
Secret-Sharing Schemes for General Access Structures: An
Introduction1

Amos Beimel
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel.

E-mail: amos.beimel@gmail.com

March 19, 2025

1This monograph is dedicated to the memory of my Ph.D. advisor Benny Chor (1956–2021). I would like to thank
Benny for introducing me to the field of secret sharing, guiding me in the early stages of my career, and trying to teach
me how to “think”.

Abstract

A secret-sharing scheme is a method by which a dealer distributes shares to parties such that only authorized
subsets of parties can reconstruct the secret. Secret-sharing schemes are an important tool in cryptography
and they are used as a building block in many secure protocols, e.g., secure multiparty computation protocols
for arbitrary functionalities, Byzantine agreement, threshold cryptography, access control, attribute-based
encryption, and weighted cryptography (e.g., stake-based blockchains). The collection of authorized sets
that should be able to reconstruct the secret is called an access structure. The main goal in secret sharing
is to minimize the share size in a scheme realizing an access structure. In most of this monograph, we will
consider secret-sharing schemes with information-theoretic security, i.e., schemes in which unauthorized
sets cannot deduce any information on the secret even when the set has unbounded computational power.
Although research on secret-sharing schemes has been conducted for nearly 40 years, we still do not know
what the optimal share size required to realize an arbitrary 𝑛-party access structure is; there is an exponential
gap between the best known upper bounds and the best known lower bounds on the share size.

In this monograph, we review the most important topics on secret sharing. We start by discussing thresh-
old secret-sharing schemes in which the authorized sets are all sets whose size is at least some threshold
𝑡; these are the most useful secret-sharing schemes. We then describe efficient constructions of secret-
sharing schemes for general access structures; in particular, we describe constructions of linear secret-sharing
schemes from monotone formulas and monotone span programs and provide a simple construction for arbi-
trary 𝑛-party access structures with share size 2𝑐𝑛 for some constant 𝑐 < 1. To demonstrate the importance
of secret-sharing schemes, we show how they are used to construct secure multi-party computation proto-
cols for arbitrary functions. We next discuss the main problem with known secret-sharing schemes – the
large share size, which is exponential in the number of parties. We present the known lower bounds on the
share size. These lower bounds are fairly weak, and there is a big gap between the lower and upper bounds.
For linear secret-sharing schemes, which are a class of schemes based on linear algebra that contains most
known schemes, exponential lower bounds on the share size are known. We then turn to study ideal secret-
sharing schemes in which the share size of each party is the same as the size of the secret; these schemes are
the most efficient secret-sharing schemes. We describe a characterization of the access structures that have
ideal schemes via matroids. Finally, we discuss computational secret-sharing schemes, i.e., secret-sharing
schemes that are secure only against polynomial-time adversaries. We show computational schemes for
monotone and non-monotone circuits; these constructions are more efficient than the best known schemes
with information-theoretic security.

The goal of this monograph is to present the known results on secret-sharing schemes, in particular,
on secret-sharing realizing general access structures. We will review older results and the most advanced
results; due to space constraints and trying to keep the monograph coherent, some advanced constructions

and proofs are omitted. The study of secret-sharing schemes uses tools from cryptography, complexity, and
information theory; some relevant background from these areas is presented in the appendices.

Contents

1 Introduction 1
1.1 Detailed Discussion on the Topics Covered in This Monograph 3
1.2 Comparison to an Earlier Version of This Monograph and Other Surveys 8
1.3 Organization . 8

2 Threshold Secret-Sharing Schemes 10
2.1 The Definition of 𝒕-out-of-𝒏 Secret Sharing . 10
2.2 Shamir’s Threshold Secret-Sharing Scheme . 11
2.3 Lower Bounds for Threshold Secret Sharing . 13
2.4 Ramp Secret-Sharing Schemes . 14

3 Definitions of Secret-Sharing Schemes for Arbitrary Access Structures 17

4 Linear Secret-Sharing Schemes – Efficient Secret Sharing for Specific Access Structures 22
4.1 Undirected 𝒔-𝒕-Connectivity . 23
4.2 Ito, Saito, and Nishizeki’s Constructions . 25
4.3 The Monotone Formulas Construction . 27
4.4 Linear Secret-Sharing Schemes via Monotone Span Programs 30
4.5 Properties of Linear Secret-Sharing Schemes . 33
4.6 Multilinear Secret-Sharing Schemes . 35

5 Secret-Sharing Schemes for Arbitrary Access Structures with Exponent Smaller Than One 38
5.1 Robust Graph Secret Sharing . 38
5.2 A (𝟏,𝑵)-Robust Graph Secret-Sharing Scheme . 41
5.3 A (𝒕,𝑵)-Robust Graph Secret-Sharing Scheme . 42
5.4 Secret Sharing Scheme from a Robust Secret Sharing . 44

5.4.1 Liu and Vaikuntanathan’s Decomposition of Access Structures 45
5.4.2 Balancing the Sizes of Authorized Sets in the Access Structure 𝚪𝐌𝐈𝐃 46
5.4.3 Realizing 𝚪𝐌𝐈𝐃,𝑩 . 48

5.5 Putting Everything Together . 50

6 Secret Sharing and Secure Multi-Party Computation 52
6.1 A Private Protocol for Addition . 53
6.2 Homomorphic Properties of Shamir’s Secret-Sharing Scheme 54
6.3 Computing the Sharing of the Sum of Two Shared Secrets 55
6.4 Computing the Product of Two Shared Secrets . 55
6.5 Privately Computing an Arithmetic Circuit . 57
6.6 Extensions to Other Models . 57

7 Lower Bounds on the Size of the Shares 60
7.1 A Simple Lower Bound . 60
7.2 Lower Bounds Using the Entropy . 61
7.3 Csirmaz’s Lower Bound . 63
7.4 The Framework for Proving Lower Bounds via Entropy and Its Limitations 65
7.5 Lower Bounds for Linear Secret Sharing for Almost All Access Structures 66
7.6 Lower Bounds for Linear Secret Sharing for Explicit Access Structures 68

8 Ideal Secret Sharing 73
8.1 Definition of Ideal Secret Sharing and Background on Matroids 73
8.2 Ideal Secret Sharing from Representable Matroids . 75
8.3 Matroids from Ideal Secret Sharing . 76
8.4 Additional Results on Ideal Access Structures . 80

9 Computational Secret Sharing 82
9.1 Definition of Computational Secret-Sharing Schemes . 82
9.2 Computational Threshold Secret Sharing . 84
9.3 Computational Secret Sharing for Monotone Circuits . 85
9.4 Computational Secret Sharing for Circuits . 92
9.5 A Provable Separation Between Information-Theoretic and Computational Secret-Sharing

Schemes . 96
9.5.1 Succinct Computational Secret-Sharing Schemes 97

10 Summary and Open Problems 99
10.1 Summary of the Subjects Covered in This Monograph . 99
10.2 Some Subjects Not Covered in This Monograph . 101
10.3 Open Problems . 102

10.3.1 Secret-Sharing Schemes for Arbitrary Access Structures 102
10.3.2 Linear Secret-Sharing Schemes for Arbitrary Access Structures 102
10.3.3 Efficient Secret-Sharing Schemes . 103
10.3.4 Secret-Sharing Schemes for Natural Access Structures 104

A Background on Complexity, Cryptography, and Information Theory 119
A.1 Background in Complexity . 119
A.2 Background in Cryptography . 121
A.3 The Entropy Function and Its properties . 121

List of Figures

2.1 Shamir’s 𝑡-out-of-𝑛 secret-sharing scheme . 11
2.2 An illustration of Shamir’s 2-out-of-𝑛 secret-sharing scheme 12
2.3 A (𝑏, 𝑡)-ramp secret-sharing scheme . 15
4.1 A secret-sharing scheme realizing the access structure Γustcon. 24
4.2 The first ISN secret-sharing scheme . 26
4.3 The second ISN secret-sharing scheme . 26
4.4 The BL secret-sharing scheme . 29
4.5 An example of an execution of the BL secret-sharing scheme 29
4.6 The MSP secret-sharing scheme . 31
5.1 The bipartite graph of an access structure . 40
5.2 A (1, |𝑉 |)-robust graph secret-sharing ΠOneRobust for a bipartite graph 𝐺 = (𝑈, 𝑉 , 𝐸). 41
5.3 The partition of the graph to two graphs. 42
5.4 A (𝑡,𝑁)-robust secret-sharing scheme ΠRobust for a bipartite graph 𝐺 = (𝑈, 𝑉 , 𝐸) 44
5.5 The formula describing the construction of the secret-sharing scheme 45
5.6 An example of the decomposition of Γ to ΓTOP,ΓMID,ΓBOT. 46
5.7 A secret-sharing scheme ΠMID,𝐵 realizing the access structure ΓMID,𝐵. 49
6.1 A protocol for privately computing the sum of 𝑛 field elements. 53
6.2 A protocol for computing shares of the sum of two shared secrets. 55
6.3 A protocol for computing shares of the product of two shared secrets. 56
6.4 An MPC protocol for computing an arithmetic circuit. 58
7.1 An example of a graph satisfying the isolated neighbor property for 𝑡 = 2. 71
9.1 Rabin’s information dispersal scheme, where every 𝑡 parties can recover the message. 85
9.2 Krawczyk’s computational 𝑡-out-of-𝑛 secret-sharing scheme 85
9.3 The sharing algorithm in Yao’s secret-sharing scheme . 87
9.4 The reconstruction algorithm in Yao’s secret-sharing scheme 88
9.5 The sharing algorithm of the KNY computational secret-sharing 94

9.6 The reconstruction algorithm of the KNY computational secret-sharing 95
9.7 A computational secret-sharing scheme realizing ⟨

Γ𝑛
Csi

⟩

𝑛∈ℕ 96
A.1 An example of a monotone circuit . 120

Chapter 1

Introduction

A secret-sharing scheme is a tool used in many cryptographic protocols to process sensitive information. It
involves a dealer who has a secret string (aka the secret), a set of 𝑛 parties, and a collection Γ of (authorized)
subsets of parties called the access structure. A secret-sharing scheme for Γ is a method by which the dealer
distributes strings (called shares) to the parties such that: (1) any subset in Γ can reconstruct the secret from
its shares, and (2) any subset not in Γ cannot reveal any partial information on the secret. The main goal in
secret-sharing schemes is to minimize the share size (i.e., the number of bits in the strings representing the
shares).

We start with a simple motivating example. Assume that in a bank there is a manager, 3 deputy managers,
and 10 tellers; there is a safe in the branch and due to security considerations it can only be opened by enough
trusted entities, i.e., it can be opened by (1) the manager, (2) two deputy managers, or (3) a deputy manager
and 3 tellers. To enable such a policy we can employ a secret-sharing scheme to share the passcode of the
safe. To clarify the notion of secret sharing, we next describe a simple secret-sharing scheme realizing a
simple access structure.
Example 1.1 (An 𝑛-out-of-𝑛 Secret-Sharing Scheme). Assume that there are 𝑛 parties 𝑝1,… , 𝑝𝑛 and we
require that all parties together can reconstruct the secret, while every subset of the parties gets no information
on the secret, that is, the access structure is Γ =

{{

𝑝1,… , 𝑝𝑛
}}. To share a secret 𝑠 ∈ {0, 1}, the dealer

chooses 𝑛 − 1 independent and uniformly distributed random bits 𝑟1,… , 𝑟𝑛−1 and computes 𝑟𝑛 ← 𝑠 ⊕ 𝑟1 ⊕
⋯⊕𝑟𝑛−1. The share of party 𝑝𝑖 is 𝑟𝑖. The 𝑛 parties can reconstruct the secret by computing the exclusive-or
of their bits. On the other hand, every subset of 𝑛 − 1 bits is uniformly distributed, hence does not disclose
any information on the secret.

Originally motivated by the problem of secure information storage, secret-sharing schemes have found
numerous other applications in cryptography, distributed computing, and complexity theory, e.g., Byzantine
agreement [151], secure multiparty computations [97, 34, 57, 64], threshold cryptography [75], access con-
trol [140], attribute-based encryption [101, 181, 182, 10], generalized oblivious transfer [164, 173], weighted
cryptography (e.g., stake-based blockchains) [92, 38, 74, 176], and proving 𝖭𝖯-hardness of the partial min-
imum circuit size problem [105]. We next describe such an application.

1

Example 1.2 (Attribute Based Encryption). Public-key encryption is a powerful mechanism for protecting
the confidentiality of stored and transmitted information. Nowadays, in many applications there is a provider
that wants to share data according to some policy based on the user’s credentials. In an attribute-based
encryption system, presented by Sahai and Waters [160], each user has a set of attributes (i.e., credentials),
and the provider will grant permission to decrypt the message if some predicate of the attributes holds (e.g.,
a user can decode an e-mail if she is a “FRIEND” and “IMPORTANT”). In [101, 181], it is shown that if the
predicate can be described by an access structure that can be implemented by an efficient linear secret-sharing
scheme, then there is an efficient attribute-based encryption system for this predicate.

In most of this monograph, we will study secret-sharing schemes with information-theoretic security, i.e.,
secret-sharing schemes in which an unauthorized set of parties cannot learn any information about the secret
even if they are unbounded. We next provide a short overview and the known results about information-
theoretic secret-sharing schemes.

Threshold secret-sharing schemes, where the subsets that can reconstruct the secret are all the sets whose
cardinality is at least a certain threshold 𝑡, were introduced by Shamir [163] and Blakley [40]. Threshold
secret-sharing schemes are the most used secret-sharing schemes and can be realized with short shares. i.e.,
the size of the shares for sharing an 𝓁-bit secret is 𝓁, provided that 𝓁 ≥ log(𝑛) (where 𝑛 is the number of
parties).

Secret-sharing schemes for general access structures were introduced and constructed by Ito, Saito, and
Nishizeki [107]. More efficient schemes were presented in, e.g., [36, 166, 49, 111, 39, 41, 76, 123, 6, 8, 9].
Some access structures can be realized by schemes with short shares, e.g., such schemes were presented by
Benaloh and Leichter [36] for access structures that can be represented by small monotone formulas.

For arbitrary access structures, the share size in the best known secret-sharing schemes is exponential in
the number of parties [107, 36, 123, 6, 8, 9], i.e., it is (3∕2)𝑛 = 20.585𝑛 for an 𝑛-party access structure [9].
The best known lower bound is far from the above upper bounds; Csirmaz [66, 67] proved that for every
𝑛, there is an 𝑛-party access structure such that in any secret-sharing realizing it, the share size of at least
one party is Ω(𝑛∕ log(𝑛)) and the total share size is Ω(𝑛2∕ log(𝑛)). The known upper and lower bounds for
secret-sharing schemes are summarized in Table 1.1. As discussed, we do not know what the optimal share
size for realizing an arbitrary access structure is; it can be anywhere between exponential and quadratic.
Question 1.3. What is the share size required for realizing an arbitrary 𝑛-party access structure?1

Answering this open problem is an intriguing open problem. We do not even know the answer for
natural access structures (e.g., access structures that can be represented by monotone circuits). Secret-sharing
schemes are a relatively simple cryptographic primitive. Understanding their power and limitations is a
fundamental question; it also may be the first step in understanding other (possibly more complex) protocols

1In the earlier version of this monograph [15], the author conjectured that exponential size shares are necessary. In light of
the improvement in the share size of general access structures [123, 6, 8, 9] and the related question of message size for CDS
protocols [124, 125], the author makes no conjectures on the share size.

2

Share size

Upper bound for
threshold secret sharing max {𝓁, log(𝑛)} [40, 163]

Lower bound for
threshold secret sharing max {𝓁, log(𝑛) − 1} [112, 114, 47]

Upper bound for
arbitrary access structures 20.585𝑛+𝑜(𝑛) ⋅ 𝓁 [9]

Best known lower bound for
an 𝑛-party access structure Ω

(

𝑛
log(𝑛)

⋅ 𝓁
)

[67]

Table 1.1: Summary of the known results on information-theoretic secret-sharing schemes for sharing an
𝓁-bit secret among 𝑛 parties.

with information-theoretic security, e.g., secure multiparty protocols, private simultaneous messages (PSM)
protocols, and private information retrieval (PIR) protocols.

In Chapter 9, we will discuss computational secret-sharing schemes, i.e., schemes in which all parties
run in polynomial time and the security requires that an unauthorized set of parties running in polynomial
time cannot learn any information on the secret. The schemes with computational security have smaller
share size compared to the secret-sharing schemes with information-theoretic security. However, the secret-
sharing schemes with computational security rely on currently unproven assumptions (e.g., the existence
of one-way functions) compared to schemes with information-theoretic security whose security is proven
without any assumptions.

1.1 Detailed Discussion on the Topics Covered in This Monograph

Threshold Secret Sharing. The most useful secret-sharing schemes are threshold secret-sharing schemes,
introduced by Blakley [40] and Shamir [163] (Shamir’s paper was cited more than 20,000 times). Thresh-
old secret-sharing schemes were used in constructions of secure multiparty computations [97, 34, 57] and
threshold cryptography [75]. In a 𝑡-out-of-𝑛 threshold secret-sharing scheme, a set of parties of size at least
𝑡 can reconstruct the secret, while sets of size at most 𝑡 − 1 should gain no information on the secret (where
𝑛 is the number of parties). For 𝑡 = 1, 𝑛, there are 𝑡-out-of-𝑛 secret-sharing schemes in which the secret and
each share are one bit (for 𝑡 = 𝑛, see Example 1.1). Blakley [40] and Shamir [163] constructed 𝑡-out-of-𝑛
threshold secret-sharing schemes for an 𝓁-bit secret and 2 ≤ 𝑡 ≤ 𝑛 − 1, where the size of each share is

3

max {log(𝑛 + 1),𝓁}. We describe Shamir’s scheme [163] in Chapter 2. In every secret-sharing scheme, the
share size is at least the size of the secret [112] (see proof in Chapter 7). Furthermore, for 2 ≤ 𝑡 ≤ 𝑛 − 1,
the share size of at least one party in a 𝑡-out-of-𝑛 secret-sharing scheme is at least log(𝑛) − 1 [114, 47] (see
also [54]). Thus, for threshold secret-sharing schemes we know the optimal share size. We provide the proof
from [114] of a lower bound of log(𝑛 − 𝑡 + 2) in Section 2.3.

To bypass the above lower bounds, Blakley and Meadows [42] suggested a relaxation of threshold secret-
sharing schemes; they defined (𝑏, 𝑡)-ramp secret-sharing schemes, where 𝑏 < 𝑡, in which every set of size
at least 𝑡 can reconstruct the secret, while every set of size at most 𝑏 should not learn any information on
the secret. For long enough secrets (namely, at least 2 log(𝑛) bits), Blakley and Meadows constructed (𝑏, 𝑡)-
ramp secret-sharing schemes with share size 1∕(𝑡 − 𝑏) times the size of the secret; this scheme is described
in Section 2.4. Chen and Cramer [58] and Chen et al. [59] showed that when the gap is large, namely
𝑡 − 𝑏 = 𝑂(𝑛), the share size in (𝑏, 𝑡)-ramp secret-sharing schemes can be reduced to 𝑂(1).

Defining Secret-Sharing Schemes. The security of secret-sharing schemes asserts that unauthorized sets
of parties should learn no information on the secret. There are (at least) two ways to formulate this require-
ment for schemes with information-theoretic security. The first way is to say that the probability distribution
of the shares of an unauthorized set is the same for every two secrets. The second approach is to assume
some probability distribution on the secrets and require that the posterior probability distribution on the se-
crets given the shares of an unauthorized set is equivalent to the prior probability distribution on the secrets.
The latter definition requires knowing the prior probability distribution on the secrets while designing the
scheme, which might be problematic. Nevertheless, we prove in Chapter 3 that the two definitions are equiva-
lent for perfect secret-sharing schemes (i.e., schemes in which authorized sets learn absolutely no information
on the secret). In particular, this implies that if a perfect secret-sharing scheme is secure under the second
definition for one distribution on the secrets, then it is secure for every distribution with the same support;
this result was originally proved by Blundo et al. [45]. We will mainly use the first definition to prove the
security of secret-sharing schemes and use the second definition to prove lower bounds on the share size. We
also define schemes with statistical security using the first definition, namely, we require that the probability
distribution of the shares of an unauthorized set is nearly the same for every two secrets (i.e., the statistical
distance between the distributions for every two secrets is negligible).

Efficient Secret-Sharing Schemes. In Chapter 4, we describe efficient constructions of secret-sharing
schemes, i.e., constructions of schemes in which the share size is polynomial in the number of parties. These
constructions follow the same paradigm: Use some small representation of an access structure and show a
secret-sharing scheme whose share size is polynomial in the size of the representation. That is, Ito, Saito,
and Nishizeki [107] showed how to realize an access structure represented by CNF and DNF formulas, Be-
naloh and Leichter [36] showed how to realize an access structure represented by monotone formulas, and
Karchmer and Wigderson [111] showed how to realize an access structure represented by monotone span
program (MSPs) (a special case of this construction appeared before in [49]). Monotone span programs

4

are a linear-algebraic computational model originally defined to prove lower bounds on the size of counting
branching programs.

Secret-sharing schemes constructed from monotone span programs are equivalent to linear secret-sharing
schemes [111, 14]; in a linear scheme, the secret is viewed as an element of a finite field, and the shares are
obtained by applying a linear mapping to the secret and several independent random field elements. For
example, the schemes of [163, 40, 107, 36, 166, 111] are all linear. For many applications, the linearity is
important, e.g., for secure multiparty computation (MPC) protocols [64] and attribute-based encryption [182,
10]. In Section 4.5, we discuss useful properties of linear secret-sharing schemes that make them attractive,
e.g., they are homomorphic – if we share two secrets and each party locally sums its shares, then we get
shares of the sum of the secrets.

In Section 4.6, we present multilinear secret-sharing schemes [39, 41, 76], i.e., a linear secret-sharing
scheme in which the secret is composed of more than one field element. Such schemes are provably more
efficient than linear schemes [167, 5, 4, 19]. Specifically, Applebaum and Arkis [4] constructed multilinear
secret-sharing schemes in which the size of the shares is 4 times the size of the secret for a family of 22𝑛∕2
access structures (alas for long secrets of size 2𝑛𝑛∕2); by counting arguments, the size of the shares in linear
secret-sharing schemes for this family is exponential. It is important to note that for some applications,
it is not known how to replace linear secret-sharing schemes with multilinear schemes, e.g., in the secure
multiparty computation protocols of [64] that are secure against arbitrary 𝑄2 adversary structures.

Secret-Sharing Schemes with Share Size 2𝑐𝑛 for a Constant 𝑐 < 1. Ito et al. [107] constructed the first
secret-sharing scheme for general 𝑛-party access structures; the share size in their schemes is 2𝑛. For more
than 30 years, no scheme with a share size better than 2𝑛−𝑜(𝑛) was known. Liu and Vaikuntanathan [123],
in a breakthrough paper, constructed for every access structure a secret-sharing scheme with a share size
20.994𝑛. This was improved in a sequence of works [6, 8, 9], where the share size of the best known scheme
is (3∕2)(1+𝑜(1))𝑛 < 20.585𝑛 [9]. These schemes rely on conditional disclosure of secret protocols, constructed
by [124, 125]. In Chapter 5, we describe a fairly simple secret-sharing scheme for an arbitrary access structure
with share size 2𝑐𝑛 for some constant 𝑐 < 1. The idea of the scheme is to reduce the question of realizing
an arbitrary 𝑛-party access structure to realizing a graph access structure, i.e., an access structure in which
the minimal authorized sets are of size 2. Specifically, the graph access structure has 𝑂(2𝑛∕2) parties and we
only need a 𝑡-robust scheme for this graph for some 𝑡 ≪ 2𝑛∕2, i.e., we allow sets of size greater than 𝑡 to learn
information on the secret. The construction presented in this monograph is not the best scheme known to
date; however, it conveys a lot of the ideas of the best known constructions.

Secure Multiparty Computation Protocols from Secret Sharing. To demonstrate applications of secret-
sharing schemes, we describe in Chapter 6 a secure multi-party protocol for an arbitrary function of [34]
that is secure against semi-honest parties. That is, we consider a scenario in which the parties follow the
protocol. However, at the end of the protocol, a set of less than half of the parties might try to learn additional
information on the inputs of the other parties; a protocol is secure if such a set learns no information. The

5

protocol that we present is based on Shamir’s threshold secret-sharing schemes, using its homomorphic
property. The security of the protocol is perfect, i.e., the semi-honest parties learn absolutely no information
that is not implied by their inputs and the output (even if they have unbounded power). Chapter 6 is less
formal than the rest of this monograph and its purpose is to convey ideas on using secret-sharing schemes in
general protocols.

Lower Bounds on the Share Size. The known lower bounds on the shares’ size for sharing a secret real-
izing an arbitrary access structure are far from the above upper bounds. The best lower bound was proved
by Csirmaz [66, 67], proving that, for every 𝑛, there is an 𝑛-party access structure such that sharing 𝓁-bit
secrets requires that the size of the share of at least one party is Ω(𝓁𝑛∕ log(𝑛)) and the total share size is
Ω(𝓁𝑛2∕ log(𝑛)). In Chapter 7, we provide this proof. This is an elegant proof that uses the entropy function
and its properties. As discussed above, this lower bound is far from the best known upper bounds on the
share size. Closing the exponential gap between these bounds is a fundamental open problem.

Lower Bounds on the Share Size of Linear Secret-Sharing Schemes. Many known secret-sharing schemes
are linear. The best known linear secret-sharing schemes realizing arbitrary access structures have share size
20.7563𝑛 [123, 6, 8, 9, 2]. As discussed above, linear secret-sharing schemes are equivalent to monotone span
programs. Lower bounds for monotone span programs and, therefore, for linear secret-sharing schemes were
proved in [23, 11, 159, 89, 90, 158, 149, 150, 19].2 In particular, exponential lower bounds for linear schemes
for explicit access structures were given in [158, 149, 150]. Better exponential lower bounds for implicit ac-
cess structures were proven in [11, 159, 19]. In Section 7.5, we describe a lower bound of Ω(20.5𝑛−𝑜(𝑛)) for a
one-bit secret for almost all access structures [11] and in Section 7.6, we provide a proof of a lower bound
of 𝑛Ω(log(𝑛)𝓁 for an 𝓁-bit secret for an explicit access structure [90]. The known upper and lower bounds for
linear secret-sharing schemes are summarized in Table 1.2.

Ideal Secret Sharing. In every secret-sharing scheme, the share size of every non-redundant party (i.e.,
a party that participates in at least one minimal authorized set) is at least the size of the secret [112]. An
access structure is ideal if it has a secret-sharing scheme in which the share size of each party is the size of
the secret for some finite size of secrets (such a scheme is called ideal). That is, an access structure is ideal
if it has the best possible share size. The strict requirement on the share size in ideal secret-sharing schemes
enables us to analyze ideal access structures.

Ideal secret-sharing schemes and ideal access structures have been studied in many papers, e.g. [49, 165,
50, 162, 168, 53, 18, 127, 132, 44, 108, 99, 167, 133, 137, 146, 172, 174, 29, 128, 83, 85, 17, 110]. Brickell
and Davenport [50] have shown an interesting connection between ideal access structures and matroids, com-
binatorial structures, defined by Whitney in 1935 [184], that abstract and generalize linear spaces and cycles

2The super-polynomial lower bounds of [90] also hold for multilinear secret-sharing schemes (where the secret can be composed
of more many field elements [17]. We remark that applications that require linear secret-sharing schemes cannot necessary use
multilinear secret-sharing schemes.

6

Share size of linear schemes

Upper bound for
threshold secret sharing max {𝓁, log(𝑛)} [40, 163]

Lower bound for
threshold secret sharing max {𝓁, log(𝑛) − 1} [112, 114, 111]

Upper bound for
arbitrary access structures 20.7563𝑛+𝑜(𝑛) ⋅ 𝓁 [2]

Best known lower bound for
an 𝑛-party access structure Ω

(

max
{

2𝑛∕2−𝑜(𝑛), 2𝑛∕3−𝑜(𝑛) ⋅ 𝓁
}) [11, 19]

Table 1.2: Summary of the known results on linear secret-sharing schemes for sharing an 𝓁-bit secret among
𝑛 parties.

in undirected graphs (see Section 8.1 for background on matroids). Brickell and Davenport showed that (1)
if an access structure is ideal, then it is a port of a matroid, and (2) if an access structure is a port of a linear
matroid, then the access structure is ideal. The latter result extends to multilinear matroids. We prove these
results in Chapter 8. As there are matroids whose port does not have an ideal secret-sharing scheme [162],
there is a gap between the above necessary and sufficient conditions. The exact characterization of ideal
access structures is still open.

Secret-Sharing Schemes with Computational Security. In all the results we mentioned so far, the secu-
rity was information-theoretic, i.e., an unbounded adversary cannot learn any information on the secret. To
decrease the share size, computational secret-sharing schemes were also considered [186, 117, 52, 32, 116,
7, 1, 20]. In computational secret-sharing schemes, the security only holds against a polynomial-time adver-
sary (as common in cryptography). Furthermore, in computational secret-sharing schemes, we also require
that the sharing and reconstruction algorithms run in polynomial time (as discussed in Section 4.5, linear
secret-sharing schemes with polynomial-size shares also have this property). In Chapter 9, we describe four
constructions of computational secret-sharing schemes:

1. A threshold 𝑡-out-of-𝑛 secret-sharing scheme of Krawczyk [117] with information ratio 𝑂(1∕𝑡), i.e.,
the secret is an 𝓁-bit string for a moderately large 𝓁 and each share is an 𝑂(𝓁∕𝑡)-bit string. In every
information-theoretic secret-sharing schemes the information ratio is at least 1.

2. A secret-sharing scheme of yao [186] for every access structure whose share size is the size of a
monotone circuit representing the access structure, where the size of a circuit is the number of wires

7

in the circuit; this scheme assume the existence of one-way functions. Information-theoretic secret-
sharing schemes are only known for monotone formulas.

3. A secret-sharing scheme of Komargodski, Naor, and Yogev [116] for every monotone access structure
in which the share size is polynomial in the size of a non-monotone circuit representing the access
structure;3 this scheme assume the existence of witness-encryption schemes [91] and one-way func-
tions. Compared to Yao’s construction, the scheme of Komargodski et al. is much more efficient for
some access structures since non-monotone circuits can be much smaller than monotone circuits [154];
however, the assumption used by Komargodski et al. is stronger.

4. A secret-sharing scheme of [7] for the Csirmaz access structure in which the share size is𝑂(𝜆), where 𝜆
is the security parameter. In every information-theoretic scheme, the share size for this access structure
is Ω(𝑛∕ log(𝑛) [66]; this is the biggest provable separation we can currently prove.

A recent result of Applebaum et al. [7] showed that every access structure can be realized by a computa-
tional secret-sharing scheme with polynomial share size (under the RSA assumption). The running time of
the sharing and reconstruction in the scheme of [7] is exponential; the security of the scheme is against an
exponential-time adversary. This result is not described in this monograph. Results of [121] imply that for
almost all access structures, the reconstruction must require exponential time.

1.2 Comparison to an Earlier Version of This Monograph and Other Sur-
veys

An earlier version of this monograph [15] was published in the IWCC conference in 2011. The current version
reflects the advances in the area of secret sharing in the last decade and expands its contents. Specifically, we
added a proof of a lower bound of log(𝑛) on the share size of threshold secret-sharing schemes, a construction
of secret-sharing schemes with share size 2𝑐𝑛 for 𝑐 < 1, a chapter on computational secret-sharing schemes
and a discussion on ideal secret-sharing schemes and their characterization via matroids.

There are other surveys on secret-sharing schemes, starting with the survey of Stinson [168], the book of
Cramer, Damgård, and Nielsen [65], the lecture notes of Padró [145], the new book of Krenn and Thomas
Lorünser [118], and the survey of Chattopadhyay, Saha, Nag, Nandi, [56]. Each survey has its own perspec-
tive and covers different subjects. This monograph focuses on secret-sharing for general access structures.

1.3 Organization

This monograph is intended for readers with some background in complexity, cryptography, and information
theory; we provide the required definitions in Appendix A.1, Appendix A.2, and Appendix A.3 respectively.

3The result of Komargodski et al. [116] is stronger and applies to non-deterministic circuits representing the access structure,
where a set of parties can efficiently reconstruct the secret if it has a witness that the circuits accepts the set.

8

The rest of the monograph is organized as follows. In Chapter 2 we discuss threshold secret-sharing
schemes. In Chapter 3 we define secret-sharing schemes for general access structures, giving two definitions
and proving that they are equivalent. In Chapter 4, we present efficient constructions of (linear) secret-sharing
schemes and in Chapter 5 we present a fairly simple secret-sharing scheme for an arbitrary access structure
with share size 2𝑐𝑛 for a constant 0 < 𝑐 < 1. In Chapter 6, we show how to construct secure multiparty
protocols for general functions (in the semi-honest model) using secret-sharing schemes. In Chapter 7, we
discuss lower bounds for secret-sharing schemes and present the best known lower bounds for general secret-
sharing schemes and super-polynomial lower bounds for linear secret-sharing schemes. In Chapter 8, we
discuss ideal secret-sharing schemes – the most efficient schemes in which the size of each share is the size
of the secret. In Chapter 9, we discuss computational secret-sharing schemes and provide constructions of
such schemes. Finally, in Chapter 10, we summarize this monograph and mention the most important open
problems for secret sharing.

Chapters 5 to 9 are independent of each other. We recommend that a reader that is interested in one or
more of these chapters will start by reading Chapters 2 to 4 (possibly excluding Sections 2.3, 2.4 and 4.6).

9

Chapter 2

Threshold Secret-Sharing Schemes

In this chapter, we discuss threshold secret-sharing schemes [40, 163] – the secret-sharing schemes that are
mainly used.

2.1 The Definition of 𝒕-out-of-𝒏 Secret Sharing

We next define threshold secret-sharing schemes. In Chapter 3 we will generalize this definition to secret-
sharing schemes realizing arbitrary access structures. We start by defining a secret-sharing scheme, which
is a randomized mapping whose input is a string, called the secret, and output is 𝑛 strings, called shares.
Definition 2.1 (Secret-Sharing Schemes). Let

{

𝑝1,… , 𝑝𝑛
}

be a set of parties. A secret-sharing scheme
Σ = ⟨Π, 𝜇⟩ with domain of secrets 𝑆 is a pair, where 𝜇 is a probability distribution over some finite set 𝑅,
called the set of random strings, and Π is a mapping from 𝑆 ×𝑅 to a set of 𝑛-tuples 𝑆1×𝑆2×⋯×𝑆𝑛, where
𝑆𝑗 is called the domain of shares of 𝑝𝑗 . We denote the shares by ⟨𝗌𝗁1,… , 𝗌𝗁𝑛⟩. For a set 𝐴 ⊆

{

𝑝1,… , 𝑝𝑛
}

,
we denote Π𝐴(𝑠; 𝑟) as the restriction of Π(𝑠; 𝑟) to its 𝐴-entries, i.e. ⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐴. The default distribution 𝜇 is
the uniform distribution. In this case, we will simply denote the scheme by the mapping Π.

Informally, we will consider a dealer that distributes a secret 𝑠 ∈ 𝑆 according to Σ by first sampling a
random string 𝑟 ∈ 𝑅 according to 𝜇, computing a vector of shares Π(𝑠; 𝑟) = ⟨𝗌𝗁1,… , 𝗌𝗁𝑛⟩, and privately
communicating each share 𝗌𝗁𝑗 to party 𝑝𝑗 .

In threshold secret-sharing schemes, every set whose size is at least some threshold 𝑡 should be able to
reconstruct the secret, while any smaller set should get no information on the secret.
Definition 2.2 (Threshold 𝑡-out-of-𝑛 Secret Sharing [163, 40]). Let 𝑆 be a finite set of secrets, where |𝑆| ≥ 2.
A 𝑡-out-of-𝑛 secret-sharing scheme ⟨Π, 𝜇⟩ with a domain of secrets 𝑆 is a secret-sharing scheme as defined
in Definition 2.1 satisfying the following two requirements.

Perfect Correctness. The secret 𝑠 can be reconstructed by any set of parties of size at least 𝑡. That is,
for any set 𝐵 such that |𝐵| ≥ 𝑡 (where 𝐵 = {𝑝𝑖1 ,… , 𝑝𝑖

|𝐵|
}), there exists a reconstruction function

10

𝖱𝖾𝖼𝗈𝗇𝐵 ∶ 𝑆𝑖1 ×⋯ × 𝑆𝑖
|𝐵|

→ 𝑆 such that for every 𝑠 ∈ 𝑆 and every random string 𝑟,

𝖱𝖾𝖼𝗈𝗇𝐵(Π𝐵(𝑠; 𝑟)) = 𝑠. (2.1)

Perfect Security. Every set of size less than 𝑡 cannot learn anything about the secret from its shares (in the
information theoretic sense). Formally, for any set 𝑇 such that |𝑇 | ≤ 𝑡 − 1, for every two secrets
𝑠1, 𝑠2 ∈ 𝑆, and for every possible vector of shares

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
:

Pr[Π𝑇 (𝑠1; 𝑟) =
⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] = Pr[Π𝑇 (𝑠2; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
]. (2.2)

2.2 Shamir’s Threshold Secret-Sharing Scheme

Shamir [163] constructed a simple and elegant threshold scheme. In Shamir’s scheme, the domain of secrets
and shares is the elements of a finite field 𝔽𝑞 for some prime-power 𝑞 > 𝑛. The scheme is described in
Figure 2.1. An illustration of Shamir’s 2-out-of-𝑛 secret-sharing scheme is given in Figure 2.2.

Shamir’s Secret-Sharing Scheme

The secret: an element 𝑠 ∈ 𝔽𝑞, where 𝑞 > 𝑛 is a prime power.
The scheme:

• Let 𝛼1,… , 𝛼𝑛 ∈ 𝔽𝑞 be 𝑛 distinct non-zero elements known to all parties (e.g., if 𝑞 > 𝑛
is a prime, then we can take 𝛼𝑗 = 𝑗).

• Choose 𝑡 − 1 random elements 𝑎1,… , 𝑎𝑡−1 from 𝔽𝑞 independently with uniform
distribution. These random elements together with the secret define a polynomial
𝑃 (𝑥)

def
= 𝑠 +

∑𝑡−1
𝑖=1 𝑎𝑖𝑥

𝑖.
• The share of 𝑝𝑗 is 𝗌𝗁𝑗 ← 𝑃 (𝛼𝑗) (where 𝑃 is evaluated using the arithmetic of 𝔽𝑞).

Figure 2.1: Shamir’s 𝑡-out-of-𝑛 secret-sharing scheme over a finite field 𝔽𝑞, where 𝑞 > 𝑛 is a prime-power.

The correctness and security of Shamir’s scheme follow from the Lagrange’s interpolation theorem:
Claim 2.3. For every field 𝔽 , every 𝑡 distinct values 𝑥1,… , 𝑥𝑡 ∈ 𝔽 , and any 𝑡 values 𝑦1,… , 𝑦𝑡, there exists
a unique polynomial 𝑄 of degree at most 𝑡 − 1 over 𝔽 such that 𝑄(𝑥𝑗) = 𝑦𝑗 for 1 ≤ 𝑗 ≤ 𝑡. Furthermore, this
polynomial can be efficiently computed.

Lemma 2.4. Let 𝑡, 𝑛 be integers such that 2 ≤ 𝑡 ≤ and let 𝑞 be a prime-power such that 𝑞 > 𝑛. Shamir’s
secret-sharing scheme, described in Figure 2.1, is a 𝑡-out-of-𝑛 secret-sharing scheme in which the secret and
each share are elements in 𝔽𝑞.

11

𝑠

sh1

sh2

sh𝑛

1 2 𝑛 ⋯

(a)

𝑠

sh4

sh2

2 4

(b)

𝑠 = 3

𝑠 = 2

𝑠 = 1

sh2

2

(c)

Figure 2.2: An illustration of Shamir’s 2-out-of-𝑛 secret-sharing scheme. Figure (a) demonstrates the sharing,
where a random line 𝑦 = 𝑎𝑥+ 𝑠 that passes through the secret is chosen and the share of 𝑝𝑖 is the value of the
line when 𝑥 = 𝑖, i.e., 𝗌𝗁𝑖 = 𝑎𝑖 + 𝑠. Figure (b) demonstrates the correctness, where given shares 𝗌𝗁2, 𝗌𝗁4 of
𝑝2, 𝑝4 respectively, the line through (2, 𝗌𝗁2) and (4, 𝗌𝗁4) is computed and the secret is the intersection of this
line with the 𝑦-axis. Figure (c) demonstrates the security, where, for every share 𝗌𝗁2 of 𝑝2, for every secret 𝑠
there is a unique line that passes through (0, 𝑠) and (2, 𝗌𝗁2). To simplify the figure, all lines are drawn over
ℝ rather than over a finite field.

Proof. To see that Shamir’s scheme is correct, notice that every set𝐵 of size 𝑡 holds 𝑡 points of the polynomial
𝑃 , hence we can reconstruct it using Lagrange’s interpolation, and compute 𝑠 ← 𝑃 (0). Formally, a set
𝐵 =

{

𝑝𝑖1 ,… , 𝑝𝑖𝑡
}

computes

𝑄(𝑥) =
𝑡

∑

𝓁=1
𝗌𝗁𝑖𝓁

∏

1≤𝑗≤𝑡,𝑗≠𝓁

𝛼𝑖𝑗 − 𝑥

𝛼𝑖𝑗 − 𝛼𝑖𝓁
.

Notice that 𝑄(𝛼𝑖𝓁) = 𝗌𝗁𝑖𝓁 = 𝑃 (𝛼𝑖𝓁) for 1 ≤ 𝓁 ≤ 𝑡. That is, 𝑃 and 𝑄 are polynomials of degree at most
𝑡 − 1 that agree on 𝑡 points, thus, by the uniqueness in the interpolation theorem (see Claim 2.3), 𝑃 and 𝑄
are equal, and, in particular, 𝑄(0) = 𝑃 (0) = 𝑠. Thus, the parties in 𝐵 reconstruct 𝑠 by computing

𝑠 ← 𝑄(0) =
𝑡

∑

𝓁=1
𝗌𝗁𝑖𝓁

∏

1≤𝑗≤𝑡,𝑗≠𝓁

𝛼𝑖𝑗
𝛼𝑖𝑗 − 𝛼𝑖𝓁

.

. For a given set 𝐵, the reconstruction function is a linear combination of the shares, that is,

𝑠 ←
𝑡

∑

𝓁=1
𝛽𝓁 ⋅ 𝗌𝗁𝑖𝓁 , where 𝛽𝓁 =

∏

1≤𝑗≤𝑡,𝑗≠𝓁

𝛼𝑖𝑗
𝛼𝑖𝑗 − 𝛼𝑖𝓁

. (2.3)

. Notice that 𝛽1,… , 𝛽𝑡 depend only on the set 𝐵 and not on the secret 𝑠 or the shares.
On the other hand, any unauthorized set 𝑇 with 𝑡− 1 parties holds 𝑡− 1 points of the polynomial, which

together with every possible secret (a value of the polynomial in the point 0) determines a unique polynomial
of degree at most 𝑡 − 1. Formally, by the interpolation theorem, for every 𝑇 =

{

𝑝𝑖1 ,… , 𝑝𝑖𝑡−1
}

and every
𝑠 ∈ 𝔽𝑞, there is a unique polynomial 𝑃𝑠 with degree at most 𝑡 − 1 such that 𝑃𝑠(0) = 𝑠 and 𝑃𝑠(𝛼𝑖𝓁) = 𝗌𝗁𝑖𝓁
for 1 ≤ 𝓁 ≤ 𝑡 − 1. Hence, the probability that the shares

⟨

𝗌𝗁𝑖𝓁

⟩

1≤𝓁≤𝑡−1
are generated for the secret 𝑠 is the

12

probability that 𝑃𝑠 is selected, i.e.,

Pr
[

Π𝑇 (𝑠; 𝑟) =
⟨

𝗌𝗁𝑖𝓁

⟩

1≤𝓁≤𝑡−1

]

= 1
𝑞𝑡−1

.

Since this probability is the same for every secret 𝑠 ∈ 𝔽𝑞, the security follows.

2.3 Lower Bounds for Threshold Secret Sharing

In Shamir’s scheme, each share (and the secret) is an element of a field with more than 𝑛 elements, i.e., the
share size is at least log(𝑛). An interesting question is if the share size can be reduced when the secret is a bit.
Kilian and Nisan [114] proved that this is not possible in every 𝑡-out-of-𝑛 secret-sharing scheme when 𝑡 is not
too close to 𝑛 (e.g., 𝑡 ≤ 𝑛−

√

𝑛). Cascudo et al. [54] provided another proof of this result and generalized it to
ramp secret-sharing schemes (i.e., schemes in which there is a gap between the reconstruction threshold and
the security threshold). Bogdanov et al. [47] proved that the same bound holds for every 2 ≤ 𝑡 ≤ 𝑛−1. In this
monograph, we present the lower bound proof of Kilian and Nisan. We first prove the result for 2-out-of-𝑛
secret-sharing schemes and then reduce the general case, i.e., a 𝑡-out-of-𝑛 scheme (when 𝑡 is not too close to
𝑛) to the former case.
Lemma 2.5. In any 2-out-of-𝑛 secret-sharing scheme, the size of the share of at least one party is at least
log(𝑛) even when the size of the domain of secrets is 2.

Proof. W.l.o.g., 0, 1 ∈ 𝑆. Assume that we share the secrets 0 and 1 independently; for every 1 ≤ 𝑖 ≤ 𝑛
denote these shares of 𝑝𝑖 by Π𝑖(0; 𝑟0) and Π𝑖(1; 𝑟1) respectively. Consider the event EVENT𝑖, for 1 ≤ 𝑖 ≤ 𝑛,
where EVENT𝑖 occurs if and only if Π𝑖(0; 𝑟0) = Π𝑖(1; 𝑟1), that is, in the two independent sharings of 𝑠 = 0
and 𝑠 = 1 respectively the share of 𝑝𝑖 is the same. By the correctness of the 2-out-of-𝑛 secret-sharing
scheme, these events are pairwise independent (otherwise, sometimes the shares of two parties are the same
for the two secrets and it would be impossible to correctly reconstruct the secret for one of them). Thus,
Pr[∨1≤𝑖≤𝑛EVENT𝑖] =

∑

Pr1≤𝑖≤𝑛[EVENT𝑖]. Since the probability of ∨1≤𝑖≤𝑛EVENT𝑖 is at most 1, there is at
least one 𝑖 such that

Pr[EVENT𝑖] = Pr
𝑟0,𝑟1

[Π𝑖(0; 𝑟0) = Π𝑖(1; 𝑟1)] ≤ 1∕𝑛.

Let 𝑆𝑖 = {1,… ,𝓁} be the domain of shares of 𝑝𝑖 and for 1 ≤ 𝑗 ≤ 𝓁 denote pr𝑗 def
= Pr𝑟0[Π𝑖(0; 𝑟0) = 𝑗]. By

the security requirement, the probability that 𝗌𝗁𝑖 = 𝑗 is the same for both secrets, i.e., pr𝑗 = Pr𝑟1[Π𝑖(1; 𝑟1) =

13

𝑗]. Using this notation and the independence of the two sharings,

Pr
𝑟0,𝑟1

[Π𝑖(0; 𝑟0) = Π𝑖(1; 𝑟1)] =
𝓁
∑

𝑗=1
Pr
𝑟0,𝑟1

[Π𝑖(0; 𝑟0) = 𝑗 ∧ Π𝑖(1; 𝑟1) = 𝑗]

=
𝓁
∑

𝑗=1

(

Pr
𝑟0
[Π𝑖(0; 𝑟0) = 𝑗] ⋅ Pr

𝑟1
[Π𝑖(1; 𝑟1) = 𝑗]

)

=
𝓁
∑

𝑗=1
(pr𝑗)2.

Thus, ∑𝓁
𝑗=1(pr𝑗)

2 ≤ 1∕𝑛 and ∑𝓁
𝑗=1 pr𝑗 = 1. The minimum of the expression ∑𝓁

𝑗=1(pr𝑗)
2 is obtained when all

probabilities are equal, i.e., ∑𝓁
𝑗=1(pr𝑗)

2 ≥
∑𝓁

𝑗=1(1∕𝓁)
2 = 1∕𝓁. Thus, 1∕𝑛 ≥ Pr[EVENT𝑖] =

∑𝓁
𝑗=1(pr𝑗)

2 ≥
1∕𝓁. We deduce that log(𝓁) – the share size of 𝑝𝑖 – is at least log(𝑛) as claimed.
Theorem 2.6. In any 𝑡-out-of-𝑛 secret-sharing scheme, the size of the share of at least one party is at least
log(𝑛 − 𝑡 + 2).

Proof. We transform any 𝑡-out-of-𝑛 secret-sharing scheme Π𝑡 to a 2-out-of-(𝑛− 𝑡+2) secret-sharing scheme
Π2 without increasing the share size; the theorem then follows from Lemma 2.5.

The transformation is simple – fix any possible vector of shares ⟨𝗌𝗁𝑖⟩𝑛−𝑡+3≤𝑖≤𝑛 of the last 𝑡 − 2 parties in
Π𝑡; to share a secret 𝑠 ∈ {0, 1} in Π2 choose a random vector of shares of 𝑠 in Π𝑡 conditioned on the event
that Π𝑡

{𝑝𝑛−𝑡+3,…,𝑝𝑛}
(𝑠; 𝑟) = ⟨𝗌𝗁𝑖⟩𝑛−𝑡+3≤𝑖≤𝑛, that is,

Pr[Π2(𝑠; 𝑟) = ⟨𝗌𝗁𝑖⟩1≤𝑖≤𝑛−𝑡+2] =
Pr[Π𝑡(𝑠; 𝑟) = ⟨𝗌𝗁𝑖⟩1≤𝑖≤𝑛]

Pr[Π𝑡
{𝑝𝑛−𝑡+3,…,𝑝𝑛}

(𝑠; 𝑟) = ⟨𝗌𝗁𝑖⟩𝑛−𝑡+3≤𝑖≤𝑛]
.

The correctness of Π2 follows from the correctness of Π𝑡, since any two parties in Π2 hold two shares in Π𝑡

and know the shares of {𝑝𝑛−𝑡+3,… , 𝑝𝑛
}, i.e., they know 𝑡 shares and can reconstruct the secret. The security

of Π2 follows from the security of Π𝑡, that is, for every secret 𝑠, 1 ≤ 𝑖 ≤ 𝑛 − 𝑡 + 2, and share 𝗌𝗁𝑖 of 𝑝𝑖:

Pr[Π2
{𝑝𝑖}

(𝑠; 𝑟) = ⟨𝗌𝗁𝑖⟩] =
Pr[Π𝑡

{𝑝𝑖,𝑝𝑛−𝑡+3,…,𝑝𝑛}
(𝑠; 𝑟) =

⟨

𝗌𝗁𝑖, 𝗌𝗁𝑛−𝑡+3,… , 𝗌𝗁𝑛
⟩

]

Pr[Π𝑡
{𝑝𝑛−𝑡+3,…,𝑝𝑛}

(𝑠; 𝑟) =
⟨

𝗌𝗁𝑛−𝑡+3,… , 𝗌𝗁𝑛
⟩

]
; (2.4)

since |

{

𝑝𝑖, 𝑝𝑛−𝑡+3,… , 𝑝𝑛
}

|, |
{

𝑝𝑛−𝑡+3,… , 𝑝𝑛
}

| ≤ 𝑡 − 1, the probabilities in the denominator and numerator
of (2.4) are independent of the secret and the security follows.

2.4 Ramp Secret-Sharing Schemes

We will prove in Lemmas 7.1 and 7.2 that in any secret-sharing scheme the size of the share of each party
is at least the size of the secret. This might be problematic if the size of the secret is large. Blakley and

14

Meadows [42] suggested a relaxation of threshold secret-sharing schemes that overcomes this problem. They
defined (𝑏, 𝑡)-ramp secret-sharing schemes, where 𝑏 < 𝑡, in which every set of size at least 𝑡 can reconstruct
the secret, while every set of size at most 𝑏 should not learn any information on the secret. For example,
𝑡-out-of-𝑛 threshold secret-sharing schemes are (𝑡 − 1, 𝑡)-ramp secret-sharing schemes.

For long enough secrets, Blakley and Meadows constructed a (𝑏, 𝑡)-ramp secret-sharing scheme with
share size 1∕(𝑡−𝑏) times the size of the secret. Chen and Cramer [58] and Chen et al. [59] showed that when
the gap is large, namely 𝑡 − 𝑏 = 𝑂(𝑛), the share size can be reduced to 𝑂(1) (that is, by bypassing the lower
bound of [114, 47]). Cascudo, Cramer, and Xing [54] and Bogdanov, Guo, and Komargodski [47] proved
lower bounds on the share size in ramp secret-sharing schemes – in any (𝑏, 𝑡)-ramp secret-sharing scheme
the size of at least one share is at least

max
{

log
(𝑛 − 𝑏 + 1

𝑡 − 𝑏

)

, log
(𝑡 + 1
𝑡 − 𝑏

)}

.

Ramp schemes have found numerous applications in cryptography, e.g., [87, 169, 130]. Most notably,
Franklin and Yung [87] and many follow-up works showed how to improve the communication complexity
of secure multiparty computation (MPC) protocols using ramp secret-sharing schemes.

A (𝒃, 𝒕)-Ramp Secret-Sharing Scheme

The secret: a vector 𝑠 = ⟨𝑠1,… , 𝑠𝑡−𝑏⟩ ∈ 𝔽 𝑡−𝑏
𝑞 , where 𝑞 ≥ 𝑛 + 𝑡 − 𝑏 is a prime power.

The scheme:

• Let 𝛼1,… , 𝛼𝑛, 𝛼𝑛+1,… , 𝛼𝑛+𝑡−𝑏 ∈ 𝔽𝑞 be 𝑛+ 𝑡− 𝑏 distinct elements known to all parties
(for example, if 𝑞 > 𝑛 + 𝑡 − 𝑏 is a prime, then we can take 𝛼𝑗 = 𝑗).

• Choose a random polynomial 𝑃 (𝑥) over 𝔽𝑞 of degree at most 𝑡−1 such that 𝑃 (𝛼𝑗+𝑛) =
𝑠𝑗 for 1 ≤ 𝑗 ≤ 𝑡 − 𝑏 (e.g. sample 𝑏 uniformly distributed random elements
𝗌𝗁1,… , 𝗌𝗁𝑏 ∈ 𝔽𝑞 and find, using interpolation, the unique polynomial 𝑃 such that
𝑃 (𝛼𝑗) = 𝗌𝗁𝑗 for every 1 ≤ 𝑗 ≤ 𝑏 and 𝑃 (𝛼𝑗+𝑛) = 𝑠𝑗 for every 1 ≤ 𝑗 ≤ 𝑡 − 𝑏).

• The share of 𝑝𝑗 is 𝗌𝗁𝑗 ← 𝑃 (𝛼𝑗) (where 𝑃 is evaluated using the arithmetic of 𝔽𝑞).
Figure 2.3: A (𝑏, 𝑡)-ramp secret-sharing scheme over a finite field 𝔽𝑞, where 𝑞 ≥ 𝑛 + 𝑡 is a prime-power.

In Figure 2.3, we describe a (𝑏, 𝑡)-ramp secret-sharing scheme in which the share size is 1∕(𝑡 − 𝑏) times
the size of the secret, i.e., when 𝑡 − 𝑏 is big, the share size is much smaller than the size of the secret. This
ramp scheme is a generalization of Shamir’s scheme, where the secret is the evaluation of the polynomial
in 𝑡 − 𝑏 points. The correctness of the ramp scheme described in Figure 2.3 follows as in Shamir’s secret-
sharing scheme, i.e., every set of 𝑡 parties can recover the polynomial and reconstruct the secret. Next, we
argue that the scheme is secure. Consider a set 𝐵 of 𝑏 parties that hold shares ⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐵 and any secret
⟨𝑠1,… , 𝑠𝑡−𝑏⟩ ∈ 𝔽 𝑡−𝑏

𝑞 . By Claim 2.3, there is a unique polynomial 𝑃 of degree at most 𝑡 − 1 such that

15

𝑃 (𝛼𝑗) = 𝗌𝗁𝑗 for every 𝑝𝑗 ∈ 𝐵 and 𝑃 (𝛼𝑗+𝑛) = 𝑠𝑗 for every 1 ≤ 𝑗 ≤ 𝑡 − 𝑏, therefore, the probability of
⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐵 is the same for every possible secret.

We note that sets whose size is between 𝑏+1 and 𝑡+1 get partial information on the secret. For example,
a set 𝐵 of size 𝑏 + 1 knows 𝑏 + 1 values of the polynomial 𝑃 ; for every partial secret 𝑠1,… , 𝑠𝑡−𝑏−1 it can
compute the unique polynomial 𝑃 such that 𝑃 (𝛼𝑗) = 𝗌𝗁𝑗 for every 𝑝𝑗 ∈ 𝐵 and 𝑃 (𝛼𝑗+𝑛) = 𝑠𝑗 for every
1 ≤ 𝑗 ≤ 𝑡 − 𝑏 − 1 and conclude that 𝑠𝑡−𝑏 = 𝑃 (𝛼𝑗+𝑛); this implies that given the shares of 𝐵 there are 𝑞𝑡−𝑏−1

possible vectors of secrets (out of the 𝑞𝑡−𝑏 vectors of secrets that were a priori possible).

16

Chapter 3

Definitions of Secret-Sharing Schemes for
Arbitrary Access Structures

In this chapter we define secret-sharing schemes with information-theoretic security. We provide two defi-
nitions of the security of secret-sharing schemes and prove that they are equivalent.
Definition 3.1 (Access Structures). Let

{

𝑝1,… , 𝑝𝑛
}

be a set of parties. A collection Γ ⊆ 2{𝑝1,…,𝑝𝑛} is
monotone if 𝐵 ∈ Γ and 𝐵 ⊆ 𝐶 imply that 𝐶 ∈ Γ. An access structure is a monotone collection Γ ⊆
2{𝑝1,…,𝑝𝑛} of non-empty subsets of

{

𝑝1,… , 𝑝𝑛
}

. Sets in Γ are called authorized, and sets not in Γ are called
unauthorized.

Example 3.2. Consider the access structure Γ𝑛,𝑡 =
{

𝐵 ⊆
{

𝑝1,… , 𝑝𝑛
}

∶ |𝐵| ≥ 𝑡
}, i.e., all sets that contain at

least 𝑡 parties; this is the access structure of a 𝑡-out-of-𝑛 secret-sharing scheme. As another example, consider
the access structure Γ⊓ with 4 parties 𝑝1, 𝑝2, 𝑝3, 𝑝4

Γ⊓
def
=
{{

𝑝1, 𝑝2
}

,
{

𝑝2, 𝑝3
}

,
{

𝑝3, 𝑝4
}}

∪
{

𝐵 ⊆
{

𝑝1, 𝑝2, 𝑝3, 𝑝4
}

∶ |𝐵| ≥ 3
}

.

The sets {

𝑝1, 𝑝2
}

,
{

𝑝2, 𝑝3
}

,
{

𝑝3, 𝑝4
} of size two are authorized in Γ⊓, while the sets {

𝑝1, 𝑝3
}

,
{

𝑝1, 𝑝4
}

,
{

𝑝2, 𝑝4
} of size two are unauthorized in Γ⊓. We will study Γ⊓ in Examples 4.2 and 4.16 and Theorem 7.4.

It is convenient to view an access structure as a function.
Definition 3.3. We describe a set 𝐴 ⊆

{

𝑝1,… , 𝑝𝑛
}

by its characteristic vector (string)

𝐱𝐀 = ⟨𝑥𝐴[1],… , 𝑥𝐴[𝑛]⟩ ∈ {0, 1}𝑛 ,

where 𝑥𝐴[𝑗] = 1 iff 𝑝𝑗 ∈ 𝐴. Similarly, given an input 𝑥 ∈ {0, 1}𝑛, we denote 𝐼𝑥 =
{

𝑝𝑖 ∶ 𝑥𝑖 = 1
}

.
We represent an 𝑛-party access structure Γ by the Boolean function 𝑓Γ ∶ {0, 1}𝑛 → {0, 1}, where

𝑓Γ(𝐱𝐁) = 1 iff 𝐵 ∈ Γ. We say that 𝑓Γ represents Γ. As an access structure Γ is monotone, the function 𝑓Γ is
monotone.4

4A function is monotone if for every (𝑥1,… , 𝑥𝑛), (𝑦1,… , 𝑦𝑛) ∈ {0, 1}𝑛 such that 𝑥𝑖 ≤ 𝑦𝑖 for every 1 ≤ 𝑖 ≤ 𝑛 it must be that
𝑓 (𝑥1,… , 𝑥𝑛) ≤ 𝑓 (𝑦1,… , 𝑦𝑛).

17

Recall that in Definition 2.1 we defined a secret-sharing scheme. We next define the correctness and
perfect security of a secret-sharing scheme realizing a general access structure; we require that such scheme
is secure against an unbounded adversary, i.e., its security is information-theoretic. The definition is based
on [62, 18] and does not assume any probability distribution on the secrets.
Definition 3.4 (Secret-Sharing Schemes Realizing an Access Structure). Let 𝑆 be a finite set of secrets,
where |𝑆| ≥ 2. A secret-sharing scheme ⟨Π, 𝜇⟩ with domain of secrets 𝑆 realizes an access structure Γ if
the following two requirements hold:

Perfect Correctness. The secret 𝑠 can be reconstructed by any authorized set of parties. That is, for any set
𝐵 ∈ Γ (where𝐵 = {𝑝𝑖1 ,… , 𝑝𝑖

|𝐵|
}), there exists a reconstruction function 𝖱𝖾𝖼𝗈𝗇𝐵 ∶ 𝑆𝑖1×⋯×𝑆𝑖

|𝐵|
→ 𝑆

such that for every 𝑠 ∈ 𝑆 and random string 𝑟 ∈ 𝑅,

𝖱𝖾𝖼𝗈𝗇𝐵(Π𝐵(𝑠; 𝑟)) = 𝑠. (3.1)

Perfect Security. Every unauthorized set cannot learn anything about the secret from its shares (in the
information theoretic sense). Formally, for any set 𝑇 ∉ Γ, for every two secrets 𝑠1, 𝑠2 ∈ 𝑆, and for
every possible vector of shares

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
:

Pr[Π𝑇 (𝑠1; 𝑟) =
⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] = Pr[Π𝑇 (𝑠2; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
]. (3.2)

Remark 3.5. In the above definition, we required correctness with probability 1 and perfect security: for
every two secrets 𝑠1, 𝑠2 the distributions Π𝑇 (𝑠1; 𝑟) and Π𝑇 (𝑠2; 𝑟) are identical. We can relax these require-
ments and require that the correctness holds with high probability and that the statistical distance between
Π𝑇 (𝑠1; 𝑟) and Π𝑇 (𝑠2; 𝑟) is small.5 To formalize this requirement, we say that a function negl ∶ ℕ → [0, 1] is
negligible if for every 𝑐 ∈ ℕ there is an 𝑛𝑐 ∈ ℕ such that negl(𝜆) ≤ 1∕𝜆𝑐 for every 𝜆 > 𝑛𝑐 . In more details,
we add a security parameter 𝜆 to Π and define the following requirements.
Statistical Correctness. The secret 𝑠 can be reconstructed with probability almost 1 by any authorized set

of parties. That is, there exists a negligible function negl(𝜆) such that for any set 𝐵 ∈ Γ (where
𝐵 = {𝑝𝑖1 ,… , 𝑝𝑖

|𝐵|
}), there exists a reconstruction function 𝖱𝖾𝖼𝗈𝗇𝐵 ∶ 𝑆𝑖1 ×⋯ × 𝑆𝑖

|𝐵|
→ 𝑆 such that

for every 𝑠 ∈ 𝑆,
Pr[𝖱𝖾𝖼𝗈𝗇𝐵(Π𝐵(1𝜆, 𝑠; 𝑟)) = 𝑠] ≥ 1 − negl(𝜆). (3.3)

Statistical Security. Every unauthorized set cannot learn non-negligible information about the secret from
their shares. Formally, there is a negligible function negl(𝜆) such that for any set 𝑇 ∉ Γ and for every
two secrets 𝑠1, 𝑠2 ∈ 𝑆,

SD
(

Π𝑇 (1𝜆, 𝑠1; 𝑟),Π𝑇 (1𝜆, 𝑠2; 𝑟)
)

≤ negl(𝜆). (3.4)
5The definition of statistical distance can be found in Definition A.2.

18

Schemes that satisfy these relaxed requirements are called statistical secret-sharing schemes. For example,
such schemes are designed in [24]. A further relaxation of secret-sharing schemes with computational secu-
rity is discussed in Chapter 9.

The most important complexity measure that we study in secret-sharing schemes in the share size.
Definition 3.6 (Share Size). The size of the secret in a secret-sharing scheme Π ∶ 𝑆 ×𝑅 → 𝑆1 ×⋯ × 𝑆𝑛 is
log(|𝑆|), the share size of party 𝑝𝑖 is log(|𝑆𝑖|), the max share size is max1≤𝑗≤𝑛 log(|𝑆𝑗|), and the total share
size is

∑

1≤𝑗≤𝑛 log(|𝑆𝑗|). The information ratio of a secret-sharing scheme is max1≤𝑗≤𝑛 log(|𝑆𝑗 |)
log(|𝑆|)

and the total
information ratio of a secret-sharing scheme is

∑

1≤𝑗≤𝑛 log(|𝑆𝑗 |)
log(|𝑆|) (informally, the information ratio measures the

number of bits in the shares per a bit of the secret).

We next define an alternative definition of secret-sharing schemes originating in [112, 53]; this definition
uses the entropy function. For this definition we assume that there is some known probability distribution on
the domain of secrets 𝑆. Any probability distribution on the secrets, together with the secret-sharing scheme
⟨Π, 𝜇⟩, induces, for any 𝐴 ⊆

{

𝑝1,… , 𝑝𝑛
}, a probability distribution on the vector of shares of the parties in

𝐴. We denote the random variable taking values according to this probability distribution on the vector of
shares of 𝐴 by 𝐴, and denote the random variable denoting the secret by  . The security in the alternative
definition requires that if 𝑇 ∉ Γ, then the random variables  and 𝑇 are independent. As traditional in the
secret sharing literature, we formalize the above two requirements using the Shannon entropy function. For
the definition of the entropy and some of its properties, see Appendix A.3.
Definition 3.7 (Secret-Sharing Schemes Realizing an Access Structure – Alternative Definition). We say
that a secret-sharing scheme realizes an access structure Γ with respect to a given probability distribution
on the secrets, denoted by a random variable  , if the following conditions hold.

PERFECT CORRECTNESS. For every authorized set 𝐵 ∈ Γ, the shares of the parties in 𝑇 determine the
secret, i.e.,

𝐻(|𝐵) = 0. (3.5)
PERFECT SECURITY. For every unauthorized set 𝑇 ∉ Γ, the shares of the parties in 𝑇 and the secret are

statistically independent, that is,
𝐻(|𝑇) = 𝐻(). (3.6)

Definition 3.4 and Definition 3.7 are equivalent, as proved below in Claim 3.8. The advantage of Defini-
tion 3.4 is that it does not assume that there is a probability distribution on the secrets and that this distribution
is known. Furthermore, Definition 3.4 can be generalized to statistical secret sharing6 and computational se-
cret sharing. On the other hand, Definition 3.7 is more convenient for proving lower bounds. Thus, the
equivalence of the definitions allows choosing the more suitable definition for the specific task.

6One can suggest requiring that the entropy of the secret given the shares of the set 𝑇 is high, i.e., 𝐻(|𝑇) ≈ 𝐻(). However,
such definition is distribution dependent; as argued above this is problematic. More importantly, although 𝐻(|𝑇) might be large,
it is possible that the scheme leaks the information that is important in the cryptographic application. For example, an attacker can
know that the secret is either 0 or 1 and, seeing the shares of 𝑇 , the attacker can distinguish between these secrets.

19

Furthermore, the equivalence of the definitions allows proving a result of Blundo et al. [45] that the
security of a scheme according to Definition 3.7 is actually independent of the distribution: If a scheme
realizes an access structure with respect to one distribution on the secrets, then it realizes the access structure
with respect to any distribution with the same support. The later property is important since when designing
a secret-sharing scheme, usually one does not know the distribution of the secrets that will be used when the
scheme is executed.
Claim 3.8. The following claims are equivalent for a secret-sharing scheme ⟨Π, 𝜇⟩ realizing an access struc-
ture Γ:

1. The scheme ⟨Π, 𝜇⟩ is secure according to Definition 3.4.

2. There is some distribution on the secrets with support 𝑆 (that is, Pr[ = 𝑠] > 0 for every 𝑠 ∈ 𝑆) such
that the scheme is secure according to Definition 3.7.

3. For every distribution on the secrets whose support is contained in 𝑆, the scheme is secure according
to Definition 3.7.

Proof. We first show that Item 1 implies Item 3 (and, hence, Item 2). Let Π be a secret-sharing scheme that is
secure according to Definition 3.4, and let  be a random variable distributed according to some distribution
over 𝑆. Thus, for any set 𝑇 ∉ Γ, any secret 𝑠0 ∈ 𝑆, and any shares ⟨𝗌𝗁𝑗

⟩

𝑝𝑗∈𝑇
for the parties in 𝑇 ,

Pr
𝑟,𝑠
[𝑇 =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
| = 𝑠0] = Pr

𝑟
[Π𝑇 (𝑠0; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
]

= Pr
𝑟
[Π𝑇 (𝑠0; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] ⋅

∑

𝑠∈𝑆
Pr
𝑠
[ = 𝑠]

=
∑

𝑠∈𝑆
Pr
𝑠
[ = 𝑠] ⋅ Pr

𝑟
[Π𝑇 (𝑠0; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
]

=
∑

𝑠∈𝑆
Pr
𝑠
[ = 𝑠] ⋅ Pr

𝑟
[Π𝑇 (𝑠; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] (3.7)

=
∑

𝑠∈𝑆
Pr
𝑠
[ = 𝑠] ⋅ Pr

𝑟,𝑠
[𝑇 =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
| = 𝑠]

= Pr
𝑟,𝑠
[𝑇 =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
], (3.8)

where the equality in (3.7) follows from (3.2). Thus, by (3.8), 𝑇 and  are independent random variables,
and, by the properties of the entropy function, 𝐻(|𝑇) = 𝐻(), thus, the scheme is secure according to
Definition 3.7 with respect to this distribution on 𝑆.

Now assume that Π is a secret-sharing scheme which is secure according to Definition 3.7 for some
fixed distribution on the secrets with support 𝑆, that is, assume that Item 2 holds and for any set 𝑇 ∉ Γ,
𝐻(|𝑇) = 𝐻(). This implies that for every secret 𝑠0

Pr
𝑟,𝑠
[ = 𝑠0| Π𝑇 (𝑠; 𝑟) = 𝑇 =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] = Pr

𝑟,𝑠
[ = 𝑠0]. (3.9)

20

Hence,
Pr
𝑟

[

Π𝑇 (𝑠0; 𝑟) =
⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇

]

= Pr
𝑟,𝑠
[Π𝑇 (𝑠; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
| = 𝑠0]

=
Pr𝑟,𝑠[ = 𝑠0| Π𝑇 (𝑠; 𝑟) = 𝑇 =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] ⋅ Pr𝑟,𝑠[Π𝑇 (𝑠; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
]

Pr𝑟,𝑠[ = 𝑠0]

= Pr
𝑟,𝑠
[Π𝑇 (𝑠; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
],

where the last equality follows from (3.9). This implies that for every two secrets 𝑠1, 𝑠2
Pr
𝑟
[Π𝑇 (𝑠1; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] = Pr

𝑟,𝑠
[Π𝑇 (𝑠; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
] = Pr

𝑟
[Π𝑇 (𝑠2; 𝑟) =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
];

thus, the scheme is secure according to Definition 3.4.

21

Chapter 4

Linear Secret-Sharing Schemes – Efficient
Secret Sharing for Specific Access
Structures

Linear secret-sharing schemes are secret-sharing schemes in which the secret is an element of a finite field and
the shares are a linear combination of the secret and random elements from the field. They provide efficient
secret-sharing schemes for access structures that have a small representation, e.g., if an access structure can
be represented by a small monotone formula, then the access structure can be realized by an efficient linear
secret-sharing scheme.7 Furthermore, linear secret-sharing schemes are additive (also called homomorphic)
– if the parties have shares of two secrets and each party sums these shares, then the parties hold shares for
the sum of the secrets. In many applications of secret-sharing schemes, this additivity is essential (e.g., [64,
10, 182]).
Definition 4.1 (Linear Secret-Sharing Schemes). Let Π ∶ 𝑆 ×𝑅 → 𝑆1 ×⋯×𝑆𝑛 be a secret-sharing scheme
as defined in Definition 2.1. We say that Π is a linear secret-sharing scheme over a finite field 𝔽𝑞 if there are
integers 𝓁𝑟,𝓁1,… ,𝓁𝑛 such that:

• The domain of secrets is 𝑆 = 𝔽𝑞,

• The randomness is chosen from 𝑅 = 𝔽 𝓁𝑟
𝑞 with uniform distribution,8

• The domains of shares are 𝑆1 = 𝔽 𝓁1
𝑞 ,… , 𝑆𝑛 = 𝔽 𝓁𝑛

𝑞 , that is, the share of party 𝑝𝑖 is composed of 𝓁𝑖
field elements,

• The mapping Π is a linear mapping over 𝔽𝑞 from 𝔽𝑞 × 𝔽 𝓁𝑟
𝑞 to 𝔽 𝓁1

𝑞 × ⋯ × 𝔽 𝓁𝑛
𝑞 , that is, its input is the

secret and the 𝓁𝑟 elements in the random string and its output are the 𝑛 shares.
7The best known secret-sharing schemes for arbitrary access structures are non-linear, however they are not efficient since their

share size is exponential.
8Without this requirement we would be able to use a non-linear mapping to share a secret by using “strange distributions”.

22

We start with an example of a linear secret-sharing scheme.
Example 4.2. We describe a linear scheme realizing Γ⊓ (defined in Example 3.2) whose information ratio
is 2, i.e., each party gets at most 2 field elements. Let 𝑞 be any prime power. To share a secret 𝑠 ∈ 𝔽𝑞, the
dealer independently chooses two random elements 𝑟1, 𝑟2 ∈ 𝔽𝑞 with a uniform distribution. The share of 𝑝1
is 𝑟1, the share of 𝑝2 is 𝑟1 + 𝑠, the share of 𝑝3 is two elements, 𝑟1 and 𝑟2 + 𝑠, and the share of 𝑝4 is 𝑟2; in this
case 𝓁𝑟 = 2, 𝓁1 = 𝓁2 = 𝓁4 = 1, and 𝓁3 = 2. It can be verified that this scheme realizes Γ⊓. For example, 𝑝2
and 𝑝3 can reconstruct the secret since they hold 𝑟1 + 𝑠 and 𝑟1 respectively. On the other hand, 𝑝1 and 𝑝3 do
not get any information on the secret since together they hold 𝑟1 and 𝑟2 + 𝑠, which are uniformly distributed
regardless of the secret.

In this chapter we describe linear secret-sharing schemes and their properties. In Sections 4.1 to 4.3
we describe four specific constructions of linear secret-sharing schemes. These constructions preceded the
general notion of linear secret-sharing schemes and are important for their own sake. In Section 4.4 we
define monotone span programs and show how to construct linear secret-sharing from them; every linear
secret-sharing scheme can be cast in this way. In Section 4.5 we discuss some useful properties of linear
secret-sharing schemes. Finally, in Section 4.6 we present a generalization of linear secret-sharing schemes,
called multilinear secret-sharing schemes; in these schemes the secret can be composed of more than one
field element.

4.1 Undirected 𝒔-𝒕-Connectivity

In this section we describe a simple and elegant construction of a linear secret-sharing scheme of Benaloh
and Rudich [35]. Consider the access structure Γustcon, whose parties correspond to edges of a complete
undirected graph with 𝑚 vertices 𝑣1,… , 𝑣𝑚, that is, there are 𝑛 =

(𝑚
2

) parties in the access structure and a
party is an edge (𝑣𝑖, 𝑣𝑗), where 𝑖 < 𝑗. A set of parties (edges) is in the access structure if the set contains
a path from 𝑣1 to 𝑣𝑚. Benaloh and Rudich [35] constructed a secret-sharing scheme realizing this access
structure. In Figure 4.1, we describe this secret-sharing scheme. In this scheme, there is a random bit 𝑟𝑖 for
each vertex 𝑣𝑖 (where 𝑟1 = 𝑠 is the secret and 𝑟𝑚 = 0); the share of the edge (𝑣𝑖, 𝑣𝑗) is 𝑟𝑖 ⊕ 𝑟𝑗 .
Lemma 4.3. The scheme described in Figure 4.1 is a linear secret-sharing scheme realizing the access
structure Γustcon, where the secret and each share are bits.

Proof. To see that the scheme described in Figure 4.1 is correct, consider a set of parties that form a path
𝑣1 = 𝑣𝑖1 , 𝑣𝑖2 ,… , 𝑣𝑖𝓁−1 , 𝑣𝑖𝓁 = 𝑣𝑚, and consider the exclusive or of the shares given to the parties (edges) of
the path:

(𝑟𝑖1 ⊕ 𝑟𝑖2)⊕ (𝑟𝑖2 ⊕ 𝑟𝑖3)⊕⋯⊕ (𝑟𝑖𝓁−2 ⊕ 𝑟𝑖𝓁−1)⊕ (𝑟𝑖𝓁−1 ⊕ 𝑟𝑖𝓁) = 𝑟𝑖1 ⊕ 𝑟𝑖𝓁 = 𝑟1 ⊕ 𝑟𝑚 = 𝑠.

To see that the scheme described in Figure 4.1 is secure consider an unauthorized set, that is, a set of
edges 𝑇 not containing a path from 𝑣1 to 𝑣𝑚. Define the set of vertices 𝑉1 such that 𝑣𝑖 ∈ 𝑉1 if there exists

23

The ustcon secret-sharing scheme

The secret: a bit 𝑠 ∈ {0, 1}.
The scheme:

• Choose 𝑚 − 2 random bits 𝑟2,… , 𝑟𝑚−1 independently with uniform distribution.
• Set 𝑟1 ← 𝑠 and 𝑟𝑚 ← 0.
• The share of a party (𝑣𝑖, 𝑣𝑗) is 𝑟𝑖 ⊕ 𝑟𝑗 .

Figure 4.1: A secret-sharing scheme realizing the access structure Γustcon.

a path in the graph (𝑉 , 𝑇) from 𝑣1 to 𝑣𝑖. By definition, 𝑣1 ∈ 𝑉1 and 𝑣𝑚 ∉ 𝑉1. Furthermore, for every
(𝑣𝑖, 𝑣𝑗) ∈ 𝑇 either both vertices 𝑣𝑖, 𝑣𝑗 are in 𝑉1 or both of them are not in 𝑉1.

Let ⟨𝗌𝗁𝑖,𝑗
⟩

(𝑣𝑖,𝑣𝑗)∈𝑇
be shares generated for the parties in 𝑇 with the secret 𝑠 = 0, where 𝗌𝗁𝑖,𝑗 is the share

given to the party (𝑣𝑖, 𝑣𝑗). We next show that the number of vectors of random bits 𝑟2, 𝑟3,… , 𝑟𝑚−1 that
generate ⟨𝗌𝗁𝑖,𝑗

⟩

(𝑣𝑖,𝑣𝑗)∈𝑇
given the secret 𝑠 = 0 is equal to the number of vectors of random bits that generate

these shares given the secret 𝑠 = 1. Fix a vector of random bits 𝑟2, 𝑟3,… , 𝑟𝑚−1 that generates the shares
⟨

𝗌𝗁𝑖,𝑗
⟩

(𝑣𝑖,𝑣𝑗)∈𝑇
with the secret 𝑠 = 0. Recall that 𝑟1 = 𝑠 = 0 and 𝑟𝑚 = 0. Consider the random bits 𝑟′1,… , 𝑟′𝑚,

where 𝑟′𝑖 = 𝑟𝑖 if 𝑣𝑖 ∈ 𝑉1 and 𝑟′𝑖 = 𝑟𝑖 otherwise. First note that 𝑟′1 = 𝑟1 = 1 and 𝑟′𝑚 = 𝑟𝑚 = 0 as required for
sharing 𝑠 = 1. We claim that the random bits 𝑟′2,… , 𝑟′𝑚−1 generate the shares ⟨𝗌𝗁𝑖,𝑗

⟩

(𝑣𝑖,𝑣𝑗)∈𝑇
with the secret

𝑠 = 1, that is, 𝗌𝗁𝑖,𝑗 = 𝑟′𝑖 ⊕ 𝑟′𝑗 for (𝑣𝑖, 𝑣𝑗) ∈ 𝑇 . There are only two cases to consider.
• For every (𝑣𝑖, 𝑣𝑗) ∈ 𝑇 such that 𝑣𝑖, 𝑣𝑗 ∈ 𝑉1

𝑟′𝑖 ⊕ 𝑟′𝑗 = 𝑟𝑖 ⊕ 𝑟𝑗 = 𝑟𝑖 ⊕ 𝑟𝑗 = 𝗌𝗁𝑖,𝑗 .

• For every (𝑣𝑖, 𝑣𝑗) ∈ 𝑇 such that 𝑣𝑖, 𝑣𝑗 ∉ 𝑉1

𝑟′𝑖 ⊕ 𝑟′𝑗 = 𝑟𝑖 ⊕ 𝑟𝑗 = 𝗌𝗁𝑖,𝑗 .

Notice that the mapping from 𝑟1,… , 𝑟𝑚 to 𝑟′1,… , 𝑟′𝑚 is invertible. To conclude, the number of vectors of
random bits that generate the shares ⟨𝗌𝗁𝑖,𝑗

⟩

(𝑣𝑖,𝑣𝑗)∈𝑇
given the secret 0 is the same as the number of vectors

of random bits that generate these shares given the secret 1. This implies that
Pr[Π𝑇 (0; 𝑟) =

⟨

𝗌𝗁𝑖,𝑗
⟩

(𝑣𝑖.𝑣𝑗)∈𝑇
] = Pr[Π𝑇 (1; 𝑟) =

⟨

𝗌𝗁𝑖,𝑗
⟩

(𝑣𝑖.𝑣𝑗)∈𝑇
];

thus, the scheme is secure.
This scheme is linear over the field with two elements 𝔽2.9 In particular, the randomness is a vector

⟨

𝑟2,… , 𝑟
|𝑉 |−1

⟩ of |𝑉 |−2 random elements in 𝔽2, the share of an edge (𝑣1, 𝑣𝑗) is 𝑠⊕𝑟𝑗 (a linear combination
9We can generalize this scheme to be linear over any finite field 𝔽𝑞 (and, in fact any finite group). To share a secret 𝑠 ∈ 𝔽𝑞 , the

dealer chooses 𝑚 − 2 random elements 𝑟2,… , 𝑟𝑚−1 from 𝔽𝑞 independently with uniform distribution, and sets 𝑟1 ← 𝑠 and 𝑟𝑚 ← 0.
The share of a party (𝑣𝑖, 𝑣𝑗), where 𝑖 < 𝑗, is 𝑟𝑗 − 𝑟𝑖.

24

where the coefficient of 𝑠 and 𝑟𝑗 are 1 and all other coefficients are zero), and the share of an edge (𝑣𝑖, 𝑣𝑗) for
2 ≤ 𝑖 < 𝑗 ≤ 𝑚 is 𝑟𝑖 ⊕ 𝑟𝑗 (where 𝑟𝑚 = 0).

Notice that the reconstruction of the secret in the scheme described in Figure 4.1 is a sum of the shares
of the authorized set, i.e., it is a linear function. For example, the authorized set {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣𝑚)

},
holding shares 𝗌𝗁1,2 = 𝑠⊕𝑟2, 𝗌𝗁2,3 = 𝑟2⊕𝑟3, 𝗌𝗁3,𝑚 = 𝑟3, reconstructs the secret by computing 𝗌𝗁1,2⊕𝗌𝗁2,3⊕
𝗌𝗁3,𝑚, which results in 𝑠.

4.2 Ito, Saito, and Nishizeki’s Constructions

Ito, Saito, and Nishizeki [107] defined secret-sharing schemes for general access structures and provided two
constructions of schemes for an arbitrary access structure Γ. These schemes are linear.

First Construction. The first construction of Ito et al. shares the secret independently for each minimal
authorized set using the scheme of Example 1.1. The scheme is described in Figure 4.2; it is known as the
DNF secret-sharing scheme. For concreteness, the scheme can be executed over 𝔽2; in this case, the secret is a
bit. We emphasize that for each minimal authorized set 𝐵 ∈ Γ the random elements are chosen by the dealer
independently. Clearly, each set in 𝐴 ∈ Γ contains a minimal authorized set 𝐵 ⊆ 𝐴 and can reconstruct the
secret by computing the sum of the elements given to the set 𝐵. On the other hand, each unauthorized set
𝑇 ∉ Γ misses at least one party from each minimal authorized set; thus, it misses at least one element given
to the minimal authorized set. In other words, the elements held by the parties in 𝑇 are uniformly distributed
and independent of the secret.

To summarize, the number of elements that 𝑝𝑖 gets is the number of minimal authorized sets that contain
𝑝𝑖. When the number of minimal authorized sets is small, this scheme is efficient, specifically when the field
in 𝔽2. However, this scheme is highly inefficient for access structures in which the number of minimal sets
is big.

We note that the fact that an access structure has many minimal authorized sets does not mean that it
does not have an efficient secret-sharing scheme. For example, consider the 𝑛∕2-out-of-𝑛 access structure,
that is, the access structure

Γ𝑛∕2
def
=
{

𝐵 ⊆
{

𝑝1,… , 𝑝𝑛
}

∶ |𝐵| ≥ 𝑛∕2
}

.

The number of bits that each party gets in the first ISN scheme, described in Figure 4.2, for the access
structure Γ𝑛∕2 is (𝑛−1

𝑛∕2−1

)

= Θ(2𝑛∕
√

𝑛). On the other hand, in Shamir’s secret-sharing scheme for this access
structure the size of each share is the same as the size of the secret.

Second Construction. The second construction of Ito et al. is dual to the first construction; in this scheme,
the dealer ensures that every unauthorized set cannot reconstruct the secret. The scheme is described in
Figure 4.3; it is known as the CNF secret-sharing scheme.

25

The first ISN secret-sharing scheme

The secret: an element 𝑠 ∈ 𝔽𝑞, for some finite field 𝔽𝑞.
The scheme:

• For every minimal authorized set 𝐵 ∈ Γ, where 𝐵 =
{

𝑝𝑖1 ,… , 𝑝𝑖𝓁
}

do:
– Choose 𝓁−1 random field elements 𝑟𝐵1 ,… , 𝑟𝐵𝓁−1 ∈ 𝔽𝑞 with uniform distribution.
– Compute 𝑟𝐵𝓁 ← 𝑠 − (𝑟𝐵1 +⋯ + 𝑟𝐵𝓁−1) (where the sum is in 𝔽𝑞).
– Give 𝑝𝑖𝑗 the element 𝑟𝐵𝑗 .

Figure 4.2: The first ISN secret-sharing scheme. The share of each party 𝑝𝑖 is an element for every authorized
set containing 𝑝𝑖.

The second ISN secret-sharing scheme

The secret: an element 𝑠 ∈ 𝔽𝑞, for some finite field 𝔽𝑞.
The scheme:

• Let 𝑇1,… , 𝑇𝓁 be the maximal unauthorized sets of the access structure Γ.
• Share 𝑠 with the 𝓁-out-of-𝓁 secret-sharing scheme of Example 1.1, that is, choose

𝓁−1 random field elements 𝑟1,… , 𝑟𝓁−1 ∈ 𝔽𝑞, and compute 𝑟𝓁 ← 𝑠−(𝑟1+⋯+ 𝑟𝓁−1).
• The share of party 𝑝𝑖 are all the elements 𝑟𝑗 such that 𝑝𝑖 ∉ 𝑇𝑗 .

Figure 4.3: The second ISN secret-sharing scheme. The share of each party 𝑝𝑖 is an element for every
maximal unauthorized set not containing 𝑝𝑖.

26

We next discuss the correctness and security of the scheme. Let 𝐴 ∈ Γ be an authorized set. By the
monotonicity of Γ, for every maximal unauthorized set 𝑇𝑗 , it must be that 𝐴 ⊈ 𝑇𝑗 , i.e., there exists some
𝑝𝑚 ∈ 𝐴 ⧵ 𝑇𝑗 . Thus, the parties in 𝐴 hold all elements 𝑟𝑗 and can reconstruct the secret. On the other hand,
each unauthorized set 𝑇 ∉ Γ is a subset of at least one maximal unauthorized set 𝑇𝑗 , hence they do not hold
𝑟𝑗 . By the security of the 𝓁-out-of-𝓁 secret-sharing scheme, the parties in 𝑇 get no information on the secret.

The number of elements that 𝑝𝑖 gets is the number of maximal unauthorized sets that do not contain 𝑝𝑖.
If the number of unauthorized sets is small, this scheme is efficient. Furthermore, for some access structures
it can be exponentially more efficient than the first construction (and vice versa). Still, for the worst access
structures, the size of the shares in this scheme is Θ(2𝑛∕√𝑛).

As evident from the description of the first and second ISN schemes, both schemes are linear over 𝔽𝑞.
Furthermore, in both schemes the reconstruction of the secret is a linear combination of the shares.

4.3 The Monotone Formulas Construction

Benaloh and Leichter [36] describe a construction of secret-sharing schemes for any access structure based
on monotone formulas. The construction of [36] generalizes the constructions of [107] and is more efficient
for many access structures. However, also in this scheme for almost all access 𝑛-party structures the size of
the shares is exponential in the number of parties even for a one-bit secret, i.e., the share size is 2𝑛−𝑜(𝑛).

The scheme of Benaloh and Leichter is recursive. It starts with schemes for simple access structures and
constructs a scheme for a composition of the access structures; that is, it uses the following closure properties
of secret-sharing schemes.
Lemma 4.4. LetΓ1,Γ2 be access structures be two access structures over the same set of parties

{

𝑝1,… , 𝑝𝑛
}

.10

Assume that for 𝑏 ∈ {1, 2} there is a secret-sharing scheme Π𝑏 realizing Γ𝑏, where the two schemes have the
same domain of secrets 𝑆 and for every 1 ≤ 𝑗 ≤ 𝑛 the share of 𝑝𝑗 in the scheme Π𝑏 is an element in 𝑆𝑗,𝑏.
Then there exist secret-sharing schemes realizing Γ1 ∪ Γ2 and Γ1 ∩ Γ2 in which the domain of shares of 𝑝𝑗 is
𝑆𝑗,1 × 𝑆𝑗,2. Furthermore, if Π1 and Π2 are linear over 𝔽𝑞 for some finite field 𝔽𝑞, then the resulting schemes
are linear over 𝔽𝑞.

Proof. For the finite set𝑆, let ⟨𝑆,+⟩ be a group (e.g., assume without loss of generality that𝑆 = {0,… , 𝑚 − 1}
for some 𝑚 ∈ ℕ and take + as the sum modulo 𝑚).

To share a secret 𝑠 ∈ 𝑆 for the access structure Γ1 ∪ Γ2, independently share 𝑠 using the scheme Π𝑖

(realizing Γ𝑖) for 𝑖 ∈ {1, 2}; the share of 𝑝𝑖 is its share in Π1 and its share in Π2. Clearly, if both Π1 and Π2

are linear over the same field, then the resulting scheme is linear.
To share a secret 𝑠 ∈ 𝑆 for the access structure Γ1 ∩ Γ2, choose 𝑟1 ∈ 𝑆 with a uniform distribution and

let 𝑟2 ← 𝑠− 𝑟1. Next, for 𝑖 ∈ {1, 2}, independently share 𝑟𝑖 using the scheme Π𝑖 (realizing Γ𝑖). For every set
10This assumption is technical (otherwise Γ1 ∪ Γ2 or Γ1 ∩ Γ2 might not be monotone). It is without loss of generality as it is

possible that some parties are redundant in one of the access structures, that is, there might be parties that do not belong to minimal
authorized sets in one of the access structures.

27

𝐵 ∈ Γ1 ∩ Γ2, the parties in 𝐵 can reconstruct both 𝑟1 and 𝑟2 and compute 𝑠 ← 𝑟1 + 𝑟2. On the other hand,
for every set 𝑇 ∉ Γ, the parties in 𝑇 do not have any information on at least one 𝑟𝑖, hence do not have any
information on the secret 𝑠. Notice that if both Π1 and Π2 are linear over 𝔽𝑞 and we use the additive group
of 𝔽𝑞 as the group (𝑆,+), then the resulting scheme is linear; for example, in Π2, we replace each linear
combination of the secret by a linear combination of 𝑠 − 𝑟1.
Example 4.5. Given an access structure Γ, whose minimal authorized sets are {

𝐵1,… , 𝐵𝓁
}, we define

Γ𝑖
def
=

{

𝐴 ∶ 𝐵𝑖 ⊆ 𝐴
}. Clearly, Γ =

⋃

1≤𝑖≤𝓁 Γ𝑖, and for every 1 ≤ 𝑖 ≤ 𝓁 there is a scheme realizing Γ𝑖 with a
domain of secrets 𝔽𝑞, where the share of each 𝑝𝑗 ∈ 𝐵 is one field element. Thus, the closure properties of
Lemma 4.4 imply the first scheme of Ito, Saito, and Nishizeki.

The second scheme of Ito, Saito, and Nishizeki is also implied by the closure properties of Lemma 4.4.
Let 𝑇1,… , 𝑇𝓁 be the maximal unauthorized sets of an access structure Γ and define Γ𝑖

def
=
{

𝐵 ∶ 𝐵 ⊈ 𝑇𝑖
} (that

is, 𝑇𝑖 is the only maximal unauthorized set in Γ𝑖). Then, Γ =
⋂

1≤𝑖≤𝓁 Γ𝑖.
Benaloh and Leichter applied the closure properties recursively, providing efficient secret-sharing schemes

for a much richer family of access structures than the access structures that can be efficiently realized by the
scheme of Ito, Saito, and Nishizeki. To describe access structures that can be efficiently realized by Be-
naloh and Leichter’s scheme, it is convenient to view an access structure Γ as a function 𝑓Γ as defined in
Definition 3.3. This definition implies that for two access structures Γ1 and Γ2, 𝑓Γ1 ∨ 𝑓Γ2 = 𝑓Γ1∪Γ2 and
𝑓Γ1 ∧ 𝑓Γ2 = 𝑓Γ1∩Γ2 . Using this observation, the scheme of Benaloh and Leichter (denoted the BL scheme)
can efficiently realize every access structure that can be represented by a small monotone formula (the reader
is referred to Appendix A.1 for a reminder on monotone formulas). This is achieved by recursively applying
Lemma 4.4 to each internal node of the monotone formula. Notice that if we follow the recursion, each leaf
gets one element; we give the element of a leaf labeled by 𝑥𝑖 to party 𝑝𝑖. A formal description of the BL
scheme is presented in Figure 4.4. An example of an execution of the BL scheme for a monotone formula is
given in Figure 4.5.
Lemma 4.6. Let Γ be an access structure and assume that can be represented by a monotone formula in
which for every 1 ≤ 𝑗 ≤ 𝑛 the variable 𝑥𝑗 appears 𝑎𝑗 times in the formula. Then, for every prime-power 𝑞,
the BL scheme described in Figure 4.4 is a linear secret-sharing scheme over 𝔽𝑞 realizing the access structure
Γ. The secret in the BL secret-sharing scheme is an element in 𝔽𝑞 and for every 𝑖 ∈ {1,… , 𝑛} the share of
𝑝𝑗 is 𝑎𝑗 elements in 𝔽𝑞.

Any monotone Boolean function over 𝑛 variables can be computed by a monotone formula. Thus, every
access structure can be realized by the scheme of [36]. However, for almost all monotone functions, the
size of the smallest monotone formula computing them is exponential in 𝑛; i.e., the information ratio of the
resulting scheme is exponential in the number of the parties. Note that we can consider additional types
of gates in the monotone formula. If the gate can be realized by an efficient secret-sharing scheme (e.g., a
threshold gate), then the resulting scheme will be efficient.

28

The BL secret-sharing scheme

Procedure ShareBL(𝑠, 𝐹)
The inputs: a secret 𝑠 ∈ 𝔽𝑞, for some finite field 𝔽𝑞, and a monotone formula 𝐹 .

• If 𝐹 = 𝑥𝑖 for some 1 ≤ 𝑖 ≤ 𝑛, then give 𝑠 to 𝑝𝑖.
• If 𝐹 = ∨𝓁

𝑗=1𝐹𝑗 for some monotone formulas 𝐹1,… , 𝐹𝓁, then ShareBL(𝑠, 𝐹𝑗) for every
1 ≤ 𝑗 ≤ 𝓁.

• If 𝐹 = ∧𝓁
𝑗=1𝐹𝑗 for some monotone formulas 𝐹1,… , 𝐹𝓁, then

– Choose 𝓁 − 1 random field elements 𝑟1,… , 𝑟𝓁−1 ∈ 𝔽𝑞 with uniform distribution
and compute 𝑟𝓁 ← 𝑠 − (𝑟1 +⋯ + 𝑟𝓁−1) (where the sum is in 𝔽𝑞).

– ShareBL(𝑟𝑗 , 𝐹𝑗) for every 1 ≤ 𝑗 ≤ 𝓁.
Figure 4.4: The BL secret-sharing scheme for an access structure represented by a monotone formula 𝐹 . The
share of each party 𝑝𝑖 is an element for every leaf labeled by 𝑥𝑖.

𝑥1
AND

𝑥17

𝑥2

𝑥1

AND

OR

𝑥4

AND

𝒔

𝒔 − 𝒓𝟏 𝒓𝟏

𝒔 − 𝒓𝟏 − 𝒓𝟑

𝒓𝟏

𝒓𝟏 𝒓𝟑

𝒓𝟐 𝒓𝟏 − 𝒓𝟐

Figure 4.5: An example of an execution of the BL secret-sharing scheme for a monotone formula. The
values given in the recursion to each node are in bold. For each AND gate, the scheme chooses a fresh
random element. The share of 𝑝1, for example, is the two elements given to the leaves labeled by 𝑥1, i.e.,
𝗌𝗁1 = ⟨𝑟1, 𝑟3⟩.

29

4.4 Linear Secret-Sharing Schemes via Monotone Span Programs

In this section, we discuss linear secret-sharing schemes in their generality. To model a linear scheme, we
use monotone span programs [111], which is, basically, the matrix describing the linear mapping of the
linear scheme. The monotone span program also defines the access structure that the secret-sharing scheme
realizes. In the rest of the paper, vectors are denoted by bold letters (e.g., 𝐫) and, according to the context,
vectors are either row vectors or column vectors (i.e., if we write 𝐫𝑀 , then 𝐫 is a row vector, if we write 𝑀𝐫,
then 𝐫 is a column vector).
Definition 4.7 (Monotone Span Programs [111]). A monotone span program is a triple 𝖬𝖲𝖯 = ⟨𝔽 ,𝑀, 𝜌⟩,
where 𝔽 is a field, 𝑀 is an 𝑎 × 𝑏 matrix over 𝔽 for some 𝑎, 𝑏 ∈ ℕ, and 𝜌 ∶ {1,… , 𝑎} →

{

𝑝1,… , 𝑝𝑛
}

labels each row of 𝑀 by a party.11 The size of 𝖬𝖲𝖯 is the number of rows of 𝑀 (i.e., 𝑎). For any set
𝐴 ⊆

{

𝑝1,… , 𝑝𝑛
}

, let 𝑀𝐴 denote the sub-matrix obtained by restricting 𝑀 to the rows labeled by parties in
𝐴. We say that 𝖬𝖲𝖯 accepts 𝐵 if the rows of 𝑀𝐵 span the vector 𝐞𝟏

def
= ⟨1, 0,… , 0⟩. We say that 𝖬𝖲𝖯 accepts

an access structure Γ if 𝖬𝖲𝖯 accepts a set 𝐵 iff 𝐵 ∈ Γ.

Example 4.8. Consider the following monotone span program ⟨𝔽17,𝑀, 𝜌⟩, where

𝑀 =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1
1 2 4
1 3 9
1 4 16

⎞

⎟

⎟

⎟

⎟

⎠

𝜌(1) = 𝑝2
𝜌(2) = 𝑝2
𝜌(3) = 𝑝1
𝜌(4) = 𝑝3

Consider the sets 𝐵 =
{

𝑝1, 𝑝2
} and 𝑇 =

{

𝑝1, 𝑝3
}. In this case

𝑀𝐵 =

⎛

⎜

⎜

⎜

⎝

1 1 1
1 2 4
1 3 9

⎞

⎟

⎟

⎟

⎠

and 𝑀𝑇 =

(

1 3 9
1 4 16

)

.

As 𝑀𝐵 has full rank, the rows of 𝑀𝐵 span 𝐞𝟏, i.e., ⟨3, 14, 1⟩𝑀𝐵 = 𝐞𝟏 (in 𝔽17). Hence, the monotone span
program accepts {𝑝1, 𝑝2

}. On the other hand, the rows of 𝑀𝑇 do not span 𝐞𝟏 and the monotone span program
does not accept {𝑝1, 𝑝3

}. The minimal authorized sets in the access structure accepted by 𝖬𝖲𝖯 are {𝑝1, 𝑝2
}

and {

𝑝2, 𝑝3
}.

A monotone span program implies a linear secret-sharing scheme for an access structure containing all
the sets accepted by the program as stated below.
Claim 4.9 ([49, 111]). Let 𝖬𝖲𝖯 =

⟨

𝔽𝑞,𝑀, 𝜌
⟩

be a monotone span program accepting an access structure
Γ, where 𝔽𝑞 is a finite field. Assume that for every 𝑗 ∈ {1,… , 𝑛} there are 𝑎𝑗 rows of 𝑀 labeled by 𝑝𝑗 . Then,
there is a linear secret-sharing scheme realizing Γ such that the share of party 𝑝𝑗 contains 𝑎𝑗 elements of 𝔽𝑞.
The information ratio of the resulting scheme is max1≤𝑗≤𝑛 𝑎𝑗 .

30

The MSP secret-sharing scheme

The secrets: an element 𝑠 ∈ 𝔽𝑞, for some prime power 𝑞.
The monotone span program: 𝖬𝖲𝖯 =

⟨

𝔽𝑞,𝑀, 𝜌
⟩, where 𝑀 is an 𝑎 × 𝑏 matrix over 𝔽𝑞.

The scheme:

• Choose 𝑏−1 random elements 𝑟2,… , 𝑟𝑏 independently with uniform distribution from
𝔽𝑞 and let 𝐫 ← ⟨𝑠, 𝑟2,… , 𝑟𝑏⟩.

• Evaluate ⟨𝑧1,… , 𝑧𝑎⟩ ← 𝑀𝐫; the share of party 𝑝𝑗 are the 𝑎𝑗 entries corresponding to
rows labeled by 𝑝𝑗 , i.e., 𝗌𝗁𝑗 = ⟨𝑧𝑖 ∶ 𝜌(𝑖) = 𝑗⟩.

Figure 4.6: The linear secret-sharing scheme for a monotone span program 𝖬𝖲𝖯.

Proof. The linear secret-sharing scheme for Γ is described in Figure 4.6. In this secret-sharing scheme, every
set 𝐵 ∈ Γ can reconstruct the secret: Let 𝑁 = 𝑀𝐵, thus, the rows of 𝑁 span 𝐞𝟏, and there exists some vector
𝐯 such that 𝐞𝟏 = 𝐯𝑁 . Notice that the first coordinate in 𝑟 is 𝑠 and the shares of the parties in 𝐵 are 𝑁𝐫. The
parties in 𝐵 can reconstruct the secret by computing 𝐯(𝑁𝐫) since

𝐯(𝑁𝐫) = (𝐯𝑁)𝐫 = 𝐞𝟏 ⋅ 𝐫 = 𝑠. (4.1)
We next prove that this scheme is secure. If 𝑇 ∉ Γ, then the rows of 𝑀𝑇 do not span the vector 𝐞𝟏,

i.e., rank(𝑀𝑇) < rank
(𝑀𝑇
𝐞𝟏

) (where (𝑀𝑇
𝐞𝟏

) is the matrix containing the rows of 𝑀𝑇 and an additional row
𝐞𝟏). By simple linear algebra, |

|

kernel(𝑀𝑇)|| >
|

|

|

kernel
(𝑀𝑇
𝐞𝟏

)

|

|

|

, and there is some vector 𝐰 ∈ 𝔽 𝑏
𝑞 such that

(𝑀𝑇)𝐰 = 𝟎 and 𝐞𝟏 ⋅ 𝐰 = 1 (that is, 𝑤1 – the first coordinate in 𝐰 – is 1). We next prove that for every
two secrets 𝑠0, 𝑠1 ∈ 𝔽𝑞 and every vector of shares ⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
for the parties in 𝑇 , the probability that the

scheme outputs this vector of shares is the same for the two secrets. Fix a vector 𝐫 def
= ⟨𝑠0, 𝑟2,… , 𝑟𝑏⟩ such

that (𝑀𝑇)𝐫 =
⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
, that is, 𝐫 is a vector generating the shares for the secret 𝑠0. Consider the vector

𝐫′ = 𝐫 + (𝑠1 − 𝑠0)𝐰. Let 𝑟1 and 𝑟′1 be the first coordinate in 𝐫 and 𝐫′ respectively. As 𝑟1 = 𝑠0 and 𝑤1 = 1,
𝑟′1 = 𝑟1 + (𝑠1 − 𝑠0)𝑤1 = 𝑠1;

thus, the vector 𝐫′ generates shares for the secret 𝑠1. Furthermore, as 𝐰 is in the kernel of 𝑀𝑇 ,
(𝑀𝑇)𝐫′ = (𝑀𝑇)(𝐫 + (𝑠1 − 𝑠0)𝐰) = (𝑀𝑇)𝐫 + (𝑠1 − 𝑠0)(𝑀𝑇)𝐰 = (𝑀𝑇)𝐫 =

⟨

𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
.

The mapping 𝐫′ = 𝐫 + (𝑠1 − 𝑠0)𝐰 from random strings for the secret 𝑠0 to random strings for the secret 𝑠1
is invertible, that is, the number of random strings that generate the shares ⟨𝗌𝗁𝑗

⟩

𝑝𝑗∈𝑇
when the secret is 𝑠0

11For simplicity, in this monograph we label a row by a party 𝑝𝑗 rather than by a variable 𝑥𝑗 as done in [111]. In [111], they
also define general (non-monotone) span programs, where a row can be also labeled by a negated variable 𝑥𝑗 and 𝑀𝐵 is defined
appropriately.

31

is the same as the number of random strings that generate these shares when the secret is 𝑠1 (for every two
secrets 𝑠0, 𝑠1), and the scheme is secure.
Remark 4.10 (Historical Notes). Brickell [49] in 1989 implicitly defined monotone span programs for the
case that each party labels exactly one row, and proved Claim 4.9. Karchmer and Wigderson [111] in 1993
explicitly defined span programs and monotone span programs. They considered them as a computational
model and their motivation was proving lower bounds for modular branching programs. Karchmer and
Wigderson showed that monotone span programs imply (linear) secret-sharing schemes. Beimel [14] proved
that linear secret-sharing schemes (under various definitions) imply monotone span programs. Thus, linear
secret-sharing schemes are equivalent to monotone span programs, and lower bounds on the size of monotone
span programs imply the same lower bounds on the information ratio of linear secret-sharing schemes.
Example 4.11. We next describe the linear secret-sharing for Γustcon, presented in Section 4.1, as a monotone
span program over 𝔽2. Recall that in Γustcon we consider a graph with 𝑚 vertices and 𝑛 =

(𝑚
2

) edges; each
edge is a party. We construct a monotone span program over 𝔽2, which has 𝑏 = 𝑚 − 1 columns and 𝑎 = 𝑛
rows. For each party (edge) (𝑣𝑖, 𝑣𝑗), where 1 ≤ 𝑖 < 𝑗 ≤ 𝑚 − 1 (i.e., 𝑗 ≠ 𝑚), there is a unique row in the
program labeled by this party; all entries in this row are zero, except for the 𝑖th and the 𝑗th entries, which are
1. For 𝑗 = 𝑚 and for each party (edge) (𝑣𝑖, 𝑣𝑚), where 1 ≤ 𝑖 ≤ 𝑚 − 1, there is a unique row in the program
labeled by this party; all entries in this row are zero, except for the 𝑖th entry, which is 1 (this is equivalent to
choosing 𝑟𝑚 = 0 in Section 4.1). It can be proved that this monotone span program accepts a set of parties
(edges) if and only if the set contains a path from 𝑣1 to 𝑣𝑚.

To construct a secret-sharing scheme from this monotone span program, we multiply the above matrix
by a vector 𝐫 = ⟨𝑠, 𝑟2,… , 𝑟𝑚−1⟩ and the share of party (𝑣𝑖, 𝑣𝑗) is the row labeled by (𝑣𝑖, 𝑣𝑗) in the matrix
multiplied by 𝐫. That is, the share is as defined in the scheme for Γustcon described in Figure 4.1. For example,
the share of edge (𝑣1, 𝑣2) is ⟨1, 1, 0,… , 0⟩ ⟨𝑠, 𝑟2,… , 𝑟𝑚−1⟩

𝑇 = 𝑠 ⊕ 𝑟2.

Clearly, every secret-sharing scheme from a monotone span program (i.e., the scheme of Figure 4.6) is
linear according to Definition 4.1. The converse is also true as shown in the next claim, which basically
follows from the proof of Claim 4.9.
Claim 4.12. Let 𝑞 be a prime-power and 𝓁1,… ,𝓁𝑛 ∈ ℕ. Assume that there is a linear secret-sharing scheme
Π over 𝔽𝑞 according to Definition 4.1 realizing an access structure Γ, where for every 1 ≤ 𝑖 ≤ 𝑛 the domain
of shares of party 𝑝𝑖 is 𝔽 𝓁𝑖

𝑞 . Then there is a monotone span program
⟨

𝔽𝑞,𝑀, 𝜌
⟩

accepting Γ, whose size is
∑𝑛

𝑖=1 𝓁𝑖.

Proof. Recall that in a linear secret-sharing scheme each share is a vector over 𝔽𝑞, where each coordinate is
a linear combination of the secret and random elements from 𝔽𝑞. Let 𝑀 be the linear mapping of the sharing
of the secret-sharing scheme Π, where the first column of 𝑀 contains the coefficients of the secret in any

32

linear combination. In other words, the shares are computed by

𝑀

⎛

⎜

⎜

⎜

⎜

⎝

𝑠
𝑟2
⋮

𝑟𝑏

⎞

⎟

⎟

⎟

⎟

⎠

.

Furthermore, assume that the first 𝓁1 rows compute the share of 𝑝1, the next 𝓁2 rows compute the share of 𝑝2,
and so on. For every 1 ≤ 𝑖 ≤ 𝑛 and every 1+

∑𝑖−1
𝑚=1 𝓁𝑖 ≤ 𝑗 ≤

∑𝑖
𝑚=1 𝓁𝑖, let 𝜌(𝑗) = 𝑖. We need to prove that the

monotone span program accepts Γ. As proved in Claim 4.9, a set of parties 𝐴 can reconstruct the secret in
the scheme Π if and only if 𝐞𝟏 is spanned by the rows of 𝑀𝐵. That is, ⟨𝔽𝑞,𝑀, 𝜌

⟩ accepts Γ as claimed.

4.5 Properties of Linear Secret-Sharing Schemes

Linear secret-sharing schemes have interesting properties that are useful for many applications. We next list
a few of them.

Linear Sharing vs. Linear Reconstruction. In the proof of Claim 4.9, we have shown that if we have
a secret-sharing scheme in which the sharing is computed by a linear mapping, then the reconstruction is
also computed by a linear mapping (see (4.1)). The converse is also true; it is proved in [14] that if we have
a secret-sharing scheme where each authorized set reconstructs the secret by applying a linear mapping to
its shares, then the scheme can be converted to an equivalent scheme with the same share size in which the
sharing is computed by a linear mapping.

Efficiency of Sharing and Reconstruction. In linear secret-sharing schemes, both sharing and reconstruc-
tion are done by computing a linear transformation; thus, if the share size in the scheme is reasonable, the
running times of the algorithms computing the sharing and reconstruction are efficient.

Zero-One Law for Security/Correctness. Let Π be a linear secret-sharing scheme Π, whose linear map-
ping is defined by a matrix 𝑀 . For any set of parties 𝐴, either the rows of 𝑀𝐴 span the vector 𝐞𝟏, i.e., the
parties in 𝐴 can reconstruct the secret, or the rows of 𝑀𝐴 do not span the vector 𝐞𝟏, i.e., the parties in 𝐴 do
not learn any information on the secret. That is, in any linear secret-sharing scheme, there are no sets that
can learn partial information on the secret. This property can be used to simplify proofs that a set 𝑇 cannot
learn any information in a secret-sharing scheme – it suffices to show that some shares of 𝑇 can be generated
for two secrets (e.g., 0 and 1).

Extending the Domain of Secrets. If we have a linear secret-sharing scheme over some finite field 𝔽𝑞 with
a domain of secrets 𝑆 ⊊ 𝔽𝑞, then we can extend the secret-sharing scheme to a secret-sharing realizing the

33

same access structure where the domain of secrets is 𝔽𝑞 and the domain of shares of each party is not changed.
In other words, we do not pay in the share size for extending the domain of secrets.

To see this, suppose we have a secret-sharing scheme Π realizing Γ such that Π is linear over 𝔽𝑞 as defined
in Definition 4.1, where the domain of secrets is 𝑆 ⊊ 𝔽𝑞 of size at least 2, i.e., 𝑠0, 𝑠1 ∈ 𝑆 for some 𝑠0, 𝑠1 ∈ 𝔽𝑞.
Let 𝑀 be the linear mapping computing the sharing function in Π and 𝜌 be the labeling of the rows by parties.
We claim that, by the proof of Claim 4.9, although the domain of secrets is not the entire field, Γ is the access
structure accepted by the monotone span program 𝖬𝖲𝖯 =

⟨

𝔽𝑞,𝑀, 𝜌
⟩. I.e., if the rows of 𝑀𝐴 span 𝐞𝟏 then

by the proof of Claim 4.9 the parties in 𝐴 can reconstruct the secret in Π and 𝐴 ∈ Γ and if the rows of 𝑀𝑇

do not span 𝐞𝟏, then for every vector of shares ⟨𝗌𝗁𝑗
⟩

𝑝𝑗∈𝑇
the probability that the shares are generated in Π

with the secrets 𝑠0, 𝑠1 is the same and 𝑇 ∉ Γ. Thus, by Claim 4.9, we can use 𝖬𝖲𝖯 to realize Γ with the
entire field 𝔽𝑞 as the domain of secrets and the same domain of shares.

Additivity. If we take shares in a linear secret-sharing scheme and add them, then we get shares of the sum
of the two secrets. Formally,
Lemma 4.13. Let 𝑠1, 𝑠2 ∈ 𝔽𝑞 be two secrets and for 𝑏 ∈ {1, 2} let 𝗌𝗁𝑏1,… , 𝗌𝗁𝑏𝑛 be shares of the se-
cret 𝑠𝑏 in a linear secret-sharing scheme for a monotone span program 𝖬𝖲𝖯 =

⟨

𝔽𝑞,𝑀, 𝜌
⟩

, where 𝑠𝑏𝑗 =
⟨

𝑠𝑏𝑗,1,… , 𝑠𝑏𝑗,𝑎𝑗

⟩

∈ 𝔽 𝑎𝑗
𝑞 for some integer 𝑎𝑗 . Define 𝗌𝗁𝑗 =

⟨

𝑠1𝑗,1 + 𝑠1𝑗,2,… , 𝑠1𝑗,𝓁𝑗 + 𝑠2𝑗,𝑎𝑗

⟩

. Then, 𝗌𝗁1,… , 𝗌𝗁𝑛
are shares of 𝑠0 + 𝑠1.

Proof. Without loss of generality, assume that the first 𝑎1 rows of 𝑀 are labeled by 𝑝1, the next 𝑎2 rows
are labeled by 𝑝2 and so on. Let 𝐫𝟏 =

⟨

𝑠1, 𝑟12,… , 𝑟1𝑏
⟩ and 𝐫𝟐 =

⟨

𝑠2, 𝑟22,… , 𝑟2𝑏
⟩ be random strings such that

⟨

𝗌𝗁11,… , 𝗌𝗁1𝑛
⟩

= 𝑀𝐫𝟏 and ⟨

𝗌𝗁21,… , 𝗌𝗁2𝑛
⟩

= 𝑀𝐫𝟐. Thus,

𝑀(𝐫𝟏 + 𝐫𝟐) = 𝑀𝐫𝟏 +𝑀𝐫𝟐 =
⟨

𝗌𝗁11,… , 𝗌𝗁2𝑛
⟩

+
⟨

𝗌𝗁21,… , 𝗌𝗁2𝑛
⟩

= ⟨𝗌𝗁1,… , 𝗌𝗁𝑛⟩ .

As the first coordinate in 𝐫𝟏 + 𝐫𝟐 is 𝑠1 + 𝑠2, the secret 𝑠1 + 𝑠2 and randomness 𝑟12 + 𝑟22,… , 𝑟1𝑏 + 𝑟2𝑏 generate
the shares ⟨𝗌𝗁1,… , 𝗌𝗁𝑛⟩.

Protocols for Multiplication. The additivity of linear secret-sharing schemes enables parties to compute,
without any interaction, shares of the sum of two shared secrets. We would like to enable parties to compute
shares of a product of two shared secrets, without revealing any information on the secret. This property will
be useful when designing secure multiparty protocols (see Chapter 6). Unlike addition, this task requires
interaction between the parties and can be carried out only if the union of any two unauthorized sets in the
access structure is not the entire set of parties (e.g., in a 𝑡-out-of-𝑛 access structure, this is possible only if
2𝑡−1 < 𝑛); this property is called 𝑄2. Cramer et al. [64] showed that if an 𝑛-party 𝑄2 access structure has a
linear secret-sharing with total share size 𝑎, then there is a linear secret-sharing scheme with total share size
2𝑎 that has a secure 1-round protocol for computing the shares of a product of two shared secrets.

34

Duality. The dual of an access structure Γ with a set of parties 𝑃 is the access structure

Γ⟂ = {𝐵 ∶ 𝑃 ⧵ 𝐵 ∉ Γ} ,

that is, a set is authorized in the dual access structure Γ⟂ if and only if its dual is unauthorized in Γ. For
example, consider the 𝑡-out-of-𝑛 access structure Γ𝑛,𝑡 =

{

𝐴 ⊆
{

𝑝1,… , 𝑝𝑛
}

∶ |𝐴| ≥ 𝑡
}; its dual is the (𝑛− 𝑡+

1)-out-of-𝑛 access structure Γ⟂
𝑛,𝑡 = Γ𝑛,𝑛−𝑡+1 =

{

𝐵 ⊆
{

𝑝1,… , 𝑝𝑛
}

∶ |𝐵| ≥ 𝑛 − 𝑡 + 1
}

.. If an access structure
Γ has a linear secret-sharing scheme over 𝔽𝑞 with information ratio 𝑎, then Γ⟂ also has a linear secret-sharing
scheme over 𝔽𝑞 with information ratio 𝑎. For a proof of this claim see [86].12

Limitations of Linear Secret-Sharing Schemes. As explained, the access structures that can efficiently be
realized by linear secret-sharing schemes are characterized by functions that have polynomial size monotone
span programs. We will show that this implies that only access structures that can be represented by (non-
monotone) 𝖭𝖢 circuits (i.e., by a Boolean circuit with polynomial number of gates and poly-logarithmic
depth). To decide if a set 𝐴 is accepted by a monotone span program ⟨

𝔽𝑞,𝑀, 𝜌
⟩, we need to check if 𝐞𝟏 is

spanned by the rows of 𝑀𝐴, i.e., if rank𝔽𝑞 (𝑀𝐴) = rank𝔽𝑞 (𝑀𝐴 ∪
{

𝐞𝟏
}

). By [138], computing the rank over
𝔽𝑞 of an 𝑛 × 𝑛 matrix can be done by a polynomial size circuit of depth 𝑂(log2(𝑛) log log(𝑞)). Thus, access
structures that cannot be represented by an 𝖭𝖢 circuit do not have an efficient linear secret-sharing scheme.
For example, if 𝖯 ≠ 𝖭𝖢, then access structures recognized by monotone 𝖯-complete problems do not have
efficient linear secret-sharing schemes.

4.6 Multilinear Secret-Sharing Schemes

In the schemes derived from monotone span programs, the secret is one element from the field. This can be
generalized to the case where the secret is some vector over the field. Such schemes, studied by [39, 41, 76],
are called multilinear;13 they are based on the following generalization of monotone span programs.
Definition 4.14 (Multi-Target Monotone Span Programs). A multi-target monotone span program is a quadru-
ple 𝖬𝖲𝖯 = ⟨𝔽 ,𝑀, 𝜌, 𝑉 ⟩, where 𝔽 is a finite field, 𝑀 is an 𝑎×𝑏 matrix over 𝔽 , 𝜌 ∶ {1,… , 𝑎} →

{

𝑝1,… , 𝑝𝑛
}

labels each row of 𝑀 by a party, and 𝑉 =
{

𝐞𝟏,… , 𝐞𝐜
}

is a set of vectors in 𝔽 𝑏 for some 1 ≤ 𝑐 < 𝑏 such that
for every 𝐴 ⊆

{

𝑝1,… , 𝑝𝑛
}

either

• The rows of 𝑀𝐴 span each vector in
{

𝐞𝟏,… , 𝐞𝐜
}

; in this case, we say that 𝖬𝖲𝖯 accepts 𝐴, or,

12It is not known if general secret-sharing schemes have this property, i.e., it is not known if an access structure can be realized by
a secret-sharing scheme with information ratio 𝑎 implies that Γ⟂ has a secret-sharing scheme with information ratio 𝑂(𝑎) or poly(𝑎).
See [71] for a discussion on this subject and some separation between the share size of an access structure and its dual. See also [46]
for an example of access structures closed under duality.

13The name multilinear secret-sharing scheme is inconsistent with the notion of multilinear maps (i.e., maps that are linear in each
variable but the mapping itself can have larger degree). It borrows its name from multilinear representable matroids (e.g., in [167]);
to be consistent with the literature on secret-sharing schemes we will use this name in this monograph.

35

• The rows of 𝑀𝐴 span no non-zero vector in the linear space spanned by
{

𝐞𝟏,… , 𝐞𝐜
}

; in this case, we
say that 𝖬𝖲𝖯 rejects 𝐴.

We say that 𝖬𝖲𝖯 accepts an access structure Γ if 𝖬𝖲𝖯 accepts a set 𝐵 iff 𝐵 ∈ Γ and rejects a set 𝐵 iff 𝐵 ∉ Γ.

Not that, in general, it is possible that𝑀 neither accepts some set𝐴 nor rejects it. In this case, ⟨𝔽 ,𝑀, 𝜌, 𝑉 ⟩

is not a multi-target MSP.
Claim 4.15. Let 𝖬𝖲𝖯 =

⟨

𝔽𝑞,𝑀, 𝜌, 𝑉
⟩

be a multi-target monotone span program accepting Γ, where 𝔽𝑞 is
a finite field, |𝑉 | = 𝑐, and for every 𝑗 ∈ {1,… , 𝑛} there are 𝑎𝑗 rows of 𝑀 labeled by 𝑝𝑗 . Then, there is a
multilinear secret-sharing scheme realizing Γ such that the secret is a vector in 𝔽 𝑐

𝑞 and the share of party 𝑝𝑗
is a vector in 𝔽 𝑎𝑗

𝑞 ; in particular, the information ratio of the scheme is max1≤𝑗≤𝑛 𝑎𝑗∕𝑐.

The proof of Claim 4.15 is similar to the proof of Claim 4.9, where in this case the secret is 𝑠1,… , 𝑠𝑐 ,
the dealer chooses 𝑏 − 𝑐 random elements 𝑟𝑐+1,… , 𝑟𝑏 in 𝔽𝑞, uses the vector 𝐫 =

⟨

𝑠1,… , 𝑠𝑐 , 𝑟𝑐+1,… , 𝑟𝑏
⟩,

and computes the shares 𝑀𝐫. The correctness is similar to the proof of Claim 4.9, i.e., if 𝐞𝐢 is spanned by
the rows of 𝑀𝐴, then the parties in 𝐴 can reconstruct 𝑠𝑖. The security follows from the fact that if the rows
of 𝑀𝑇 do not span any non-trivial linear combination of 𝐞𝟏,… , 𝐞𝐜, then for every 1 ≤ 𝑖 ≤ 𝑐, the rows of
𝑀𝑇 and 𝐞𝟏,… , 𝐞𝐢−𝟏, 𝐞𝐢+𝟏,… , 𝐞𝐜 do not span 𝐞𝐢, i.e., there exists a vector 𝐰 such that (𝑀𝑇)𝐰 = 𝟎, 𝐞𝐣 ⋅ 𝐰 = 0
(i.e., 𝑤𝑗 = 0) for every 𝑗 ≠ 𝑖 , and 𝐞𝐢 ⋅ 𝐰 = 1 (i.e., 𝑤𝑖 = 1). As in the proof of Claim 4.9, this implies that
for every two secrets that differ only in the 𝑖-th coordinate and for every possible vector of shares for 𝑇 , the
probability that the shares are generated for the two secrets is the same. By applying the above arguments at
most 𝑐 times, we get the security for every two secrets.

Any multi-target monotone span program is a monotone span program; however, using multi-target
monotone span programs to construct a multilinear secret-sharing scheme results in a scheme with a bet-
ter information ratio.
Example 4.16. Consider the access structure Γ⊓ defined in Example 3.2. It was proved by Capocelli et
al. [53] that in any secret-sharing scheme realizing Γ⊓ the information ratio is at least 1.5. We present this
lower bound and prove it in Theorem 7.4. By definition, the information ratio of a linear scheme is integral;
thus, in any linear secret-sharing realizing Γ⊓ the information ratio is at least 2.

We next present a multilinear secret-sharing scheme realizing Γ⊓ with information ratio 1.5. In Exam-
ple 4.2 we described a linear scheme realizing Γ⊓ whose information ratio is 2; this scheme is the BL scheme
for the formula (

(𝑥1 ∨ 𝑥3) ∧ 𝑥2
)

∨ (𝑥3 ∧ 𝑥4). Notice that although parties 𝑝2 and 𝑝3 have symmetric roles in
Γ⊓, in the scheme described Example 4.2 party 𝑝2 gets one field element and 𝑝3 gets two field elements. To
construct a multilinear scheme realizing Γ⊓ whose information ratio is 1.5, we exploit the asymmetry of the
previous scheme. To share a secret ⟨𝑠1, 𝑠2⟩ ∈ 𝔽 2

𝑞 , the dealer shares 𝑠1 as above and shares 𝑠2 using the BL
scheme for the formula (

𝑥2 ∨ 𝑥4) ∧ 𝑥3
)

∨ (𝑥1 ∧ 𝑥2). The scheme is described in the following table, where
𝑟1, 𝑟2, 𝑟3, and 𝑟4 are uniformly distributed random elements in 𝔽𝑞.

Secret Randomness Share of 𝑝1 Share of 𝑝2 Share of 𝑝3 Share of 𝑝4
𝑠1, 𝑠2 ∈ 𝔽𝑞 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ 𝔽𝑞 𝑟1, 𝑟3 𝑟1 ⊕ 𝑠1, 𝑟3 ⊕ 𝑠2, 𝑟4 𝑟1, 𝑟2 ⊕ 𝑠1, 𝑟4 ⊕ 𝑠2 𝑟2, 𝑟4

36

The secret in the above scheme is two field elements and the largest shares are 3 elements; hence the infor-
mation ratio of this scheme (i.e., the ratio between the share size and the secret size) is 1.5. It is an easy
exercise to write the above multilinear scheme as a multi-target monotone span program; the matrix of this
program has 10 rows and 6 columns.

The scheme in Example 4.16 involves two applications of linear secret-sharing schemes realizingΓ⊓, each
application with an independent secret and independent random bits. In particular, the multilinear secret-
sharing scheme has the same total information ratio as the linear scheme. Multilinear secret-sharing schemes
are provably more efficient than linear secret-sharing schemes [167, 5, 4, 19]. Specifically, Applebaum and
Arkis [4] constructed, for every 𝑛, multilinear secret-sharing schemes with information ratio 4 for a family
of 22𝑛∕2 access structures (alas for long secrets of size 2𝑛𝑛∕2); this family is the family of all 𝑛∕2-partite access
structures.14 By [19] the number of access structures that can be realized by a linear secret-sharing scheme
(over all fields) with information ratio 𝑑 is at most 0.5⋅2𝑑3∕2. Thus, for almost all 𝑛∕2-partite access structures,
the information ratio of every linear secret-sharing realizing them is at least 2𝑛∕6.

14In an 𝑛∕2-partite access structure, the 𝑛 parties are partitioned to 𝑛∕2 pairs, {𝑝1, 𝑝2
}

,
{

𝑝3, 𝑝4
}

,… ,
{

𝑝𝑛−1, 𝑝𝑛
}. The authorized

sets are all sets of size at least 𝑛∕2 + 1 and some sets of size 𝑛∕2 containing exactly one party from each pair.

37

Chapter 5

Secret-Sharing Schemes for Arbitrary
Access Structures with Exponent Smaller
Than One

In a breakthrough paper, Liu and Vaikuntanathan [123] constructed for every access structure a secret-
sharing scheme with share size 20.994𝑛. This was improved in a sequence of works [6, 8, 9] to share size
(3∕2)(1+𝑜(1))𝑛 < 20.585𝑛 [9]. These constructions are rather involved and, in particular, use constructions of
matching vectors [102]. In this chapter we describe a simpler construction, from [8], of a secret-sharing
scheme with share size 2𝑐𝑛 for some constant 0 < 𝑐 < 1; for the sake of simplicity, we do not try to optimize
this constant. Our description will be self-contained and contain all details (except for a few simple claims).
As a bonus, the scheme we will describe is linear (in [123, 6, 8, 9, 2], linear schemes are also described).

To construct the scheme, in Section 5.1 we define robust graph secret-sharing schemes and, as a warm-
up and a motivation for this definition, we show that if there is a fully-robust graph secret-sharing scheme,
then we can construct a secret-sharing scheme for an arbitrary access structure. However, if we plug in the
best known fully robust graph secret-sharing scheme, the share size of the resulting secret-sharing scheme
would be 2𝑛−𝑜(𝑛). In the end of this chapter, in Section 5.4, we show a more complicated reduction from
secret-sharing schemes for arbitrary 𝑛-party access structure to a 𝑡-robust graph secret-sharing scheme for a
graph with 𝑁 = 𝑂(2𝑛∕2) vertices and 𝑡 ≪ 𝑁 . To complete the construction, we describe in Section 5.2 a
1-robust graph secret-sharing scheme and in Section 5.3 a transformation of this scheme to a 𝑡-robust graph
secret-sharing scheme.

5.1 Robust Graph Secret Sharing

In a graph secret-sharing scheme [50], the parties are vertices of a graph and a set of vertices (parties) can
reconstruct the secret if and only if it contains an edge. In other words, all minimal authorized sets are
of size 2 and a set is unauthorized if it is an independent set in the graph. Graph secret-sharing schemes

38

were studied in many papers, e.g., [50, 51, 53, 77, 43, 68, 73, 69, 70, 21, 82, 72]. The naive scheme to
realize a graph is to share the secret independently for each edge; this result implies a share of size 𝑂(𝑁)
per party for an 𝑁-vertex graph. A better scheme with share size 𝑂(𝑁∕ log(𝑁)) per party is implied by
a result of Erdös and Pyber [80]. For constructing secret-sharing schemes for arbitrary access structures,
we will need the following generalization of this notion. In a 𝑡-robust graph secret-sharing scheme [8, 19],
a set of vertices (parties) can reconstruct the secret if and only if it contains an edge or if the set contains
at least 𝑡 + 1 vertices. Using this terminology, 𝑁-robust graph secret-sharing schemes (for a non-empty
graph) are graph secret-sharing schemes. In the other extreme, 2-robust graph secret-sharing schemes are
called forbidden graph secret-sharing schemes [170] and are basically equivalent to 2-server conditional
disclosure of secrets (CDS) protocols [95]. For every 𝑁-vertex graph there is a linear 2-robust graph secret-
sharing scheme with share size 𝑂̃(𝑁1∕2) [93] and a non-linear 2-robust graph secret-sharing scheme with
share size 𝑁 𝑂̃(1∕

√

log(𝑁)) = 2𝑂̃(
√

log(𝑁)) [125]. In this monograph, we define robust secret-sharing schemes
only for bipartite graphs, as this is the graphs we need. For our construction, we will allow different sizes of
authorized sets from each part of the graph.
Definition 5.1. Let 𝐺 = (𝑈, 𝑉 , 𝐸) be a bipartite undirected graph (i.e., 𝐸 ⊆ 𝑈 × 𝑉) and 𝑡1, 𝑡2 be integers.
Define the (𝑡1, 𝑡2)-robust graph access structure Γ𝐺,𝑡1,𝑡2 , where the parties in the access structure are the
vertices in 𝑈 ∪ 𝑉 and a set 𝐴 ⊆ 𝑈 ∪ 𝑉 is authorized if at least one of the following conditions holds:

• The set 𝐴 contains at least one edge, i.e., there are 𝑢, 𝑣 ∈ 𝐴 such that (𝑢, 𝑣) ∈ 𝐸,

• |𝐴 ∩ 𝑈 | > 𝑡1, or

• |𝐴 ∩ 𝑉 | > 𝑡2.

A (𝑡1, 𝑡2)-robust secret-sharing scheme for the graph 𝐺 is a secret-sharing scheme realizing the access struc-
ture Γ𝐺,𝑡1,𝑡2 .

We next describe a simple reduction from realizing an arbitrary access structure to (fully-robust) graph
secret sharing. Given an access structure Γ with parties 𝑝1,… , 𝑝𝑛 we define the following bipartite graph
𝐺 = (𝑈, 𝑉 , 𝐸) with 𝑁 vertices, where 𝑁 = 2 ⋅ 2𝑛∕2:

• 𝑈 = 2
{

𝑝1,…,𝑝𝑛∕2
}

, i.e., the vertices in the left side are the subsets of {𝑝1,… , 𝑝𝑛∕2
}.

• 𝑉 = 2
{

𝑝𝑛∕2+1,…,𝑝𝑛
}

.15

• For every minimal authorized set 𝐴 in Γ, there is an edge
(𝐴 ∩

{

𝑝1,… , 𝑝𝑛∕2
}

, 𝐴 ∩
{

𝑝𝑛∕2 + 1,… , 𝑝𝑛
}

)

in 𝐸.
An illustration of a construction of such a graph appears in Figure 5.1.
The secret-sharing for Γ is as follows:

15There is vertex for the empty set in both sides. These are two different vertices.

39

{𝑝1, 𝑝2}

{𝑝2}

{𝑝1}

∅

{𝑝3, 𝑝4}

{𝑝4}

{𝑝3}

∅

Figure 5.1: The graph 𝐺 constructed from the access structure with two minimal authorized sets {

𝑝1, 𝑝3
}

and {

𝑝1, 𝑝2, 𝑝4
}.

• Construct the above graph 𝐺 = (𝑈, 𝑉 , 𝑉) for the access structure Γ.
• Share the secret 𝑠 using any fully-robust secret-sharing scheme for 𝐺. Let 𝗌𝗁𝐶 be the share in this

scheme of the vertex 𝐶 ∈ 𝑈 ∪ 𝑉 .
• For every non-empty set 𝐶 ∈ 𝑈 ∪ 𝑉 (where 𝐶 is a set of parties), independently share 𝗌𝗁𝐶 using the

|𝐶|-out-of-|𝐶| secret-sharing scheme of Example 1.1 among the parties of 𝐶 . In addition, give the
shares of ∅ ∈ 𝑈 and ∅ ∈ 𝑉 to all parties.

We next argue the correctness and security of the scheme. First, let 𝐴 = 𝐴1∪𝐴2 be a minimal authorized
set in Γ, where 𝐴1 ⊆

{

𝑝1,… , 𝑝𝑛∕2
} and 𝐴2 ⊆

{

𝑝𝑛∕2+1,… , 𝑝𝑛
}. By the construction of 𝐺, the edge (𝐴1, 𝐴2)

is in 𝐸, thus 𝗌𝗁𝐴1
and 𝗌𝗁𝐴2

determine the secret. Furthermore, the parties in 𝐴 can reconstruct 𝗌𝗁𝐴1
and 𝗌𝗁𝐴2

,
hence, can reconstruct the secret.

For the security of the scheme, consider an unauthorized set 𝑇 = 𝑇1∪𝑇2 ∉ Γ, where 𝑇1 ⊆
{

𝑝1,… , 𝑝𝑛∕2
}

and 𝑇2 ⊆
{

𝑝𝑛∕2+1,… , 𝑝𝑛
}. Clearly, the parties in 𝑇 can reconstruct 𝗌𝗁𝑇1 and 𝗌𝗁𝑇2 ; however, they can also

reconstruct the shares of every subset of 𝑇1 and every subset of 𝑇2. On the other hand, for any other vertex
in 𝐵 ∈ 𝑈 ∪ 𝑉 , the parties in 𝑇 miss at least one party in 𝐵. Hence, the parties in 𝑇 have no information of
the shares of these vertices.

Since 𝑇 is unauthorized, every subset of 𝑇 is unauthorized and there are no edges between subsets of 𝑇1
and subsets of 𝑇2, i.e., the parties in 𝑇 hold shares of an independent set in 𝐺. By the fully-robustness of the
scheme for 𝐺, the shares that the parties in 𝑇 hold do not give any information on the secret 𝑠.
Example 5.2. In the graph described in Figure 5.1, the unauthorized set{𝑝2, 𝑝3, 𝑝4

} can reconstruct 𝗌𝗁{𝑝2}, 𝗌𝗁∅
from the left side and the shares of all vertices from the right side. There is no edge between the vertices
{

𝑝2
}

, ∅ and the vertices in the right side, so these shares give no information on the secret.
We next analyze the share size in the above scheme. Party 𝑝𝑖 gets a share of 𝗌𝗁𝐴 for every 𝐴 such that

𝑝𝑖 ∈ 𝐴; there are 2𝑛∕2−1 such sets. Thus, the share size of 𝑝𝑖 is 𝑂(2𝑛∕2−1 ⋅max𝑝𝑖∈𝐴 |𝗌𝗁𝐴|). The share size in the
best known fully-robust secret-sharing scheme for an 𝑂(𝑁)-vertex graph is 𝑂(𝑁∕ log(𝑁)) [80]. Recalling
that the graph 𝐺 has 𝑂(2𝑛∕2) vertices, the best known implementation of the above scheme has share size
2𝑛−𝑜(𝑛). We do not know if there is a fully-robust graph secret-sharing scheme with share size 𝑂(𝑁𝑐) for
some 𝑐 < 1. We bypass this by using 𝑡-robust graph secret-sharing schemes for 𝑡 ≪ 𝑁 .

40

In Section 5.4, we will show a more complicated reduction to 𝑡-robust graph secret-sharing schemes for
𝑡 ≪ 2𝑛∕2. The high-level idea of this reduction is to ensure that 𝑇1 = 𝑇 ∩

{

𝑝1,… , 𝑝𝑛∕2
} is small for every

unauthorized set 𝑇 . As we only need that {𝐴1 ⊆ 𝑇 ∩ 𝑈
}

∪
{

𝐴2 ⊆ 𝑇 ∩ 𝑉
} is unauthorized for every 𝑇 ∉ Γ,

the robustness that we need, i.e., the number of subsets of 𝑇 ∩ 𝑈 , is small.

5.2 A (𝟏,𝑵)-Robust Graph Secret-Sharing Scheme

In Figure 5.2), we describe a (1, 𝑁)-robust graph secret-sharing scheme ΠOneRobust for a bipartite graph
𝐺 = (𝑈, 𝑉 , 𝐸), i.e., a scheme in which a pair of parties can reconstruct the secret if and only if they are
connected by an edge and every set of size 3 can reconstruct the secret. This scheme is a variant of a scheme
of [93]. In this scheme there is a random bit 𝑟𝑢 for every 𝑢 ∈ 𝑈 , the share of 𝑢 are all these random bits
except for 𝑟𝑢 and the share of 𝑣 is the exclusive-or of the secret and the random bits of the non-neighbors of
𝑣. Every non-edge 𝑢, 𝑣 does not learn any information on the secret as 𝑢 does not hold 𝑟𝑢 and 𝑟𝑢 masks the
secret in the share of 𝑣. This scheme is not (2, 1)-robust as every two vertices in 𝑈 hold all of the bits 𝑟𝑢, thus
together with any non-neighbor vertex in 𝑉 they can reconstruct the secret. However, we will show that it is
(1, 𝑁)-robust.

Scheme ΠOneRobust

The secret: A bit 𝑠 ∈ {0, 1}.
The scheme:

1. Choose |𝑈 | + 1 random bits 𝑟0, ⟨𝑟𝑢⟩𝑢∈𝑈 .
2. The share of a vertex 𝑢 ∈ 𝑈 is 𝗌𝗁𝑢 =

⟨

𝑟0, ⟨𝑟𝑤⟩𝑤∈𝑈,𝑤≠𝑢
⟩ (that is, all random bits except

for 𝑟𝑢).
3. The share of a vertex 𝑣 ∈ 𝑉 is 𝗌𝗁𝑣 = 𝑠 ⊕ 𝑟0 ⊕

⨁

𝑢∈𝑈,(𝑢,𝑣)∉𝐸
𝑟𝑢.

Figure 5.2: A (1, |𝑉 |)-robust graph secret-sharing ΠOneRobust for a bipartite graph 𝐺 = (𝑈, 𝑉 , 𝐸).

Lemma 5.3. Let 𝐺 = (𝑈, 𝑉 , 𝐸) be a bipartite graph. Then, the scheme ΠOneRobust , described in Figure 5.2,
is a (1, |𝑉 |)-robust graph secret-sharing scheme for 𝐺 in which the share size of each vertex in 𝑈 is |𝑈 | and
the share size of each vertex in 𝑉 is 1.

Proof. For the correctness of the scheme ΠOneRobust , consider an edge (𝑢, 𝑣) ∈ 𝐸. In this case, 𝑟𝑢 is not part
of the exclusive-or in the share 𝗌𝗁𝑣 held by 𝑣 and the vertex 𝑢 holds all random bits except for 𝑟𝑢. Thus, 𝑢
and 𝑣 can reconstruct the secret.

For the (1, |𝑉 |) robustness of the scheme, consider a set 𝑇2 ⊆ 𝑉 and a vertex 𝑢 such that (𝑢, 𝑣) ∉ 𝐸 for
every 𝑣 ∈ 𝑇2 (i.e., {𝑢} ∪ 𝑇2 is unauthorized). Note that 𝑠 ⊕ 𝑟𝑢 appears as a term in 𝗌𝗁𝑣 for every 𝑣 ∈ 𝑇2 and

41

𝑟𝑢 is not part of the share of 𝑢. Thus, 𝑟𝑢 acts as a one-time pad and completely hides 𝑠.
Remark 5.4. In ΠOneRobust , the share of a vertex 𝑢 is “big”, while the share of a vertex 𝑣 ∈ 𝑉 is a bit. We can
balance the share size; e.g., when |𝑈 | = |𝑉 | = 𝑁 , we can construct a (1, 𝑁)-robust secret-sharing scheme
with share size 𝑂(𝑁1∕2) for every vertex. That is, assuming |𝑈 | = |𝑉 | = 𝑁 , we partition 𝑈 to √

𝑁 sets
𝑈1,… , 𝑈√

𝑁 of size √𝑁 and execute ΠOneRobust for each graph 𝐺𝑖 = (𝑈𝑖, 𝑉 , 𝐸 ∩ (𝑈𝑖 × 𝑉). Each party in 𝑈

participates in one execution of ΠOneRobust , with share size |𝑈𝑖| =
√

𝑁 and each party in 𝑉 participates in
√

𝑁 executions of ΠOneRobust , each execution with share size 1. We will implicitly use this balancing when
constructing a robust secret-sharing scheme from ΠOneRobust .

5.3 A (𝒕,𝑵)-Robust Graph Secret-Sharing Scheme

Next, we show how to transform the scheme ΠOneRobust to a (𝑡,𝑁)-robust secret-sharing scheme ΠRobust for
𝑁1∕4 ≤ 𝑡 ≤ 𝑁1∕2.

Warm Up: (𝟐,𝑵)-Robust Secret Sharing. Suppose we have an unauthorized set 𝑇 =
{

𝑢1, 𝑢2
}

∪ 𝑇2.
We randomly partition the set 𝑈 into two sets 𝑈1, 𝑈2 and independently share the secret 𝑠 in a (1, 𝑁)-robust
secret-sharing scheme for the graph 𝐺1 = (𝑈1, 𝑉 , 𝐸∩(𝑈1×𝑉)) and for the graph 𝐺2 = (𝑈2, 𝑉 , 𝐸∩(𝑈2×𝑉)).
If 𝑢1 ∈ 𝑈1 and 𝑢2 ∈ 𝑈2, then, by the (1, 𝑁)-robustness of the schemes for 𝐺1 and for 𝐺2, the parties in 𝑇
do not learn any information on 𝑠 from the scheme for 𝐺1 or from the scheme for 𝐺2. An illustration of the
partition appears in Figure 5.3. However, if we are unlucky and 𝑢1, 𝑢2 are in the same set 𝑈𝑖, there are no
guarantees.

𝒖𝟏

𝒖𝟐

𝑼𝟏

𝑼𝟐

𝑻𝟐

𝒖𝟏

𝑼𝟏
𝑻𝟐

𝒖𝟏

𝒖𝟐

𝑼𝟏

𝑼𝟐

𝑻𝟐

The graph 𝐺 The graph 𝐺1 The graph 𝐺2

Figure 5.3: The partition of the graph to two graphs.

To overcome this problem, we use 𝓁 = 2 log(𝑁) random partitions
⟨

𝑈 𝑗
1 , 𝑈

𝑗
2

⟩

1≤𝑗≤𝓁
, where for each 𝑗

42

we independently choose 𝑈 𝑗
1 with uniform distribution and define 𝑈 𝑗

2 = 𝑈 ⧵ 𝑈 𝑗
1 . We share the secret 𝑠 as

follows:
1. Share 𝑠 using the 𝓁-out-of-𝓁 secret-sharing scheme of Example 1.1 to produce shares 𝗌𝗁1,… , 𝗌𝗁𝓁.
2. For 𝑗 = 1 to 𝓁 do:

• Independently share 𝗌𝗁𝑗 using the (1, 𝑁)-robust secret-sharing scheme ΠOneRobust for the graph
𝐺𝑗

1 = (𝑈 𝑗
1 , 𝑉 , 𝐸 ∩ (𝑈 𝑗

1 × 𝑉)) and for the graph 𝐺𝑗
2 = (𝑈 𝑗

2 , 𝑉 , 𝐸 ∩ (𝑈 𝑗
2 × 𝑉)).

All together, there are 2𝓁 executions of ΠOneRobust . If we take the secret-sharing scheme discussed in Re-
mark 5.4 (instead of ΠOneRobust), then the share size in this scheme is 𝑂(𝑁1∕2 log(𝑁)).

The correctness for an edge (𝑢, 𝑣) ∈ 𝐸 is immediate as for every 𝑗 there is an index 𝑖𝑗 ∈ {1, 2} such
that 𝑢 ∈ 𝑈 𝑗

𝑖𝑗
and 𝑢, 𝑣 can reconstruct 𝗌𝗁𝑗 from the scheme for 𝐺𝑗

𝑖𝑗
. For the (2, 𝑁)-robustness, fix two vertices

𝑢1, 𝑢2. If for at least one 𝑗, the vertices 𝑢1, 𝑢2 are in different sets 𝑈 𝑗
1 , 𝑈

𝑗
2 , then for every unauthorized set 𝑇 =

{

𝑢1, 𝑢2
}

∪ 𝑇2 the parties in 𝑇 cannot learn any information on 𝗌𝗁𝑗 , hence they cannot learn any information
on 𝑠. The probability that such 𝑗 exists for 𝑢1, 𝑢2 is 1−1∕2𝓁 = 1−1∕𝑁2. By a simple probabilistic argument,
there exist 𝓁 = 2 log(𝑁) partitions

⟨

𝑈 𝑗
1 , 𝑈

𝑗
2

⟩

1≤𝑗≤𝓁
such that for every 𝑢, 𝑣 there exists an index 𝑗 such that

|𝑈 𝑗
1 ∩ {𝑢, 𝑣} | = |𝑈 𝑗

2 ∩ {𝑢, 𝑣} | = 1.16 In this case, the (2, 𝑁)-robustness follows.
To get (𝑡,𝑁)-robustness, we use the same process, i.e., we partition the sets 𝑈 to sets 𝑈1,… , 𝑈𝑚 such

that for a set 𝑇1 ⊆ 𝑈 of size 𝑡 it would hold that |𝑇1 ∩ 𝑈𝑖| ≤ 1 for every 1 ≤ 𝑖 ≤ 𝑚. To ensure that we can
use few partitions, we take 𝑚 = 𝑂(𝑡2).17

The scheme ΠRobust is described in Figure 5.4, where 𝓁 = 𝑂(𝑡 log(𝑁)) and
⟨

(𝑈 𝑗
1 ,… , 𝑈 𝑗

𝑡2
)
⟩

1≤𝑗≤𝓁
is a

sequence of partitions satisfying the following two requirements:
• For every 𝑇1 ⊆ 𝑈 of size 𝑡 there exists at least one index 𝑗 such that |𝑈 𝑗

ℎ∩𝑇1| ≤ 1 for every 1 ≤ ℎ ≤ 𝑡2,
that is, each set 𝑈 𝑗

ℎ contains at most one party from 𝑇1.
• For every 𝑖, 𝑗, |𝑈 𝑗

𝑖 | ≤
⌈

|𝑈 |∕𝑡2
⌉ (that is, the sizes of the sets 𝑈 𝑗

1 ,… , 𝑈 𝑗
𝑡2

in each partition are almost
equal).

By a simple probabilistic proof, such sequence exists.
Lemma 5.5. Let 𝐺 = (𝑈, 𝑉 , 𝐸) be a bipartite graph such that |𝑈 |, |𝑉 | ≤ 𝑁 , and |𝑈 |

1∕4 ≤ 𝑡 ≤ |𝑈 |

1∕2 be
an integer. Then, the scheme ΠRobust is a (𝑡,𝑁)-robust secret-sharing scheme for 𝐺 with one-bit secrets in
which the share size of each party is 𝑂(𝑡3 log(𝑁)).

16For this warm up case of (2, 𝑁)-robustness, there is a simple explicit construction of log(𝑁) partitions satisfying the above
property.

17If we take, for example, 𝑚 = 𝑂(𝑡 log(𝑁)), then we will need Ω(2𝑡) partitions, which will result in an inefficient secret-sharing
scheme.

43

Scheme ΠRobust

The secret: A bit 𝑠 ∈ {0, 1}.
The scheme:

1. Let
⟨

(𝑈 𝑗
1 ,… , 𝑈 𝑗

𝑡2
)
⟩

1≤𝑗≤𝓁=𝑂(𝑡 log(𝑁))
, where each (𝑈 𝑗

1 ,… , 𝑈 𝑗
𝑡2
) is a partitions of 𝑈 to

𝑡2 sets.
2. Share 𝑠 using the 𝓁-out-of-𝓁 secret-sharing scheme of Example 1.1 to produce shares

𝗌𝗁1,… , 𝗌𝗁𝓁.
3. For 𝑗 = 1 to 𝓁 do:

• For every 1 ≤ 𝑖 ≤ 𝑡2, independently share the secret 𝗌𝗁𝑗 using the (1, 𝑁)-robust
secret-sharing scheme ΠOneRobust for the graph 𝐺𝑗

𝑖 = (𝑈 𝑗
𝑖 , 𝑉 , 𝐸 ∩ (𝑈 𝑗

𝑖 × 𝑉)).
(∗ The scheme ΠOneRobust is executed 𝑡2𝓁 = 𝑂(𝑡3 log(𝑁)) times ∗)

Figure 5.4: A (𝑡,𝑁)-robust secret-sharing scheme ΠRobust for a bipartite graph 𝐺 = (𝑈, 𝑉 , 𝐸) with share
size 𝑂(𝑡3 log(𝑁)) for 𝑁1∕4 ≤ 𝑡 ≤ 𝑁1∕3.

Proof. For the correctness of the scheme, consider (𝑢, 𝑣) ∈ 𝐸. Then, for every 1 ≤ 𝑗 ≤ 𝓁, the edge (𝑢, 𝑣) is
in one graph 𝐺𝑗

𝑖 , thus 𝑢, 𝑣 can reconstruct each 𝗌𝗁𝑗 , hence reconstruct 𝑠.
For the robustness of the protocol, let 𝑇1, 𝑇2 be sets such that 𝑇1 ⊆ 𝑈 , 𝑇2 ⊆ 𝑉 , |𝑇1| ≤ 𝑡, |𝑇2| ≤ 𝑁 , and

there is no edge (𝑢, 𝑣) ∈ 𝐸 for 𝑢 ∈ 𝑇1, 𝑣 ∈ 𝑇2 (that is, 𝑇1∪𝑇2 is unauthorized). By the above requirements on
the sequence of partitions, there is at least one 1 ≤ 𝑗 ≤ 𝓁 for which |𝑈 𝑗

ℎ ∩𝑇1| ≤ 1 for every 1 ≤ ℎ ≤ 𝑡2. That
is, for every 𝑖 the vertices in 𝑇1∪𝑇2 get at most one share of a vertex in 𝑈 in the (1, 𝑁)-robust scheme for 𝐺𝑗

𝑖 ,
thus do not learn any information on 𝗌𝗁𝑗 from this scheme. Since all schemes are executed independently,
the vertices in 𝑇1 ∪ 𝑇2 do not learn any information on 𝗌𝗁𝑗 , and, thus, do not learn any information on the
secret 𝑠.

We next provide an analysis of the share size. The share of a vertex 𝑣 ∈ 𝑉 is composed of 𝑡2𝓁 =
𝑂(𝑡3 log(𝑁)) shares of 𝑣 in a (1, 𝑁)-robust secret-sharing scheme, each share is 1 bit. For every 1 ≤ 𝑗 ≤ 𝓁, a
vertex 𝑢 ∈ 𝑈 participates in a (1, 𝑁)-robust secret-sharing scheme for a graph 𝐺𝑗

𝑖 for exactly one 𝑖; the share
size of 𝑢 in this scheme is |𝑈 𝑗

𝑖 | = 𝑂(|𝑈 |∕𝑡2). Thus, the share size of 𝑢 in is 𝑂(𝓁|𝑈 |∕𝑡2) ≤ 𝑂(𝑁 log(𝑁)∕𝑡) ≤
𝑂(𝑡3 log(𝑁)) (where the last inequality follows from the fact that 𝑡 > 𝑁1∕4).

5.4 Secret Sharing Scheme from a Robust Secret Sharing

In this section we describe a reduction from realizing an arbitrary access structure to constructing a (𝑡,𝑁)-
robust graph secret-sharing scheme. The reduction is similar to the construction in Section 5.1; however,

44

before constructing the bipartite graph we take 3 steps. See Figure 5.5 for a description of the formula
describing these steps. We first remove small authorized sets and big unauthorized sets from the access
structure (ΓBOT and ΓTOP in the figure). We then show that we can assume that every minimal authorized
set contains exactly half of its parties in the set {𝑝1,… , 𝑝𝑛∕2

} (the OR between ΓMID,𝐵1
,… ,ΓMID,𝐵𝑤

in the
figure). Finally, we show that we can assume that every maximal unauthorized set contains at most half of its
parties in the set {𝑝1,… , 𝑝𝑛∕2

} (this is done inside each ΓMID,𝐵𝑖
in the figure). These 3 steps will allow us to

bound the number of subsets of an unauthorized set, which as explained in Section 5.1 bounds the required
robustness 𝑡.

AND

ΓTOP
OR

ΓBOT
OR

ΓMID,𝐵1 ΓMID,𝐵𝑤 …

Figure 5.5: The formula describing the construction of the secret-sharing scheme for an arbitrary access
structure Γ; the access structures ΓBOT,ΓTOP,ΓMID,𝐵1

,… ,ΓMID,𝐵𝑤
are described in Definitions 5.6 and 5.9

and can be realized by secret-sharing schemes with share size 2(0.996+𝑜(1))𝑛. Using the construction of [36]
(see Section 4.3) this implies a secret-sharing for Γ with share size 2(0.996+𝑜(1))𝑛.

5.4.1 Liu and Vaikuntanathan’s Decomposition of Access Structures

As in [123], we decompose in Definition 5.6 an access structure Γ to three parts: A bottom part ΓBOT, which
handles small authorized sets, a middle part ΓMID, which handles medium-size authorized sets, and a top part
ΓTOP, which handles large unauthorized sets; these access structures are defined using some constants, which
are chosen to guarantee share size 2𝑐𝑛 for some 𝑐 < 1. The decomposition is illustrated in Figure 5.6. In
Claim 5.7 we express Γ using this decomposition; the proof of the claim follows from a simple case analysis.
Definition 5.6. Let Γ be an 𝑛-party access structure. Define the following access structures ΓTOP,ΓBOT, and

45

𝟎. 𝟓𝟒𝒏

𝟎. 𝟒𝟔𝒏

The access structure Γ The access structure ΓTOP The access structure ΓBOTThe access structure ΓMID

Figure 5.6: An example of the decomposition of Γ to ΓTOP,ΓMID,ΓBOT.

ΓMID.

𝐴 ∉ ΓTOP ⟺ ∃𝐴+ ∉ Γ, 𝐴 ⊆ 𝐴+, and |𝐴+
| > 0.54𝑛,

𝐴 ∈ ΓMID ⟺ (𝐴 ∈ Γ and 0.46𝑛 ≤ |𝐴| ≤ 0.54) , or |𝐴| > 0.54𝑛,

𝐴 ∈ ΓBOT ⟺ ∃𝐴− ∈ Γ, 𝐴− ⊆ 𝐴, and |𝐴−
| < 0.46𝑛.

Claim 5.7 (Liu and Vaikuntanathan [123]). Γ = ΓTOP ∧ (ΓMID ∨ ΓBOT).

By simple closure properties of secret-sharing schemes, we can realize by realizing ΓTOP,ΓMID, ΓBOT.
Lemma 5.8 ([123]). Let Γ be an access structure and assume that ΓMID can be realized by secret-sharing
schemes with share size 2𝑐′𝑛 for some constant 0 < 𝑐′ < 1. Then, Γ can be realized by a secret-sharing
scheme with share size 2max{0.996,𝑐′}⋅𝑛.

Proof. By Claim 5.7, Γ = ΓTOP∧(ΓMID∨ΓBOT). The access structure ΓBOT has at most (𝑛
≤0.46𝑛

)

≤ 2ℎ(0.46)𝑛 ≤
20.996𝑛 authorized sets (where ℎ(𝑝) is the binary entropy function) and, by the first secret-sharing scheme
of [107] described in Section 4.2, the access structure ΓBOT can be realized by a scheme with share size
20.996𝑛. The access structure ΓTOP has at most (𝑛

≥0.54𝑛

)

≤ 20.996𝑛 unauthorized sets and, by the second secret-
sharing scheme of [107] described in Section 4.2, the access structure ΓTOP can be realized by a scheme with
share size 20.996𝑛.

By standard closure properties of secret-sharing schemes, realizing Γ can be reduced to realizing ΓTOP,
ΓBOT, and ΓMID, that is, to share a secret 𝑠 ∈ {0, 1}, the dealer chooses a random bit 𝑟, shares 𝑟 ⊕ 𝑠 with a
scheme realizing ΓTOP and independently shares 𝑟 with a scheme realizing ΓMID and with a scheme realizing
ΓBOT. We obtain a secret-sharing scheme realizing Γ with share size as claimed.

5.4.2 Balancing the Sizes of Authorized Sets in the Access Structure 𝚪𝐌𝐈𝐃

To realize the access structure ΓMID, we defined balanced access structures ΓMID,𝐵 in Definition 5.9 and show
how to represent ΓMID as a union of a polynomial number of balanced access structures. In Section 5.4.3, we

46

show how to realize the access structure ΓMID,𝐵 using the (𝑡,𝑁)-robust secret-sharing scheme ΠRobust . By
closure properties of secret-sharing schemes, ΓMID can be realized using the schemes ΠRobust , and, hence,
the access structure Γ can be realized using the scheme ΠRobust .
Definition 5.9 (The Access Structure ΓMID,𝐵). Let Γ be an 𝑛-party access structure and 𝐵 be a subset of
parties. The access structure ΓMID,𝐵 is the access structure whose minimal authorized sets are all subsets of
parties of size greater than 0.54𝑛, and all subsets of parties that contain authorized subsets 𝐴′ ∈ Γ of size
between 0.46𝑛 and 0.54𝑛 that contain exactly ⌊|𝐴′

|∕2⌋ of their parties from 𝐵. Formally, we define ΓMID,𝐵

as the following access structure

ΓMID,𝐵 =
{

𝐴 ∶ ∃𝐴′ ∈ Γ, 𝐴′ ⊆ 𝐴, 0.46𝑛 ≤ |𝐴′
| ≤ 0.54𝑛, and |𝐴′ ∩ 𝐵| = ⌊|𝐴′

|∕2⌋
}

∪ {𝐴 ∶ |𝐴| > 0.54𝑛} .

Example 5.10. Consider the access structure Γ with 4 parties 𝑝1, 𝑝2, 𝑝3, 𝑝4, where

Γ =
{{

𝑝1, 𝑝2
}

,
{

𝑝1, 𝑝3
}}

∪
{

𝐴 ⊆
{

𝑝1, 𝑝2, 𝑝3, 𝑝4
}

∶ |𝐴| ≥ 3
}

.

Then, the sets in ΓMID,{𝑝1,𝑝2} of size 2 are the sets of size 2 in Γ that contain exactly 1 party from {

𝑝1, 𝑝2
},

namely, {𝑝1, 𝑝3
}

∈ ΓMID,{𝑝1,𝑝2} and {

𝑝1, 𝑝2
}

∉ ΓMID,{𝑝1,𝑝2}. Similarly, {𝑝1, 𝑝3
}

∉ ΓMID,{𝑝2,𝑝4} and
{

𝑝1, 𝑝2
}

∈ ΓMID,{𝑝2,𝑝4}. Notice that

Γ = ΓMID,{𝑝1,𝑝2} ∨ ΓMID,{𝑝2,𝑝4}.

To realize ΓMID using secret-sharing schemes for ΓMID,𝐵, we use a family of subsets, in which every set
of medium size is equally partitioned by at least one of the subsets in the family. In the next lemma, we
assume without loss of generality that the number of parties 𝑛 is even (this can be done by adding a dummy
party).
Lemma 5.11. Let 𝑛 be an even integer and Γ be an 𝑛-party access structure. There are 𝑤 = 𝑂(𝑛3∕2) subsets
𝐵1,… , 𝐵𝑤 ⊆ 𝑃 , each of them of size 𝑛∕2, such that Γ = ∨1≤𝑖≤𝑤ΓMID,𝐵𝑖

. In particular, if for every 𝐵 ⊂ 𝑃 of
size 𝑛∕2, the access structure ΓMID,𝐵 can be realized by a secret-sharing scheme with share size 2(𝑐′+𝑜(1))𝑛 for
some constant 0 < 𝑐′ < 1, then ΓMID can be realized by a secret-sharing scheme with share size 2(𝑐′+𝑜(1))𝑛.

Proof. Fix a set 𝐴 such that 0.46𝑛 ≤ |𝐴| ≤ 0.54𝑛 and pick at random with a uniform distribution a set 𝐵 of
size 𝑛∕2. Then

Pr
[

|𝐴 ∩ 𝐵| =
⌊

|𝐴|
2

⌋]

=

(

|𝐴|
⌊|𝐴|∕2⌋

)(𝑛−|𝐴|
𝑛∕2−⌊|𝐴|∕2⌋

)

(𝑛
𝑛∕2

) = Θ

(

2|𝐴|∕
√

𝑛 ⋅ 2𝑛−|𝐴|∕
√

𝑛

2𝑛∕
√

𝑛

)

= Θ

(

1
√

𝑛

)

(this follows from the fact that (𝑛
⌊𝑛∕2⌋

)

= Θ(2𝑛∕
√

𝑛) and |𝐴| = 𝜃(𝑛)). By a simple probabilistic proof, there
exist 𝑤 = Θ(𝑛3∕2) subsets 𝐵1,… , 𝐵𝑤 ⊆ 𝑃 , where |𝐵𝑖| = 𝑛∕2 for every 𝑖 ∈ [𝑤], such that for every subset
𝐴 such that 0.46𝑛 ≤ |𝐴| ≤ 0.54𝑛, it holds that |𝐴 ∩ 𝐵𝑖| = ⌊|𝐴|∕2⌋ for at least one 𝑖 ∈ [𝑤]. Together with
the observation that ΓMID,𝐵 ⊆ Γ, this implies that ΓMID = ∨𝑤

𝑖=1ΓMID,𝐵𝑖
.

47

For every 𝑖 ∈ [𝑤], we independently share the secret 𝑠 using the secret-sharing scheme realizing the
access structure ΓMID,𝐵𝑖

; by the assumption of the lemma, the share size of this scheme is 2(𝑐′+𝑜(1))𝑛. The
combined scheme is a secret-sharing scheme realizing the access structure ΓMID in which the share size is
𝑂(𝑛3∕2) ⋅ 2(𝑐′+𝑜(1))𝑛 = 2(𝑐′+𝑜(1))𝑛.

5.4.3 Realizing 𝚪𝐌𝐈𝐃,𝑩

To complete the description of a scheme realizing Γ, we present a secret-sharing scheme realizing the ac-
cess structure ΓMID,𝐵. This scheme is similar to the secret-sharing scheme described in Section 5.1 (i.e.,
constructing a bipartite graph from ΓMID,𝐵) with two main differences. First, it uses a more refined graph,
containing only edges for minimal authorized sets in ΓMID,𝐵. Second, it executes two robust secret-sharing
schemes for this graph, an (𝑁, 𝑡)-robust scheme and a (𝑡,𝑁)-robust scheme. For every unauthorized set 𝑇
(of size at most 0.54𝑛), it holds that either |𝑇 ∩𝐵| ≤ |𝑇 |∕2 or |𝑇 ∩𝐵| ≤ |𝑇 |∕2, which will enable us to take
a smaller 𝑡.

Assume without loss of generality that 𝑛 is even. Define
𝑈 =

{

𝐴1 ⊆ 𝐵 ∶ 0.23𝑛 ≤ |𝐴1| ≤ 0.27𝑛
}

and
𝑉 =

{

𝐴2 ⊆ 𝐵 ∶ 0.23𝑛 ≤ |𝐴2| ≤ 0.27𝑛
}

.

Let 𝑁 = |𝑈 | = |𝑉 |. Note that 𝑁 = Θ(2𝑛∕2). Moreover, define the bipartite graph 𝐺 = (𝑈, 𝑉 , 𝐸), where for
vertices𝐴1 ∈ 𝑈,𝐴2 ∈ 𝑉 there is an edge (𝐴1, 𝐴2) ∈ 𝐸 if and only if𝐴1∪𝐴2 ∈ Γ, 0.46𝑛 ≤ |𝐴1∪𝐴2| ≤ 0.54𝑛,
and |𝐴1| = |𝐴2| or |𝐴1| = |𝐴2| − 1. The scheme ΠMID,𝐵 realizing ΓMID,𝐵 is described in Figure 5.7.
Lemma 5.12. Let Γ be an 𝑛-party access structure and 𝐵 be a subset of parties such that |𝐵| = 𝑛∕2. Then,
the scheme ΠMID,𝐵 described in Figure 5.7 is a secret-sharing scheme realizing ΓMID,𝐵 with a one-bit secret
in which the share size is 20.993𝑛.

Proof. For the correctness of the scheme, first take a minimal authorized set 𝐴 ∈ ΓMID,𝐵 such that |𝐴| ≤
0.54𝑛, that is, 𝐴 = 𝐴1∪𝐴2 for some 𝐴1 ⊆ 𝐵,𝐴2 ⊆ 𝐵 such that 𝐴1∪𝐴2 ∈ Γ, 0.46𝑛 ≤ |𝐴1∪𝐴2| ≤ 0.54𝑛, and
|𝐴1| = |𝐴2| or |𝐴1| = |𝐴2| − 1, that is, (𝐴1, 𝐴2) ∈ 𝐸. The parties in 𝐴 = 𝐴1 ∪ 𝐴2 can reconstruct the 𝗌𝗁1𝐴1and 𝗌𝗁1𝐴2

from the shares of the (𝑡,𝑁) robust secret-sharing scheme and can reconstruct 𝗌𝗁1 from these shares
(since (𝐴1, 𝐴2) ∈ 𝐸). By symmetric arguments, the parties in 𝐴 can reconstruct 𝗌𝗁2 (using the shares of the
(𝑁, 𝑡) robust secret-sharing scheme), and, thus, the parties in 𝐴 can reconstruct the secret 𝑠 by xoring 𝗌𝗁1
and 𝗌𝗁2. Authorized sets of size greater than 0.54𝑛 can reconstruct the secret 𝑠 using the (0.54𝑛+1)-out-of-𝑛
secret-sharing scheme.

For the security of the scheme, consider an unauthorized set 𝑇 ∉ ΓMID,𝐵, that is, 𝑇 = 𝑇1 ∪ 𝑇2 such that
𝑇1 ⊆ 𝐵, 𝑇2 ⊆ 𝐵, and |𝑇1 ∪ 𝑇2| ≤ 0.54𝑛 (subsets of size greater than 0.54𝑛 are authorized), and assume
without loss of generality that |𝑇1| ≤ 0.27𝑛 (otherwise, |𝑇2| ≤ 0.27𝑛 and we consider the (𝑁, 𝑡)-robust
secret-sharing scheme). In the (𝑡,𝑁)-robust secret-sharing scheme, the parties in 𝑇1 know the share of 𝗌𝗁1𝑇 ′

1

48

Scheme ΠMID,𝐵

The secret: A bit 𝑠 ∈ {0, 1}.
The scheme:

1. Share 𝑠 among the 𝑛 parties using a (0.54𝑛 + 1)-out-of-𝑛 secret-sharing scheme.
2. Choose a random bit 𝗌𝗁1 ∈ {0, 1} and define 𝗌𝗁2 = 𝑠 ⊕ 𝗌𝗁1.
3. Let 𝑡 = 𝑛 ⋅ 20.164𝑛 (this choice of 𝑡 will be explained later).
4. Construct the above graph 𝐺 = (𝑈, 𝑉 , 𝑉) for the access structure ΓMID,𝐵.
5. Share the secret 𝗌𝗁1 using the (𝑡,𝑁) robust secret-sharing scheme ΠRobust for 𝐺. Let

𝗌𝗁1𝐶 be the share in this scheme of the vertex 𝐶 ∈ 𝑈 ∪ 𝑉 .
6. Share the secret 𝗌𝗁2 using the (𝑁, 𝑡) robust secret-sharing scheme ΠRobust for 𝐺. Let

𝗌𝗁2𝐶 be the share in this scheme of the vertex 𝐶 ∈ 𝑈 ∪ 𝑉 .
7. For every set 𝐶 ∈ 𝑈 ∪ 𝑉 (where 𝐶 is a set of parties), independently share 𝗌𝗁1𝐶 and

𝗌𝗁2𝐶 using the |𝐶|-out-of-|𝐶| secret-sharing scheme of Example 1.1 among the parties
of 𝐶 .

Figure 5.7: A secret-sharing scheme ΠMID,𝐵 realizing the access structure ΓMID,𝐵.

49

for every 𝑇 ′
1 ∈ 𝑈 if and only if 𝑇 ′

1 ⊆ 𝑇1. That is, they can reconstruct shares of vertices in 𝑈 (which are sets)
for the sets  =

{

𝑇 ′
1 ∈ 𝑈 ∶ 𝑇 ′

1 ⊆ 𝑇1, |𝑇 ′
1| ≥ 0.23𝑛

}. The number of such subsets is at most

𝑡
Δ
=

0.27𝑛
∑

𝑖=0.23𝑛

(

0.27𝑛
𝑖

)

≤ 𝑛 ⋅
(

0.27𝑛
0.23𝑛

)

≤ 𝑛 ⋅ 2ℎ(0.23∕0.27)⋅0.27𝑛 < 𝑛 ⋅ 20.164𝑛,

where ℎ(⋅) is the binary entropy.
For every 𝑇 ′

1 ⊆ 𝑇1 and 𝑇 ′
2 ⊆ 𝑇2, we have that (𝑇 ′

1 , 𝑇
′
2) ∉ 𝐸. Thus, the parties in 𝑇 = 𝑇1 ∪ 𝑇2 (which

learn the shares on the vertices of  ⊂ 𝑈 and possibly many shares of vertices in 𝑉) only learn the shares
of the independent set  ∪

{

𝑇 ′
2 ∈ 𝑉 ∶ 𝑇 ′

2 ⊆ 𝑇2
} in the (𝑡,𝑁)-robust secret-sharing scheme. Thus, by the

(𝑡,𝑁)-robustness of the secret-sharing scheme, the parties in 𝐴 cannot learn any information on 𝗌𝗁1, and,
hence, they cannot learn any information on the secret 𝑠.

Overall, in the scheme ΠMID,𝐵, each party 𝑝𝑖 gets a share of size log(𝑛) from the threshold scheme of step
1 and less than 2|𝑈 | = 2|𝑉 | = 𝑂(2𝑛∕2) shares from the secret-sharing scheme of Example 1.1 (two shares
for each set 𝐶 such that 𝑝𝑖 ∈ 𝐶). Thus, since 𝑡 = 𝑛 ⋅ 20.164𝑛 > 2𝑛∕8 > |𝑈 |

1∕4 = |𝑉 |

1∕4, the share size of the
(𝑡,𝑁)-robust secret-sharing scheme is 𝑂(𝑡3 log(𝑁)) < 20.493𝑛, and the share size of each party in the scheme
ΠMID,𝐵 is

𝑂(2𝑛∕2 ⋅ 𝑡3𝑛) < 20.993𝑛.

5.5 Putting Everything Together

By Lemmas 5.11 and 5.12, the access structure ΓMID can be realized by a secret-sharing scheme with share
size 20.993𝑛. By Lemma 5.8 every 𝑛-party access structure can be realized by a secret-sharing scheme with
share size 2(0.996+𝑜(1))𝑛. To summarize the construction of the secret-sharing scheme for Γ, we have shown
in Lemmas 5.8 and 5.11 that

Γ = ΓTOP ∧

(

⋁

1≤𝑖≤𝑤
(ΓMID,𝐵𝑖

) ∨ ΓBOT

)

(see Figure 5.5). We have proved that ΓBOT,ΓTOP,ΓMID,𝐵1
,… ,ΓMID,𝐵𝑤

can be realized by secret-sharing
schemes with share size 2(0.996+𝑜(1))𝑛. Using the construction of [36] (see Section 4.3) for this formula, we
obtain a secret-sharing for Γ.

The construction we described in this monograph is not the most efficient known scheme. The best
known construction is summarized below.
Theorem 5.13 (Applebaum and Nir [9]). Every 𝑛-party access structure can be realized by a secret-sharing
scheme with share size 1.5(1+𝑜(1))𝑛 < 20.585𝑛.

The first ingredient to achieve the improved scheme is using robust secret-sharing schemes for √𝑁-
partite √

𝑁-hypergraphs (i.e., each minimal authorized set is a hyperedge of size √

𝑁 containing exactly

50

one vertex from each part). To construct such schemes, we start with the non-robust secret-sharing schemes
for such hypergraphs from [125] (in [125] they are described as 𝑘-server conditional disclosure of secrets
(CDS) protocols; these two notions are equivalent). We then “immunize” this scheme and make it robust
using a generalization of the ideas described in Section 5.3. Finally, a better decomposition is used (instead
of Claim 5.7).

51

Chapter 6

Secret Sharing and Secure Multi-Party
Computation

Secret-sharing schemes are a basic building block in the construction of many cryptographic protocols. In
this chapter we demonstrate the use of secret-sharing schemes to construct secure multi-party computation
(MPC) protocols for general functions. The purpose of this chapter is to give some ideas on how to use
secret-sharing schemes to construct secure multi-party computation protocols; we will be informal in our
discussion, definitions, and proofs. For simplicity, we concentrate on the case that the “bad” parties are
semi-honest, that is, the parties follow the instructions of the protocol; however, at the end of the protocol
some of them might collude and try to deduce information from the messages they got. The protocols that we
describe are secure against an all-powerful adversary, that is, they guarantee information-theoretic security.
MPC protocols were introduced by [185, 97] in the computational setting. MPC protocols with information-
theoretic security (as we consider in this monograph) were constructed in [34, 57, 153]. The reader can find
more information on MPC protocols in the computational setting in, e.g., [122]. The book of Cramer et
al. [65] discusses information-theoretic MPC protocols and their constructions via secret-sharing schemes.
Definition 6.1 (Secure Computation in the Semi-Honest Model (Informal)). Let 𝑆 be a finite domain of
inputs. There are 𝑛 parties 𝑝1,… , 𝑝𝑛; each party 𝑝𝑗 holds a private input 𝑥𝑗 ∈ 𝑆. At most 𝑡 of the parties
are semi-honest, where 𝑡 < 𝑛; we assume that all other parties are honest. The parties want to compute
some function 𝑓 (𝑥1,… , 𝑥𝑛) by exchanging messages on private channels according to some protocol  . A
protocol is 𝑡-private if it satisfies the following two requirements.

Correctness. At the end of the protocol each party outputs 𝑓 (𝑥1,… , 𝑥𝑛).

Security (informal). Every coalition 𝑇 of at most 𝑡 parties cannot learn any information not implied by
the inputs

⟨

𝑥𝑗
⟩

𝑝𝑗∈𝑇
and the output of the function. This property is formalized by the existence of a

simulator that, given the inputs and outputs of the parties in 𝑇 , generates the view in the protocol of
the parties in 𝑇 (without seeing the inputs and the randomness of the parties not in 𝑇).

52

In the rest of this chapter we describe a private protocol for computing general functions. First, as a
warm-up, we describe a private protocol for modular addition. Next, we discuss homomorphic properties of
Shamir’s secret-sharing scheme. We show that these properties enable the parties to compute without any
interaction shares of the sum of two shared secrets. Then, we show a protocol that privately computes shares
of the product of two shared secrets. Combining these protocols we get an efficient protocol for computing
any function that can be computed by a small arithmetic circuit. Such protocols with information-theoretic
security were first presented in [34, 57]. The exact protocol we present here is from [94].

6.1 A Private Protocol for Addition

As a warm-up, we describe in Figure 6.1 an 𝑛-private protocol for computing the sum of 𝑛 elements in 𝔽𝑞
for some prime-power 𝑞, that is, each party holds an input 𝑥𝑖 ∈ 𝔽𝑞 and the parties want to privately compute
∑𝑛

𝑖=1 𝑥𝑖.
Protocol ADD

1. Each party 𝑝𝑗 shares 𝑥𝑗 with the 𝑛-out-of-𝑛 secret-sharing scheme of Example 1.1 over
𝔽𝑞, that is, 𝑝𝑗 chooses 𝑛 − 1 random field elements 𝗌𝗁𝑗1,… , 𝗌𝗁𝑗𝑛−1 ∈ 𝔽𝑞 and computes
𝗌𝗁𝑗𝑛 ← 𝑥𝑗 −

∑𝑛−1
𝑖=1 𝗌𝗁

𝑗
𝑖 . For each party 𝑝𝑖, party 𝑝𝑗 sends 𝗌𝗁𝑗𝑖 to 𝑝𝑖.

2. Each party 𝑝𝑖 computes 𝗌𝗁𝑖 ←
∑𝑛

𝑗=1 𝗌𝗁
𝑗
𝑖 (i.e., 𝗌𝗁𝑖 is the sum of the 𝑖-th shares of

𝑥1,… , 𝑥𝑛) and sends 𝗌𝗁𝑖 to all parties.
3. Each party 𝑝𝑗 outputs 𝑧 ←

∑𝑛
𝑖=1 𝗌𝗁𝑖.

Figure 6.1: A protocol for privately computing the sum of 𝑛 field elements. Addition and subtraction are in
𝔽𝑞.

Claim 6.2. Protocol ADD described in Figure 6.1 is an 𝑛-private protocol for addition over the field 𝔽𝑞.

Proof. The correctness of the protocol follows from the additivity of the 𝑛-out-of-𝑛 secret-sharing scheme,
that is, if each party sums the shares of the 𝑛 inputs, the result is an 𝑛-out-of-𝑛 secret-sharing of the sum of
the 𝑛 inputs. Formally,

𝑛
∑

𝑖=1
𝗌𝗁𝑖 =

𝑛
∑

𝑖=1

(𝑛
∑

𝑗=1
𝗌𝗁𝑗𝑖

)

=
𝑛
∑

𝑗=1

(𝑛
∑

𝑖=1
𝗌𝗁𝑗𝑖

)

=
𝑛
∑

𝑗=1
𝑥𝑗 .

The proof of security is not complicated but rather technical. Notice that 𝑛−1 parties holding their inputs
and getting the sum 𝑧 of all inputs can compute the input of the remaining party, thus in this case there are no
requirements. We need to show that for every 1 ≤ 𝑡 ≤ 𝑛 − 2, a set of 𝑡 parties, say 𝑝1,… , 𝑝𝑡, does not learn
information not implies by its inputs 𝑥1,… , 𝑥𝑡 and the sum 𝑧, that is it cannot distinguish between inputs

53

𝑥𝑡+1,… , 𝑥𝑛 and inputs 𝑥′𝑡+1,… , 𝑥′𝑛 such that

𝑧 =
𝑛
∑

𝑖=1
𝑥𝑖 =

𝑡
∑

𝑖=1
𝑥𝑖 +

𝑛
∑

𝑖=𝑡+1
𝑥′𝑖

i.e.,
𝑛
∑

𝑖=𝑡+1
(𝑥𝑖 − 𝑥′𝑖) = 0. (6.1)

Consider an execution of Protocol ADD on 𝑥1,… , 𝑥𝑡, 𝑥𝑡+1,… , 𝑥𝑛, where 𝑝𝑖, for 1 ≤ 𝑖 ≤ 𝑛, produced shares
such that

𝑥𝑖 =
𝑛
∑

𝑗=1
𝗌𝗁𝑖𝑗 .

In this case the view of 𝑝1,… , 𝑝𝑡 is

𝑥1,… , 𝑥𝑡,
⟨

𝗌𝗁𝑗𝑖

⟩

1≤𝑖≤𝑛,1≤𝑗≤𝑡
,
⟨

𝗌𝗁𝑗𝑖

⟩

1≤𝑖≤𝑡,𝑡+1≤𝑗≤𝑛
,
⟨

𝗌𝗁𝑖 =
∑𝑛

𝑗=1
𝗌𝗁𝑗𝑖

⟩

1≤𝑖≤𝑛
.

Now consider an execution of Protocol ADD on 𝑥1,… , 𝑥𝑡, 𝑥′𝑡+1,… , 𝑥′𝑛, where each 𝑝𝑗 produced the following
shares:

𝗌𝗁′
𝑗
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝗌𝗁𝑗𝑖 If 1 ≤ 𝑖 ≤ 𝑛 − 1 or 1 ≤ 𝑗 ≤ 𝑡

𝗌𝗁𝑗𝑛 + 𝑥′𝑗 − 𝑥𝑗 If 𝑖 = 𝑛 and 𝑡 + 1 ≤ 𝑗 ≤ 𝑛.

That is, an honest party 𝑝𝑗 only changes the share that it sends to the honest party 𝑝𝑛 and all shares 𝗌𝗁𝑗𝑖 sent
to the semi-honest parties 𝑝1,… , 𝑝𝑡 do not change. Note that in the second execution 𝑝𝑗 , for 𝑡 + 1 ≤ 𝑖 ≤ 𝑛,
produces shares of 𝑥′𝑗 as ∑𝑛−1

𝑖=1 𝗌𝗁
𝑗
𝑖 + 𝗌𝗁′𝑗𝑛 = 𝑥′𝑖. Furthermore, in the second execution, party 𝑝𝑖, for 𝑡 + 1 ≤

𝑖 ≤ 𝑛− 1, sends to 𝑝1,… , 𝑝𝑡 the same shares 𝗌𝗁𝑖 as in the first execution. Finally, in the second execution 𝑝𝑛
sends to 𝑝1,… , 𝑝𝑡 the same share 𝗌𝗁𝑛 as in the first execution since

𝗌𝗁′𝑛 =
𝑡

∑

𝑗=1
𝗌𝗁𝑗𝑛 +

𝑛
∑

𝑗=𝑡+1
𝗌𝗁′𝑗𝑛 =

𝑛
∑

𝑗=1
𝗌𝗁𝑗𝑛 +

𝑛
∑

𝑗=𝑡+1
(𝑥′𝑗 − 𝑥𝑗) = 𝗌𝗁𝑛 +

𝑛
∑

𝑗=𝑡+1
(𝑥′𝑗 − 𝑥𝑗) = 𝗌𝗁𝑛

(where the last equality follows from (6.1). Thus, 𝑝1,… , 𝑝𝑡 cannot distinguish between the inputs 𝑥𝑡+1,… , 𝑥𝑛
and 𝑥′𝑡+1,… , 𝑥′𝑛 and privacy follows.

6.2 Homomorphic Properties of Shamir’s Secret-Sharing Scheme

We next prove that Shamir’s scheme is additive. This is a special case of additivity of linear secret-sharing
schemes discussed in Lemma 4.13. Furthermore, we show that this scheme also has a weaker multiplicative
property.

54

Claim 6.3. Let 𝑡, 𝑛 be integers such that 𝑡 < 𝑛, 𝔽𝑞 be a finite field with more than 𝑛 elements, and 𝑠1, 𝑠2 ∈ 𝔽𝑞
be two secrets. For 𝑖 ∈ {1, 2}, let 𝗌𝗁𝑖,1,… , 𝗌𝗁𝑖,𝑛 be a sharing of 𝑠𝑖 using Shamir’s (𝑡+1)-out-of-𝑛 scheme (see
Section 2.2). Then, 𝗌𝗁1,1 + 𝗌𝗁2,1,… , 𝗌𝗁1,𝑛 + 𝗌𝗁2,𝑛 are shares of the secret 𝑠1 + 𝑠2 in Shamir’s (𝑡+ 1)-out-of-𝑛
scheme. In addition, if 𝑡 < 𝑛∕2, then 𝗌𝗁1,1 ⋅ 𝗌𝗁2,1,… , 𝗌𝗁1,𝑛 ⋅ 𝗌𝗁2,𝑛 are shares of the secret 𝑠1 ⋅ 𝑠2 in Shamir’s
(2𝑡 + 1)-out-of-𝑛 scheme.

Proof. Let 𝑄1 and 𝑄2 be the polynomial of degree at most 𝑡 generating the shares 𝗌𝗁1,1,… , 𝗌𝗁1,𝑛 and
𝗌𝗁2,1,… , 𝗌𝗁2,𝑛 respectively, that is 𝑄𝑖(0) = 𝑠𝑖 and 𝑄𝑖(𝛼𝑗) = 𝗌𝗁𝑖,𝑗 for 𝑖 ∈ {1, 2} and 1 ≤ 𝑗 ≤ 𝑛 (where
𝛼1,… , 𝛼𝑛 are defined in Section 2.2). Define 𝑄(𝑥) = 𝑄1(𝑥) +𝑄2(𝑥). This is a polynomial of degree at most
𝑡 such that 𝑄(0) = 𝑄1(0) +𝑄2(0) = 𝑠1 + 𝑠2 and 𝑄(𝛼𝑗) = 𝗌𝗁1,𝑗 + 𝗌𝗁2,𝑗 , that is, this is a polynomial generating
the shares 𝗌𝗁1,1 + 𝗌𝗁2,1,… , 𝗌𝗁1,𝑛 + 𝗌𝗁2,𝑛 given the secret 𝑠1 + 𝑠2.

Similarly, let 𝑅(𝑥) = 𝑄1(𝑥) ⋅ 𝑄2(𝑥). When 𝑡 < 𝑛∕2, this is a polynomial of degree at most 2𝑡 < 𝑛
generating the shares 𝗌𝗁1,1 ⋅ 𝗌𝗁2,1,… , 𝗌𝗁1,𝑛 ⋅ 𝗌𝗁2,𝑛 given the secret 𝑠1 ⋅ 𝑠2.18

6.3 Computing the Sharing of the Sum of Two Shared Secrets

Assume that two secrets 𝑥1 and 𝑥2 are shared using Shamir’s (𝑡 + 1)-out-of-𝑛 secret-sharing scheme. Using
Claim 6.3, each party can compute a share of the sum of the secrets without any communication, as described
in Figure 6.2.

Protocol Sum

Input of party 𝒑𝒋: Shares 𝗌𝗁1,𝑗 and 𝗌𝗁2,𝑗 of the secrets 𝑥1 and 𝑥2 respectively.
Computation step: Each party 𝑝𝑗 computes 𝗌𝗁𝑗 = 𝗌𝗁1,𝑗 + 𝗌𝗁2,𝑗 .

Figure 6.2: A protocol for computing shares of the sum of two shared secrets.

6.4 Computing the Product of Two Shared Secrets

Assume that two secrets 𝑥1 and 𝑥2 are shared using Shamir’s (𝑡 + 1)-out-of-𝑛 secret-sharing scheme. Using
Claim 6.3, the parties can compute shares of the product 𝑥1 ⋅𝑥2 in a (2𝑡+1)-out-of-𝑛 secret-sharing scheme.
In Figure 6.3, we show that, by using one round of interaction, the parties can compute shares of the product
𝑥1 ⋅ 𝑥2 in Shamir’s (𝑡 + 1)-out-of-𝑛 secret-sharing scheme (without learning the product itself). In this case,
we assume that there are 𝑡 semi-honest parties, where 𝑛 = 2𝑡+1 (that is, there is a majority of honest parties).

18While 𝑄(𝑥) is a uniformly distributed polynomial such that 𝑄(0) = 𝑠1 + 𝑠2, the polynomial 𝑅(𝑥) is not uniformly distributed
(that is, 𝑅(𝑥) is product of two polynomials of degree 𝑡). For the protocols we present, this does not cause any problems.

55

Protocol Product

Input of party 𝑝𝑗 . Shares 𝗌𝗁1,𝑗 and 𝗌𝗁2,𝑗 of the secrets 𝑥1 and 𝑥2 respectively in Shamir’s
(𝑡 + 1)-out-of-𝑛 secret-sharing scheme.

Output. Shares 𝑢1,… , 𝑢𝑚 in a 𝑡-out-of-𝑛 secret-sharing scheme of the secret 𝑥1 ⋅ 𝑥2.
Step I. Each party 𝑝𝑗 computes 𝗌𝗁𝑗 = 𝗌𝗁1,𝑗 ⋅ 𝗌𝗁2,𝑗 and shares 𝗌𝗁𝑗 using Shamir’s (𝑡 + 1)-

out-of-𝑛 secret-sharing scheme. Denote the resulting shares by 𝑞𝑗,1,… , 𝑞𝑗,𝑛. Party 𝑝𝑗
sends 𝑞𝑗,𝓁 to 𝑝𝓁.

Step II. Let 𝛽1,… , 𝛽𝑛 be the constants defined in (2.3) for the reconstruction of the secret
in Shamir’s (2𝑡 + 1)-out-of-𝑛 scheme. Each party 𝑝𝓁 computes 𝑢𝓁 =

∑𝑛
𝑗=1 𝛽𝑗𝑞𝑗,𝓁.

Figure 6.3: A protocol for computing shares of the product of two shared secrets.

Lemma 6.4. Let 𝑡, 𝑛 be two integers such that 𝑛 = 2𝑡 + 1. Protocol Product described in Figure 6.3 is a
𝑡-private protocol whose input are shares in Shamir’s (𝑡 + 1)-out-of-𝑛 secret-sharing scheme of two secrets
𝑥1, 𝑥2 and output is random shares in the same scheme of the secret 𝑥1 ⋅ 𝑥2.

Proof. We first explain why this protocol is correct. By Claim 6.3, 𝗌𝗁1,… , 𝗌𝗁𝑛 are shares of 𝑥1 ⋅ 𝑥2 in a
Shamir’s (2𝑡+ 1)-out-of-𝑛 scheme. By (2.3), since 𝑛 = 2𝑡+ 1, the constants 𝛽1,… , 𝛽𝑛 for the reconstruction
in Shamir’s (2𝑡 + 1)-out-of-𝑛 secret-sharing scheme exist and

𝑥1 ⋅ 𝑥2 =
𝑛
∑

𝑗=1
(𝛽𝑗 ⋅ 𝗌𝗁𝑗).

As 𝑞𝑗,1,… , 𝑞𝑗,𝑛 are shares in Shamir’s (𝑡 + 1)-out-of-𝑛 scheme of the secret 𝗌𝗁𝑗 , Claim 6.3 implies that
𝑢1,… , 𝑢𝓁 are shares of the linear combination ∑𝑛

𝑗=1(𝛽𝑗 ⋅ 𝗌𝗁𝑗) = 𝑥1 ⋅ 𝑥2. Furthermore, since (for example)
party 𝑝1 chooses random shares of 𝗌𝗁1, the parties hold random shares of 𝑥1 ⋅ 𝑥2.

Informally, the security of the protocol follows from the fact that any coalition of size at most 𝑡 only
sees shares in Shamir’s (𝑡 + 1)-out-of-𝑛 secret-sharing scheme, i.e., it does not gain any information on the
inputs of parties not in 𝑇 . We next provide a formal proof. For simplicity of the notation, we consider the
set 𝑇 = {1,… , 𝑡}, assume that Shamir’s scheme is over the field 𝔽𝑝, where 𝑝 > 𝑛 is a prime, and use 𝛼𝑖 = 𝑖
in Shamir’s scheme. The view of 𝑇 is

⟨

𝗌𝗁1,𝑗 , 𝗌𝗁2,𝑗
⟩

1≤𝑗≤𝑡 ,
⟨

𝑞𝑗,𝓁
⟩

1≤𝑗≤𝑡,1≤𝓁≤𝑛 , and ⟨

𝑞𝑗,𝓁
⟩

𝑡+1≤𝑗≤𝑛,1≤𝓁≤𝑡 .

We will show that this view could have been generated for every pair of secrets 𝑥1, 𝑥2. First consider the two
polynomials 𝑄𝑥1 , 𝑄𝑥2 of degree at most 𝑡 such that for every 𝑏 ∈ {1, 2}

∀1≤𝑗≤𝑡 𝑄𝑥𝑏(𝑗) = 𝗌𝗁𝑏,𝑗 and 𝑄𝑥𝑏(0) = 𝑥𝑏,

56

that is, 𝑄𝑥𝑏 generates the shares ⟨𝗌𝗁𝑏,𝑗
⟩

1≤𝑗≤𝑡 for the secret 𝑥𝑏. Let𝑅(𝑥) = 𝑄𝑥1(𝑥)⋅𝑄𝑥2(𝑥), i.e., 𝑅(𝑥) generates
shares in a (2𝑡 + 1)-out-of-𝑛 secret-sharing scheme for the secret 𝑥1 ⋅ 𝑥2. Furthermore, let 𝑄1,… , 𝑄𝑛 be the
polynomials of degree at most 𝑡 such that for every 1 ≤ 𝑖 ≤ 𝑛

∀1≤𝑗≤𝑡 𝑄𝑖(𝑗) = 𝑞𝑖,𝑗 and 𝑄𝑖(0) = 𝑅(𝑖).

By Claim 2.3 all the above polynomials exist and they are unique. Furthermore, they generate the view of
𝑇 for the secrets 𝑥1, 𝑥2. Thus, the view of 𝑇 is generated with the same probability for every pair of secrets
𝑥1, 𝑥2.

6.5 Privately Computing an Arithmetic Circuit

Using the above protocols, we show how to securely compute any function represented by an arithmetic
circuit assuming that 𝑛 = 2𝑡 + 1. Recall that any function 𝑓 ∶ 𝔽 𝑛

𝑞 → 𝔽𝑞 can be represented by an arithmetic
circuit over 𝔽𝑞 (with addition and multiplication gates and fan-in 2). For a definition of arithmetic circuits,
the reader is referred to Appendix A.1.

In Figure 6.4, we describe a secure protocol for evaluating the function computed by an arithmetic circuit,
where each party 𝑝𝑗 holds an input 𝑥𝑗 ∈ 𝔽𝑞. The number of rounds in this protocol is linear in the number
of nodes.19 More formally, let 𝐺1, 𝐺2,… , 𝐺𝓁 be the nodes of a circuit sorted according to some topological
order (that is, if there exists an edge from 𝐺𝑗 to 𝐺𝑖, then 𝑗 < 𝑖). Assume that, for 1 ≤ 𝑖 ≤ 𝑛, the node 𝐺𝑖 is
labeled by the variable 𝑥𝑖 (i.e., it is an input node). The protocol for computing the arithmetic circuit keeps
intermediate values as shares of a (𝑡+1)-secret-sharing scheme. In the beginning of the protocol, each party
shares its input. Thereafter, the protocol proceeds in rounds, where in the beginning of round 𝑖 the parties
hold shares of a (𝑡 + 1)-out-of-𝑛 secret-sharing scheme of the two inputs of the node 𝐺𝑖, and in the end of
round 𝑖 the parties hold shares of a (𝑡 + 1)-out-of-𝑛 secret-sharing scheme of the output of the node 𝐺𝑖; for
an addition gate this is done by local computation (using Claim 6.3) and for a multiplication gate this is done
using Protocol Product. At the end of the protocol, the output is reconstructed from the shares.

By the correctness of the addition and multiplication protocols, at the end of round 𝑖, the parties hold
shares of the output of the node 𝐺𝑖. Thus, at the end of the protocol they hold shares of the output of the
circuit, and 𝑠 is the correct value for the output of the protocol. On the other hand, by Lemma 6.4, in each
stage any coalition of at most 𝑡 parties sees at most 𝑡 shares of a (𝑡 + 1)-out-of-𝑛 secret-sharing scheme and
at the end of the protocol they see random shares of the output of the circuit, thus, very informally, the set
does not learn information not implied by the inputs of the set and the output of the circuit.

6.6 Extensions to Other Models

The protocol we described above assumes that the corrupted parties are semi-honest. A more realistic as-
sumption is that the parties can deviate from the protocol and send any messages that might help them. Such

19The number of rounds can be reduced to the depth of the circuit, i.e., the longest path from a leaf to the root.

57

Protocol MPC

Input of party 𝒑𝒋. An element 𝑥𝑗 ∈ 𝔽𝑞, where 𝔽𝑞 is a finite field such that |𝔽 | > 𝑛.
Initialization. Each party 𝑝𝑗 shares 𝑥𝑗 using Shamir’s (𝑡+1)-out-of-𝑛 secret-sharing scheme.

Denote the resulting shares by 𝗌𝗁𝑗1,… , 𝗌𝗁𝑗𝑛. Party 𝑝𝑗 sends 𝗌𝗁𝑗𝑖 to 𝑝𝑖.
Computation stages. For 𝑚 = 𝑛 + 1 to 𝓁 compute shares of the output of the node 𝐺𝑚 as

follows:
• Assume that the incoming edges into node 𝐺𝑚 are from nodes 𝐺𝑚1

and 𝐺𝑚2
,

where 𝑚1, 𝑚2 < 𝑚 and the parties holds shares 𝗌𝗁𝑚1
1 ,… , 𝗌𝗁𝑚1

𝑛 and 𝗌𝗁
𝑚2
1 ,… , 𝗌𝗁𝑚2

𝑛

of the outputs of these nodes.
• If 𝐺𝑚 is an addition gate, each party 𝑝𝑖 locally computes 𝗌𝗁𝑚𝑖 = 𝗌𝗁

𝑚1
𝑖 + 𝗌𝗁

𝑚2
𝑖 as

the share of the output of the node 𝐺𝑚.
• If 𝐺𝑚 is a multiplication gate, the parties use the one-round protocol described

in Section 6.4 to compute shares of the product of the outputs of nodes 𝐺𝑚1
and

𝐺𝑚2
.

Reconstruction. Each party 𝑝𝑖, for 1 ≤ 𝑖 ≤ 𝑡 + 1, sends its share 𝗌𝗁𝓁𝑖 to all parties. Each
party 𝑝𝑗 reconstructs the output from the shares 𝗌𝗁𝓁1 ,… , 𝗌𝗁𝓁𝑡+1 using the reconstruction
procedure of Shamir’s (𝑡 + 1)-out-of-𝑛 secret-sharing scheme.

Figure 6.4: A secure multi-party computation (MPC) protocol for computing a function represented by an
arithmetic circuit.

58

parties are called malicious. For example, in the multiplication protocol, a party that should share 𝗌𝗁𝑗 can
send shares that are not consistent with any secret. Furthermore, in the reconstruction step in the arithmetic
circuit protocol, a party can send a “wrong” share. To cope with malicious behavior, the notion of verifiable
secret sharing was introduced by Chor et al. [61]. Such information-theoretic schemes were constructed,
see [94] for a partial list of such constructions. We will not elaborate on verifiable secret sharing in this
monograph.

In the definition of secure computation, we assumed that there is a parameter 𝑡, and an adversary can
control any coalition of size at most 𝑡. This assumes that all parties are as likely to be corrupted. Hirt and
Maurer [106] considered a more general scenario in which there is an access structure, and the adversary
can control any set of parties not in the access structure. That is, they required that any set not in the access
structure cannot learn information not implied by the inputs of the parties in the set and the output of the
function. Similarly to the requirement that 2𝑡 < 𝑛 in the protocol we described above, secure computation
against semi-honest parties is possible for general functions iff the union of every two sets not in the access
structure does not cover the entire set of parties [106]; such access structure is called 𝑄2. For every 𝑄2

access structure Γ, Cramer et al. [64] showed that using any linear secret-sharing scheme realizing Γ, one
can construct a protocol for computing any arithmetic circuit such that any set not in the access structure
cannot learn any information; the complexity of the protocol is linear in the size of the circuit. Their protocol
is similar to the protocol we described above, where for addition gates every party does local computation.
Multiplication gates are also dealt in a similar way as in the threshold case in Protocol MPC; however, the
choice of the constants 𝛽1,… , 𝛽𝑛 is more involved. The protocol of Cramer et al. [64] demonstrates the need
for secret-sharing schemes for general access structures.

59

Chapter 7

Lower Bounds on the Size of the Shares

The best known constructions of information-theoretic secret-sharing schemes for general 𝑛-party access
structures (e.g., [123, 6, 8, 9]) have share size 2𝑂(𝑛). It is not known if this is the best possible. Lower bounds
for secret-sharing schemes have been proved in, e.g., [112, 53, 44, 77, 66, 67, 43]. However, these lower
bounds are far from the exponential upper bounds. The best lower bound was proved by Csirmaz [66, 67],
who proved that for every 𝑛 there exists an 𝑛-party access structure such that every secret-sharing scheme
realizing it has total information ratio Ω(𝑛2∕ log(𝑛)). In Sections 7.2 to 7.4, we review this proof. For linear
secret-sharing schemes, the situation is much better – for every 𝑛 there exist explicit 𝑛-party access structures
such that every linear secret-sharing scheme realizing them has exponential information ratio, i.e., for every
size of secrets 𝓁 the size of the shares is 𝓁 ⋅ 2Ω(𝑛) [158, 149, 150] (improving on previous lower bounds
of [23, 11, 89, 90]). Furthermore, for almost all 𝑛-party access structures, the size of the shares in every
linear secret-sharing scheme realizing them is at least 20.5𝑛 [11]. To demonstrate some of the ideas of these
proofs, we present in Section 7.6 a lower bound proof of 𝑛Ω(log(𝑛)) from [90], and in Section 7.5 the lower
bound for almost all access structures.

7.1 A Simple Lower Bound

Karnin et al. [112] have showed that for each non-redundant party 𝑝𝑗 (that is, a party that appears in at
least one minimal authorized set) 𝐻(𝑗) ≥ 𝐻(); we prove this result in Lemma 7.2. Karnin et al.’s result
implies that the size of the share of the party is at least the size of the secret. We next give a direct proof of
the latter result. We believe that the combinatorial proof we present for Lemma 7.1 is more intuitive than the
entropy-based proof of Lemma 7.2 (at least for readers not familiar with information theory).
Lemma 7.1. Let 𝑝𝑗 be a non-redundant party in Γ (i.e., there exists an authorized set 𝐵 ∈ Γ such that
𝐵 ⧵

{

𝑝𝑗
}

∉ Γ) and let Π be any secret-sharing scheme realizing Γ, where 𝑆 and 𝑆𝑗 are the domains of
secrets and of the shares of 𝑝𝑗 respectively. Then, |𝑆𝑗| ≥ |𝑆|.

Proof. Let 𝐵 be a minimal authorized set in Γ containing 𝑝𝑗 , that is 𝐵 ∈ Γ and 𝐵′ def
= 𝐵 ⧵

{

𝑝𝑗
}

∉ Γ. Assume

60

that |𝑆𝑗| < |𝑆|. Fix any vector of shares ⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐵′ for the parties of 𝐵′ that has positive probability (given
some secret 𝑠0 ∈ 𝑆). By the security property, this vector of shares should have positive probability given
any secret 𝑠 ∈ 𝑆. That is, for every 𝑠 ∈ 𝑆, there is a share 𝗌𝗁𝑠𝑗 ∈ 𝑆𝑗 such that ⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐵′ together with 𝗌𝗁𝑠𝑗
have positive probability given the secret 𝑠. Since |𝑆𝑗| < |𝑆|, there are secrets 𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1 ≠ 𝑠2
and 𝗌𝗁

𝑠1
𝑗 = 𝗌𝗁

𝑠2
𝑗 . Thus, the authorized set 𝐵 holding the shares ⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐵′ and 𝗌𝗁

𝑠1
𝑗 errs in the reconstruction

for at least one of the secrets 𝑠1 and 𝑠2, contradicting the correctness of the scheme.

7.2 Lower Bounds Using the Entropy

Starting from the works of Karnin et al. [112] and Capocelli et al. [53], the entropy was used to prove lower
bounds on the share size in secret-sharing schemes, e.g., [44, 77, 66, 67]. To prove lower bounds on the
information ratio of secret-sharing schemes, they use Definition 3.7 – the alternative definition of secret
sharing via the entropy function – and use properties of the entropy function as well as the correctness and
security of secret-sharing schemes. For a background on the entropy and its properties, the reader can consult
Appendix A.3 and any book on information theory, e.g., [63]. Recall that, given a secret-sharing scheme Π
and some distribution on its secrets,  is the random variable containing the secret and 𝐴 is a random
variable containing the shares of the set 𝐴. To simplify notations, in the sequel we denote 𝐻(𝐴) by 𝐻(𝐴)
for any set of parties 𝐴 ⊆

{

𝑝1,… , 𝑝𝑛
}. Furthermore, we denote 𝐻(𝐴) by 𝐻(𝐴).

We next prove a stronger version of Lemma 7.1, stating that the entropy of the share of 𝑝𝑗 is at least
log(|𝑆𝑗|).
Lemma 7.2. Let 𝑝𝑗 be a non-redundant party in Γ, let Π be any secret-sharing scheme realizing Γ with
domain of secrets 𝑆. For any distribution on the secrets  , let 𝑗 be the random variable representing the
share of 𝑝𝑗 . Then, 𝐻(𝑗) ≥ log(|𝑆|) ≥ 𝐻().

Proof. Since 𝑝𝑗 is non-redundant, by Definition 3.4, the probability distribution of the share of 𝑝𝑗 is inde-
pendent of the distribution on the secrets; we thus can assume that the secret is uniformly distributed. Let 𝐵
be a minimal authorized set in Γ containing 𝑝𝑗 ; in particular, 𝐵 ∈ Γ and 𝐵′ def

= 𝐵 ⧵
{

𝑝𝑗
}

∉ Γ. On one hand,
by the definition of the conditional entropy (A.3), the security of Π (3.6), and the correctness of Π (3.5),

𝐻(|𝐵′) +𝐻(
{

𝑝𝑗
}

|𝐵′) −𝐻( ,
{

𝑝𝑗
}

|𝐵′) = 𝐻(|𝐵′) −𝐻(|
{

𝑝𝑗
}

, 𝐵′) = 𝐻() − 0 = 𝐻().

On the other hand, by the definition of the conditional entropy (A.3) and by (A.4),

𝐻(|𝐵′) +𝐻(
{

𝑝𝑗
}

|𝐵′) −𝐻( ,
{

𝑝𝑗
}

|𝐵′) = 𝐻(
{

𝑝𝑗
}

|𝐵′) −𝐻(
{

𝑝𝑗
}

| , 𝐵′) ≤ 𝐻(
{

𝑝𝑗
}

|𝐵′) ≤ 𝐻(
{

𝑝𝑗
}

).

Thus, 𝐻(𝑗) = 𝐻(
{

𝑝𝑗
}

) ≥ 𝐻() = log(|𝑆|) (the last equality follows from the fact that the secret is
uniformly distributed in 𝑆).

Fujishige [88] has observed that if we take 𝑛 jointly distributed random variables, the entropy of subsets
of these variables is a polymatroid, i.e., it is non-negative, monotone, and submodular. The next theorem

61

explains how to use these properties of the entropy and the correctness and security of a secret-sharing scheme
to prove lower bounds on the share size. In the lower bounds proof, we assume a uniform distribution on
the secrets, that is, 𝐻() = log(|𝑆|). As proved in Claim 3.8, this assumption is without loss of generality.
As the entropy is bounded by the log of the support (A.2), for every 𝑗, 𝐻(

{

𝑝𝑗
}

) ≤ log(|𝑆𝑗|), thus, the
information ratio of the scheme, that is, max1≤𝑗≤𝑛 log(|𝑆𝑗|)∕ log(|𝑆|) is at least max1≤𝑗≤𝑛𝐻(

{

𝑝𝑗
}

)∕𝐻().
Theorem 7.3. Let 𝐴,𝐵 ⊆

{

𝑝1,… , 𝑝𝑛
}

and Π be a secret-sharing scheme realizing an access structure Γ.
The following 4 properties hold:

Monotonicity. If 𝐴 ⊂ 𝐵, then 𝐻(𝐵) ≥ 𝐻(𝐴) ≥ 𝐻(∅) = 0.
Submodularity. 𝐻(𝐴) +𝐻(𝐵) ≥ 𝐻(𝐴 ∪ 𝐵) +𝐻(𝐴 ∩ 𝐵).
Strong Monotonicity. If 𝐴 ∉ Γ, 𝐵 ∈ Γ, and 𝐴 ⊂ 𝐵, then

𝐻(𝐵) ≥ 𝐻(𝐴) +𝐻().
Strong Submodularity. If 𝐴,𝐵 ∈ Γ and 𝐴 ∩ 𝐵 ∉ Γ, then

𝐻(𝐴) +𝐻(𝐵) ≥ 𝐻(𝐴 ∪ 𝐵) +𝐻(𝐴 ∩ 𝐵) +𝐻().

Proof. The monotonicity and submodularity are true for any random variables. The monotonicity follows
from (A.6) i.e.,

𝐻(𝐵) = 𝐻(𝐴,𝐵 ⧵ 𝐴) ≥ 𝐻(𝐴).

The submodularity follows from the definition of conditional entropy (A.3) and the properties of conditional
mutual information (A.4):

𝐻(𝐴 ∪ 𝐵) −𝐻(𝐴) = 𝐻(𝐵|𝐴) ≤ 𝐻(𝐵|𝐴 ∩ 𝐵) = 𝐻(𝐵) −𝐻(𝐴 ∩ 𝐵).

For the strong monotonicity observe that by the definition of conditional entropy (A.3), the correctness (3.5),
monotonicity, and security (3.6),

𝐻(𝐵) = 𝐻(𝐵) −𝐻(|𝐵) = 𝐻(𝐵) ≥ 𝐻(𝐴) = 𝐻(|𝐴) +𝐻() = 𝐻(𝐴) +𝐻().

For the strong submodularity, note that if 𝐴,𝐵 ∈ Γ and 𝐴∩𝐵 ∉ Γ, then 𝐻(𝐴) = 𝐻(𝐴), 𝐻(𝐵) = 𝐻(𝐵),
𝐻((𝐴 ∪ 𝐵)) = 𝐻(𝐴 ∪ 𝐵), and 𝐻((𝐴 ∩ 𝐵)) = 𝐻(𝐴 ∩ 𝐵) +𝐻(). Thus, by the submodularity.

𝐻(𝐴) +𝐻(𝐵) = 𝐻(𝐴) +𝐻(𝐵) ≥ 𝐻((𝐴 ∪ 𝐵)) +𝐻((𝐴 ∩ 𝐵)) = 𝐻(𝐴 ∪ 𝐵) +𝐻(𝐴 ∩ 𝐵) +𝐻().

To give an example of using Theorem 7.3, we present the lower bound of [53] for the access structure
Γ⊓ (defined in Example 3.2).
Theorem 7.4 ([53]). The information ratio of every secret-sharing scheme realizing Γ⊓ is at least 1.5.

62

Proof. Let Π be any secret-sharing scheme realizing Γ⊓. By Theorem 7.3,
𝐻(

{

𝑝1, 𝑝2
}

) +𝐻(
{

𝑝2, 𝑝3
}

) ≥ 𝐻(
{

𝑝1, 𝑝2, 𝑝3
}

) +𝐻(
{

𝑝2
}

) +𝐻() strong submodularity,
𝐻(

{

𝑝1, 𝑝3, 𝑝4
}

) ≥ 𝐻(
{

𝑝1, 𝑝4
}

) +𝐻() strong monotonicity,
𝐻(

{

𝑝1, 𝑝2, 𝑝3
}

) ≥ 𝐻(
{

𝑝1, 𝑝3
}

) +𝐻() strong monotonicity,
𝐻(

{

𝑝1, 𝑝3
}

) +𝐻(
{

𝑝1, 𝑝4
}

) ≥ 𝐻(
{

𝑝1, 𝑝3, 𝑝4
}

) +𝐻(
{

𝑝1
}

) submodularity,
𝐻(

{

𝑝1
}

) +𝐻(
{

𝑝2
}

) ≥ 𝐻(
{

𝑝1, 𝑝2
}

) submodularity.
𝐻(

{

𝑝2
}

) +𝐻(
{

𝑝3
}

) ≥ 𝐻(
{

𝑝2, 𝑝3
}

) submodularity.
Summing all these inequalities, we get 𝐻(

{

𝑝2
}

) + 𝐻(
{

𝑝3
}

) ≥ 3𝐻(), and the information ratio of the
scheme is at least

max
{

𝐻(
{

𝑝2
}

),𝐻(
{

𝑝3
}

)
}

∕𝐻() ≥ 1.5.

7.3 Csirmaz’s Lower Bound

We next present Csirmaz’s lower bound on the information ratio. The proof has two steps; we first define
an access structure whose information ratio is Ω(𝑛∕ log(𝑛)). We then define an access structure whose total
information ratio is Ω(𝑛2∕ log(𝑛)). The construction in the first step is a generalization of Csirmaz’s con-
struction due to Bludo et al. [43].
Definition 7.5 (An Independent Sequence [43]). Let 𝓁, 𝑛 ∈ ℕ be integers, and let 𝐵 =

{

𝑝1,… , 𝑝𝓁
}

, 𝐴 ⊆
{

𝑝𝓁+1,… , 𝑝𝑛
}

be two sets, and Γ be an access structure whose parties are
{

𝑝1,… , 𝑝𝑛
}

. An independent
sequence of length 𝓁 of Γ is a sequence 𝐴1,… , 𝐴𝓁 ⊆ 𝐴 of subsets of 𝐴 such that:

• {

𝑝1,… , 𝑝𝑖
}

∪ 𝐴𝑖 ∈ Γ for every 1 ≤ 𝑖 ≤ 𝓁.

• {

𝑝1,… , 𝑝𝑖−1
}

∪ 𝐴𝑖 ∉ Γ for every 1 ≤ 𝑖 ≤ 𝓁.

Theorem 7.6 ([66, 43]). If an access structure Γ has an independent set of length 𝓁, then in any secret-
sharing scheme realizing Γ

∑

𝑝𝑗∈𝐴
𝐻(

{

𝑝𝑗
}

) ≥ (𝓁 − 1) ⋅𝐻().

In particular, the information ratio of every secret-sharing scheme realizing Γ is at least 𝓁−1
|𝐴|

.

Proof. Fix any secret-sharing scheme realizing Γ. Let 𝐴1,… , 𝐴𝓁 ⊆ 𝐴 be an independent sequence of length
𝓁 of Γ and define 𝐵𝑖 =

{

𝑝1… , 𝑝𝑖
}. Fix an index 1 ≤ 𝑖 ≤ 𝓁 − 1 and recall that 𝐵𝑖 ∪ 𝐴𝑖 ⊆ 𝐵𝑖 ∪ 𝐴 ∈ Γ𝑛,

𝐵𝑖+1 ∪ 𝐴𝑖+1 ∈ Γ𝑛, and 𝐵𝑖 ∪ 𝐴𝑖+1 ∉ Γ𝑛. Thus, by the strong submodularity,

𝐻(𝐵𝑖 ∪ 𝐴) +𝐻(𝐵𝑖+1 ∪ 𝐴𝑖+1) ≥ 𝐻(𝐵𝑖+1 ∪ 𝐴) +𝐻(𝐵𝑖 ∪ 𝐴𝑖+1) +𝐻().

63

Furthermore, by submodularity,

𝐻(𝐵𝑖 ∪ 𝐴𝑖+1) +𝐻(𝐵𝑖+1) ≥ 𝐻(𝐵𝑖+1 ∪ 𝐴𝑖+1) +𝐻(𝐵𝑖).

Summing the last two inequalities, we obtain,

𝐻(𝐵𝑖 ∪ 𝐴) −𝐻(𝐵𝑖) ≥ 𝐻(𝐵𝑖+1 ∪ 𝐴) −𝐻(𝐵𝑖+1) +𝐻(). (7.1)

Summing (7.1) for 1 ≤ 𝑖 ≤ 𝓁 − 1 we get that

𝐻(𝐵1 ∪ 𝐴) −𝐻(𝐵1) ≥ 𝐻(𝐵𝓁 ∪ 𝐴) −𝐻(𝐵𝓁) + (𝓁 − 1)𝐻(). (7.2)

By monotonicity, 𝐻(𝐵𝓁 ∪ 𝐴) − 𝐻(𝐵𝓁) ≥ 0. Furthermore, by submodularity, 𝐻(𝐵1) + 𝐻(𝐴) ≥ 𝐻(𝐵1 ∪
𝐴) +𝐻(∅) = 𝐻(𝐵1 ∪ 𝐴) (since 𝐻(∅) = 0). Thus,

𝐻(𝐴) ≥ 𝐻(𝐵1 ∪ 𝐴) −𝐻(𝐵1)

≥ 𝐻(𝐵𝓁 ∪ 𝐴) −𝐻(𝐵𝓁) + (𝓁 − 1)𝐻()

= (𝓁 − 1) ⋅𝐻().

(7.3)

By submodularity, ∑𝑝𝑗∈𝐴
𝐻(

{

𝑝𝑗
}

) ≥ 𝐻(𝐴), thus, there exists at least one party 𝑝𝑗 such that 𝐻(
{

𝑝𝑗
}

) ≥
𝓁−1
|𝐴|

⋅𝐻(). This implies that the information ratio of every scheme realizing Γ is at least 𝓁−1
|𝐴|

.
We next define for every 𝑛 ∈ ℕ an 𝑛-party access structure whose information ratio is Ω(𝑛∕ log(𝑛)). The

size of the minimal authorized sets in this access structure is at most log(𝑛). We define the access structure
by specifying its minimal authorized sets.
Definition 7.7 (The Access Structure Γ𝑛

Csi). Fix 𝑛 ∈ ℕ and let 𝑘 be the largest integer such that 2𝑘 + 𝑘 ≤ 𝑛.
Let 𝐵 =

{

𝑝1,… , 𝑝2𝑘
}

, 𝐴 =
{

𝑝2𝑘+1,… , 𝑝2𝑘+𝑘
}

(that is, |𝐴| = 𝑘 = Θ(log(𝑛))), and 𝐴1, 𝐴1,… , 𝐴2𝑘 be all the
subsets of 𝐴 (in some order). The minimal authorized sets of the access structure Γ𝑛

Csi are
{

𝑝𝑖
}

∪ 𝐴𝑖.

Theorem 7.8. For every 𝑛, in any secret-sharing scheme realizing the 𝑛-party access structure Γ𝑛
Csi,

∑

𝑝𝑗∈𝐴
𝐻(

{

𝑝𝑗
}

) ≥ Ω(𝑛) ⋅𝐻().

In particular, the information ratio of every secret-sharing scheme realizing Γ𝑛
Csi is at least Ω(𝑛∕ log(𝑛)).

Proof. For the proof assume, without loss of generality, that 𝐴 = 𝐴1, 𝐴1,… , 𝐴2𝑘 = ∅ are ordered such that
if 𝑗 < 𝑖, then 𝐴𝑗 ⊈ 𝐴𝑖 (this access structure is isomorphic to any access structure with a different order on the
subsets). Clearly, {𝑝𝑖

}

∪ 𝐴𝑖 ⊆
{

𝑝1,… , 𝑝𝑖
}

∪ 𝐴𝑖 ∈ Γ𝑛
Csi. Furthermore, {𝑝1,… , 𝑝𝑖−1

}

∪ 𝐴𝑖 does not contain
any minimal authorized set of Γ𝑛

Csi since 𝐴𝑗 ⊈ 𝐴𝑖 for every 1 ≤ 𝑗 ≤ 𝑖 − 1. Thus, 𝐴1, 𝐴1,… , 𝐴2𝑘 are an
independent sequence of Γ𝑛

Csi, and by Theorem 7.6, ∑𝑝𝑗∈𝐴
𝐻(

{

𝑝𝑗
}

) ≥ (2𝑘 − 1) ⋅𝐻() = Ω(𝑛) ⋅𝐻() and
the information ratio of every scheme realizing Γ𝑛

Csi is at least (2𝑘 − 1)∕|𝐴| = Ω(𝑛∕ log(𝑛)).

64

Remark 7.9. The access structure Γ𝑛
Csi we defined in Definition 7.7 is from [43] and is similar to the access

structure defined in [66]. Csirmaz [66] originaly proved the lower bound for the following access structure:
For a given 𝑛, let 𝑘, 𝐴, and 𝐵 be as defined in Definition 7.7. Let 𝐴 = 𝐴1, 𝐴1,… , 𝐴2𝑘 = ∅ be an ordering
of the subsets of 𝐴 such that if 𝑗 < 𝑖, then 𝐴𝑗 ⊈ 𝐴𝑖, as in the proof of Theorem 7.8 (e.g., if 𝑗 < 𝑖, then
|𝐴𝑗| > |𝐴𝑖|). The minimal authorized sets of Csirmaz’s access structure are {

𝑝1,… , 𝑝𝑖
}

∪ 𝐴𝑖.
Beimel [16] showed how to use Theorem 7.6 to prove a lower bound ofΩ(𝑛1−1∕(𝑤−1)∕𝑤) for𝑤-hypergraph

access structures, i.e., access structures in which the size of the minimal authorized sets are exactly 𝑤 (where
3 ≤ 𝑤 ≤ log(𝑛)). Proving a similar lower bound for graphs (i.e., 𝑤 = 2) is an open problem.

We next show how to strengthen Theorem 7.8 and show that there exists an access structure in which the
shares of many parties have to be long. By Theorem 7.8, in Γ𝑛

Csi there is a small set 𝐴 of size 𝑂(log(𝑛)) such
that the sum of the entropies of the shares given to the parties in the set is Ω(𝑛)𝐻(). In Definition 7.10, we
construct a similar access structure that has many copies of 𝐴 and one copy of 𝐵 and in Theorem 7.11 we
prove the lower bound on its total share size.
Definition 7.10 (The Access Structure Γ𝑛

CsiTot). Fix 𝑛 ∈ ℕ and let 𝑘 be the largest integer such that 2𝑘 ≤ 𝑛∕2.
Let 𝐵 =

{

𝑝1,… , 𝑝2𝑘
}

and 𝐴𝑡 =
{

𝑝2𝑘+𝑡𝑘+1,… , 𝑝2𝑘+(𝑡+1)𝑘
}

for 0 ≤ 𝑡 ≤ ⌊𝑛∕2𝑘⌋ − 1, and 𝐴𝑡
1, 𝐴

𝑡
2,… , 𝐴𝑡

2𝑘

be all the subsets of 𝐴𝑡 (in some order). The minimal sets of Γ𝑛
CsiTot are

{

𝑝𝑖
}

∪ 𝐴𝑡
𝑖 for 1 ≤ 𝑖 ≤ 2𝑘 and

0 ≤ 𝑡 ≤ ⌊𝑛∕2𝑘⌋ − 1.

Theorem 7.11 ([67]). For every 𝑛, the total information ratio of any secret-sharing scheme realizing Γ𝑛
CsiTot

is Ω(𝑛2∕ log(𝑛)).

Proof. For every 𝑡, the access structure Γ𝑛
CsiTot restricted to the parties in {

𝑝1,… , 𝑝2𝑘
}

∪𝐴𝑡 is isomorphic to
the access structure Γ𝑘+2𝑘

Csi (where 𝑘 + 2𝑘 = Ω(𝑛)). Thus, by Theorem 7.8,
∑

𝑝𝑗∈𝐴𝑡

𝐻(
{

𝑝𝑗
}

) ≥ (2𝑘 − 1)𝐻() = Ω(𝑛)𝐻().

As the sets 𝐴𝑡 are disjoint,
𝑛
∑

𝑗=1
𝐻(

{

𝑝𝑗
}

) ≥
⌊𝑛∕2𝑘⌋−1
∑

𝓁=0

∑

𝑝𝑗∈𝐴𝑡

𝐻(
{

𝑝𝑗
}

) ≥
(𝑛
2𝑘

− 1
)

(

2𝑘 − 1
)

𝐻()

= Ω(𝑛2∕ log(𝑛))𝐻().

Thus, the total information ratio of every secret-sharing scheme realizing Γ𝑛
CsiTot is Ω(𝑛2∕ log(𝑛)).

7.4 The Framework for Proving Lower Bounds via Entropy and Its Limita-
tions

Theorem 7.3 translates the question of proving lower bounds on the shares size of secret-sharing schemes
realizing Γ to finding a minimum of a linear program, where for every set 𝐴 ⊆

{

𝑝1,⋯ , 𝑝𝑛
} we have a

65

variable and for every pair of sets we have one inequality. Note that the exact inequalities depend on the
access structure (e.g., for two sets 𝐴,𝐵 such that 𝐴 ⊈ 𝐵 and 𝐵 ⊈ 𝐴 we use strong submodularity or
submodularity). To bound the total share size we would like to minimize ∑

1≤𝑖≤𝑛𝐻(
{

𝑝𝑖
}

).20

The lower bounds we described on the size of shares in secret-sharing schemes are implied by Theo-
rem 7.3. In other words, they only use the so-called Shannon information inequalities (i.e., the fact that the
conditional mutual information is non-negative). In 1998, new information inequalities were discovered by
Zhang and Yeung [188]. Other information inequalities were discovered since, e.g. [126, 78, 134, 79, 103].
In particular, there are infinitely many independent information inequalities in 4 variables [134]. See [187]
for a book on this subject. Beimel et al. [26] used non-Shannon inequalities to prove lower bounds on the
share size. Each non-Shannon inequality adds many new inequalities to the linear program (for different
subsets of the parties). Again, such inequalities also add strong inequalities, depending on which sets are in
the access structure. This results in a huge linear program. For an access structure with few parties (e.g.,
4,5, or 6), it can be solved using linear programming software (see, for example, [136, 84, 129, 147]).

Csirmaz [66] in 1994 proved that the linear program with Shannon-type inequalities (i.e., Theorem 7.3)
cannot prove a lower bound of𝜔(𝑛) on the information ratio. That is, Csirmaz’s lower bound is nearly the best
bound that can be proved using Shannon inequalities (up to a log(𝑛) factor). Beimel and Orlov [27] proved
that all information inequalities with 4 or 5 variables and some known information inequalities in more than
5 variables cannot prove a lower bound of 𝜔(𝑛) on the information ratio of secret-sharing schemes. Martín,
Padró, and Yang [131] proved that all information inequalities on a bounded number of variables can only
provide lower bounds that are polynomial on the number of parties. Thus, new information inequalities with
many variables should be found if one wants to improve the lower bounds using this framework.
Remark 7.12. Farràs et al. [82] described a new method to derive inequalities in the linear programming
technique, that is, they obtained non-Shannon-type bounds without using information inequalities explicitly.
They derived better lower bounds on the information ratio of secret-sharing schemes of specific access struc-
tures using the linear program generated by their new method. More importantly, this method may bypass
the limitations of [66, 26, 131]. However, they were not able to use their method to obtain better asymptotic
lower bounds than [66, 67].

7.5 Lower Bounds for Linear Secret Sharing for Almost All Access Struc-
tures

For linear secret-sharing schemes, we can prove much stronger lower bounds than for general secret-sharing
schemes, i.e., we can prove exponential lower bounds. Such bounds are known for almost all access struc-
tures [11, 22, 159, 19] and for explicit access structures [150].

20To bound the maximal share size we add another variable 𝑀 , add the inequalities 𝐻(
{

𝑝𝑖
}

) ≤ 𝑀 for every 1 ≤ 𝑖 ≤ 𝑛, and
minimize 𝑀 .

66

Babai et al. [11] proved that for every prime-power 𝑞 almost all 𝑛-party access structures require share
size of at least 20.5𝑛−𝑜(𝑛) in any linear secret-sharing scheme over 𝔽𝑞. Theorem 7.14, proven below, is from
[22] and is stronger than the result of [11]; it shows that almost all 𝑛-party access structures require share size
of at least 20.5𝑛−𝑜(𝑛) in any linear secret-sharing scheme over all finite fields (that is, the order of quantifiers is
changed compared to [11]). The results follow by counting the number of monotone span programs, which
by Claim 4.12 are equivalent to linear secret-sharing schemes. To count monotone span programs we need
the following claim.
Claim 7.13. Let 𝖬𝖲𝖯 =

⟨

𝔽𝑞,𝑀, 𝜌
⟩

be a monotone span program of size 𝛼 accepting a non-empty access
structure. Then, without loss of generality, we can assume that 𝑀 has at most 𝛼 columns.

Proof. W.l.o.g., assume that 𝖬𝖲𝖯 accepts at least one input. If 𝑀 contains more than 𝛼 columns, then the
columns of 𝑀 are dependent. Restrict 𝑀 to a matrix 𝑀 ′ by taking a basis of the columns containing the
first column. Notice that for every set of parties 𝐵 the matrix 𝑀𝐵 spans 𝐞𝟏 if and only if 𝑀 ′

𝐵 spans 𝐞𝟏.
The next theorem proves exponential lower bounds on the share size of linear secret-sharing schemes

for almost all access structures. The proof is somewhat technical since we need to prove the lower bound
simultaneously for all fields.
Theorem 7.14. For almost all 𝑛-party access structures Γ for all fields 𝔽𝑞 the total share size of every linear
secret-sharing scheme over 𝔽𝑞 realizing Γ is at least

Ω
(

2𝑛∕2

𝑛1∕4

)

.

Proof. If we share a secret using a linear secret-sharing scheme over 𝔽𝑞 in which the shares contain 𝛼 field
elements, then the total size of the shares is 𝛼 ⋅ log(𝑞). For the total share size to be less than 2𝑛∕2, it must be
that 𝑞 ≤ 22𝑛∕2 (otherwise, each share contains at least log(𝑞) ≥ 2𝑛∕2 bits).

We next provide an upper bound on the number of linear secret-sharing schemes with share size at most
2𝑛∕2. For every finite field 𝔽𝑞 and an integer 𝛼 > log(𝑛), there are at most 𝑛𝛼 ⋅ 𝑞𝛼2 < 22𝛼2 log(𝑞) monotone span
programs of size 𝛼, where the first term is an upper bound on the number of labeling functions 𝜌 and the
second term is an upper bound on the number of matrices 𝑀 with 𝛼 rows and 𝛼 columns (by Claim 7.13 this
is the number of columns).21 Thus, the number of monotone span programs that can be used to construct a
secret-sharing scheme with total share size at most 𝛽 = 𝑎 log(𝑞) is at most

∑

𝑞 ∶ 𝑞≤22𝑛∕2 is a prime-power
22(𝛽∕ log(𝑞))2 log(𝑞) ≤ 22𝑛∕222𝛽2 .

The number of 𝑛-party access structures is at least 2(𝑛
𝑛∕2) ≫ 22𝑛∕(2

√

𝑛) (for each set of parties of size 𝑛∕2 we
choose if it is a minimal authorized set or unauthorized).

21By adding zero columns and rows we can assume that the number of columns and rows is exactly 𝛼.

67

If 22𝑛∕(2√𝑛) access structures with 𝑛 parties have a linear secret-sharing scheme with total share size at
most 𝛽, then it must hold that

22𝑛∕2+2𝛽2 ≥ 22𝑛∕(2
√

𝑛),

which, in particular, implies that

𝛽 >

√

√

√

√

1
2

(

2𝑛

2
√

𝑛
− 2𝑛∕2

)

> 2𝑛∕2

3𝑛1∕4
.

To conclude, for all 𝑛-party access structures, but at most 22𝑛∕2∕(2√𝑛) access structures, the total share size in
every linear secret-sharing scheme realizing them is at least 2𝑛∕2

3𝑛1∕4 .

Theorem 7.14 gives a lower bound on the share size of linear secret-sharing schemes; however, it does
not give a lower bound on the information ratio of linear secret-sharing schemes for long secrets. Beimel and
Farràs [19] (using a result of Nelson [141]) proved such a lower bound (improving on [11, 159]). This lower
bound proves that almost all access structures require long shares in linear secret-sharing schemes over all
fields simultaneously.
Theorem 7.15. For almost all 𝑛-party access structures Γ for all fields 𝔽𝑞 the total information ratio of every
linear secret-sharing scheme over 𝔽𝑞 realizing Γ is at least

Ω
(

2𝑛∕3−𝑜(𝑛)
)

.

7.6 Lower Bounds for Linear Secret Sharing for Explicit Access Structures

We next discuss lower bounds for linear secret-sharing schemes for explicit access structures, that is, for
access structures that have a small representation in a natural representation model. Such lower bounds were
proved in a sequence of works [23, 11, 89, 90, 158, 149, 150], resulting in an exponential lower bound [150].
Theorem 7.16 ([150]). For every 𝑛, there exists an explicit access structure such that the information ratio
of every linear secret-sharing scheme realizing it is 2Ω(𝑛).

The proof of the exponential lower bounds are beyond this monograph; they can be found in [150, 157].
We present a proof from [90] of a lower bound of 𝑛Ω(log(𝑛)) for an explicit access structure. Recall that linear
secret-sharing schemes are equivalent to monotone span programs (see Claim 4.12); we prove the lower
bounds for secret-sharing schemes by proving lower bounds for monotone span programs. We start with a
simple observation.
Observation 7.17. Let Γ be a (monotone) access structure. Let 𝐵 ∈ Γ and 𝐶 ⊆

{

𝑝1,… , 𝑝𝑛
}

such that
{

𝑝1,… , 𝑝𝑛
}

⧵ 𝐶 ∉ Γ. Then, 𝐵 ∩ 𝐶 ≠ ∅.

68

The observation follows from the fact that if 𝐵 ∩ 𝐶 = ∅, then 𝐵 ⊆
{

𝑝1,… , 𝑝𝑛
}

⧵ 𝐶 , contradicting the
fact that 𝐵 ∈ Γ and {

𝑝1,… , 𝑝𝑛
}

⧵ 𝐶 ∉ Γ.
To prove the lower bound, Gál and Pudlák [90] chose a subset of the unauthorized sets that satisfies some

properties; they use this subset to construct a matrix over 𝔽 , and prove that the rank of the matrix over 𝔽 is
a lower bound on the size of every monotone span program realizing Γ.

Let  =
{

𝐵1,… , 𝐵𝓁
} be the collection of minimal authorized sets in Γ and  = {

⟨

𝐶1,0, 𝐶1,1
⟩

,
⟨

𝐶2,0, 𝐶2,1
⟩

,…
⟨

𝐶𝑡,0, 𝐶𝑡,1
⟩

} be a collection of pairs of sets of parties such that {𝑝1,… , 𝑝𝑛
}

⧵(𝐶𝑗,0∪𝐶𝑗,1) ∉ Γ
for every 1 ≤ 𝑗 ≤ 𝑡. By Observation 7.17, 𝐵𝑖 ∩ (𝐶𝑗,0 ∪ 𝐶𝑗,1) ≠ ∅ for every 𝑖, 𝑗, that is, at least one of the
following conditions hold: (1) 𝐵𝑖 ∩ 𝐶𝑗,0 ≠ ∅, (2) 𝐵𝑖 ∩ 𝐶𝑗,1 ≠ ∅. To prove the lower bound, Gál and Pudlák
use a collection  such that, for every 𝑖, 𝑗, exactly one of the above conditions hold.
Definition 7.18. Let  =

{

𝐵1,… , 𝐵𝓁
}

be the collection of minimal authorized sets in Γ. We say that a
collection  = {

⟨

𝐶1,0, 𝐶1,1
⟩

,
⟨

𝐶2,0, 𝐶2,1
⟩

, …
⟨

𝐶𝑡,0, 𝐶𝑡,1
⟩

} of pairs of sets satisfies the unique intersection
property for Γ if

1. For every 1 ≤ 𝑗 ≤ 𝑡,
{

𝑝1,… , 𝑝𝑛
}

⧵ (𝐶𝑗,0 ∪ 𝐶𝑗,1) ∉ Γ.

2. For every 1 ≤ 𝑖 ≤ 𝓁 and every 1 ≤ 𝑗 ≤ 𝑡, exactly one of the following conditions hold (1) 𝐵𝑖∩𝐶𝑗,0 ≠ ∅,
(2) 𝐵𝑖 ∩ 𝐶𝑗,1 ≠ ∅.

Example 7.19. Consider the access structure with ten parties {𝑝1,… , 𝑝10
} and six minimal authorized sets

{

𝑝1, 𝑝2, 𝑝5
}, {𝑝1, 𝑝3, 𝑝6

}, {𝑝1, 𝑝4, 𝑝7
}, {𝑝2, 𝑝3, 𝑝8

}, {𝑝2, 𝑝4, 𝑝9
}, and {

𝑝3, 𝑝4, 𝑝10
}. We next define a collec-

tion  satisfying the unique intersection property for Γ, where  is ⟨{

𝑝1, 𝑝2
}

,
{

𝑝10
}⟩, ⟨{𝑝1, 𝑝3

}

,
{

𝑝9
}⟩,

⟨{

𝑝1, 𝑝4
}

,
{

𝑝8
}⟩, ⟨{𝑝2, 𝑝3

}

,
{

𝑝7
}⟩, ⟨{𝑝2, 𝑝4

}

,
{

𝑝6
}⟩, and ⟨{

𝑝3, 𝑝4
}

,
{

𝑝5
}⟩.

It can be seen that  satisfies Item 1 of Definition 7.18. For example, the set 𝑇 =
{

𝑝1,… , 𝑝10
}

⧵
(
{

𝑝1, 𝑝2
}

∪
{

𝑝10
}

) =
{

𝑝3, 𝑝4,… , 𝑝9
} is unauthorized. Furthermore,  satisfies Item 2 of Definition 7.18.

Consider, e.g., {𝑝1, 𝑝3, 𝑝6
}

∈  and ⟨{

𝑝1, 𝑝2
}

,
{

𝑝10
}⟩

∈ . In this case {

𝑝1, 𝑝3, 𝑝6
}

∩
{

𝑝1, 𝑝2
}

≠ ∅ while
{

𝑝1, 𝑝3, 𝑝6
}

∩
{

𝑝10
}

= ∅.
Theorem 7.20 ([90]). Let  be a collection satisfying the unique intersection property for Γ and define an
𝓁× 𝑡 matrix 𝐷, where 𝐷𝑖,𝑗 = 0 if 𝐵𝑖∩𝐶𝑗,0 ≠ ∅ and 𝐷𝑖,𝑗 = 1 if 𝐵𝑖∩𝐶𝑗,1 ≠ ∅. Then, the size of every monotone
span program over 𝔽 accepting Γ is at least rank𝔽 (𝐷).

Example 7.21. The matrix 𝐷 defined for the set  of Example 7.19 is the full-rank matrix described below.
For example, the minimal authorized set {𝑝1, 𝑝2, 𝑝5

} intersects the first set in ⟨{𝑝1, 𝑝2
}

,
{

𝑝10
}⟩, so𝐷1,1 = 0.

Similarly, {𝑝1, 𝑝2, 𝑝5
} intersects the second set in ⟨{

𝑝3, 𝑝4
}

,
{

𝑝5
}⟩, so 𝐷1,6 = 1.

𝐷 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

69

Proof of Theorem 7.20. Let 𝖬𝖲𝖯 = ⟨𝔽 ,𝑀, 𝜌⟩ be a monotone span program accepting Γ (as defined in Defi-
nition 4.7), and denote the size of 𝖬𝖲𝖯 (i.e., the number of rows in 𝑀) by 𝑚. We will construct two matrices
𝐿 and 𝑅, where 𝐿 has 𝑚 columns and 𝑅 has 𝑚 rows such that 𝐷 = 𝐿𝑅. Thus, rank𝔽 (𝐷) ≤ rank𝔽 (𝐿) ≤ 𝑚,
i.e., the size of 𝖬𝖲𝖯 is at least rank𝔽 (𝐷).

Fix any 𝑖 such that 1 ≤ 𝑖 ≤ 𝓁. Since 𝐵𝑖 ∈ Γ, the rows in 𝑀 labeled by the parties in 𝐵𝑖 span the vector
𝐞𝟏, that is, there exists a vector 𝐯𝐢 such that 𝐯𝐢𝑀 = 𝐞𝟏 and the non-zero coordinates of 𝐯𝐢 are only in rows
labeled by 𝐵𝑖 (where the 𝑑th coordinate of 𝐯𝐢 is labeled by 𝜌(𝑑)).

Fix any 𝑗 such that 1 ≤ 𝑗 ≤ 𝑡, and let 𝑇𝑗 =
{

𝑝1,… , 𝑝𝑛
}

⧵ (𝐶𝑗,0 ∪ 𝐶𝑗,1). Since 𝑇𝑗 ∉ Γ, the rows in 𝑀
labeled by the parties in 𝑇𝑗 do not span the vector 𝐞𝟏. As explained in Section 4.4, there exists a vector 𝐰𝐣

such that 𝑀𝑇𝑗𝐰𝐣 = 𝟎 and 𝐞𝟏 ⋅𝐰𝐣 = 1. Let 𝐲𝐣 def
= 𝑀𝐰𝐣. Note that all coordinates in 𝐲𝐣 labeled by the parties in

𝑇𝑗 are zero. Furthermore, for every 𝑖, 𝑗,
𝐯𝐢𝐲𝐣 = 𝐯𝐢(𝑀𝐰𝐣) = (𝐯𝐢𝑀)𝐰𝐣 = 𝐞𝟏 ⋅ 𝐰𝐣 = 1.

We next modify the vectors 𝐲𝟏,… , 𝐲𝐭 to vectors 𝐳𝟏,… , 𝐳𝐭 such that 𝐯𝐢𝐳𝐣 = 𝐷𝑖,𝑗 for every 𝑖, 𝑗. Let 𝐳𝐣 be
the column vector achieved from 𝐲𝐣 by replacing all coordinates in 𝐲𝐣 labeled by parties in 𝐶𝑗,0 with 0. Thus,
the non-zero coordinates in 𝐳𝐣 are labeled by parties in 𝐶𝑗,1 and the non-zero coordinates in both 𝐯𝐢 and 𝐳𝐣
are labeled by parties in 𝐵𝑖 ∩ 𝐶𝑗,1 (since all non-zero coordinates in 𝐯𝐢 are labeled by 𝐵𝑖). Hence,

• If 𝐵𝑖 ∩ 𝐶𝑗,0 ≠ ∅, then 𝐵𝑖 ∩ 𝐶𝑗,1 = ∅. In this case, 𝐷𝑖,𝑗 = 0 and 𝐯𝐢 and 𝐳𝐣 do not share non-zero
coordinates, thus, 𝐯𝐢 ⋅ 𝐳𝐣 = 0 = 𝐷𝑖,𝑗 .

• If 𝐵𝑖 ∩ 𝐶𝑗,1 ≠ ∅, then 𝐷𝑖,𝑗 = 1 and all coordinates in 𝐯𝐢 labeled by 𝐶𝑗,0 are zero (since 𝐵𝑖 ∩ 𝐶𝑗,0 = ∅),
thus, 𝐯𝐢 ⋅ 𝐳𝐣 = 𝐯𝐢 ⋅ 𝐲𝐣 = 1 = 𝐷𝑖,𝑗 .

Define a matrix 𝐿, where the 𝑖th row in 𝐿 is 𝐯𝐢, and a matrix 𝑅, where the 𝑗th column of 𝑅 is 𝐳𝐣. We
claim that 𝐷 = 𝐿𝑅 since 𝐷𝑖,𝑗 = 𝐯𝐢 ⋅ 𝐳𝐣. As 𝐿 has 𝑚 columns, rank𝔽 (𝐷) = rank𝔽 (𝐿𝑅) ≤ rank𝔽 (𝐿) ≤ 𝑚. In
other words, the rank of 𝐷 is at most the size of the smallest monotone span program accepting Γ.

We next present a construction of an access structure for which we can prove an 𝑛Ω(log(𝑛)) lower bound
using Theorem 7.20. An undirected bipartite graph 𝐺 = (𝑈, 𝑉 , 𝐸) has the isolated neighbor property for 𝑡
if for every two disjoint sets 𝐴1, 𝐴2 ⊂ 𝑈 such that |𝐴1| = |𝐴2| = 𝑡, there exists a vertex 𝑣 ∈ 𝑉 such that
(𝑢1, 𝑣) ∈ 𝐸 for every 𝑢1 ∈ 𝐴1 and (𝑢2, 𝑣) ∉ 𝐸 for every 𝑢2 ∈ 𝐴2, that is, 𝑣 is a neighbor of every vertex in
𝐴1 and is isolated from every vertex in 𝐴2.

For a set 𝐴 ⊂ 𝑈 define 𝑁(𝐴)
def
=
{

𝑣 ∶ ∀𝑢∈𝐴(𝑢, 𝑣) ∈ 𝐸
}, that is, a vertex is in 𝑁(𝐴) if it is a neighbor of all

vertices in 𝐴. Let 𝐺 = (𝑈, 𝑉 , 𝐸) be an undirected bipartite graph satisfying the isolated neighbor property
for 𝑡, where the vertices of the graph are parties, i.e., 𝑈 ∪ 𝑉 =

{

𝑝1,… , 𝑝𝑛
}. We define an access structure

𝐺 with |𝑈 |+ |𝑉 | parties whose minimal authorized sets are the sets 𝐴∪𝑁(𝐴) where 𝐴 ⊂ 𝑈 and |𝐴| = 𝑡.
Example 7.22. Consider the graph described in Figure 7.1. This is a trivial graph satisfying the isolated
neighbor property for 𝑡 = 2, i.e., for every pair of vertices, there exists a unique vertex that is adjacent only to

70

them. For example, consider the disjoint sets {𝑝1, 𝑝2
} and {

𝑝3, 𝑝4
}; vertex 𝑝5 is a neighbor of all the vertices

in the first set, while it is not a neighbor of any vertex in the second set. The access structure 𝐺 defined for
this graph is the access structure defined in Example 7.19.

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝9

𝑝8

𝑝6

𝑝7

𝑝10

Figure 7.1: An example of a graph satisfying the isolated neighbor property for 𝑡 = 2.

Lemma 7.23. If 𝐺 = (𝑈, 𝑉 , 𝐸) has the isolated neighbor property for 𝑡, then the size of every monotone
span program over 𝔽 accepting 𝐺 is at least

(

|𝑈 |−1
𝑡

)

.

Proof. We prove the lemma using Theorem 7.20. We take  to be all the pairs 𝐶0, 𝐶1, where 𝐶0 ⊂ 𝑈 such
that |𝐶0| = 𝑡 and 𝐶1 =

{

𝑣 ∈ 𝑉 ∶ ∀𝑢∈𝐶0
(𝑢, 𝑣) ∉ 𝐸

}

, that is, 𝐶1 contains all vertices that are not neighbors
of any vertex in 𝐶1. We first claim that the collection  satisfies the unique intersection property for Γ:

• Let (𝐶0, 𝐶1) ∈  and 𝑇 =
{

𝑝1,… , 𝑝𝑛
}

⧵ (𝐶0 ∪ 𝐶1). We need to show that 𝑇 ∉ Γ, that is, 𝑇 does not
contain any minimal authorized set. Consider any minimal authorized set 𝐴∪𝑁(𝐴), where 𝐴 ⊆ 𝑈 ∩𝑇
and |𝐴| = 𝑡; clearly, 𝐴 ≠ 𝐶0 (as 𝐴 ⊆ 𝑇 and 𝐶0 ∩ 𝑇 = ∅). As |𝐴| = |𝐶0| = 𝑡, by the isolated neighbor
property there is a vertex 𝑣 ∈ 𝑉 such that 𝑣 ∈ 𝑁(𝐴) and 𝑣 is not a neighbor of any vertex in 𝐶0,
thus, 𝑣 ∈ 𝐶1 by the definition of 𝐶1, that is, 𝑣 ∉ 𝑇 . In other words, 𝑇 does not contain any minimal
authorized set 𝐴 ∪𝑁(𝐴).

• Let𝐴∪𝑁(𝐴) ∈ 𝐺 and ⟨𝐶0, 𝐶1⟩ ∈ . First notice that (𝐴∪𝑁(𝐴))∩𝐶0 = 𝐴∩𝐶0 and (𝐴∪𝑁(𝐴))∩𝐶1 =
𝑁(𝐴) ∩ 𝐶1. Assume that 𝐴 ∩ 𝐶0 ≠ ∅, and let 𝑢 ∈ 𝐴 ∩ 𝐶0. Thus, every 𝑣 ∈ 𝑁(𝐴) is a neighbor of 𝑢.
However, every vertex in 𝐶1 is not a neighbor of 𝑢, and (𝐴 ∪𝑁(𝐴)) ∩ 𝐶1 = 𝑁(𝐴) ∩ 𝐶1 = ∅.

Thus, by Theorem 7.20, the size of every monotone span program accepting Γ is at least rank𝔽 (𝐷). In this
case, for every 𝐴,𝐶0 such that |𝐴| = |𝐶0| = 𝑡, the entry corresponding to 𝐴 ∪𝑁(𝐴) and ⟨𝐶0, 𝐶1⟩ is zero if

71

𝐴 ∩ 𝐶0 ≠ ∅ and is one otherwise. That is, 𝐷 is the (𝑛, 𝑡)-disjointness matrix, which has full rank over every
field 𝔽 such that |𝑈 |−2𝑡+1 ≠ 0 in the field 𝔽 (see, e.g., [120, Example 2.12]).If |𝑈 |−2𝑡+1 = 0 in the field
𝔽 , consider the set 𝑈 ′ containing the first |𝑈 | − 1 vertices of the 𝑈 . The matrix restricted to the rows and
columns labeled by subsets of size 𝑡 contained in 𝑈 ′ has full rank (since |𝑈 ′

|−2𝑡+1 = |𝑈 |−1−2𝑡+1 = −1
over 𝔽). Thus, the rank of 𝐷 over all fields is at least (|𝑈 |−1

𝑡

).

As there exist 𝑛-vertex graphs that satisfy the isolated neighbor property for 𝑡 = Ω(log(𝑛)), e.g., the Paley
Graph [3], we derive the promised lower bound.
Theorem 7.24. For every 𝑛, there exists an 𝑛-party access structure ΓPaley,𝑛 such that every monotone span
program over any field accepting it has size 𝑛Ω(log(𝑛)).

As monotone span programs are equivalent to linear secret-sharing schemes [111, 14], the same lower
bound applies to linear secret-sharing schemes.
Corollary 7.25. For every 𝑛, there exists an 𝑛-party access structure ΓPaley,𝑛 such that the information ratio
of every linear secret-sharing scheme realizing it is 𝑛Ω(log(𝑛)).

In multilinear secret-sharing schemes as defined in Definition 4.14, the secret can be a vector of elements
over 𝔽 , which can reduce the information ratio. Beimel et al. [17] proved that the above lower bound also
holds for multilinear secret-sharing schemes, obtaining the best lower bound for multilinear secret-sharing
schemes (unlike linear secret-sharing schemes, where an exponential lower bound is known).
Corollary 7.26. For every 𝑛, there exists an 𝑛-party access structure ΓPaley,𝑛 such that the information ratio
of every multilinear secret-sharing scheme realizing it is 𝑛Ω(log(𝑛)).

72

Chapter 8

Ideal Secret Sharing

This chapter studies the most efficient secret-sharing schemes and the access structures that they can realize.
By a lower bound of Karnin et al. [112] (see Lemma 7.1), in every secret-sharing scheme the size of the
share of each non-redundant party is at least the size of the secret. A secret-sharing is ideal if the size of each
share is this minimal possible size, i.e., the size of the share of each party is exactly the size of the secret.
For example, Shamir’s 𝑡-out-of-𝑛 secret-sharing scheme [163] (see Section 2.2) is ideal when the size of the
domain of secrets is a prime-power 𝑞 > 𝑛. An access structure is ideal if it has an ideal scheme over some
finite domain of secrets. For example, the 𝑡-out-of-𝑛 access structure is ideal, while the access structure Γ⊓

described in Example 4.16 is not ideal [36] (see Theorem 7.4). Benaloh and Leichter [36], Simmons [165],
and Brickell [49] constructed ideal schemes for some access structures, i.e., for hierarchical access structures.
Brickell and Davenport [50] showed an interesting connection between ideal access structures and matroids.
Matroids are an abstraction and generalization of linear independence in vector spaces and spanning trees in
graphs; they were defined by Whitney in 1935 [184].

Brickell and Davenport provided a necessary condition for being ideal and a sufficient condition using
ports of matroids, which are defined in Section 8.1 (this chapter is self contained and no background on
matroid is needed). These conditions provide a partial characterization of ideal access structures as there is
a gap between these two conditions. The conditions are informally stated below.

• If an access structure is ideal then it is a matroid port.
• If an access structure is a matroid port of a representable matroid, then the access structure is ideal.
We remark that ideal secret-sharing schemes have been defined and studied in other areas of research

under different names, i.e., Matúš [133] studied them using the name probabilistic representation and Simonis
and Ashikhmin [167] studied them using the term almost affine codes.

8.1 Definition of Ideal Secret Sharing and Background on Matroids

We start with the definition of ideal access structures.

73

Definition 8.1 (Ideal Access Structures). A secret-sharing scheme with domain of secrets 𝑆 is ideal if the
domain of shares of each party is 𝑆. An access structure Γ is ideal if there exists an ideal secret-sharing
scheme realizing it over some finite domain of secrets.

A party is redundant in an access structure if there is no minimal authorized set that contains it. If a
party is redundant, then it does not need to get a share. Thus, in the following discussion we only consider
access structures without redundant parties.

A matroid is an axiomatic abstraction of linear independence. There are several equivalent axiomatic
systems to describe matroids: by independent sets, by bases, by circuits, or, as done here, by the rank function.
For more background on matroid theory the reader is referred to [183, 144].
Definition 8.2 (Matroids [184]). A matroid  = ⟨𝑉 , rank⟩ is a finite set 𝑉 and a function rank ∶ 2𝑉 → ℕ
satisfying the following three axioms:

Non-negativity and Boundness. 0 ≤ rank(𝑋) ≤ |𝑋| for every 𝑋 ⊆ 𝑉 .

Monotinicity. rank(𝑋) ≤ rank(𝑌) for every 𝑋 ⊆ 𝑌 ⊆ 𝑉 .

Sub-modularity. rank(𝑋 ∪ 𝑌) + rank(𝑋 ∩ 𝑌) ≤ rank(𝑋) + rank(𝑌) .

The elements of 𝑉 are called points, or simply elements, and the function rank is called the rank function.

Example 8.3. Let 𝑉 be a set of vectors in 𝔽 𝑘 for some field 𝔽 and rankLIN(𝑋) be the linear-algebraic rank
of 𝑋 (i.e., the dimension of the linear space spanned by the vectors in 𝑋). Then, ⟨𝑉 , rankLIN⟩ is a matroid
since
rankLIN(𝑋 ∪ 𝑌) + rankLIN(𝑋 ∩ 𝑌) ≤ rankLIN(span(𝑋) ∪ span(𝑌)) + rankLIN(span(𝑋) ∩ span(𝑌))

= rankLIN(𝑋) + rankLIN(𝑌).
(8.1)

A matroid defined by such a set of vectors is called representable (see Definition 8.10).
Notice that (8.1) can be a strict inequality. For example, let 𝑋 =

{

𝑒1
} and 𝑌 =

{

𝑒2
}; in this case,

rankLIN(𝑋 ∩ 𝑌) = rankLIN(∅) = 0.
Definition 8.4 (Independent Sets, Dependent Sets, and Circuits). A subset of 𝑋 ⊆ 𝑉 is independent in a
matroid  if rank(𝑋) = |𝑋|. A subset of 𝑋 ⊆ 𝑉 is dependent in a matroid  if rank(𝑋) < |𝑋|. Since
rank(𝑋) is an integer, a set 𝑋 is dependent if and only if rank(𝑋) ≤ |𝑋|− 1. A subset of 𝐶 ⊆ 𝑉 is a circuit
if it is a minimal dependent set; i.e., rank(𝐶) = |𝐶|− 1 and rank(𝐶 ⧵ {𝑎}) = |𝐶 ⧵ {𝑎} | = |𝐶|− 1 for every
𝑎 ∈ 𝐶 .

Example 8.5. Let 𝐺 = (𝑉 ,𝐸) be an undirected simple graph and for 𝑋 ⊆ 𝐸 let rank𝐺(𝑋) be the number of
edges in a spanning forest of 𝐺𝑋 = (𝑉 ,𝑋).22 It can be proved that (𝐸, rank𝐺) is a matroid, where rank𝐺(𝑋)

22A forest is a graph without cycles. A spanning forest 𝐻 = (𝑉 , 𝐹) of 𝐺 = (𝑉 ,𝐸) is a maximal sub-graph of 𝐺 without cycles,
that is 𝐻 = (𝑉 , 𝐹) is a forest such that 𝐹 ⊆ 𝐸 and (𝑉 , 𝐹 ∪{𝑒}) contains a cycle for every 𝑒 ∈ 𝐸 ⧵𝐹 . The number of edges in every
spanning forest of 𝐺 = (𝑉 ,𝐸) is the same (i.e., |𝑉 | − 𝓁, where 𝓁 is the number of connected components of 𝐺).

74

is |𝑉 | minus the number of connected components in the graph (𝑉 ,𝑋). Its independent sets are forests, its
dependent sets are sets that contain cycles, and its circuits are the simple circuits of the graphs, i.e., simple
cycles. The matroid ⟨𝐸, rank𝐺⟩ is called a graphic matroid.
Definition 8.6 (Connected Matroid). A matroid is connected if for every pair of distinct elements 𝑥 and 𝑦
there is a circuit containing 𝑥 and 𝑦.

We next define ports of a matroid, which is the key notion for studying ideal access structures.
Definition 8.7 (Ports of a Matroid). Let  = ⟨𝑉 , rank⟩ be a connected matroid,  be the circuits of the
matroid, and 𝑝0 ∈ 𝑉 . The port of the matroid  at point 𝑝0 is the access structure Γ on 𝑃 = 𝑉 ⧵

{

𝑝0
}

whose minimal authorized sets are
{

𝐴 ⊆ 𝑉 ⧵
{

𝑝0
}

∶ 𝐴 ∪
{

𝑝0
}

∈ 
}

.

That is, a set 𝐴 is a minimal authorized set of Γ if by adding 𝑝0 to it, it becomes a circuit of .

Example 8.8. Let  be the graphic matroid of the complete graph 𝐺. Let Γ be the port of  at the point
(i.e., edge) (𝑣1, 𝑣𝑚). A minimal set in Γ is a set 𝐴 such that 𝐴 ∪

{

(𝑣1, 𝑣𝑚)
} is a simple cycle in 𝐺, i.e., 𝐴

is a simple path between 𝑣1 and 𝑣𝑚. In other words, Γ = Γustcon, where Γustcon is the connectivity access
structure defined in Section 4.1.

The following theorem, whose proof can be found in [144, Theorem 4.3.2], states that an access structure
can be a port of at most one matroid.
Theorem 8.9. Let Γ be an access structure without redundant parties. If Γ is a port of a matroid  at point
𝑝0, then  is uniquely determined by Γ, that is, Γ can be a port of at most one matroid at 𝑝0. Furthermore,
if Γ is a port of a matroid , then  is a connected matroid.

8.2 Ideal Secret Sharing from Representable Matroids

We show a sufficient condition of Brickell and Davenport [50] for an ideal access structure; namely, if an
access structure is a port of a representable matroid (over some finite field), then it is ideal.23 The construction
of a secret-sharing scheme from a representation of a matroid is a special case of the monotone span program
construction of [111] (see Chapter 6). We next formally define representable matroids.
Definition 8.10. A matroid  = (𝑉 , rank) is representable over a field 𝔽 if there exists a rank-preserving
mapping from the points of the matroid into the set of vectors of a vector space over the field. In other words,
there exist 𝑘 and a mapping 𝜙 ∶ 𝑉 → 𝔽 𝑘 such that for every 𝐴 ⊆ 𝑉 :

rank(𝐴) = rankLIN(𝜙(𝐴)).
23In [50], it is claimed that the matroid can be representable over a near field; however, Simonis and Ashikhmin [167] have shown

an example in which the construction from a near field is incorrect.

75

The above requirement of 𝜙 is equivalent to requiring that a set 𝐴 ⊆ 𝑉 is a dependent set of the matroid
if and only if 𝜙(𝐴) is linearly dependent.
Theorem 8.11 ([50]). If an access structure Γ without redundant parties is a port of a matroid  repre-
sentable over a finite field 𝔽𝑞, then Γ can be realized by an ideal secret-sharing scheme with a domain of
secrets of size 𝑞.

Proof. Let 𝜙 ∶ 𝑉 → 𝔽 𝑘 be a representation of  =
⟨

𝑉 = 𝑃 ∪
{

𝑝0
}

, rank
⟩. By changing the basis of

{

𝜙(𝑝𝑖) ∶ 𝑝𝑖 ∈ 𝑃 ∪
{

𝑝0
}}, we can assume that 𝜙(𝑝0) = 𝐞𝟏 and consider the monotone span program 𝖬𝖲𝖯

with 𝑛 rows, where for every 1 ≤ 𝑖 ≤ 𝑛 there is a row 𝜙(𝑝𝑖) labeled by 𝑝𝑖. Since Γ is a port of  at 𝑝0, a
set 𝐴 is a minimal authorized set of Γ if and only if 𝐴 ∪

{

𝑝0
} is a minimal dependent set in  if and only

if {𝜙(𝑝𝑖) ∶ 𝑝𝑖 ∈ 𝐴 ∪
{

𝑝0
}} is a minimal linearly-dependent set if and only if {𝜙(𝑝𝑖) ∶ 𝑝𝑖 ∈ 𝐴

} is a minimal
set that spans 𝐞𝟏 if and only if 𝐴 is a minimal set accepted by the monotone span program 𝖬𝖲𝖯. We conclude
that 𝖬𝖲𝖯 is a monotone span program accepting Γ, where every party labels one row. Thus, by Claim 4.9,
there is an ideal secret-sharing scheme realizing Γ.

A multilinear representation of a matroid  = ⟨𝑉 , rank⟩ is a mapping 𝜙 ∶ 𝑉 → (𝔽 𝑘)𝓁 for some 𝓁 ≥ 1
(i.e., each point is mapped to 𝓁 vectors) such that for every set 𝐴 ⊆ 𝑉

rank(𝐴) =
rankLIN(𝜙(𝐴))

𝓁
.

Note that a mapping 𝜙 ∶ 𝑉 → (𝔽 𝑘)𝓁 is a multilinear representation of some matroid if and only if the above
rank function is integral, i.e., rankLIN(𝜙(𝐴)) is a multiple of 𝓁 for every set 𝐴.

Theorem 8.11 can be generalized to ports of multilinear representable matroids, using multi-target mono-
tone span programs and multilinear secret-sharing schemes (see Section 4.6 for the definition of these no-
tions).
Theorem 8.12. If an access structure Γ without redundant parties is a port of a matroid  that has a
multilinear representation over a finite field 𝔽𝑞, then Γ can be realized by an ideal secret-sharing scheme
with a domain of secrets of size 𝑞𝓁 for some integer 𝓁 ≥ 1.

8.3 Matroids from Ideal Secret Sharing

The following fundamental result, proved by Brickell and Davenport [50], gives a necessary condition for an
access structure to have an ideal secret-sharing scheme – the access structure is a port of a matroid. The proof
we provide is from [119]; it defines the rank function of the matroid via the joint entropy of the collections
of shares of an ideal secret-sharing scheme.
Theorem 8.13 ([50]). If an access structure without redundant parties Γ is ideal, then Γ is a port of a
matroid.

76

Proof. Let 𝑃 =
{

𝑝1,… , 𝑝0
} be the set of parties and 𝑝0 be the dealer and let Π be an ideal secret-sharing

scheme realizing Γ with a domain of secrets 𝑆. We consider its security according to Definition 3.7, where
the secret is uniformly distributed in 𝑆. Let 0 =  be the random variable denoting the secret with uniform
distribution and 𝑖 be the random variable denoting the share of party 𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Recall that for a set
𝑇 ⊆ 𝑃 ∪

{

𝑝0
} we define 𝑇 = ⟨𝑖⟩𝑝𝑖∈𝑇 . We use the notation from Section 7.2, denoting 𝐻(𝐴) by 𝐻(𝐴) and

𝐻(𝐴,) by 𝐻(𝐴,). We start with two simple claims on these entropies for ideal secret-sharing schemes.
Claim 8.14. If 𝐶 ∉ Γ and 𝐶 ∪

{

𝑝𝑖
}

∈ Γ, then 𝐻(
{

𝑝𝑖
}

|𝐶) = 𝐻() and 𝐻(
{

𝑝𝑖
}

| , 𝐶) = 0.

Proof. By the definition of the conditional entropy (A.3) and by the security (3.6) and the correctness (3.5)
of Π,

𝐻(|𝐶) +𝐻(
{

𝑝𝑖
}

|𝐶) −𝐻( ,
{

𝑝𝑖
}

|𝐶) = 𝐻(|𝐶) −𝐻(|𝐶,
{

𝑝𝑖
}

) = 𝐻() − 0 = 𝐻(). (8.2)

By (8.2), the definition of the conditional entropy (A.3), the properties of conditional entropy (A.4), and the
upper bound on the entropy (A.2),

𝐻() = 𝐻(|𝐶) +𝐻(
{

𝑝𝑖
}

|𝐶) −𝐻( ,
{

𝑝𝑖
}

|𝐶)

= 𝐻(|𝐶) +𝐻(
{

𝑝𝑖
}

|𝐶) − (𝐻(|𝐶) +𝐻(
{

𝑝𝑖
}

| , 𝐶))

= 𝐻(
{

𝑝𝑖
}

|𝐶) −𝐻(
{

𝑝𝑖
}

| , 𝐶)

≤ 𝐻(
{

𝑝𝑖
}

|𝐶)

≤ 𝐻(
{

𝑝𝑖
}

) ≤ 𝐻().

Thus, 𝐻() = 𝐻(
{

𝑝𝑖
}

|𝐶) −𝐻(
{

𝑝𝑖
}

| , 𝐶) = 𝐻(
{

𝑝𝑖
}

|𝐶), and the claim follows.
Claim 8.15. If 𝐵 ∪ 𝐶 ∈ Γ and 𝐵 ∪ 𝐶 ⧵

{

𝑝𝑖
}

∉ Γ for every 𝑝𝑖 ∈ 𝐵, then 𝐻(𝐵|𝐶) = |𝐵| ⋅𝐻().

Proof. Let 𝐵 =
{

𝑝1,… , 𝑝𝑡
}. By Claim 8.14, 𝐻(

{

𝑝𝑖
}

|𝐵 ∪ 𝐶 ⧵
{

𝑝𝑖
}

) = 𝐻(). Thus, by the definition of
conditional entropy (A.3) and by the properties of the conditional entropy (A.4),

𝐻(𝐵|𝐶) =
𝑡

∑

𝑖=1
𝐻(

{

𝑝𝑖
}

|𝐶,
{

𝑝1,… , 𝑝𝑖−1
}

) ≥
𝑡

∑

𝑖=1
𝐻(

{

𝑝𝑖
}

|𝐵 ∪ 𝐶 ⧵
{

𝑝𝑖
}

) = |𝐵| ⋅𝐻(). (8.3)

On the other hand, by the definition of conditional entropy (A.3), (A.4), (A.2), and the fact that  is uniformly
distributed in 𝑆,

𝐻(𝐵|𝐶) =
𝑡

∑

𝑖=1
𝐻(

{

𝑝𝑖
}

|𝐶,
{

𝑝1,… , 𝑝𝑖−1
}

) ≤
𝑡

∑

𝑖=1
𝐻(

{

𝑝𝑖
}

) = |𝐵| ⋅ log(|𝑆|) = |𝐵| ⋅𝐻(). (8.4)

77

We use the entropy of the shares of the set 𝐴 to define a function rankΠ and prove that it is a rank function
of a matroid. For every non-empty set 𝐴 ⊆ 𝑃 ∪

{

𝑝0
}, define

rankΠ(𝐴) = 𝐻(𝐴)∕𝐻(),

and define rankΠ(∅) = 0. We will first prove the integrality of rankΠ; this is the hardest part of the proof.
Then we will prove that ⟨𝑃 ∪

{

00
}

, rankΠ
⟩ is a matroid. Finally, we will prove that Γ is the port of the

matroid at 𝑝0.
Claim 8.16. rankΠ(𝐴) is an integer for every set 𝐴 ⊆ 𝑃 ∪

{

𝑝0
}

.

Proof. First, note that 𝐻(𝐴 ∪
{

𝑝0
}

) = 𝐻( , 𝐴) = 𝐻(𝐴) +𝐻(|𝐴); by the correctness and security of Π,
the entropy 𝐻(|𝐴) is either zero or 1. Thus, we need to prove the integrality of rankΠ(𝐴) only for subsets
of 𝑃 . Assume that rankΠ is not integral and let 𝐴 be a minimal set such that rankΠ(𝐴) is not an integer. Let
𝐵 ⊆ 𝑃 ⧵ 𝐴 be a minimal set such that 𝐵 ∉ Γ and 𝐴 ∪ 𝐵 ∈ Γ; we next prove that such a set exists. If 𝐴 ∈ Γ
we take 𝐵 = ∅. Otherwise, such a set exists because Γ is connected: Take 𝑝𝑖 ∈ 𝐴 and let 𝐶 be a minimal
authorized set containing 𝑝𝑖, thus 𝐶 ⧵

{

𝑝𝑖
} is unauthorized and 𝐴 ∪ 𝐶 = 𝐴 ∪ (𝐶 ⧵

{

𝑝𝑖
}

) is authorized; take
𝐵 ⊆ 𝐶 ⧵ 𝐴 as a minimal set such that 𝐴 ∪ 𝐵 ∈ Γ.

We consider two cases; in each case we derive a contradiction to the existence of a minimal set such that
rankΠ(𝐴) is not an integer.
Case I: There exists a 𝒑𝒊 ∈ 𝑨 such that 𝑨 ∪ 𝑩 ⧵

{

𝒑𝒊
}

∉ 𝚪. By Claim 8.14, 𝐻(
{

𝑝𝑖
}

|𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

) =
𝐻(), thus by (A.4) and (A.2)

𝐻() = 𝐻(
{

𝑝𝑖
}

|𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

) ≤ 𝐻(
{

𝑝𝑖
}

|𝐴 ⧵
{

𝑝𝑖
}

) ≤ 𝐻(
{

𝑝𝑖
}

) ≤ 𝐻(),

i.e.,
𝐻(

{

𝑝𝑖
}

|𝐴 ⧵
{

𝑝𝑖
}

) = 𝐻(); (8.5)
by (A.3) and (8.5)

𝐻(𝐴) = 𝐻(𝐴 ⧵
{

𝑝𝑖
}

,
{

𝑝𝑖
}

) = 𝐻(𝐴 ⧵
{

𝑝𝑖
}

) +𝐻(
{

𝑝𝑖
}

|𝐴 ⧵
{

𝑝𝑖
}

) = 𝐻(𝐴 ⧵
{

𝑝𝑖
}

) +𝐻().

This implies that rankΠ(𝐴) is an integer if and only if rankΠ(𝐴 ⧵
{

𝑝𝑖
}

) is an integer, contradicting the
choice of 𝐴 as a minimal set whose rank is not an integer.

Case II: For every 𝒑𝒊 ∈ 𝑨, the set 𝑨 ∪ 𝑩 ⧵
{

𝒑𝒊
}

is in 𝚪. Let𝐴′ ⊆ 𝐴 be a minimal set such that𝐴′∪𝐵 ∈ Γ
and take a party 𝑝𝑖 ∈ 𝐴′ (since 𝐵 ∉ Γ such 𝑝𝑖 exists). By (A.2), (A.4), and Claim 8.14,

0 ≤ 𝐻(
{

𝑝𝑖
}

| , 𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

) ≤ 𝐻(
{

𝑝𝑖
}

| , 𝐴′ ∪ 𝐵 ⧵
{

𝑝𝑖
}

) = 0. (8.6)
Since 𝐴 ∪ 𝐵 ⧵

{

𝑝𝑖
}

∈ Γ, 𝐻(|𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

) = 0 and by (A.3),(A.4), and (8.6),
0 ≤ 𝐻(

{

𝑝𝑖
}

|𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

)

≤ 𝐻( ,
{

𝑝𝑖
}

|𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

)

= 𝐻(|𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

) +𝐻(
{

𝑝𝑖
}

| , 𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

) = 0.

(8.7)

78

By (A.3) and by Claim 8.15 (since 𝐵 is a minimal set such that 𝐴 ∪ 𝐵 ∈ Γ):
𝐻(𝐴𝐵) = 𝐻(𝐴) +𝐻(𝐵|𝐴) = 𝐻(𝐴) + |𝐵| ⋅𝐻(), (8.8)

and by (8.7), (A.3), and Claim 8.15 (since 𝐵 is a minimal set such that 𝐴 ∪ 𝐵 ⧵
{

𝑝𝑖
}

∈ Γ):
𝐻(𝐴𝐵) = 𝐻(𝐴⧵

{

𝑝𝑖
}

)+𝐻(𝐵|𝐴⧵
{

𝑝𝑖
}

)+𝐻(
{

𝑝𝑖
}

|𝐴∪𝐵⧵
{

𝑝𝑖
}

) = 𝐻(𝐴⧵
{

𝑝𝑖
}

)+|𝐵| ⋅𝐻(). (8.9)
We deduce that, by (8.8) and (8.9), in this case rankΠ(𝐴) = rankΠ(𝐴 ⧵

{

𝑝𝑖
}

), contradicting the choice
of 𝐴 as a minimal set whose rank is not an integer.

We now prove that rankΠ ∶ 2𝑃∪{𝑝0} → ℕ is a rank function of a matroid.
Claim 8.17. Π =

⟨

𝑃 ∪
{

𝑝0
}

, rankΠ
⟩

is a matroid.

Proof. The non-negativity, monotonicity, and sub-modularity follow from Theorem 7.3. By (A.2),𝐻(
{

𝑝𝑖
}

) ≤
𝐻(), thus boundedness follows by using (A.6):

rankΠ(𝐴) =
𝐻(𝐴)
𝐻()

≤
∑

𝑝𝑖∈𝐴
𝐻(

{

𝑝𝑖
}

)

𝐻()
≤ |𝐴|.

We complete the proof by proving that Γ is the port of the matroid Π.
Claim 8.18. The access structure Γ is the port of the matroid Π =

⟨

𝑃 ∪
{

𝑝0
}

, rankΠ
⟩

at 𝑝0.

Proof. First, assume that 𝐴 is a minimal authorized set in Γ, thus 𝐻(|𝐴) = 0 and
rankΠ(𝐴 ∪

{

𝑝0
}

) = 𝐻( , 𝐴)∕𝐻() = (𝐻(𝐴) +𝐻(|𝐴))∕𝐻() = 𝐻(𝐴)∕𝐻() = rankΠ(𝐴).

thus 𝐴∪
{

𝑝0
} is a dependent set in the matroid. We still need to prove that 𝐴∪

{

𝑝0
} is a minimal dependent

set. By Claim 8.15 (with 𝐵 = 𝐴 and 𝐶 = ∅), rankΠ(𝐴) = |𝐴|, i.e., 𝐴 is independent. For every 𝐴′ ⊊ 𝐴, if
𝐴′ ∪

{

𝑝0
} is dependent, then (since 𝐴′ is independent)

rankΠ(𝐴′) = rankΠ(𝐴′ ∪
{

𝑝0
}

) = (𝐻(𝐴′) +𝐻(|𝐴′))∕𝐻() = rankΠ(𝐴′) + (𝐻(|𝐴′))∕𝐻(),

i.e., 𝐻(|𝐴′) = 0 contradicting the fact that 𝐴 is a minimal authorized set.
Next assume that 𝐴 ∪

{

𝑝0
} is a circuit in the matroid Π. In particular,

|𝐴| = rankΠ(𝐴) = rankΠ(𝐴 ∪
{

𝑝0
}

) = (𝐻(𝐴) +𝐻(|𝐴))∕𝐻() = |𝐴| + (𝐻(|𝐴))∕𝐻().

Thus, 𝐻(|𝐴) = 0 and 𝐴 is authorized. If 𝐴 is not a minimal authorized set, then it contains a minimal
authorized set 𝐴′ ⊊ 𝐴 and by the first direction 𝐴′ ∪

{

𝑝0
} is a circuit, contradicting the fact that 𝐴 ∪

{

𝑝0
}

is a circuit.

79

To conclude, given the ideal access structure Γ, we defined a function rankΠ from an ideal scheme Π
realizing Γ. We then proved that rankΠ is a rank function of a matroid, that is, it is an integral function
satisfying the axioms of a matroid. Finally, we proved that Γ is the port of this matroid.
Example 8.19. Consider the threshold access structure Γ𝑡, which consists of all subsets of parties of size at
least 𝑡, and Shamir’s scheme [163] (described in Section 2.2); this scheme realizes Γ𝑡 and the scheme is ideal
when the size of the domain of secrets is a prime-power greater than 𝑛. In this scheme, to share a secret 𝑠,
the dealer randomly chooses a random polynomial 𝑃 (𝑥) of degree 𝑡 − 1 such that 𝑃 (0) = 𝑠, and the share
of the 𝑖th party is 𝑃 (𝑖). In Shamir’s scheme, the shares of every set of 𝑡 parties are uniformly distributed,
i.e., when the secret is uniformly distributed, for every set 𝐴 ⊂ 𝑃 ∪

{

𝑝0
} of size at most 𝑡 the entropy of

𝐴 is |𝐴| ⋅𝐻(). On the other hand, since every 𝑡 points determine a unique polynomial of degree 𝑡 − 1, in
Shamir’s scheme every 𝑡 shares determine all other shares and the secret, i.e., for every set 𝐴 ⊆ 𝑃 ∪

{

𝑝0
}

of size greater than 𝑡 the entropy of 𝐴 is 𝑡 ⋅ 𝐻(). Defining the rank function for Shamir’s scheme as in
the proof of Theorem 8.13, we get rankShamir(𝐴) = min {𝑡, |𝐴|}. This is the rank of the so-called uniform
matroid 𝑈𝑡,𝑛+1; the circuits of this matroid are all sets of size 𝑡+1. Indeed, Γ𝑡 is the port of the matroid 𝑈𝑡,𝑛+1

at 𝑝0, as all its circuits containing 𝑝0 are all sets of parties of size 𝑡.

8.4 Additional Results on Ideal Access Structures

Following Brickell and Davenport [50], many works have considered the characterization of ideal access
structures. Alas, an exact characterization of ideal access structures is still an intriguing open problem.
Seymour [162] has shown that the port of the Vámos matroid is not ideal (i.e., the necessary condition
is not sufficient). Beimel et al. [26] showed that the port of the Vámos matroid is far from ideal, i.e., its
information ratio is at least 1.1 (this constant was improved to 1.142 in a sequence of papers [136, 96, 82,
103]). Matúš [133] has shown that ideal secret-sharing schemes realizing an access structure Γ are closely
related to the solutions of a system of generalized quasigroup equations to the matroid of the access structure
Γ. Using this relation, Matúš has shown that ports of infinitely many matroids (including the non-Desargues
matroids and matroids that contain as restrictions both the Fano and non-Fano matroids) do not have ideal
schemes.

Simonis and Ashikhmin [167] considered the port of the Non-Pappus matroid. They constructed an ideal
multilinear secret-sharing scheme realizing this access structure, where the secret and each share contain
two field elements, and they proved (using known results about matroids) that there is no ideal linear secret-
sharing realizing this access structure. This implies that the sufficient condition in Theorem 8.12 is stronger
than the sufficient condition in Theorem 8.11. Other examples of ports of matroids that have ideal multilinear
secret-sharing schemes and do not have ideal linear secret-sharing schemes were given in [148, 17, 33, 12].
Kaboli et al. [110] showed that there are ideal secret-sharing schemes that are not multilinear; however, this
does not show that there is an access structure that has an ideal scheme that is not multilinear. It is an open
question if there is an ideal access structure that does not have an ideal multilinear secret-sharing scheme.

80

Martí-Farré and Padró [128] showed that if an access structure is not a matroid port, then the infor-
mation ratio of every secret-sharing scheme realizing it is at least 1.5 (compared to information ratio 1 of
ideal schemes). The proof uses a forbidden minor characterization of matroid ports that was given by Sey-
mour [161] and the fact that all these forbidden minors have information ratio at least 1.5. We note that such a
gap does not exist for matroid ports that are not ideal, i.e., the port of the Vámos matroid has information ratio
bigger than 1 [17] and smaller than 1.33 [128] and the port of the Fano-Non Fano matroid has information
ratio 1 in the limit [135, 25] but is not ideal [133].

Beimel and Chor [18], Matúš [132], and Golic [99] have proved that an access structure Γ is ideal over a
binary domain of secrets if and only if Γ is a port of matroid representable over 𝔽2. In addition, Beimel and
Chor [18] and Matúš [132] have proved that an access structure Γ is ideal over a ternary domain of secrets
if and only if Γ is a port of matroid representable over 𝔽3. That is, for a domain of secrets of size at most 3,
the sufficient and necessary conditions of [50] are equivalent.

For many families of access structures, it was shown that the sufficient and necessary conditions collide,
that is, an access structure in such a family is ideal if and only if the access structure is a port of a representable
matroid. Such families include, for instance, the access structures on sets of four [168] and five [108] parties,
the ones defined by graphs [44, 50, 53], those with three or four minimal qualified subsets [127], weighted
threshold access structures [137, 146, 29], and bipartite access structures [146, 142, 143]. Ideal secret-
sharing schemes for hierarchical access structures were studied in [165, 49, 172, 174]. Farrás et al. [83, 85]
introduced integer polymatroids as a tool for characterizing ideal multi-partite secret-sharing schemes.

81

Chapter 9

Computational Secret Sharing

In this chapter, we define computational secret-sharing schemes and describe four computational secret-
sharing schemes, showing that computational secret-sharing schemes can be more efficient than information-
theoretic secret-sharing schemes.

9.1 Definition of Computational Secret-Sharing Schemes

We next define computational secret-sharing schemes, where the sharing and reconstruction are computed
in polynomial time and a polynomial-time adversary controlling an unauthorized set of parties cannot dis-
tinguish between shares of one secret and shares of a different secret. This is in contrast to Definition 3.4 –
the definition of secret-sharing with information-theoretic security – where we required the same indistin-
guishability for any unbounded adversary.

The input to a computational secret-sharing scheme also contains a security parameter 1𝜆 (in a unary rep-
resentation) allowing to “measure” the required hardness of the cryptographic primitive used in the scheme
(e.g., the length of the primes in the RSA encryption scheme). We require that an adversary whose running
time is polynomial in the security parameters (and other parameters of the scheme) cannot break a compu-
tational secret-sharing scheme. When defining “efficiency” of a computational secret-sharing scheme, it is
important to consider the way the access structure is represented, e.g., we can represent it as a monotone
formula, a monotone circuit, or as a general (non-monotone) circuit. It will be convenient to represent an
𝑛-party access structure by its characteristic function 𝑓 ∶ {0, 1}𝑛 → {0, 1} (see Definition 3.3).
Definition 9.1 (Representation model). A representation model is a polynomial time computable function
𝑈 ∶ {0, 1}∗ × {0, 1}∗ → {0, 1}, where 𝑈 (𝑃 , 𝑥) is referred to as the value returned by a “program” 𝑃 on
an input 𝑥. We assume that each 𝑃 specifies a number of parties 𝑛 (i.e., if 𝑥 ∉ {0, 1}𝑛, then 𝑃 (𝑈, 𝑥) = 0)
and assume that |𝑃 | ≥ 𝑛. We say that 𝑃 represents the function 𝑓 ∶ {0, 1}𝑛 → {0, 1} in the representation
model 𝑈 if 𝑈 (𝑃 , 𝑥) = 𝑓 (𝑥).

We will usually consider universal representation models, which can represent every access structure
(alas, most access structures will have an exponential-size representation). However, we will also use the

82

notation of representation to consider a (sequence) of specific access structures, e.g., to consider 𝑛∕2-out-of-𝑛
threshold access structures, we represent the 𝑛-th threshold function by 1𝑛.
Definition 9.2 (Computational Secret Sharing). A computational secret-sharing scheme for a representation
model 𝑈 is a pair of algorithms ⟨𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇⟩, where:

• 𝖲𝗁𝖺𝗋𝖾 is a randomized polynomial-time algorithm whose inputs are a security parameter 1𝜆, a program
𝑃 , and a secret 𝑠 ∈ {0, 1}∗. The output of 𝖲𝗁𝖺𝗋𝖾 is 𝑛 shares 𝗌𝗁1,… , 𝗌𝗁𝑛, where 𝑛 denotes the number
of parties specified by 𝑃 .

• 𝖱𝖾𝖼𝗈𝗇 is a deterministic polynomial-time reconstruction algorithm, whose inputs are a program 𝑃 , an
input 𝑥 ∈ {0, 1}𝑛, and shares ⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐼𝑥 of the parties in 𝐼𝑥 =

{

𝑝𝑖 ∶ 𝑥𝑖 = 1
}

. The output of 𝖱𝖾𝖼𝗈𝗇 is a
secret 𝑠.

The computational secret-sharing scheme ⟨𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇⟩ realizes the representation model𝑈 if the following
two requirements hold:

Correctness. Algorithm 𝖱𝖾𝖼𝗈𝗇 efficiently reconstructs the secret 𝑠 using the shares of any authorized set of
parties. That is, there exists a negligible function negl(𝜆) such that for every 𝜆, program 𝑃 , input 𝑥
such that 𝑈 (𝑃 , 𝑥) = 1, and secret 𝑠

If ⟨𝗌𝗁𝑖⟩1≤𝑖≤𝑛 ← 𝖲𝗁𝖺𝗋𝖾(1𝜆, 𝑃 , 𝑠), then Pr[𝖱𝖾𝖼𝗈𝗇(𝑃 , 𝑥, ⟨𝗌𝗁𝑖⟩𝑖∈𝐼𝑥) = 𝑠] ≥ 1 − negl(𝜆),

where the probability is over the randomness of the the algorithm 𝖲𝗁𝖺𝗋𝖾.

Computational Security. Every non-uniform polynomial-time adversary controlling an unauthorized set
𝐼𝑥 cannot deduce any information about the secret from the shares of 𝐼𝑥. Formally, we consider the
following game between a non-uniform polynomial-time adversary and the dealer:

• The adversary, with input 1𝜆, chooses a program 𝑃 , an input 𝑥 ∈ {0, 1}𝑛 such that 𝑈 (𝑃 , 𝑥) = 0
(where 𝑛 is the number of parties specified by 𝑃), and two secrets 𝑠0, 𝑠1 such that |𝑠0| = |𝑠1| and
sends 𝑃 , 𝑥, 𝑠0, 𝑠1 to the dealer.

• The dealer, which knows 1𝜆, picks with uniform distribution a bit 𝑏 ∈ {0, 1}, computes

⟨𝗌𝗁𝑖⟩1≤𝑖≤𝑛 ← 𝖲𝗁𝖺𝗋𝖾(1𝜆, 𝑃 , 𝑠𝑏),

and sends ⟨𝗌𝗁𝑖⟩𝑝𝑖∈𝐼𝑥 to the adversary.

• The adversary outputs a bit 𝑏′.

The adversary wins if 𝑏 = 𝑏′. The secret-sharing scheme ⟨𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇⟩ is computationally-secure if
for every non-uniform polynomial-time adversary  there exists a negligible function negl such that
the probability that  wins in the above game is at most 1∕2 + negl(𝜆).

83

Note that the share size in a computational secret-sharing scheme is polynomial in the security parameter,
the size of the representation of the access structure, and the size of the secret. If the representation size is
polynomial in the number of parties, the scheme has polynomial share size.
Remark 9.3. It suffices to construct a computational secret-sharing scheme where the size of the secret is
𝑂(𝜆) as we next explain. Let ⟨𝖲𝗁𝖺𝗋𝖾,𝖱𝖾𝖼𝗈𝗇⟩ be a secret sharing scheme in which the share size for a program
𝑃 is size𝑃 (𝜆,|s|). Given a program 𝑃 , and a long secret 𝑠, the dealer does the following:

• Generate a key 𝑘 of size 𝜆 for a semantically-secure symmetric encryption scheme ⟨𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼⟩.
• Share 𝑘 using 𝖲𝗁𝖺𝗋𝖾, i.e., computing ⟨𝗌𝗁𝑖⟩1≤𝑖≤𝑛 ← 𝖲𝗁𝖺𝗋𝖾(1𝜆, 𝑃 , 𝑘).
• Compute 𝑐 ← 𝖤𝗇𝖼(𝑘, 𝑠).
• The share of party 𝑝𝑖 is ⟨𝗌𝗁𝑖, 𝑐⟩.24

The resulting share size for sharing an 𝓁-bit secret is 𝑂(𝓁) + size𝑃 (𝜆, 𝜆).

9.2 Computational Threshold Secret Sharing

We have seen in Lemma 7.1 that in any information-theoretic secret-sharing scheme the size of the share of
each party is at least the size of the secret. Krawczyk [117] showed a computational 𝑡-out-of-𝑛 secret-sharing
scheme in which for large thresholds 𝑡 the share size is much shorter than the size of the secret, i.e., share
size 𝑂(𝓁∕𝑡+ 𝜆). For long secrets, this share size is almost optimal as the correctness requirement that every
set of 𝑡 parties can reconstruct the secret (without any security requirements) already implies that the share
share size is at least 𝓁∕𝑡.

Krawczyk’s idea is to start with the construction of Remark 9.3; however, instead of giving the encryption
𝑐 to each party, the dealer ensures that every set of 𝑡 parties can recover 𝑐. This is done using Rabin’s
information dispersal scheme [152] (i.e., an MDS code), which ensures this property, i.e., it provides the
correctness of a 𝑡-out-of-𝑛 secret-sharing scheme (without requiring any security). Rabin’s scheme is similar
to Shamir’s scheme, i.e., the string given to each party is an evaluation of a polynomial 𝑃 (𝑥) def

=
∑𝑡−1

𝑖=0 𝑎𝑖𝑥
𝑖

of degree 𝑡 − 1, where in Rabin’s scheme the 𝑡 coefficients of the polynomial are the message (in Shamir’s
scheme 𝑎0 is the secret, while 𝑎1,… , 𝑎𝑡−1 are random elements). Rabin’s information dispersal scheme is
described in Figure 9.1. In Rabin’s scheme, each set of 𝑡 parties can recover the polynomial and therefore
the message. The size of the string given to each party when storing a message of length 𝓁 > 𝑡 ⌈log(𝑛)⌉ is
⌈𝓁∕𝑡⌉ (i.e., by working over the field 𝔽2⌈𝓁∕𝑡⌉).

Krawczyk’s computational 𝑡-out-of-𝑛 secret-sharing scheme is described in Figure 9.2. The scheme uses
a semantically-secure encryption scheme ⟨𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼⟩ (which is implied by one-way functions [104]).
We assume that the length of its key is 𝑂(𝜆), where the security parameter 𝜆 is at least log(𝑛); this implies
that the share size in Shamir’s scheme used in Krawczyk’s computational scheme is 𝑂(𝜆). We further assume

24Alternatively, one can publish 𝑐 in a public repository, and the share of 𝑝𝑖 is only 𝗌𝗁𝑖.

84

that the length of an encryption of a message of length 𝓁 is 𝑂(𝓁), and 𝓁 – the size of the secret – is at least
𝑡 ⌈log(𝑛)⌉. Thus, |𝗌𝗁Shamir

𝑖 | = 𝑂(𝜆) and |𝗌𝗁Rabin
𝑖 | = ⌈𝓁∕𝑡⌉, and the size of the share of each party is𝑂(𝜆+𝓁∕𝑡).

Theorem 9.4. If one-way functions exist, then Krawczyk’s secret-sharing scheme is a computational 𝑡-out-
of-𝑛 secret-sharing scheme with share size 𝑂(𝜆 + 𝓁∕𝑡), where 𝓁 ≥ 𝑡 log(𝑛) is the length of the secrets.

Rabin’s Information Dispersal Scheme

The message: 𝑡 elements 𝑎0,… , 𝑎𝑡−1 ∈ 𝔽𝑞, where 𝑞 ≥ 𝑛 is a prime power.
The scheme:

• Let 𝛼1,… , 𝛼𝑛 ∈ 𝔽𝑞 be 𝑛 distinct non-zero elements known to all parties.
• The message defines a polynomial 𝑃 (𝑥) = ∑𝑡−1

𝑖=0 𝑎𝑖𝑥
𝑖.

• The string given to 𝑝𝑗 is 𝗌𝗁𝑗 ← 𝑃 (𝛼𝑗).
Figure 9.1: Rabin’s information dispersal scheme, where every 𝑡 parties can recover the message.

Krawczyk’s Computational 𝑡-out-of-𝑛 Scheme

The secret: a string 𝑠 ∈ {0, 1}𝓁, where 𝓁 ≥ 𝑡 ⌈log(𝑛)⌉.
The scheme:

• Generate a key 𝑘 ← 𝖦𝖾𝗇(1𝜆) and Compute 𝑐 ← 𝖤𝗇𝖼(𝑘, 𝑠).
• Share the key 𝑘 using Shamir’s 𝑡-out-of-𝑛 secret-sharing scheme; let

𝗌𝗁Shamir
1 ,… , 𝗌𝗁Shamir

𝑛 be the generated shares.
• Encode 𝑐 using Rabin’s information dispersal scheme; let 𝗌𝗁Rabin

1 ,… , 𝗌𝗁Rabin
𝑛 be the

generated strings.
• Share of party 𝒑𝒊: 𝗌𝗁Shamir

𝑖 , 𝗌𝗁Rabin
𝑖 .

Figure 9.2: Krawczyk’s computational 𝑡-out-of-𝑛 secret-sharing scheme, using a semantically-secure encryp-
tion scheme ⟨𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼⟩.

9.3 Computational Secret Sharing for Monotone Circuits

In Section 4.3 we described an information-theoretic secret-sharing scheme for monotone formulas of Be-
naloh and Leichter [36] (abbreviated the BL secret-sharing scheme). Can one extend this result to the more

85

powerful computational models of monotone circuits? An unpublished result of Yao [186] showed that there
is a computational secret-sharing scheme for monotone circuits; a proof of the security of the scheme ap-
peared in [180]. In this monograph, we will describe this result. We consider monotone circuits with AND
and OR gates with unbounded fan-in. We refer the reader to Appendix A.1 or [109] for a reminder of the
definition of monotone circuits.

To describe Yao’s secret-sharing scheme, we first recall the BL secret-sharing scheme, described in
Section 4.3. The scheme shares a secret 𝑠 using a monotone formula 𝐹 ; it starts in the output gate of the
formula, and in each node of the formula, the scheme recursively shares an appropriate secret for each child
of the node. The total size of the shares in the BL secret-sharing scheme is the number of leaves in the
formula. We can try to apply the same method for a monotone circuit. The problem is that if a node has
fan-out greater than 1, it gets (from the recursion) a few values, and the dealer needs to share each value
recursively. This can result in share size exponential in the number of nodes in the circuit. To overcome this
problem, Yao suggested using encryption. For each node 𝑣 in the circuit, the dealer chooses a key 𝑘𝑣 for a
semantically-secure symmetric encryption scheme ⟨𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼⟩, encrypts the values given to the node 𝑣
using the key 𝑘𝑣, and recursively shares the key 𝑘𝑣. The encryptions generated for each node are given to all
parties. As only the key is shared recursively, the number of elements given to each node are its fan-out, i.e.,
the share size of each party is the number of edges in the circuit, which is at most quadratic in the size of the
circuit. We formally describe the sharing algorithm of Yao’s secret-sharing scheme in Figure 9.3.

We describe the reconstruction algorithm of Yao’s secret-sharing schemes in Figure 9.4. Given the circuit
𝐶 , whose nodes in a lexicographic order are 𝐺1,… , 𝐺𝑔, let 𝐶𝑖(𝑥) be the Boolean function computed by the
node 𝐺𝑖 on input 𝑥 ∈ {0, 1}𝑛. Fix an input 𝑥 such that 𝑓 (𝑥) = 1. The reconstruction algorithm proceeds
according to this lexicographic order, computes 𝑘𝑖 for every node such that 𝐶𝑖(𝑥) = 1 as explained below,
and uses this key to obtain string𝑖. For leaves, the encryption key is part of the shares of 𝐼𝑥. For an OR
gate, for at least one of its children 𝑗 it must be that 𝐶𝑗(𝑥) = 1, thus the reconstruction algorithm has already
computed string𝑗 and 𝑘𝑖 is part of it. For an AND gate, for all its children 𝑗 it must be that 𝐶𝑗(𝑥) = 1, thus
the reconstruction algorithm has already computed string𝑗 for every child, and it can reconstruct 𝑘𝑖 from
these strings. Since 𝑓 (𝑥) = 1, the circuit 𝐶 returns 1 on 𝑥, i.e., 𝐶(𝑥) = 𝐶𝑔(𝑥) = 1, thus, algorithm Yao-
Reconstruct computes string𝑔 = 𝑠, i.e., reconstructs the secret. In algorithm Yao-Reconstruct, each string𝑖
is computed at most once; for every node the complexity of computing the string is at most the fan-in of the
node. Hence, the complexity of the reconstruction is linear in the number of edges in 𝐶 . The correctness of
the reconstruction algorithm follows by induction.

The security for an input 𝑥 such that 𝑓 (𝑥) = 0 follows from the same arguments as in the BL secret-
sharing scheme, i.e., an adversary controlling the parties in 𝐼𝑥 cannot learn in polynomial time any infor-
mation of the keys and strings of nodes 𝐺𝑖 such that 𝐶𝑖(𝑥) = 0. Intuitively, this follows by an inductive
argument. For example, for an AND gate 𝐺𝑖 such that 𝐶𝑖(𝑥) = 0, there exists at least one incoming edge
(𝐺𝑗 , 𝐺𝑖) such that𝐶𝑗(𝑥) = 0, thus, by the induction hypothesis, the adversary cannot learn in polynomial time
any information about string𝑗 , i.e., it cannot learn in polynomial-time any information of at least one of the
shares in the 𝑔𝑖-out-of-𝑔𝑖 secret-sharing scheme of 𝑘𝑖; hence, the adversary cannot learn in polynomial-time

86

Yao’s Computational Secret-Sharing Scheme

The secret: a string 𝑠 ∈ {0, 1}𝓁 for some 𝓁 ∈ ℕ.
The security parameter: 1𝜆.
The circuit: a monotone Boolean circuit 𝐶 representing an access structure 𝑓 ; let
𝐺1, 𝐺2,… , 𝐺𝑔 be the nodes of the circuit 𝐶 sorted according to a topological order (that
is, 𝐺𝑔 is the root and 𝐺𝑗 is the leaf labeled by 𝑥𝑗 for 1 ≤ 𝑗 ≤ 𝑛).
The scheme:

1. 𝑘𝑖 ← 𝖦𝖾𝗇(1𝜆) for each 1 ≤ 𝑖 ≤ 𝑔.
2. string𝑔 ← 𝑠 and string𝑖 ← 𝜀 for each 1 ≤ 𝑖 ≤ 𝑔 − 1.
3. For 𝑖 = 𝑔 downto 1:

(a) 𝑒𝑖 ← 𝖤𝗇𝖼(1𝜆, 𝑘𝑖, string𝑖).
(b) If 𝑖 > 𝑛 do:

• Let 𝐺𝑗1 ,… , 𝐺𝑗𝑔𝑖
be the sources of the incoming edges into the node 𝐺𝑖,

where 𝑔𝑖 ≥ 1 and 𝑗1 < ⋯ < 𝑗𝑔𝑖 < 𝑖.
• If 𝐺𝑖 is an OR gate, then string𝑗𝛼 ← string𝑗𝛼 , 𝑘𝑖 for 1 ≤ 𝛼 ≤ 𝑔𝑖 (i.e., 𝑘𝑖 is

concatenated to string𝑖).
• If 𝐺𝑖 is an AND gate, then

– Share 𝑘𝑖 using a 𝑔𝑖-out-of-𝑔𝑖 secret-sharing scheme; let 𝑘𝑖,1,… , 𝑘𝑖,𝑔𝑖 be
the shares of 𝑘𝑖 (i.e., 𝑘𝑖 = ⊕𝑔𝑖

𝛼=1𝑘𝑖,𝛼).
– string𝑗𝛼 ← string𝑗𝛼 , 𝑘𝑖,𝛼 for 1 ≤ 𝛼 ≤ 𝑔𝑖.

(c) Share of party 𝒑𝒋: The key 𝑘𝑗 and the encryptions 𝑒1,… , 𝑒𝑔.
Figure 9.3: The sharing algorithm in Yao’s secret-sharing scheme for a monotone circuit 𝐶 .

87

Algorithm Yao-Reconstruct

The circuit: A monotone Boolean circuit 𝐶 representing an access structure Γ. Let
𝐺1, 𝐺2,… , 𝐺𝑔 be the nodes of the circuit 𝐶 sorted according to a topological order and
let 𝐶𝑖 be the sub-circuit of 𝐶 whose output is the output of 𝐺𝑖.
The reconstructing set: A set 𝐼𝑥 =

{

𝑝𝑖 ∶ 𝑥𝑖 = 1
} for 𝑥 ∈ {0, 1}𝑛 such that 𝐶(𝑥) = 1.

The reconstructing algorithm:

1. For 𝑖 = 1 to 𝑛 do (where 𝐺𝑖 is a leaf labeled by 𝑥𝑖):
(a) If 𝐶𝑖(𝑥) = 1 (that is, 𝑥𝑖 = 1, i.e., 𝑝𝑖 ∈ 𝐼𝑥 and the shares of 𝐼𝑥 contain 𝑘𝑖), then

compute string𝑖 ← 𝖣𝖾𝖼(1𝜆, 𝑘𝑖, 𝑒𝑖).

2. For 𝑖 = 𝑛 + 1 to 𝑔 do:
(a) If 𝐺𝑖 is an OR gate and 𝐶𝑖(𝑥) = 1 (that is, there exists an incoming edge (𝐺𝑗 , 𝐺𝑖)

such that 𝐶𝑗(𝑥) = 1 and 𝑗 < 𝑖), then take 𝑘𝑖 from string𝑗 and compute string𝑖 ←
𝖣𝖾𝖼(1𝜆, 𝑘𝑖, 𝑒𝑖).

(b) If 𝐺𝑖 is an AND gate and 𝐶𝑖(𝑥) = 1 (that is, for every incoming edge (𝐺𝑗 , 𝐺𝑖) it
must be that 𝐶𝑗(𝑥) = 1), then for the incoming edges from 𝐺𝑗1 ,… , 𝐺𝑗𝑔𝑖

to 𝐺𝑖,
where 𝑗1 < ⋯ < 𝑗𝑔𝑖 < 𝑖:

• For every 1 ≤ 𝛼 ≤ 𝑔𝑖 do:
– Take 𝑘𝑖,𝛼 from string𝑗 .

• Compute 𝑘𝑖 ← ⊕𝑔𝑖
𝛼=1𝑘𝑖,𝛼 and string𝑖 ← 𝖣𝖾𝖼(1𝜆, 𝑘𝑖, 𝑒𝑖).

3. If 𝐶(𝑥) = 1, then output string𝑔.
Figure 9.4: The reconstruction algorithm in Yao’s secret-sharing scheme, which computes string𝑖 for every
node 𝐺𝑖 such that 𝐶𝑖(𝑥) = 1.

88

any information on 𝑘𝑖.
We formalize this idea for the computational setting in Claim 9.5, where we use the so-called hybrid

argument.
Claim 9.5. Yao’s secret-sharing scheme is secure.

Proof. Let  be a non-uniform polynomial time adversary trying to break Yao’s secret-sharing scheme. Fix
the security parameter 𝜆. Consider the choices of the adversary  with the security parameter 1𝜆: the circuit
𝐶 , the input 𝑥 such 𝐶(𝑥) = 0, and the secrets 𝑠0, 𝑠1. Let 𝑛 be the number of inputs of 𝐶 . We consider
4 distributions. The first two distributions, denoted 𝑏

0 for 𝑏 ∈ {0, 1}, are encryptions 𝑒1,… , 𝑒𝑔 and keys
⟨𝑘𝑖⟩𝑝𝑖∈𝐼𝑥 , where 𝑒1 = 𝖤𝗇𝖼(1𝜆, 𝑘1, string𝑖),… , 𝑒𝑔 = 𝖤𝗇𝖼(1𝜆, 𝑘𝑔, string𝑔) for string1,… , string𝑔 generated by
Yao’s secret-sharing scheme for the secret 𝑠𝑏 (that is, string𝑔 = 𝑠𝑏). The last two distributions, denoted𝑏

𝑔 for
𝑏 ∈ {0, 1}, are the encryptions 𝑒′1,… , 𝑒′𝑔 and keys ⟨𝑘𝑖⟩𝑝𝑖∈𝐼𝑥 , computed from the strings string1,… , string𝑔
generated by Yao’s secret-sharing scheme for the secret 𝑠𝑏 as follows:

• If 𝐶𝑖(𝑥) = 1, then string′𝑖 ← string𝑖.
• If 𝐶𝑖(𝑥) = 0, then string′𝑖 ← 0|string𝑖|,

and 𝑒′𝑖 = 𝖤𝗇𝖼(1𝜆, 𝑘𝑖, string
′
𝑖). In other words, 𝑒′1,… , 𝑒′𝑔 contains encryptions of all strings that the parties

in 𝐼𝑥 know and the other encryptions are the encryptions of the all-zero strings (of appropriate length).
As 𝐶(𝑥) = 𝐶𝑔(𝑥) = 0, the string string′𝑔 is the all-zero string, hence 0

𝑔 and 1
𝑔 are actually the same

distribution. We will show that for every adversary  there is a negligible function negl such that for every
𝑏 ∈ {0, 1}

|

|

|

|

|

Pr
𝐡∈𝑅𝑏

0

[(1𝜆,𝐡) = 1] − Pr
𝐡∈𝑅𝑏

𝑔

[(1𝜆,𝐡) = 1]
|

|

|

|

|

≤ negl(𝜆). (9.1)

We first show that (9.1) implies that  has negligible advantage on guessing 𝑏. The adversary  wins the
security game of Definition 9.2 if it gets a sample from 1

0 (i.e., sharing of 𝑠1) and answers 1 or gets a sample
from 0

0 (i.e., sharing of 𝑠0) and answers 0, i.e.,

Pr[ wins the security game of Definition 9.2]

= 0.5 ⋅ Pr
𝐡∈𝑅1

0

[(1𝜆,𝐡) = 1] + 0.5 ⋅ Pr
𝐡∈𝑅0

0

[(1𝜆,𝐡) = 0]

= 0.5 ⋅ Pr
𝐡∈𝑅1

0

[(1𝜆,𝐡) = 1] + 0.5 ⋅ (1 − Pr
𝐡∈𝑅0

0

[(1𝜆,𝐡) = 1])

≤ 0.5 + 0.5 ⋅

(

Pr
𝐡∈𝑅1

𝑔

[(1𝜆,𝐡) = 1] + negl(𝜆)

)

− 0.5 ⋅

(

Pr
𝐡∈𝑅0

𝑔

[(1𝜆,𝐡) = 1] − negl(𝜆)

)

= 0.5 + 2 negl(𝜆),

where the inequality follows from (9.1) and the last equality follows from the fact that 0
𝑔 and 1

𝑔 are identi-
cal. Thus, to complete the proof of security we need to prove (9.1). For this, we define “hybrid” distributions

89

𝑏
1 ,… ,𝑏

𝑔−1, where the distribution 𝑏
𝑖 is the encryptions 𝑒′1,… , 𝑒′𝑖, 𝑒𝑖+1,… , 𝑒𝑔 and keys ⟨𝑘𝑖⟩𝑝𝑖∈𝐼𝑥 , i.e., the

first 𝑖 encryptions are generated as in 𝑏
𝑔 and the last 𝑔− 𝑖 encryptions are generated as in 𝑏

0 . We will show
that the semantic-security of ⟨𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼⟩ implies that for every non-uniform polynomial-time algorithm
 there exist a negligible function negl𝑏(𝜆) such that:

|

|

|

|

|

Pr
𝐡∈𝑅𝑏

𝑖

[(1𝜆,𝐡) = 1] − Pr
𝐡∈𝑅𝑏

𝑖−1

[(1𝜆,𝐡) = 1]
|

|

|

|

|

≤ negl𝑏(𝜆), (9.2)

where the notation 𝐡 ∈𝑅 𝑏
𝑖 denotes a vector of encryptions and keys generated as in 𝑏

𝑖 . Note that 𝑏
𝑖−1 and

𝑏
𝑖 only differ on the 𝑖-th encryption, which is an encryption of string′𝑖 in 𝑏

𝑖 and the encryption of string𝑖
in 𝑏

𝑖−1. If 𝐶𝑖(𝑥) = 1, the distributions 𝑏
𝑖 ,

𝑏
𝑖−1 are the same and (9.2) is trivial in this case.

To prove (9.2) when 𝐶𝑖(𝑥) = 0, we construct an adversary  from  that tries to break the encryption
scheme. We recall that in the security game for the encryption,  chooses two messages 𝑚0, 𝑚1, sends them
to the encrypter, gets from the encrypter 𝑐 ← 𝖤𝗇𝖼(1𝜆, 𝑘, 𝑚𝑑) for a uniformly distributed 𝑑 ∈ {0, 1} and a key
𝑘 ← 𝖦𝖾𝗇(1𝜆), and tries to guess 𝑑. The adversary  on input 1𝜆 and 𝑖 does the following:

• Generates 𝑛 keys 𝑘1,… , 𝑘𝑔.
• Generates strings string′1,… , string′𝑖−1, string𝑖,… , string𝑔 as in 𝑏

𝑖−1 and string′𝑖 = 0|string𝑖| and com-
putes 𝑒′𝑗 = 𝖤𝗇𝖼(1𝜆, 𝑘𝑗 , string

′
𝑗) for 1 ≤ 𝑗 ≤ 𝑖 − 1 and 𝑒𝑗 = 𝖤𝗇𝖼(1𝜆, 𝑘𝑗 , string𝑗) for 𝑖 + 1 ≤ 𝑗 ≤ 𝑔.

• Sends 𝑚0 ← string𝑖 and 𝑚1 ← string′𝑖 = 0|string𝑖| to the encrypter and gets an encryption 𝑒 =
𝖤𝗇𝖼(1𝜆, 𝑘, 𝑚𝑑).

• Sends 𝑒′1,… , 𝑒′𝑖−1, 𝑒, 𝑒𝑖+1,… , 𝑒𝑛 and ⟨

𝑘𝑗
⟩

𝑝𝑗∈𝐼𝑥
to , gets a bit 𝑑′, and outputs 𝑑′.

First, note that 𝑘𝑖 is not used to encode any string. Second, we claim that string′1,… , string′𝑖−1, string𝑖+1,… ,
string𝑔 and keys ⟨𝑘𝑗

⟩

𝑝𝑗∈𝐼𝑥
are independent of the choice of 𝑘𝑖. There are three cases to consider.

𝟏 ≤ 𝒊 ≤ 𝒏. The key 𝑘𝑖 of a leaf does not appear in any string. Furthermore, as 𝑥𝑖 = 0, party 𝑝𝑖 is not in 𝐼𝑥
and 𝑘𝑖 is not given to the parties in 𝐼𝑥.

𝑮𝒊 is an OR gate. For every incoming edge (𝐺𝑗 , 𝐺𝑖) it must be that 𝑗 < 𝑖 (since the nodes are ordered in a
lexicographic order) and 𝐶𝑗(𝑥) = 0 (since 𝐶𝑖(𝑥) = 0 and 𝐺𝑖 is an OR gate), thus, string′𝑗 is the all-zero
string and 𝑘𝑖 does not appear in any string string′1,… , string′𝑖−1. Furthermore, 𝑘𝑖 is independent of
the keys of ⟨𝑘𝑗

⟩

𝑝𝑗∈𝐼𝑥
⊆
{

𝑘1,… , 𝑘𝑛
} since 𝑖 > 𝑛.

𝑮𝒊 is an AND gate. There is an incoming edge (𝐺𝑗 , 𝐺𝑖) such that 𝑗 < 𝑖 and 𝐶𝑗(𝑥) = 0 (since 𝐶𝑖(𝑥) = 0
and 𝐺𝑖 is an AND gate), thus, string′𝑗 is the all-zero string and at least one of the shares of 𝑘𝑖 in the
𝑔𝑖-out-of-𝑔𝑖 secret-sharing scheme does not appear the strings string′1,… , string′𝑖−1. By the security
of the 𝑔𝑖-out-of-𝑔𝑖 secret-sharing scheme, the strings string′1,… , string′𝑖−1 are independent of 𝑘𝑖.

90

We use the above fact to complete the proof of the security. If the encrypter chooses 𝑑 = 1, then
𝑒 = 𝖤𝗇𝖼(1𝜆, 𝑘, 0|string𝑖|), i.e., 𝑒′1,… , 𝑒′𝑖−1, 𝑒, 𝑒𝑖+1,… , 𝑒𝑛 and ⟨

𝑘𝑗
⟩

𝑝𝑗∈𝐼𝑥
are generated as in 𝑏

𝑖 with the keys
⟨

𝑘𝑗
⟩

𝑗≠𝑖 and 𝑘, and
Pr

[


(

1𝜆, 𝑖, 𝑒 = 𝖤𝗇𝖼(1𝜆, 𝑘, 𝑚1)
)

= 1
]

= Pr
𝐡∈𝑅𝑏

𝑖

[

(1𝜆,𝐡) = 1
]

.

Similarly, if the encrypter chooses 𝑑 = 0, then 𝑒 = 𝖤𝗇𝖼(1𝜆, 𝑘, string𝑖), i.e., 𝑒′1,… , 𝑒′𝑖−1, 𝑒, 𝑒𝑖+1,… , 𝑒𝑛 and
⟨

𝑘𝑗
⟩

𝑝𝑗∈𝐼𝑥
are generated as in 𝑏

𝑖−1 with the keys ⟨𝑘𝑗
⟩

𝑗≠𝑖 and 𝑘, and

Pr
[


(

1𝜆, 𝑖, 𝑒 = 𝖤𝗇𝖼(1𝜆, 𝑘, 𝑚0)
)

= 1
]

= Pr
𝐡∈𝑅𝑏

𝑖−1

[

(1𝜆,𝐡) = 1
]

.

By the security of the encryption scheme, there exists a negligible function negl𝑏(𝜆) such that for every 𝑖

|

|

|

Pr[(1𝜆, 𝑖, 𝑒 = 𝖤𝗇𝖼(1𝜆, 𝑘, 𝑚1)) = 1] − Pr[(1𝜆, 𝑖, 𝑒 = 𝖤𝗇𝖼(1𝜆, 𝑘, 𝑚0)) = 1]||
|

≤ negl𝑏(𝜆)

(where we consider a non-uniform adversary  that gets a worst 𝑖𝜆 for every 𝜆).
Thus, (9.2) follows. We conclude that

|

|

|

Pr
𝐡∈𝑅𝑏

𝑔

[(1𝜆,𝐡) = 1]− Pr
𝐡∈𝑅𝑏

0

[(1𝜆,𝐡) = 1]||
|

=
|

|

|

|

|

𝑔
∑

𝑖=1
Pr

𝐡∈𝑅𝑏
𝑖

[(1𝜆,𝐡) = 1] −
𝑔
∑

𝑖=1
Pr

𝐡∈𝑅𝑏
𝑖−1

[(1𝜆,𝐡) = 1]
|

|

|

|

|

≤
𝑔
∑

𝑖=1

|

|

|

|

|

Pr
𝐡∈𝑅𝑏

𝑖

[(1𝜆,𝐡) = 1] − Pr
𝐡∈𝑅𝑏

𝑖−1

[(1𝜆,𝐡) = 1]
|

|

|

|

|

≤
𝑔
∑

𝑖=1
negl𝑏(𝜆).

As the adversary  runs in time polynomial in 𝜆, the number of parties 𝑛 is bounded by a polynomial in 𝜆,
hence 𝑔 is bounded by a polynomial in 𝜆. As the sum of polynomially many negligible functions is negligible
∑𝑔

𝑖=1 negl𝑏(𝜆) is negligible as claimed.
Yao’s secret-sharing scheme uses a semantically-secure encryption scheme, which, by [104], exists as-

suming that one-way functions exist.
Theorem 9.6. If one-way functions exist, then Yao’s secret-sharing scheme is a computational secret-sharing
for monotone circuits with share size 𝑂(𝓁 + |𝐶| ⋅ 𝜆), where 𝜆 is the security parameter, 𝓁 is the length of the
secret, and |𝐶| is the number of wires in the circuit 𝐶 .

Remark 9.7. In Yao’s secret-sharing scheme, the share of each party 𝑝𝑖 contains its key 𝑘𝑖 and the encryptions
of the strings for each vertex in the circuit. If we allow public information (e.g., information stored on some
public repository), then the encryptions can be published; the share size of each party reduces to 𝑂(𝜆) and
the size of the public information is 𝑂(𝓁 + |𝐶| ⋅ 𝜆).

91

Remark 9.8. In the description of Yao’s scheme, we represented an access structure by a monotone circuit
with AND and OR gates. We can generalize the above protocol by adding other gates to the formula (e.g.,
threshold gates); we require that each such gate fan-in 𝑔 can be realized by an information-theoretic secret-
sharing scheme with poly(𝑔) share size. To share s secret, we replace Item 3b in Yao’s scheme (described in
Figure 9.3) by the following loop

• If 𝑖 > 𝑛 do:
– Share 𝑘𝑖 using a secret-sharing scheme with perfect security; let 𝑘𝑖,1,… , 𝑘𝑖,𝑔𝑖 be the shares of 𝑘𝑖.
– string𝑗𝛼 ← string𝑗𝛼 , 𝑘𝑖,𝛼 for 1 ≤ 𝛼 ≤ 𝑔𝑖.

Let size𝑖 be the total share size for realizing gate 𝐺𝑖 in the circuit with a one-bit secret. The share size of the
generalized Yao’s scheme is 𝑂(𝓁 + (

∑𝑔
𝑖=𝑛+1 size𝑖) ⋅ 𝜆).

9.4 Computational Secret Sharing for Circuits

Komargodski et al. [116] proved that under strong cryptographic assumptions, all access structures repre-
sented by general (possibly non-monotone) circuits can be realized by a computational secret-sharing scheme
(as the circuit represents a monotone access structure, the circuit computes a monotone function). This is a
much stronger representation than monotone circuits, i.e., for some monotone languages monotone circuits
can be exponentially bigger than non-monotone circuits [171]. We start with a motivating example.
Definition 9.9. Let 𝐺𝑛 = (𝑉 ,𝐸) be a complete undirected graph with 𝑚 vertices and 𝑛 =

(𝑚
2

)

edges, where
𝑚 is even. A perfect matching in the graph 𝐺𝑛 = (𝑉 ,𝐸) is a set 𝑀 ⊆ 𝐸 of size |𝑉 |∕2 such that each 𝑣 ∈ 𝑉
appears in exactly one edge in 𝑀 (i.e., each vertex is matched to its unique neighbor). The matching access
structure, denoted Γmatch, is the access structure whose parties are edges of the complete undirected graph
𝐺𝑛 and its authorized sets are subsets of the edges containing a perfect matching in 𝐺𝑛.

Are there information-theoretic or computational secret-sharing schemes realizingΓmatch with polynomial-
size shares? Matching does not have polynomial size monotone circuits [155] or polynomial size monotone
span programs [150].25 Thus, the constructions that we have seen so far do not provide efficient schemes for
Γmatch. As perfect matching can be computed by a polynomial-size circuit, the construction we present in
this section will realize Γmatch with computational security and polynomial share size.

Komargodski et al. [116] constructed computational secret-sharing schemes for circuits, which we call
the KNY secret-sharing scheme. The KNY scheme uses a primitive called a witness encryption scheme, a
modern primitive introduced by Garg et al. [91]. Originally, witness encryption schemes were constructed
from indistinguishability obfuscation (iO) and multilinear maps [91]; however, recent works [60, 13, 177,
179] have given direct constructions of witness encryption that are significantly more efficient than existing

25In [150], a lower bound of 𝑛log(𝑛) is proved for the directed s-t-connectivity access structure. As directed s-t-connectivity can be
reduced to matching via a projection reduction, the same lower bound applies to Γmatch.

92

constructions of iO. In a witness encryption scheme for a language 𝐿 in 𝖭𝖯, a message 𝑀 is encrypted with
an input 𝑥. If 𝑥 ∈ 𝐿 and a witness 𝑤 for 𝑥 ∈ 𝐿 is given, then the ciphertext can be efficiently decrypted. On
the other hand, if 𝑥 ∉ 𝐿, then no polynomial-time adversary can learn any information on the message from
the ciphertext. We quote the definition from [91].
Definition 9.10 (Witness Encryption [91]). Let 𝐿 be a language in n 𝖭𝖯 with corresponding witness relation
𝑅, that is, there is some 𝑐 ∈ ℕ such that 𝐿 =

{

𝑥 ∶ ∃𝑤 |𝑤| ≤ |𝑥|𝑐 ∧ (𝑥,𝑤) ∈ 𝑅
}

. A witness encryption
scheme with message space {0, 1} for 𝐿 consists of the following two polynomial-time algorithms:

Encryption. The algorithm 𝖶𝖤.𝖤𝗇𝖼𝐿(1𝜆, 𝑥,𝑀) takes as input a security parameter 1𝜆, a string 𝑥, and a
message 𝑀 ∈ {0, 1}, and outputs a ciphertext CT.

Decryption. The algorithm 𝖶𝖤.𝖣𝖾𝖼𝐿(CT, 𝑤) takes as input a ciphertext CT and a string 𝑤, and outputs a
message 𝑀 or the symbol ⊥.

These algorithms satisfy the following two conditions:

Correctness. There exists a negligible function negl(𝜆) such that for any security parameter 𝜆, message
𝑀 ∈ {0, 1}, input 𝑥 ∈ 𝐿, and witness 𝑤 such that ⟨𝑥,𝑤⟩ ∈ 𝑅,

Pr
[

𝖶𝖤.𝖣𝖾𝖼𝐿(𝖶𝖤.𝖤𝗇𝖼𝐿(1𝜆, 𝑥,𝑀), 𝑤) = 𝑀
]

≥ 1 − negl(𝜆).

Soundness Security. For any non-uniform polynomial-time adversary , there exists a negligible function
negl(𝜆) such that for any 𝑥 ∉ 𝐿, we have:

Pr[(𝖶𝖤.𝖤𝗇𝖼𝐿(1𝜆, 𝑥, 0)) = 1] − Pr[(𝖶𝖤.𝖤𝗇𝖼𝐿(1𝜆, 𝑥, 1)) = 1] < negl(𝜆).

We will need the following observation.
Observation 9.11. If there exists a witness encryption scheme for some𝖭𝖯-complete language (under Levin’s
reductions), then for every language in 𝖭𝖯 there is a witness encryption scheme. We denote such a witness
encryption scheme as a witness encryption for 𝖭𝖯.

Historical Notes. The result of Komargodski et al. [116] is stronger than we stated it and their scheme real-
izes access structures represented by non-deterministic circuits (where the efficient reconstruction algorithm
is also given a witness for the fact that the circuit accepts the input); their result is phrased as a secret-sharing
scheme for every monotone language in 𝖭𝖯. This strengthens a result of Garg et al. [91] that showed that a
witness encryption scheme for 𝖭𝖯 implies a computational secret-sharing scheme for a specific 𝖭𝖯-complete
monotone language. Komargodski et al. also observed that if an 𝖭𝖯-complete monotone language has a
computational secret-sharing scheme, then there exists a witness encryption for 𝖭𝖯. For simplicity of the
presentation, we will not discuss secret-sharing for non-deterministic circuits.

93

The KNY secret-sharing scheme also uses a non-interactive commitment scheme with perfect binding.
A commitment scheme is a digital analogue of envelopes, where a committer holds a message 𝑀 and com-
putes a commitment 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆,𝑀 ; 𝑟) with a uniformly chosen random string 𝑟. To open the commitment,
the committer reveals 𝑟. A commitment scheme should satisfy hiding – a non-uniform polynomial-time ad-
versary cannot learn in polynomial time any information on 𝑀 from 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆,𝑀 ; 𝑟) – and binding – the
committer can open a commitment only to one value. A formal definition is given in Appendix A.2.

The key idea in the KNY scheme is using the following language for the witness encryption scheme:

Com =

{

⟨

1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛
⟩

∶
𝐶 is a circuit with 𝑛 inputs for some 𝑛 ∈ ℕ,
∃𝑥∈{0,1}𝑛,𝑟1,…,𝑟𝑛𝐶(𝑥) = 1 ∧

⋀

1≤𝑖≤𝑛

(

𝑥𝑖 = 1 → 𝑐𝑖 = 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 1; 𝑟𝑖)
)

}

.

Notice that if 𝐿 is a language in 𝖯, then Com is in 𝖭𝖯, where a witness for ⟨1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛
⟩

∈ Com is
𝑥 ∈ {0, 1}𝑛 such that 𝐶(𝑥) = 1 and ⟨𝑟𝑖⟩𝑥𝑖=1 such that if 𝑥𝑖 = 1 then 𝑐𝑖 = 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 1; 𝑟𝑖); that is, the
witness is the input 𝑥 and an opening of the commitment for every bit that is 1 in 𝑥.

The Sharing Algorithm of the KNY Secret-Sharing Scheme

The secret: a bit 𝑠 ∈ {0, 1}.
The circuit: A circuit 𝐶 with 𝑛 inputs representing a monotone access structure 𝑓 .
The security parameter: 1𝜆.
The scheme:

• Choose with uniform distribution 𝑛 random strings 𝑟1,… , 𝑟𝑛 for 𝖢𝗈𝗆𝗆𝗂𝗍.
• Let 𝑐𝑖 ← 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 1; 𝑟𝑖) for 1 ≤ 𝑖 ≤ 𝑛.
• Let CT ← 𝖶𝖤.𝖤𝗇𝖼Com(1𝜆,

⟨

1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛
⟩

, 𝑠).
• Share of party 𝒑𝒊: CT, 𝑟𝑖.

Figure 9.5: The sharing algorithm of the KNY computational secret-sharing for circuits.

The sharing of the KNY secret-sharing scheme is described in Figure 9.5; for simplicity we assume that
the secret is a bit (to share a longer secret we can share each bit independently). Informally, to share a secret
𝑠 among 𝑛 parties, the dealer commits to 1 for every 1 ≤ 𝑖 ≤ 𝑛, that is, computes 𝑐𝑖 ← 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 1; 𝑟𝑖),
and encrypts 𝑠 with a witness encryption scheme for Com with the word ⟨

1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛
⟩, let CT be the

encryption. The share of 𝑝𝑖 is CT, 𝑐𝑖.
We next explain how to reconstruct 𝑠 from the shares of 𝐼𝑥 for an input such that 𝑓 (𝑥) = 1. Recall

that 𝐶(𝑥) = 𝑓 (𝑥) = 1 and the parties in 𝐼𝑥 =
{

𝑖 ∶ 𝑥𝑖 = 1
} hold the shares ⟨CT, 𝑟𝑖⟩𝑖∶𝑥𝑖=1, where 𝑟𝑖 is an

opening of 𝑐𝑖. As 𝑥, ⟨𝑟𝑖⟩𝑖∶𝑥𝑖=1 is a witness that ⟨1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛
⟩

∈ Com, the parties in 𝐼𝑥 can decrypt CT
and reconstruct 𝑠. The reconstruction algorithm of the KNY secret-sharing scheme is formally described in
Figure 9.6.

94

The Reconstruction Algorithm of the KNY Secret-Sharing Scheme

The shares: ⟨CT, 𝑟𝑖⟩𝑝𝑖∈𝐼𝑥 for an input 𝑥 such that 𝑓 (𝑥) = 1.
The circuit: A circuit 𝐶 with 𝑛 inputs representing a monotone access structure 𝑓 .
The scheme:

• Let 𝑠 ← 𝖶𝖤.𝖣𝖾𝖼Com
(

CT,
⟨

𝑥, ⟨𝑐𝑖⟩𝑖∶𝑝𝑖∈𝐼𝑥
⟩)

.
• Output: 𝑠.

Figure 9.6: The reconstruction algorithm of the KNY computational secret-sharing for circuits.

We next present an informal argument that the computational security of the KNY scheme.26 Note that an
adversary holds shares of an unauthorized set and gets an encryption CT for a word 𝐜 =

⟨

1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛
⟩

∈
Com (assuming that the access structure is non-empty, i.e., 𝐶(1𝑛) = 1); however, the adversary does not
know a witness for ⟨1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛

⟩

∈ Com. Thus, the security of the witness encryption scheme does not
directly imply that the adversary cannot learn information on the secret. We will show that the security of
the commitment scheme together with the security of the witness encryption scheme imply the security of
the KNY secret-sharing scheme. Specifically, we will consider two vectors of commitments for an input 𝑥
such that 𝐶(𝑥) = 0:

𝐜 = ⟨𝑐1,… , 𝑐𝑛⟩ , where 𝑐𝑖 ← 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 1; 𝑟𝑖) for every 1 ≤ 𝑖 ≤ 𝑛.

and

𝐜′ =
⟨

𝑐′1,… , 𝑐′𝑛
⟩

, where 𝑐′𝑖 ←

⎧

⎪

⎨

⎪

⎩

𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 1; 𝑟′𝑖) if 𝑥𝑖 = 1,

𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 0; 𝑟′𝑖) if 𝑥𝑖 = 0.

By the perfect binding of 𝖢𝗈𝗆𝗆𝗂𝗍, the vector of commitments 𝐜′ has a unique opening. As 𝐶(𝑥) = 0 and
𝐶 computes a monotone function, ⟨1𝜆, 𝐶, 𝑐′1,… , 𝑐′𝑛

⟩

∉ Com. By the security of the witness encryption
scheme an adversary cannot learn information on 𝑠 from CT′ ← 𝖶𝖤.𝖤𝗇𝖼Com(1𝜆, 𝐜′, 𝑠), and ⟨𝑟𝑖⟩𝑥𝑖=1. By the
hiding property of 𝖢𝗈𝗆𝗆𝗂𝗍 (using a hybrid argument), an adversary cannot distinguish with non-negligible
probability between 𝐜 and 𝐜′ even when it holds ⟨𝑟𝑖⟩𝑥𝑖=1. Thus, an adversary cannot distinguish between
CT ← 𝖶𝖤.𝖤𝗇𝖼Com(1𝜆,

⟨

1𝜆, 𝐶, 𝑐1.… , 𝑐𝑛
⟩

, 𝑠) and CT′ ← 𝖶𝖤.𝖤𝗇𝖼Com(1𝜆,
⟨

1𝜆, 𝐶, 𝑐′1.… , 𝑐′𝑛
⟩

, 𝑠) (even if it
knows ⟨𝑟𝑖⟩𝑥𝑖=1). It follows that a non-uniform polynomial-time adversary cannot learn information on 𝑠 from
CT ← 𝖶𝖤.𝖤𝗇𝖼(1𝜆,

⟨

1𝜆, 𝐶, 𝑐1,… , 𝑐𝑛
⟩

, 𝑠), ⟨𝑟𝑖⟩𝑥𝑖=1.
The KNY secret-sharing scheme uses a witness encryption scheme for 𝖭𝖯 and a non-interactive commit-

ment scheme with perfect binding. The latter primitive can be constructed from one-way permutations [98].27
26As we define security with respect to non-uniform polynomial-time adversaries, which are deterministic, it is not too hard to

formalized the arguments below. In [116] they consider (uniform) randomized polynomial-time adversaries and formalizing the
proof requires more details.

27It can also be constructed in the CRS model from one-way functions [139]. We only state the results for the plain model.

95

Theorem 9.12 ([116]). If witness encryption schemes for 𝖭𝖯 exist and one-way permutations exist, then
there is a computational secret-sharing scheme for circuits computing monotone functions.

9.5 A Provable Separation Between Information-Theoretic and Computa-
tional Secret-Sharing Schemes

We next present a construction from [7] showing that computational secret-sharing schemes are provably
more efficient than information-theoretic secret-sharing schemes even for a one-bit secret – we describe a
computational secret-sharing scheme realizing the Csirmaz access structure Γ𝑛

Csi (defined in Definition 7.7)
with max share size 𝑂(𝜆); in contrast, every information-theoretic secret-sharing scheme realizing Γ𝑛

Csi re-
quires shares of size Ω(𝑛∕ log 𝑛) (see Theorem 7.8). The construction uses the minimal assumption that
one-way functions exist.

The computational secret-sharing scheme realizing ⟨

Γ𝑛
Csi

⟩

𝑛∈ℕ is described in Figure 9.7. We start with
an informal description of the scheme. Recall that the minimal authorized sets of Γ𝑛

Csi are {

𝑝𝑖
}

∪ 𝐴𝑖, where
𝐴1,… , 𝐴2𝑘 are subsets of a set 𝐴 of size 𝑘 = 𝑂(log(𝑛)) (in some fixed order) and 1 ≤ 𝑖 ≤ 2𝑘. In an
information-theoretic secret-sharing scheme realizing Γ𝑛

Csi we can share the secret 𝑠 ∈ {0, 1} independently
for every minimal authorized set, that is, for every authorized set {𝑝𝑖

}

∪ 𝐴𝑖 the dealer chooses random bits
⟨

𝑟𝑖,𝑗
⟩

𝑝𝑗∈𝐴𝑖
and gives 𝑟𝑖,𝑗 to 𝑝𝑗 and gives 𝑠⊕⨁

𝑝𝑗∈𝐴
𝑟𝑖,𝑗 to 𝑝𝑖. In other words, the share of each 𝑝𝑗 ∈ 𝐴 is the

random bits ⟨𝑟𝑖,𝑗
⟩

𝑝𝑗∈𝐴𝑖
and the share of 𝑝𝑗 for 1 ≤ 𝑗 ≤ 2𝑘 is a bit determined by the bits given to the parties in

𝐴 and the secret. In the computational secret-sharing scheme realizing Γ𝑛
Csi, the bits given to 𝑝𝑗 ∈ 𝐴 will be

pseudorandom bits generated by a seed of a pseudorandom generator 𝖯𝖱𝖦 given to 𝑝𝑗 , the bits of the parties
not in 𝐴 will be computed from these pseudorandom bits.

A computational secret-sharing scheme realizing
⟨

Γ𝑛
Csi

⟩

𝑛∈ℕ

The secret: a string 𝑠 ∈ {0, 1}.
The scheme:

• For every 𝑝𝑗 ∈ 𝐴 choose with uniform distribution a seed 𝑎𝑗 ∈ {0, 1}𝜆. Let
⟨

𝑟1,𝑗 ,… , 𝑟2𝑘,𝑗
⟩

← 𝖯𝖱𝖦(𝑎𝑗).
• Share of party 𝒑𝒋 ∈ 𝑨. The seed 𝑎𝑗 .
• Share of party 𝒑𝒊 for 𝟏 ≤ 𝒊 ≤ 𝟐𝒌. The bit 𝑠 ⊕⨁

𝑝𝑗∈𝐴𝑖
𝑟𝑖,𝑗 .

Figure 9.7: A computational secret-sharing scheme realizing ⟨

Γ𝑛
Csi

⟩

𝑛∈ℕ using a pseudorandom generator
𝖯𝖱𝖦 that stretches seeds of length 𝜆 to pseudorandom strings of length 2𝑘 ≤ 𝑛.

The efficient reconstruction of the secret by a minimal authorized set {𝑝𝑖
}

∪ 𝐴𝑖 is obvious: for each

96

𝑝𝑗 ∈ 𝐴𝑖 compute 𝑟𝑖,𝑗 by applying 𝖯𝖱𝖦 to 𝑎𝑗 and reconstruct 𝑠 from 𝑠 ⊕
⨁

𝑝𝑗∈𝐴𝑖
𝑟𝑖,𝑗 – the share of 𝑝𝑖. The

computational security of the scheme follows from a simple hybrid argument, see [7]. As one-way functions
imply pseudorandom generators [104], we obtain the following theorem.
Theorem 9.13 ([7]). If a one-way functions exist, then there is a computational secret-sharing scheme real-
izing

⟨

Γ𝑛
Csi

⟩

𝑛∈ℕ in which the share size is 𝜆, the security parameter.

Remark 9.14. In [7], it is shown that there is an access structure that requires total share size Ω(𝑛2∕ log(𝑛))
and can be realized by a computational secret-sharing scheme with share size 𝑂(𝜆) – the security parameter;
this access structure is a variant of Γ𝑛

CsiTot (described in Definition 7.10). This separation is nearly the best
possible separation between information-theoretic a computational secret-sharing schemes with the currently
known lower bounds.

9.5.1 Succinct Computational Secret-Sharing Schemes

In the Yao’s and KNY schemes, the share size is polynomial in the representation of the access structure (by
monotone circuits and general circuits, respectively). Applebaum et al. [7] raised the question wether there
are computational secret-sharing schemes in which the share size is much smaller than the representation,
e.g., logarithmic in the representation; such schemes are called succinct. Applebaum et al. showed that, under
the RSA assumption, there are computational secret-sharing schemes for access structures represented by
CNF formulas, where the share size is poly(𝑛, log(𝓁)), where 𝑛 is the number of parties in the access structure
and 𝓁 is the number of clauses in the CNF formula. This result implies that, under the sub-exponential RSA
assumption, every access structure can be realized by a computational secret-sharing scheme with share
size polynomial in the number of parties (using a CNF formula with at most 2𝑛 clauses to represent the
access structure). The running time of the sharing and reconstruction in the scheme of [7] for general access
structures is exponential; however, results of [121] imply that this is unavoidable. In this monograph, we
will only describe the high-level idea of the construction of [7].

The main tool for constructing these schemes is a new cryptographic primitive called a projective pseu-
dorandom generator (abbreviated pPRG). A pPRG expands a short seed into a longer pseudorandom string
for which any subset of the bits of the pseudorandom string can be revealed without disclosing any informa-
tion about the other bits of the string. Of course, this can be accomplished by simply giving the subset of the
output bits; however, we require that this is done using a short projective key (or seed).

Applebaum et al. construct a pPRG based on the RSA assumption in which the size of the projective key
is polylogarithmic in the number of bits in the output of the pPRG. We will not describe the construction in
this monograph. Given a pPRG, Applebaum et al. construct a secret sharing scheme for an access structure
represented by a CNF formula 𝜑(𝑦1,… , 𝑦𝑛). The idea for this construction is to start with the information-
theoretic secret-sharing scheme of [107] for CNF formulas, described in Figure 4.3, and use pseudorandom
bits in it instead of random bits. In particular, in the construction of Figure 4.3 for a formula 𝜑(𝑦1,… , 𝑦𝑛)
with 𝓁 clauses, there is a random bit for 𝑟𝑖 each of the first 𝓁 − 1 clauses of the formula and a bit 𝑟𝓁 for the
last clause, which is the exclusive-OR of the 𝓁 − 1 random bits and the secret. The share 𝗌𝗁𝑖 contains all

97

bits of clauses that contain 𝑦𝑖. Given a satisfying assignment 𝑥 ∈ {0, 1}𝑛, in each clause there is at least
one variable that is satisfied by 𝑥, meaning that the shares ⟨𝗌𝗁𝑖⟩𝑖∶𝑥𝑖=1 contain the 𝓁 bits of the clauses, and
therefore the secret can be recovered from them. Note that in the above scheme, there are 𝓁 − 1 random bits
and each share contains a subset of them (and possibly also contains 𝑟𝓁). This is exactly the functionality
provided by a pPRG — the 𝓁−1 bits will be the output of the pPRG and the share of a party is the projective
key for the appropriate set; if 𝑦𝑖 appears in the last clause then, in addition, the share of 𝑝𝑖 also contains 𝑟𝓁.
In particular, the size of the shares is determined by the length of the projective keys.

98

Chapter 10

Summary and Open Problems

In this monograph, we considered secret-sharing schemes, a basic tool in cryptography that has many appli-
cations. We mostly considered information-theoretic secret-sharing schemes, i.e., schemes that are secure
even against an unbounded adversary that tries to break them. These are fairly simple schemes (e.g., unlike
MPC protocols, there is no interaction). Nevertheless, their complexity (i.e., share size) is not understood.
Studying secret-sharing schemes can be a first step in understanding more complex information-theoretic
cryptographic primitives. In the rest of the chapter, we summarize the material covered in this monograph,
mention two subjects not covered in this monograph, and describe some open problems.

10.1 Summary of the Subjects Covered in This Monograph

We started this monograph by discussing the most useful secret-sharing schemes – threshold 𝑡-out-of-𝑛
secret-sharing schemes; these schemes are widely used in cryptography, i.e., for constructing secure mul-
tiparty computation (MPC) protocols for arbitrary functionalities [97, 34] (see Chapter 6). We showed
Shamir’s 𝑡-out-of-𝑛 secret-sharing scheme [163], which is based on polynomials (i.e., on Reed-Solomon
error correcting codes). Shamir’s scheme is ideal when the size of the secrets is greater than log(𝑛), i.e., the
shares and the secret have the same size. We proved that having shares of size log(𝑛) is unavoidable as even
sharing 1-bit secrets requires shares of size at least log(𝑛) [114, 47]. We then discussed ramp secret-sharing
schemes [42], in which sets of size 𝑡 can reconstruct the secret, while sets of size at most 𝑏 cannot learn any
information on the secret, for some 1 ≤ 𝑏 < 𝑡 ≤ 𝑛. We have shown that in such schemes the share can be as
small as 1∕(𝑡 − 𝑏) times the size of the secret [42]. Furthermore, when 𝑡 − 𝑏 = 𝜃(𝑛), the share size can be
𝑂(1) [58, 59].

We then defined secret-sharing schemes for general access structures, giving two equivalent definitions,
one that does not assume a distribution on the secret and the second that assumes such distribution. We
argued that for cryptographic applications, the first definition is more suitable; however, for proving lower
bounds, the second definition is preferable. We showed several constructions of secret-sharing schemes,
starting from the scheme of [107], based on DNF and CNF formulas. We then described its generalization

99

by [36], showing that if an access structure can be represented by a small monotone formula, then it has an
efficient secret-sharing scheme. We continued by showing the construction of secret-sharing schemes from
monotone span programs [49, 111]. Monotone span programs are equivalent to linear secret-sharing schemes
and are equivalent to schemes where the reconstruction is linear [14]. As every monotone formula can be
transformed into a monotone span program of the same size, the monotone span program construction is a
generalization of the construction of [107, 36]. Furthermore, there are functions that have small monotone
span programs and do not have small monotone formulas [11]; thus, this is a strict generalization. Finally, we
presented the multilinear construction of secret-sharing schemes. We remark that the linearity of a scheme
is important in many applications, as we demonstrated in Chapter 6 for the construction of secure multiparty
protocols for general functions.

In all the secret-sharing schemes constructed until 2018, the share size for almost all 𝑛-party access
structures was 2(1−𝑜(1))𝑛. In an impressive result, Liu and Vaikuntanathan [123] (using results of [124, 125])
constructed for every 𝑛-party access structure, secret-sharing schemes with share size 20.994𝑛. This was im-
proved in a sequence of works [6, 8, 9], where the currently best known scheme has share size (3∕2)(1+𝑜(1))𝑛 <
20.585𝑛 [9]. In this monograph, we gave ideas of these constructions and described a secret-sharing scheme
for arbitrary access structure with share size 2𝑐𝑛 for some 0.9 < 𝑐 < 1. The construction is self-contained
(except for two simple probabilistic claims).

Even in the recent secret-sharing schemes, the share size for the worst 𝑛-party access structure is expo-
nential in 𝑛. The best known lower bounds on the share size are from the nineties and are far from the best
known upper bounds – Csirmaz [66, 67] showed that for every 𝑛 there is an 𝑛-party access structure that
requires total information ratio Ω(𝑛2∕ log(𝑛)) in any secret-sharing scheme realizing it, i.e., for every 𝓁 in
any secret-sharing scheme realizing it with secrets of length 𝓁 the share size is Ω((𝑛2∕ log(𝑛)) ⋅ 𝓁). In this
monograph, we provided a proof of this lower bound. We then discussed lower bounds for linear secret-
sharing schemes – in this case it is known that for every 𝑛 there are explicit 𝑛-party access structures that in
any linear secret-sharing scheme realizing them the information ratio is 2Ω(𝑛) [150]. In this monograph, we
provided a proof of a weaker lower bound, namely 𝑛Ω(log(𝑛)). We also proved, based on [11], that for almost
all access structures the share size in every linear secret-sharing scheme realizing them is at least 2(0.5−𝑜(1))𝑛.

In any secret-sharing scheme, the size of each share of any non-redundant party is at least the size of
the secret [112]. An access structure is ideal if it can be realized by secret-sharing schemes in which the
share size of each party is the size of the secret, that is, by a scheme in which the share size is the minimal
possible. The characterization of the ideal access structures is partially given via matroids, combinatorial
structures that abstract and generalize the notion of linear independence in vector spaces and spanning trees
in graphs. Matroids were defined in 1935 [184], long before the introduction of secret-sharing schemes; it is
quite interesting that these two objects are related. In this monograph, we proved results of [50] showing that
(1) if an access structure is ideal then the access structure is a port of a matroid, and (2) if an access structure
is a port of a linear or multilinear matroid, then the access structure is ideal. These two results give a partial
characterization of ideal access structures; their exact characterization is not known. In particular, it is not
known if there is an ideal access structure that does not have an ideal multilinear secret-sharing scheme.

100

In all the results we mentioned so far in this chapter, the security was information-theoretic, i.e., an un-
bounded adversary cannot learn any information on the secret. To decrease the share size we also considered
computational secret-sharing schemes in which the security only holds against a polynomial-time adver-
sary (as common in cryptography). Furthermore, in computational secret-sharing schemes we also require
that the sharing and reconstruction algorithms run in polynomial time. We described four constructions of
computational secret-sharing schemes, showing that they can be more efficient than information-theoretic
secret-sharing schemes: (1) a threshold 𝑡-out-of-𝑛 secret-sharing scheme of [117] with information ratio
𝑂(1∕𝑡), (2) a secret-sharing scheme of Yao [186] for every access structure whose share size is the size of a
monotone circuit representing the access structure, (3) a secret-sharing scheme of Komargodski et al. [116]
for every monotone access structure in which the share size is polynomial in the size of a non-monotone cir-
cuit representing the access structure, and (4) a secret-sharing scheme of [7] for the Csirmaz access structure
in which the share size is 𝑂(𝜆), where 𝜆 is the security parameter.

A recent result of Applebaum et al. [7] showed that every access structure can be realized by a computa-
tional secret-sharing scheme with polynomial share size (under the RSA assumption). The running time of
the sharing and reconstruction in the scheme of [7] is exponential; however, results of [121] imply that this
is unavoidable. This result is not described in this monograph.

10.2 Some Subjects Not Covered in This Monograph

Obviously, we could not cover all the results on secret-sharing schemes in this monograph. Some results are
too advanced (we tried to at least mention them in the monograph), some areas are not mature enough to be
covered here, and some do not fit in the flow of the results we described. We next mention two omissions.

Verifiable and Robust Secret-Sharing Schemes. In all the schemes we presented in this monograph, we
assumed that all participants – the dealer and the parties – are honest. Secret-sharing schemes without these
assumptions were studied and used to construct secure multiparty computation (MPC) protocols that are
secure against malicious parties (which can send arbitrary messages).

The simpler scenario is when the dealer is honest; however, in the reconstruction of the secret by some
authorized set, some parties might submit incorrect shares. Robust secret-sharing schemes, studied e.g.,
in [175, 153] and many follow-up works, provide security against such cheating parties. They can be con-
structed from regular secret-sharing schemes by adding message authentication to the shares and giving
authentication keys to the parties.

In the more complex scenario, the dealer is corrupt while sharing the secret and some parties are corrupt
while reconstructing the secret. A verifiable secret-sharing scheme (VSS), defined by Chor et al. [61] and
studied in many follow-up papers, handles these two issues. VSS is used in secure multiparty computation
(MPC) protocols secure against malicious parties (e.g., [153]). More details on VSS can be found in the
monographs of Chandramouli, Choudhury, and Patra [55] and Krenn and Lorünser [118].

101

Leakage Resilient Secret Sharing. Using side-channel attacks, the adversary might get shares of an unau-
thorized set and some bounded information on the shares of other parties. A leakage-resilient secret-sharing
scheme, introduced by Goyal and Kumar [100] and Benhamouda, Degwekar, Ishai, and Rabin [37], is a
secret-sharing scheme that is secure against such an adversary; that is, an adversary that obtains shares of
any unauthorized subset of parties along with bounded leakage from the other shares learns no information
about the secret. Leakage-resilient secret-sharing schemes have been thoroughly studied in recent years, both
in the information-theoretic setting and in the computational setting (see, e.g., [115] for a list of such works).
The works study various leakage models, such as static adversaries vs. adaptive adversaries (where leakage
queries depend on prior leakage responses), local leakage vs. joint (combined leakage from multiple shares)
leakages, various leakage functions, and threshold secret-sharing schemes vs. secret-sharing schemes for
arbitrary access structures.

10.3 Open Problems

10.3.1 Secret-Sharing Schemes for Arbitrary Access Structures

An important open problem regarding secret-sharing schemes is settling the optimal share size of secret-
sharing schemes for arbitrary access structures for a one-bit secret. That is,
Question 10.1. What is the minimal share size for sharing a one-bit secret in a scheme realizing the worst
𝑛-party access structure? Is it 2Ω(𝑛)? Is it poly(𝑛)?

Consistent with our current knowledge, the share size can be anywhere between the above two bounds.
We do not even have some unexpected consequences of the share size being polynomial. In the preliminary
version of this monograph [15], I conjectured that the share size must be exponential. Due to the new
constructions of secret-sharing schemes and conditional disclosure of secrets protocols [124, 125, 123, 6, 8,
19, 9], I do not make any conjectures on the share size.

Even if sharing a one bit secret requires exponential share size, it is possible that the information ratio of
every access structure is small (for very long secrets). For example, Applebaum and Arkis [4] proved that
22𝑛∕2 access structures with 𝑛 parties can be realized with information rate 4; the length of the secrets in their
scheme is large, i.e., 22𝑛∕2 . Such schemes with constant information ratio are not known for short secrets. It is
interesting to determine if secret-sharing schemes with small information ratio exist for all access structures.
Question 10.2. What is the minimal information ratio in a scheme realizing the worst 𝑛-party access struc-
ture? Is it 2Ω(𝑛)? Is it poly(𝑛)?

The above two questions are open even for non-explicit access structures.

10.3.2 Linear Secret-Sharing Schemes for Arbitrary Access Structures

For linear secret-sharing schemes, there is also a gap between the best known upper bound on the share size
and the best known lower bound; however, this gap is much smaller than the gap for general secret-sharing

102

schemes. The best known upper bound for linear secret-sharing schemes for arbitrary access structures
is 20.7563𝑛 [2], while the best known lower bound for explicit access structures is 2𝑐𝑛 for some constant
0 < 𝑐 < 1 [150] and the best known lower bound for almost all 𝑛-party access is 20.5𝑛−𝑜(𝑛) [11]. The question
of whether this bound is tight is open.
Question 10.3. Determine the smallest constant 𝑐 such that every 𝑛-party access structure can be realized
by a linear secret-sharing scheme with share size 2𝑐𝑛+𝑜(𝑛). In particular, can every 𝑛-party access structure
be realized by a linear secret-sharing scheme with share size 20.5𝑛+𝑜(𝑛)?

In this monograph, we described linear and multilinear secret-sharing schemes. It is known that multi-
linear schemes are exponentially more efficient than linear schemes for many access structures [4]. On the
other hand, there is an explicit access structure such that every multilinear secret-sharing scheme that real-
izes it has information rate 𝑛Ω(log(𝑛)) [17]. Proving exponential lower bounds for multilinear secret-sharing
schemes or constructing multilinear secret-sharing schemes with sub-exponential share size for arbitrary ac-
cess structures is open. As we do not know the optimal share size of general general secret-sharing schemes
for arbitrary access structures, proving “strong” lower bounds for a large class of secret-sharing schemes is
desirable.
Question 10.4. What is the minimal information ratio of multilinear secret-sharing schemes realizing the
worst 𝑛-party access structure? Is it 2Ω(𝑛)? Is it 𝑛Ω(log(𝑛))?

10.3.3 Efficient Secret-Sharing Schemes

Possibly the question that would have the most practical applications is constructing new efficient secret-
sharing schemes, that is, secret-sharing schemes in which the share size is polynomial in the number of
parties. Most constructions of efficient secret-sharing schemes are linear; the access structures that can
be realized by efficient linear secret-sharing schemes are the access structures that have polynomial-size
monotone span programs [111]. There are a few examples of access structures that have efficient non-
linear secret-sharing schemes and do not have efficient linear secret-sharing schemes, e.g., the constructions
of [24, 178, 31]. There are new non-linear constructions of secret-sharing schemes for arbitrary access
structures [124, 125, 123, 6, 8, 9]; however, their share size is not polynomial. They do imply secret-
sharing schemes with polynomial share size for 𝑘-slice access structures for 𝑘 ≤ log(𝑛)∕(log log(𝑛))2 [6]
and 𝑘 > 𝑛− log(𝑛)∕(log log(𝑛))2 [20].28 It is interesting to construct new non-linear secret-sharing schemes.
Question 10.5. Construct efficient non-linear secret-sharing schemes for a larger family of access structures
than the access structures that have efficient linear secret-sharing schemes (for short secrets).

In particular, are there efficient information-theoretic secret-sharing schemes for access structures repre-
sented by polynomial-size monotone circuits, or even by polynomial-size non-monotone circuits (the access

28A 𝑘-slice access structure is an access structure in which all sets of size at least 𝑘 + 1 are authorized, all sets of size at most
𝑘 − 1 are unauthorized, and each set of size 𝑘 can be either authorized or unauthorized.

103

structure is of course monotone)? Recall that we described efficient computational secret-sharing schemes
for these access structures (under some hardness assumptions).

10.3.4 Secret-Sharing Schemes for Natural Access Structures

There are interesting access structures that we do not know whether they have efficient secret-sharing schemes
with information-theoretic security. The first access structure is the directed connectivity access structure
whose parties are edges in a complete directed graph and whose authorized sets are sets of edges containing
a path from 𝑣1 to 𝑣𝑚. As there is a small monotone circuit for this access structure, by [186] (see Theorem 9.6)
it has an efficient computational scheme. In [28], it was proved that in every linear secret-sharing scheme
realizing the directed connectivity access structure the size of the shares is 𝑛Ω(log(𝑛)). It is not known if the
directed connectivity access structure has an efficient (non-linear) secret-sharing scheme. In comparison, the
undirected connectivity access structure has an efficient perfect scheme [35] (see Section 4.1).

The second access structure that we do not know if it has an efficient scheme is the perfect matching access
structure, described in Definition 9.9. The parties of this access structure are edges in a complete undirected
graph and the authorized sets are sets of edges containing a perfect matching. By [116] (see Theorem 9.12),
this access structure has a computational secret-sharing scheme assuming the existence of witness encryption
schemes for 𝖭𝖯. It is open if this access structure has an efficient information-theoretic secret-sharing scheme
or even if it has an efficient computational scheme assuming the existence of one-way functions (as every
monotone circuit for perfect matching has super-polynomial size [156], the construction of [186] will not
work). We remark that an efficient scheme for this access structure implies an efficient (computational or
information-theoretic) scheme for the directed connectivity access structure. In particular, by [28], in every
linear secret-sharing scheme realizing the perfect matching access structure the size of the shares is 𝑛Ω(log(𝑛)).

The third interesting family of access structures is weighted threshold access structures, already consid-
ered by Shamir [163]. In such an access structure, each party has a weight and there is some threshold. A
set of parties is authorized if and only if the sum of the weights of the parties in the set is bigger than the
threshold. In recent years, weighted threshold access structures have gained attention [38, 92, 74, 176] as
they are motivated by stake-based blockchains [113, 48], where different users have different stakes. For
these access structures there is an efficient computational scheme [30] and a perfect information-theoretic
secret-sharing scheme with shares of size 𝑛𝑂(log(𝑛)) [30]. In [38, 92], more efficient weighted threshold secret-
sharing schemes were constructed assuming there is a gap between the weight of authorized sets and the
weight of unauthorized sets. In [81], secret-sharing schemes with a different notion of approximation of
weighted access structures were presented. It is open if weighted threshold access structures (without a gap)
have a perfect secret-sharing scheme with polynomial-size shares. Furthermore, it is open if they can be
represented by polynomial-size monotone formulas.

Finally, the fourth interesting family of access structures is graph access structures, introduced in [50];
we discussed graph access structures in Chapter 5, using them as a building block to construct secret-sharing
schemes for arbitrary access structures. In a graph secret-sharing scheme, the parties are vertices of a graph

104

and a set of vertices (parties) can reconstruct the secret if and only if it contains an edge. In other words, all
minimal authorized sets are of size 2 and a set is unauthorized if it is an independent set in the graph. Graph
secret-sharing schemes were studied in many papers, e.g., [50, 51, 53, 77, 43, 68, 73, 69, 70, 21, 82, 72]. The
naive scheme to realize a graph is to share the secret independently for each edge; this result implies a share
of size 𝑂(𝑛) per party for an 𝑛-vertex graph. A better scheme with share size 𝑂(𝑛∕ log(𝑛)) per party is implied
by a result of Erdös and Pyber [80]. In contrast, the best lower bounds on the share size of secret-sharing
schemes for graphs isΩ(log(𝑛)) and the best known lower bound on the total share size isΩ(𝑛 log(𝑛)) [77, 68];
this lower bound holds for the 𝑑-dimensional hypercube with 𝑛 = 2𝑑 vertices. Despite the improvements in
the share size for general access structures and for slice access structures, there was no major improvement
in the share size of secret-sharing schemes for graphs. Understanding the share size required to realize graph
access structures is a step towards understanding the share size required for general access structures.
Question 10.6. What is the share size required to realize an arbitrary 𝑛-vertex graph access structure?

Acknowledgment

I would like to thank my co-authors in papers related to secret-sharing: Damiano Abram, Bar Alon, Benny
Applebaum, Tamar Ben David, Aner Ben-Efraim, Mike Burmester, Benny Chor, Yvo Desmedt, Eran Omri,
Oriol Farràs, Matt Franklin, Anna Gál, Yuval Ishai, Eyal Kushilevitz, Or Lasri, Noam Livne, Tianren
Liu, Varun Narayanan, Oded Nir, Yuval Mintz, Ilan Orlov, Hussien Othman, Carles Padró, Anat Paskin-
Cherniavsky, Nati Peter, Mike Paterson, Toniann Pitassi, Tamir Tassa, Ilya Tyomkin, Vinod Vaikuntanathan,
and Enav Weinreb. I learned a lot from working with them. I would like to thank Idan Saltzman and Ofek
Yabo for reading parts of this monograph and providing suggestions for improving it.

105

Bibliography

[1] Damiano Abram, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Varun Narayanan. Cryptography
from planted graphs: Security with logarithmic-size messages. In Guy N. Rothblum and Hoeteck
Wee, editors, Twentyth Theory of Cryptography Conference – TCC 2023, volume 14369 of LNCS,
pages 286–315. Springer, 2023.

[2] Bar Alon, Amos Beimel, and Or Lasri. Simplified PIR and CDS protocols and improved linear secret-
sharing schemes. Technical Report 2024/1599, IACR Cryptol. ePrint Arch., 2024.

[3] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost 𝑘-wise
independent random variables. Random Structures & Algorithms, 3:289–304, 1992.

[4] Benny Applebaum and Barak Arkis. On the power of amortization in secret sharing: d-uniform secret
sharing and CDS with constant information rate. ACM Trans. Comput. Theory, 12(4):24:1–24:21,
2020.

[5] Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional dis-
closure of secrets: Amplification, closure, amortization, lower-bounds, and separations. SIAM J.
Comput., 50(1):32–67, 2021.

[6] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing schemes
for general and uniform access structures. In EUROCRYPT 2019, volume 11478 of LNCS, pages
441–471, 2019.

[7] Benny Applebaum, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, and Vinod Vaikun-
tanathan. Succinct computational secret sharing. In 55th STOC, pages 1553–1566, 2023.

[8] Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via robust condi-
tional disclosure of secrets. In 52nd STOC, pages 280–293, 2020.

[9] Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity of 1.5𝑛.
In CRYPTO 2021, volume 12827 of LNCS, pages 627–655, 2021.

106

[10] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In EUROCRYPT 2014, volume 8441
of LNCS, pages 557–577, 2014.

[11] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone span
programs. Combinatorica, 19(3):301–319, 1999.

[12] Michael Bamiloshin, Aner Ben-Efraim, Oriol Farràs, and Carles Padró. Common information, ma-
troid representation, and secret sharing for matroid ports. Des. Codes Cryptogr., 89(1):143–166, 2021.

[13] Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments and witness
encryption from groups. In CRYPTO 2020, volume 12170 of LNCS, pages 776–806, 2020.

[14] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, 1996.
www.cs.bgu.ac.il/~beimel/pub.html.

[15] Amos Beimel. Secret-sharing schemes: A survey. In IWCC 2011, volume 6639 of LNCS, pages
11–46, 2011.

[16] Amos Beimel. Lower bounds for secret-sharing schemes for 𝑘-hypergraphs. In ITC 2023, volume 267
of LIPIcs, pages 16:1–16:13, 2023.

[17] Amos Beimel, Aner Ben-Efraim, Carles Padró, and Ilya Tyomkin. Multi-linear secret-sharing
schemes. In TCC 2014, volume 8349 of LNCS, pages 394–418, 2014.

[18] Amos Beimel and Benny Chor. Universally ideal secret-sharing schemes. IEEE Trans. on Information
Theory, 40(3):786–794, 1994.

[19] Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes for almost all access struc-
tures and graphs. In TCC 2020, volume 12552 of LNCS, pages 499–529, 2020.

[20] Amos Beimel, Oriol Farràs, Or Lasri, and Oded Nir. Secret-sharing schemes for high slices. In Elette
Boyle and Mohammad Mahmoody, editors, 21th Theory of Cryptography Conference – TCC 2024,
volume 15367 of LNCS, pages 581–613. Springer, 2024.

[21] Amos Beimel, Oriol Farràs, and Yuval Mintz. Secret-sharing schemes for very dense graphs. J. of
Cryptology, 29(2):336–362, 2016.

[22] Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter. Linear secret-sharing schemes for forbidden
graph access structures. IEEE Trans. Inf. Theory, 68(3):2083–2100, 2022.

[23] Amos Beimel, Anna Gál, and Mike Paterson. Lower bounds for monotone span programs. Compu-
tational Complexity, 6(1):29–45, 1997. Conference version: FOCS ’95.

107

www.cs.bgu.ac.il/~beimel/pub.html

[24] Amos Beimel and Yuval Ishai. On the power of nonlinear secret-sharing. SIAM J. on Discrete Math-
ematics, 19(1):258–280, 2005.

[25] Amos Beimel and Noam Livne. On matroids and nonideal secret sharing. IEEE Trans. Inf. Theory,
54(6):2626–2643, 2008.

[26] Amos Beimel, Noam Livne, and Carles Padró. Matroids can be far from ideal secret sharing. In TCC
2008, volume 4948 of LNCS, pages 194–212, 2008.

[27] Amos Beimel and Ilan Orlov. Secret sharing and non-shannon information inequalities. IEEE Trans.
on Information Theory, 57(9):5634–5649, 2011.

[28] Amos Beimel and Anat Paskin. On linear secret sharing for connectivity in directed graphs. In Sixth
SCN, volume 5229 of LNCS, pages 172–184, 2008.

[29] Amos Beimel, Tamir Tassa, and Enav Weinreb. Characterizing ideal weighted threshold secret shar-
ing. SIAM J. Discret. Math., 22(1):360–397, 2008.

[30] Amos Beimel and Enav Weinreb. Monotone circuits for weighted threshold functions. In 20th CCC,
2005.

[31] Amos Beimel and Enav Weinreb. Separating the power of monotone span programs over different
fields. SIAM J. on Computing, 34(5):1196–1215, 2005.

[32] Mihir Bellare and Phillip Rogaway. Robust computational secret sharing and a unified account of
classical secret-sharing goals. Technical Report 2006/449, Cryptology ePrint Archive, 2006. eprint.
iacr.org/.

[33] Aner Ben-Efraim. Secret-sharing matroids need not be algebraic. Discret. Math., 339(8):2136–2145,
2016.

[34] Michael Ben-Or, Shaffi Goldwasser, and Avi Wigderson. Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In 20th STOC, pages 1–10, 1988.

[35] Josh Benaloh and Steven Rudich. Private communication, 1989.
[36] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions. In

CRYPTO ’88, volume 403 of LNCS, pages 27–35, 1988.
[37] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage resilience

of linear secret sharing schemes. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
2018, volume 10991 of LNCS, pages 531–561. Springer, 2018.

[38] Fabrice Benhamouda, Shai Halevi, and Lev Stambler. Weighted secret sharing from wiretap channels.
In ITC 2023, volume 267 of LIPIcs, pages 8:1–8:19, 2023.

108

eprint.iacr.org/
eprint.iacr.org/

[39] Michael Bertilsson and Ingemar Ingemarsson. A construction of practical secret sharing schemes
using linear block codes. In AUSCRYPT ’92, volume 718 of LNCS, pages 67–79, 1992.

[40] George Robert Blakley. Safeguarding cryptographic keys. In 1979 AFIPS National Computer Con-
ference, volume 48, pages 313–317, 1979.

[41] George Robert Blakley and Grigory A. Kabatianskii. Linear algebra approach to secret sharing
schemes. In Error Control, Cryptology, and Speech Compression, volume 829 of LNCS, pages 33–40,
1994.

[42] George Robert Blakley and Catherine A. Meadows. Security of ramp schemes. In CRYPTO ’84,
volume 196 of LNCS, pages 242–268, 1984.

[43] Carlo Blundo, Alfredo De Santis, Roberto De Simone, and Ugo Vaccaro. Tight bounds on the infor-
mation rate of secret sharing schemes. Designs, Codes and Cryptography, 11(2):107–122, 1997.

[44] Carlo Blundo, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the information rate of secret
sharing schemes. Theoretical Computer Science, 154(2):283–306, 1996.

[45] Carlo Blundo, Alfredo De Santis, and Ugo Vaccaro. On secret sharing schemes. Inform. Process.
Lett., 65(1):25–32, 1998.

[46] Andrej Bogdanov. Csirmaz’s duality conjecture and threshold secret sharing. In ITC 2023, volume
267 of LIPIcs, pages 3:1–3:6, 2023.

[47] Andrej Bogdanov, Siyao Guo, and Ilan Komargodski. Threshold secret sharing requires a linear size
alphabet. In Fourteenth Theory of Cryptography Conference – TCC 2016-B, volume 9986 of LNCS,
pages 471–484, 2016.

[48] Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis, Ari Juels, Farinaz
Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz, and Fan Zhang. Chainlink 2.0: Next
steps in the evolution of decentralized oracle networks. Technical report, Chainlink Labs, 2021.

[49] Ernest F. Brickell. Some ideal secret sharing schemes. Journal of Combin. Math. and Combin.
Comput., 6:105–113, 1989.

[50] Ernest F. Brickell and Daniel M. Davenport. On the classification of ideal secret sharing schemes. J.
of Cryptology, 4(73):123–134, 1991.

[51] Ernest F. Brickell and Douglas R. Stinson. Some improved bounds on the information rate of perfect
secret sharing schemes. J. of Cryptology, 5(3):153–166, 1992.

[52] Christian Cachin. On-line secret sharing. In Cryptography and Coding, 5th IMA Conference, volume
1025 of LNCS, pages 190–198. Springer, 1995.

109

[53] Renato M. Capocelli, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the size of shares for
secret sharing schemes. J. of Cryptology, 6(3):157–168, 1993.

[54] Ignacio Cascudo Pueyo, Ronald Cramer, and Chaoping Xing. Bounds on the threshold gap in secret
sharing and its applications. IEEE Trans. on Information Theory, 59(9):5600–5612, 2013.

[55] Anirudh Chandramouli, Ashish Choudhury, and Arpita Patra. A survey on perfectly secure verifiable
secret-sharing. ACM Comput. Surv., 54(11s):232:1–232:36, 2022.

[56] Arup Kumar Chattopadhyay, Sanchita Saha, Amitava Nag, and Sukumar Nandi. Secret sharing: A
comprehensive survey, taxonomy and applications. Computer Science Review, 51:100608, 2024.

[57] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols. In
20th STOC, pages 11–19, 1988.

[58] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 521–536. Springer, 2006.

[59] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikuntanathan. Secure
computation from random error correcting codes. In EUROCRYPT 2007, volume 4515 of LNCS,
pages 291–310, 2007.

[60] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching pro-
grams: Proofs, attacks, and candidates. In CRYPTO 2018, volume 10992 of LNCS, pages 577–607,
2018.

[61] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In 26th FOCS, pages 383–395, 1985.

[62] Benny Chor and Eyal Kushilevitz. Secret sharing over infinite domains. J. of Cryptology, 6(2):87–96,
1993.

[63] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.
[64] Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party computation from any

linear secret-sharing scheme. In EUROCRYPT 2000, volume 1807 of LNCS, pages 316–334, 2000.
[65] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty Computation and Secret

Sharing. Cambridge University Press, 2015.
[66] László Csirmaz. The size of a share must be large. In EUROCRYPT ’94, volume 950 of LNCS, pages

13–22, 1994.

110

[67] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar.,
32(3–4):429–437, 1996.

[68] László Csirmaz. Secret sharing schemes on graphs. Technical Report 2005/059, Cryptology ePrint
Archive, 2005. eprint.iacr.org/.

[69] László Csirmaz. An impossibility result on graph secret sharing. Des. Codes Cryptography,
53(3):195–209, 2009.

[70] László Csirmaz. Secret sharing on the 𝑑-dimensional cube. Designs, Codes and Cryptography,
74(3):719–729, 2015.

[71] László Csirmaz. Secret sharing and duality. J. Math. Cryptol., 15(1):157–173, 2021.
[72] László Csirmaz and Péter Ligeti. Secret sharing on large girth graphs. Cryptogr. Commun., 11(3):399–

410, 2019.
[73] László Csirmaz and Gábor Tardos. Optimal information rate of secret sharing schemes on trees. IEEE

Trans. Inf. Theory, 59(4):2527–2530, 2013.
[74] Sourav Das, Benny Pinkas, Alin Tomescu, and Zhuolun Xiang. Distributed randomness using

weighted VUFs. Cryptology ePrint Archive, Paper 2024/198, 2024.
[75] Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signatures. In CRYPTO ’91,

volume 576 of LNCS, pages 457–469, 1991.
[76] Marten van Dijk. A linear construction of perfect secret sharing schemes. In EUROCRYPT ’94,

volume 950 of LNCS, pages 23–34, 1995.
[77] Marten van Dijk. On the information rate of perfect secret sharing schemes. Des. Codes Cryptography,

6(2):143–169, 1995.
[78] Randall Dougherty, Christopher F. Freiling, and Kenneth Zeger. Six new non-Shannon information

inequalities. In ISIT 2006, pages 233–236, 2006.
[79] Randall Dougherty, Christopher F. Freiling, and Kenneth Zeger. Non-shannon information inequali-

ties in four random variables. CoRR, abs/1104.3602, 2011.
[80] Paul Erdös and László Pyber. Covering a graph by complete bipartite graphs. Discrete Mathematics,

170(1–3):249–251, 1997.
[81] Oriol Farràs and Miquel Guiot. Reducing the share size of weighted threshold secret sharing schemes

via chow parameters approximation. In Elette Boyle and Mohammad Mahmoody, editors, 21th Theory
of Cryptography Conference – TCC 2024, volume 15367 of LNCS, pages 517–547. Springer, 2024.

111

eprint.iacr.org/

[82] Oriol Farràs, Tarik Kaced, Sebastià Martín, and Carles Padró. Improving the linear programming
technique in the search for lower bounds in secret sharing. IEEE Trans. Inf. Theory, 66(11):7088–
7100, 2020.

[83] Oriol Farràs, Jaume Martí-Farré, and Carles Padró. Ideal multipartite secret sharing schemes. J.
Cryptol., 25(3):434–463, 2012.

[84] Oriol Farràs, Jessica Ruth Metcalf-Burton, Carles Padró, and Leonor Vázquez. On the optimization
of bipartite secret sharing schemes. Des. Codes Cryptogr., 63(2):255–271, 2012.

[85] Oriol Farràs and Carles Padró. Ideal hierarchical secret sharing schemes. IEEE Transactions on
Information Theory, 58(5):3273–3286, 2012.

[86] Serge Fehr. Efficient construction of the dual span program. Manuscript, 1999.
[87] Matthew Franklin and Moti Yung. Communication complexity of secure computation. In 24th STOC,

pages 699–710, 1992.
[88] Satoru Fujishige. Polymatroidal dependence structure of a set of random variables. Information and

Control, 39(1–3):55–72, 1978.
[89] Anna Gál. A characterization of span program size and improved lower bounds for monotone span

programs. Computational Complexity, 10(4):277–296, 2002.
[90] Anna Gál and Pavel Pudlák. Monotone complexity and the rank of matrices. Inform. Process. Lett.,

87:321–326, 2003.
[91] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications.

In 45th STOC, pages 467–476, 2013.
[92] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang, and Yinuo Zhang.

Cryptography with weights: MPC, encryption and signatures. In CRYPTO 2023, volume 14081 of
LNCS, page 295–327, 2023.

[93] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In CRYPTO 2015, volume 9216 of LNCS, pages
485–502, 2015.

[94] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fact-track multiparty com-
putations with applications to threshold cryptography. In 17th PODC, pages 101–111, 1998.

[95] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private infor-
mation retrieval schemes. JCSS, 60(3):592–629, 2000.

112

[96] M. Gharahi. On the Complexity of Perfect Secret Sharing Schemes (in Persian). PhD thesis, Iran Univ.
of Science and Technology, 2013.

[97] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In 19th STOC,
pages 218–229, 1987.

[98] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge proof systems. J. of the ACM, pages 691–729, 1991.

[99] Jovan Dj. Golic. On matroid characterization of ideal secret sharing schemes. J. Cryptol., 11(2):75–86,
1998.

[100] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In 50th STOC, pages 685–698,
2018.

[101] Viput Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In 13th CCS, pages 89–98, 2006.

[102] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit
Ramsey graphs. Combinatorica, 20:71–86, 2000.

[103] Emirhan Gürpinar and Andrei E. Romashchenko. How to use undiscovered information inequalities:
Direct applications of the copy lemma. In ISIT 2019, pages 1377–1381, 2019.

[104] Johan Håstad, Russel Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM J. on Computing, 28(4):1364–1396, 1999.

[105] Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In 63rd FOCS, pages 968–
979, 2022.

[106] Martin Hirt and Ueli Maurer. Player simulation and general adversary structures in perfect multiparty
computation. J. of Cryptology, 13(1):31–60, 2000.

[107] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general access struc-
ture. In Globecom 87, pages 99–102, 1987. Journal version: Multiple assignment scheme for sharing
secret. J. of Cryptology, 6(1), 15-20, 1993.

[108] Wen-Ai Jackson and Keith M. Martin. Perfect secret sharing schemes on five participants. Designs,
Codes and Cryptography, 9:267–286, 1996.

[109] Stasys Jukna. Boolean Function Complexity – Advances and Frontiers, volume 27 of Algorithms and
combinatorics. Springer, 2012.

[110] Reza Kaboli, Shahram Khazaei, and Maghsoud Parviz. On ideal and weakly-ideal access structures.
Advances in Mathematics of Communications, 17(3):697–713, 2021.

113

[111] Mauricio Karchmer and Avi Wigderson. On span programs. In 8th Structure in Complexity Theory,
pages 102–111, 1993.

[112] Ehud D. Karnin, Jonathan W. Greene, and Martin E. Hellman. On secret sharing systems. IEEE Trans.
on Information Theory, 29(1):35–41, 1983.

[113] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably
secure proof-of-stake blockchain protocol. In CRYPTO 2017, volume 10401 of Lecture Notes in
Computer Science, pages 357–388. Springer, 2017.

[114] Joe Kilian and Noam Nisan. Private communication, 1990.
[115] Ohad Klein and Ilan Komargodski. New bounds on the local leakage resilience of shamir’s secret

sharing scheme. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, volume 14081
of LNCS, pages 139–170. Springer, 2023.

[116] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. J. Cryptol., 30(2):444–469,
2017.

[117] Hugo Krawczyk. Secret sharing made short. In CRYPTO ’93, volume 773 of LNCS, pages 136–146,
1994.

[118] Stephan Krenn and Thomas Lorünser. An Introduction to Secret Sharing. Springer Cham, 2023.
[119] Kaoru Kurosawa, Koji Okada, Keiichi Sakano, Wakaha Ogata, and Shigeo Tsujii. Nonperfect secret

sharing schemes and matroids. In EUROCRYPT ’93, volume 765 of LNCS, pages 126–141, 1994.
[120] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, 1997.
[121] Kasper Green Larsen and Mark Simkin. Secret sharing lower bound: Either reconstruction is hard or

shares are long. In SCN 2020, volume 12238 of LNCS, pages 566–578, 2020.
[122] Yehuda Lindell. Secure multiparty computation (MPC). Cryptology ePrint Archive, Paper 2020/300,

2020. https://eprint.iacr.org/2020/300.
[123] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In 50th

STOC, pages 699–708, 2018.
[124] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional disclosure of secrets via non-

linear reconstruction. In CRYPTO 2017, volume 10401 of LNCS, pages 758–790, 2017.
[125] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential barrier for

general secret sharing. In EUROCRYPT 2018, volume 10820 of LNCS, pages 567–596, 2018.

114

https://eprint.iacr.org/2020/300

[126] Konstantin Makarychev, Yury Makarychev, Andrei E. Romashchenko, and Nikolai K. Vereshchagin.
A new class of non-shannon-type inequalities for entropies. Commun. Inf. Syst., 2(2):147–166, 2002.

[127] Jaume Martí-Farré and Carles Padró. Secret sharing schemes with three or four minimal qualified
subsets. Designs, Codes and Cryptography, 34(1):17–34, 2005.

[128] Jaume Martí-Farré and Carles Padró. On secret sharing schemes, matroids and polymatroids. J.
Mathematical Cryptology, 4(2):95–120, 2010.

[129] Jaume Martí-Farré, Carles Padró, and Leonor Vázquez. Optimal complexity of secret sharing schemes
with four minimal qualified subsets. Des. Codes Cryptogr., 61(2):167–186, 2011.

[130] Keith M. Martin, Maura B. Paterson, and Douglas R. Stinson. Error decodable secret sharing and
one-round perfectly secure message transmission for general adversary structures. Cryptography and
Communications, pages 65–86, 2011.

[131] Sebastià Martín, Carles Padró, and An Yang. Secret sharing, rank inequalities, and information in-
equalities. IEEE Trans. Inf. Theory, 62(1):599–609, 2016.

[132] Frantisek Matúš. Probabilistic conditional independence structures and matroid theory: Background.
Int. J. of General Systems, 22:185–196, 1995.

[133] Frantisek Matúš. Matroid representations by partitions. Discrete Mathematics, 203:169–194, 1999.
[134] Frantisek Matúš. Infinitely many information inequalities. In ISIT 2007, pages 41–44, 2007.
[135] Frantisek Matúš. Two constructions on limits of entropy functions. IEEE Trans. on Information

Theory, 53(1):320–330, 2007.
[136] Jessica Ruth Metcalf-Burton. Improved upper bounds for the information rates of the secret sharing

schemes induced by the vámos matroid. Discret. Math., 311(8-9):651–662, 2011.
[137] Paz Morillo, Carles Padró, Germán Sáez, and Jorge L. Villar. Weighted threshold secret sharing

schemes. Inform. Process. Lett., 70(5):211–216, 1999.
[138] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field.

Combinatorica, 7:101–104, 1987.
[139] Moni Naor. Bit commitment using pseudorandom generators. J. of Cryptology, 4:151–158, 1991.
[140] Moni Naor and Avishai Wool. Access control and signatures via quorum secret sharing. IEEE Trans-

actions on Parallel and Distributed Systems, 9(1):909–922, 1998.
[141] Peter Nelson. Almost all matroids are nonrepresentable. Bulletin of the London Mathematical Society,

50(2):245–248, 2018.

115

[142] Siaw-Lynn Ng. A representation of a family of secret sharing matroids. Designs, Codes and Cryp-
tography, 30(1):5–19, 2003.

[143] Siaw-Lynn Ng and Michael Walker. On the composition of matroids and ideal secret sharing schemes.
Designs, Codes and Cryptography, 24(1):49 – 67, 2001.

[144] James G. Oxley. Matroid Theory. Oxford University Press, 1992.
[145] Carles Padro. Lecture notes in secret sharing. Cryptology ePrint Archive, Paper 2012/674, 2013.

https://eprint.iacr.org/2012/674.
[146] Carles Padró and Germán Sáez. Secret sharing schemes with bipartite access structure. IEEE Trans.

on Information Theory, 46:2596–2605, 2000.
[147] Carles Padró, Leonor Vázquez, and An Yang. Finding lower bounds on the complexity of secret

sharing schemes by linear programming. Discret. Appl. Math., 161(7-8):1072–1084, 2013.
[148] Rudi Pendavingh and Stefan H. M. van Zwam. Skew partial fields, multilinear representations of

matroids, and a matrix tree theorem. Advances in Applied Mathematics, 50(1):201 – 227, 2013.
[149] Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone computation.

In 49th STOC, pages 1246–1255, 2017.
[150] Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to monotone span programs over any field.

In 50th STOC, pages 1207–1219, 2018.
[151] Michael O. Rabin. Randomized Byzantine generals. In 24th FOCS, pages 403–409, 1983.
[152] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.

J. of the ACM, 36(2):335–348, 1989.
[153] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest major-

ity. In 21st STOC, pages 73–85, 1989.
[154] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. In 38th FOCS, pages

234–243, 1997.
[155] Alexander A. Razborov. A lower bound on the monotone network complexity of the logical permanent.

Mat. Zametki, 37(6):887–900, 1985. In Russian, English translation in: Math. Notes, 37:485–493,
1985.

[156] Alexander A. Razborov. Lower bounds on monotone complexity of some Boolean functions. Dokl. Ak.
Nauk. SSSR, 281:798–801, 1985. In Russian, English translation in: Sov. Math. Dokl., 31:354–357,
1985.

116

https://eprint.iacr.org/2012/674

[157] Robert Robere. Unified Lower Bounds For Monotone Computation. PhD thesis, University of Toronto,
2018. https://www.cs.mcgill.ca/~robere/thesis.pdf.

[158] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential lower bounds
for monotone span programs. In 57th FOCS, pages 406–415, 2016.

[159] Lajos Rónyai, László Babai, and Murali K. Ganapathy. On the number of zero-patterns of a sequence
of polynomials. Journal of the AMS, 14(3):717–735, 2001.

[160] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, pages 457–
473, 2005.

[161] Paul D. Seymour. A forbidden minor characterization of matroid ports. Quart. J. Math. Oxford Ser.,
27:407–413, 1976.

[162] Paul D. Seymour. On secret-sharing matroids. J. of Combinatorial Theory, Series B, 56:69–73, 1992.
[163] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.
[164] Bhavani Shankar, Kannan Srinathan, and C. Pandu Rangan. Alternative protocols for generalized

oblivious transfer. In 9th ICDCN, volume 4904 of LNCS, pages 304–309, 2008.
[165] Gustavus J. Simmons. How to (really) share a secret. In CRYPTO ’88, volume 403 of LNCS, pages

390–448, 1990.
[166] Gustavus J. Simmons, Wen-Ai Jackson, and Keith M. Martin. The geometry of shared secret schemes.

Bulletin of the ICA, 1:71–88, 1991.
[167] Juriaan Simonis and Alexei Ashikhmin. Almost affine codes. Designs, Codes and Cryptography,

14(2):179–197, 1998.
[168] Douglas R. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryptography,

2:357–390, 1992.
[169] Douglas R. Stinson and Ruizhong Wei. An application of ramp schemes to broadcast encryption.

Inform. Process. Lett., pages 131–135, 1999.
[170] Hung-Min Sun and Shiuh-Pyng Shieh. Secret sharing in graph-based prohibited structures. In INFO-

COM ’97, pages 718–724. IEEE, 1997.
[171] Eva Tardos. The gap between monotone and non-monotone circuit complexity is exponential. Com-

binatorica, 8(1):141–142, 1988.
[172] Tamir Tassa. Hierarchical threshold secret sharing. In TCC 2004, volume 2951 of LNCS, pages

473–490, 2004.

117

https://www.cs.mcgill.ca/~robere/thesis.pdf

[173] Tamir Tassa. Generalized oblivious transfer by secret sharing. Designs, Codes and Cryptography,
58(1):11–21, 2011.

[174] Tamir Tassa and Nira Dyn. Multipartite secret sharing by bivariate interpolation. In 33rd ICALP,
volume 4052 of LNCS, pages 288–299, 2006.

[175] Martin Tompa and Heather Woll. How to share a secret with cheaters. J. Cryptol., 1(2):133–138,
1988.

[176] Andrei Tonkikh and Luciano Freitas de Souza. Swiper: A new paradigm for efficient weighted dis-
tributed protocols. In Ran Gelles, Dennis Olivetti, and Petr Kuznetsov, editors, Proceedings of the
43rd ACM Symposium on Principles of Distributed Computing, PODC 2024, pages 283–294. ACM,
2024.

[177] Rotem Tsabary. Candidate witness encryption from lattice techniques. In CRYPTO 2022, volume
13507 of LNCS, pages 535–559, 2022.

[178] Vinod Vaikuntanathan and Prashant Nalini Vasudevan. Secret sharing and statistical zero knowledge.
In ASIACRYPT 2015, pages 656–680, 2015.

[179] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-io from evasive
LWE. In ASIACRYPT 2022, volume 13791 of LNCS, pages 195–221, 2022.

[180] V. Vinod, Arvind Narayanan, K.Srinathan, C. Pandu Rangan, and Kwangjo Kim. On the power of
computational secret sharing. In Indocrypt 2003, volume 2904 of LNCS, pages 162–176, 2003.

[181] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In PKC 2011, volume 6571 of LNCS, pages 53–70, 2011.

[182] Hoeteck Wee. Dual system encryption via predicate encodings. In TCC 2014, volume 8349 of LNCS,
pages 616–637, 2014.

[183] Dominic J. A. Welsh. Matroid Theory. Academic press, London, 1976.
[184] Hassler Whitney. On the abstract properties of linear dependence. American Journal of Mathematics,

57(3):509–533, 1935.
[185] Andrew Chi-Chih Yao. Protocols for secure computations. In 23th FOCS, pages 160–164, 1982.
[186] Andrew Chi-Chih Yao. Unpublished manuscript, 1989. Presented at Oberwolfach and DIMACS

workshops.
[187] Raymond W. Yeung. Information Theory and Network Coding. Springer, 2008.
[188] Zhen Zhang and Raymond W. Yeung. On characterization of entropy function via information in-

equalities. IEEE Trans. on Information Theory, 44(4):1440–1452, 1998.

118

Appendix A

Background on Complexity, Cryptography,
and Information Theory

A.1 Background in Complexity

We recall the definition of monotone formulas and monotone circuits. A monotone Boolean circuit 𝐶 with
𝑛 inputs is a labeled directed acyclic graph 𝐺, with one vertex with out-degree 0 (the root); each vertex with
in-degree 0 (i.e., a leaf) is labeled by some variable 𝑥𝑖29 and each internal node is labeled by either ∧ or by
∨. For monotone circuits, we can assume, w.l.o.g., that for each variable 𝑥𝑖 there is a unique leaf labeled by
𝑥𝑖. We will sometimes allow the internal nodes to be labeled by other functions. We consider a circuit in
which the in-degree of each node can be arbitrary. An example of a monotone circuit is given in Figure A.1.

For an assignment 𝑦 = (𝑦1,… , 𝑦𝑛) ∈ {0, 1}𝑛, the value 𝐶(𝑦) is computed as follows: We sort the nodes
in the graph 𝐺 in a topological order, where if there is an edge from 𝑢 to 𝑣, then 𝑢 will appear before 𝑣 in the
sorted list. We compute the values of the nodes (also known as gates) in the circuits according to this order:
𝒗 is a leaf labeled by variable 𝒙𝒊. The value of 𝑣 is 𝑦𝑖,
𝒗 is an internal node label by ∧ whose in-coming neighbors are 𝒖𝟏,… , 𝒖𝓵. Let 𝑜1,… , 𝑜𝓁 be the values

computed for 𝑢1,… , 𝑢𝓁 (since for 1 ≤ 𝑖 ≤ 𝓁 there is an edge (𝑢𝑖, 𝑣), these values have already been
computed). The value of 𝑣 is 𝑜1 ∧ 𝑜1 ∧⋯ ∧ 𝑜𝓁.

𝒗 is an internal node label by ∨ whose in-coming neighbors are 𝒖𝟏,… , 𝒖𝓵. Let 𝑜1,… , 𝑜𝓁 be the values
computed for 𝑢1,… , 𝑢𝓁. The value of 𝑣 is 𝑜1 ∨ 𝑜1 ∨⋯ ∨ 𝑜𝓁.

The value 𝐶(𝑦) is the value of the root. A monotone formula is a monotone circuit in which the out-degree
of each node, except for the root, is 1, i.e., the graph 𝐺 is a directed tree (where edges are directed towards
the root). The size of a circuit/formula is the number of nodes in 𝐺. Every monotone circuit computes a
monotone function and every monotone function can be computed by a monotone formula. However, for

29We can also consider non-monotone circuits, where a leaf can be labeled by a negated variable 𝑥𝑖.

119

𝑥17 𝑥2

𝑥1

AND

OR

OR

𝑥4

AND

Figure A.1: An example of a monotone circuit. For example, the fan-in of the bottom OR gate is 3 and its
fan-out is 2.

almost all monotone functions 𝑓 ∶ {0, 1}𝑛 → {0, 1} the size of the smallest monotone circuits computing
them is 2Ω(𝑛). It is known that for some explicit function 𝑓 the size of the smallest monotone formula for 𝑓
is exponentially bigger than the size of the smallest monotone circuit for 𝑓 (e.g., [154]).

An arithmetic circuit is similar to Boolean circuits; however, the gates in it are addition and multiplication.
Formally, an arithmetic circuit over 𝔽 with 𝑛 inputs is an acyclic graph where:

• There is a unique node with out-degree 0. This node is called the output node.
• There are 𝑛 nodes with in-degree 0, (i.e., leaves) called input nodes. For each 𝑖, where 1 ≤ 𝑖 ≤ 𝑛, there

is a node labeled by the variable 𝑥𝑖.30

• Each non-leaf is labeled either by ×, called a multiplication gate, or by +, called an addition gate.
The size of the circuit is the number of nodes in the circuit. For technical reasons, we will assume in Chapter 6
that the fan-in of every non-leaf is two. Every arithmetic circuit of size 𝑠 can be transformed into a circuit
with fan-in 2 and size 𝑂(𝑠2). The function computed by an arithmetic circuit over a field 𝔽 is defined in the
natural way, where the arithmetic is done over 𝔽 . Every function 𝑓 ∶ 𝔽 𝑛 → 𝔽 can be represented by an
arithmetic circuit (however, the size of the circuit might be exponential in 𝑛). In particular, every Boolean
function 𝑓 ∶ {0, 1}𝑛 → {0, 1} can be represented by an arithmetic circuit over any field 𝔽 . By working over
an extension field, we can assume that |𝔽 | > 𝑛.

30There can be additional nodes with in-degree 0 labeled by constants. For simplicity, we ignore such nodes.

120

A.2 Background in Cryptography

We say that a function negl(𝜆) is negligible if it is smaller than 1∕𝑝(𝜆) for every positive polynomial; formally,
for every positive polynomial 𝑝(𝜆) there exists an integer 𝜆0 such that negl(𝜆) ≤ 1∕𝑝(𝜆) for every 𝜆 ≥ 𝜆0.

As is common in cryptography, we consider a non-uniform polynomial-time adversary that when given
an input 𝑥 of length 𝑛 also gets a polynomially-long advice string ℎ𝑛 (which only depends on the length
of the input) and tries to break a system. The system is secure if for every sequence of advice strings, the
adversary cannot break the system. Formally, a non-uniform polynomial-time algorithm is a polynomial-time
algorithm ALG and a sequence of advice strings (ℎ𝑛)𝑛∈ℕ such that:

• The sequence is polynomially bounded, that is, there exists a constant 𝑐 for which |ℎ𝑛| ≤ 𝑛𝑐 for every
𝑛 ∈ ℕ,

• For every 𝑛 ∈ ℕ and every 𝑥 ∈ {0, 1}𝑛, the algorithm outputs ALG(𝑥, ℎ𝑛).
We next provide the definition of a non-interactive commitment scheme with perfect binding.

Definition A.1. A commitment scheme is a randomized polynomial-time algorithm 𝖢𝗈𝗆𝗆𝗂𝗍, whose inputs
are a security parameter 1𝜆 (in unary), a message 𝑚, and a random string 𝑟; its output is a string 𝑐 ←

𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 𝑚; 𝑟). A commitment scheme with perfect binding should satisfy the following two requirements:

Computational hiding. Consider the following game between a committer and an adversary:

• The adversary with input a security parameter 1𝜆 chooses two messages 𝑚0, 𝑚1 such that |𝑚0| =
|𝑚1| and sends them to the committer.

• The committer chooses a uniformly distributed bit 𝑏 ∈ {0, 1} and a uniformly distributed 𝑟,
computes 𝑐 ← 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 𝑚𝑏; 𝑟), and sends 𝑐 to the adversary.

• The adversary outputs a bit 𝑏′ and wins if 𝑏 = 𝑏′.

The commitment scheme𝖢𝗈𝗆𝗆𝗂𝗍 is hiding if for every non-uniform polynomial-time adversary there
exists a negligible function negl(𝜆) such that the probability that  wins is at most 1∕2 + negl(𝜆).

Perfect binding. For any 𝑚0 ≠ 𝑚1 such that |𝑚0| = |𝑚1| and 𝑟0, 𝑟1:

𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 𝑚0; 𝑟0) ≠ 𝖢𝗈𝗆𝗆𝗂𝗍(1𝜆, 𝑚1; 𝑟1).

A.3 The Entropy Function and Its properties

In this appendix we provide the definition of entropy and conditional entropy and discuss some properties
of these quantities. For more background on the entropy and for proofs of the properties, the reader may
consult, e.g., [63].

121

The support of a random variable 𝑋, denoted SUPPORT(𝑋), is the set of all values 𝑥 such that Pr[𝑋 =
𝑥] > 0. Given a random variable 𝑋, the entropy of 𝑋 is defined as

𝐻(𝑋)
def
=

∑

𝑥∈SUPPORT(𝑋)
Pr[𝑋 = 𝑥] log

(

1
Pr[𝑋 = 𝑥]

)

, (A.1)

where if there is an 𝑥 ∈ 𝑋 such that Pr[𝑋 = 𝑥] = 1 then 𝐻(𝑋)
def
= 1. It holds that

0 ≤ 𝐻(𝑋) ≤ log(|SUPPORT(𝑋)|). (A.2)

Intuitively, 𝐻(𝑋) measures the amount of uncertainty in 𝑋 where 𝐻(𝑋) = 0 if 𝑋 is deterministic, i.e., there
is a value 𝑥 such that Pr[𝑋 = 𝑥] = 1, and 𝐻(𝑋) = log(|SUPPORT(𝑋)|) if 𝑋 is uniformly distributed over
SUPPORT(𝑋). The concatenation of two variables 𝑋, 𝑌 is denoted by 𝑋𝑌 or 𝑋, 𝑌 . Given three jointly
distributed random variables 𝑋, 𝑌 , and 𝑍 define the conditional entropy as

𝐻(𝑋|𝑌 𝑍)
def
= 𝐻(𝑋𝑌 |𝑍) −𝐻(𝑌 |𝑍). (A.3)

The conditional entropy is non-negative and conditioning on a variable only decreases the uncertainty on 𝑋,
that is for every 𝑋, 𝑌 ,𝑍

0 ≤ 𝐻(𝑋|𝑌 𝑍) ≤ 𝐻(𝑋|𝑌) ≤ 𝐻(𝑋). (A.4)
If𝑍 is a deterministic function of 𝑌 , i.e.,𝐻(𝑍|𝑌) = 0, then conditioning on 𝑌 𝑍 is equivalent to conditioning
on 𝑍, that is,

If 𝐻(𝑍|𝑌) = 0 then𝐻(𝑋|𝑌 𝑍) = 𝐻(𝑋|𝑌). (A.5)
The entropy is subadditive, that is, the (conditional) joint entropy of two random variables is at most the

sum of the entropies of each variable.

𝐻(𝑋|𝑍) ≤ 𝐻(𝑋𝑌 |𝑍) = 𝐻(𝑋|𝑍) +𝐻(𝑌 |𝑋𝑍) ≤ 𝐻(𝑋|𝑍) +𝐻(𝑌 |𝑍). (A.6)

Two random variables 𝑋 and 𝑌 are independent iff 𝐻(𝑋|𝑌) = 𝐻(𝑋) and the value of 𝑌 implies the value
of 𝑋 iff 𝐻(𝑋|𝑌) = 0.
Definition A.2 (Statistical distance). The statistical distance between two random variables 𝐴 and 𝐵 is the
function

SD(𝐴,𝐵) = 1
2

∑

𝛼∈SUPPORT(𝐴) ∪ SUPPORT(𝐵)

|

|

|

Pr[𝐴 = 𝛼] − Pr[𝐵 = 𝛼]||
|

.

122

	Introduction
	Detailed Discussion on the Topics Covered in This Monograph
	Comparison to an Earlier Version of This Monograph and Other Surveys
	Organization

	Threshold Secret-Sharing Schemes
	The Definition of t-out-of-n Secret Sharing
	Shamir's Threshold Secret-Sharing Scheme
	Lower Bounds for Threshold Secret Sharing
	Ramp Secret-Sharing Schemes

	Definitions of Secret-Sharing Schemes for Arbitrary Access Structures
	Linear Secret-Sharing Schemes – Efficient Secret Sharing for Specific Access Structures
	Undirected s-t-Connectivity
	Ito, Saito, and Nishizeki's Constructions
	The Monotone Formulas Construction
	Linear Secret-Sharing Schemes via Monotone Span Programs
	Properties of Linear Secret-Sharing Schemes
	Multilinear Secret-Sharing Schemes

	Secret-Sharing Schemes for Arbitrary Access Structures with Exponent Smaller Than One
	Robust Graph Secret Sharing
	A (N,1)-Robust Graph Secret-Sharing Scheme
	A (t,N)-Robust Graph Secret-Sharing Scheme
	Secret Sharing Scheme from a Robust Secret Sharing
	Liu and Vaikuntanathan's Decomposition of Access Structures
	Balancing the Sizes of Authorized Sets in the Access Structure GammaMid
	Realizing GammaMID,B

	Putting Everything Together

	Secret Sharing and Secure Multi-Party Computation
	A Private Protocol for Addition
	Homomorphic Properties of Shamir's Secret-Sharing Scheme
	Computing the Sharing of the Sum of Two Shared Secrets
	Computing the Product of Two Shared Secrets
	Privately Computing an Arithmetic Circuit
	Extensions to Other Models

	Lower Bounds on the Size of the Shares
	A Simple Lower Bound
	Lower Bounds Using the Entropy
	Csirmaz's Lower Bound
	The Framework for Proving Lower Bounds via Entropy and Its Limitations
	Lower Bounds for Linear Secret Sharing for Almost All Access Structures
	Lower Bounds for Linear Secret Sharing for Explicit Access Structures

	Ideal Secret Sharing
	Definition of Ideal Secret Sharing and Background on Matroids
	Ideal Secret Sharing from Representable Matroids
	Matroids from Ideal Secret Sharing
	Additional Results on Ideal Access Structures

	Computational Secret Sharing
	Definition of Computational Secret-Sharing Schemes
	Computational Threshold Secret Sharing
	Computational Secret Sharing for Monotone Circuits
	Computational Secret Sharing for Circuits
	A Provable Separation Between Information-Theoretic and Computational Secret-Sharing Schemes
	Succinct Computational Secret-Sharing Schemes

	Summary and Open Problems
	Summary of the Subjects Covered in This Monograph
	Some Subjects Not Covered in This Monograph
	Open Problems
	Secret-Sharing Schemes for Arbitrary Access Structures
	Linear Secret-Sharing Schemes for Arbitrary Access Structures
	Efficient Secret-Sharing Schemes
	Secret-Sharing Schemes for Natural Access Structures

	Background on Complexity, Cryptography, and Information Theory
	Background in Complexity
	Background in Cryptography
	The Entropy Function and Its properties

