an adversary that corrupts C. We show that there exists an ideal world simulator
that can generate a view for the ideal world adversary that is identically distributed to the view of
A in the real world in an execution of π on f . The simulator is defined as follows

1. Query the adversary for the input z it sends to the dealer.

2. Sample random shares uniformly at random for C and denote them as a0[C], . . . , ar[C] and
b0[C], . . . , br[C].

3. Send z to the trusted party, receive w = f(x, y, z) and set ar = w.

4. Send the shares and w to A, output whatever it outputs and halt.

Since only C is corrupted and in the dealer model the dealer never approaches it, the protocol never
aborts. Therefore, its view in both worlds consists only of random shares and f(x, y, z).

Proposition 3.8. Let π be a protocol in the dealer model following Definition 3.1 for computing f .
Assume that π is secure against any adversary corrupting either A or B. Then π is secure against
an adversary that corrupts both A and B.

Proof. Let A be an adversary corrupting A and B. Before describing the simulator, we define two
attackers, each corrupting a single party. The first adversary AA(y) is given an input y ∈ Y as
auxiliary input. It corrupts A, samples the random shares for each backup value ai and bi, and
instructs A to act the same as A instructs her on inputs x and y. The second adversary AB(x)
is given x as an auxiliary input and is defined similarly. By the security assumption, there exist
simulators SA(y) and SB(x) for AA(y) and AB(x), respectively. Observe that for every fixed choice
of the randomness of the parties, every round A aborts A if and only if AA(y) aborts A, and every
round A aborts B if and only if AB(x) aborts B.

We are now ready to define the simulator S for A.
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1. Query the adversary A for the inputs x and y it sends to the dealer.

2. Sample random shares for A and B and denote them as a0[A], . . . , ar[A] and b0[B], . . . , br[B],
respectively.

3. For i = 0 to r do the following:

(a) Send the shares of ai and bi to A.
(b) If A instructs only A to abort at round i, then query SA(y) to obtain the input x∗ it

sends to T. Send x∗ to T output whatever A outputs and halt.
(c) If A instructs only B to abort at round i, then query SB(x) to obtain the input y∗ it

sends to T. Send y∗ to T output whatever A outputs and halt.
(d) If A instructs both A and B to abort at round i, then send to T the default values

(x0, y0), output whatever A outputs and halt.

4. If no aborts occurred, then send (x, y) to T, output whatever A outputs and halt.

Observe that the view of the adversary in both of the worlds consists only of random shares, thus
we only need to show that the output of C is identically distributed in both of the worlds. Note that
if A and B never abort, then the output of C is f(x, y, z) in both worlds. Additionally, if both A
and B abort, then the output of C is f(x0, y0, z) in both worlds. We may now assume that exactly
one party aborts the computation.

By symmetry, we may only consider the case where A aborts the computation. Let y ∈ Y
denote the input of B. In this case, S sends to the trusted party the same value that SA(y)
sends. Therefore, the output of C is identically distributed in the two ideal worlds. By the security
assumption against AA(y), it follows that the output of C in the ideal world when interacting with
SA(y) is identically distributed to the output in the real world when interacting with AA(y). Since
AA(y) aborts A if and only if A aborts A, it follows that the output of C in the real world when
interacting with AA(y) is the identically distributed to the output when interacting with A. We
conclude that the output of C in the real world when interacting with A is identically distributed
to the ideal world when interacting with S.

4 Positive Results: A General Family of Special-Round Protocols
In this chapter, we identify a class of solitary output functionalities that can be securely computed.
Towards proving our result, we present a general family of protocols that follow the “special-round
paradigm” [26, 9, 7], where the output is revealed at a special random round that is unknown to
the parties. Looking ahead, in Section 5, we provide a new technique for analyzing when a given
special-round protocol securely computes a given functionality. Furthermore, our analysis provides
a general method for determining not only when a given protocol is secure, but it identifies all
secure protocols (from the family) that securely compute a given functionality.

Before stating the theorem, let us define the notion of the projection matrices of a solitary
output Boolean three-party functionality f : X × Y × Z → {0, 1}.

Definition 4.1 (Projection matrices of a 3-ary function). Fix a (possibly randomized) function
f : X × Y × Z → {0, 1} and let Z = {z1, . . . , zk}. Recall that Mz1 , . . . , Mzk

∈ R|X |×|Y| are the
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associated matrices of f . We denote by Mc the matrix resulting by concatenating all the associated
matrices by columns, that is,

Mc = (Mz1 ||Mz2 || . . . ||Mzk
) ,

and we denote by Mr the matrix resulting by concatenating all the associated matrices by rows, i.e.,

Mr = (Mz1 ||rMz2 ||r . . . ||rMzk
) .

We refer to Mr and Mc as the projection matrices of f .8
Finally, for all z ∈ Z, we let Mz = J−Mz, we let Mr = J−Mr, and we let Mc = J−Mc be

the complement matrices of Mz, Mr, and Mc, respectively.

We prove the following theorem, identifying a class of Boolean three-party solitary output
functionalities that can be securely computed. Roughly speaking, we show that if a certain system
of linear equations and inequalities can be satisfied, then the functionality can be securely computed.

Theorem 4.2. Let f : X × Y × Z → {0, 1} be a solitary output Boolean three-party functionality,
and let (Mz)z∈Z be the associated matrices of f . Assume secure protocols for OT exist and that
the following hold.

1. There exists a vector p ∈ R|X | such that pT · 1 = 1 and for every z ∈ Z it holds that
0T ≤ pT ·Mz ≤ 1T .

2. For every w ∈ {0, 1} and every z ∈ Z, there exists a matrix Xw
z ∈ R|X |×(|X ·|Z||) such that the

following holds.

(a) It holds that 0 ≤ Xw
z · 1 ≤ 1.

(b) For every x, x′ ∈ X and every z′ ∈ Z where z′ ̸= z, it holds that Xw
z (x, (x′, z′)) ≥ 0.

3. It holds that X1
z ·Mr = Mz · Bz, where Bz ∈ R|Y|×|Y| is the diagonal matrix defined as

Bz(y, y) = pT ·Mz(·, y) for all y ∈ Y.

4. It holds that X0
z ·Mr = Mz · Bz, where Bz ∈ R|Y|×|Y| is the diagonal matrix defined as

Bz(y, y) = pT ·Mz(·, y) = 1−B(y, y) for all y ∈ Y.

Then f can be computed with full security.

The proof is given below. In the next section, we present a family of protocols and analyze
when each of them is secure. The proof of the theorem is then followed by choosing an appropriate
protocol.

4.1 A Family of Special-Round Protocols

In this section, we present a family of protocols that generalize the protocols that follow the “special-
round paradigm” [26, 9, 7]. We then analyze their security. We call our family of protocols the
special-round protocols. A special-round protocol is parametrized by a real value 0 < α ≤ 1 and a
vector (βy,z)y∈Y,z∈Z ∈ [0, 1]|Y|·|Z|. We assume that every party holds a private input (in addition

8The term projection comes from first viewing f as a 3-dimensional array, and then projecting it into two 2-
dimensional matrices.
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to the security parameter κ held as a common input). Specifically, A holds x ∈ X , B holds y ∈ Y,
and C holds z ∈ Z. In light of Theorem 3.2, we may define the protocols in the dealer model. Here
it suffices to describe how the dealer computes the backup values of (A, C) and (B, C).

Before formally describing the protocols, we give an intuitive description. First, we denote the
geometric distribution with parameter α > 0 as Geom(α), and it is defined as Pri←Geom(α)[i = n] =
(1−α)n−1 ·α, for all integers n ≥ 1. We further fix r = r(κ) = ω(log κ) to be the number of rounds.
We are now ready to describe the distribution of the backup values, given inputs x, y, and z of A,
B, and C, respectively. The dealer samples i∗ ← Geom(α), then, before round i∗ is reached, each
pair among (A, C) and (B, C) together learn a random independent value, while after i∗ is reached
they learn the output. Finally, we define the backup value of (B, C) for round i∗ − 1 to be 1 with
probability βy,z (and 0 with probability 1− βy,z). That is, if A aborts at round i∗ then C outputs
1 with probability βy,z.

We next formally describe the family of special-round protocols. Let α ∈ (0, 1] and β =
(βy,z)y∈Y,z∈Z . We define the protocol πso

sr (α, β) as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 4.3 (πso

sr (α, β)).
Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.
Common inputs: All the parties hold the security parameter 1κ.

1. The dealer samples i∗ ← Geom(α) according to the geometric distribution with parameter α.

2. The dealer computes w = f(x, y, z). It then sets b̃ = 1 with probability βy,z and b̃ = 0 with
probability 1− βy,z.

3. The dealer computes the backup values for every i ∈ {0, . . . , r} as

ai =
{

f(x, ỹi, z) if i < i∗

w otherwise
and bi =


f(x̃i, y, z) if i < i∗

b̃ if i = i∗ − 1
w otherwise

where ỹi ← Y and x̃i ← X are all independent.

4. The dealer proceeds with the computation as described in Definition 3.1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The next lemma states sufficient conditions for πso
sr (α, β) to be secure. Observe that it immedi-

ately implies Theorem 4.2.

Lemma 4.4. Assume that the following holds for solitary output Boolean three-party functionality
f : X × Y × Z → {0, 1}.

1. There exists a vector p ∈ R|X | such that pT · 1 = 1 and for every z ∈ Z it holds that
pT ·Mz = (βy,z)T

y∈Y .

2. For every w ∈ {0, 1} and every z ∈ Z, there exists a matrix Xw
z ∈ R|X |×(|X |·|Z|) such that the

following holds.

(a) It holds that 0 ≤ Xw
z · 1 ≤ 1.
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(b) For every x, x′ ∈ X and every z′ ∈ Z where z′ ̸= z, it holds that Xw
z (x, (x′, z′)) ≥ 0.

3. It holds that X1
z ·Mr = Mz · Bz, where Bz ∈ R|Y|×|Y| is the diagonal matrix defined as

Bz(y, y) = βy,z for all y ∈ Y.

4. It holds that X0
z ·Mr = Mz · Bz, where Bz ∈ R|Y|×|Y| is the diagonal matrix defined as

Bz(y, y) = 1−B(y, y) = 1− βy,z for all y ∈ Y.

Then, there exists α0, such that for all α0 ≥ α > 0 it holds that πso
sr (α, β) computes f with full

security.

Proof. Observe that correctness holds since i∗ > r occurs with negligible probability. It remains to
show that the protocol is fully secure. First, note that the case of a corrupted C is already handled
by Proposition 3.7. The remaining cases are a corrupted A or B with possibly another corrupted
party. Note that a corrupted B (and possibly another party) can be handled easily. Intuitively, this
is due to the fact that A gets its share of ai before B gets its share of bi, thus A can help C learn
the output first. We formally handle this case in Appendix A.2. The remaining cases are when the
adversary corrupts only A, both A and C, and both A and B. Note that by Proposition 3.8, the
last case is implied by the first case. We are left with the first two cases.

For a fixed z ∈ Z let βz = (βy,z)y∈Y . We next state and prove the two propositions that
handle the first two cases. Interestingly, for the case where only A may be corrupted, we provide a
characterization for when the protocol is secure against such an adversary.

Proposition 4.5. πso
sr (α, β) is secure against every adversary corrupting A for all sufficiently small

α > 0 if and only if there exists a vector p ∈ R|X | such that pT · 1 = 1 and for every z ∈ Z it holds
that pT ·Mz = βT

z .

Proof. Let uX ∈ R|X | be the uniform probability vector over X , i.e., uX (x) = 1
|X | for every x ∈ X .

We first prove that πso
sr (α, β) is secure against any adversary corrupting A if and only if for every

x ∈ X and i ∈ [r] there exists a probability vector xx,i ∈ R|X | such that for every z ∈ Z it holds
that

xT
x,i ·Mz = (1− α)i · uT

X ·Mz + α · (1− α)i−1 · βT
z + (1− (1− α)i−1) · eT

x ·Mz. (5)

We will then show that such a vector xx,i exists if and only if there exists the vector p stated in
the proposition.

First, observe that for any adversary corrupting A in the real world, its view consists of only
random shares that are independent of the output of C. Since an ideal-world simulator can easily
generate this view, security against the adversary holds if and only if there exists a distribution
over X (which will be used by the simulator) such that the output distribution of C in the ideal
world is identical to the real world. We show that Equation (5) encodes exactly that. That is, the
yth entry on the left-hand side is the output of C in an ideal-world execution when B holds input
y, and the yth entry on the right-hand side is the output of C in a real-world execution.

Fix a real-world adversary A that corrupts A. Let x be the input it sends to the dealer, and let
i denote the round where it instructs A to abort (set to r + 1 if no such round exists). Let w(y)
denote the output of C in the real-world when B holds input y. Then for all inputs y ∈ Y and
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z ∈ Z it holds that

Pr [w(y) = 1] = Pr [i < i∗] · Pr [f(x̃i, y, z) = 1] + Pr [i = i∗] · βy,z + Pr [i > i∗] ·Mz(x, y)
= (1− α)i · uT

X ·Mz(·, y) + α · (1− α)i−1 · βy,z

+ (1− (1− α)i−1) · eT
x ·Mz(·, y).

Now, if there exists a probability vector xx,i satisfying Equation (5), then the simulator for A will
send to the trusted party a sample from xx,i. The formal simulator is defined as follows.

1. Query the adversary for the input x it sends to the dealer.

2. Sample i∗ ← Geom(α) according to the geometric distribution with parameter α.

3. For i = 1 to i∗ − 1:

(a) Send to A a random bit, which represents its share of the backup value ai.
(b) If A aborts A, then sample x∗ ← xx,i, send x∗ to the trusted party, and output random

shares as the view of the adversary and halt.

4. Send x to the trusted party and receive w = f(x, y, z).

5. For i = i∗ to r:

• Send to A a random bit which represent its share from w.
• If A aborts A then output random shares as the view of the adversary and halt.

6. output random shares as the view of the adversary and halt.

By Equation (5) security clearly holds. For the other direction, note that if there is a simulator for
A then it must define such a probability vector.

To conclude the proof, we show that for every x ∈ X and i ∈ [r] there exists a probability
vector xx,i ∈ R|X | satisfying Equation (5) if and only if there exists a vector p ∈ R|X | such that
pT ·Mz = βT

z for all z ∈ Z, and that pT · 1 = 1.
For the first direction, assume that there exists such a vector p ∈ R|X |. Then

(1− α)i · uT
X ·Mz + α · (1− α)i−1 · βT

z + (1− (1− α)i−1) · eT
x ·Mz

= (1− α)i · uT
X ·Mz + α · (1− α)i−1 · pT ·Mz + (1− (1− α)i−1) · eT

x ·Mz

=
(
(1− α)i · uT

X + α · (1− α)i−1 · pT + (1− (1− α)i−1) · eT
x

)
·Mz.

Then xx,i := (1−α)i ·uX + α · (1−α)i−1 ·p + (1− (1−α)i−1) ·ex satisfies Equation (5). It remains
to show that it is also a probability vector. First, observe that

xT
x,i · 1 = (1− α)i · (uT

X · 1) + α · (1− α)i−1 · (pT · 1) + (1− (1− α)i−1) · (eT
x · 1)

= (1− α)i + α · (1− α)i−1 + 1− (1− α)i−1

= 1.
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Now, observe that for every x′ ∈ X and all sufficiently small α > 0 it holds that

xx,i(x′) ≥ (1− α)i · 1
|X |

+ α · (1− α)i−1 · p(x′)

≥ 0.

Note that the second term tends to 0 as α tends to 0. Thus, xx,i(x′) is arbitrarily close to (1−α)i ·
1
|X | ≥ 0.

For the second direction, we assume that the vector xx,i exists for all i ∈ [r]. Letting i = 1 and
isolating βT

z results in
1
α
·
(
xT

x,i − (1− α) · uT
X

)
·Mz = βT

z .

Therefore, the vector pT = 1
α ·
(
xT

x,i − (1− α) · uT
X

)
is mapped to βT

z for every z ∈ Z. It remains
to show that pT · 1 = 1. Indeed, since xx,i and uX are both probability vectors, it follows that

pT · 1 = 1
α
·
(
xT

x,i − (1− α) · uT
X

)
· 1

= 1
α
·
(
xT

x,i · 1− (1− α) · uT
X · 1

)
= 1

α
· (1− (1− α))

= 1.

Proposition 4.6. Assume that for every z ∈ Z there exist matrices X1
z, X0

z ∈ R|X |×(|X |·|Z|) for
which Items 2 to 4 of Lemma 4.4 hold. Then for all sufficiently small α > 0, πso

sr (α, β) is secure
against any adversary corrupting both A and C.

Proof. Fix a real-world adversary A that corrupts both A and C. First, recall that the adversary
cannot abort C in the dealer model. The simulator works as follows.

1. Query the adversary for the inputs x and z it sends to the dealer.

2. Sample random shares (ai[C], bi[C])r
i=0 and send them to A.

3. Sample i∗ ← Geom(α) according to the geometric distribution with parameter α.

4. For i = 1 to i∗ − 1:

(a) Compute ai = f(x, ỹi, z), where ỹi ← Y, and send ai[A] := ai − ai[C] to A.
(b) If A aborts A then do the following.

i. Sample (x∗, z∗) ← vai
x,z, where vai

x,z is a probability vector to be defined by the
analysis below.

ii. Send (x∗, z∗) to the trusted party and receive w = f(x∗, y, z∗).
iii. Send bi−1[B] := w − bi−1[C] to the adversary, output whatever it outputs, and halt.

5. Send (x, z) to the trusted party and receive w = f(x, y, z).

29



6. Send ai∗ [A] = w − ai∗ [C] to A.

• If the adversary aborts A at round i∗ then do the following.
(a) Set bi∗−1 = 1 with probability γw

x,z and bi∗−1 = 0 with probability 1− γw
x,z.

(b) Send bi∗−1[B] := bi∗−1 − bi∗−1[C] to the adversary, output whatever it outputs, and
halt.

7. For i = i∗ + 1 to r:

(a) Send ai[A] = w − ai[C] to A.
(b) If A aborts A then send it bi−1[B] := w − bi−1[C], output whatever it outputs, and halt.

8. If A aborts A then send it br[B] := w − br[C], output whatever it outputs, and halt.

9. Otherwise, output whatever A outputs and halt.

Let i denote the round where the adversary instructs A to abort (set to r + 1 if no such round
exists, or if the adversary aborts at the end). Observe that in the real world, the adversary holds
enough shares to reconstruct the backup values a1, . . . , ai and bi−1. Note that if i > i∗, then the
view of the adversary in both worlds is equal to a1, . . . , ai and bi−1, where ai = bi−1 = f(x, y, z).
Therefore, we may condition on the event i ≤ i∗. Also, note that given i ≤ i∗, all the backup values
a1, . . . , ai−1 and bi−1 are independent in both worlds. Thus, it is enough to analyze the distribution
of (ai, bi−1) in both worlds. In the following, we fix the inputs x ∈ X and z ∈ Z that A sends to
the dealer.

We first introduce some notations. Let sx,z = Prỹ←Y [f(x, ỹ, z) = 1] and let uz ∈ R|X |·|Z| be the
vector defined as

uz(x′, z′) =


1
|X | if z′ = z

0 otherwise

for all x′ ∈ X and z′ ∈ Z.
Let us first analyze the probability that (ai, bi−1) = (1, 1). In the real world, it holds that

Pr [(ai, bi−1) = (1, 1) | i ≤ i∗] = (1− α) · Pr [f(x, ỹi, z) = 1] · Pr [f(x̃i, y, z) = 1]
+ α ·Mz(x, y) · βy,z

= (1− α) · sx,z · uT
z ·Mr(·, y) + α ·Mz(x, y) · βy,z.

On the other hand, in the ideal world, it holds that

Pr [(ai, bi−1) = (1, 1) | i ≤ i∗] = (1− α) · Pr [f(x, ỹi, z) = 1] · Pr [f(x∗, y, z∗) = 1 | ai = 1]
+ α ·Mr((x, z), y) · γ1

x,z

= (1− α) · sx,z · v1
x,z ·Mr(·, y) + α · eT

x,z ·Mr(·, y) · γ1
x,z,

where ex,z ∈ R|X |·|Z| is the (x, z)th standard basis vector.
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For the protocol to be secure, it must hold that the distribution of (ai, bi−1) in the real world
is identical to the distribution of (ai, bi−1) in the ideal world. Thus, it must hold that

(1− α) · sx,z · uT
z ·Mr(·, y) + α ·Mz(x, y) · βy,z

= (1− α) · sx,z · v1
x,z ·Mr(·, y) + α · eT

x,z ·Mr(·, y) · γ1
x,z. (6)

Observe that if sx,z = 0 then it means that f(x, ·, z) ≡ 0 is the constant 0 function. Therefore,
both sides of Equation (6) are 0. Assume now that sx,z ̸= 0. Then, isolating v1

x,z results in

v1
x,z ·Mr(·, y) = uT

z ·Mr(·, y) + α

(1− α) · sx,z
·Mz(x, y) · βy,z −

α

(1− α) · sx,z
· eT

x,z ·Mr(·, y) · γ1
x,z,

Since this must hold for all y ∈ Y, we get that

v1
x,z ·Mr = uT

z ·Mr + α

(1− α) · sx,z
· (Mz(x, y) · βy,z)T

y −
α

(1− α) · sx,z
· γ1

x,z · eT
x,z ·Mr.

Now, recall that by Item 3 of Lemma 4.4, it holds that X1
z(x, ·) ·Mr = (Mz(x, y) · βy,z)T

y .
Therefore v1

x,z must satisfy

v1
x,z ·Mr =

(
uT

z + α

(1− α) · sx,z
·X1

z(x, ·)− α

(1− α) · sx,z
· γ1

x,z · eT
x,z

)
·Mr.

Setting v1
x,z = uT

z + α
(1−α)·sx,z

· X1
z(x, ·) − α

(1−α)·sx,z
· γ1

x,z · eT
x,z solves the equation. It remains to

show that it is also a probability vector. First, since uz and eT
x,z are probability vectors and since

X1
z(x, ·) · 1 = γ1

x,z, it holds that

v1
x,z · 1 = uT

z · 1 + α

(1− α) · sx,z
· (X1

z(x, ·) · 1)− α

(1− α) · sx,z
· γ1

x,z · eT
x,z · 1

= 1 + α

(1− α) · sx,z
· γ1

x,z −
α

(1− α) · sx,z
· γ1

x,z

= 1.

Next, we show that v1
x,z(x′, z′) ≥ 0 for all x′ ∈ X and z′ ∈ Z. We consider two cases, depending

on whether z′ = z or not. For the first case where z′ ̸= z, it holds that uz(x, z′) = ex,z(x, z′) = 0,
hence

v1
x,z(x′, z′) = α

(1− α) · sx,z
·X1

z(x′, z′) ≥ 0,

where the inequality is by Item 2b of Lemma 4.4. Next, for z′ = z it holds that

v1
x,z(x′, z) ≥ 1

|X |
+ α

(1− α) · sx,z
·X1

z(x′, z)− α

(1− α) · sx,z
· γ1

x,z

= 1
|X |

+ α

(1− α) · sx,z
·
(
X1

z(x′, z)− γ1
x,z

)
.

Note that the second term tends to 0 as α tends to 0. Thus, v1
x,z(x′, z) is arbitrarily close to 1

|X | ≥ 0,
hence it is positive for all sufficiently small α > 0. We conclude that v1

x,z is a probability vector.
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It remains to consider the remaining three cases, i.e., the probability that (ai, bi−1) = (0, 0),
that (ai, bi−1) = (1, 0), and that (ai, bi−1) = (0, 1). The case of (ai, bi−1) = (0, 0) is analogous to
the case of (ai, bi−1) = (1, 1), and is implied by Items 2 and 4. Next, we argue that the case of
(ai, bi−1) = (0, 1) is equivalent to the case of (ai, bi−1) = (0, 0) and the case of (ai, bi−1) = (1, 0) is
equivalent to the case of (ai, bi−1) = (1, 1). To see this, first observe that

Pr [ai = 0] = Pr [ai = 0, bi−1 = 0] + Pr [ai = 0, bi−1 = 1] .

Since ai is identically distributed in both worlds and we proved that the probability that (ai, bi−1) =
(0, 0) is the same in both worlds as well, it follows that the probability that (ai, bi−1) = (0, 1) is the
same. Since all probabilities sum to 1, it follows that the probability that (ai, bi−1) = (1, 0) is also
the same as the probability that (ai, bi−1) = (1, 1).

Example 4.7. We next give an example of functionality that can be securely computed using
πso

sr (α, β). First, let D = {S ⊆ [3] : 1 ≤ |S| ≤ 2}, and define the functions disj : D × D → {0, 1}
and sizeeq : D ×D → {0, 1} as

disj(S, T ) =
{

1 if S ∩ T = ∅
0 otherwise

and sizeeq(S, T ) =
{

1 if |S| = |T |
0 otherwise

.

Consider the solitary output Boolean three-party functionality f : D × D × {0, 1} → {0, 1} defined
as

f(S, T , z) =
{

disj(S, T ) if z = 0
sizeeq(S, T ) if z = 1

.

We use Theorem 4.2 to show that f can be securely computed. For that, consider the associated
matrices of f , given by

M0 =



0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


and M1 =



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1


.

Let p = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6)T be the uniform probability vector of dimension 6. Then,

pT · 1 = 1, pT ·M0 =
(1

2 ,
1
2 ,

1
2 ,

1
6 ,

1
6 ,

1
6

)T

, and pT ·M1 =
(1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)T

.

Thus, Item 1 of Theorem 4.2 holds. It remains to show that there exist matrices X1
0, X0

0, X1
1, X0

1 ∈
R6×12 such that

X1
0 ·Mr = M0 ·



1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 1

6 0 0
0 0 0 0 1

6 0
0 0 0 0 0 1

6


, X0

0 ·Mr = M0 ·



1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 5

6 0 0
0 0 0 0 5

6 0
0 0 0 0 0 5

6


,
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X1
1 ·Mr = M1 ·



1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2


, X0

1 ·Mr = M1 ·



1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2


,

and for all w, z ∈ {0, 1} and x, x′ ∈ D it holds that

0 ≤ Xw
z · 1 ≤ 1 and 0 ≤ Xw

z (x, (x′, 1− z)).

Indeed, taking

X1
0 =



1
2 0 0 0 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0 0 0 0

0 0 0 1
6 0 0 0 0 0 0 0 0

0 0 0 0 1
6 0 0 0 0 0 0 0

0 0 0 0 0 1
6 0 0 0 0 0 0


,

X0
0 =



1
2 −1

3 −1
3 0 0 1

3
1
9

1
9

1
9 0 0 0

−1
3

1
2 −1

3 0 1
3 0 1

9
1
9

1
9 0 0 0

−1
3 −1

3
1
2

1
3 0 0 1

9
1
9

1
9 0 0 0

0 0 0 1
2 0 0 1

9
1
9

1
9 0 0 0

0 0 0 0 1
2 0 1

9
1
9

1
9 0 0 0

0 0 0 0 0 1
2

1
9

1
9

1
9 0 0 0


,

and

X1
1 = X0

1 =



1
2 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0 0 0 0


satisfy the requirements.
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4.2 Solving the Equations: A Necessary Condition for Security

In this section, we show that for πso
sr (α, β) to compute f with full security, then either Items 3

and 4 of Lemma 4.4 must hold, or f can be computed “trivially.” Here, trivial means that a secure
protocol can be obtained by switching the roles of A and B and taking β = 0. Note that by
Lemma 4.4, this results in a secure protocol if 0 is an affine combination of the columns of Mr. We
next formally state and prove the result. Interestingly, unlike our other results, this only holds for
functionalities that are independent of κ. Additionally, we need to assume that α is constant.

Lemma 4.8. Let f : X × Y × Z → {0, 1} be a solitary output Boolean three-party functionality,
let α > 0 be a constant, and let β = (βy,z)y∈Y,z∈Z ∈ [0, 1]|Y|·|Z|. Assume that there exists a vector
p ∈ R|X |·|Z| such that pT ·Mr = 1T , and that πso

sr (α, β) computes f with full security. Then for
every z ∈ Z, there exists a matrix X ∈ R(|X |·|Z|)×(|X |·|Z|) for which it holds that

X ·Mr = Mz ·Bz,

where Bz ∈ R|Y|×|Y| is the diagonal matrix for which the values on the main diagonal are βy,z for
all y ∈ Y.

Toward proving Lemma 4.8, we use the following proposition proved by [9].

Proposition 4.9 ([9, Proposition 2.1]). For any matrix M, it holds that 0T is an affine combination
of the rows of M if and only if 1 is not a linear combination of the columns of M.

Proof of Lemma 4.8. For the remaining of the proof, we fix x ∈ X and z ∈ Z. We first describe
two adversaries for πso

sr (α, β). For w ∈ {0, 1}, let Aw be the adversary that corrupts both A and C
and works as follows.

1. Instruct A and C to send x and z, respectively, to the dealer and act honestly in the first
round of the execution.

2. Reconstruct the backup value a1 using the shares given by the dealer.

3. If a1 = w, then instruct A to abort the execution. The dealer then sends b0 to C. Output
(a1, b0) and halt.

4. Otherwise, if a1 ̸= w then instruct A to act honestly until the end of the protocol. The dealer
then sends ar to C. Output (a1, ar) and halt.

Denote by outw the second coordinate in the output of Aw. By the security assumption, there
exists a simulator Simw (that may depend on κ) that simulates Aw in the ideal world. Let Dw,κ

denote the distribution over X × Z that is used to sample the inputs x∗ and z∗ sent by Simw to
the trusted party. Denote by Sw denote the algorithm that on input (κ, x, z, x∗, z∗, f(x∗, y, z∗)),
runs Simw given that it sent x∗ and z∗ to the trusted party, and outputs whatever it outputs.9
Then assuming (x∗, z∗)← Dw,κ, it follows that output distribution of Sw(κ, x, z, x∗, z∗, f(x∗, y, z∗))
is identical to the output distribution of the simulator. By the security assumption, it follows that

{Sw(κ, x, z, x∗, z∗, f(x∗, y, z∗))}κ∈N,y∈Y
C≡
{

REALπso
sr (α,β),Aw

(κ, x, y, z)
}

κ∈N,y∈Y
.

9Note that Sw might be inefficient (i.e., its running time is not necessarily polynomial in the security parameter).
We note that this will not affect the correctness of the proof since we care about existence.
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Since the domain of f is of constant size, it follows that the ensembles are statistically close. In
particular, it holds that

|Pr [Sw(κ, x, z, x∗, z∗, f(x∗, y, z∗)) = (1, 1)]− Pr [(a1, outw) = (1, 1)]| = neg(κ). (7)

We now analyze the two probabilities. We do so only for w = 1, which shows that (Mz(x, y) ·
βy,z)y∈Y ∈ Im(MT

r ). The other case is similar and proves the second part of the lemma. For brevity,
we remove w from all notations.

We start by analyzing the second term, which corresponds to the real world. Let s =
Prỹ←Y [f(x, ỹ, z) = 1] and let u ∈ R|X |·|Z| be the vector defined as

u(x′, z′) =


1
|X | if z′ = z

0 otherwise

for all x′ ∈ X and z′ ∈ Z. For every y ∈ Y it holds that

Pr [(a1, out) = (1, 1)] = Pr [1 < i∗] · Pr
ỹ←Y

[f(x, ỹ, z) = 1] · Pr
x̃←X

[f(x̃, y, z) = 1] (8)

+ Pr [i∗ = 1] ·Mz(x, y) · βy,z

= (1− α) · s · uT ·Mr(·, y) + α ·Mz(x, y) · βy,z. (9)

We next analyze the probability that S outputs (1, 1). We first introduce some notations. Let
dκ ∈ [0, 1]|X |·|Z| denote the probability vector that corresponds to the distribution Dκ. For a
possible output out′ ∈ {0, 1}, let

qκ,x∗,z∗,out′ = Pr
(x∗,z∗)←Dκ

[
S(κ, x, z, x∗, z∗, out′) = (1, 1)

]
.

and let Qκ,out′ ∈ [0, 1](|X |·|Z|)×(|X |·|Z|) be the diagonal matrix whose diagonals are defined as
Qκ,out′((x∗, z∗), (x∗, z∗)) = qκ,x∗,z∗,out′ for all x∗ ∈ X and z∗ ∈ Z. Finally, let P ∈ R(|X |·|Z|)×(|X |·|Z|)

be the matrix where all its rows are the vector pT , and let I ∈ R(|X |·|Z|)×(|X |·|Z|) be the identity
matrix.

Observe that

Pr
(x∗,z∗)←Dκ

[S(κ, x, z, x∗, z∗, f(x∗, y, z∗)) = (1, 1)]

=
∑

x∗∈X ,
z∗∈Z

dκ(x∗, z∗) ·
(
Mr((x∗, z∗), y) · qκ,x∗,z∗,1 + Mr((x∗, z∗), y) · qκ,x∗,z∗,0

)

= dT
κ ·
(
Qκ,1 ·Mr + Qκ,0 ·Mr

)
· ey

= dT
κ · (Qκ,1 ·Mr + Qκ,0 · (J−Mr)) · ey

= dT
κ · (Qκ,1 ·Mr + Qκ,0 · (P ·Mr −Mr)) · ey

= dT
κ · (Qκ,1 + Qκ,0 · (P− I)) ·Mr · ey.

Combining this with Equations (7) and (8), it follows that∣∣∣(1− α) · s · uT ·Mr · ey + α ·Mz(x, y) · βy,z − dT
κ · (Qκ,1 + Qκ,0 · (P− I)) ·Mr · ey

∣∣∣ ≤ neg(κ),
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for all y ∈ Y. Therefore, the vector

1
α
·
(
(1− α) · s · uT − dT

κ · (Qκ,1 + Qκ,0 · (P− I))
)
·Mr

tends to (Mz(x, y) ·βy,z)y∈Y as κ→∞. Recall that α is constant and all entries in the two vectors
are probabilities, hence the preimage belongs to [−1/α, 1/α]|X |·|Z|. Since this set is mapped by Mr
to a closed set (in the topological sense), there exists v such that v ·Mr = (Mz(x, y) · βy,z)y∈Y .
Since it must hold for all x ∈ X , there exists X for which it holds that X ·Mr = Mz ·Bz.

5 A Complete Analysis of the System of Equations
In this chapter, we abstract the system of equations that arose from the analysis of Protocol 4.3. Let
n, m, k ∈ N and fix two collections of matrices N = {Nz ∈ Rn×ℓ}z∈[k] and M = {Mz ∈ Rm×ℓ}z∈[k],
and a vector β ∈ Rk·ℓ whose coordinates are indexed with a pair (y, z) ∈ [ℓ]× [k]. The system for
N, M, and β, denoted Sys(N,M, β), is defined as follows. For every z ∈ [k] let Bz ∈ Rk×k be the
diagonal matrix whose yth entry on the diagonal is βy,z, and let βz = (βy,z)y∈[ℓ]. Then the system
is given by 

∀z ∈ [k] : Xz ·Nz = Mz ·Bz

∀z ∈ [k] : pT ·Mz = βT
z

pT · 1 = 1
(10)

where the unknowns are the matrices Xz ∈ Rm×n and the vector p ∈ Rn. We call Sys(N,M, β)
solvable if there exist (Xz)z∈[k] and p that satisfy Equation (10).

As an example, recall that in the way we used the system in Section 4, the collection of matrices
N and M were defined by the functionality to be computed, the vector β defines the special-round
protocol to be used to compute the functionality, and (Xz)z∈[k] and p translate to the simulators for
the adversaries. That is, given a solitary output three-party functionality f : X ×Y ×Z → {0, 1},
the family N contains only the projection matrix Mr (i.e., Nz = Mr for all z ∈ [k]), and the family
M is the set of all associated matrices of f . See Example 5.4 below for a concrete example.

Since we are interested in when a secure protocol exists, in this section we consider the following
question:

Given N and M, for what values of β is Sys(N,M, β) solvable?

Note that an answer does not necessarily provide us with a secure three-party protocol for solitary
output functionalities since the security also requires additional inequalities to hold. However,
by Proposition 4.5 and Lemma 4.8 a solution to the system is a necessary condition for security.
Therefore, we obtain an equivalent simpler formulation for the necessary condition (see Corollary 5.3
below for a formal statement). Additionally, this allows us to find an example of a functionality
where no special-round protocol computes it with full security, and our impossibility result from
Section 6 does not apply (see Example 5.4).

Interestingly, our analysis can be applied to other settings. We showcase this in Section 5.2,
where we show how our analysis can be applied to the setting of fair two-party computation for
Boolean functionalities. Similarly to the solitary output setting, here we are also able to provide
necessary and sufficient conditions for the security of special-round protocols, though here the gap
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is much smaller. This provides stronger results than what was shown by [26, 8, 31, 9]. Thus,
our analysis could be of independent interest and may find use in other models and more general
settings as well.

5.1 Characterizing the Existence of Solutions for the Equations

In this section, we characterize for what β the system Sys(N,M, β) is solvable. Roughly, we show
that a solution exists if and only if the image of a certain matrix contains the first standard basis
vector e1. Before formally stating our results, we first introduce some notations.

Notations. For a matrix M we denote its rank by rank(M). We further denote by rref(M) its
reduced row echelon form and by rref∗(M) its reduced row echelon form with the rows of zeros
removed. Given a matrix R ∈ Rm×ℓ that is in reduced row echelon form, a column y ∈ [ℓ] is called
a pivot if R(·, y) is a standard basis vector and for all y′ < y (according to lexicographic ordering)
R(·, y′) ̸= R(·, y). The column is called free otherwise. We let PR denote the set of pivots in R,
and let FR denote the set of free columns in R. Finally, we denote the pivot-to-row function of R
by ptrR : PR → [m]. That is, it is the function that given a pivot y ∈ PR, returns the unique row
x ∈ [m] such that R(x, y) = 1. We prove the following.

Theorem 5.1. Let n, m, k ∈ N and fix two collections of matrices N = {Nz ∈ Rn×ℓ}z∈[k] and
M = {Mz ∈ Rm×ℓ}z∈[k]. For every z ∈ [k], denote Rz = rref∗(Nz), and define the matrix
Kz ∈ R(m·(ℓ−rank(Nz)))×ℓ as

Kz((x, yfree), y) =


Mz(x, y) ·Rz(ptrRz

(y), yfree) if y ∈ PRz

−Mz(x, y) if y = yfree

0 otherwise

for all x ∈ [m], yfree ∈ FRz , and y ∈ [ℓ]. Finally, let

L =
(
1||r

(
(M1|| . . . ||Mk) · (K1|| . . . ||Kk)T

))
.

There exists a vector β ∈ Rk·ℓ such that Sys(N,M, β) is solvable if and only if e1 ∈ Im(L),
where e1 is the first standard basis vector. Moreover, if L · v = e1 then β = (M1|| . . . ||Mk)T · v is
such that Sys(N,M, β) is solvable.

To prove the Theorem 5.1, we first characterize when a matrix Xz exists for a single z. Roughly,
we show that a solution exists if and only if the entries in the vector β satisfy some linear relation.

Lemma 5.2. Let N ∈ Rn×ℓ, let M ∈ Rm×ℓ, and let β ∈ Rℓ. Denote by B ∈ Rℓ×ℓ the diagonal
matrix whose yth entry is βy. Finally, let R = rref∗(N) and define the matrix K ∈ R(m·(ℓ−rank(N)))×ℓ

as

K((x, yfree), y) =


M(x, y) ·R(ptrR(y), yfree) if y ∈ PR

−M(x, y) if y = yfree

0 otherwise

for all x ∈ [m], yfree ∈ FR, and y ∈ [ℓ]. Then there exist a matrix X ∈ Rm×n such that X·N = M·B
if and only if β ∈ Ker(K).
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Proof. We first transform the system into an equivalent system. Let R̂ ∈ Rn×ℓ denote the reduced
row echelon form of N and let E ∈ Rn×n be the matrix that transforms N to R̂ using elementary
row operations. Then E ·N = R̂. Since row reduction is an invertible process, E has an inverse
E−1 ∈ Rn×n. Let X̂ = X ·E−1. Then

X̂ · R̂ = X ·E−1 ·E ·N = X ·N = M ·B.

Let n′ = rank(N). Recall that R ∈ Rn′×ℓ is the matrix R̂ with the rows of zeros removed. Then a
solution X̂ exists if and only if there exists X̃ ∈ Rm×n′ such that

X̃ ·R = M ·B. (11)

We may now only concern ourselves with analyzing Equation (11).
To analyze Equation (11), we first show that a solution for the set of columns in PR fixes the

solution matrix X̃. We then use this to analyze the system for the columns in FR. Observe that
for every ypiv ∈ PR it holds that

βypiv ·M(·, ypiv) = M ·B(·, ypiv) = X̃ ·R(·, ypiv) = X̃(·, ptrR(ypiv)).

Then for every yfree ∈ FR it follows that

βyfree ·M(·, yfree) = M ·B(·, yfree) = X̃ ·R(·, yfree) =
∑

x∈[n′]
X̃(·, x) ·R(x, yfree).

Since ptrR : PR → [n′] is bijective, it follows that

βyfree ·M(·, yfree) =
∑

x∈[n′]
X̃(·, x) ·R(x, yfree)

=
∑

ypiv∈PR

X̃(·, ptrR (ypiv)) ·R(ptrR (ypiv) , yfree)

=
∑

ypiv∈PR

βypiv ·M(·, ypiv) ·R(ptrR (ypiv) , yfree).

We conclude that if there exists a solution to Equation (11), then it must hold that K · β = 0.
Moreover, if K ·β = 0, then the above analysis shows that X̃(·, ptrR(ypiv)) = βypiv ·N(·, ypiv) for all
ypiv ∈ Ypiv is a solution to Equation (11).

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.2, the matrices (Xz)z∈[k] exist if and only if (K1|| . . . ||Kk)·β =
0. Therefore, for p to exist it must satisfy

(K1|| . . . ||Kk) · (M1|| . . . ||Mk)T · p = 0 and 1T · p = 1.

Since this is equivalent to L · p = e1, the theorem follows.

Combining Theorem 5.1, Proposition 4.5, and Lemma 4.8, provides a simple necessary condition
for the existence of a special-round protocol computing a solitary output three-party Boolean
functionality.
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Corollary 5.3. Let f : X ×Y ×Z → {0, 1} be a solitary output three-party Boolean functionality,
let N = {Mr} (i.e., Nz = Mr for all z ∈ Z), let M = {Mz}z∈Z , and define L as in Theorem 5.1.
Assume that there exists a vector p ∈ R|X |·|Z| such that pT ·Mr = 1T . If e1 /∈ L then no special-
round protocol πso

sr (α, β) with a constant α > 0 computes f with full security.

Example 5.4. Consider the following randomized solitary output functionality f : X × Y × Z →
{0, 1}, whose associated matrices M0 and M1 are defined by the following matrices.

M0 =

 0 1/4 1/2
1/4 1/2 3/4
1/2 3/4 1

 and M1 =

0 1/3 2/3
0 1/3 2/3
0 1/3 2/3

 ,

where X = {x1, x2, x3}, Y = {y1, y2, y3}, and Z = {0, 1}. First, note that M0 and M1 describe
two 2-ary functionalities, f0 which is associated with M0 and f1 which is associated with M1.
The functionality f describes two 3-ary extensions. The first is of f0, that is f(·, ·, 0) ≡ f0(·, ·, λ),
and the second is of f1, that is f(·, ·, 1) ≡ f1(·, ·, λ). We now show that no special-round protocol
πso

sr (α, β) with a constant α > 0 can compute f with full security. Note that since f is not strong
semi-balanced, we cannot apply Theorem 6.3 to show it is impossible to compute. Thus, f is an
example of a function whose status is unknown.

The reduced row echelon form matrices (without the rows of zeros) R0 and R1 of M0 and M1,
respectively, are given by

R0 =
(

1 0 −1
0 1 2

)
and R1 =

(
0 1 2

)
.

Then the matrices K0 and K1 are defined as

K0 =


0 1

2 −1
2

−1
4 1 −3

4

−1
2

3
2 −1

 and K1 =


0 2

3 −2
3

0 2
3 −2

3

0 2
3 −2

3

 .

Recall that L =
(
1||r

(
(M0||M1) · (K0||K1)T

))
. Then,

L =


1 1 1
−25

72 −25
72 −25

72

−25
72 −25

72 −25
72

−25
72 −25

72 −25
72

 .

Since e1 /∈ Im(L), by Corollary 5.3 it follows that no special-round protocol πso
sr (α, β) with a constant

α > 0 computes f with full security.
We stress that the above functionality cannot be computed using πso

sr (α, β) for any constant α > 0
and vector β, but we do not know if this functionality can be computed with full security in general.
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5.2 Applications to Two-Party Fair Computation

We next show how the above results can be applied to the two-party setting for Boolean functional-
ities. Recall that Asharov et al. [9] characterizes the set of symmetric Boolean functionalities (i.e.,
both parties output the same bit as the output) that can be computed with full security in this
setting. Our results, however, strengthen [9], as we present a family of special-round protocols and
analyze (using Theorem 5.1) for a given functionality which of the protocols securely computes it.
We believe our techniques could be used to construct secure protocols for several more settings,
e.g., non-Boolean asymmetric functionalities. Thus, this could also allow us to improve the tech-
niques of [21, 32] for constructing fair protocols, which used locking strategies to determine which
special-round protocols one should use.

We next present the family of special-round protocols for the two-party setting. Similarly to
the solitary output setting, the family of protocols we construct here naturally generalize previous
constructions [26, 8, 9]. We further describe them in the dealer model for the two-party setting,
which [8, 9] showed how to compile them to a protocol in the real world. In short, the dealer is
defined similarly to the solitary output setting, but instead of sending A and B their shares of ai

and bi, respectively, the dealer sends them the actual value of ai and bi. We next formalize the
description of the protocols. Let α ∈ (0, 1] and let β ∈ [0, 1]|Y|. We define the protocol πfair

sr (α, β)
as follows.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 5.5 (πfair

sr (α, β)).
Private inputs: A holds x ∈ X and B holds y ∈ Y.
Common inputs: Both parties hold the security parameter 1κ.

1. A and B send their private inputs x and y to the dealer.

2. The dealer samples i∗ ← Geom(α) according to the geometric distribution with parameter α.

3. The dealer computes w = f(x, y). It then sets b̃ = 1 with probability βy and sets b̃ = 0 with
probability 1− βy.

4. The dealer computes the backup values for every i ∈ {0, . . . , r} as

ai =
{

f(x, ỹi) if i < i∗

w otherwise
and bi =


f(x̃i, y) if i < i∗

b̃ if i = i∗ − 1
w otherwise

,

where ỹi ← Y and x̃i ← X are independent.

5. For i = 1 to r:

(a) The dealer sends ai to A, which responds with either continue or abort.
(b) If A responds with abort, then the dealer sends abort to B and halts, and B outputs bi−1.
(c) The dealer sends bi to B. which responds with either continue or abort.
(d) If B responds with abort, then the dealer sends abort to A and halts, and A outputs ai.

6. If no party aborted, then A outputs ar and B outputs br.
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Below we give a sufficient and necessary condition for the security of the protocol. We first
introduce some new definitions. The first definition is the notion of an associated matrix for a
2-ary functionality.

Definition 5.6 (Associated matrix of 2-ary function). Let f : X × Y → {0, 1} be a 2-ary Boolean
function. We define its associated matrix Mf ∈ R|X |×|Y| as follows. The rows and columns of Mf

are indexed with the elements of X and Y, respectively, and each entry is defined as Mf (x, y) =
Pr[f(x, y) = 1] for x ∈ X and y ∈ Y. We denote by Mf the complement matrix of f , where
Mf = J −Mf . Finally, we let Mone = (Mf ||1) denote the matrix Mf concatenated with the
all-one column. Finally, we index the last column by yone, that is Mone(·, yone) = 1.

We now define an equivalence relation over the columns of a matrix. We are interested in when
two columns have a non-zero entry in the same row of the reduced row echelon form of the matrix.
Since this relation is not transitive, we define the equivalence relation as its transitive closure.

Definition 5.7. Let M ∈ Rm×ℓ be a matrix and let R = rref(M) be its reduced row echelon form.
For two columns y, y′ ∈ [ℓ], we write y ∼M y′ if there exists x ∈ [m] such that R(x, y) ̸= 0 and
R(x, y′) ̸= 0. We define the equivalence relation ≡M to be the transitive closure of ∼M. That is,
y ≡M y′ if there exists a sequence y1, . . . , yk ∈ [ℓ] such that

y ∼M y1 ∼M . . . ∼M yk ∼M y′.

When M is clear from context, we write y ≡ y′ to alleviate notations.

We are now ready to state the main theorem of this section.

Theorem 5.8. Let f : X × Y → {0, 1} be a Boolean two-party functionality, and let β ∈ [0, 1]|Y|.
Assume that there exists a vector p ∈ R|X | such that pT ·Mf = β, and pT · 1 = 1, and that the
following hold.

1. For all y, y′ ∈ Y such that y ≡Mf
y′ it holds that βy = βy′.

2. If 1 ∈ Im(Mf ), then for every y ∈ Y such that y ≡Mone yone it holds that βy = 1.

Then, for all sufficiently small constant α > 0, the protocol πfair
sr (α, β) computes f with full security.

Conversely, if for a constant α > 0 the protocol πfair
sr (α, β) computes f with full security, then

there exists a vector p ∈ R|X | such that pT ·Mf = β, and pT ·1 = 1, and for all y, y ∈ Y such that
y ≡Mf

y′ it holds that βy = βy′.

As a corollary, if 1 /∈ Im(Mf ) then Theorem 5.8 characterizes the set of functionalities that can
be computed with full security using a protocol from πfair

sr (α, β).

Corollary 5.9. Let f : X ×Y → {0, 1} be a Boolean two-party functionality such that 1 /∈ Im(Mf ),
and let β ∈ [0, 1]|Y|. Then, there exists a constant α > 0 for which πfair

sr (α, β) computes f with full
security if and only if there exists a vector p ∈ R|X | such that pT ·Mf = β, and pT · 1 = 1, and
for all y, y′ ∈ Y such that y ≡Mf

y′ it holds that βy = βy′.
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The proof of Theorem 5.8 is given below. Towards proving Theorem 5.8, we first prove three
lemmas. The first two lemmas reduce each direction to a system of the form X ·M = M ·B, where
B is a diagonal matrix. The third lemma characterizes when such a system has a solution X.

The first lemma reduces the security of the protocol into a system of linear equations.

Lemma 5.10. Let f : X × Y → {0, 1} be a two-party Boolean functionality, let β ∈ [0, 1]|Y|, and
let N = M = {Mone}. Assume that Sys(N,M, (β||1)) is solvable. Then, for all sufficiently small
constant α > 0, the protocol πfair

sr (α, β) computes f with full security.

Proof. Let X ∈ R|X |×|X | and p ∈ R|X | be the solutions for Sys(N,M, (β||1)). That is,

X ·Mone = Mone ·
(

B 0
0T 1

)
, pT ·Mf = βT , and pT · 1 = 1,

where B ∈ R|Y|×|Y| be the diagonal matrix for which the values on the main diagonal are βy for
all y ∈ Y. We show that πfair

sr (α, β) computes f with full security. First, observe that correctness
holds since i∗ > r occurs with negligible probability. It remains to show that the protocol is secure.
Note that a corrupted B can be simulated easily. Intuitively, this is because A gets its backup value
ai before B gets its backup value bi, hence A learns the output first. We formally handle this case
in Appendix A.3. We next consider the case of a corrupted A. Fix a real-world adversary A that
corrupts A. We define the simulator as follows.

1. Query the adversary for the input x it sends to the dealer.

2. Sample i∗ ← Geom(α) according to the geometric distribution with parameter α.

3. For i = 1 to i∗ − 1:

(a) Compute ai = f(x, ỹi), where ỹi ← Y, and send it to A.
(b) If A aborts A then do the following.

i. Sample x∗ ← vai
x , where vai

x is a probability vector to be defined by the analysis
below.

ii. Send x∗ to the trusted party, output whatever A outputs, and halt.

4. Send x to the trusted party and receive w = f(x, y).

5. For i = i∗ to r:

• Send ai = w to A.
• If A aborts A, then output whatever it outputs and halt.

6. Output whatever A outputs and halt.

Let i denote the round where the adversary instructs A to abort (set to r + 1 if no such round
exists). Note that if i > i∗, then the output of the honest party in both worlds is equal to f(x, y), and
the view of A is identically distributed given the output. Therefore, we may condition on the event
i ≤ i∗. Now, given that i ≤ i∗, observe that the backup values a1, . . . , ai−1 and bi−1 are independent
in both worlds. Thus, it is enough to analyze the distribution of (ai, bi−1) in both worlds. In the
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following, we fix the input x ∈ X that A sends to the dealer, let sx = Prỹ←Y [f(x, ỹ) = 1], and let
u ∈ R|X | denote the uniform probability vector over X .

Let us first analyze the probability that (ai, bi−1) = (1, 1). In the real world, it holds that

Pr [(ai, bi−1) = (1, 1) | i ≤ i∗] = (1− α) · Pr [f(x, ỹi) = 1] · Pr [f(x̃i, y) = 1]
+ α ·Mf (x, y) · βy

= (1− α) · sx · uT ·Mf (·, y) + α ·Mf (x, y) · βy.

On the other hand, in the ideal world, it holds that

Pr [(ai, bi−1) = (1, 1) | i ≤ i∗] = (1− α) · Pr [f(x, ỹi) = 1] · Pr [f(x∗, y) = 1 | ai = 1] +
α ·Mf (x, y)

= (1− α) · sx · v1
x ·Mf (·, y) + α ·Mf (x, y).

For the protocol to be secure, it must hold that the distribution of (ai, bi−1) in the real world is
identical to the distribution of (ai, bi−1) in the ideal world. Thus, it must hold that

(1− α) · sx · uT ·Mf (·, y) + α ·Mf (x, y) · βy

= (1− α) · sx · v1
x ·Mf (·, y) + α ·Mf (x, y). (12)

Observe that if sx = 0 then f(x, ·) ≡ 0 is the constant 0 function. Therefore, both sides of
Equation (12) are 0. Assume now that sx ̸= 0. Isolating v1

x results in

v1
x ·Mf (·, y) = uT ·Mf (·, y) + α

(1− α) · sx
·Mf (x, y) · βy −

α

(1− α) · sx
·Mf (x, y).

Since this must hold for all y ∈ Y, we get that

v1
x ·Mf = uT ·Mf + α

(1− α) · sx
· (Mf (x, y) · βy)T

y∈Y −
α

(1− α) · sx
· eT

x ·Mf , (13)

where ex is the xth standard basis vector. Now, recall that by assumption, there exists a matrix
X ∈ R|X |×|X | such that

X ·Mone = Mone ·
(

B 0
0T 1

)
.

Stated differently,
X ·Mf = Mf ·B and X · 1 = 1.

Therefore Equation (13) may be written as

v1
x ·Mf =

(
uT + α

(1− α) · sx
·X(x, ·)− α

(1− α) · sx
· eT

x

)
·Mf .

Setting v1
x = uT + α

(1−α)·sx
·X(x, ·) − α

(1−α)·sx
· eT

x solves the equation. It remains to show that it
is also a probability vector. First, observe that since uT and eT

x are probability vectors and since
X(x, ·) · 1 = 1, it holds that

v1
x · 1 = uT · 1 + α

(1− α) · sx
· (X(x, ·) · 1)− α

(1− α) · sx
· eT

x · 1

= 1 + α

(1− α) · sx
− α

(1− α) · sx

= 1.
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Next, we show that v1
x(x′) ≥ 0 for all x′ ∈ X . Indeed,

v1
x(x′) ≥ 1

|X |
+ α

(1− α) · sx
·X(x, x′)− α

(1− α) · sx

= 1
|X |

+ α

(1− α) · sx
· (X(x, x′)− 1).

Note that the second term tends to 0 as α tends to 0. Thus, v1
x(x′) is arbitrarily close to 1

|X | ≥ 0,
hence it is positive for all sufficiently small constant α > 0. We conclude that v1

x is a probability
vector.

It remains to consider the remaining three cases, i.e., the probability that (ai, bi−1) = (0, 0),
that (ai, bi−1) = (1, 0), and that (ai, bi−1) = (0, 1). First, we argue that the case of (ai, bi−1) = (0, 0)
can be analyzed using the same analysis of the case of (ai, bi−1) = (1, 1). To show this, we prove
that there exists a matrix X′ ∈ R|X |×|X | for which it holds that

X′ ·Mone = Mone ·
(

B 0
0T 1

)
, (14)

where B = I−B. The existence of X′ will imply the case of (ai, bi−1) = (0, 0) by similar arguments
as before.

Let X′ = I + P−X, where P ∈ R|X |×|X | is the matrix that each row of it is equal to pT . Then,

X′ · 1 = I · 1 + P · 1−X · 1 = 1 + 1− 1 = 1,

and for all x ∈ X it holds that

X′(x, ·) ·Mf = X′(x, ·) · (J−Mf )

=
(
eT

x + pT −X(x, ·)
)
· (J−Mf )

= eT
x · J− eT

x ·Mf + pT · J− pT ·Mf −X(x, ·) · J + X(x, ·) ·Mf

= 1T − (Mf (x, y))T
y∈Y + 1T − βT − 1T + (Mf (x, y) · βy)T

y∈Y

= (1−Mf (x, y)− βy + Mf (x, y) · βy)T
y∈Y

= ((1−Mf (x, y)) · (1− β))T
y∈Y

=
(
Mf (x, y) · (1− βy)

)T

y∈Y
.

Finally, similarly to what we showed in the solitary output setting in Section 4.1, the case of
(ai, bi−1) = (0, 1) is equivalent to the case of (ai, bi−1) = (0, 0) and the case of (ai, bi−1) = (1, 0) is
equivalent to the case of (ai, bi−1) = (1, 1). To see this, first observe that

Pr [ai = 0] = Pr [ai = 0, bi−1 = 0] + Pr [ai = 0, bi−1 = 1] .

Since ai is identically distributed in both worlds and we proved that the probability that (ai, bi−1) =
(0, 0) is the same in both worlds as well, it follows that the probability that (ai, bi−1) = (0, 1) is the
same. Since all probabilities sum to 1, it follows that the probability that (ai, bi−1) = (1, 0) is also
the same as the probability that (ai, bi−1) = (1, 1).
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We next state and prove the second lemma, which states that the security of the protocol implies
the existence of solutions X and p for a system of the form

X ·Mf = Mf ·B
pT ·Mf = βT

pT · 1 = 1
,

for a diagonal matrix B ∈ R|Y|×|Y| and a vector β = B(y, y) for all y ∈ Y.

Lemma 5.11. Let f : X × Y → {0, 1} be a Boolean two-party functionality, let α > 0 be a
constant, and let β = (βy)y∈Y ∈ [0, 1]|Y|. Assume that πfair

sr (α, β) computes f with full security.
Then Sys({Mf} , {Mf} , β) is solvable.

Proof. Fix x ∈ X . We describe two real-world adversaries that corrupts A for πfair
sr (α, β), and show

that the existence of their simulators implies the statement of the lemma. The first adversary
instructs A to abort before sending the first message if a1 = 1, and otherwise instructs it to act
honestly until the end of the protocol. The second adversary instructs A to abort after it obtains
a1. We first describe the first adversary and use it to show the existence of the solution matrix X,
and later we describe the second adversary and use it to show the existence of the solution vector
p. Let A be the adversary that corrupts A and works as follows.

1. Instruct A to send x to the dealer, and obtain the backup value a1 from the dealer.

2. If a1 = 1, then instruct A to abort the execution. The dealer then sends b0 to B who outputs
it.

3. Otherwise, if a1 ̸= 1 then instruct A to act honestly until the end of the protocol. The dealer
then sends br to B who outputs it.

Denote by b the output of B. By the security assumption, there exists a simulator Sim (that may
depend on κ) that simulates A in the ideal world. Let Dκ denote the distribution over X that is
used to sample the input x∗ sent by Sim to the trusted party. Denote by S the algorithm that on
input (κ, x, x∗, f(x∗, y)), runs Sim given that it sent x∗ to the trusted party, and outputs whatever
it outputs.10 Then assuming x∗ ← Dκ, it follows that the output distribution of S(κ, x, x∗, f(x∗, y))
is identical to the output distribution of the simulator (and the output of B is equal to f(x∗, y)).
By the security assumption, it follows that

{(S(κ, x, x∗, f(x∗, y)), f(x∗, y))}κ∈N,y∈Y
C≡
{

REALπfair
sr (α,β),A(κ, x, y)

}
κ∈N,y∈Y

.

Since the domain of f is of constant size, it follows that the ensembles are statistically close. In
particular, it holds that

|Pr [S(κ, x, x∗, f(x∗, y)) = 1, f(x∗, y) = 1]− Pr [a1 = 1, b = 1]| = neg(κ). (15)

We now analyze the two probabilities, which shows that there exists a matrix X ∈ R|X |×|X | such
that

X(x, ·) ·Mf = Mf (x, ·) ·B = (Mf (x, y) · βy)T
y∈Y .

10Similarly to the solitary output setting, S might be inefficient.
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We start by analyzing the real world. Let u ∈ R|X | be the uniform probability vector over X ,
and let sx = Prỹ←Y [f(x, ỹ) = 1]. For every y ∈ Y it holds that

Pr [a1 = 1, b = 1] = Pr [1 < i∗] · Pr
ỹ←Y

[f(x, ỹ) = 1] · Pr
x̃←X

[f(x̃, y) = 1]

+ Pr [i∗ = 1] · Pr [f(x, y) = 1] · βy

= (1− α) · sx · uT ·Mf (·, y) + α ·Mf (x, y) · βy. (16)

We next analyze the probability that a1 = 1 and b = 1 in the ideal world. Let dκ ∈ [0, 1]|X | denote
the probability vector that corresponds to the distribution Dκ. For a possible output a ∈ {0, 1},
let

qκ,x∗,a = Pr
x∗←Dκ

[S(κ, x, x∗, a) = 1] ,

and let Qκ,a ∈ [0, 1]|X |×|X | be the diagonal matrix whose diagonals are defined as Qκ,a(x∗, x∗) =
qκ,x∗,a for all x∗ ∈ X . Observe that

Pr [(S(κ, x, x∗, f(x∗, y)) = 1, b = 1)] =
∑

x∗∈X
dκ(x∗) ·Mf (x∗, y) · qκ,x∗,1

= dT
κ ·Qκ,1 ·Mf · ey,

where ey is the yth standard basis vector.
Combined with Equations (15) and (16), we get that∣∣∣(1− α) · sx · uT ·Mf (·, y) + α ·Mf (x, y) · βy − dT

κ ·Qκ,1 ·Mf · ey

∣∣∣ ≤ neg(κ),

for all y ∈ Y. Therefore, the vector

1
α
·
(
(1− α) · sx · uT − dT

κ ·Qκ,1
)
·Mf

tends to (Mf (x, y) · βy)y∈Y as κ→∞. Recall that α is constant and all entries in the two vectors
are probabilities, hence the preimage belongs to [−1/α, 1/α]|X |. Since this set is mapped by Mf to
a closed set (in the topological sense), there exists x such that x ·Mf = (Mf (x, y) · βy)y∈Y . Since
it holds for all x ∈ X , it holds that there exists X such that

X ·Mf = Mf ·B.

To conclude the proof we show that there exists a vector p ∈ R|X | such that pT ·Mf = βT and
pT · 1 = 1. Fix a real-world adversary A1 that corrupts A, sends x to the dealer, and instructs A
to abort after receiving the backup value a1 from the dealer. Let w(y) denote the output of B in
the real-world when holds input y. Then for all inputs y ∈ Y it holds that

Pr [w(y) = 1] = Pr [1 < i∗] · Pr [f(x̃i, y) = 1] + Pr [1 = i∗] · βy

= (1− α) · uT ·Mf (·, y) + α · βy.

In the ideal world, a simulator sends to the trusted party a value that depends on x. Therefore, if
πfair

sr (α, β) computes f with full security, there must exist a probability vector xx ∈ R|X | such that

xT
x ·Mf (·, y) = (1− α) · uT ·Mf (·, y) + α · βy.
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Since it must hold for all y ∈ Y, it must hold that

xT
x ·Mf = (1− α) · uT ·Mf + α · βT .

Rewriting the equation results in

1
α

(
xT

x − (1− α) · uT
)
·Mf = βT .

Observe that for pT = 1
α

(
xT

x − (1− α) · uT
)

it holds that pT ·Mf = βT , and that

pT · 1 = 1
α

(
xT

x − (1− α) · uT
)
· 1

= 1
α

(
xT

x · 1− (1− α) · uT · 1
)

= 1
α

(1− (1− α))

= 1.

Therefore, Sys(N,M, β) is solvable.

We now state and prove the third lemma characterizing when a system of the form X·M = M·B,
where B is a diagonal matrix, has a solution X.

Lemma 5.12. Let M ∈ Rm×ℓ and let β ∈ [0, 1]ℓ. Define B ∈ Rℓ×ℓ to be the diagonal matrix whose
yth entry on the diagonal is βy. Then there exist X ∈ Rm×m such that X ·M = M ·B if and only
if for all y, y′ ∈ [ℓ] such that y ≡ y′ it holds that βy = βy′.

Proof. We first transform the system of equations into an equivalent system. Let R̂ = rref(M),
and let E ∈ Rm×m be the matrix that transforms M into R̂ using elementary row operations. That
is, E ·M = R̂. Since row reduction is an invertible process, there exists matrix E−1 ∈ Rm×m such
that E−1 ·E = I. Let X̂ = X ·E−1. Therefore,

X̂ · R̂ = X ·E−1 ·E ·M = X ·M = M ·B.

Multiplying both sides of the equation by E and letting X̃ = E · X̂ results in

X̃ · R̂ = R̂ ·B.

Let R = rref∗(M). Observe that a solution X̃ exists if and only if there exists X′ ∈ Rm×m′ such
that

X′ ·R = R ·B. (17)

Indeed, since R is the matrix R̂ with the zero-rows removed, we get that a solution X̃ exists if
and only if X′ exists. For the proof, we apply Lemma 5.2, which characterizes for what vectors
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β there exists a solution for the equation. Let m′ = rank(R) and define K ∈ R(m·(ℓ−m′))×ℓ as in
Lemma 5.2, that is

K((x, yfree), y) =


R(x, y) ·R(ptrR(y), yfree) if y ∈ PR

−R(x, y) if y = yfree

0 otherwise
,

for all x ∈ [m′], yfree ∈ FR, and y ∈ [ℓ]. Then Equation (17) has a solution X′ if and only if
β ∈ Ker(K). To conclude the proof, we characterize Ker(K).

Fix x ∈ [m′], yfree ∈ FR and y ∈ [ℓ], and consider the following cases.

• If y ∈ PR, then there exists x′ ∈ [m′] such that R(x′, y) = 1, and for all x̃ ̸= x′, it holds that
R(x̃, y) = 0. It follows that if x = ptrR(y) then K((x, yfree), y) = 1 ·R(x, yfree) = R(x, yfree),
and if x ̸= ptrR(y) then K((x, yfree), y) = 0 ·R(x, yfree) = 0.

• If y = yfree then K((x, yfree), y) = −R(x, yfree).

• In all other cases, K((x, yfree), y) = 0, by the definition of K.

Then, if R(x, yfree) ̸= 0, the only non-zero entries of the row (x, yfree) are in the columns
y = ptr−1

R (x) and y = yfree. Furthermore, since R(x, yfree) ̸= 0 and R(x, ptr−1
R (x)) = 1, it follows

that yfree ∼ ptr−1
R (x). We conclude that β ∈ Ker(K) if and only if βptr−1

R (x) = βyfree for all x and
yfree such that ptr−1

R (x) ∼ yfree. To complete the proof, we show that for all y ≡ y′ it holds that
βy = βy′ . First, observe that for every column y such that R(·, y) = 0, it holds that y is equivalent
to itself, and hence the statement trivially holds. Now, we stress that for every free column yfree,
it holds that there exists a pivot column ypiv such that yfree ∼ ypiv. This is because if no such ypiv
it holds that yfree is a pivot column itself. The above analysis shows that for such yfree and ypiv it
holds that βyfree = βypiv . Thus, by inductive argument, for all columns y and y′ such that y ≡ y′ it
holds that βy = βy′ .

We are now ready to prove Theorem 5.8 using Lemmas 5.10 to 5.12.

Proof of Theorem 5.8. First, assume that there exists a constant α > 0 for which πfair
sr (α, β) com-

putes f with full security. By Lemma 5.11, there exists a vector p ∈ R|X | such that pT ·Mf = βT

and pT · 1 = 1, and a matrix X ∈ R|X |×|X | such that X ·Mf = Mf ·B. By Lemma 5.12, such X
exists if and only if for all y, y′ ∈ Y such that y ≡Mf

y′ it holds that βy = βy′ .
Now, assume that there exists a vector p ∈ R|X | such that pT ·Mf = βT and pT · 1 = 1, and

that for all y, y′ ∈ Y such that y ≡Mf
y′ it holds that βy = βy′ , and assume that if 1 ∈ Im(Mf ),

then for all y ∈ Y such that y ≡Mone yone, it holds that βy = 1. First, observe that for two distinct
values y, y′ ∈ Y, it holds that y ≡Mf

y′ if and only if y ≡Mone y′. This is because the pivot columns
in the reduced row echelon form of Mf , will remain pivot columns in the reduced row echelon form
of Mone. Note that the rank of Mone is not necessarily equal to the rank of Mf , but the pivot
columns that are associated with the columns of Mf in Mone remain the same as in the reduced
row echelon form of Mf . Thus, for the rest of this proof, we write y ≡ y′ instead of y ≡Mf

y′ and
y ≡Mone y′.
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To show that πfair
sr (α, β) computes f with full security (for all sufficiently small α > 0) by

Lemma 5.10, it suffices to show the existence of a matrix X ∈ R|X |×|X | such that

X ·Mone = Mone ·
(

B 0
0T 1

)
.

Let R = rref∗(Mone). We separate the proof into two cases. For the first case, we assume that
1 /∈ Im(Mf ). Then, rank(Mf ) < rank(Mone), which implies that yone ∈ PR. Therefore, there is no
y ∈ Y for which it holds that y ≡ yone. Thus, by Lemma 5.12, there exists a matrix X ∈ R|X |×|X |
such that

X ·Mone = Mone ·
(

B 0
0T 1

)
.

For the second case, we assume that 1 ∈ Im(Mf ). Then rank(Mf ) = rank(Mone), which implies
that yone ∈ FR. Recall that we assume that for all y ∈ Y such that y ≡ yone it holds that βy = 1,
and for all y, y′ ∈ Y such that y ≡ y′ it holds that βy = βy′ . Therefore, by Lemma 5.12 there exists
a matrix X ∈ R|X |×|X | such that

X ·Mone = Mone ·
(

B 0
0T 1

)
.

In both cases, since Sys(N,M, (β||1)) (for N = M = {Mone}) is solvable, by Lemma 5.10 for
all sufficiently small constant α > 0, the protocol πfair

sr (α, β) computes f with full security.

6 Generalizing the AOV Impossibility Result
In this chapter, we extend the impossibility result of [7] to the setting where C has an input.
Similarly to [7], we consider only Boolean functionalities. In order to state and understand the
result, we first need to generalize the notion of locking strategies [31, 21, 32] to the setting where
a third party holds an input. Originally, locking strategies were defined to capture two-party
functionalities that can be used to construct fair sampling protocols, which allow two parties to
sample dependent values – a task that is known to be impossible to do [17, 2].

Roughly speaking, a locking strategy (for two-party functionalities) for a party P is a way for
P to sample an input, and apply a local operation to the output of the function, such that the
distribution of its final output is independent of the other party’s input.

For Boolean functions, the local operation can be either to flip the output or to keep it, possibly
depending on the input. Makriyannis [31] showed that these strategies (for each party) can be
encoded using a single real-valued vector. The absolute value of each entry represents the weight
of the corresponding input, and the sign represents whether or not the party should flip the output
(given the input). Alon et al. [7] used locking strategies in order to identify the set of all Boolean 2-
ary solitary output three-party functionalities that cannot be computed with full security (dubbing
them strong semi-balanced).

We generalize the notion of locking strategies to the setting where the input of the output-
receiving party C is fixed (and known) to some value z. We refer to these strategies as z-locking
strategies. In essence, these are locking strategies to the induced two-party functionality, when C
holds input z. Formally, we define them for Boolean functionalities as follows.
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Definition 6.1 (z-Locking strategies for Boolean functionalities). Let f : X × Y × Z → {0, 1} be
a Boolean three-party functionality and fix z ∈ Z. A z-locking strategy for A is a vector p ∈ R|X |
satisfying pT ·Mz = δ1 ·1T , for some value δ1 ∈ R. Similarly, a z-locking strategy for B is a vector
q ∈ R|Y| satisfying Mz · q = δ2 · 1, for some value δ2 ∈ R.

Next, we generalize the notion of strong semi-balanced functionalities introduced by [7] to the
setting where C has an input. We later show that strong semi-balanced functionalities cannot be
securely computed.

Definition 6.2 (Strong semi-balanced functionalities). Let f : X × Y × Z → {0, 1} be a solitary
output Boolean three-party functionality. We call f strong semi-balanced, if there exist vectors
p ∈ R|X | and q ∈ R|Y| for A and B, respectively, and there exists z ∈ Z, such that for every z′ ∈ Z,
for every x ∈ X , and for every y ∈ Y, it holds that

pT ·Mz = 1T ,

1T · p < 1,

−1 + 1T · p ≤ pT ·Mz′(·, y) ≤ 1
and


Mz · q = 1T ,

1T · q < 1,

−1 + 1T · q ≤Mz′(x, ·) · q ≤ 1
.

Intuitively, p and q are z-locking strategies satisfying an additional relation with other possible
inputs for C, which is the third part of the definition. We now show that if a solitary output
Boolean three-party functionality f is strong semi-balanced, then f cannot be computed with full
security.

Theorem 6.3. Let f : X × Y × Z → {0, 1} be a strong semi-balanced solitary output Boolean
three-party functionality. Then f cannot be computed with full security.

Proof. Assume towards a contradiction that there exists a secure r-round protocol π computing f .
Since f is strong semi-balanced, there exist vectors p ∈ R|X | and q ∈ R|Y| such that

pT ·Mz = δ1 · 1T , where δ1 > 0
1T · p < δ1,∑

x∈X |px| = 1,

−δ1 + 1T · p ≤ pT ·Mz′(·, y) ≤ δ1

and


Mz · q = δ2 · 1, where δ2 > 0
1T · q < δ2,∑

y∈Y |qy| = 1,

−δ2 + 1T · q ≤Mz′(x, ·) · q ≤ δ2

.

To see this, fix z-locking strategies p̃ and q̃ guaranteed to exist by our assumption that f is
strong semi-balanced. Then define p and q to be p̃ and q̃ normalized with respect to the ℓ1 norm,
respectively. That is, for δ1 = (∑x∈X |p̃x|)−1 and δ2 = (∑y∈Y |q̃y|)−1, define p = δ1 ·p̃ and q = δ2 ·q̃.

Consider an execution of π, where the input of C is the value z, which satisfies pT ·Mz = δ1 ·1T

and Mz ·q = δ2 ·1. We further assume that the inputs x and y of A and B, respectively, are sampled
independently according to |p| and |q|, respectively. That is, A holds the input x with probability
|px| and B holds the input y with probability |qy|. We next introduce some notations. Let flip(x)
output 1 if px < 0, and 0 otherwise. Similarly, let flip(y)11 output 1 if qy < 0, and 0 otherwise.
Let p− = ∑

x∈X :px<0 |px| denote the probability that flip(x) = 1 and let q− = ∑
y∈Y:qy<0 |qy| denote

the probability that flip(y) = 1. We further let p+ = 1 − p− and q+ = 1 − q−. Observe that
1T ·p = p+−p− and that 1T ·q = q+− q−. We use the following lemma proved by [7], stating that
there exists a real world adversary that can guess either flip(y) or flip(x) with “good” probability.

11Formally, we assume without loss of generality that the domains X and Y are disjoint.
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Lemma 6.4 ([7, Lemma 4.2]). There exists a constant ξ > 0 (independent of the protocol) such
that one of the following holds.

• There exists a real-world adversary corrupting A and C that can guess flip(y) with probability
at least δ2 + q− + ξ/r.

• There exists a real-world adversary corrupting B and C that can guess flip(x) with probability
at least δ1 + p− + ξ/r.

At first, it may seem like we cannot apply their lemma in our setting since they assumed that
C does not have an input. However, since we fixed the input of C, the resulting execution of the
protocol computes the 2-ary functionality fz(x, y, λ) = f(x, y, z). Now, similarly to [7], we can use
the security of π against adversaries corrupting either A or B (with an honest C in both cases) to
complete the proof. For completeness, we provide the description of the attack and the proof of
Lemma 6.4 in Appendix A.1.

Without loss of generality, we may assume that the first item of the lemma holds. Let A be
the real-world adversary corrupting A and C guaranteed to exist by Lemma 6.4 (i.e., A can guess
flip(y) with probability at least δ2 + q− + ξ/r). We next show that no ideal-world simulator can
guess this value as well as the real-world adversary. That is, we prove the following claim.

Claim 6.5. For any (possibly randomized) algorithm S : X × Z × {0, 1} → {0, 1}, every x ∈ X ,
and every z′ ∈ Z, it holds that

Pr
y←|q|

[S(x, z′, f(x, y, z′)) = flip(y)] ≤ δ2 + q−.

Proof. Fix x ∈ X and z′ ∈ Z, and let w = f(x, y, z′), and w̃ = w ⊕ flip(y). For brevity, we write
S(w) instead of S(x, z′, w). It holds that

Pr[S(w) = flip(y)] = Pr[S(w)⊕ w = w̃]
= Pr[S(0) = 0, w = 0, w̃ = 0] + Pr[S(1) = 1, w = 1, w̃ = 0]

+ Pr[S(0) = 1, w = 0, w̃ = 1] + Pr[S(1) = 0, w = 1, w̃ = 1]
= Pr[S(0) = 0] · Pr[w = 0, w̃ = 0] + Pr[S(1) = 1] · Pr[w = 1, w̃ = 0]

+ Pr[S(0) = 1] · Pr[w = 0, w̃ = 1] + Pr[S(1) = 0] · Pr[w = 1, w̃ = 1]
≤ max{Pr[w = 0, w̃ = 0], Pr[w = 0, w̃ = 1]}

+ max{Pr[w = 1, w̃ = 0], Pr[w = 1, w̃ = 1]}.

Depending on which quantities are larger, the above expression is upper-bounded by one of the
following.

• Pr[w̃ = w] = Pr[flip(y) = 0] = q+,

• Pr[w̃ ̸= w] = Pr[flip(y) = 1] = q−,

• Pr[w̃ = 0],

• Pr[w̃ = 1],
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where the last equality in the first two equations is implied by the definitions of q+ and q−. Observe
that q− < δ2 + q− since δ2 > 0. Additionally since we assume that 1T · q < δ2, it follows that

δ2 + q− > 1T · q + q− = q+ − q− + q− = q+.

Therefore q+ < δ2 + q−.
It remains to show that Pr[w̃ = 1] and Pr[w̃ = 0] are also upper bounded by δ2 + q−. Indeed,

it holds that

Pr[w̃ = 1] = Pr[w = 1, flip(y) = 0] + Pr[w = 0, flip(y) = 1]
=

∑
y: qy>0

Mz′(x, y) · qy +
∑

y: qy<0
(1−Mz′(x, y)) · (−qy)

=
∑

y

Mz′(x, y) · qy + q−

= Mz′(x, ·) · q + q−

≤ δ2 + q−,

where the inequality holds since we assume that Mz′(x, ·) · q ≤ δ2. Finally, observe that since the
above equation also proves that Pr[w̃ = 1] = Mz′(x, ·) · q + q−, it follows that

Pr[w̃ = 0] = 1− Pr[w̃ = 1] = 1− (Mz′(x, ·) · q + q−)
≤ 1− (−δ2 + 1T · q + q−)
= 1 + δ2 − 1T · q − q−

= δ2 + q+ + q− − q+

= δ2 + q−,

where the inequality holds since −δ2 + 1T · q ≤ Mz′(x, ·) · q, and the third equality is due to the
fact that q− = 1− q+ and that 1T · q = q+ − q−.

We get that every ideal world simulator can guess flip(y) with a probability at most δ2 + q−.
Thus, the adversary A cannot be simulated and we get a contradiction.
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A Missing Proofs

A.1 Proof of Lemma 6.4

We now provide the proof of Lemma 6.4. The proof is nearly identical to the proof of [7, Lemma
4.2], and is taken almost verbatim. We first restate the lemma.

Lemma A.1 (Restatement of Lemma 6.4). Let f : X ×Y ×Z → {0, 1} be a strong-semi balanced
solitary output Boolean three-party functionality. Assume that there exists an r-round protocol for
computing f with full security. Then, there exists a constant ξ > 0 (independent of the protocol)
such that one of the following holds.

• There exists a real-world adversary corrupting A and C that can guess flip(y) with probability
at least δ2 + q− + ξ/r.

• There exists a real-world adversary corrupting B and C that can guess flip(x) with probability
at least δ1 + p− + ξ/r.
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Proof. Let f : X × Y × Z → {0, 1} be a strong semi-balanced solitary output Boolean three-party
functionality with normalized locking strategies p ∈ R|X | and q ∈ R|Y| satisfying

pT ·Mz = δ1 · 1T , where δ1 > 0
1T · p < δ1,∑

x∈X |px| = 1,

−δ1 + 1T · p ≤ pT ·Mz′(·, y) ≤ δ1

and


Mz · q = δ2 · 1, where δ2 > 0
1T · q < δ2,∑

y∈Y |qy| = 1,

−δ2 + 1T · q ≤Mz′(x, ·) · q ≤ δ2

,

for some z ∈ Z, z′ ∈ Z, δ1 = (∑x∈X |p̃x|)−1, and δ2 = (∑y∈Y |q̃y|)−1.
Let flip(x) output 1 if px < 0, and 0 otherwise. Similarly, let flip(y) output 1 if qy < 0,

and 0 otherwise. Let p− = ∑
x∈X :px<0 |px| denote the probability that flip(x) = 1 and let q− =∑

y∈Y:qy<0 |qy| denote the probability that flip(y) = 1. We further let p+ = 1−p− and q+ = 1− q−.
For all i ∈ {0, . . . , r} we let ãi = ai ⊕ flip(x). Similarity, we let b̃i = bi ⊕ flip(y).

We will use the following properties proved by [31] that any 2-ary strong semi-balanced func-
tionality satisfies. Note that since we fixed z ∈ Z, we can think of the functionality f(x, y, z) as
the 2-ary functionality fz(x, y) = f(x, y, z) for all x ∈ X and y ∈ Y.

Lemma A.2 ([7, Lemma 4.4]). Let f : X × Y × Z → {0, 1} be a strong-semi balanced solitary
output Boolean three-party functionality, with normalized z-locking strategies p ∈ R|X | and q ∈ R|Y|
for A, and B, respectively, for some z ∈ Z. Define flip(·), p+, p−, q+, q−, δ1, and δ2 as before.
Then, the following hold.

1. [31, Lemma 6.4:] (p+ − p−)δ2 = (q+ − q−)δ1.

2. [31, Lemma 6.5:] For all y ∈ Y it holds that Prx←|p| [f(x, y, z)⊕ flip(x) = 1] = δ1 + p−.

3. [31, Lemma 6.5:] For all x ∈ X it holds that Pry←|q| [f(x, y, z)⊕ flip(y) = 1] = δ2 + q−.

First, we show that the distributions of every ãi and b̃i are fixed throughout the execution of π.

Claim A.3 ([7, Claim 4.5]). For every i ∈ {0, . . . , r} it holds that∣∣Pr [ãi = 1]− (δ1 + p−)
∣∣ = neg(κ) and that

∣∣∣Pr
[
b̃i = 1

]
− (δ2 + q−)

∣∣∣ = neg(κ)

Proof. We prove the second assertion (the first one is analogous). For that, fix i ∈ {0, . . . , r} and
fix a real-world adversary A that corrupts only A and instructs it to abort after receiving i messages
from B. The output of an honest C in this case is bi. By Item 3 of Lemma A.2 for all x ∈ X it
holds that Pry←|q| [f(x, y, z)⊕ flip(y) = 1] = δ2 + q−. Since π is assumed to be secure, there exists
an ideal world simulator Sim for A. Denote by w the output of the honest party in the ideal world.
By Item 3 of Lemma A.2 it holds that Pr [w ⊕ flip(y) = 1] = δ2 + q−, regardless of what Sim sends
to the trusted party. Hence, up to a negligible difference, the same holds in the real world.

Note that as δ1 > pT · 1 = p+ − p−, it holds that δ1 + p− ≥ −δ1 + p+. Similarly, it holds
that δ2 + q− ≥ −δ2 + q+. The next claim asserts that at some round i, there is a “jump” in the
distribution of the (possibly flipped) backup values.
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Claim A.4 ([7, Claim 4.6]). There exists a value w ∈ {0, 1} and a constant ξ > 0 (independent of
the protocol), such that one of the following holds. There exists a round i ∈ [r] such that either∣∣∣Pr

[
ãi = w ∧ b̃i−1 = 1

]
+ Pr

[
ãi ̸= w ∧ b̃i = 1

]
− (δ2 + q−)

∣∣∣ ≥ ξ/r,

or ∣∣∣Pr
[
b̃i−1 = w ∧ ãi−1 = 1

]
+ Pr

[
b̃i ̸= w ∧ ãi = 1

]
− (δ1 + p−)

∣∣∣ ≥ ξ/r.

Proof. According to Claim A.3, for all i ∈ [r] and all w ∈ {0, 1} it holds that

Pr
[
ãi = w ∧ b̃i−1 = 1

]
+ Pr

[
ãi ̸= w ∧ b̃i = 1

]
− (δ2 + q−)

≥ Pr
[
ãi = w ∧ b̃i−1 = 1

]
+ Pr

[
ãi ̸= w ∧ b̃i = 1

]
− Pr

[
b̃ = 1

]
− neg(κ)

= Pr
[
ãi = w ∧ b̃i−1 = 1

]
− Pr

[
ãi = w ∧ b̃i = 1

]
− neg(κ).

Similarly, it holds that

Pr
[
b̃i−1 = w ∧ ãi−1 = 1

]
+ Pr

[
b̃i−1 ̸= w ∧ b̃i = 1

]
− (δ1 + p−)

≥ Pr
[
b̃i−1 = w ∧ ãi−1 = 1

]
+ Pr

[
b̃i−1 = w ∧ b̃i = 1

]
− neg(κ).

Denote by ∆ the average of the absolute values of the above taken over all i ∈ [r] and w ∈ {0, 1}.
That is,

∆ := 1
4r

r∑
i=1

1∑
w=0

[ ∣∣∣Pr
[
ãi = w ∧ b̃i−1 = 1

]
− Pr

[
ãi = w ∧ b̃i = 1

]
− neg(κ)

∣∣∣
+
∣∣∣Pr

[
b̃i−1 = w ∧ ãi−1 = 1

]
+ Pr

[
b̃i−1 = w ∧ b̃i = 1

]
− neg(κ)

∣∣∣ ].
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Multiplying by 4r and separating the inner sum results in

4r ·∆ =
r∑

i=1

[ ∣∣∣Pr
[
ãi = 0 ∧ b̃i−1 = 1

]
− Pr

[
ãi = 0 ∧ b̃i = 1

]
− neg(κ)

∣∣∣
+
∣∣∣Pr

[
b̃i−1 = 0 ∧ ãi = 1

]
− Pr

[
b̃i−1 = 0 ∧ b̃i = 1

]
− neg(κ)

∣∣∣
+
∣∣∣Pr

[
ãi = 1 ∧ b̃i−1 = 1

]
− Pr

[
ãi = 1 ∧ b̃i = 1

]
− neg(κ)

∣∣∣
+
∣∣∣Pr

[
b̃i−1 = 1 ∧ ãi−1 = 1

]
− Pr

[
b̃i−1 = 1 ∧ b̃i = 1

]
− neg(κ)

∣∣∣ ]

=
r∑

i=1

[
Pr
[
ãi = 0 ∧ b̃i−1 = 0

]
− Pr

[
ãi = 0 ∧ b̃i = 0

]
+ neg(κ)

+ Pr
[
b̃i−1 = 0 ∧ ãi = 0

]
− Pr

[
b̃i−1 = 0 ∧ b̃i = 0

]
+ neg(κ)

+ Pr
[
ãi = 1 ∧ b̃i−1 = 1

]
− Pr

[
ãi = 1 ∧ b̃i = 1

]
+ neg(κ)

+ Pr
[
b̃i−1 = 1 ∧ ãi−1 = 1

]
− Pr

[
b̃i−1 = 1 ∧ b̃i = 1

]
+ neg(κ)

]

≥
r∑

i=1

[
Pr
[
ãi = b̃i−1

]
− Pr

[
ãi = b̃i

]
+ 2neg(κ)

+ Pr
[
b̃i−1 = ãi

]
− Pr

[
b̃i−1 = b̃i

]
+ 2neg(κ)

]

≥ Pr
[
ã0 = b̃0

]
− Pr

[
ãr = b̃r

]
− 2r · neg(κ),

where the inequalities follow from the triangle inequality.
Since ã0 and b̃0 are computed before any interaction is made, they are independent. Thus, by

Claim A.3 it holds that∣∣∣Pr
[
ã0 = b̃0

]
−
(
(δ1 + p−)(δ2 + q−) + (−δ1 + p+)(−δ2 + q+)

)∣∣∣ = neg(κ).

Moreover, since ãr and b̃r correspond to the possibly flipped output of the protocol, it holds that
they are equal if and only if flip(x) = flip(y). Thus, it follows that∣∣∣Pr

[
ãr = b̃r

]
− (p−q− + p+q+)

∣∣∣ = neg(κ).

We get that
∆ ≥ 1

4r

∣∣∣2δ1δ2 + (q− − q+)δ1 + (p− − p+)δ2
∣∣∣− neg(κ).

By Item 1 of Lemma A.2 it holds that (q− − q+)δ1 = (p− − p+)δ2. Thus, it holds that

∆ ≥ δ1
2r

∣∣∣δ2 + q− − q+
∣∣∣− neg(κ).

Since δ1 ̸= 0 and δ2 ̸= qT · 1 = q+ − q−, it follows that for ξ := δ1 · |δ2 + q− − q+|/3 > 0 it holds
that

∆ ≥ δ1
2r
|δ2 + q− − q+| − neg(κ) ≥ ξ/r.
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Thus, by averaging argument the claim follows.

We are now ready to construct the adversary. Assume without loss of generality that there
exists a round i ∈ [r] for which it holds that

Pr
[
ãi = w ∧ b̃i−1 = 1

]
+ Pr

[
ãi ̸= w ∧ b̃i = 1

]
− (δ2 + q−) ≥ ξ/r.

The case where

Pr
[
ãi = w ∧ b̃i−1 = 1

]
+ Pr

[
ãi ̸= w ∧ b̃i = 1

]
− (δ2 + q−) ≤ −ξ/r

can be handled by observing that

Pr
[
ãi = w, b̃i−1 = 1

]
+ Pr

[
ãi ̸= w, b̃i = 1

]
− (δ2 + q−)

= Pr [ãi = w]− Pr
[
ãi = w, b̃i−1 = 0

]
+ Pr [ãi ̸= w]− Pr

[
ãi ̸= w, b̃i = 0

]
− (δ2 + q−)

= −
(
Pr
[
ãi = w, b̃i−1 = 0

]
+ Pr

[
ãi ̸= w, b̃i = 0

]
− (1− δ2 − q−)

)
,

and then applying an analogous argument.
We define the adversary A that corrupts both A and C as follows.

1. Corrupt both A and C, instruct C to set z as its input, and instruct both of them to act
honestly until receiving i messages from B.

2. Compute the backup value ai as an honest A and C would in case B aborts, and do the
following.

(a) If ai ⊕ flip(x) = 1, then instruct A to send its next message honestly and then abort.
(b) If ai ⊕ flip(x) = 0, then instruct A to abort immediately.
(c) In both cases, C acts honestly until the end of the execution, where it obtains the output

b.

3. Output b⊕ 1 as the guess for flip(y).

Observe that the following holds.

Pr [b⊕ 1 = flip(y)] = Pr [ãi = 1 ∧ bi−1 ⊕ 1 = flip(y)] + Pr [ãi = 0 ∧ bi ⊕ 1 = flip(y)]

= Pr
[
ãi = 1, b̃i−1 = 1

]
+ Pr

[
ãi = 0, b̃i = 1

]
≥ δ2 + q− + ξ/r,

which completes the proof.

A.2 Dealing with a Corrupted B in the Solitary Output Setting

To complete the proof of Lemma 4.4, we need to simulate adversaries that either corrupt B, or
corrupt B and C. We first handle the case where only B is corrupted. Let B be a real-world
adversary that corrupts B. We define the simulator as follows.
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1. Query the adversary for the input y it sends to the dealer.

2. Sample i∗ ← Geom(α) according to the geometric distribution with parameter α.

3. For i = 1 to i∗ − 1:

(a) Send to B a random bit which represents its share of the backup value bi.
(b) If B aborts B, then sample y∗ ← Y, send y∗ to the trusted party, and output random

shares as the view of the adversary and halt.

4. Send y to the trusted party and receive w = f(x, y, z).

5. For i = i∗ + 1 to r:

• Send to B a random bit which represent its share from w.
• If B aborts B then output random shares as the view of the adversary and halt.

6. output random shares as the view of the adversary and halt.

Let i denote the round where the adversary instructs B to abort (if no such round exists, set
i = r + 1). First, note that in both worlds the view of B consists only of random and independent
shares. Thus, it suffices to show that the output distribution of C is the same in both worlds. If
i < i∗ then the output of C in both worlds is f(x, ỹ, z), for y ← Y. If i ≥ i∗ the output of C part is
f(x, y, z). In both cases, the output of C is identically distributed in both worlds.

We now consider an adversary B that corrupts both B and C. First, recall that in any protocol
in the dealer model, the adversary cannot abort C. We next describe the simulator.

1. Query the adversary for the inputs y and z it sends to the dealer.

2. Sample random shares (ai[C], bi[C])r
i=0 and send them to B.

3. Sample i∗ ← Geom(α) according to the geometric distribution with parameter α.

4. For i = 1 to i∗ − 1:

(a) If i < i∗ − 1, then compute bi = f(x̃i, y, z), where x̃i ← X . Otherwise, set bi = 1 with
probability βy,z and bi = 0 with probability 1− βy,z.

(b) Send bi[B] := bi − bi[C] to B.
(c) If B aborts B then do the following.

i. Sample y∗ ← Y, send (y∗, z) to the trusted party and receive w = f(x, y∗, z).
ii. Send ai[A] := w − ai[C] to the adversary, output whatever it outputs, and halt.

5. Send (y, z) to the trusted party and receive w = f(x, y, z).

6. For i = i∗ to r:

(a) Send bi[B] = w − bi[C] to B.
(b) If B aborts B then send it ai[A] := w − ai[C], output whatever it outputs, and halt.

7. Output whatever B outputs and halt.
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Denote by i the round where the adversary instructs B to abort (if no such round exists, set
to r + 1). Observe that in the real world, the adversary holds enough shares to reconstruct the
backup values b1, . . . , bi and ai. If i > i∗, then the view of the adversary in both worlds is equal
to b1, . . . , bi and ai, where ai = bi = f(x, y, z). If i = i∗ − 1, then the view of then the view of the
adversary in both worlds is equal to b1, . . . , bi and ai, where ai = f(x, ỹ, z) for ỹ ← Y, and bi = 1
with probability βy,z and bi = 0 with probability 1 − βy,z. Finally, if i < i∗ − 1, then the view of
the adversary in both worlds is equal to b1, . . . , bi and ai, where ai = f(x, ỹ, z) for ỹ ← X , and
bi = f(x̃, y, z) for x̃ ← Y. Also note that if i < i∗, then all the backup values b1, . . . , bi and ai are
independent in both worlds. Thus, the joint distribution of (ai, bi) is identically distributed in both
worlds.

A.3 Dealing with a Corrupted B in the Two-Party Setting

To complete the proof of Lemma 5.10, we need to simulate any adversary corrupting B. Let B be
such a real-world adversary. We define its simulator as follows.

1. Query the adversary for the input y it sends to the dealer.

2. Sample i∗ ← Geom(α) according to the geometric distribution with parameter α.

3. For i = 1 to i∗ − 1:

(a) Compute bi = f(x̃i, y), where x̃i ← X , and send it to B.
(b) If B aborts B, then sample y∗ ← Y and send y∗ to the trusted party and halt.

4. Send y to the trusted party and receive w = f(x, y).

5. For i = i∗ to r:

• Send bi = w to B.
• If B aborts B, then output whatever it outputs and halt.

6. Output whatever B outputs and halt.

Let i denote the round where the adversary instructs B to abort (if no such round exists, set
i = r + 1). Observe that if i < i∗ then the output of A is f(x, ỹ) for ỹ ← Y in both worlds. If
i ≥ i∗ then the output of the honest party is f(x, y). In both cases, the view of B is identically
distributed given the output. Thus, the real and ideal worlds are identically distributed.
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