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Abstract. Sigma protocols (Σ-protocols) provide a foundational paradigm
for constructing secure algorithms in privacy-preserving applications. To
enhance efficiency, several extended models [BG18], [BBB+18], [AC20]
incorporating various optimization techniques have been proposed as “re-
placements” for the original Σ-protocol. However, these models often lack
the expressiveness needed to handle complex relations and hinder design-
ers from applying appropriate instantiation and optimization strategies.
In this paper, we introduce a novel compressed Σ-protocol model that ef-
fectively addresses these limitations by providing concrete constructions
for relations involving non-linear constraints. Our approach is sufficiently
expressive to encompass a wide range of relations. Central to our model
is the definition of doubly folded commitments, which, along with a pro-
posed Argument of Knowledge, generalizes the compression and amorti-
zation processes found in previous models. Despite the ability to express
more relations, this innovation also provides a foundation to discuss a
general aggregation technique, optimizing the proof size of instantiated
schemes. To demonstrate the above statements, we provide a brief review
of several existing protocols that can be instantiated using our model
to demonstrate the versatility of our construction. We also present use
cases where our generalized model enhances applications traditionally
considered “less compact”, such as binary proofs [BCC+15] and k-out-
of-n proofs [ACF21]. In conclusion, our new model offers a more efficient
and expressive alternative to the current use of Σ-protocols, paving the
way for broader applicability and optimization in cryptographic applica-
tions.
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1 Introduction

Zero-knowledge proofs are fundamental cryptographic primitives that find ap-
plications in various fields, including privacy preservation, secret sharing, secure
multi-party computation, and other fields [18, 22]. Among these, Sigma proto-
cols (Σ-protocols) [12] are particularly notable for their simplicity and versatility.
⋆ Tianyu has the same contribution to the work as with Yuxi, who should be regarded

as co-first authors.



They offer a straightforward, plug-and-play reference model that allows users to
design secure zero-knowledge proof schemes, especially for statements defined
over algebraic structures such as prime-order and RSA-type groups [24].

However, directly applying Σ-protocols to real-world scenarios often results
in inefficient protocols. While it may not be difficult to design a Σ-protocol
for some specific applications, their real-world performance can fall short of
expectations, particularly when handling complex relations. A major cause is
that the traditional Σ-protocol model only allows for independent instantiation
for each witness to be proved if no extension on the security assumptions is
given. For instance, when proving knowledge of multiple secrets, directly instan-
tiating the Σ-protocol with Pedersen commitments for each secret generates a
proof size that scales linearly on the number of secrets. Although several op-
timization techniques exist, such as batch verification and proof compressions,
properly deploying them requires a sufficient familiarity with Σ-protocols and
raises additional effort for practitioners. Concretely, when considering real-world
implementations, designers of Σ-protocols may encounter challenges in formal-
izing multiple concrete witness representations, allocating commitment keys for
each witness, and checking constraints that involve multiple openings. Improper
handling of these tasks will lead to significant performance issues, including:

– Redundant proof: The prover may include unnecessary elements that
could be aggregated, incurring extra communication costs.

– Lack of batch verification: The verifier may check multiple constraints
individually, rather than efficiently verify them in a batch.

To address these limitations, researchers have proposed new models cap-
turing more optimizations and taking them as replacements for the original Σ
protocol, like [4,5,8,9]. A seminal work among them is Bulletproofs [10], which in-
troduces an inner-product-argument-based compression model with logarithmic
proof size. However, Bulletproofs require the constraints to be first reformulated
into inner-product forms, necessitating the redesign of existing schemes and lim-
iting their applicability. Building upon Bulletproofs [10], several extended models
have been developed. Attema et al. [2,3] propose a compressed Σ-protocol that
achieves logarithmic proof size. Bünz et al. [11] generalize the inner-product
argument in Bulletproofs for group elements as well as a model. While these ap-
proaches propose effective proof optimizations, they still lack the expressiveness
required to handle complex relations and omit certain optimization strategies,
such as the aggregation technique discussed in this paper. As a result, designers
still need to navigate numerous low-level details without the benefit of standard-
ized methodologies, hindering the construction of efficient Σ protocols.

1.1 Our contributions

In this work, we propose a new model as a “drop-in replacement” for Σ-protocol
in a wider range of applications. This new model offers better expressiveness
than other models and supports the deployment of optimizations previously not
covered. Concretely, we develop our new model in three steps as below.
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(1) Generalizing the folding operations. To provide a basic protocol for
further discussions, we first review and explore the similarity between compres-
sion and amortization processes in current compressed Σ-protocol theory [2].
This analysis leads us to introduce the doubly folded commitment in the form
of Com(g(X),m(X)), which generalizes the message and the commitment key
parts into polynomial forms to allow potential random linear combinations used
in the two processes, i.e., evaluating g(X),m(X) on a random point x ∈ F. Fur-
thermore, we propose an Argument of Knowledge (AoK) protocol that converts
multiple commitments to our new doubly folded commitments. This protocol
captures the folding operations in the compression and amortization processes
in previous models [2, 10].

(2) Extending for non-linear constraints. Building upon the above protocol,
we add extra non-linear constraints on witnesses formulated in polynomial terms.
Specifically, we consider a constraint function that maps multiple polynomials to
a single polynomial, which enables us to extend the doubly folded commitment
with more complex inputs as Com(g(X); f(m(X))). By integrating this with
the AoK protocol from step 1, we obtain a new protocol that reduces multiple
commitments to a vector of doubly folded commitments m(X) under g(X), while
showing that the commitment vector satisfies a specified constraint in f(·).
(3) Adopting aggregation techniques. The protocol derived in steps 1 & 2
provides a sufficient foundation for formalizing the aggregation techniques that
were difficult to capture by previous models. In this part, we focus on all com-
mitments generated during the AoK protocol (auxiliary commitments in Sec-
tion 3.3). We demonstrate that auxiliary commitments of the same monomial
but having different commitment keys can be aggregated. The security of this
aggregation is formally proven by reducing it to the binding property of the un-
derlying commitment scheme. This technique aggregates multiple commitments
into a more compact form, reducing proof sizes and verification costs.

The above 3 steps yield a new model for the compressed Σ-protocol with
desirable features. To illustrate the expressiveness, we show how to capture ex-
isting amortization and compression processes with our model in Section 4.1,
the comparison is given in Table 1. To demonstrate the practicality, we apply it
to optimize the performance of several commonly used proof schemes in Section
4.2, including binary proofs and their application to ring signatures [16] and
k-out-of-n proofs [3]. According to the results presented Section 4, our model
improves the concrete performance of different applications. For example, our
model can aggregate 2 group elements in the binary proofs, reducing the ring
signature size in [7] by 4 group elements. As for the k-out-of-n proofs given
in [3], our model can halve the proof size from 4 log(n) to 2 log(n) without the
requirement of pairing-friendly curves.

In conclusion, our model is more expressive than the original Σ-protocol
model and other ”replacement” schemes. It is more friendly for designers to im-
plement and optimize their proof schemes. Moreover, our model finds a wider
range of applications in the real world, especially for constructing lightweight
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zero-knowledge proofs in private blockchain systems and authentication proto-
cols [1, 10,25].

Table 1: Existing “replacement” Σ-protocols with logarithmic size and comparison of
their relations and applications. The PCS and SNARK stand for Polynomial Commit-
ment Schemes and Succinct Non-interactive Argument of Knowledge respectively.

“Replacement” models Expressiveness Applications
Bulletproofs [10] Medium (IPA) Range Proofs
Compressed Σ-protocols [2] Low (linear) Range Proofs
Compressed Σ-protocols [3] High (homomorphisms) Partial knowledge proofs
Inner Pairing Products [11] High (GIPA) PCS/SNARK aggregation
This work Highest (all of above) All of above

1.2 Related Work

There has been a series of research dedicated to building an efficient zero-
knowledge proof system from Σ-protocol. Groth [15] proposes a public-coin
zero-knowledge proof with linear computation complexity for both the prover
and verifier. In his work, Groth designs specific relations for committed matri-
ces to achieve sub-linear communication complexity. Bootle et al. [8] present an
efficient zero-knowledge proof for arithmetic circuit satisfiability with linear com-
putation cost and logarithmic communication complexity. Their approach allows
the protocol to be recursively executed, resulting in proofs of size O(logN). Bul-
letproofs [10] further improves the performance of the inner-product argument
(IPA) in [8] by reducing the number of commitments. Bulletproofs reformulate
the relations for range proofs and arithmetic circuit satisfiability into inner-
product forms, thereby achieving logarithmic-sized proofs. When dealing with
multiple proofs of the same relation, Bulletproofs also supports the aggregation
technique to reduce the proof size. To apply the above optimization of proof size
to more general cases, Attema and Cramer [2] provide a compression mecha-
nism for Σ-protocols of general linear relations. They reduce the communication
complexity from linear to logarithmic by reconciling Bulletproofs [10] with Σ-
protocol. Although they construct relatively compact zero-knowledge proof pro-
tocols, their mechanism can only be applied to linear relations. In 2021, Attema
et al. [3] extend their protocol for proving homomorphic relations, and introduce
its applications in partial knowledge proofs. To provide a more efficient verifica-
tion for pairing-based applications, Bünz et al. [11] propose a generalized inner
product argument (GIPA) that leads to a logarithmic time verifier. They formal-
ize a doubly homomorphic commitment property to unify the generalization of
inner product arguments. Another research area related to our work is reducing
the proof size with some aggregation techniques (or batch verification) [6, 19].
Bayer and Groth [4] introduce a batching technique for verifying multiple poly-
nomials simultaneously, reducing communication costs compared to the parallel
repetition of individual polynomial evaluations. Inspired by Bayer’s work, Boo-
tle and Groth [9] propose a batch argument for polynomial relations. Their
approach embeds multiple statements into a single polynomial using Lagrange
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interpolation, allowing proof and verification of many instances of the same re-
lation within a single argument. Tomescu et al. [21] formalize an aggregatable
subvector commitment scheme that supports both aggregating and updating
proofs. Their scheme aggregates multiple proofs into a single subvector proof
with constant-sized polynomial commitments. Gorbunov et al. [14] construct an
aggregatable proof scheme to commit to a vector with small commitments and
proofs, allowing the aggregation of multiple proofs across different commitments
into one short proof to reduce storage requirements.

2 Preliminary

2.1 Notations

Let λ ∈ N be the security parameter. Based on λ, generate a cyclic group of
prime order q as G and a ring of integers modulo q as Zq. We use y ←$ S
to denote the process of uniformly sampling y from a finite set S. Typically,
the lowercase letters, e.g., a denote the field elements in Zq and the uppercase
letters, e.g., A denote the group elements in G. For simplicity, we take all G’s as
additive groups, which means that addition and scalar multiplication are used for
computation. To represent a set, we use {ai}ni=1 as a short-hand for {a1, ..., an}.

Vector Notation We denote vectors in Zq as a = (a1, ..., an) and vectors in
G as A = (A1, ..., An). Sometimes the notations of vectors and sets are used
interchangeably like a = {ai}ni=1 for simplicity. |a| denotes the length of vector
a. For any two vectors a and b, their inner product and Hadamard product are
denoted as ⟨a, b⟩ and a◦b respectively. The subvector a[i:j] contains all the i-th
to the j-th elements in a.

Polynomial Notation We use F(<d)[X] for the set of polynomials in F[X] of
degree at most d and the same applies to G. We will take the superscript for
degree (< d) implicitly if the context is clear. To denote a polynomial vector, we
write m(X) = {mi(X)}ui=1, where for i ∈ {1, . . . , u},mi(X) ∈ F(<d)[X].

2.2 Commitment Schemes

A commitment scheme is a pair of polynomial time algorithms (Gen,Com) [16].

– ck← Gen(1λ) : on input security parameter λ, outputs a commitment key ck,
where ck specifies a message spaceMc, a key space Kc, a commitment space
Cc, a randomness space Rc and an opener space Oc.

– cm ← Com(ck;m) : on input commitment key ck ∈ Kc, a message m ∈Mc, a
randomness r ∈ Rc, outputs a commitment cm. Parameter r can be omitted
when the sampling is implicit.

Typically, a commitment scheme should satisfy binding and hiding properties
defined in Appendix A.1.
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2.3 Doubly Homomorphic Property.

Based on the definitions in Section 2.2, we define another important property
that needs to be satisfied by the commitment schemes in this paper.

Definition 1. (Doubly Homomorphic Commitment Scheme [11]) A commit-
ment scheme (KeyGen,Com,Open) is doubly homomorphic if the abelian groups
constructed by the images of Com satisfies the following two properties for all
ck, ck′ ∈ K and m,m′ ∈M:

(1) Com(ck;m) + Com(ck;m′) = Com(ck;m+m′),

(2) Com(ck;m) + Com(ck′;m) = Com(ck+ck′;m).

Note that the message space and key space are both additively homomor-
phic. To distinguish, we denote this type of commitment scheme as Com. This
paper mainly focuses on two concrete schemes. The first is the plain commit-
ment scheme based on the Discrete Logarithm (DL) assumption, which computes
Com(ck;m) = m ·G to achieve binding, where G is a generator of a cyclic group
from K. The second is the Pedersen commitment scheme [20], which computes
Com(ck;m) = m ·G+ r ·H with additional random r ∈ R and generator H to
achieve hiding property. According to the previous work [11], we claim that both
of them satisfy the doubly homomorphic property in Definition 1. In addition to
the above two schemes, our techniques can include other existing solutions, as
long as they satisfy the doubly homomorphic properties. We derive a straightfor-
ward corollary frequently used in our following content from the above property.

Lemma 1. For any message m ∈ M committed under the key ck ∈ K and a
scalar x ∈ Zq, the doubly homomorphic commitment satisfies [11]

(1) Com(x · ck;m) = x · Com(ck;m), (2) Com(ck;x ·m) = x · Com(ck;m).

Besides, we mention that if the message is a vector such as m ∈ Fn
q (as-

sume message m contains one randomiser), the commitment Com(ck;m) is also
expected to satisfy the above properties. For example, a Pedersen vector commit-
ment computes Com(ck;m) =

∑n
i=1 mi ·Gi is computationally binding, perfectly

hiding, and doubly homomorphic according to [10]. We also want to clarify that
we only borrow the definition of doubly homomorphic commitments in [11].
Thus, the security of our commitment scheme only relies on the concrete chosen
implementation. Therefore, we do not need to particularly define the q-ASDBP
and q-SDH assumptions used in their paper.

2.4 Sigma Protocol

Let R = {(ck, x, w)} be an NP relation where ck is the common reference string,
x is the statement and w is the witness. Sometimes we omit the ck for simplicity
when it has already been explicitly given. A Σ-protocol ΠΣ is a type of inter-
active three-move protocol between a prover P and a verifier V consisting of a
tuple of PPT algorithms ΠΣ = (Setup,P,V) [16]:
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– ck ← Setup(1λ): on input the security parameter λ, outputs the common
reference string ck.

– t ← P(ck, x, w): on input common reference string ck, statement x, witness
w, outputs an initial message t.

– c ← Cs: sample a public coin challenge c uniformly at random from the
challenge space Cs.

– z ← P(c): on input the challenge c, responds with z.
– b ← V(ck, x, t, c, z) = 1: on input common reference string ck, statement

x, prover’s message t, z, challenge c, the verifier outputs a bit to determine
whether the proof should be accepted or rejected as 0 or 1.

A Σ protocol should provide completeness, special-soundness and honest
verifier zero-knowledge defined in Appendix A.2. For convenience, we assume
the Sigma protocol is instantiated based on Pedersen commitments and prove
theorems for security under the DL assumption.

3 Compact Sigma Protocol

In this section, we first review the existing amortized Σ-protocol and discuss its
relationship with the compression process. Based on the observation, we pro-
pose a new protocol to capture the same folding operation in amortizations and
compressions. This protocol reduces multiple commitments into a doubly folded
commitment, which generalizes the commitment key part as well. Furthermore,
we extend the constraints of the new protocol to the forms of mappings, mak-
ing it more expressive instead of merely arguing the knowledge of the witness.
Finally, we introduce an efficient aggregation technique to reduce the proof size.

3.1 Review of Compressed Σ-Protocol

Before introducing our new protocol, we briefly review the original compressed
Σ-protocol in [2]. For simplicity, we focus on RDL defined as follows, which
implies an opening of the Pedersen vector commitment under the DL assumption:

RPed =
{
A ∈ G, ck ∈ Gn,m ∈ Zn

q : A = ⟨m, ck⟩
}
,

where ck = {cki}ni=1 and m = {mi}ni=1. We will discuss proving additional non-
linear constraints for the witness in Section 3.3. Now assume a prover wants to
prove the knowledge of k instances {Ai,mi}ni=1 under the same commitment key
ck. Attema et al. [2] modeled them in a framework with two major phases:

– Amortization. Upon receiving a challenge x from the verifier, the prover
computes the linear combination (amortization) of k instances into one {A,m} ∈
RPed by setting A :=

∑k
i=1 x

i ·Ai and m :=
∑k

i=1 x
i ·mi.

– Compression. To show that the amortized instance {A,m} satisfies RPed,
the prover and verifier engage in a Bulletproofs compression with log n itera-
tions to reduce m to a scalar m∗, such that A∗ = m∗ · ck∗, where ck∗ and A∗

are publicly derived from ck and A respectively during the process.
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Note that for Σ-protocols, the masking procedure can be viewed as randomly
sampling a RPed instance {A0,m0} and amortizing it with existing ones, as
depicted in Figure 1 (in a compressed Σ-protocol, the prover and verifier engage
in the compression procedure in checking A

?
= ⟨m, ck⟩, rather than sending

and verifying m directly). Accordingly, {A,m} becomes a masked instance, and
the compression procedure does not need to be zero-knowledge. We describe one
iteration of compression in Figure 2. According to the security proofs given in [2],

Amortized Σ-protocol ΠAmor for relation {RPed}ki=1

Prover(ck, {Ai,mi}ki=1) Verifier(ck, {Ai}ki=1)

m0 ←$ Zn
q

A0 := ⟨m0, ck⟩ A0

x←$ Zqx
m := m0 +

∑n
i=1 x

i ·mi A :=
∑n

i=0 x
i ·Aim

Check: A ?
= ⟨m, ck⟩

Fig. 1: Procedure of amortized Σ-protocol ΠAmor.

both ΠAmor and ΠComp provide security guarantees described in the following
theorem.

Theorem 1. ΠAmor is a 3-move protocol for k-many RPed relations. It has
perfect completeness, k + 1-special soundness, and special honest-verifier zero-
knowledge. ΠComp is a 3-move protocol for a RPed relation. It has perfect com-
pleteness and 3-special soundness.

Argument of Knowledge ΠComp for relation RPed

Prover(ck, A,m) Verifier(ck, A)

split ck,m and compute E1, E2

ckL = {cki}n/2
i=1, ckR = {ckn

2
+i}n/2

i=1

mL = {mi}n/2
i=1,mR = {mn

2
+i}n/2

i=1

E1 := ⟨mL, ckR⟩, E2 := ⟨mR, ckL⟩ E1, E2

y ←$ Zqy
m∗ := mL + y ·mR ck∗ := y · ckL + ckR

A∗ := E1 + y ·A+ y2 · E2m∗

Check: A∗ ?
= ⟨m∗, ck∗⟩

Fig. 2: One iteration of compression ΠComp.
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Although the compression process follows a typical “split-and-fold” paradigm,
i.e., splitting a vector a into two parts and folding them together, we can still
spot some similar patterns compared to the amortization process. Specifically,
both compression and amortization processes conduct folding operations by com-
puting a random linear combination of several vectors in terms of a challenge
x, which reduces multiple commitments into a more compact commitment (the
folding operation in ΠComp does allow folding multiple vectors in [8]). Besides,
since the prover in ΠComp folds ck as well, it is natural to wonder if we can also
apply the same generalization on ΠAmor, which bring us some desirable features:

– Existing amortization process only considers linear constraints, i.e., A =
Com(ck,m) ∧ f(m) = y, where f(·) is a linear function. By generalizing
the folding operation for ck, it is feasible to enhance its ability to handle
non-linear constraints.

– The aggregation techniques given in Bulletproofs’ compression can be ex-
tended to a more general case, allowing us to optimize the performance for
both amortization and compression processes.

So far, our target is clear: we aim to present a new protocol for capturing similar
folding operations in both processes in the first step. Next, we accommodate the
new protocol to non-linear constraints not discussed in previous work. Finally, we
discuss a generalized aggregation technique covering previous works and apply
it to optimize the proof size of our new protocol.

3.2 The Basic Protocol

In this part, we aim to propose a general protocol that captures the folding
operations in amortization and compression processes for RPed. To achieve this,
we first introduce a generalized commitment on both the commitment key part
and the message part. Without loss of generality, we start from a basic relation
for doubly homomorphic commitments defined below.

Definition 2 (Relation for doubly homomorphic commitments [11]).

R0 =
{
A ∈ G, ck ∈ G;m ∈ Zq : Com(ck;m) = A.

}
.

Given n commitments {Ai}ni=1 each satisfying R0, we consider modeling the
folding operation for “squeezing” them into one commitment. To achieve this, we
first introduce a generalized notion as a doubly folded commitment.

Doubly Folded Commitment As discussed in Section 1, existing Σ-protocols
are limited in handling complicated relations. A primary reason for this limita-
tion is that most of them only consider homomorphism among the same commit-
ment key ck. However, homomorphism among multiple commitment keys is nec-
essary for capturing complicated relations like k-out-of-n proofs in [7] or R1CS
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in [8]. To address this limitation, we extend the commitment defined in Defi-
nition 1 on the commitment key and message part simultaneously. Concretely,
Com(ck;m) is rewritten as Com(g(X);m(X)) with polynomials

g(X) =
∑n

j=1 X
j · ckj ∈ G(<n)[X], m(X) =

∑n
j=1 X

j ·mj ∈ Z(<n)[X].

Here we borrow the “folding” concept to denote Com(g(X);m(X)) as doubly
folded commitment. Without loss of generality, we claim that the new commit-
ments scheme satisfies the following lemma:

Lemma 2. If the commitment scheme Com(ck;m) with ck ∈ G, m ∈ Zq is
doubly homomorphic, the doubly folded commitment scheme Com(g(X);m(X))

with g(X) ∈ G(<n)[X], m(X) ∈ Z(<n)
q [X] also satisfies the doubly homomorphic

properties for all g1(X), g2(X),m1(X),m2(X):

1. Com(g1(X);m1(X))+Com(g1(X);m2(X)) = Com(g1(X);m1(X)+m2(X)),
2. Com(g1(X);m1(X)) + Com(g2(X);m1(X)) = Com(g1(X) + g2(X);m1(X)).

We further derive a corollary from the above lemma as:

Corollary 1. Under any message m ∈ Zq committed under key ck ∈ G, the
doubly folded commitment satisfies for all X ∈ Zq:

1. Com(
∑n

j=1 X
j · ckj ;m) =

∑n
j=1 X

j · Com(ckj ;m),
2. Com(ck;

∑n
j=1 X

j ·mj) =
∑n

j=1 X
j · Com(ck;mj).

Next, we illustrate how to compute a doubly folded commitment from the
plain doubly homomorphic commitments. This part will provide insight into
building a general folding protocol capturing amortization and compression.
Concretely, we write the doubly folded commitment Com(g(X);m(X)) with
polynomials in coefficient form and further combine the terms with the same
degree into one commitment by utilizing the corollary 1 above.

Com(g(X);m(X)) = Com
(∑n

j=1 X
j · ckj ;

∑n
i=1 X

i ·mi

)

=
∑n

j=1 X
j ·∑n

i=1 X
i · Com(ckj ;mi) // by corollary 1

=
∑n

i=1 X
2i · Com(cki;mi) +

∑2n−1
i=3 Xi · Com(ck′i;m

′
i)

=
∑n

i=1 X
2i ·Ai +

∑2n−1
i=3 Xi · Ei. (1)

where Ei =
∑

j+k=i,j ̸=k Com(ckj ;mk), i = 3, ..., 2n−1 represents the sum of com-
mitments for all cross terms with the same power Xi. We illustrate the detailed
computation of these group elements with a matrix in Figure 3. Concretely, mi,
cki are the coefficients of Xi term in g(X),m(X) respectively. Ai = Com(cki;mi)
is the commitment along the main diagonal. Ei is the sum of commitments for all
cross terms with the same Xi. For example, En+1 is the sum of all commitments
in (n+ 1)-degree terms {Com(cki;mn+1−i)}ni=1 in the secondary diagonal. Note
that group elements {Ai}ni=1, {Ei}2n−1

i=3 are all independent of X. Therefore, the
prover can send these group elements to prove the validity of a doubly folded
commitment.
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X2 · CM(ck1;m1) X3 · CM(ck1;m2) · · · Xn+1 · CM(ck1;mn)

... X4 · CM(ck2;m2)
. . .

...

Xn · CM(ckn−1;m1)
. . .

. . . X2n−1 · CM(ckn−1;mn)

Xn+1 · CM(ckn;m1) Xn+2 · CM(ckn;m2) · · · X2n · CM(ckn;mn)







X ·m1 X2 ·m2 · · · Xn ·mn

X · ck1

X2 · ck2

...

Xn · ckn

En+1 =
∑n

i=1 CM(cki;mn+1−i) An = CM(ckn;mn)

1

Fig. 3: Transforming a doubly folded commitment into plain commitments.

Argument of Knowledge We now introduce a new relation as well as its Argu-
ment of Knowledge for capturing the folding operations in both the amortization
and compression processes as below:

Definition 3. (Relation for doubly folded commitment)

R1 =
{
C ∈ G, g(X) ∈ G(<n)[X];m(X) ∈ Z(<n)

q [X] : Com(g(x);m(x)) = C.
}
.

where C =
∑n

i=1 x
2i · Ai +

∑2n−1
i=3 Xi · Ei, and x ∈ Zq is a challenge randomly

sampled by the verifier.

Generally speaking, the relation R1 plays the same role as the relation RPed

used in the previous compressed Sigma protocol. Differently, R1 provides us a
more general form to simultaneously capture the cases of amortization and com-
pression and, therefore, allows achieving non-linear constraints and aggregations.
Based on R1, we build an Argument of Knowledge for a set of R0’s with respect
to {Ai}ni=1 and {cki}ni=1 that reduces them to R1 containing only one doubly
folded commitment C. We present the step-by-step construction of this protocol
in Figure 4 and denote it as Π1. In Π1, the prover first computes corresponding
group elements {Ei}2n−1

i=3 according to Equation (1) and sends to the verifier.
Then the polynomial m(X) is opened on a randomly chosen point x and so does
g(x) (computed by the verifier). In the checking equation, the verifier computes
the doubly folded commitment on the left-hand side as Com(g(x);m(x)) and
checks whether it equals the right-hand side value computed from {Ai}ni=1 and
{Ei}2n−1

i=3 . As a result, we obtain the protocol Π1 as is a general protocol of
folding operation that can capture both ΠAmor and ΠComp. Its security is en-
sured by the following theorem. The formal proof of this theorem is presented
in Appendix B.1.

Theorem 2. Π1 is a 3-move protocol for relation R0. It provides perfect com-
pleteness and n-special soundness under the binding property of the commitment
scheme Com.
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AoK Π1 for R0

Prover({cki}ni=1, {Ai}ni=1; {mi}ni=1) Verifier({cki}ni=1, {Ai}ni=1)

computes {Ei}2n−1
i=3 {Ei}2n−1

i=3

x←$ Zqx
m(X) =

∑n
j=1 x

j ·mj
m(x)

Verifier computes: g(X) =
∑n

j=1 x
j · gj

Verifier checks: Com(g(x);m(x))
?
=

∑n
i=1 Ai · x2i +

∑2n−1
i=3 Ei · xi

Fig. 4: AoK for reducing R0’s to R1.

3.3 Adding Non-linear Constraints

This subsection extends protocol Π1 to support proofs for witnesses with ad-
ditional constraints. Note that in Π1, the prover only demonstrates knowledge
of a witness m(X), it doesn’t allow proving that this witness satisfies further
relations For example, we might need to prove that vectors (or equivalently,
polynomials in this context) a, b, and c satisfy the equation a + b = c, which
corresponds to demonstrating that the polynomials a(X), b(X), and c(X) satisfy
a(X) + b(X) = c(X). Thus, we extend the relation R1 to allow demonstrating
that the witness m(X) satisfies additional constraints beyond simply being the
committed message, i.e, Com(g(x);m(x)) = C, f(m(x)) = y. Furthermore, to
accommodate more general scenarios involving multiple polynomials, we intro-
duce a mapping that relates several polynomials to a single one. The mapping
is defined as a function f(·):

f(m(X)) = m1(X)⊗ · · · ⊗mk(X), (2)

where m(X) = (m1(X), · · · ,mk(X)). The symbol ⊗ is either the polynomial ad-
dition or multiplication operator in the ring Zq[X] (with degree (< n) omitted).
For polynomials m1(X),m2(X) ∈ Zq[X], their addition satisfies (m1(X),m2(X))
→ m3(X), where the degree of the output polynomial m3(X) is at most n.
Their multiplication satisfies (m1(X),m2(X)) → m3(X), where the degree of
the output polynomial m3(X) is at most 2n. A simple example is proving the
inner-product constraint of two vectors, i.e., ⟨(a1, a2), (b1, b2)⟩ = u. The vectors
can be first represented in polynomial form as m1(X) = a1 ·X+a2 and m2(X) =
b1 ·X+b2, then the constraint is denoted as a function f(⟨m1(X),m2(X)⟩) map-
ping two n-degree polynomials to a 2n-degree polynomial. We formally define
such a relation as below.

Definition 4. (Extended Relation for doubly folded commitments)

R2 =





C ∈ G, g(X) ∈ G[X], k ∈ N, f : Zk
q [X] 7→ Z(<kn)

q [X];
m(X) = {mj(X) ∈ Zq[X]}kj=1 :

Com(g(X);mj(X)) = Cj ∧ Com(g(X); f(m(X))) = C



 .
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where Cj =
∑n

i=1 x
2i ·Ai,j +

∑2n−1
i=3 Xi ·Ei,j, C =

∑kn
l=0 X

l · Fl and x ∈ Zq is a
challenge randomly sampled by the verifier.

Based on the discussion above, we observe that for any function f(·) with n
operations ⊗, when taking an k-dimensional vector m(X), its output f(m(X))

must be a polynomial with a degree at most kn in Z(<kn)
q [X]. This degree is de-

termined by the maximum degree n of each polynomial in m(X) and the number
of polynomials k involved. The commitments {Fl}knl=0 capture the coefficients of
the polynomial f(m(X)). Therefore, for an n-degree polynomial of commitment
key g(X), the verifier can check constraint f(·) with the k-dimensional opening
vector m(x) and commitments {Fl}knl=0 by the equation

Com(g(x); f(m(x))) =
∑kn

l=0 x
l · Fl. (3)

The above equation is computed similarly as Equation (1). We obtain at most kn
number of Fl’s since g(x), f(m(x)) have degrees n, kn respectively. Accordingly,
we can extend Π1 for multiple polynomials m(x) with an additional constraint
f(·). The extended protocol of Π1 with additional constraints is presented as Π2

in Figure 5. Concretely, the prover follows a process similar to Π1 for each mj(X)
to prove the knowledge of the polynomial vector m(X). The verifier uses com-
mitments {Ai,j}n,ki,j=1 and commitments {Ei,j}2n−1,k

i=3,j=1 to check whether equation
(1) in Π2 holds for j = 1, ..., k, confirming the prover’s knowledge of the witness.
With commitments {Fl}knl=0, the verifier checks whether equation (2) in Π2 holds
for m(x) and f(·), ensuring that the witness m(X) satisfies the constraint f(·).
For the convenience of discussion, we denote the new commitments sent in Π2,
i.e., Ei,j , Fl as auxiliary commitments. Finally, the verifier is convinced that the
prover does know the witness m(X) satisfying the constraint f(·).

AoK Π2 for R0 with non-linear constraints

Prover(g(X), {Ai,j}n,k
i,j=1, f(·);m(X)) Verifier(g(X), {Ai,j}n,k

i,j=1, f(·))

compute {Ei,j}2n−1,k
i=3,j=1, {Fl}knl=0

{Ei,j}2n−1,k
i=3,j=1, {Fl}knl=0

x←$ Zqx

compute m(x) m(x)

Verifier computes: g(x)
Verifier checks:

(1)Com(g(x);mj(x))
?
=

∑n
i=1 Ai,j · x2i +

∑2n−1
i=3 Ei,j · xi,∀ j = 1, ..., k

(2)Com(g(x); f(m(x)))
?
=

∑kn
l=0 Fl · xl

Fig. 5: AoK for reducing R0’s to R2.
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In summary, the protocol Π2 gives us a general model for reducing multi-
ple commitments satisfying certain constraints to a doubly folded commitment
scheme (actually Π2 can prove more than one constraint). We claim that the
Theorem 3 below holds for protocol Π2. The formal proof of this theorem is
given in Appendix B.2.

Theorem 3. Π2 is a 3-move protocol for relation R0 with additional constraints.
It provides perfect completeness and n-special soundness under the binding prop-
erty of the commitment scheme Com.

3.4 Aggregation Technique

Typically, a complex zero-knowledge proof scheme may include multiple inputs
with different constraints. For example, a range proof on v ∈ [0, 2128−1] has two
constraints (1) b is a 128-bit binary vector, and (2) b is the binary representation
of value v. Consequently, it may not be intuitive for a designer to spot the
potential optimization for their proof scheme with such complicated relations.
To solve this problem, we present a generic aggregation technique for our protocol
Π2 above, which provides a universal paradigm for possible optimization.

Our technique is mainly based on an important observation: multiple verifica-
tion equations can be aggregated into one as long as their group elements of the
same exponent are committed under distinct and independently chosen keys. We
denote equations satisfying the above properties as mutually independent equa-
tions. Take the plain DL commitment scheme as an example: the security of the
setup algorithm requires that two different keys ck1 = G, ck2 = H are indepen-
dently chosen generators. The prover can not find a value a for the DL instance
a ·G = H. As a result, the aggregated commitment m1 ·G+m2 ·H ensures that
the prover exactly knows m1 and m2 with an overwhelming probability.

1○ CM(g(X);m(X)) = X0 · CM(ck0;m0) + X1 · CM(ck1;m1) · · · Xn · CM(ckn;mn)

= X0 · (E0) + X1 · (E1) · · · Xn · (En)

2○ CM(g′(X);m′(X)) = X0 · CM(ck′0;m
′
0) + X1 · CM(ck′1;m

′
1) · · · Xn · CM(ck′n;m

′
n)

= X0 · (E′
0) + X1 · (E′

1) · · · Xn · (E′
n)

3○ = 1○ + 2○ = X0 · (E0 + E′
0) + X1 · (E1 + E′

1) · · · Xn · (En + E′
n)

1

Fig. 6: Illustration of the aggregation technique.

As shown in Figure 6, equations ① and ② can be aggregated into ③, where
each pair of (Ei, E

′
i), i = 0, ..., n are aggregated into Ei + E′

i. Since each pair
of group elements is generated under different commitment keys cki, ck

′
i, it is

sufficient to guarantee equations ① and ② hold by ③ under the binding prop-
erty of commitment scheme. Besides, the two equations are not required to
have the same degree of polynomials because we can pad them to the same
length with zero terms, e.g., X0 · Com(ck0;m0) + X1 · Com(ck1; 0). Based on
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the above observation, we can deduce two lemmas under a more general case
below. Note that we use the vector form with index in the remaining part, e.g.,
E = (E0, ..., En),E[i] = Ei, ∀i = 0, ...n for ease of exposition.

Lemma 3. Given an AoK Π2 for multiple R0’s with non-linear constraints, an
aggregation of auxiliary commitments can be applied if its verification equations
are mutually independent. Guaranteed by the binding property of the commitment
scheme used, the obtained compact protocol provides perfect completeness and
special soundness. If a masking relation is included in the input R0’s, then the
protocol also provides SHVZK.

For example, assume a protocol Π2 with two constraints f(·), g(·), denote its
corresponding auxiliary commitments as F , F ′ respectively. After padding F , F ′

into the same length of max(|F |, |F ′|), we can aggregate them into F ′′ as long as
each pair of elements F [k],F ′[k] are committed under independent commitment
keys (i.e., the equations are mutually independent). Note that the basic verifica-
tion for each doubly folded commitment Com(g(x);mj(x)), j = 1, ..., k can also
be aggregated with f(·), g(·) if they are mutually independent (i.e., aggregating
E with F ,F ′). We denote the aggregated protocol as a compact protocol.

Lemma 4. Given multiple AoK Π2’s each for multiple R0’s with non-linear
constraints, an aggregation of auxiliary commitments can be applied if their ver-
ification equations are mutually independent. Guaranteed by the binding property
of the commitment scheme used, the obtained compact protocol provides perfect
completeness and special soundness. If a masking relation is included in the input
R0’s of each Π2, then the whole protocol also provides SHVZK.

As an example, assume two compact protocols Π2, Π
′
2 with auxiliary com-

mitments as R,E,F and R′,E′,F ′ respectively. If each pair of (R[i], R[i]′),
(E[j], E[j]′) or (F [k], F [k]′) of the same exponent Xi, Xj , Xk are committed
under independent commitment keys, we can aggregate them and obtain new
auxiliary commitments R′′,E′′,F ′′. The above two lemmas offer us a useful tech-
nique for optimizing the communication cost of instantiated protocols, especially
for applications with complex relations. In fact, similar aggregation techniques
have already been used in a large number of advanced proof schemes such as one-
out-of-many proofs for ring signatures, Bulletproofs, and inner pairing product
argument [10, 11, 16], while none of them explicitly summarizes as formal def-
initions. Our generalized protocol provides a proper platform to discuss and
formalize this technique. Lemma 3 and Lemma 4 are trivial to prove under the
binding property of the used commitment scheme.

4 Use Cases

In this section, we first demonstrate the versatility of our model by covering pro-
cesses used in existing models with our new model in Section 4.1. The covered
process includes the compression process used in [2, 8, 10, 11], and the amorti-
zation process in [2, 3]. Next, we showcase the efficiency of our new model by
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optimizing several existing protocols with our aggregation techniques, including
the binary proofs and ring signatures in [7] and k-out-of-N proofs [3].

For conciseness, we only show the feasibility of each case without describ-
ing the detailed protocol. This is done by taking the Argument of Knowledge
protocol given in Section 3 as a black-box algorithm. Concretely, we define an
algorithm AoK(R, f,y)→ Rdfc as an Argument of Knowledge reducing the input
of a vector of relations R each with plain commitments, the constraint function
f and the image vector y, into a single relation Rdfc with doubly folded commit-
ments. Note that all relations considered in our model are in the commit-and-
prove paradigm, i.e., each relation already contains the commitments computed
by the prover ahead of the protocol.

4.1 Existing Cases

This part shows how to capture the processes in the existing generalized Σ-
protocol model. Since we only validate for the feasibility, optimizations (applying
aggregation techniques) are not mentioned in this subsection.

Covering Amortization In the amortization process given in [2], the prover
with inputs of k relations of which the witness satisfies Com(gj ,mj) = Cj and
f(mj) = yj for j ∈ [1, k], aims to aggregate all the witness into one as m∗ =∑k

j=1 mj ·xj with a challenge x. We show how to cover the amortizing operation
with our model. Specifically, we define the relation Rj , j ∈ [1, k] as

Rj =
{
g ∈ Gn;mj ∈ Fn : ⟨gj ,mj⟩ = Cj ∧ f(mj) = yj

}
.

Next, the prover executes our protocol with input as relation vector R, constraint
function and the images each satisfies f(mj) = yj , the output relation is denoted
as AoK(R, f,y)→ Rdfc:

Rdfc =

{
C, u ∈ G, g(X) ∈ G(<k)×n[X];m(X) ∈ F(<k)×n[X] :
⟨g(X),m(X)⟩ = C ∧ Com(u, f(m(X))) = Cy

}
.

where m(X) =
∑k

j=1 X
j · mj , g(X) =

∑k
j=1 X

j · gj , C =
∑k

j=1 X
j · Cj ,

Cy = u ·∑k
j=1 X

j ·yj . Note that the model above [2] only allows homomorphism
constraint f(·). With our new model, we can extend the amortization process to
enable non-linear constraints.

Covering Compression (IPA) In the compression process, the prover splits
the linear-size opening vector and then folds them into one with only half of
the length. We now show how to cover the folding operation within our model.
Consider two vectors a, b ∈ Fn, where we need to prove knowledge of their inner
product as ⟨a, b⟩. Rather than proving this directly, which would be inefficient
for large vectors, we first split each vector into two equal halves. Taking the
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vector a as an example, the prover splits it into aL,aR ∈ Fn/2 (assuming n can
be divided by 2). The relation Ra for splitting vectors aL,aR is given below

Ra =

{
AL, AR ∈ G, gL, gR ∈ Gn/2;aL,aR ∈ Fn/2 :

⟨gL,aL⟩ = AL ∧ ⟨gR,aR⟩ = AR

}
.

The relation Rb for vectors bL, bR are almost the same except that the commit-
ments BL, BR are under different keys hL,hR.

Next, the prover executes our protocol with input as relations Ra, Rb, a
constraint function and the inner product value satisfying f(a, b) = ⟨a, b⟩ = v,
the output relation is denoted as AoK((Ra, Rb), f, v)→ Rdfc:

Rdfc =




C, u ∈ G, g(X),h(X) ∈ G(<2)×n/2[X];a(X), b(X) ∈ F(<2)×n/2[X] :

Com(g(X);a(X)) = Ca ∧ Com(h(X); b(X)) = Cb

∧Com(u; f(a(X), b(X))) = C



 .

where a(X) = aL +X · aR, b(X) = X · bL + bR, g(X) = X · gL + gR, h(X) =
hL +X ·hR, Ca = X2 · ⟨gL,aR⟩+X ·AL ·AR + ⟨gR,aL⟩, Cb = X2 · ⟨hR, bL⟩+
X ·BL ·BR + ⟨hL, bR⟩, C = u · (X2 · ⟨aR, bL⟩+X · v + ⟨aL, bR⟩).

The above protocol is executed recursively until the length of the witness is
reduced to constants, as in Bulletproofs. Note that this case also indicates that
the compression process in [2] and [3] can be covered since they only consider
constraints in homomorphism. Moreover, our model can be extended to capture
the inner pairing product constraint by following the definitions given in [11].

4.2 More Compact Proofs

Case 1: Compact Binary Proofs. Bootle et al. [7] introduce a ring signature
scheme built from binary proofs, i.e., the binary proofs prove that a witness b
is either 0 or 1. To prove this relation with Σ-protocol, the prover reduces the
relation b = 0 ∨ 1 to an equation that b · (1 − b) = 0, which can be formalized
as a function f : {0, 1} 7→ F. Therefore, we can write a relation for a binary b as
below

Rb =
{
B ∈ G, g ∈ G; b ∈ {0, 1} : Com(g; b) = B ∧ f(b) = 0

}
.

Besides, the prover must also include the following relation of the masking value
for zero knowledge:

Ra =
{
A ∈ G, g ∈ G; a←$ F : Com(g; a) = A

}
.

In some of the previous work [13,23], extra commitments are sent due to the
omission of the aggregation technique. By applying our model, this problem can
be hedged. Concretely, to amortize these two relations, the prover can execute
our protocol with the input of relations Rb, Ra, a function f : {0, 1} 7→ F, and
the image 0. The output relation is AoK(Rb, Ra, f, 0)→ Rdfc:

Rdfc =

{
C ∈ G, g ∈ G;m(X) ∈ F(<2)[X] :

Com(g;m(X)) = C ∧ Com(g, f(m(X))) = X · E1 · E2

}
.
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where C = X ·B ·A, and f(m(X)) = (bX + a) · (X − bX + a) = (a− 2ab)X − a2

such that E1 = Com(g; a− 2ab), E2 = Com(g;−a2). According to our conclusion
(Lemma 3) in Section 3.4, it is feasible to aggregate auxiliary commitments as
long as they are mutually independent. Concretely, if we replace the commitment
key of E2 with another unknown-order element h, it is feasible to aggregate it
with A since they all have the same monomial as X0. Note that E1 can not be
aggregated to B because B is not an auxiliary commitment. As a result, we can
reduce the proof size of the binary proof by one group of elements. Furthermore,
the same idea can be applied several times in the ring signature scheme given
in [7], reducing the signature size from log(N)+4 to log(N), where the N is the
ring size.

Case 2: Compact k-out-of-n Partial Knowledge Proofs Attema et al. [3]
propose zero-knowledge proofs of partial knowledge for k-out-of-n secrets. To
achieve a compressed proof, they extend the compressed Σ-protocol theory [2]
to enable homomorphism constraints. Upon a general case with the function
f : Fn 7→ G, Attema et al. introduce an optimization technique to reduce the
asymptotic proof complexity from 4 log(n) to 2 log(n) through the pairing based
commitments [17]. The downside of this approach is that the size of pairing
group GT elements is much larger than G elements (for instance, 12 times larger
on bls12-381), and the computation cost of pairing is also substantial. In this
work, we introduce an alternative approach to reducing the proof complexity
without using pairing.

To begin with, we briefly recap the k-out-of-n relation presented in [3]: the
prover wants to show that a witness s to the commitment P = ⟨s, g⟩ satisfies that
Pi = si · g for all i ∈ S, where S is a subset of [1, n] with cardinality k. To prove
this relation with the compressed Σ-protocol, the prover can reduce the relation
of s to a relation of y satisfying a homomorphism constraint L : F2n−k 7→ G:

ti · g · (−
∑

j aji
j) · Pi = Pi,

where y = (a1, ..., an−k, t1, ..., tn) ∈ F2n−k derived from the original s. Specifi-
cally, p(X) = 1 +

∑n−k
j=1 aj · Xj such that p(0) = 1 and p(i) = 0 for all i /∈ S

and ti = p(i)si. If we temporarily omit the zero-knowledge, i.e., the prover
can open the witness, we can observe that the prover is proving the constraint
f : F2n−k 7→ F for all i ∈ [1, n] as ti − si ·

∑
j aji

j = si. Therefore, we can write
n relations with respect to y as follows

Ri =

{
Y ∈ G, g ∈ G2n−k;y ∈ F2n−k, si ∈ F :

Com(g;y) = Y ∧ ti − si ·
∑

j aji
j = si, i ∈ [1, n]

}

To amortize these relations, the prover can execute our protocol with the input
of all relations Ri, i = 1, ..., n, a set of functions fi : F2n−k 7→ F, i = 1, ..., n and
their images x. The output relation is AoK({Ri}ni=1, {fi}ni=1,x)→ Rdfc:

Rdfc =

{
Y ∈ G, g ∈ G2n−k;y ∈ F2n−k :

Com(g;y) = Y ∧ni=1 Com(g; fi(y)) = Pi

}
.
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where Com(g; fi(y)) = xi · g indicates that ti · g · xi · (−
∑

j aji
j) · g = xi · g.

Note that Com(g;y) and Com(g; fi(y)), i = 1, .., n are all auxiliary commitments
sent among the protocol for proving the k-out-of-n relation for x. According to
our conclusions (Lemma 3) in Section 3.4, it is feasible to aggregate all auxil-
iary commitments up as long as they are mutually independent. However, we
observe that their commitment keys do not satisfy the requirements. To amend
this, a straightforward approach is to raise the commitment key g to a verifier
chosen power ri for each Com(g; fi(y)). This aggregation technique yields us
an aggregated commitment as Com(g;y) ·∑n

i=1 Com(ri · g; fi(y)) assuming that
g, {ri · g}ni=1 are DL independent. We finally obtain a compact protocol for k-
out-of-n relation with proof of 2 log(2N − k + 1) − 1 group elements, less than
the previous 4 log(2N − k + 1)− 5 group elements in [3].
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A Formal Definitions

A.1 Commitment Schemes

Definition 5. (Binding Property [16]) A non-interactive commitment scheme
(Gen,Com) is computationally binding if for all PPT adversaries A, there is a
negligible function µ(λ) such that

Pr



Com(ck;m0; r0)
= Com(ck;m1; r1)
∧ m0 ̸= m1

ck← Gen(1λ);
(m0,m1, r0, r1)← A(ck)


 = µ(λ).

where A outputs m0,m1 ∈Mc and r0, r1 ∈ Rc. The scheme is perfectly bind-
ing when µ(λ) = 0.

Definition 6. (Hiding Property [16]) A non-interactive commitment scheme
(Gen,Com) is computationally hiding if for all PPT adversaries A, there is an
negligible function µ(λ) such that

∣∣∣∣∣∣∣∣
Pr


A(c) = b

ck← Gen(1λ);
(m0,m1)← A(ck),
b← {0, 1}, r ←$Rc,
c← Com(ck;mb; r)


−

1

2

∣∣∣∣∣∣∣∣
= µ(λ),

where A outputs m0,m1 ∈M. The scheme is perfectly hiding when µ(λ) = 0.

A.2 Sigma Protocols

Definition 7. (Perfect completeness [16]) A Σ-protocol (Setup,P,V) is perfectly
complete if for all PPT adversaries A

Pr

[
V(ck, x, t, c, z) = 1

ck← Setup
(
1λ

)
; (x,w)← A(ck);

t← P(ck, x, w); c←$ Cs; z ← P(c)

]
= 1,

where A outputs (x;w) and (ck, x;w) ∈ R.

Definition 8 (Computational Knowledge Soundness). A Σ-protocol (Setup,P,V)
for relation R provides soundness with soundness error σ if for all deterministic
polynomial time P∗ with success probability ϵ, there exists an expected polynomial
time extractor E such that for all PPT adversaries A

Pr

[
(x;w) ∈ R ck← Setup(1λ); (x;w)← A(ck); t← P∗(ck, x, w);

c←$ Cs; z ← P(c);V(ck, x, t, c, z) = 1;w ← EP∗
(ck, x)

]
≥ ϵ− κ(|x|)

poly(|x|) .

where κ(|x|) is negligible soundness error dependent on the statement length |x|.

To define the special soundness property, we first present a denotation of the
tree of the transcript.
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Definition 9 (Tree of transcript). Let µ ∈ N and (k1, ..., kµ) ∈ Nµ. A
(k1, ..., kµ)-tree of transcripts constitutes a set of

∏µ
i=1 ki transcripts of a tree-

like structure. The edges within this tree represent the challenges of the verifier,
while the vertices are the messages from the prover, which can be empty. Each
node at depth i has exactly ki child nodes, corresponding to ki distinct challenges.
Every transcript is uniquely represented by one path from the root node to a leaf
node.

Definition 10 ((k1, ..., kµ)-special soundness). Π provides (k1, ..., kµ)-special
soundness if there is an effective PPT extraction algorithm E that is capable of
extracting the witness w given x and any (k1, · · · , kµ)-tree of accepting tran-
scripts T [2] (defined above). Specifically, for all PPT adversaries A

Pr
[
(x;w) ∈ R ck← Setup(1λ), (x, T )← A(ck), w ← E(ck, x, T )

]
≈ 1.

(k1, ..., kµ)-special soundness is a generalization to the standard notion of
special soundness. For example, a typical Σ-protocol given in [12] is a special
type of the 3-move interactive proof satisfying k-special soundness, where P sends
an initial message a, V issues with a random challenge r ←$ F, and finally, P
provides with a response z. Special soundness is typically easier to prove than
the knowledge soundness property for an interactive proof. Although special
soundness should be regarded as a weaker notion of knowledge soundness, [2]
proves that (k1, ..., kµ)-special-soundness tightly implies knowledge soundness as
long as K =

∏µ
i=1 ki is constant. Therefore, the protocols in this work are all

arguments of knowledge under the DL assumption from the results of [2]. Note
that most of the protocols mentioned in this paper only has 3-move, so it is
sufficient to give the definition of k-special soundness. For generalization of the
recursion techniques, e.g, the inner product arguments run logarithmic rounds,
we present the (k1, · · · , kµ)-special soundness definition here.

Definition 11. (Special honest verifier zero-knowledge (SHVZK) [16]) (Setup,P,V)
is SHVZK if there exists a PPT simulator S that can output an accepting tran-
script that is indistinguishable from real transcripts without knowing the witness
when the verifier’s challenge is known beforehand. Specifically, for all PPT ad-
versaries A,

Pr

[
A(t, z) = 1

ck← Setup
(
1λ

)
; (x,w, c)← A(ck);

t← P(ck, x, w); z ← P(c);

]
≈

Pr

[
A(t, z) = 1

ck← Setup
(
1λ

)
; (x,w, c)← A(ck);

(t, z)← S(ck, x, w);

]
.

where A outputs (x,w, c) such that (ck, x, w) ∈ R.

B Security Proofs

B.1 Proof of Theorem 2

Completeness: In protocol Π1, for any prover running his steps honestly, the
verifier can finally obtain transcripts including {Ei}2n−1

i=3 , x,m(x) and check the
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following equation:

Com(g(x);m(x)) =

n∑

i=1

Ai · x2i +

2n−1∑

i=3

Ei · xi.

If {Ai = Com(ck;mi)}ni=1 and {Ei}2n−1
i=3 are computed correctly according to

Figure 3, the above equation holds according to Equation (1).

Special Soundness: To prove the special soundness property, we need to show
that there exists an efficient extractor algorithm that outputs the witness for
the statement in Π1 with oracle access to a malicious prover. By the “polyno-
mial amortization trick” mentioned in [2], if a prover can open the commitment
Com(g(x),m(x)) combined from {Ai}ni=1 and {Ei}2n−1

i=3 , then with high proba-
bility he can open all the Ai’s and Ei’s. Thus, we only need to show that it is
feasible to build an extraction algorithm for commitment Com(g(x),m(x)) on
input n transcripts under different challenges. Upon receiving n points for the
polynomial m(X), an equation can be built accordingly as follows:

m ·Mx =




m1

m2

...
mn




T

·




1 1 · · · 1
x1 x2 · · · xn

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n


 =




m(x1)
m(x2)

...
m(xn)




T

= z

where m = [m1,m2, ...,mn] is the vector of all secret values, z = [m(x1),m(x2), ...,
m(xn)] is the vector of all n opening values and x1, ..., xn are n challenge values
in each query. The above matrix equation represents the relation between secret
values and the opening values, where the coefficient matrix constructed from
x1, ..., xn is denoted as Mx. Since Mx is a Vandermonde matrix, there exists an
efficient algorithm for computing the inverse of Mx in polynomial time. There-
fore, we can extract the secret values by computing m = z ·M−1

x . And we say
protocol Π1 satisfies the n-special soundness.

B.2 Proof of Theorem 3

Completeness: In protocol Π2, for any prover running his own steps honestly,
the verifier can finally obtain transcripts including {Ei,j}2n−1,k

i=3,j=1, x, m(x) and
check the following equation:

Com(g(x);mj(x)) =

n∑

i=1

Ai,j · x2i +

2n−1∑

i=3

Ei,j · xi

If {Ai =
∑k

j=1 Com(cki;mi,j)}ni=1 and {Ei,j}2n−1,k
i=3,j=1 are correctly computed, the

above equation holds according to Equation (1). Meanwhile, since m(x) satisfies
f(m(x)), if {Fl}knl=0 are correctly computed, the following equation also holds,

Com(g(x); f(m(x))) =

kn∑

l=0

Fl · xl.
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Special Soundness: To prove the special soundness property, we need to show
that there exists an efficient algorithm that extracts the witness m(X) for the
statement in Π2 given by a malicious prover. Here we can follow the similar
process we used for Π1. For each j, the extractor uses the rewinding lemma
to the algorithm to query the malicious prover with different challenge values.
Therefore, we rewind Π2 for n times under different challenges to obtain n tran-
scripts. We get n points for each polynomial mj(X) with a degree at most n.
Accordingly, a Vandermonde matrix can be built, and an efficient algorithm ex-
ists for computing the inverse of the matrix in polynomial time. Therefore, we
can extract the secret values mj for each mj(X) based on n transcripts in poly-
nomial time. As a result, the extractor can compute m(X) from n transcripts
in polynomial time. Ensured by the completeness of protocol Π2, the extractor
either (1) computes a satisfying witness m(X) for the constraint function f(·) or
(2) discovers another polynomial f ′(X) equals to f(m(X) on the challenge x (3)
discovers a non-trivial instance for Com(g(x), f(x)) =

∑kn
l=0 Fl ·xl. The probabil-

ity of case (2) is negligible due to the Schwartz-Zippel lemma. The probability of
case (3) is also negligible due to the binding property of the commitment scheme
Com.
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