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Abstract. Group actions have emerged as a powerful framework in post-quantum
cryptography, serving as the foundation for various cryptographic primitives. The
Lattice Isomorphism Problem (LIP) has recently gained attention as a promising
hardness assumption for designing quantum-resistant protocols. Its formulation as
a group action has opened the door to new cryptographic applications, including a
commitment scheme and a linkable ring signature.
In this work, we analyze the security properties of the LIP group action and present
new findings. Specifically, we demonstrate that it fails to satisfy the weak unpre-
dictability and weak pseudorandomness properties when the adversary has access to
as few as three and two instances with the same secret, respectively. This significantly
improves upon prior analysis by Budroni et al. (PQCrypto 2024).
As a direct consequence of our findings, we reveal a vulnerability in the linkable ring
signature scheme proposed by Khuc et al. (SPACE 2024), demonstrating that the
hardness assumption underlying the linkable anonymity property does not hold.
Keywords: Lattice Isomorphism · Group Action · Linkable Ring Signature ·
Cryptanalysis · Post-Quantum Cryptography

1 Introduction
Post-quantum cryptography is a rapidly evolving research field driven by the need to
develop cryptographic schemes that remain secure against attacks by quantum computers.
With NIST standardization processes for post-quantum key encapsulation mechanisms
and digital signatures [Nat17] in their final stages, the research community is actively
exploring the construction of post-quantum cryptographic primitives providing additional
functionalities to support a broader range of applications.

Brassard and Yung introduced cryptographic group actions as a foundation to construct
bit commitment schemes [BY91]. Currently, they are widely used as a framework for
constructing advanced cryptographic primitives, including linkable ring signatures [BKP20],
threshold signatures [BBMP24], blind signatures [DKQ+25], verifiable random functions
[Lai24], commitment schemes [JWL+25], and updatable encryption [LR24]. This framework
is particularly useful as it allows the definition of these cryptographic primitives at the
abstraction level of group actions, which can then be instantiated using algebraic structures
that underpin cryptographic assumptions. Examples include isogenies between elliptic
curves [CLM+18], isomorphisms between lattices [BBCK24], and equivalence between
linear codes [BMPS20], matrix codes [CNP+23], and trilinear forms [TDJ+22]. Given the
presumed quantum resistance of the computationally hard problems underlying the above
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algebraic structures, group actions have attracted significant interest in post-quantum
cryptography.

The Lattice Isomorphism Problem (LIP) initially gathered attention thanks to the
parallel works of Ducas and van Woerden [DvW22] and Bennett et al. [BGPS23], and sub-
sequently because of the digital signature HAWK [DPPvW22, BBD+25] submitted to the
ongoing NIST competition for additional signature schemes [Nat17]. 1 Recently, [BBCK24]
showed how to model the LIP as a group action. Then, two group action-based schemes,
a commitment scheme [JWL+25] and a linkable ring signature [KTS+24], have been
instantiated with LIP.

In this work, we provide new results on the security properties of the LIP group action,
considerably improving upon the work of Budroni et al. [BBCK24]. In particular, our
study reveals a vulnerability in the linkable ring signature scheme proposed by Khuc et al.
[KTS+24], demonstrating that such a linkable ring signature is not linkable anonymous. 2

We emphasize that this contribution has no direct implications on the security of the
digital signature HAWK [BBD+25].

1.1 Overview of the Contribution
Here, we give an informal overview of our contribution. Let us start with some background
notation and definition.

Background. Informally, a quadratic form Q is a n× n symmetric and positive definite
matrix. A square matrix U is called unimodular if its determinant is ±1 or, equivalently,
if it is invertible. Throughout this section, we consider only unimodular matrices with
integer coefficients.

The Lattice Isomorphism Problem in the quadratic form version is as follows: Given
two quadratic forms Q, Q′, find (if it exists) a unimodular U such that Q′ = U⊤QU . If
such an unimodular exists, we say that Q and Q′ belong to the same equivalence class [Q].

Let G denote the group of all invertible matrices with integer coefficients, and let us
consider the set X = [Q]. We define the Lattice Isomorphism Group Action (LIGA) as

⋆ : X ×G→ X, U ⋆ Q 7→ U⊤QU .

Cryptographic group actions must be one-way, that is, in our case, given Q and U ⋆ Q,
it is hard to compute U . Two more properties must be satisfied for constructing certain
cryptographic primitives, namely:

– t-weakly unpredictable: given a polynomial number t of pairs (Qi, U ⋆ Qi)t
i=1 with

the same secret group element U , and given another input Q∗ ̸= Qi, it is hard to
predict the output U ⋆ Q∗.

– t-weakly pseudorandom: given a polynomial number t of pairs (Qi, U ⋆ Qi)t
i=1 with

the same secret group element U , it is hard to distinguish them from random pairs
in the same set.

Previous this work, [BBCK24] proved that LIGA is not t-weakly unpredictable and
pseudorandom for t = O(n2).

Contribution. In this manuscript, we greatly improve upon [BBCK24] and show that:

• LIGA is not 2-weakly pseudorandom, and
1The HAWK signature bases its security on the module version of LIP.
2The title of this manuscript deliberately resembles the one of an analogous study on the Linear Code

Equivalence group action [BCD+24], which inspired this work.
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• LIGA is not 3-weakly unpredictable.

Our improvement relies on new modeling for constructing a linear system determined
by the t pairs of the form (Qi, U ⋆ Qi). Specifically, the modeling in [BBCK24] consists
of considering the quadratic equations arising from the system Q′

i = U⊤QiU , where the
entries of the matrix U are the unknowns, and then applying linearization techniques
to retrieve the solution corresponding to U . In particular, the approach from [BBCK24]
yields a linear system with O(n4) variables. Instead, we exploit the fact that U is invertible
over the integers and consider the linear equations deriving from Q′

iU
−1 = U⊤Qi, where

each entry of U and U−1 determines an unknown variable. Consequently, the number
of variables in this new modeling is 2n2, which is significantly fewer than the approach
in [BBCK24].

We briefly summarize how we obtained the aforementioned results on the properties
of LIGA: First, using our new modeling, we obtain a new linear system Ax = 0 whose
solution space contains a vector corresponding to the secret unimodular U . Then, by
means of linear algebra, we study such a linear system and derive the following two results:
i) for t = 2 pairs of quadratic forms, rank (A) takes different values depending on whether
the input LIP pairs share the same secret unimodular, or not, ii) for t = 3 the linear system
admits a unique solution with high probability that corresponds to the secret unimodular
U . These outcomes allow us to construct two probabilistic and polynomial-time algorithms
that are provable under mild assumptions and that break the 2-weakly pseudorandomness
and 3-weakly unpredictability properties, respectively. Our assumptions are supported
both by theoretical linear algebra arguments and by experiments run on SageMath [The22].
The scripts to reproduce our experiments are available at [BCDF].

Following our findings, we highlight one issue in the linkable ring signature based on
LIP proposed by Khuc et al. [KTS+24]. Informally, the linkable anonymity property of
this scheme relies on the assumption that, given a public quadratic form Q, the following
pair (

Q′ = U ⋆ Q, Q′′ = U−1 ⋆ Q
)

is indistinguishable from a random pair in the same set. However, given that Q = U⊤Q′′U ,
we derive that (Q, Q′) and (Q′′, Q) are two pairs of quadratic forms coming from LIGA and
with the same secret. Consequently, we can distinguish such pairs from random ones using
one of the aforementioned algorithms. It follows that the linkable anonymity property is
not satisfied.

Organization. Section 2 introduces the required notation, definitions, and background
to understand the results presented in this manuscript. In Section 3, we present our
new modeling approach to transforming LIP into a linear system, along with our findings
on the properties of the associated group action. Section 4 discusses the cryptographic
implications of our results. Finally, we give in Section 5 some final remarks and future
research directions.

2 Preliminaries
Notation. Denote with N,Z and R the set of natural, integer and real numbers, re-
spectively. In the following, bold lowercase letters represent row vectors, e.g., v, while
bold uppercase letters represent matrices, e.g., M . In this manuscript, we consider the
following sets of n× n matrices:

• On(R) the set of all orthonormal matrices over R,

• S>0
n the set of all symmetric positive definite matrices over R,
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• GLn(Z) the set of all invertible matrices over Z,

• C(M) := {C ∈ Rn×n | CM = MC} the centralizer of M ∈ Rn×n.

We denote by In the n×n identity matrix. If M is m×n, then vec(M) denotes the column
vector of length mn formed by unrolling M . We write the Gram-Schmidt orthogonalization
of M as M∗. Given two matrices M , N ∈ Rn×n, we denote by M ⊗N ∈ Rn2×n2 the
matrix obtained by applying the Kronecker product. We recall the mixed Kronecker
matrix-vector product property

(M ⊗N) · vec(X) = vec(MXN⊤), for X ∈ Rn×n.

For a finite set X, the notation x
$←− X signifies that x is sampled uniformly at random

from X. If the set X is infinite, then x
$←− X means that x has been sampled according

to a distribution that is public and efficient.

2.1 Lattice Isomorphism and Quadratic Forms
A full-rank n-dimensional lattice L = L(B) := B · Zn is generated by taking all of the
possible integer combinations of the columns of a basis B ∈ Rn×n. Two bases B and B′

generate the same lattice if and only if there exists a unimodular matrix U ∈ GLn(Z)
such that B′ = BU . Two lattices L, L′ are isomorphic if there exists an orthonormal
transformation O ∈ On(R) such that L′ = O · L.

Definition 1 (Lattice Isomorphism Problem (LIP)). Given two isomorphic lattices L,
L′ ⊂ Rn find an orthonormal transformation O ∈ On(R) such that L′ = O · L.

LIP can be rephrased in therms of lattice bases as follows. Given B, B′ ∈ Rn×n two
bases for for L and L′ respectively, find O ∈ On(R) and U ∈ GLn(Z) such that B′ = OBU .
In a real-world scenario application, the real-valued entries of the orthonormal matrix
can be inefficient to represent on a computer. Reformulating LIP in terms of quadratic
forms allows to get around this problem. Let Q be the quadratic form associated to B, i.e.
the Gram matrix Q := BTB. Note that, since B is a basis (and thus full-rank), Q is a
symmetric and positive definite matrix. Then we have

Q′ := B′TB′ = UTBTOTOBU = UTBTBU = UTQU .

We call Q, Q′ equivalent if such U ∈ GLn(Z) exists. We also denote by [Q] the equivalence
class of all quadratic forms Q′ equivalent to Q.

Definition 2 (LIP - Quadratic Form Version). For a quadratic form Q ∈ S>0
n , the

problem LIP is as follows: Given any quadratic form Q′ ∈ [Q], find a unimodular matrix
U ∈ GLn(Z) such that Q′ = UTQU .

The squared norm of a vector x with respect to a quadratic form Q is defined as
∥x∥2

Q := xTQx. Let BQ be the Cholesky decomposition of Q, that is, an upper triangular
matrix such that Q = BQ

TBQ. Ducas and van Woerden introduced the Gaussian Form
Distribution Ds ([Q]) over [Q] with a parameter s > 0 [DvW22, Def. 3.3], along with a
polynomial-time algorithm to sample from it when s ≥ max{λn(Q),

∥∥B∗
Q

∥∥√
ln(2n + 4)/π}

[DvW22, Alg. 1]. This algorithm returns a quadratic form Q′ ←− Ds ([Q]) and a unimod-
ular matrix U such that Q′ = UTQU is independent from the input equivalence class
representative Q [DvW22, Lemma 3.2]. More precisely, Ds ([Q]) is described as below.

Definition 3 (Gaussian Form Distribution [DvW22, Def. 3.3]). Given a quadratic form
equivalence class [Q] ⊂ S>0

n , the Gaussian form distribution Ds ([Q]) over [Q] with a
parameter s > 0 is defined algorithmically as follows:
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1. Fix a representative Q ∈ [Q].

2. Sample n vectors (y1, y2, . . . yn) := Y from DQ,s. Repeat until linearly independent.

3. (R, U)←− Extract(Q, Y ).

4. Return R.

where DQ,s denotes the discrete Gaussian distribution with center at 0 as defined
in [DvW22, Sec. 2.3], and the algorithm Extract includes a method to derive a unimodular
matrix from a set of independent vectors employing the Hermite Normal Form reduction
as done in the literature [BM21, MG02]. In particular, Extract returns a quadratic form
Q′ and a unimodular matrix U such that Q′ = UTQU .

2.2 Lattice Isomorphism as a Group Action
The Lattice Isomorphism Problem in the quadratic form version has been modeled as
a group action problem in [BBCK24]. In this section, we briefly recall the necessary
definitions for this manuscript. For a more detailed and formalization of LIP as a group
action, we refer the reader to [BBCK24].

Let (G, ◦) be a group and X be a set. A group action is a map

⋆ : G×X → X

such that, for any g1, g2 ∈ G and any x ∈ X, we have that g1⋆(g2⋆x) = (g1◦g2)⋆x. A group
action is called cryptographic when it satisfies certain properties that are interesting from
a cryptographic point of view. Specifically, we are interested in the following properties.

Definition 4. A group action ⋆ : G×X → X is said to be:

• one-way if, given x, x′ ∈ X, there is no probabilistic polynomial-time algorithm that
outputs (if it exists) an element g ∈ G such that x′ = g ⋆ x.

• t-weakly unpredictable if, given t pairs (xi, x′
i) ∈ X ×X where x′

i = g ⋆ xi for some
unknown g ∈ G (which remains the same across all pairs), and given an additional
element x̄ ∈ X different from each xi, there is no probabilistic polynomial-time
algorithm that outputs x̄′ = g ⋆ x̄.

• t-weakly pseudorandom if, given t pairs (xi, x′
i) ∈ X ×X, there is no probabilistic

polynomial-time algorithm to decide wether each pair is of the form (xi, x′
i = g ⋆ xi)

for some fixed secret g ∈ G, or (xi, x′
i)

$←− X ×X according to a public distribution.

Let GL±
n (Z) := GLn(Z)/ ≃± be the quotient of GLn(Z) with respect to the equivalence

relation ≃± such that U ≃± V ⇐⇒ U = ±V . Notice that GL±
n (Z) forms a group

with the multiplicative operation defined as follows. Let [U ]± = {U ,−U} be the class of
equivalence of the matrix U ∈ GLn(Z), then the multiplicative operation between elements
of GL±

n (Z) is defined as

[U ]± · [V ]± := [V U ]±, for [U ]±, [V ]± ∈ GL±
n (Z).

In what follows, for simplicity, we drop the notation of the equivalence class [U ]± and
simply use a representative U . Given a quadratic form Q ∈ S>0

n , the Lattice Isomorphism
Group Action (LIGA) is defined as

⋆ : GL±
n (Z)× [Q]→ [Q], ⋆(U , Q0) 7→ U ⋆ Q0 := UTQ0U ,

Benčina et al. study the cryptographic properties of LIGA, and prove that it is not t-weakly
unpredictable and t-weakly pseudorandom, for t = O(n2) [BBCK24].
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3 New Results on the Properties of LIGA
This section introduces a new model for constructing a linear system from a set of LIP
instances with 2n2 variables. This improves upon the formulation proposed in [BBCK24] by
achieving a higher ratio of equations to variables. Leveraging this improved modeling, we
design two probabilistic polynomial-time algorithms that establish new lower bounds on the
necessary number of instances to break the weak unpredictability and pseudorandomness
properties of LIGA.

Let
(Qi, Q′

i = U⊤QiU) ∈ S>0
n × S>0

n , i = 1, . . . , t

be t LIP instances, where Qi ← Ds ([Q]), for some Q ∈ S>0
n , and U ∈ GLn(Z). Then,

since U is invertible, we have that Q′
iU

−1 = U⊤Qi. Now, applying the mixed Kronecker
matrix-vector product property on the matrix equation

Q′
iU

−1In = InU⊤Qi,

we get that

Q′
iU

−1 = U⊤Qi ⇐⇒ [Q′
i ⊗ In] · vec(U−1) = [In ⊗Qi] · vec(U⊤),

for i = 1, . . . , t. Thanks to this observation, we can write the following linear system with
2n2 variables and tn2 equations.

A∈Rtn2×2n2︷ ︸︸ ︷
Q′

1 ⊗ In | In ⊗ (−Q1)
Q′

2 ⊗ In | In ⊗ (−Q2)
...

...
...

Q′
t ⊗ In | In ⊗ (−Qt)

 x = 0 ∈ Rtn2
. (1)

By construction, the system Ax = 0 has at least one non-zero solution, namely the
column vector x =

[
vec(U−1) | vec(U⊤)

]
. Therefore, rank (A) ≤ 2n2 − 1 for any t ≥ 2.

Remark 1. In this section, we consider that Qi ← Ds ([Q]), for i = 1, . . . , t, in order to be
consistent with the definition of group action where all elements Qi belong to the same set
[Q]. However, the results presented in this section also hold for Qi belonging to separate
classes of equivalence.

3.1 LIGA is not 2-Weakly Pseudorandom
We show now that weak pseudorandomness is not guaranteed even for t = 2. First, let us
consider the following result.

Lemma 1. Given two LIP samples (Qi, Q′
i = U⊤QiU), for i = 1, 2, then the 2n2 × 2n2

matrix
A =

[
Q′

1 ⊗ In | In ⊗ (−Q1)
Q′

2 ⊗ In | In ⊗ (−Q2)

]
∈ R2n2×2n2

(2)

has rank at most equal to 2n2 − n.

Proof. The linear system Ax = 0 has at least one solution given by [vec(U−1) | vec(U⊤)].
To show it admits other solutions we rewrite it as matrix equations

Q′
1X = Y Q1

Q′
2X = Y Q2

(3)
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A solution to this second system is given by X = U−1 and Y = U⊤. Assuming Q′
1 to

be full rank, we can express X in terms of Y as X = (Q′
1)−1Y Q1, where the inverse is

defined over R. Substituting in the second equation we get

Q′
2(Q′

1)−1Y = Y Q2Q−1
1 .

We rename R = Q′
2(Q′

1)−1 and T = Q2Q−1
1 obtaining the equation

RY = Y T . (4)

Notice that it is still true that this equation is satisfied by Y = U⊤. Consider Y ′ = CY
where C ∈ C(R) := {C ∈ Rn×n | CR = RC} is an element of the centralizer of R, this is
still a solution of Equation 4. In fact we have that

RY ′ = RCY = C(RY ) = CY T = Y ′T .

Each element of the lateral C(R)U⊤ = {CU⊤ | C ∈ C(R)} is a solution of Equation 4
to which it corresponds a unique solution of Equation 3. Since C(R) is a vector space
of dimension at least n [HJ94, Theorem 4.4.17] and U is an invertible matrix, then the
lateral C(R)U⊤ is a vector space of the same dimension. It follows that the rank of the
whole system is at most equal to 2n2 − n.

Let us analyze the following scenario. Let Q1, Q′
1, Q2, Q′

2 ← Ds ([Q]) be sampled
independently, for some Q ∈ S>0

n . Then, even if (Q′
0, Q0) and (Q′

1, Q1) are LIP instances,
it is not guaranteed that the secret unimodular transformation is the same for both of
them. We argue below that in this case, the linear system Ax = 0 with A as in Equation 2
does not accept any solutions with high probability. Let us consider the following lemma.

Lemma 2. Let Q1, Q′
1, Q2, Q′

2 ← Ds ([Q]) be sampled independently and consider U , V ∈
GL(Z), with U ̸= V , such that Q′

1 = U⊤Q1U and Q′
2 = V ⊤Q2V . If the matrices

R = Q′
2(Q′

1)−1 and T = Q2(Q1)−1 do not share any eigenvalues, then the matrix

A =
[
Q′

1 ⊗ In | In ⊗ (−Q1)
Q′

2 ⊗ In | In ⊗ (−Q2)

]
∈ R2n2×2n2

(5)

has rank 2n2.

Proof. The rank of A in Equation 2 is given by 2n2 − t, where t is the dimension of the
solution space of Ax = 0. Any solution is a column vector of the form [vec(X) | vec(Y )]
where X and Y are two n × n matrices. In particular, Y fully determines the whole
solution as X = (Q′

1)−1Y Q1, where the inverse is considered over R. Moreover Y has to
satisfy Equation 4 that can be rewritten as

R−1Y T = Y , (6)

where R = Q′
2(Q′

1)−1 and T = Q2(Q1)−1. In other words, the vector vec(Y ) is an
eigenvector of R−1 ⊗ T ⊤ of eigenvalue 1. If we show that the matrix R−1 ⊗ T ⊤ has no
eigenvalue equal to 1, it means that there is no non-trivial solution Y , which in turn
implies that the matrix A is of full rank 2n2.

The eigenvalues of the Kronecker product of two matrices are the products of the
eigenvalues of the two matrices [HJ94, Theorem 4.2.12]. Let µ1, . . . , µnR

be the distinct
eigenvalues of R and λ1, . . . , λnT

be the distinct eigenvalues of T , the eigenvalues of
R−1⊗T ⊤ are all the values µ−1

1 λ1, . . . , µ−1
nR

λnT
. Observe that the eigenvalue 1 is obtained

if and only if R and T share at least one eigenvalue. In the hypothesis, we assumed that
this is not the case. Hence, the eigenvalues of R−1 ⊗ T ⊤ are all different from 1; therefore,
we cannot find a solution Y and the matrix A must have full rank 2n2.
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Quantifying the probability that R and T in Lemma 2 share no eigenvalues, and so
rank (A) = 2n2, turned out to be an elusive task as it depends on the distribution of the
eigenvalues of the quadratic forms sampled from Ds ([Q]). Nevertheless, we heuristically
expect this event to happen with high probability, which we formalize in the following
assumption.

Assumption 1. Let Q1, Q′
1, Q2, Q′

2 ← Ds ([Q]) be sampled independently, then the matrix

A =
[
Q′

1 ⊗ In | In ⊗ (−Q1)
Q′

2 ⊗ In | In ⊗ (−Q2)

]
∈ R2n2×2n2

(7)

has rank 2n2 with high probability.

Experimental validation. To support Assumption 1, we conducted extensive exper-
iments in SageMath for n ∈ {10, 20, 30, 40, 50} and different choices of the distribution
parameter s. For each setting, we ran 100 test trials in which we independently sampled
four quadratic forms from Ds ([Q]) and measured the rank of the relative matrix A. We
observed that rank (A) = 2n2 in every trial. Additionally, we conducted a similar ex-
periment to validate Lemma 1. This time, we sampled two LIP instances with the same
unimodular matrix and quadratic forms belonging to the same class [Q]. In this case,
we consistently observed that rank (A) = 2n2 − n in every trial. We make the code to
reproduce these experiments open source and available at [BCDF].

We give now the following result regarding the properties of LIGA.

Theorem 1. Under Assumption 1, LIGA is not 2-weakly pseudorandom.

Proof. We prove this by introducing a probabilistic polynomial-time algorithm, formalized
as Algorithm 1, that is able to decide whether, given Q1, Q′

1, Q2, Q′
2 ∈ [Q] for some

Q ∈ S>0
n , there exists a unimodular matrix U ∈ GLn(Z) such that Q′

i = U⊤QiU , for
i = 1, 2, or not.

Algorithm 1 Distinguishing 2LIP
Input: Q1, Q′

1, Q2, Q′
2 ∈ [Q] for some Q ∈ S>0

n

Output: True if there exists U ∈ GLn(Z) such that Q′
i = U⊤QiU for i = 1, 2, and False

otherwise.
1: Compute the matrix A as defined in Equation 2.
2: if rank (A) ≤ 2n2 − n then
3: Return True
4: else
5: Return False
6: end if

Let us prove the correctness of Algorithm 1. If the pairs (Qi, Q′
i) share the same secret

unimodular transformation, Lemma 1 guarantees that rank (A) ≤ 2n2 − n, ensuring that
Algorithm 1 returns True. Conversely, if Q1, Q′

1, Q2, Q′
2 ← Ds ([Q]), then by Assumption 1,

rank (A) = 2n2 with high probability, leading Algorithm 1 to return False.
Finally, we analyze the algorithm’s complexity. Computing the rank of A has a

complexity in terms of integers operations of O(n6) in time and O(n4) in memory. Thus,
Algorithm 1 runs in polynomial time in n.

Theorem 1 represents an improvement over the work of [BBCK24] for which O(n2) LIP
samples were necessary to break the weakly pseudorandomness property of LIGA.
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3.2 LIGA is not 3-Weakly Unpredictable
Let us consider now the case of having three LIP instances with the same secret. In this
case, the system in Equation 1 has 3n2 equations, and, as explained above, its rank is at
most equal to 2n2 − 1. In this section, we argue that such an upper bound for the rank
is reached with high probability, allowing an efficient recovery of the secret monomial U
simply by running Gaussian elimination on such a linear system.

Let (Qi, Q′
i = U⊤QiU) be three LIP instances, where Qi ← Ds ([Q]) for i = 1, 2, 3.

Let us consider the following 3n2 × 2n2 matrix

A =

Q′
1 ⊗ In | In ⊗ (−Q1)

Q′
2 ⊗ In | In ⊗ (−Q2)

Q′
3 ⊗ In | In ⊗ (−Q3)

 ∈ R3n2×2n2
. (8)

We argue that rank (A) = 2n2 − 1 with high probability. One solution to the system
Ax = 0 is given by [vec(U−1) | vec(U⊤)], therefore the rank of A is less or equal than
2n2 − 1. We rewrite A in terms of matrix equations as

Q′
1X = Y Q1

Q′
2X = Y Q2

Q′
3X = Y Q3

. (9)

Let us consider only the first two equations. We have the same result as in Lemma 1, that
is Y ∈ C(R12)U⊤, where C(R12) is the centralizer of the matrix R12 = Q′

2Q′−1
1 . Since Y

must satisfy the third equation, we get that

Y ∈ (C(R12) ∩ C(R13) ∩ C(R23)) U⊤

where Rij = Q′
jQ′−1

i . Since the identity commutes with any matrix, each space C(Rij)
contains it, and so will their intersection. The three spaces C(Rij) have in general dimension
n and are all contained in the space Rn×n of dimension n2. Heuristically, we expect their
intersection to be constituted by In and its scalar multiples only. Hence, all the possible
solutions are in the form Y = λU⊤ for some scalar λ and rank (A) = 2n2−1. We formalize
the above in the following.

Assumption 2. Let (Qi, Q′
i = U⊤QiU) be three LIP instances, where Qi ← Ds ([Q]) for

i = 1, 2, 3. Then, the matrix A as in Equation 8 has rank 2n2 − 1 wigh high probability.

The following theorem constitutes another improvement over the work of [BBCK24] which
required O(n2) LIP instances with the same secret to recover the secret monomial.

Theorem 2. Under Assumption 2, LIGA is not 3-weakly unpredictable.

Proof. We prove that there exists a polynomial-time algorithm such that, given three
LIP instances with the same secret, is able to recover such a secret and so predict any
other outcome of the group action for that fixed group element. Under the setting of
Assumption 2, applying Gaussian elimination on the linear system in Equation 8, one gets a
solution vector s = [vec(λU−1) | vec(λU⊤)] ∈ R2n2 , for some λ ∈ R, with high probability.
The second half of the vector s corresponds to the concatenations of the rows of λU⊤. To
retrieve U from λU⊤, observe that det(λU) = ±λn, then U = ±|det(λU)|− 1

n λU . The
complexity of the whole procedure is ruled by running Gaussian elimination on A, which
has a polynomial-time cost of O(n6) integer operations and a memory cost of O(n4).

Experimental validation. To support Assumption 2, we run extensive experiments in
SageMath for dimensions n ∈ {10, 20, 30, 40, 50}, different values of the distribution param-
eter s. We run 100 trials for each parameter setting. We observe that rank (A) = 2n2 − 1
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for every run. Additionally, as a proof-of-concept, we tested Theorem 2 experimentally
and successfully recovered the secret unimodular U for n ∈ {8, 16, 32, 64}. In this case, we
focused on values of n that are powers of 2 as it allows efficient computation of |det(λU)|− 1

n

by recursively computing the square root. For other values of n ≥ 20, the multi-precision
integer arithmetic of SageMath fails to compute the n-th root when the integers are large.
We make the code to reproduce these experiments open source and available at [BCDF].

4 Cryptographic Implications
This section details the implications of the results reported in Section 3 from a cryptographic
point of view. Specifically, we show that LIGA not being 2-weakly pseudorandom breaks
the linkable anonymity property of the ring signature based on LIP proposed by Khuc et
al. [KTS+24].

Background on linkable ring signatures. In a nutshell, a linkable ring signature
consists of a 5-tuple of PPT algorithms (LRS.Setup, LRS.KeyGen, LRS.Sign, LRS.Verify,
LRS.Link) such that 3

• LRS.Setup(λ) → pp: On input of a security parameter λ, it returns the public
parameters pp used by the scheme.

• LRS.Keygen(pp) → (sk, vk): On input the public parameters pp, it outputs both
secret and public keys (sk, vk).

• LRS.Sign(sk, M, R)→ σ: On input a secret key sk, a message M, and a list of public
keys R = (vk1, . . . , vkm) (called a ring), it outputs a signature σ.

• LRS.Verify(R, M, σ)→ b ∈ {0, 1}: On input a ring R = (vk1, . . . , vkm), a message M,
and a signature σ, it outputs either 1 if the signature is accepted. Otherwise, it
returns 0.

• LRS.Link(σ0, σ1)→ b ∈ {0, 1}: On input two signatures σ0 and σ1, it outputs either
1 if the signatures are produced with the same secret key. Otherwise, it returns 0.

The linkable ring signature by Khuc et al. [KTS+24], which follows the framework
from [BKP20], requires a pair of group actions and a function

⋆ : G×X → X, • : G× T → T, LINK : T × T → {0, 1},

that must satisfy the following properties:

• (Correctness) LINK(t, t) = 1, for all t ∈ T .

• (Linkability) It is hard to find a secret key g, g′ ∈ G such that g′ ⋆ x = g ⋆ x but
LINK(g′ • t, g • t) = 0.

• (Linkable Anonymity) Given (x, t) ∈ X × T and for a secret g ∈ G, the distributions
(g ⋆ x, g • t) and (x′, t′) $←− X × T are indistinguishable.

• (Non-Freameability) Given x′ = g⋆x and t′ = g•t, it is hard to find LINK(s′ •t, t) = 1.

3For more details, we recommend to the readers [BKP20].
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In the above, the function LINK is defined specifically for every group action, and the
elements in T determine tags to check the link between signatures; for example, in the
case of LIGA, we have that LINK(t, t′) = 1 ⇐⇒ t = t′. On the other hand, each output of
the algorithm LRS.KeyGen is of the form (sk, vk = sk ⋆ x) for some public element x ∈ X,
and each output of the algorithm LRS.Sign includes the tag t = sk • x. In addition, given
two signatures σ0 and σ1, LRS.Link(σ0, σ1) is defined as LINK(t0, t1) where t0 and t1 are
the tags in σ0 and σ1, respectively.

The linkable anonymity property asks that any adversary with multiple signatures
from the same signer should be unable to determine which ring user produced a given
signature. Formally speaking, linkable anonymity is defined in [BKP20] as follows.
Definition 5 (Linkable anonymity [BKP20]). A linkable ring signature is called linkable
anonymous if, for all λ ∈ N and m = poly(λ), any PPT adversary A has a negligible
advantage in the following game played against a challenger C.

1. C starts by running pp← LRS.Setup(λ), generating (ski, vki)← LRS.KeyGen(pp; rri)
for each i := 1, . . . , m for some random coins rri, and sampling a random bit
b

$←− {0, 1}.

2. C shares pp and vk = {vk1, . . . , vkm} with A.

3. A sends two challenge verification keys vk∗
0, vk∗

1 ∈ vk to C.

4. C shares all rri of the corresponding vk \ {vk∗
0, vk∗

1} with A.

5. A queries for signatures on input a verification key vk∗ ∈ {vk∗
0, vk∗

1}, a message M,
and a ring R ⊇ {vk∗

0, vk∗
1}. More precisely, if sk∗

i denotes the corresponding secret
key such that vk∗

i = sk∗
i ⋆ x where x ∈ pp is fixed and public, then

• If vk∗ = vk∗
0, then C returns σ∗ ← LRS.Sign(sk∗

b , M, R).
• Otherwise, C returns σ∗ ← LRS.Sign(sk∗

1−b, M, R).

6. A makes a guess b∗ ∈ {0, 1}, and sends it to C. If b∗ = b, we say that the adversary
A wins.

Vulnerability in the LIP-based proposal. Khuc et al. propose to instantiate the first
group action ⋆ as LIGA, and the second group action • as

• : GL±
n (Z)× [Q]→ [Q], •(U , Q0) 7→ U •Q0 := U−1 ⋆ Q0.

In particular, Khuc et al. assume X = T = [Q] and the group actions are applied to
the same element Q0 ∈ [Q]. Now, given Q′

0 = U ⋆ Q0 and Q′′
0 = U •Q0 for some public

Q0, observe that the linkability property requires that the following two pairs

(U ⋆ Q0, U •Q0) and (Q̄← Ds ([Q]) , Q̂← Ds ([Q]))

are indistinguishable. Therefore, we want to show that this property is not satisfied for
the above choices of group actions. First, notice that

Q′′
0 = U •Q0 = U−1 ⋆ Q0 ⇔ U ⋆ Q′′

0 = Q0.

Then, the pairs (Q0, Q′
0) and (Q′′

0 , Q0) are two LIP instances that share the same secret
unimodular U . However, as a consequence of Section 3.1, we can distinguish the pair
(Q′

0, Q′′
0 , ) from a random pair (Q̄, Q̂) using Algorithm 1 in polynomial time. Thus, the

linkable anonymity property is not satisfied. In the following, we explain the impact of
being able to distinguish (Q′

0, Q′′
0 , ) from a random pair (Q̄, Q̂).

Observe that the adversary A in Definition 5 knows the verification key vki = ski ⋆ x
for each i := 1, . . . , m (see step 2). Now, let us focus on step 5. By construction, we know
that the signature σ∗ includes either the tag t∗

0 or t∗
1. More precisely,
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• If vk∗ = vk∗
0, then the adversary A knows t∗

b = sk∗
b • x.

• Otherwise, the adversary A knows t∗
1−b = sk∗

1−b • x.

Therefore, the adversary A can guess the value of b∗ = b by employing Algorithm 1 as
follows. Let t∗ be the tag in σ∗. Then A runs Algorithm 1 on input (x, vk∗, t∗, x). If
Algorithm 1 returns True, then A returns b∗ = 0. If Algorithm 1 returns False, then A
returns b∗ = 1. Consequently, A correctly guesses the value of b used by the challenger C.
Hence, the linkable ring signature from [KTS+24] is not linkable anonymous.

5 Remarks and Future Directions
Remark on Module-LIP. Observe that our analysis from Section 3.1 does not exploit
any additional structure on the pairs, and it is generic in the sense that we only need two
pairs of the form (Qi, U ⋆ Qi). Thus, our analysis also applies to the module variant of
LIP.

Comparisons with Linear Code Equivalence. Analogous to the work of Budroni
et al. [BCD+24] on the Linear Code Equivalence group action, we have demonstrated
that using two instances of LIP with the same secret is insecure by introducing a heuristic
polynomial-time algorithm that distinguishes them from random. However, our result
is slightly weaker than that of [BCD+24] as they are able to compute the secret group
element from only two instances, while we actually require three. Consequently, while
Budroni et al. show that the linkability property in the linkable ring signature scheme
based on the code equivalence group action is not secure, our result only breaks the linkable
anonymity property. Even if we believe that our result is enough to discourage the use of
multiple instances of LIP with the same secret in any cryptographic application, it would
be of cryptanalytic interest to discover a polynomial-time algorithm that recovers the
secret group element from only two instances. On the other hand, it remains an open
question whether it is possible to construct secure linkable ring signatures from the lattice
isomorphism and the code equivalence group actions.

Other future directions. We believe that Equation 1 for t = 1 offers a model that
can be useful for studying the complexity of LIP from an algebraic point of view. For
example, one could incorporate the non-linear constraints U−1 ·U = U ·U−1 = In, which
are not inherently captured by the linear equations, and analyze the resulting system using
Gröbner basis theory.
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