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1 Introduction

zk-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) are cryptographic proto-
cols that enable a prover to convince a verifier they know a possibly secret witness for a particular statement
without revealing any details beyond the statement’s validity. For example, the prover can demonstrate
the correct output of a computation on private inputs without disclosing those inputs themselves. These
arguments are both succinct and non-interactive because the proof consists of a single short message from
the prover to the verifier, which can be verified quickly. The practical importance of zk-SNARKs has been
recognized in privacy-preserving applications in decentralized systems like blockchain, where ensuring both
the correctness of computations and the confidentiality of underlying data is critical.

Polynomial commitment schemes (PCSs) [KZG10], crucial building blocks for practical zk-SNARKs,
enable efficient and succinct verification of polynomial evaluations without revealing the polynomial itself.
Provers can commit to a polynomial and later prove, with minimal communication, that it evaluates to
a certain value at a specific point. This reduces communication and computational overhead, essential for
the scalability of zk-SNARKs, making them practical for real-world applications that require fast and low-
bandwidth proofs. Central results on zk-SNARKs constructed polynomial commitment schemes and proved
their security properties in various models and under various assumptions [MBKM19, CHM+20, GWC19,
BDFG21]. Significant focus has been on the scheme presented by Kate, Zaverucha, and Goldberg [KZG10]
and its extensions [PST13, ZGK+17a], as it offers the best communication complexity.

A zk-SNARK, being an Argument of Knowledge, guarantees that the prover actually holds a valid witness
(e.g., a solution to a hard problem or a secret key) for the statement being proved. This knowledge-soundness
property goes beyond computational soundness—where it is merely infeasible for a dishonest prover to
convince the verifier of a false statement—by ensuring that no convincing proof can be constructed without
truly possessing the witness. It is fundamental that the polynomial commitment used in zk-SNARKs also
possesses the knowledge-soundness property, which ensures that if a prover can provide convincing evaluation
proofs with respect to some commitment, then there exists a well-defined polynomial that the prover must
know. This prevents dishonest provers from creating fake proofs without actually knowing the polynomial,
ensuring the commitment corresponds to a legitimate polynomial.

The extractability of the KZG scheme. The KZG polynomial commitment and its variants were ex-
ploited in various constructions of communication-efficient zk-SNARKs. However, most proofs of knowledge-
soundness for KZG [ZGK+17a, CHM+20, GWC19] are limited by the reliance on knowledge assumptions
or idealized models, such as the Algebraic Group Model (AGM) [FKL18]. Knowledge assumptions, being
non-falsifiable, limit our reasoning about security in real-world cryptographic settings [Nao03]. Similarly,
while the AGM is useful for analyzing algebraic hardness assumptions, it presumes an idealized environment
that does not fully capture practical cryptographic interactions.

Recently, Lipmaa, Parisella, and Siim [LPS24a, LPS24b] introduced the Adaptive Rational Strong Diffie-
Hellmann (ARSDH) assumption in bilinear groups and demonstrated that it can be used to prove the
knowledge-soundness of the univariate KZG polynomial commitment and its batched variant, which are
important for practical zk-SNARKs such as PlonK [GWC19]. Thus, they gave the first proof of knowledge-
soundness for the univariate KZG commitment scheme in the standard model under a new, yet falsifiable,
cryptographic assumption. Being the first of its kind, their work suggests many important open problems.
Most importantly, the adversary’s task in the ARSDH security game closely mirrors the structure of the final
verification check performed by the verifier on a KZG evaluation proof. This means that the assumption and
the proof of knowledge-soundness are intricately linked to the specific operations and algebraic properties of
the univariate KZG scheme. Consequently, if one attempts to generalize the proof of knowledge-soundness
from Lipmaa et al. to other variants of the KZG scheme – such as, e.g., for multivariate polynomials [PST13,
LXZ+24, LLZ+24] – the ARSDH assumption may no longer be applicable or sufficient. These variants, in
particular, are currently not addressed by the techniques from Lipmaa et al.
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1.1 Our Contribution

In this work, we establish knowledge-soundness for most known variants of the KZG polynomial commitment
scheme. To this end, we generalize the proof technique introduced in [LPS24a] into a unifying framework
enabling a rigorous proof of knowledge-soundness for any pairing-based polynomial commitment schemes
with a “KZG-like” verification check.

PCS extractability via canonical proofs of knowledge of a polynomial. The common approach to
defining knowledge-soundness for a polynomial commitment scheme in the literature is to require knowledge-
soundness from the evaluation proof or the interactive opening protocol for evaluation at a specific point.
However, this straightforward and seemingly sensible choice results in a formal definition that unnecessarily
emphasizes the specific value at an arbitrary evaluation point. Indeed, the canonical use of a polynomial
commitment scheme that requires some notion of extractability is when transforming a Polynomial Interactive
Oracle Proof (PIOP) into a SNARK. However, there the verifier needs to evaluate the committed polynomial
at a random evaluation point x. Moreover, the actual value z at x is of no significant importance to the
verifier outside of the scope of the PIOP.

Motivated by this observation, we define a general notion of a Proof of Knowledge of a Polynomial for a
PCS (PoKoP), which is an interactive protocol for the “commitment relation” corresponding to the PCS, i.e.,
a proof of knowledge of a polynomial f represented by the commitment C held by the verifier. Note that, as
just stated, a PoKoP might not be useful in a compiler from PIOPs to SNARKs as it does not guarantee that
the verifier learns an evaluation of the committed polynomial at any point – the “knowledge” of a committed
polynomial could be, in principle, established by protocols that do not explicitly evaluate the polynomial.
However, the canonical application of polynomial commitments in this context itself defines what we call the
canonical PoKoP for a PCS : Given the commitment C, the verifier samples a uniform evaluation point x
and sends it to the prover who sends back the value z at x together with an evaluation proof or, in the case
of polynomial commitment schemes with an interactive evaluation proof, they proceed with the interactive
evaluation proof. With this perspective, proving the extractability of a PCS simply means establishing that
the above canonical PoKoP for the PCS is an argument of knowledge for its commitment relation.

By studying the canonical PoKoP of the multivariate KZG scheme, we manage to establish a clear
statement about the extractability of the multivariate KZG scheme from [PST13]. Additionally, we can
directly rely on various general results about proofs of knowledge such as general forking lemmata or the
known relationships between witness-extended emulation and knowledge-soundness. Finally, we are able to
easily transfer our techniques to many variants of the multivariate KZG scheme.

KZG PCS family via an explicit polynomial decomposition lemma. Both the univariate KZG
scheme [KZG10] and its multivariate variant [PST13] are based on the following simple, yet surprisingly
useful, proposition from algebraic geometry: a polynomial g(X1, . . . , Xn) vanishes on (x1, . . . , xn) ∈ Fn if
and only if it admits a decomposition g(X1, . . . , Xn) =

∑n
i=1 qi(X1, . . . , Xn)(Xi − xi) for some polynomials

qi. In the context of polynomial commitments, we use the proposition with the polynomial g(X1, . . . , Xn) =
f(X1, . . . , Xn)− z to test the claim that f(x1, . . . , xn) = z. By the proposition,

f(X1, . . . , Xn)− z =
n∑

i=1

qi(X1, . . . , Xn)(Xi − xi) (1)

for some polynomials qi if and only if f(x1, . . . , xn) − z = 0. In the univariate case, the multivariate test
simplifies to checking whether f(X)−z = q(X)(X−x), where q(X) = (f(X)−z)/(X−x) is the quotient after
dividing the polynomial f(X)− z by X −x. By the proposition, the remainder in this polynomial division is
zero if and only if f(x) = z. Kate, Zaverucha, and Goldberg [KZG10] showed that, in the setting of bilinear
groups, the evaluation test via the existence of a suitable quotient polynomial q leads to an extremely
efficient polynomial commitment scheme for univariate polynomials. Subsequently, Papamanthou, Shi, and
Tamassia [PST13] showed that, also for multivariate polynomials, the quotient polynomials qi in eq. (1) can
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be computed efficiently via sequential polynomial division by the linear factors (X1 − x1), . . . , (Xn − xn),
which allowed them to extend the univariate construction from [KZG10] to an arbitrary number of variables.

We observe and prove that multivariate polynomials also admit explicit quotient decompositions analo-
gous to the univariate case. We use the corresponding explicit multivariate polynomial decomposition lemma
(Lemma 1) to show various structural properties of the multivariate KZG scheme from [PST13] that allow
us to eventually prove its knowledge-soundness under a natural generalization of the ARSDH assumption
from [LPS24a]. Since multivariate polynomial decomposition via quotient polynomials is at the core of any
“KZG-like” polynomial commitment scheme, our explicit multivariate polynomial decomposition lemma could
be of independent interest.

Interpolating extractors under the ARSDH family of assumptions. The extraction strategy for the
univariate KZG scheme presented in [LPS24a] proceeds, quite naturally, via interpolation from accepting
evaluation proofs for a random interpolation domain as follows: Given a commitment key ck and commitment
C supposedly computed from a polynomial f of degree n, their extractor works in rounds, where, in each
round, it samples (without replacement) a uniform evaluation point x ← F and asks the prover for the
evaluation and evaluation proof for x. The extractor terminates after receiving n + 1 accepting evaluation
proofs. Then it simply outputs the interpolating polynomial L(X) of degree n consistent with all the n+ 1
pairs of evaluation points and values with accepting evaluation proofs.

To establish black-box extractability of the KZG scheme, [LPS24a] showed that 1) the above extraction
strategy runs in expected polynomial time and 2) under their new ARSDH assumption, the interpolating
polynomial L(X) is consistent with the commitment C except with a negligible probability. In more detail,
[LPS24a] proved a “batching lemma” ensuring that any set of n+1 accepting KZG evaluation proofs defining
an interpolating polynomial L(X) can be combined into a single group identity, which seems computationally
hard to satisfy with L(X) that is not consistent with C. In other words, if we assume the hardness of
satisfying such a group identity (formalized by [LPS24a] in ARSDH) then, by their batching lemma, we get
the consistency of the interpolating extractor with the commitment, proving the knowledge-soundness of the
univariate KZG scheme.

Our proof of knowledge-soundness of the multivariate KZG scheme is also established by analyzing
its interpolating extractor that gathers enough accepting transcripts and then outputs the interpolating
multivariate polynomial L(X1, . . . , Xn). To prove the consistency of L(X1, . . . , Xn) with the commitment,
we establish two multivariate batching lemmata (Lemmas 2 and 5) for the multivariate KZG scheme. Similarly
to the univariate batching lemma from [LPS24a] and ARSDH, our two batching lemmata motivate two new
computational hardness assumptions that can be viewed as further generalizations of the Rational Strong
Diffie-Hellmann assumption [GR19]. The first new assumption is a natural extension of ARSDH to the
context of multivariate KZG. In fact, the ARSDH from [LPS24a] is a special case of our new assumption
when restricted to a univariate scheme, and, thus, we simply call it ARSDH. The second assumption, which
we call GARSDH, is a strengthening and generalization of ARSDH. Conceptually, since the weaker ARSDH
assumption is less tailored to the interpolating extractor, it is harder to use for arguing the consistency of
its output with the commitment. On the other hand, the stronger GARSDH assumption allows for a more
direct argument while, arguably, being more tailored to the multivariate interpolating extractor.

To summarize, our results provide the first standard-model proofs of extractability for the multivariate
KZG scheme and many of its variants under falsifiable assumptions.

1.2 Other Related Work

Many works build upon the multivariate KZG scheme from [PST13] or its zero-knowledge variant [ZGK+17b],
e.g., [AM14, ZGK+17a, ZGK+18, Set20, CBBZ23, CGG+23, LXZ+24, LLZ+24, PP24, DMS24, Lib24,
BMM+24, WHZ24, LZW+24]. The polynomial decomposition lemma from [PST13] is used, for example,
in [ZGK+18, WZXP22, Lib24]. The Pianist [LXZ+24] and HyperPianist [LLZ+24] constructions rely on
extractability of the multivariate KZG scheme from [PST13]. The authors point to [ZGK+17a] and claim
that extractability was proven there. However, the authors of [ZGK+17a] proved that a modification of the
multivariate KZG scheme is extractable under the non-falsifiable power knowledge of exponent assumption.
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1.3 Organization of the Paper

In Section 2, we give an extensive overview of our techniques, illustrating them on the bivariate KZG scheme
and then explaining how to extend them to the general multivariate scheme and its variants. In Section 3,
we recall some basic notation and definitions. In Section 4, we formally define proofs of knowledge of a
polynomial (PoKoPs), prove our explicit polynomial decomposition lemma, and use it to present the KZG
family and its PoKoPs. In Section 5, we introduce the n-variate ARSDH and GARSDH assumptions and use
them to prove the special soundness of the KZG PoKoPs. In Section 6, we recall the [ACK21] extraction
strategy, use it to prove the knowledge-soundness of the KZG PoKoPs, and discuss the relationship between
PoKoPs and the notion of black-box extractability for polynomial commitments from [LPS24a]. In Section 7,
we discuss other variants of the multivariate KZG scheme that can be shown extractable using our techniques.
In Section 8, we analyze the security of ARSDH and GARSDH in the algebraic and generic group models.
In Section 9, we revisit the notion of computational uniqueness of proofs for the KZG family. In Section 10, we
discuss the notions of evaluation binding achieved under the SBDH assumption by the basic and randomized
multivariate KZG schemes from [PST13].

2 Overview of Our Techniques

As we discussed in Section 1.1, when proving the knowledge-soundness of a polynomial commitment scheme
in the standard model, it is natural to use the interpolating extractor that gathers accepting evaluation
proofs for some feasible interpolation domain and then outputs the interpolating polynomial consistent with
the received evaluations. The crux of the proof then lies in establishing that the interpolating polynomial is
consistent with the received commitment C, which is the focus of the next two subsections.

Bivariate KZG. For concreteness, we illustrate our proof on the bivariate variant of the KZG scheme. Recall
that, we are in a setting of bilinear groups, i.e., both prover and verifier have access to additive groups G1, G2

and a multiplicative “target” group GT , all of prime order p. Additionally, there is an efficiently computable
pairing, i.e., a non-degenerate bilinear map e : G1 ×G2 → GT . To simplify the notation and make algebraic
manipulations clearer, we use the bracket notation for group elements, i.e., we write [a]1 = a[1]1, where [1]1
is the generator of G1 (and similarly for G2). We use the symbol • as a binary operator that represents an
application of the pairing, i.e., [a]1 • [b]2 = e([a]1, [b]2), and the symbol ⊗ for multiplication in the target
group. Finally, we use [n] to denote the set {0, . . . , n}.

In the bivariate KZG scheme, the prover’s input f(X,Y ) =
∑m

i=0

∑n
j=0 fi,jX

iY j ∈ Fp[X,Y ] is a bivariate
polynomial of maximal X-degree m and Y -degree n. As is common in any variant of the KZG scheme, the
commitment C to f(X,Y ) is a discrete logarithm commitment [f(σ, τ)]1 to the value of f at some secret
evaluation point (σ, τ)← F2

p. Importantly, the prover does not know (σ, τ) and, to compute the commitment
C = [f(σ, τ)]1, receives a commitment key ck =

(
{[1]1, [1]2, ([σiτ j ]1)i∈[m],j∈[n], [σ]2, [τ ]2,

)
comprising the

commitments to the evaluations of all the standard basis polynomials, i.e., all the monomials of the form
XiY j . Note that, given ck and the coefficients of the polynomial f , the commitment can be computed simply
as C = [f(σ, τ)]1 =

∑m
i=0

∑n
j=0 fi,j [σ

iτ j ]1.
To compute the evaluation proof for value z ∈ Fp at (x, y) ∈ F2

p, the prover and verifier rely on the
following identity:

f(X,Y )− f(x, y) = f(X,Y )− f(x, Y )

X − x
(X − x) + f(x, Y )− f(x, y)

Y − y
(Y − y),

where q1(X,Y ) = f(X,Y )−f(x,Y )
X−x and q2(Y ) = f(x,Y )−f(x,y)

Y−y are, in fact, polynomials. The correctness of
the above decomposition is a special case of our explicit polynomial decomposition lemma (Lemma 1) we
discussed in Section 1.1, when restricted to bivariate polynomials. Thus, the verifier tests the claim that
f(x, y) = z by verifying the correctness of the polynomial decomposition on the secret evaluation point
(σ, τ), i.e., that

f(σ, τ)− z = q1(σ, τ)(σ − x) + q2(τ)(τ − y).
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Even though neither the prover nor the verifier knows (σ, τ), the above check can be made efficient by
exploiting the bilinearity of the pairing. The prover sends a proof π = (π1, π2) = ([q1(σ, τ)]1, [q2(τ)]1) to the
verifier, who, instead of the above identity over F, checks the target group identity

[c− z]1 • [1]2 = π1 • [σ − x]2 ⊗ π2 • [τ − y]2,

which is easy to compute given the commitment key ck, commitment C = [c]1, evaluation point (x, y),
claimed value z, and evaluation proof π.

2.1 Special Soundness via a Batching Lemma for Structured Accepting Evaluation Proofs

We wish to argue that, unless it breaks some hard computational problem, any prover who succeeds in
constructing accepting evaluation proofs for C = [c]1 at many evaluation points (x, y) in the bivariate KZG
scheme is soon bound to the interpolating polynomial defined by the provided z-values. Specifically, it should
be possible to construct a polynomial L(X,Y ) consistent with all the accepting evaluation proofs as well as
the commitment [c]1, i.e., such that [c]1 = [L(σ, τ)]1 or, equivalently, [c− L(σ, τ)]1 = [0]1.

First, we recall some useful notation for Lagrange interpolation (see Definition 1 for the formal definitions).
For the purpose of this technical overview, {ℓSj (Y )}j∈[n] is simply the set of n + 1 polynomials of degree n
such that, if S = {yj}j∈[n] then for all j ∈ [n], ℓSj (yj) = 1 and ℓSj (y) = 0 for all y ∈ S \ {yj}. Later, we use
the fact that the polynomial

∑
j∈[n] ℓ

S
j (Y ) is the constant identically 1 polynomial, which follows since it is

a polynomial of degree at most n that evaluates to 1 on all of S.
Now, we discuss the construction of the interpolating polynomial L(X,Y ) from accepting transcripts

in two steps. Suppose, we have accepting proofs for values z0, . . . , zn at distinct points (x, y0), . . . , (x, yn)
that share the first coordinate. Then, we can take the corresponding univariate interpolating polynomial
Lx(Y ) of degree n that agrees with the values {zj}j∈[n] at the evaluation domain {(x, yj)}j∈[n]. Formally, for
the univariate Lagrange basis {ℓSj (Y )}j∈[n] w.r.t. the evaluation domain S = {yj}j∈[n], we define Lx(Y ) =∑n

j=0 zjℓ
S
j (Y ). Note that if we were interacting with an honest prover then Lx(Y ) would agree with the

univariate restriction fx(Y ) = f(x, Y ) of the prover’s bivariate polynomial f(X,Y ). Even though we cannot
assume that the prover is honest, under a suitable computational hardness assumption, we establish some
strong consistency property of Lx(Y ) w.r.t. C for arbitrary computationally bounded prover.

Bivariate batching lemma. Our initial observation is that if, for each pair ((x, yj), zj), we had an accepting
evaluation proof πj = ([φ]1, [ψj ]1), i.e., with a shared first component [φ]1,4 satisfying the verification check

[c− zj ]1 • [1]2 = [φ]1 • [σ − x]2 ⊗ [ψj ]1 • [τ − yj ]2, (2)

then we can establish that

[c− Lx(τ)]1 • [1]2 = [φ]1 • [σ − x]2 ⊗ [ψ]1 • [ZS(τ)]2, (3)

where ZS(Y ) =
∏n

j=0(Y − yj) is the vanishing polynomial of the set S = {yj}nj=0 and [ψ]1 =
∑n

j=0 w
S
j [ψj ]1

with wS
j = ℓSj (Y )(Y − yj)/ZS(Y ) for all j ∈ [n].

The above transformation of the n+1 equalities in eq. (2) into eq. (3) involving the partial interpolating
polynomial Lx(Y ) is a bivariate analogue of the univariate batching lemma from [LPS24a]. Since our proof
of this bivariate batching lemma is very direct, we present it next. We expand and manipulate the left side

4 If we interacted with an honest prover then the evaluation proofs would have shared π1 for any pair of evaluation
points that share the X-value since, by our explicit polynomial decomposition lemma, the first quotient polynomial
q1 does not depend on the Y -value. We address how to extract such structured transcripts from an arbitrary prover
in the following section.
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in eq. (3) to derive the right side:

[c− Lx(τ)]1 • [1]2 =

c− n∑
j=0

zjℓ
S
j (τ)


1

• [1]2

=

 n∑
j=0

ℓSj (τ)(c− zj)


1

• [1]2

=

 n∑
j=0

ℓSj (τ) (φ(σ − x) + ψj(τ − yj))


1

• [1]2

=

 n∑
j=0

ℓSj (τ)φ(σ − x) +
n∑

j=0

ZS(τ)w
S
j ψj


1

• [1]2

= [φ(σ − x) + ZS(τ)ψ]1 • [1]2
= [φ]1 • [σ − x]2 ⊗ [ψ]1 • [ZS(τ)]2.

The correctness of the above derivations can be justified as follows. In the first equality, we used the definition
of Lx(Y ) via Lagrange interpolation. In the second equality, we used that

∑n
j=0 ℓ

S
j (Y ) = 1 (as we mentioned

when introducing a Lagrange basis). In the third equality, we used eq. (2), and the bilinearity of the pairing.
In the fourth equality, we used that ℓSj (Y )(Y − yj) = ZS(Y )wS

j . In the fifth equality, we again used the
fact that

∑n
j=0 ℓ

S
j (Y ) = 1, along with the definition of [ψ]1. Finally, we just moved terms around using the

bilinearity of the pairing.

Inductive proof using partial interpolants from the bivariate batching lemma. At first, eq. (3)
might not seem like much progress. However, if it additionally held that [c− Lx(τ)]1•[1]2 = [φ]1•[σ−x]2 then
we would have obtained an accepting univariate KZG proof establishing that fτ (X) = f(X, τ) evaluates to
Lx(τ) at x. Intuitively, we got one step closer to constructing a bivariate L(X,Y ) such that [c−L(σ, τ)]1 = [0]1
as we now have a univariate Lx(Y ) that is consistent with C at (x, τ). If we had m + 1 such identities for
distinct x0, . . . , xm, we could combine the corresponding univariate polynomials Lxi(Y ) via the Lagrange
basis {ℓUi (X)}i∈[m] w.r.t. U = {xi}i∈[m]. By its construction, the resulting bivariate interpolating polynomial
L(X,Y ) =

∑m
i=0 ℓ

U
i (X)Lxi

(Y ) would be a suitable candidate polynomial consistent with all the observed z
values that our extractor could output. Importantly, to show that [c−L(σ, τ)]1 = [0]1, i.e., the consistency of
L(X,Y ) with the commitment C, we could now rely on the consistency of the partial univariate interpolants.
Originally, we had to derive the consistency of the bivariate interpolating polynomial L(X,Y ) directly from
the consistency of the evaluations on some interpolation domain (established in the accepting proofs we got
from the prover). Now, we could split the argument into the first step where we derive the consistency of the
partial univariate interpolating polynomials Lxi

(Y ) and then derive the consistency of the bivariate L(X,Y )
from the consistency of the univariate polynomials Lxi

(Y ). Importantly, we could now proceed inductively
via univariate interpolation in each step.

Let us have a set U = {xi}i∈[m], where for each x ∈ U we have that eq. (3) holds. First, we justify
that, for all x ∈ U , we can assume [c− Lx(τ)]1 • [1]2 = [φ]1 • [σ − x]2 when extracting from a polynomially
bounded prover. Suppose that [c− Lx(τ)]1 • [1]2 ̸= [φ]1 • [σ−x]2. If we denote χ = c−Lx(τ) and b = φ(σ−x)
then, by eq. (3), we managed to use the prover to efficiently construct elements [χ]1 ̸= [b]1, [φ]1, and [ψ]1
and a set S of size n + 1 such that ψ = (χ − b)/ZS(τ). Intuitively, this should be hard as our input is
the commitment key ck where the maximal power of τ in any term is n, yet we managed to divide by the
evaluation ZS(τ) of a polynomial ZS(Y ) of degree n+ 1. The computational hardness of the corresponding
task can be seen as a generalization of q-strong Diffie-Hellman (q-SDH) assumption similar to the ARSDH
assumption of Lipmaa et al. [LPS24b]. Thus, under such computational hardness assumption, it holds that
[c− Lx(τ)]1 • [1]2 = [φ]1 • [σ − x]2 except with a negligible probability.
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Now, we conclude by showing that [c − L(σ, τ)]1 = [0]1 from the consistency of the univariate partial
interpolants Lxi(Y ). In the same way we showed eq. (3) from the n + 1 identities described in eq. (2), we
can use the m+ 1 identities [c− Lxi

(τ)]1 • [1]2 = [φxi
]1 • [σ − xi]2 to derive that

[c− L(σ, τ)]1 • [1]2 = [φ]1 • [ZU (σ)]2,

where [φ]1 =
∑m

i=0 d
U
i [φxi ]1. The derivation is a special case of the bivariate batching lemma we discussed

above, and, in fact, it is exactly the univariate batching lemma from [LPS24a]. Additionally, similarly to
above, finding group elements that satisfy this last equality is likely computationally hard for [c−L(σ, τ)]1 ̸=
[0]1 as it would be equivalent to finding [χ]1 = [c − L(σ, τ)]1 ̸= [0]1, [φ]1, and U of size m + 1 such that
φ = χ/ZU (σ). In fact, the computational hardness of this task is exactly the ARSDH assumption of Lipmaa et
al. [LPS24b]. Therefore, we can conclude that [c−L(σ, τ)]1 = [0]1, showing that the interpolating polynomial
L(X,Y ) is consistent with the commitment C.

Concluding about the direct interpolation via an interpolation shuffle. In summary, the above
discussion establishes the special soundness of the bivariate KZG scheme under the bivariate ARSDH as-
sumption (We show in Section 5.2 that bivariate ARSDH implies the original ARSDH.) via the above two stage
interpolation from a set of accepting evaluation proofs {(C, (xi, yj), zi,j , πi,j = (π

(1)
i , π

(2)
i,j ))}xi∈U,yj∈S , i.e.,

where the evaluation proofs for any pair of evaluation points (xi, yj) and (xi, yk) share the first component
π
(1)
i . Note that, by rearranging the terms, the corresponding interpolating polynomial

∑m
i=0 ℓ

U
i (X)Lxi

(Y )
is equal to the polynomial we get by direct bivariate interpolation on the evaluation domain U × S for
U = {xi}i∈[m] and S = {yj}j∈[n], i.e.,

L(X,Y ) =

m∑
i=0

ℓUi (X)Lxi
(Y ) =

m∑
i=0

n∑
j=0

zi,jℓ
U
i (X)ℓSj (Y ).

Thus we have been implicitly discussing the direct interpolating extractor all along, and the above discussion,
in fact, establishes the consistency of its output with the commitment C. In the following Section 2.2, we
discuss how to extract transcripts with the needed structure.

Could there be a reduction from extractability of univariate KZG to extractability of (two-
round) bivariate KZG? Note that the first element of the proof π1 is a commitment to the first quotient
polynomial q1(X,Y ) = (f(X,Y ) − f(x, Y ))/(X − x), and, hence, the group element C − (σ − x) · π0 =
C − [f(σ, τ) − f(x, τ)]1 = [f(x, τ)]1 is a commitment to the univariate polynomial f(x, Y ). At first glance,
one could hope to use only the univariate KZG extractor for interpolating L(X,Y ) as follows: first ask the
prover for evaluation points f(x, yi) for M +1 distinct choices of yi and extract the corresponding univariate
polynomials f(xi, Y ) and then simply interpolate the bivariate polynomial f(X,Y ) from these. Unfortunately,
this extraction is not feasible, because it would require computing the commitment C − (σ − x) · πo, which,
if successful, would allow solving the computational DH assumption on instance (π0, [σ − x]1).

2.2 Extracting Structured Transcripts

To show that bivariate KZG is black-box extractable, we show how to extract a suitable set of structured
accepting evaluation proofs from any prover who succeeds in providing an accepting evaluation proof with
a non-negligible probability. Note that our arguments in Section 2.1 do not crucially rely on the product
structure of the evaluation domain, and we used it only to aid the simplicity of exposition of our proof. The
same consistency property holds under bivariate ARSDH also for the interpolating polynomial

L(X,Y ) =

m∑
i=0

n∑
j=0

zi,jℓ
U
i (X)ℓSi

j (Y )
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defined using an accepting set {(C, (xi, yi,j), zi,j , πi,j = (π
(1)
i , π

(2)
i,j ))}xi∈U,yi,j∈Si

, i.e., with a possibly distinct
set Si = {yi,0, . . . , yi,m} for each xi ∈ U . Thus, it is sufficient to extract such a set of transcripts, which
slightly simplifies our task.

The natural approach is to proceed via uniform rejection sampling as follows. At the i-th iteration, we
sample a uniform xi ← F and then sample yi,j ← F until we collect n + 1 accepting transcript from the
prover w.r.t. xi and distinct yi,j ’s. Then we sample new xi+1 and repeat. If the prover’s success probability
is δ then we expect to get the sought transcripts after roughly (m+ 1)(n+ 1)δ−2 samples with probability
close to one.

However, the above extraction strategy does not ensure any consistency of the extracted accepting eval-
uation proofs. The main issue is that if we ask the prover for evaluation proofs for any pair of evalua-
tion points (xi, yj) and (xi, yk) sharing the X-value then we are not guaranteed a pair of evaluation proofs
(C, (xi, yj), zi,j , πi,j = (π

(1)
i,j , π

(2)
i,j )) and (C, (xi, yk), zi,k, πi,k = (π

(1)
i,k , π

(2)
i,k )) such that π(1)

i,j = π
(1)
i,k . The question

of whether we can extract such a pair of evaluation proofs is strongly related to the so-called computational
uniqueness of proofs property of the bivariate KZG scheme, i.e., that finding multiple accepting proofs for
the same statement should be computationally hard. On one hand, by our explicit polynomial decomposition
lemma (Lemma 1), honest evaluation proofs for evaluation points sharing a prefix of the coordinates share
also prefixes of the proof elements (each quotient polynomial depends only on the corresponding prefix of
the evaluation point). Also, if computational uniqueness of proofs does not hold for the multivariate KZG
scheme then we cannot hope to extract transcripts with consistent proofs from the prover. It was observed
that univariate KZG scheme satisfies the computational uniqueness of proofs under the bilinear n-strong
Diffie-Hellmann (n-SBDH) assumption, where n is the maximal degree of the committed univariate poly-
nomial. However, the computational uniqueness of proofs does not hold for the bivariate KZG scheme in a
very strong sense: given any accepting evaluation proof, it is possible to efficiently sample one of q distinct
accepting proofs for the same statement, where q is the order of G1 (See Section 9 for an additional discussion
of the computational uniqueness of proofs for the KZG family). Thus, a cheating prover can re-randomize
evaluation proofs without any loss in its acceptance probability.

Proof consistency by extending the KZG PoKoP. To get around this issue and force the prover to
provide consistent proofs for evaluation proofs sharing the X-coordinate, we consider an extended variant of
the canonical PoKoP for the bivariate KZG scheme. Recall from the description of the bivariate KZG scheme
that, given an evaluation point (x, y) the two components of an evaluation proof are simply commitments
to evaluations of the quotient polynomials q1(X,Y ) = f(X,Y )−f(x,Y )

X−x and q2(Y ) = f(x,Y )−f(x,y)
Y−y at the secret

evaluation point (σ, τ). Importantly, the polynomial q1 does not depend on the Y -coordinate of the evaluation
point and the prover can compute π1 = [q1(σ, τ)]1 once it receives x, i.e., the X-coordinate of the evaluation
point. This observation allows us to perform the evaluation proof interactively: The verifier first sends only
the X-coordinate of the evaluation point to the prover. The prover computes the first proof element π1 and
sends it to the verifier. Then, the verifier sends also the Y -coordinate to the prover who can now compute
z = f(x, y) and π2, and send them to the verifier. Finally, the verifier performs the same check as in the
bivariate KZG scheme. We call this protocol the extended PoKoP for the bivariate KZG scheme.

Even though seemingly insignificant, the move to the extended KZG PoKoP allows us to use rewinding
to extract evaluation proofs that share the first component for evaluation points sharing the X-coordinate.
If the extractor proceeds with the two-round evaluation proof with (xi, yi,j) it receives π(1)

i,j in the first round
and π(2)

i,j in the second. Then, it can rewind the prover to the state after the first round and run the second
round with Y -coordinate yi,k, receiving π(2)

i,k . In case both (π
(1)
i,j , π

(2)
i,j ) and (π

(1)
i,j , π

(2)
i,k ) are accepting, we indeed

have accepting evaluation proofs that share the first component for evaluation points (xi, yi,j) and (xi, yi,k).
We use the rewinding approach to show that if the success probability of the prover over (x, y) ← F2 is
δ then, with constant probability we can extract the T = (m + 1)(n + 1) accepting transcripts needed for
special soundness after performing roughly Tδ−2 evaluation proofs. For an inverse polynomial δ, this would
result in a polynomial-time extraction.
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At first, it might be somewhat confusing that the prover learns the complete evaluation point only in
the last round of the extended PoKoP, and, in fact, we crucially rely on this property towards extraction as
we discuss above. However, note that our original goal was to establish the extractability of a PoKoP, i.e., a
proof of knowledge of a polynomial, and, thus, there is no specific evaluation point we really wish to evaluate
the commited polynomial on. Nevertheless, through the extended protocol, the verifier would still learn an
evaluation of the committed polynomial at a uniform evaluation point and could use it outside of the scope
of the extended PoKoP when used as a subroutine in some higher-level protocol (e.g., in a PIOP to SNARK
compiler). Finally, note that the extended protocol is, for all practical purposes, equivalent to the canonical
one, where the verifier sends the complete evaluation point in a single round. We did not introduce any
overhead to the parties and the protocol is still public-coin. Thus, in the Random Oracle Model, we could
use the Fiat-Shamir heuristic in a round-by-round fashion to collapse it into a non-interactive PoKoP.

By combining the observations from Sections 2.1 and 2.2 we establish black-box extractability of the
bivariate KZG scheme:

Theorem 1. (informal) Under the bivariate ARSDH assumption, the extended PoKoP is a proof of knowledge
of a polynomial for the bivariate KZG scheme.

In the following sections, we discuss how we extend this result to the multivariate scheme (Section 2.3)
and to the canonical PoKoP (Section 2.4).

2.3 Extractability of Multivariate KZG

Our proof of black-box extractability for the bivariate KZG can be naturally extended to the n-variate KZG
scheme from [PST13] and its other recent variants such as [LXZ+24, LLZ+24].

First, we recall the multivariate scheme using our explicit polynomial decomposition lemma (Lemma 1),
which shows that for any multivariate polynomial f(X1, . . . , Xn), the prover can prove the correctness of
evaluation at (x1, . . . , xn) using the following identity

f(X1, . . . , Xn)− f(x1, . . . , xn) =
n∑

i=1

qi(Xi, . . . , Xn)(Xi − xi),

where qi(Xi, . . . , Xn) =
f(x1,...,xi−1,Xi,...,Xn)−f(x1,...,xi,Xi+1,...,Xn)

(Xi−xi)
is a polynomial in variables Xi, . . . , Xn for

all 1 ≤ i ≤ n. The commitment to f is C = [f(t1, . . . , tn)]1 for a secret evaluation point (t1, . . . , tn).
Analogously to the bivariate case, the commitment key ck contains the evaluations of all the n-variate
monomials satisfying some degree bounds d = (d1, . . . , dn) on (t1, . . . , tn). The evaluation proof π comprises
commitments to the n quotient polynomials, i.e., π = (π1, . . . , πn) = ([q1(t1, . . . , tn))]1, . . . , [qn(tn)]1). For an
evaluation point (x1, . . . , xn) and the claimed value z, the verifier checks that

(C − [z]1) • [1]2 =

n⊗
i=1

πi • [ti − xi]2

given the commitment C, evaluation proof π and commitment key ck.

Special soundness. Similarly to the proof of special soundness for the bivariate KZG scheme under the
bivariate ARSDH assumption outlined in Section 2.1, the core technical result is an n-variate batching
lemma (see Lemma 2 in Section 5.1). Let d1, . . . , dn be the maximal degrees for the variables X1, . . . , Xn in
f (respectively). Then, given dn +1 accepting proofs for the evaluation points {(x1, . . . , xn−1, yj)}yj∈S with
S = {yj}j∈[dn], we have dn + 1 equations

[c− zj ]1 • [1]2 =

n−1⊗
i=1

[φi]1 • [ti − xi]2 ⊗ [ψj ]1 • [tn − yj ]2. (4)
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Again, we can establish that

[c− Lx1,...,xn−1
(tn)]1 • [1]2 =

n−1⊗
i=1

[φi]1 • [ti − xi]2 ⊗ [ψ]1 • [ZS(tn)]2 (5)

for Lx1,...,xn−1
(Xn) =

∑dn

j=0 zjℓ
S
j (Xn) and [ψ]1 =

∑dn

j=0 d
S
j [ψj ]1. If it additionally holds that

[c− Lx1,...,xn−1
(tn)]1 • [1]2 =

n−1⊗
i=1

[φi]1 • [ti − xi]2 (6)

then we have an evaluation proof in an (n − 1)-variate KZG scheme certifying that the (n − 1)-variate
polynomial ftn(X1, . . . , Xn−1) = f(X1, . . . , Xn−1, tn) evaluates to Lx1,...,xn−1

(tn) at (x1, . . . , xn−1). Note
that Equation (6) would be implied by the corresponding n-variate ARSDH, which we denote ARSDH(n).
Thus, we can proceed inductively over the variables, at the i-th step relying on ARSDH(i). Specifically, we
show that if we interpolate over a feasible interpolation domain using accepting transcripts that share prefixes
of the evaluation proofs then the interpolating polynomial is consistent with the commitment C except with
negligible probability under the n-variate ARSDH.

From special soundness to knowledge-soundness. Note that, for an arbitrary number of variables n,
each quotient polynomial qi depends only on (x1, . . . , xi). Analogously to the bivariate case, the verifier can
submit only the i-th coordinate of the evaluation point (x1, . . . , xn) in the i-th round, which is sufficient for
the prover to compute the i-th element of the evaluation proof. This gives rise to the extended PoKoP for
the multivariate KZG scheme, for which we can rewind the prover when extracting transcripts of evaluation
proofs that share prefixes of coordinates in the evaluation points and the corresponding elements of the
evaluation proofs. However, for super-constant number of variables, and, hence, number of rounds in the
extended PoKoP, we must face the common bottleneck of rewinding for multi-round protocols. The naive
analysis of success probability would result in an extraction probability of roughly δn, which is negligible
for a super-constant number of variables n. To avoid such steep degradation, we rely on a stronger forking
lemma established by Attema, Cramer, and Kohl [ACK21]. Thus, we prove black-box extractability of the
bivariate KZG scheme:

Theorem 2. (informal) Under the n-variate ARSDH assumption, the extended PoKoP is a proof of knowl-
edge of a polynomial for the n-variate KZG scheme.

Towards the proof, we truly reap the benefits of the framework of PoKoPs. Since we established the
(computational) special soundness of the extended PoKoP as a standard interactive proof for the commitment
relation of the multivariate KZG scheme, we can invoke the [ACK21] extractor as a black box in our proof
of knowledge-soundness. Notably, in their proof of extractability for the univariate KZG scheme w.r.t. the
definition of black-box extractability tailored to polynomial commitment schemes, [LPS24a] had to adapt the
ACK extractor and reprove the guarantees on its performance. We discuss the relationship of PoKoPs to the
notion of black-box extractability for polynomial commitment schemes from [LPS24a] in detail in Section 6.3.
Importantly, it is possible to show that our results imply extractability of the multivariate KZG scheme under
their definition.

2.4 General Interpolating Extractors without Rewinding

In Section 5.4, we show a generalized batching lemma (Lemma 5) that allows for a more direct proof of the
consistency of the interpolated polynomial L(X1, . . . , Xn) with the commitment C under the corresponding
generalization of ARSDH(n), which we call GARSDH(n). There are two crucial differences between the gener-
alized multivariate batching lemma and the multivariate batching lemma we discussed in Section 2.3. Firstly,
we batch (d1+1) · · · (dn+1) evaluation proofs for the whole evaluation domain simultaneously, which allows
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us to directly derive an identity for [c− L(t1, . . . , tn)]1. Secondly, there is no need for a consistency require-
ment among the evaluation proofs for pairs of evaluation points that share a prefix of coordinates. Therefore,
we do not need to rewind the prover during the evaluation proof and we can prove the knowledge-soundness
of the canonical PoKoP for the multivariate KZG scheme.

Theorem 3. (informal) Under the n-variate GARSDH assumption, the canonical PoKoP is a proof of knowl-
edge of a polynomial for the n-variate KZG scheme.

On the other hand, the identity derived via batching all the evaluation proofs for the whole interpola-
tion domain at once is much more structured. Thus, the corresponding hardness assumption GARSDH(n)
one needs to postulate is arguably more tailored to facilitating extraction via interpolation compared to
ARSDH(n). In some sense, the proof of extractability of the canonical PoKoP under GARSDH illustrates
that proof-consistency is not essential for proving the extractability of the multivariate KZG scheme rather
than providing a better result compared the extractability of the extended KZG PoKoP. Indeed, the ARSDH
assumption is plausibly weaker than GARSDH.

2.5 Applying our Framework to Other KZG Variants

Ultimately, our results exploit only the basic structure of the verification check which is common in most
variants of the KZG scheme, and, thus, they can be applied rather directly as long as the particular scheme
is based on a KZG-like verification check as we demonstrate in Section 7.

First, we show that as a corollary of our results for the multivariate KZG scheme, we get extractability for
the bivariate KZG variant from [LXZ+24] and the multivariate KZG variant from [LLZ+24]. Both schemes
change the proof generation algorithm to support distributed proof generation. Importantly, the verifier can
be completely oblivious to the particular way of computing the proofs. The proof π is still a vector of group
elements and the verification check is the same as in multivariate KZG, and, thus, we can directly apply our
results.

Additionally, we revisit the randomized multivariate KZG scheme [PST13], which was introduced to
deal with some potential deficiencies of the basic multivariate scheme with respect to evaluation binding
(see Section 10 for an extensive discussion). Importantly, even though the proof structure is the same, the
verification check in the randomized scheme is significantly different as presented in [PST13]. However, we
show that the scheme can be presented equivalently such that both the proof structure and the verification
check are the same as in the basic multivariate KZG scheme. Therefore, we get the extractability for the
randomized multivariate KZG scheme as well.

2.6 Analysis of ARSDH and GARSDH in Idealized Models

In Section 8, we analyze ARSDH and GARSDH in the Algebraic Group Model (AGM) [FKL18] and the
Generic Group Model (GGM) [Sho97]. First, we show that in AGM both assumptions imply the Power
Discrete Logarithm (PDL) assumption. Besides providing the minimal sanity check when postulating the
new assumptions, the AGM reductions from ARSDH and GARSDH to PDL to some extent validate the
specific phrasing of the winning conditions in ARSDH and GARSDH. On the other hand, the reductions to
PDL in the AGM do not provide a way of distinguishing between ARSDH and GARSDH in terms of their
relative hardness. Additionally, we prove query complexity lower bounds for ARSDH and GARSDH in the
GGM supporting the intuition that ARSDH is plausibly weaker than GARSDH.

3 Preliminaries

For n,m ∈ N, n < m we denote by [n,m] the set [n,m] = {n, n + 1, . . . ,m} and we denote [n] = [0, n]. For
a finite set S we denote by x← S that x is a uniformly distributed sample from S. We say that a function
ε : N → R+ is negligible if it approaches zero faster than any inverse polynomial. In that case, we write
ε(λ) ∈ negl(λ).
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Definition 1 (Vanishing Polynomial, Lagrange Basis, and Lagrange weights). For any set S =
{ai}i∈[t] ⊆ F such that ai ̸= aj for all i ̸= j, we define the Vanishing polynomial ZS(X) of S as ZS(X) =∏

i∈[t](X − ai) and the i-th Lagrange polynomial ℓSi (X) of S, respectively the i-th Lagrange weight wS
i of S,

as
ℓSi (X) =

∏
j∈[t],j ̸=i

X − ai
ai − aj

, respectively wS
i =

1

ZS\{ai}(ai)
=

1∏
j∈[t],j ̸=i(ai − aj)

.

Notice that, using the notation from Definition 1, it holds for all i ∈ [t] that ℓSi (X)(X − ai) = ZS(X)wS
i .

3.1 Bilinear Groups and Pairings

Consider two additive groups (G1,+1) and (G2,+2) and a multiplicative group (GT ,⊗), all of prime order
p. A pairing e : G1 ×G2 → GT satisfies:

Bilinearity: For all P1 ∈ G1, P2 ∈ G2, and a, b ∈ Fp, it holds that e(aP1, bP2) = e(P1, P2)
ab.

Non-degeneracy: For all P1 ̸= 0G1 and P2 ̸= 0G2 , it holds that e(P1, P2) ̸= 1GT
,

where 0G1
(resp. 0G2

and 1GT
) is the neutral element of G1 (resp. G2 and GT ).

To simplify notation and make algebraic manipulations clearer, we use the bracket notation for group
elements, where we write [a]1 = a[1]1, where [1]1 is the generator of G1 (and similarly for the other two
groups). We use the symbol • as a binary operator that represents an application of the pairing, i.e., [a]1•[b]2 =
e([a]1, [b]2). The bilinearity property then, for example, gives us

[a]1 • [b]2 = ([1]1 • [1]2)ab = [ab]1 • [1]2 = ([a]1 • [1]2)b.

We assume that there is some bilinear group generator PGen that samples the groups G1,G2, and GT ,
and outputs the corresponding group parameters gp = (p, [1]1,+1, [1]2,+2, [1]T ,⊗, •) that specify the order
of the groups, and allow to compute the respective group operations and pairing efficiently. In the rest of
the paper, we simply write gp = (p, [1]1, [1]2, •) for brevity.

3.2 Relations and Interactive Proofs

A relation R is a set of pairs (x,w). We call x the statement and w the witness. An interactive proof allows
a prover P to prove to a verifier V that there exists a witness w for statement x such that (x,w) ∈ R.

Definition 2 (Interactive Proof). For a function ε : N → [0, 1], an interactive proof for relation R is a
pair of interactive PPT algorithms (P,V) satisfying the following properties:

Completeness: For every (x,w) ∈ R, if V interacts with P on the common input x and P has private input
w, then V accepts with probability 1.

Soundness: For every x that does not have a witness w in R and every (computationally unbounded)
cheating prover strategy P̃, the verifier V accepts when interacting with P̃ with probability less than ε(|x|),
where ε is called the soundness error.

When restricting the set of cheating provers to PPT algorithms, we use the term interactive argument instead.

A proof of knowledge is an interactive proof that demonstrates not only the existence of a witness w for
x but that the P also knows this witness.

Definition 3 (Proof/Argument of Knowledge and (Computational) Knowledge-Soundness). A
proof of knowledge is an interactive proof (P,V) that is knowledge sound, i.e., if there exists an expected
polynomial time extractor Ext with black-box rewinding access to the prover such that, for all instances x and
any (computationally unbounded) prover strategy P∗ that makes V accept on x with probability δ, it holds
that

Pr
[
(x,w) ∈ R | w ← ExtP

∗
(x)
]
≥ δ − ε

poly(|x|)
,
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where poly is some positive polynomial and ε ∈ [0, 1] is the knowledge error.
In an argument of knowledge we restrict the set of cheating provers to PPT algorithms. Additionally,

we treat both the success probability of P∗ and soundness error as functions of |x| and we require negligible
knowledge error.

We note that in [WTS+18], it was shown that generalized special soundness implies witness-extended
emulation [Lin03], a property that is often essential when using a proof of knowledge as a subprotocol within
a higher-level protocol.

One way of proving knowledge-soundness is to first show that the proof is special sound, i.e., that given
a sufficient number of accepting transcripts for statement x arranged in a tree structure, one can extract the
corresponding witness. If this tree of transcripts can be constructed efficiently given access to P̃, the proof is
knowledge sound.

Definition 4 (Tree of Transcripts). A (k1, . . . , kn)-tree of transcripts for an n-round interactive protocol
is a set of

∏n
i=1 ki transcripts of the form (x, c1, . . . , cn, a1, . . . , an), where x denotes the instance, c1, . . . , cn

the verifier’s messages, and a1, . . . , an the prover’s messages. The transcripts admit the following tree struc-
ture. Each transcript corresponds to exactly one path from the root node to a leaf node. The tree’s root (at
level 1) is labelled by the instance x, the remaining vertices on the path to a leaf are labelled by the ai’s,
where vertex on level i + 1 gets the label ai. The edges are labelled by the ci’s, where the edge incident to
vertices on levels i and i+1 gets the label ci. Each vertex at the i-th level of the tree has precisely ki children,
corresponding to ki distinct choices for ci that label the edges.

The standard definition of generalized (k1, . . . , kn)-special soundness requires extraction of a witness from
an arbitrary (k1, . . . , kn)-tree of accepting transcripts. In this work, we consider its computational variant,
where we require the extraction of the witness from an arbitrary (k1, . . . , kn)-tree of accepting transcripts
produced via some PPT algorithm.

Definition 5 (Computational (k1, . . . , kn)-Special Soundness). An interactive proof (P,V) for relation
R is computationally (k1, . . . , kn)-special sound if there exists a PPT extractor Ext such that for all PPT
algorithms Tree it holds that

Pr

(x,w) ∈ R
∣∣∣∣∣∣∣
T ← Tree(x, k1, . . . , kn),

T is a (k1, . . . , kn)-tree of accepting transcripts for (P,V),

w ← Ext(x, T )

 ≥ 1− negl(λ).

3.3 Polynomial Commitment Schemes

A Polynomial Commitment Scheme (PCS) is a cryptographic primitive that allows a prover to commit to
a polynomial and later reveal its evaluations at specific points, along with a proof of correctness. Next, we
define the class of Non-Interactive Multivariate Polynomial Commitment Scheme, consisting of the follow-
ing algorithms: KGen, Com, Open, and Ver. These algorithms enable efficient commitment, evaluation, and
verification of multivariate polynomials with specified degree bounds.

Definition 6 (Multivariate Polynomial Commitment Scheme). A Non-Interactive Multivariate
Polynomial Commitment Scheme is a tuple of algorithms (KGen,Com,Open,Ver) such that:

KGen(1λ,d, aux): Given a security parameter 1λ, a vector of degree bounds d = (d1, . . . , dn) ∈ Nn, and an
auxiliary input aux, returns a commitment key ck.

Com(ck, f): Given a commitment key ck and a polynomial f ∈ F[X1, . . . , Xn]
≤d, returns a commitment C.

Open(ck, C, f,x): Given a commitment key ck, a commitment C, a polynomial f ∈ F[X1, . . . , Xn]
≤d, and

an evaluation point x = (x1, . . . xk) ∈ Fn, returns (z, π), where z = f(x) and π is an evaluation proof.
Ver(ck, C,x, z, π): Given a commitment key ck, a commitment C, an evaluation point x = (x1, . . . xn) ∈ Fn,

a proposed evaluation z ∈ F, and an evaluation proof π, returns 1 (accept) or 0 (reject).
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The above Definition 6 is general. However, our focus is on pairing-based polynomial commitments. Note
that the auxiliary input aux to KGen can accommodate the passing of the group parameters gp sampled by
a bilinear group generator PGen or another algorithm PGen specifying the context the specific polynomial
commitment is based on. To simplify notation, we assume that ck implicitly contains the degree bounds
d = (d1, . . . , dn) that were used to compute it, and the algorithms Com and Open can efficiently check that
the input polynomial satisfies the appropriate degree bounds. We denote by dck the degree bounds supported
by the commitment key ck.

4 PoKoPs and the KZG PCS Family

In Section 4.1, we introduce Proofs of Knowledge of a Polynomial (PoKoPs), which, in the rest of the paper,
we use to study the extractability of the KZG PCS family through the lens of classical proofs of knowledge.
In Section 4.2, we state and prove an explicit variant of the multivariate polynomial decomposition lemma by
Papamanthou, Shi and Tamassia [PST13] that is the basis for their generalization of the original univariate
scheme by Kate, Zaverucha and Goldberg [KZG10] to multivariate polynomials. In Section 4.3, we present
the KZG family of polynomial commitment schemes capturing both the univariate and multivariate KZG
schemes. Finally, in Section 4.4, we present the two KZG PoKoPs we analyze in the subsequent sections.

4.1 Proof of Knowledge of a Polynomial

The basic security property of a polynomial commitment scheme is evaluation binding, which, roughly speak-
ing, ensures that the prover is committed to a function, i.e., that it is computationally hard to produce a
commitment C and accepting proofs π and π′ for distinct evaluations z and z′ w.r.t. the same evaluation
point x (For the formal definition, see Section 10).

Evaluation binding might be sufficient in some applications. However, in the context of zk-SNARKs, it is
crucial that the polynomial commitment scheme ensures the prover is, in fact, committed to a polynomial of
the correct degree, a requirement captured by knowledge-soundness. Intuitively, a PCS is knowledge sound if
any prover that makes the verification algorithm Ver accept an evaluation z knows a polynomial that is con-
sistent with the commitment C and the evaluation. There are various definitions of the knowledge-soundness
property for polynomial commitment schemes in the literature. Below, we define a Proof of Knowledge of
a Polynomial (PoKoP), which guarantees a notion of extractability for polynomial commitment schemes
sufficient for their common application in constructions of zk-SNARKs.

Recall that, for a commitment key ck, we denote by dck the vector of degree bounds supported by ck.
Additionally, for a polynomial f ∈ Fq[X1, . . . , Xn], we denote by deg(f) the vector of maximal degrees of the
variables in F , i.e., deg(f) = (degX1

(f), . . . ,degXn
(f)). The following relations capture when a polynomial

f is consistent with both the commitment C and the degree bounds dck. Additionally, the second relation
captures also the consistency of f with a value z at an evaluation point x.

Definition 7 (Commitment Relations). Let PCS = (KGen,Com,Open,Ver) be a polynomial commit-
ment scheme and ck a commitment key. We define the corresponding commitment relation RPCS

ck as

RPCS
ck =

{
(C, f) | C = PCS.Com(ck, f) ∧ deg(f) ≤ dck

}
,

and the commitment evaluation relation RPCS,eval
ck as

RPCS,eval
ck =

{
((C,x, z), f) | C = PCS.Com(ck, f) ∧ deg(f) ≤ dck ∧ f(x) = z

}
.

Now, we can define PoKoP simply as an argument of knowledge for the commitment relation RPCS
ck .

Definition 8 (Proof of Knowledge of a Polynomial). An interactive protocol (P,V) is a proof of
knowledge of a polynomial for a polynomial commitment scheme PCS w.r.t. the parameter generator PGen
and degree bounds d1, . . . , dn ∈ N if it is an argument of knowledge for the commitment relation RPCS

ck when
ck← PCS.KGen(1λ,d = (d1, . . . , dn), aux) for aux← PGen(1λ).
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PPCS(f) C
?
∈ LRPCS

ck
VPCS

(d1, . . . , dn) = dck

x x← Fn
p

z = f(x)

π = Open(ck, C, f,x) z, π

return Ver(ck, C,x, z, π)

Fig. 1. The canonical PoKoP (PPCS,VPCS) of a PCS = (KGen,Com,Open,Ver).

Instead of an argument of knowledge for the commitment relation RPCS
ck , some previous works define

knowledge-soundness of a polynomial commitment scheme basically as our notion of PoKoP but w.r.t. the
commitment evaluation relation RPCS,eval

ck (see, e.g., [Lib24, LLZ+24, LXZ+24, PP24, Lee21, BFS19] and the
references therein). Specifically, they would require that the (non-)interactive protocol (PCS.Open,PCS.Ver)
is an argument of knowledge for RPCS,eval

ck in the vein of Definition 8. Such choice, however, does not seem
to be motivated by the need for extraction from an evaluation proof for an arbitrary evaluation point x, but
rather by the need to use the evaluation z in some higher-level compiler that uses the PCS as a building
block. In fact, the standard use of polynomial commitments in many higher-level protocols is via a canonical
challenge-response protocol defined next, where the prover sends an evaluation together with an evaluation
proof for a uniformly random evaluation point x sampled by the verifier.

Definition 9 (Canonical PoKoP of PCS). Let PCS = (KGen,Com,Open,Ver) be a polynomial commitment
scheme. We call the protocol (PPCS,VPCS) defined in Figure 1 the canonical PoKoP of PCS.

Note that the canonical PoKoP is w.r.t. to the commitment relationRPCS
ck , but, due to its specific structure,

the verifier learns an evaluation z of f on the uniform evaluation challenge x. Thus, the verifier can still use
the evaluation z in any higher-level protocol.

4.2 Explicit Quotient Decomposition for Multivariate Polynomials

At the core of the extremely efficient KZG evaluation proof is the following basic proposition about multivari-
ate polynomials: a multivariate polynomial g(X1, . . . , Xn) is contained in the ideal generated by the linear
univariate polynomials (X1−x1), . . . , (Xn−xn) if and only if g(x1, . . . , xn) = 0. Thus, given f(X1, . . . , Xn),
(x1, . . . , xn), and z, we can test whether f(x1, . . . , xn) = z by verifying that the polynomial g(X1, . . . , Xn) =
f(X1, . . . , Xn) − f(x1, . . . , xn) can be generated as a polynomial combination of (X1 − x1), . . . , (Xn − xn).
Such a test would be nonsensical when the polynomial is given explicitly, as we could simply evaluate f at
(x1, . . . , xn) and compare the result to z. However, it turns out to be useful when working with an implicit
representation of f such as a commitment.

In the following lemma, we give an explicit decomposition of f(X1, . . . , Xn)− f(x1, . . . , xn) as a sum of
quotient polynomials, which is useful for presenting the KZG PCS family as well as in our proofs. The proof
of the lemma follows by a careful analysis of sequential polynomial division of f by the linear polynomials
(Xi − xi).

Lemma 1. Let f(X1, . . . , Xn) ∈ Fp[X1, . . . , Xn] be an n-variate polynomial. For all (x1, . . . , xn) ∈ Fn
p , it

holds that

f(X1, . . . , Xn) =

n∑
i=1

qi(Xi, . . . , Xn)(Xi − xi) + f(x1, . . . , xn),

where
qi(Xi, . . . , Xn) =

f(x1, . . . , xi−1, Xi, . . . , Xn)− f(x1, . . . , xi, Xi+1, . . . , Xn)

(Xi − xi)
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is a polynomial in Fp[Xi, . . . , Xn] for all 1 ≤ i ≤ n.

Proof. First, we prove the existence of such qi’s. We start by dividing the polynomial f(X1, . . . , Xn) by
(X1 − x1). This gives us

f(X1, . . . , Xn) = q1(X1, . . . , Xn)(X1 − x1) + r1(X2, . . . , Xn), (7)

where r1 is the remainder after polynomial division. Since we are dividing by the univariate polynomial
(X1 − x1), we can view the division as being done in the univariate polynomial ring (F[X2, . . . , Xn])[X1]. In
particular, the remainder r1 is a polynomial inX1 with coefficients from F[X2, . . . , Xn] satisfying degX1

(r1) <
degX1

(X1 − x1) = 1. Thus, there is no variable X1 in r1.
If we continue by dividing the remainder then, in step i, we have

ri−1(Xi, . . . , Xn) = qi(Xi, . . . , Xn)(Xi − xi) + ri(Xi+1, . . . , Xn), (8)

where qi only contains variables Xi, . . . , Xn, and, similarly, ri contains only the variables Xi+1, . . . , Xn. After
n polynomial divisions, we get the decomposition

f(X1, . . . , Xn) =

n∑
i=1

qi(Xi, . . . , Xn)(Xi − xi) + rn.

Next, we show that ri(Xi+1, . . . , Xn) = f(x1, . . . , xi, Xi+1, . . . , Xn) for all i ∈ [1, n] by induction. To show
the base case for i = 1, we subtract f(x1, X2, . . . , Xn) from both sides of eq. (7), getting

f(X1, . . . , Xn)− f(x1, X2, . . . , Xn) = q1(X1, . . . , Xn)(X1 − x1) + r1(X2, . . . , Xn)− f(x1, X2, . . . , Xn).

If we evaluate the above equality at X1 = x1, we get 0 = r1(X2, . . . , Xn) − f(x1, X2, . . . , Xn), proving the
base case.

To show the inductive step, we use the inductive hypothesis ri−1(Xi, . . . , Xn) = f(x1, . . . , xi−1, Xi, . . . , Xn).
From both sides of eq. (8), we subtract f(x1, . . . , xi, Xi+1, . . . , Xn), getting

ri−1(Xi, . . . , Xn)− f(x1, . . . , xi, Xi+1, . . . , Xn) =

qi(Xi, . . . , Xn)(Xi − xi) + ri(Xi+1, . . . , Xn)− f(x1, . . . , xi, Xi+1, . . . , Xn),

which, by the inductive hypothesis, is equivalent to

f(x1, . . . , xi−1, Xi, . . . , Xn)− f(x1, . . . , xi, Xi+1, . . . , Xn) =

qi(Xi, . . . , Xn)(Xi − xi) + ri(Xi+1, . . . , Xn)− f(x1, . . . , xi, Xi+1, . . . , Xn).

Evaluating the above at Xi = xi gives 0 = ri(Xi+1, . . . , Xn) − f(x1, . . . , xi, Xi+1, . . . , Xn), proving the
inductive step.

Importantly, rn = f(x1, . . . , xn). Thus, we get

f(X1, . . . , Xn) =

n∑
i=1

qi(Xi, . . . , Xn)(Xi − xi) + f(x1, . . . , xn).

Finally, by rearranging eq. (8), we get

qi(Xi, . . . , Xn) =
ri−1(Xi, . . . , Xn)− ri(Xi+1, . . . , Xn)

(Xi − xi)

=
f(x1, . . . , xi−1, Xi, . . . , Xn)− f(x1, . . . , xi, Xi+1, . . . , Xn)

(Xi − xi)
,

which proves the claimed structure of the polynomials qi. ⊓⊔
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KZG.KGen(1λ,d = (d1, . . . , dn), aux = gp = (p, [1]1, [1]2, •)):
Sample t1, . . . , tn ← Fp.
Output ck =

(
gp,

([
ti11 · · · tinn

]
1

)d1,...,dn
i1,...,in=0

,
(
[ti]2

)n
i=1

)
.

KZG.Com(ck, f):
Output C = [f(t1, . . . , tn)]1.

KZG.Open(ck, f, (x1, . . . , xn)):
Compute z = f(x1, . . . , xn).
For all 1 ≤ i ≤ n, compute

qi(Xi, . . . , Xn) =
f(x1, . . . , xi−1, Xi, . . . , Xn)− f(x1, . . . , xi, Xi+1, . . . , Xn)

(Xi − xi)

and πi = [qi(ti, . . . , tn)]1.
Output (π = (π1, . . . , πn), z).

KZG.Ver(ck, C, (x1, . . . , xn), z, π = (π1, . . . , πn)):
If (C − [z]1) • [1]2 =

⊗n
i=1 (πi • [ti − xi]2) then output 1, and 0 otherwise.

Fig. 2. The KZG PCS defined w.r.t. the bilinear group parameters gp.

4.3 The KZG PCS Family

The construction of the multivariate KZG scheme proposed by Papamanthou, Shi, and Tamassia [PST13] is
presented in Figure 2. Compared to [PST13], our presentation relies on our explicit polynomial decomposition
lemma, which, e.g., makes it clear that the original univariate PCS by Kate, Zaverucha and Goldberg [KZG10]
is, in a very strong sense, a special case of the multivariate variant from [PST13]: The cardinality n of the
degree bounds d decides the number of variables supported by the commitment key ck. Indeed, for a singular
degree bound d ∈ N, the above scheme recovers exactly the original univariate KZG scheme [KZG10], where
the evaluation proof π = [q(t)]1 is constructed using the quotient polynomial f(X)−f(x)

X−x , and the verification
check is simply (C − [z]1) • [1]2 = π • [t− x]2 (Figure 10 presents the complete protocol).

Parallel computation of multivariate evaluation proofs. We show that the explicit structure of the
quotient polynomials provided by our Lemma 1 can be leveraged through the following observation to improve
the practical efficiency of the prover when committing to a multivariate polynomial. Interestingly, it is possible
to compute the quotient polynomials more efficiently than what one might expect from the original implicit
polynomial decomposition lemma in [PST13]. Specifically, in the non-interactive scheme, the elements of the
KZG evaluation proof can be computed in parallel. In [PST13], the quotient polynomials are defined implicitly
for all 1 ≤ i ≤ n as ri−1(Xi, . . . , Xn) = qi(Xi, . . . , Xn)(Xi− xi)+ ri(Xi+1, . . . , Xn), where r0(X1, . . . , Xn) =
f(X1, . . . , Xn). To compute them using the implicit definition, one would divide f(X1, . . . , Xn) by (X1−x1)
to get the quotient q1(X1, . . . , Xn) and then proceed with dividing the remainder r1(X2, . . . , Xn) etc., which
leads to a sequential process. However, by leveraging the explicit structure of qi’s from Lemma 1, if the
prover knows the whole evaluation point (x1, . . . , xn) then it can parallelize the computation and directly
compute each polynomial qi(Xi, . . . , Xn) =

f(x1,...,xi−1,Xi,...,Xn)−f(x1,...,xi,Xi+1,...,Xn)
(Xi−xi)

, as it only depends on
f and (x1, . . . , xi).

Furthermore, in our proof of Lemma 1, we showed that ri(Xi+1, . . . , Xn) = f(x1, . . . , xi, Xi+1, . . . , Xn)
for all i, and we can use this fact to simplify the computation of the quotient polynomials even further. To
compute the i-th quotient polynomial, the prover simply computes the quotient in the polynomial division
f(x1, . . . , xi−1, Xi, . . . , Xn)/(Xi − xi) without explicitly computing the remainder. The result is precisely
qi(Xi, . . . , Xn), since we effectively divide the remainder ri−1(Xi, . . . , Xn) as required. The key observation
is that we already know the explicit form of the remainder, eliminating the need to compute it.
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PKZG(f) C
?
∈ LRKZG

ck
VKZG

(d1, . . . , dn) = dck

x1 x = (x1, . . . , xn)← Fn
p

π1 = [q1(t1, . . . , tn)]1 π1

...

xn

z = f(x)

πn = [qn(tn)]1 πn, z

return KZG.Ver(ck, C,x, z, π)

Fig. 3. The extended KZG PoKoP.

4.4 The Canonical and Extended KZG PoKoP

Given a commitment key ck and a commitment C, the canonical PoKoP of the KZG scheme proceeds
exactly as the general template presented in Figure 1: the verifier samples a uniform evaluation point x =
(x1, . . . , xn) ← Fn

q and sends it to the prover. The prover computes z = f(x) and π = KZG.Open(ck, f,x)
and sends (z, π) to the verifier. The verifier outputs KZG.Ver(ck, C,x, z, π). Indeed, the KZG polynomial
commitment is used in this exact form as a building block in higher-level protocols, such as when compiling
PIOPs into SNARKs.

A downside of the above canonical KZG PoKoP is that, in the analysis of its knowledge-soundness, we
cannot guarantee any consistency among the evaluation proofs even when the verifier samples challenges
x = (x1, . . . , xn−1, xn) and x′ = (x1, . . . , xn−1, x

′
n) that differ only in the last coordinate. Since for all

i ∈ [1, n] the prover message πi only depends on x1, . . . , xi, we would expect that the first n − 1 messages
of the prover are the same for challenges x and x′. We show in Section 9 that this is not guaranteed in the
canonical KZG PoKoP since there exist many accepting proofs for a single statement and an adversary that
obtains one of them can efficiently construct the others.

Next, we present an alternative “extended” PoKoP for the KZG scheme that is easier to analyze while, for
all practical purposes, retains the favorable properties of the canonical KZG PoKoP. It is based on the same
observation that allows parallel computation of the quotient polynomials as discussed in Section 4.3, that is,
each qi depends only on the first i coordinates of the evaluation point (x1, . . . , xn). The extended KZG PoKoP
(Figure 3) proceeds in n rounds. In the i-th round, the verifier sends xi to the prover, who computes the
quotient polynomial qi and sends back πi. In the last round, the prover additionally sends z = f(x1, . . . , xn).
Given the transcript, the verifier outputs 0/1 based on the same check as the KZG verifier. Due to the
interactive nature of the extended KZG PoKoP, we can apply round-by-round rewinding to it, and, thus,
force prefix consistency in transcripts while extracting (see Definition 15).

Definition 10 (Extended KZG PoKoP). Let KZG = (KGen,Com,Open,Ver) be the multivariate polyno-
mial commitment scheme defined in Figure 2. We call the protocol (PKZG,VKZG) defined in Figure 3 the
extended KZG PoKoP.

In order to be able to utilize our extended KZG PoKoP in a SNARK compiler [GWC19, LXZ+24, LPS23],
we need to transform the interactive proof into a non-interactive proof using the Fiat-Shamir heuristic [FS86].
This means that for all i ∈ [1, n] we replace the verifier messages xi by a hash of the previous transcript, i.e.,
the previous transcript of the SNARK, the commitment C, the x1, . . . , xi−1-values and the prover messages
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n ,

z(0,0,...,dn))

x
(0,0)
2

· · · π
(0,d2)
2

(π
(0,d2,...,0)
n ,

z(0,d2,...,0))
· · ·(π

(0,d2,...,dn)
n ,

z(0,d2,...,dn))

x
(0,d2)
2

x
(0)
1

· · · π
(d1)
1

π
(d1,0)
2

(π
(d1,0,...,0)
n ,

z(d1,0,...,0))
· · ·(π

(d1,0,...,dn)
n ,

z(d1,0,...,dn))

x
(d1,0)
2

· · · π
(d1,d2)
2

(π
(d1,d2,...,0)
n ,

z(d1,d2,...,0))
· · ·(π

(d1,d2,...,dn)
n ,

z(d1,d2,...,dn))

x
(d1,d2)
2

x
(d1)
1

Fig. 4. A (d1 + 1, . . . , dn + 1)-tree of accepting transcripts for the extended KZG PoKoP for relation RKZG
ck .

π1, . . . , πi−1. Note that this reduces the number of possible evaluation points compared to the canonical KZG
PoKoP since x2, . . . , xn are uniquely determined from the input of the hash function. We note that this is
not an issue for the SNARK compilers from [GWC19, LXZ+24, LPS23] because there the evaluation points
are obtained via the Fiat-Shamir heuristic anyway. Hence, for this application, it is not necessary that the
verifier can ask for any evaluation point, but it is sufficient that it receives an accepting evaluation proof for
a uniformly random evaluation point sampled using the random oracle.

5 Special Soundness of the KZG PoKoPs

In this section, we study the special soundness of the canonical and extended KZG PoKoPs introduced
in Section 4.4 as a first step to proving their knowledge-soundness. Under a suitable computational hardness
assumption, we show that the natural extraction strategy via interpolation from a tree of accepting transcripts
is successful. However, this is easier to argue for the extended KZG PoKoP, which we consider in most of
this section. We discuss generalizing our techniques from the extended KZG PoKoP to the canonical one
in Section 5.4.

The tree of transcripts for the extended KZG PoKoP. Given a commitment key ck and a commitment
C, consider an interaction between a prover trying to convince a verifier that he knows a polynomial f
such that (C, f) ∈ RKZG

ck via the extended KZG PoKoP from Figure 3. A (k1, . . . , kn)-tree of accepting
transcripts T for this protocol (Definition 4) is simply a structured collection of transcripts for some set of∏n

i=1 ki distinct evaluation points. Note, that if dck = (d1, . . . , dn) are the degree bounds supported by ck
then each (d1 + 1, . . . , dn + 1)-tree of accepting transcripts corresponds (via interpolation) to a polynomial
that satisfies the degree bounds dck and matches the evaluations recorded in the transcripts. Thus, given
a (d1 + 1, . . . , dn + 1)-tree of accepting transcripts T , the extractor can simply output the interpolating
polynomial corresponding to T .

In Figure 4, we describe the explicit structure of a (d1+1, . . . , dn+1)-tree of accepting transcripts T . The
root of the tree is labeled by the instance C. The internal vertices are labeled by the prover’s messages πi
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and the edges are labeled by the verifier’s challenges xi. The root has exactly d1+1 children, and, in general,
every vertex at level k has exactly dk + 1 children corresponding to different choices for xk. Every path
from the root to a leaf node corresponds to a transcript (C, x1, . . . , xn, π1, . . . , πn, z). Since the transcript is
accepting, we have KZG.Ver(ck, C, (x1, . . . , xn), z, (π1, . . . , πn)) = 1.

There is a transcript for each leaf node, so we can index the transcripts by vectors of indices i =
(i1, . . . , in) ∈ [d] = [d1] × · · · × [dn], where the k-th coordinate ik of the coordinate vector i corresponds to
the choice of the edge exiting the vertex on the k-th level of the tree. Thus, the tree T of accepting transcripts
corresponds to a set of

∏n
k=1(dk + 1) accepting transcripts

{(
C, x

(i)
1 , . . . , x

(i)
n , π

(i)
1 , . . . , π

(i)
n , z(i)

)}
i∈[d]

. Im-

portantly, the tree structure ensures consistency of transcripts sharing prefixes, which we leverage next. We
revisit consistency of transcripts in Section 5.4 when extending our techniques to the canonical KZG PoKoP.

5.1 Multivariate Batching Lemma

By interpolating a polynomial from a (d1+1, . . . , dn+1)-tree of transcripts, we naturally obtain a polynomial
that matches both the degrees and the evaluations recorded in the transcripts. What remains to be argued
is that the interpolated polynomial is consistent with the commitment. A crucial step in this process is given
in Lemma 2, which enables us to combine the verification checks through the last variable. This results in a
single identity that, instead of the evaluations, ensures consistency of a univariate interpolating polynomial
L(Xn) to the commitment C. The set of transcripts considered in our n-variate batching lemma is a special
subset of transcripts from a (d1 + 1, . . . , dn + 1)-tree of transcripts illustrated in Figure 4. Specifically, it
corresponds to a path from the root to the n-the level extended by all the leaf nodes, i.e., it is a set of dn+1
transcripts that share the verifier’s challenges x1, . . . , xn−1 and prover’s answers π1, . . . , πn−1, while each
transcript has a distinct n-the challenge xn.

Lemma 2 (n-Variate Batching Lemma). For n ∈ N and t1, . . . , tn ∈ Fp, let

{(
[c]1, x1, . . . , xn−1, x

(in)
n , [φ1]1, . . . , [φn−1]1,

(
[φ(in)

n ]1, z
(in)
))}

in∈[dn]

be a set of accepting transcripts w.r.t. t1, . . . , tn, i.e., such that, for all in ∈ [dn], it holds that

[
c− z(in)

]
1
• [1]2 =

(
n−1⊗
i=1

[φi]1 • [ti − xi]2

)
⊗
[
φ(in)
n

]
1
•
[
tn − x(in)n

]
2
. (9)

If
∣∣∣∣{x(in)n

}dn

in=0

∣∣∣∣ = dn + 1 then, for

S =
{
x(in)n

}dn

in=0
, [φn]1 =

dn∑
in=0

wS
in [φ

(in)
n ]1, and L(Xn) =

dn∑
in=0

z(in)ℓSin(Xn),

it holds that [c− L(tn)]1 • [1]2 =
(⊗n−1

i=1 [φi]1 • [ti − xi]2
)
⊗ [φn]1 • [ZS(tn)]2.

Proof. Since all the elements x(in)n are distinct, the set S is an interpolation domain of cardinality dn + 1
and both [φn]1 and L(Xn) are well defined. We prove the claimed identity by expanding the left side of the
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equation and deriving the expression on the right side as follows:

[c− L(tn)]1 • [1]2 =

[
c−

dn∑
in=0

z(in)ℓSin(tn)

]
1

• [1]2

=

[
dn∑

in=0

ℓSin(tn)
(
c− z(in)

)]
1

• [1]2

=

[
dn∑

in=0

ℓSin(tn)

((
n−1∑
i=1

φi(ti − xi)

)
+ φ(in)

n

(
tn − x(in)n

))]
1

• [1]2

=

[
n−1∑
i=1

φi(ti − xi) +
dn∑

in=0

ZS(tn)w
S
inφ

(in)
n

]
1

• [1]2

=

n−1⊗
i=1

[φi]1 • [ti − xi]2 ⊗ [φn]1 • [ZS(tn)]2.

The correctness of the above derivations can be justified as follows. In the first equality, we used the definition
of L(Xn) via Lagrange interpolation. In the second equality, we use the fact that

∑dn

in=0 ℓ
S
in
(Xn) = 1. In the

third equality, we use eq. (2) from the statement of the lemma, and the bilinearity of the pairing. In the
fourth equality, we use the fact that ℓSin(X)(X − x(in)n ) = ZS(X)wS

in
. In the fifth equality, we again used the

fact that
∑n

j=0 ℓ
S
j (Y ) = 1, along with the definition of [φn]1. Finally, we just moved terms around using the

bilinearity of the pairing. ⊓⊔

Our n-variate batching lemma implies as a special case the following univariate batching lemma of Lipmaa
et al. [LPS24a], which they used in their proof of special soundness of the univariate KZG scheme.

Lemma 3 (Batching Lemma [LPS24a]). Let S = {xi}i∈[n] ⊆ Fp with xi ̸= xj for i ̸= j. Assume that
for all i ∈ [n]:

[c− zi]1 • [1]2 = [φi]1 • [σ − xi]2 (10)

for some [c]1, [φi]1, σ and zi. Then

[c− L(σ)]1 • [1]2 = [φ]1 • [ZS(σ)]2,

where [φ]1 :=
∑

i∈[n] w
S
i [φi]1 and L(X) :=

∑
i∈[n] ziℓ

S
i (X).

The proof of Lemma 3 in [LPS24a] proceeds via a case analysis w.r.t. the trapdoor σ and the evaluation
point x, since they leverage the identity wS

i = ℓSi (X)(X − x)/ZS(X). As a result, their analysis treats the
case σ = x separately to ensure that wS

i is defined correctly. In contrast, our proof takes a more direct
approach by using the identity ℓSi (Xi)(Xi − xi) = ZS(Xi)w

S
i , eliminating the need to handle the case when

xi = ti separately.

5.2 Multivariate ARSDH

The univariate batching lemma (Lemma 3) suggests a path towards proving the consistency of the univariate
interpolating polynomial L(X) with the commitment C = [c]1, that is, if we could argue [c− L(σ)]1 = [0]1.
Note that, without knowing the secret evaluation point σ, it seems hard to produce a nontrivial group el-
ement [c − L(σ)]1 and some [φ]1 that would satisfy the identity [c − L(σ)]1 • [1]2 = [φ]1 • [ZS(σ)]2. This
observation motivates the (univariate) adaptive rational strong Diffie-Hellman (ARSDH) assumption intro-
duced in [LPS24a], which we restate below. Importantly, in our context, the adversary has some control
over the interpolation domain, and, thus, the adversary can choose the set S adaptively in ARSDH. In this
sense, ARSDH is a strengthening of the RSDH assumption from [GR19]. In the univariate ARSDH assumption
below, n denotes a univariate degree bound.
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Definition 11 (ARSDH Game). For a PPT adversary A, a bilinear-group generator PGen, and n ∈
poly(λ), the ARSDH Game is defined as follows:

1. Sample gp← PGen(1λ) and σ ← Fp.
2. On input 1λ, gp, and

([(
σi
)n
i=0

]
1
, [σ]2

)
, A outputs [χ]1, [φ]1, and a set S ⊆ Fp.

A wins if and only if

|S| = n+ 1, [χ]1 ̸= [0]1, and [χ]1 • [1]2 = [φ]1 • [ZS(σ)]2.

We write ARSDH.Game(A,PGen, n) = 1 if A wins and 0 otherwise.

Definition 12 (ARSDH). We say the degree n adaptive rational strong Diffie-Hellman (n-ARSDH) as-
sumption holds for PGen if, for any PPT A, it holds:

Pr[ARSDH.Game(A,PGen, n) = 1] ∈ negl(λ).

Similarly to the univariate batching lemma and ARSDH, our n-variate batching lemma (Lemma 2) mo-
tivates a corresponding hardness assumption that can be see as an n-variate generalization of ARSDH.

Definition 13 (ARSDH(n) Game). For a PPT adversary A, a bilinear-group generator PGen, and d =
(d1, . . . , dn) ∈ poly(λ), the ARSDH(n) Game is defined as follows

1. Sample gp← PGen(1λ) and (t1, . . . , tn)← Fn
p .

2. On input 1λ, gp, and
({[

ti11 · . . . · tinn
]
1

}d1,...,dn

i1,...,in=0
, {[ti]2}i∈[1,n]

)
, A outputs

[χ]1, {[φi]1}n−1
i=1 , {xi}n−1

i=1 ⊆ Fp, [ψ]1, and S ⊆ Fp.

A wins if and only if:

– |S| = dn + 1,
– [χ]T ̸=

⊗n−1
i=1 [φi]1 • [ti − xi]2, and

– [χ]1 • [1]2 =
⊗n−1

i=1 [φi]1 • [ti − xi]2 ⊗ [ψ]1 • [ZS(tn)]2.

We write ARSDH(n).Game(A,PGen,d) = 1 if A wins and 0 otherwise.

Definition 14 (ARSDH(n)). Let PGen be a bilinear group generator. Then the n-variate Adaptive Rational
Strong Diffie-Hellman (ARSDH(n)) assumption holds for PGen if, for any d = (d1, . . . , dn) ∈ poly(λ) and
PPT A,

Pr[ARSDH(n).Game(A,PGen,d) = 1] ∈ negl(λ).

First note that, when restricted to n = 1, i.e., a single variable, ARSDH(1) collapses to the univariate
ARSDH from [LPS24a] by the convention that a group product over an empty index set evaluates to the
neutral element [0]T of the group.

Since the winning condition in the n-variate case is more complex, there are various ways to satisfy it
trivially. Correspondingly, we need to disallow the adversary from exploiting these, and, thus, we add the
second “non-triviality” condition [χ]T ̸=

⊗n−1
i=1 [φi]1 • [ti − xi]2 in Definition 13. This condition is rather

general and it rules out various easy ways of satisfying the winning condition, e.g., where the adversary sets
[χ]1 = [φi]1 = [ψ]1 = 0 and choose S and xi randomly. Additionally, the non-triviality condition naturally
arises in the reduction from PDL to ARSDH(n) in the Algebraic Group Model (AGM) (see Section 8), and
it allows us to show that ARSDH(n) follows from the (n, 1)-PDL assumption in the AGM. This is analogous
to the proof of hardness of the univariate ARSDH under (n, 1)-PDL in the AGMOS from [LPS24a] that
necessitates [χ]1 ̸= 0. In some sense, the AGM analysis supports the choice of the corresponding non-
triviality conditions in the definition of their univariate ARSDH (Definition 11) and our multivariate ARSDH
(Definition 13).
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While ARSDH(n) is not the most direct generalization of ARSDH, as the vanishing polynomial depends
only on the last variable, it leads to a plausibly weaker assumption than the more general variant where the
winning condition is based on an identity that involves a vanishing polynomial in each variable. In Section 5.4,
we discuss this more general extension of ARSDH to n-variables, which we call GARSDH. Skipping ahead,
since GARSDH is a plausibly stronger, it allows for a more direct proof of the special soundness for the
multivariate KZG scheme.

ARSDH(n) implies ARSDH(n − 1). Notice that if we assume ARSDH(n) then we do not need to addi-
tionally assume that ARSDH(i) holds also for all i < n; all the weaker variants are implied by ARSDH(n).
The key observation here is that we can transform an ARSDH(n) instance with degree bounds d1, . . . , dn
into an ARSDH(n− 1) instance with degree bounds d2, . . . , dn by setting [φ1]1 = [0]1, effectively eliminating
the first variable.

Lemma 4. For all n ∈ poly(λ), ARSDH(n) implies ARSDH(n− 1).

Proof. Assume we have
({[

ti11 · . . . · tinn
]
1

}d1,...,dn

i1,...,in=0
, {[ti]2}i∈[1,n]

)
given to us as input for the ARSDH(n)

challenge. The idea is we can give the oracle for ARSDH(n − 1) a version of our input where we ignore the
first variable and then use the output as our answer along with setting [φ1]1 = [0]1.

We run the ARSDH(n− 1) oracle on input
({[

ti22 · . . . · tinn
]
1

}d2,...,dn

i2,...,in=0
, {[ti]2}i∈[2,n]

)
, where the degrees

(d2, . . . , dn) remain in poly(λ).
The oracle gives us [χ′]1, [φ

′
i]1, [ψ

′]1, S
′, x′i for i ∈ [1, n− 1] such that

– |S′| = dn + 1,
– [χ′]T ̸=

⊗n−2
i=1 [φ

′
i]1 • [ti+1 − x′i]2,

– [χ′]1 • [1]2 =
⊗n−2

i=1 [φ
′
i]1 • [ti+1 − x′i]2 ⊗ [ψ′]1 • [ZS′(tn)]2.

If we set [χ]1 = [χ′]1, [φi]1 = [φ′
i−1], [ψ]1 = [ψ′]1, S = S′, xi = x′i−1 for i ∈ [2, n− 1] and [φ1]1 = [0]1, x1 ← Fp

we have

– |S| = dn + 1,
– [χ]T ̸=

⊗n−1
i=1 [φi]1 • [ti − xi]2,

– [χ]1 • [1]2 =
⊗n−1

i=1 [φi]1 • [ti − xi]2 ⊗ [ψ]1 • [ZS(tn)]2,

where all of these are straightforward from the properties of the elements from the oracle. ⊓⊔

5.3 Special Soundness of the Extended KZG PoKoP

In this section, we use ARSDH(n) (Definition 12) and our multivariate batching lemma (Lemma 2) to prove
the special soundness of the extended KZG PoKoP from Figure 3 as stated in the following theorem.

Theorem 4. Let gp ← PGen(1λ) and ck ← KZG.KGen(1λ, (d1, . . . , dn), gp) for some d1, . . . , dn ∈ N. If
the ARSDH(n) assumption holds for PGen, then the extended KZG PoKoP presented in Figure 3 is a (d1 +
1, . . . , dn + 1)-special sound interactive argument for the relation RKZG

ck .

In the proof, we inductively consolidate the KZG verification equations using our n-variate batching
lemma (Lemma 2), progressively reducing them until we obtain a single equation that establishes the con-
sistency of the interpolating polynomial with the commitment. We can view this process through the tree
representation of the transcripts in Figure 4. We begin with consistency at the level of leaves, each corre-
sponding to some value z(i) at an evaluation point x(i). Moving up the tree, we analyze partial interpolating
polynomials, where each step is defined by fixing a prefix of the evaluation point. At each step i, we apply
the ARSDH(n−i) assumption to guarantee that the partial interpolating polynomial remains consistent with
the commitment. This process continues until we reach the root of the tree, at which point we establish the
final consistency condition for the full interpolating polynomial and the commitment.
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Extck(C, T ):

1. parse T as
{(

C, x
(i)
1 , . . . , x

(i)
n ,

[
φ

(i)
1

]
1
, . . . ,

([
φ

(i)
n

]
1
, z(i)

))}
i∈[d]

2. for all k ∈ [1, n], set S
(i1,...,ik−1)

k =
{
x
(i1,...,ik)
k

}dk

ik=0

3. return L(X1, . . . , Xn) =
∑d1,...,dn

i1,...,in=0 z
(i1,...,in) ∏n

k=1 ℓ
S
(i1,...,ik−1)

k
ik

(Xk)

Fig. 5. Interpolating extractor establishing special soundness for the extended KZG PoKoP.

Importantly, our proof relies solely on the structure of the verification check and not on the specifics of
computation of the proof. Thus, it would apply to any scheme based on KZG that utilizes a check of the
form [c− z]1 • [1]2 =

⊗n
j=1 [φj ]1 • [tj − xj ]2 , and allows for extracting a tree of transcripts compatible with

our batching lemma.

Proof (Theorem 4). Let gp← PGen(1λ) and ck← KZG.KGen(1λ, (d1, . . . , dn), gp) for some d1, . . . , dn ∈ N as
in the statement of the theorem. The commitment key ck specifies the commitment relation RKZG

ck .
We prove the theorem by analyzing the interpolating extractor Extck defined in Figure 5. On input C ∈ G1

and a (d1 + 1, . . . , dn + 1)-tree of accepting transcripts T for the extended KZG PoKoP produced by some
PPT algorithm Tree, the extractor uses i = (i1, . . . , in) ∈ [d] = [d1] × · · · × [dn] to index the leaves and
parses T as a set of accepting transcripts{(

C, x
(i)
1 , . . . , x(i)n ,

[
φ
(i)
1

]
1
, . . . ,

([
φ(i)
n

]
1
, z(i)

))}
i∈[d]

.

Since T has the tree structure depicted in Figure 4, the transcripts are consistent on shared prefixes, and,
thus, we can denote x(i)j = x

(i1,...,in)
j = x

(i1,...,ij)
j and

[
φ
(i)
j

]
1
=
[
φ
(i1,...,in)
j

]
1
=
[
φ
(i1,...,ij)
j

]
1

for all i ∈ [d] and
j ∈ [1, n].

For all k ∈ [1, n], the extractor defines interpolation subdomains S(i1,...,ik−1)
k =

{
x
(i1,...,ik)
k

}dk

ik=0
. Then, it

uses the corresponding values z(i) to construct and output an interpolating polynomial

L(X1, . . . , Xn) =

d1,...,dn∑
i1,...,in=0

z(i1,...,in)
n∏

k=1

ℓ
S

(i1,...,ik−1)

k
ik

(Xk).

By the structure of the tree and the condition that each node at level k must have dk +1 edges with distinct
labels connecting it to level k + 1, the leaves of T correspond to

∏
i∈[1,n](di + 1) distinct evaluation points.

Moreover, for each prefix of indices (i1, . . . , ik−1), the interpolation subdomain S(i1,...,ik−1)
k is of size dk + 1.

Thus, the polynomial L(X1, . . . , Xn) satisfies the degree bounds, i.e., degXi
(L) ≤ di for all i ∈ [1, n], and

matches all the evaluations specified by the tree, i.e., L(x(i)1 , . . . , x
(i)
n ) = z(i) for all i ∈ [d].

To show that (C,L(X1, . . . , Xn)) ∈ RKZG
ck , it remains to be argued that, with an overwhelming probability,

[c−L(t1, . . . , tn)]1 = [0]1 when T was produced by some PPT algorithm Tree on input C and (d1+1, . . . , dn+
1). We show this holds under the ARSDH(n) assumption.

Since Tree produces a tree of accepting transcripts, we have that, for all (i1, . . . , in) ∈ [d], it holds that[
c− z(i1,...,in)

]
1
• [1]2 =

n⊗
j=1

[
φ
(i1,...,ij)
j

]
1
•
[
tj − x

(i1,...,ij)
j

]
2
.

Using Lemma 2, we get that, for all (i1, . . . , in−1) ∈ [d1]× · · · × [dn−1],[
c− g(i1,...,in−1)(tn)

]
1
•[1]2 =

n−1⊗
j=1

[
φ
(i1,...,ij)
j

]
1
•
[
tj − x

(i1,...,ij)
j

]
2
⊗
[
φ(i1,...,in−1)
n

]
1
•
[
Z
S

(i1,...,in−1)
n

(tn)
]
2
, (11)
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where we define
[
φ
(i1,...,in−1)
n

]
1
=
∑dn

in=0 w
S

(i1,...,in−1)
n

in

[
φ
(i1,...,in)
n

]
1

and the partially interpolated polynomials

g(i1,...,in−1)(Xn) =
∑dn

in=0 z
(i)ℓS

(i1,...,in−1)
n

in
(Xn). Now, assuming that ARSDH(n) holds, we have that, except

with a negligible probability,[
c− g(i1,...,in−1)(tn)

]
1
• [1]2 =

n−1⊗
j=1

[
φ
(i1,...,ij)
j

]
1
•
[
tj − x

(i1,...,ij)
j

]
2

(12)

for all (i1, . . . , in−1) ∈ [d1] × · · · × [dn−1]. Otherwise, we would be able to break ARSDH by setting [χ]1 =[
c− g(i1,...,in−1)(tn)

]
1
, [φj ]1 =

[
φ
(i1,...,ij)
j

]
1
, [ψ]1 =

[
φ
(i1,...,in−1)
n

]
1

and S = S
(i1,...,in−1)
n , where (i1, . . . , in−1)

is the index for which eq. (12) does not hold.
Thus, we can assume eq. (12) holds with overwhelming probability for all (i1, . . . , in−1) ∈ [d1]×· · ·×[dn−1],

and we can again use Lemma 2 on these equalities, giving us[
c− h(i1,...,in−2)(tn−1, tn)

]
1
•[1]2 =

n−2⊗
j=1

[
φ
(i1,...,ij)
j

]
1
•
[
tj − x

(i1,...,ij)
j

]
2
⊗
[
φ
(i1,...,in−2)
n−1

]
1
•
[
Z
S

(i1,...,in−2)

n−1

(tn−1)

]
2

,

where [
φ
(i1,...,in−2)
n−1

]
1
=

dn−1∑
in−1=0

w
S

(i1,...,in−2)

n−1

in−1

[
φ
(i1,...,in−1)
n−1

]
1
,

and

h(i1,...,in−2)(Xn−1, Xn) =

dn−1∑
in−1=0

g(i1,...,in−1)(Xn)ℓ
S

(i1,...,in−2)

n−1

in−1
(Xn).

By Lemma 4, we can assume that ARSDH(n−1) holds, and therefore, for all (i1, . . . , in−2) ∈ [d1]×· · ·×[dn−2],
we have that, except with a negligible probability,[

c− h(i1,...,in−2)(tn−1, tn)
]
1
• [1]2 =

n−2⊗
j=1

[
φ
(i1,...,ij)
j

]
1
•
[
tj − x

(i1,...,ij)
j

]
2
,

giving us enough equations to proceed to the next variable using Lemma 2.
In this way, we continue to reduce the statement by leveraging assumptions ARSDH(n−2), . . . , ARSDH(1),

ultimately demonstrating that if [c − L(t1, . . . , tn)]1 ̸= [0]1 with a non-negligible probability, we would be
able to break one of these variants of ARSDH at some intermediate step. However, as noted in Lemma 4,
ARSDH(n) implies ARSDH(n−1) for all n ∈ poly(λ). Therefore, the theorem holds assuming ARSDH(n). ⊓⊔

5.4 General Interpolating Extractor

In this section, we examine the necessary modifications to the definitions in Section 5.2 and 5.1 to accom-
modate a more general interpolation approach that would allow us to handle the canonical KZG PoKoP.

First, let us revisit the discussion on the structure of the transcripts in the extended PoKoP from Section 5.
There, we directly obtain the specific properties that we need to apply our n-variate batching lemma due
to the tree structure of the transcripts. The canonical KZG PoKoP has the single round structure depicted
in the Figure 1. As a result, in our interpolation approach towards the proof of special soundness, we would
start with a (

∏
i∈[1,n](di +1))-tree of accepting transcripts that has only a single level and can be viewed as

a set of transcripts {(
C, (x

(i)
1 , . . . , x(i)n ), ((π

(i)
1 , . . . , π(i)

n ), z(i))
)}

i∈[d]
.

Note that, it is not of particular importance that the transcripts are tuples of tuples. Hence, we consider each
transcript only as a single tuple of all the elements appearing in it, i.e.,

(
C, x

(i)
1 , . . . , x

(i)
n , π

(i)
1 , . . . , π

(i)
n , z(i)

)
,
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to simplify the notation. Moreover, this allows us to talk simultaneously about the consistency properties of
the canonical and extended KZG PoKoP. Next, we define the consistency properties.

Definition 15 (Consistency and π-Consistency). For I ⊆ [d], we say that a set of transcripts{(
C, x

(i)
1 , . . . , x(i)n , π

(i)
1 , . . . , π(i)

n , z(i)
)}

i∈I

is consistent if the following properties hold:

1. Shared commitment: All transcripts are w.r.t. the same C.
2. Consistency on shared prefixes: For all i, j ∈ I with the structure i = (i1, . . . , ik, ik+1, . . . , in) and

j = (i1, . . . , ik, jk+1, . . . , jn) for some k ∈ [1, n], it holds(
x
(i)
1 , . . . , x

(i)
k

)
=
(
x
(j)
1 , . . . , x

(j)
k

)
.

3. Distinctness of evaluation points: For all i, j ∈ I, if i ̸= j then

xi =
(
x
(i)
1 , . . . , x(i)n

)
̸= xj =

(
x
(j)
1 , . . . , x(j)n

)
.

We call a set of transcript π-consistent if it is consistent and, additionally, the following holds:

4. Consistency on shared prefixes for proofs: For all i, j ∈ I such that i = (i1, . . . , ik, ik+1, . . . , in)
and j = (i1, . . . , ik, jk+1, . . . , jn) for some k ∈ [1, n], it holds that(

π
(i)
1 , . . . , π

(i)
k

)
=
(
π
(j)
1 , . . . , π

(j)
k

)
.

Clearly, all the transcripts of both the extended and canonical PoKoP share the same root C. Consistency
on shared prefixes states formally that any pair of transcripts corresponding to a pair of paths sharing a
prefix up to level k ∈ [n] can differ only after the k-th message of the prover. The distinctness of evaluation
points ensures that the set of evaluation points {xi}i∈[d] corresponding to the whole tree defines a feasible
interpolation domain.

Optimally, we would like to have consistency or even π-consistency for such a set of transcripts. However,
unlike for a (d1 + 1, . . . , dn + 1)-tree of transcripts for the extended KZG PoKoP, neither consistency nor
π-consistency follows directly from the structure of an arbitrary (

∏
i∈[1,n](di + 1))-tree of accepting tran-

scripts for the canonical KZG PoKoP. We deal with this nuisance as follows: 1) we prove a generalized
multivariate batching lemma that does not necessitate π-consistent transcripts and allows working only with
consistent transcripts instead, and 2) in section 6, we show that it is possible to efficiently extract a consis-
tent (

∏
i∈[1,n](di + 1))-tree of accepting transcripts for the canonical KZG PoKoP. Importantly, by avoiding

π-consistency, there is no need for round-by-round rewinding when extracting consistent transcripts, mak-
ing it possible to establish knowledge-soundness for the canonical KZG PoKoP. Finally, we note that, even
though we establish computational special soundness of the canonical KZG PoKoP only relative to a more
restricted class of consistent trees produced by some PPT algorithm, it is not an issue as our ultimate goal
is proving knowledge-soundness and special soundness serves only as a useful intermediate notion aiding the
modularity of our proof.

Generalized multivariate batching lemma. Our generalized multivariate batching lemma consolidates
all equalities from a set of (

∏
i∈[1,n](di+1)) consistent accepting transcripts into a single statement concern-

ing the interpolated polynomial L(X1, . . . , Xn). However, this approach makes the resulting equality more
complex as each pairing now incorporates a vanishing polynomial.
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Lemma 5 (Generalized n-variate Batching Lemma). For d = (d1, . . . , dn) ∈ Nn and (t1, . . . , tn) ∈ Fn
p ,

let {(
[c]1, (x

(i)
1 , . . . , x(i)n ), ((π

(i)
1 , . . . , π(i)

n ), z(i))
)}

i∈[d]

be a set of consistent transcripts according to Definition 15 that are all accepting w.r.t. (t1, . . . , tn), i.e., such
that, for all i ∈ [d], it holds that[

c− z(i)
]
1
• [1]2 =

n⊗
j=1

[
φ
(i)
j

]
1
•
[
tj − x(i)j

]
2
.

Denote x(i1,...,in)j = x
(i1,...,ij)
j (due to prefix consistency) and, for all j ∈ [1, n] and (i1, . . . , ij−1) ∈ [d1]×· · ·×

[dj−1], define:

– S
(i1,...,ij−1)
j =

{
x
(i1,...,ij)
j

}dj

ij=0
,

–
[
φ
(i1,...,ij−1)
j

]
1
=
∑dj ,...,dn

ij ,...,in=0

∏
k ̸=j ℓ

S
(i1,...,ik−1)

k
ik

(tk)w
S

(i1,...,ij−1)

j

ij

[
φ
(i1,...,in)
j

]
1
, and

– L(X1, . . . , Xn) =
∑d1,...,dn

i1,...,in=0 z
(i1,...,in)

∏n
k=1 ℓ

S
(i1,...,ik−1)

k
ik

(Xk).

Then, it holds that

[c− L(t1, . . . , tn)]1 • [1]2 =

n⊗
j=1

d1,...,dj−1⊗
i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

.

Proof. The proof is analogous to the proof of the n-variate batching lemma (Lemma 2). Using the same
observations, we can expand the left side of the claimed equality and derive the right side as follows:

[c− L(t1, . . . , tn)]1 • [1]2 =

=

c− d1,...,dn∑
i1,...,in=0

z(i1,...,in)
n∏

k=1

ℓ
S

(i1,...,ik−1)

k
ik

(tk)


1

• [1]2

=

 d1,...,dn∑
i1,...,in=0

n∏
k=1

ℓ
S

(i1,...,ik−1)

k
ik

(tk)(c− z(i1,...,in))


1

• [1]2

=

 d1,...,dn∑
i1,...,in=0

n∏
k=1

ℓ
S

(i1,...,ik−1)

k
ik

(tk)

 n∑
j=1

φ
(i1,...,in)
j

(
tj − x(i1,...,in)j

)
1

• [1]2

=

 d1,...,dn∑
i1,...,in=0

n∑
j=1

n∏
k=1

ℓ
S

(i1,...,ik−1)

k
ik

(tk)φ
(i1,...,in)
j (tj − x(i1,...,in)j )


1

• [1]2

=

 d1,...,dn∑
i1,...,in=0

n∑
j=1

∏
k ̸=j

ℓ
S

(i1,...,ik−1)

k
ik

(tk)φ
(i1,...,in)
j Z

S
(i1,...,ij−1)

j

(tj)w
S

(i1,...,ij−1)

j

ij


1

• [1]2

=

 n∑
j=1

d1,...,dj−1∑
i1,...,ij−1=0

φ
(i1,...,ij−1)
j Z

S
(i1,...,ij−1)

j

(tj)


1

• [1]2

=

n⊗
j=1

d1,...,dj−1⊗
i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

,

which proves the claim. ⊓⊔
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Generalized multivariate ARSDH assumption. Our generalized multivariate batching lemma (Lemma 5)
naturally leads to a generalization of the ARSDH assumption we define below.

Definition 16 (GARSDH Game). For a PPT adversary A, a bilinear-group generator PGen, and d =
(d1, . . . , dn) ∈ poly(λ), the GARSDH(n) Game is defined as follows:

1. Obtain gp← PGen(1λ) and sample t1, . . . , tn ← Fp.
2. On input 1λ, gp and

({[
ti11 · . . . · tinn

]
1

}d1,...,dn

i1,...,in=0
, {[ti]2}i∈[1,n]

)
A outputs for all j ∈ [1, n] and for all

(i1, . . . , ij−1) ∈ [d1]× · · · × [dj−1] :
– [χ]1,

–
{
S
(i1,...,ij−1)
j

}d1,...,dj−1

i1,...,ij−1=0
, where S(i1,...,ij−1)

j ⊆ Fp,

–
{[
φ
(i1,...,ij−1)
j

]
1

}d1,...,dj−1

i1,...,ij−1=0
.

A wins if and only if:

– |S(i1,...,ij−1)
j | = dj + 1 for all j ∈ [1, n] and all i1 ∈ [d1], . . . , ij−1 ∈ [dj−1],

– [χ]T ̸=
⊗n

j=2

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

, and

– [χ]T =
⊗n

j=1

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

.

We write GARSDH(n).Game(A,PGen,d) = 1 if A wins and 0 otherwise.

Definition 17 (GARSDH(n)). Let PGen be a bilinear group generator. Then, the n-variate Generalized
Adaptive Rational Strong Diffie-Hellman (GARSDH(n)) assumption holds for PGen if, for all d = (d1, . . . , dn) ∈
poly(λ) and PPT A, it holds that

Pr[GARSDH.Game(A,PGen,d) = 1] ∈ negl(λ).

Recall from our discussion on ARSDH in Section 5.2 that the second condition in its security game
ensures the adversary cannot win trivially. This is the case also for the second condition in Definition 16 of
the GARSDH security game, which takes care of various trivial ways of satisfying the last winning condition,
e.g, where the adversary use a solution for GARSDH(1) and sets all other elements to 0 to win. Similarly to
ARSDH, the non-triviality condition is, to some extent, motivated by our analysis of GARSDH in the AGM
(see Section 8).

As for ARSDH, we can show that GARSDH(n) reduces to GARSDH for a smaller number of variables. The
proof is even more straightforward than for ARSDH, as there is no need to shift the proofs of the instances
with a smaller number of variables to satisfy the second condition.

Lemma 6. For all n ∈ poly(λ), GARSDH(n) implies GARSDH(n− 1).

Proof. Assume we have
({[

ti11 · . . . · tinn
]
1

}d1,...,dn

i1,...,in=0
, {[ti]2}i∈[1,n]

)
given to us as input for the GARSDH(n)

challenge. The idea is we can give the oracle for GARSDH(n− 1) a version of our input where we ignore the
last variable and then use the output as our answer along with setting [φn]1 = [0]1.

We run the GARSDH(n − 1) oracle on input
({[

ti11 · . . . · t
in−1

n−1

]
1

}d1,...,dn−1

i1,...,in−1=0
, {[ti]2}i∈[1,n−1]

)
, where

(d1, . . . , dn−1) remains in poly(λ).
The oracle gives us for all j ∈ [1, n− 1] : [χ]1, {S

(i1,...,ij−1)
j }d1,...,dj−1

i1,...,ij−1=0,{[
φ
(i1,...,ij−1)
j

]
1

}d1,...,dj−1

i1,...,ij−1=0
, such that
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Extck(C, T ):

1. parse T as
{(

C,
(
x
(i1)
1 , . . . , x

(i1,...,in)
n

)
,
((

[φ
(i)
1 ]1, . . . , [φ

(i)
n ]1

)
, z(i)

))}
(i)∈[d]

2. for all k ∈ [1, n], set S
(i1,...,ik−1)

k =
{
x
(i1,...,ik)
k

}dk

ik=0

3. return L(X1, . . . , Xn) =
∑d1,...,dn

i1,...,in=0 z
(i1,...,in) ∏n

k=1 ℓ
S
(i1,...,ik−1)

k
ik

(Xk)

Fig. 6. Interpolating extractor establishing special soundness for the canonical KZG PoKoP.

1. |S(i1,...,ij−1)
j | = dj + 1 for all j ∈ [1, n− 1] and all i1 ∈ [d1], . . . , ij−1 ∈ [dj−1],

2. [χ]T ̸=
⊗n−1

j=2

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

,

3. [χ]T =
⊗n−1

j=1

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

.

Set [φn]1 = [0]1, all {S(i1,...,in−1)
n }d1,...,dn−1

i1,...,in−1=0 to dn +1 distinct random elements of Fp and output the rest of
the things exactly as from the oracle. This gives us

1. |S(i1,...,ij−1)
j | = dj + 1 for all j ∈ [1, n] and all i1 ∈ [d1], . . . , ij−1 ∈ [dj−1],

2. [χ]T ̸=
⊗n

j=2

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

,

3. [χ]T =
⊗n

j=1

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

,

where all of these are straightforward from the properties of the elements from the oracle. ⊓⊔

Special soundness of the canonical KZG PoKoP under GARSDH. The special soundness of the
canonical KZG PoKoP holds under the GARSDH assumption, as stated in the theorem below.

Theorem 5. Let gp ← PGen(1λ) and ck ← KZG.KGen(1λ, (d1, . . . , dn), gp) for some d1, . . . , dn ∈ N. If the
GARSDH(n) assumption holds for PGen then the canonical KZG PoKoP is a computationally (

∏n
i=1(di+1))-

special sound interactive argument for the relation RKZG
ck w.r.t. the class of tree-constructing algorithms that

output consistent trees (Definition 15).

Proof. Let gp ← PGen(1λ) and ck ← KZG.KGen(1λ, (d1, . . . , dn), gp) for some d1, . . . , dn ∈ N as in the
statement of the theorem. The commitment key ck specifies the commitment relation RKZG

ck .
Similarly to the proof of special soundness for the extended KZG PoKoP (Theorem 4), we prove the

theorem by analyzing the interpolating extractor Extck defined in Figure 6. The input to the extractor is a
commitment C ∈ G1 and a (

∏
i∈[1,n](di + 1))-tree of consistent accepting transcripts T for the canonical

KZG PoKoP. Note that consistency is an additional requirement that we must impose here, as it does not
naturally follow from the tree structure of T , unlike in the case of the extended KZG PoKoP.

The main difference from the extractor in Theorem 4 (Figure 5) is that a tree of accepting transcripts
for the canonical KZG PoKoP contains transcripts of the form{(

[c]1, (x
(i1)
1 , x

(i1,i2)
2 , . . . , x(i1,...,in)n ), (([φ

(i)
1 ]1, . . . , [φ

(i)
n ]1), z

(i))
)}

i∈[d]
,

i.e., there is a single challenge from the verifier and an answer from the prover. Importantly, by the consistency
of the transcripts (Definition 15), we can still argue that the leaves of T correspond to

∏
i∈[1,n](di+1) distinct

evaluation points. Moreover, for each prefix of indices (i1, . . . , ik−1), the interpolation subdomain S(i1,...,ik−1)
k
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is of size dk+1. Thus, the polynomial L(X1, . . . , Xn) output by the extractor satisfies the degree bounds, i.e.,
degXi

(L) ≤ di for all i ∈ [1, n], and matches all evaluations specified by the tree, i.e., L(x(i)1 , . . . , x
(i)
n ) = z(i)

for all i ∈ [d].
It remains to be argued that, except with a negligible probability, the interpolated polynomial L(X1, . . . , Xn)

matches the commitment, i.e., that [c − L(t1, . . . , tn)]1 = [0]1. To this end, we use the generalized mul-
tivariate batching lemma and GARSDH(n). Because the transcripts are accepting, we have that, for all
(i1, . . . , in) ∈ [d], [

c− z(i1,...,in)
]
1
• [1]2 =

n⊗
j=1

[
φ
(i1,...,in)
j

]
1
•
[
tj − x

(i1,...,ij)
j

]
2
.

Using Lemma 5, we get

[c− L(t1, . . . , tn)]1 • [1]2 =

n⊗
j=1

d1,...,dj−1⊗
i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

,

where [
φ
(i1,...,ij−1)
j

]
1
=

dj ,...,dn∑
ij ,...,in=0

∏
k ̸=j

ℓ
S

(i1,...,ik−1)

k
ik

(tk)w
S

(i1,...,ij−1)

j

ij

[
φ
(i1,...,in)
j

]
1
.

Assuming that GARSDH(n) holds, we get that, except with a negligible probability,

[c− L(t1, . . . , tn)]1 • [1]2 =

n⊗
j=2

d1,...,dj−1⊗
i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

(13)

for all (i1, . . . , in−1) ∈ [d1] × · · · × [dn−1], as otherwise we would be able to break GARSDH(n) by setting
[χ]1 = [c− L(t1, . . . , tn)]1.

Assuming that GARSDH(n− 1) holds, eq. (13) implies, except with a negligible probability, the equality

[c− L(t1, . . . , tn)]1 • [1]2 =

n⊗
j=3

d1,...,dj−1⊗
i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

,

as, otherwise, we would be able to break GARSDH(n− 1) in a similar way as before.
In this way, we can continue to reduce the statement by leveraging GARSDH(n − 2), . . . ,GARSDH(1),

ultimately demonstrating that if [c−L(t1, . . . , tn)]1 ̸= [0]1, we would be able to break one of these variants of
GARSDH. However, as noted in Lemma 6, GARSDH(n) implies GARSDH(n−1) for all n ∈ poly(λ). Therefore,
the only assumption required is GARSDH(n). ⊓⊔

6 Knowledge-Soundness of the KZG PoKoPs

In this section, we recall a general rewinding strategy by Attema, Cramer, and Kohl [ACK21] that extracts
an accepting tree of transcripts for a public-coin protocol with polynomial number of rounds in expected
polynomial time. Then, we use the ACK extraction strategy to prove the knowledge-soundness of the two
KZG PoKoPs under ARSDH, respectively GARSDH.

6.1 The [ACK21] Tree-Finding Game and Algorithm

[ACK21] presented the following abstract game that distils the task of extracting a tree of accepting tran-
scripts given black-box rewinding access to a prover.
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Algorithm 1 The tree-finding algorithm Tree from [ACK21].

TreeH(k1, . . . , kn):
1: a← R
2: return TreeH

0 (a) with the root labeled by a

TreeH
n (a, x1, . . . , xn):

1: if H[a, x1, . . . , xn] = 1 then
2: return New leaf labeled by H[a, x1, . . . , xn]
3: else
4: return ⊥

TreeH
i (a, x1, . . . , xi): ▷ for i ∈ {0, . . . , n− 1}

1: xi+1 ← N
2: v a new vertex
3: T = TreeH

i+1(a, x1, . . . , xi+1)
4: if T = ⊥ then
5: return ⊥
6: else
7: Connect v and the root of T by an edge labeled by xi+1

8: while v has < ki children do
9: xi+1 ← N (without replacement)

10: T = TreeH
i+1(a, x1, . . . , xi+1)

11: if T ≠ ⊥ then
12: Connect v and the root of T by an edge labeled by xi+1

13: if All possibilities were tried then
14: return ⊥

The tree-finding game. For parameters n,R,N ∈ N, let H ∈ {0, 1}R×N×···×N be an (n+ 1)-dimensional
0/1-tensor. Given query access to H and a tuple (k1, . . . , kn) ∈ [N ]n, our goal is to find a (k1, . . . , kn)-tree
of 1-entries in H satisfying the following structure:

1. The root r is labeled by a ∈ [R].
2. A vertex v in the i-th level (the root r is in the first level) has ki children. The edges connecting v and

its children are labelled by ki distinct values from [N ].
3. Let v be a leaf and x1, . . . , xn the edge-labels on the path from the root r to v. Then, H[a, x1, . . . , xn] = 1.

Any (k1, . . . , kn)-tree of 1-entries in H is basically a structured set of locations in H containing 1-entries.
As we explain next, an algorithm that succeeds in the tree-finding game can be used to extract a (k1, . . . , kn)-
tree of accepting transcripts in an n-round public-coin interactive protocol given rewinding black-box access
to a prover. Indeed, [ACK21] used the tree-finding game in their proof of a general forking lemma for
multi-round protocols.

For an n-round protocol (P,V), set R as the size of the universe of P’s randomness and N as the size of
the universe of V’s challenges. The (n+1)-dimensional tensor H ∈ {0, 1}R×N×···×N is then defined such that,
for any fixed P’s randomness a ∈ [R] and vector of V’s challenges x1, . . . , xn ∈ [N ], the entry H[r, x1, . . . , xn]
equals 1 if and only if V eventually accepts based on P’s responses computed on challenges x1, . . . , xn using
the fixed P’s randomness a. Note that the 1-entries in H correspond exactly to accepting protocol transcripts,
and, thus, any (k1, . . . , kn)-tree of 1-entries in H gives a (k1, . . . , kn)-tree of accepting transcripts for (P,V).

For example for the extended KZG PoKoP (PKZG,VKZG), the number of rounds n is the number of variables
supported by the commitment key ck, R = 2poly(λ), and N = |Fp|. The entries of the corresponding (n+ 1)-
dimensional tensor HKZG are defined by the outputs of VKZG, and we wish to find a (d1 + 1, . . . , dn + 1)-tree
of 1-entries in HKZG.

33



The tree-finding algorithm. Attema et al. [ACK21] also proposed a tree-finding algorithm Tree pre-
sented in Algorithm 1. Their algorithm Tree first samples an entry inH to estimate the density of 1-entries in
H. If it sampled a 1-entry then it keeps sampling without replacement until it either produces a (k1, . . . , kn)-
tree of 1-entries of H or queries the whole H. In case the initial query was a 0-entry, the algorithm terminates.
Importantly, they proved the following strong guarantees on the performance of Tree.

Lemma 7 ([ACK21]). For n,R,N ∈ N, let H ∈ {0, 1}R×N×···×N be an (n + 1)-dimensional tensor and
let ε ∈ R be the fraction of 1-entries in H. Then, TreeH(k1, . . . , kn) outputs a (k1, . . . , kn)-tree of 1-entries
in H with probability at least

ε−
∑n

i=1(ki − 1)

N
,

and the expected sample complexity of TreeH(k1, . . . , kn) is at most
∏n

i=1 ki.

Probability of discarding sampled 1-entries. Next, we argue that the algorithm Tree is very likely to
add all the sampled 1-entries from H to the constructed tree. We start with the following basic observation.

Observation 6 For all H ∈ {0, 1}R×N×···×N and (k1, . . . , kn) ∈ [N ]n, the algorithm TreeH(k1, . . . , kn)
makes at least N queries before discarding any 1-entry it sampled from H.

Proof. Suppose we are in the middle of execution of the procedure Treei. The procedure has already
successfully called the procedure Treei+1 at least once, i.e., it found some 1-entries of H. Thus, the while
cycle beginning at Line 8 is executing. Then, the procedure Treei aborts only at Line 14 after trying all
possibilities for the challenge xi+1. Thus, it had to call the procedure Treei+1 N times and it follows the
procedure made at least N queries to H. ⊓⊔

Lemma 7 and Observation 6 imply that, if successful, the algorithm Tree discards any found 1-entry
only with a small probability whenever the size of the (k1, . . . , kn)-tree is smaller than N .

Corollary 1. For all H ∈ {0, 1}R×N×···×N and (k1, . . . , kn) ∈ [N ]n, if the algorithm TreeH(k1, . . . , kn)
succeeded then it sampled and discarded a 1-entry with probability at most (

∏n
i=1 ki)/N .

Proof. Let Q be the random variable counting the number of queries made by TreeH(k1, . . . , kn) and D be
the event that TreeH(k1, . . . , kn) discarded a sampled 1-entry. By Lemma 7, we have that E[Q] ≤

∏n
i=1 ki.

By Observation 6, we have that E[Q | D] ≥ N . Therefore, we get that

n∏
i=1

ki ≥ E[Q] = Pr[D] · E[Q | D] + Pr[¬D] · E[Q | ¬D] ≥ Pr[D] · E[Q|D] ≥ Pr[D] ·N,

where the second inequality holds since Q is non-negative. Note that we get the statement of the corollary
after dividing the above inequality by N . ⊓⊔

6.2 Knowledge-Soundness of the KZG PoKoPs

Using the [ACK21] rewinding strategy described in the previous section, we can prove the knowledge-
soundness of the two KZG PoKoPs as stated in the following theorem.

Theorem 7. For n ∈ N, let d = (d1, . . . , dn) ∈ poly(λ) be a vector of degree bounds and PGen be a bilinear
group generator.

1. If the ARSDH(n) assumption holds for PGen then the extended KZG PoKoP is a proof of knowledge of a
polynomial for KZG with respect to PGen and d.

2. If the GARSDH(n) assumption holds for PGen then both extended and canonical KZG PoKoPs are proofs
of knowledge of a polynomial for KZG with respect to PGen and d.
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Proof. By Theorem 4, we know that the extended KZG PoKoP is computationally (d1 + 1, . . . , dn + 1)-
special sound under the ARSDH(n) assumption. Similarly, Theorem 5 gives that the canonical KZG PoKoP is
computationally ((d1+1) · · · (dn+1))-special sound under GARSDH(n) with respect to PPT algorithms that
output consistent ((d1 + 1) · · · (dn + 1))-trees of accepting transcripts (w.r.t. Definition 15 of consistency).
To prove knowledge-soundness of the two protocols, it remains to construct an expected polynomial time
algorithm that, given black-box rewinding access to any prover P∗ that on input C convinces the verifier
VKZG with probability δ, outputs a (consistent) tree of accepting transcripts, of the respective size, with
probability at least δ − negl(λ).

We construct such an algorithm via the ACK rewinding approach presented in Section 6.1. We define an
(n+ 1)-dimensional 0/1 tensor H ∈ {0, 1}R×p×...×p as follows: The entry Hi0,i1,...,in contains the output of
KZG.Ver(ck, C,x, z, π), where i0 denotes the randomness a of P∗ (which determines z and π) and ij = xj ∈ Fp

for all j ∈ [1, n]. Note that we can emulate an oracle for H by interacting with and (if needed) rewinding
P∗ as follows. For the extended KZG PoKoP, we run P∗ on input C with challenges x1, . . . , xn to obtain
Ha,x1,...,xn

for some a ∈ R sampled by P∗. In order to obtain, e.g., the element Ha,x1,...,xn−1,x′
n
, we rewind the

adversary to after its (n−1)-th message and then send the new challenge x′n. Using this rewinding technique,
we can emulate access to H making sure the randomness a, as well as all shared prefixes of P∗’s messages
remain fixed. For the canonical KZG PoKoP, we do not need to ensure consistency of prover’s answers. We
can just rewind the prover P∗ to the outset of the protocol and perform a new run for each evaluation point.

We denote by TreeP∗
the algorithm that follows Algorithm 1 while given emulated access to the oracle H

by rewinding P∗ as explained above. By Lemma 7, TreeP∗
(d1+1, . . . , dn+1) outputs a (d1+1, . . . , dn+1)-

tree of 1-entrees in H with probability at least δ −
∑n

i=1 di/p and expected sample complexity at most∏n
i=1(di + 1). Since the degree bounds di are polynomial in λ and the size p of the field is exponential in λ,

the success probability of TreeP∗
is at least δ − negl(λ) and the expected sample complexity is polynomial

in λ. Note that, by rewinding P∗ in the extended KZG PoKoP while emulating H and running TreeP∗
, we

implicitly construct a (d1 + 1, . . . , dn + 1)-tree of accepting transcripts and the knowledge-soundness of the
extended KZG PoKoP follows. Similarly, by rewinding P∗ in the canonical KZG PoKoP while emulating H
and running TreeP∗

, we implicitly construct a (
∏n

i=1(di + 1))-tree of accepting transcripts. Morever, this
tree is consistent, as it corresponds to a tree of 1-entries in the (n+ 1)-dimensional tensor H, which ensures
prefix consistency of the evaluation points. Thus, the knowledge-soundness of the canonical KZG PoKoP
follows. ⊓⊔

6.3 KZG PoKoPs vs. Black-Box Extractability in [LPS23]

In this section, we first compare our notion of PoKoP for a PCS to the notion of black-box extractability
from [LPS23], and then show that our extractor satisfies also their definition.

Lipmaa, Parisella and Siim’s [LPS23, LPS24a] definition of black-box extractability for univariate poly-
nomial commitment schemes can be stated for multivariate polynomial commitment schemes as follows. For
a polynomial commitment scheme PCS = (KGen,Com,Open,Ver), a commitment key ck, and a transcript
tr = (C,x, z, π) define the relation

RPCS
ck,tr = {(C, f) | C = PCS.Com(ck, f) ∧ deg(f) ≤ dck ∧ f(x) = z}.

Note that, compared to the commitment relation

RPCS
ck =

{
(C, f) | C = PCS.Com(ck, f) ∧ deg(f) ≤ dck

}
we use to define the knowledge-soundness property for PoKoPs, the relation RPCS

ck,tr additionally requires the
polynomial f to be consistent with the evaluation proof of an initial transcript tr (but not necessarily with
the proof π contained in tr).

Definition 18 (Black-box Extractability [LPS23]). A polynomial commitment scheme PCS is black-
box extractable for PGen, if there exists an expected PPT black-box extractor ExtBB, such that for any
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n,d = (d1, . . . , dn) ∈ poly(λ) and all A = (A0,A1), where A0 is PPT and A1 is DPT, it holds that

Pr


Ver(ck, C,x, z, π) = 1

∧ (C, f) /∈ RPCS
ck,tr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp← PGen(1λ),

ck← KGen(gp,d),

(C, st)← A0(ck),

x← Fn,

(π, z)← A1(st,x),

tr← (C,x, z, π),

f ← Ext
A1(st,·)
BB (ck, tr)


∈ negl(λ).

To some extent, the experiment captured by the above definition implicitly considers the canonical PoKoP
of PCS as defined by us but requires it to be an argument of knowledge for the relation RPCS

ck,tr. Importantly,
by considering the event Ver(ck, C,x, z, π) = 1 ∧ (C, f) /∈ RPCS

ck,tr, the polynomial output by Ext
A1(st,·)
BB must,

except with a negligible probability, match the value z at point x as specified by the transcript tr. We wish
to point out that, despite the similarities, our definition of extractability via PoKoPs seems more conducive
to generalizations of the techniques from [LPS24a]. For example, by decoupling the canonical PCS PoKoP
construction from the general notion of PoKoP, we were able to invoke the extraction strategy from [ACK21]
as a black box, whereas [LPS24a] had to adapt the [ACK21] extraction procedure to their definition and
reprove its properties already for the univariate KZG scheme.

Next, we argue that our analysis of the canonical and extended KZG PoKoPs demonstrates that the
corresponding interactive evaluation proofs satisfy the above definition of black-box extractability. To this
end, we show that we can adapt the extractor in the proof of Theorem 7 to output a polynomial f that is
consistent with (x, z) in the initial transcript tr output by A1. For the canonical KZG PoKoP, this follows
directly from Corollary 1. We can just view x as the first evaluation point on which the algorithm TreeA1

in the proof of Theorem 7 queries A1. If π is an accepting proof then, by Corollary 1, the probability that
x is not part of the final tree of transcripts, i.e., inconsistent with extractor’s interpolating polynomial f , is
negligible.

For the extended KZG PoKoP, it is not immediately clear that the above holds since here we need a
proof π for x that is consistent with the rest of the proofs in the tree. Note, however, that there is no need
to keep the proof π output by A1 as part of the tree. The algorithm TreeA1 can also query A1 again on
the same point x and if A1 outputs (z′, π′) then start rewinding the adversary exactly as in the proof of
Theorem 7. Since the multivariate KZG scheme is evaluation binding on average under the SBDH assumption
(see Section 10), we know that if the proof π′ is accepting then z′ = z. If A1 does not output an accepting
proof, we keep querying A1 on x until we get an accepting proof. It remains to be argued that, with high
probability, this procedure terminates in expected polynomial time. Let Q denote the expected number of
queries we make on x. Equivalently, the probability that A1 outputs an accepting proof is 1/Q. Since A1

already managed to output one accepting proof for x, we can assume that the probability of A1 outputting
an accepting proof for x is inversely polynomial, and, hence, Q is a polynomial.

7 The Extractability of Other KZG Variants

We have established both the special soundness and knowledge-soundness of the basic multivariate KZG
from [PST13]. Notably, our proof of special soundness relies solely on the structure of the verification check,
while extending to knowledge-soundness requires only the ability to efficiently extract a tree of accepting,
consistent transcripts. As a result, our techniques apply not only to KZG but also to other KZG-like schemes
that share these basic structural properties. In this section, we consider some extensions of the KZG scheme
from the literature and discuss the applicability of our results to them.

36



bKZG.KGen(1λ,d = (M − 1, T − 1), aux = gp = (p, [1]1, [1]2, •)):
Sample τX , τY ← Fp,
Output ck =

(
gp, [τX ]1, [τY ]1, [τX ]2, [τY ]2, (Ui,j)

M−1,T−1
i,j=0 = ([Ri(τY )Lj(τX)]1)

M−1,T−1
i,j=0

)
.

bKZG.Com(ck, f):
1. Parse f(Y,X) as

∑M−1
i=0

∑T−1
j=0 fi,jLj(X)Ri(Y ), and denote fi(X) =

∑T−1
j=0 fi,jLj(X).

2. For all i ∈ [M − 1], compute comfi =
∑T−1

j=0 fi,jUi,j .
3. Then combine as comf =

∑M−1
i=0 comfi .

Output C.
bKZG.Open(ck, f, (y, x)):

1. For all i ∈ [M − 1] compute
– fi(x),
– q

(i)
1 (X) = fi(X)−fi(x)

X−x
,

– π
(i)
1 = [Ri(τY )q

(i)
1 (τX)]1.

– π1 =
∑M−1

i=0 π
(i)
1

2. Combine as
– f(Y, x) =

∑M−1
i=0 Ri(Y )fi(x)

– z = f(y, x)

– q2(Y ) = f(Y,x)−f(y,x)
Y −y

– π2 = [q2(τY )]1
– π = (π1, π2)

Output (z, π = (π1, π2)).
bKZG.Ver(ck, C, (y, x), z, π = (π1, π2), ck):

If (C − [z]1) • [1]2 = π1 • [τX − x]2 ⊗ π2 • [τY − y]2, output 1, and 0 otherwise.

Fig. 7. The Pianist variant of the bivariate KZG scheme [LXZ+24]

Handling commitment keys for alternative polynomial bases. So far, we have considered the case
where KGen(1λ,d = (d1, . . . , dn), gp) outputs a commitment key ck w.r.t. a standard monomial basis, i.e.,
ck =

(
gp,
([
ti11 · · · tinn

]
1

)d1,...,dn

i1,...,in=0
, ([ti]2)

n
i=1

)
. Note, however, that the KGen algorithm can output the com-

mitment key ck with respect to an arbitrary polynomial basis such as the Lagrange basis (see Definition 1).
Then ck is of the following form(

gp,
(
[lS1
i1
(t1) · · · lSn

in
(tn)]1

)d1,...,dn

i1,...,in=0
, ([ti]2)

n
i=1

)
,

where, for all j ∈ [1, n], {lSj

ij
(Xj)}ij∈[dj ] is the Lagrange basis with respect to the variable Xj and some

interpolation domain Sj ⊆ Fp. Working with the above commitment key constructed w.r.t. the Lagrange basis
is beneficial, for example, when the prover wants to commit to a polynomial f represented via evaluations
on the interpolation domain, as it saves one application of the inverse Fourier transform.

Importantly, these constructions of ck are equivalent, in the sense that a commitment key expressed in
the Lagrange basis can be efficiently transformed into one in the standard monomial basis, and vice versa.
For instance, Fast Fourier Transform (FFT) can be used to convert the commitment key to the monomial
basis, ensuring efficiency and correctness in the transformation.

7.1 Distributed Bivariate KZG from Pianist [LXZ+24]

Pianist [LXZ+24] is a distributed zero-knowledge proof system that, instead of relying on a monolithic
prover, allows the splitting of proof generation among multiple weaker machines with minimal communication
overhead, improving proving scalability. In this subsection, we describe how our extractability results apply
to the distributed bivariate KZG (DKZG) scheme introduced in [LXZ+24], which is a basic building block in
the Pianist protocol.
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The DKZG scheme. We present the scheme in Figure 7. The notation is slightly different from our notation
in previous sections, as we strive to follow closely the notation used in [LXZ+24]. Still, we keep the additive
bracket notation for source groups. The main idea of DKZG is to split the bivariate polynomial f(Y,X) into
multiple polynomials to parallelize the computation by introducing sub-provers. Each sub-prover Pi has a
univariate polynomial fi(X) on which they compute locally and simultaneously with the other sub-provers.
When all of the sub-provers finished their part of the computation, the master prover P0 aggregates the
partial computations into one and sends it to the verifier.

The way the master prover splits the polynomial is quite natural. Suppose the polynomial f(Y,X) is of
the form

∑M−1
i=0

∑T−1
j=0 fi,jLj(X)Ri(Y ), where Lj(X) is the Lagrange basis with respect to the variable X

and Ri(Y ) is the Lagrange basis with respect to variable Y . Specifically, for i ∈ [M − 1] and j ∈ [T − 1],
define

Lj(X) =
ωj
X

T

XT − 1

X − ωj
X

, Ri(Y ) =
ωi
Y

M

YM − 1

Y − ωi
Y

,

where ωX and ωY are some appropriate primitive roots of unity defining the interpolation domain for X and
Y .

The distribution of the bivariate polynomial f(Y,X) is achieved using the following decomposition

f(Y,X) =

M−1∑
i=0

Ri(Y )

T−1∑
j=0

fi,jLj(X)

 =

M−1∑
i=0

Ri(Y )fi(X),

where fi(X) =
∑T−1

j=0 fi,jLj(X) is the polynomial received by sub-prover Pi. In the scheme, the master prover
P0 performs aggregation exploiting that it just needs to aggregate the values based on the sub-polynomials
fi(X) with respect to the variable Y .

Naturally, the commitment key ck in DKZG contains group elements ([Ri(τY )Lj(τX)]1)
M−1,T−1
i,j=0 , where

T − 1,M − 1 are the degrees of variables X and Y respectively, along with all of the other necessary
information. In the commitment phase, each sub-prover computes the commitment comfi to its polynomial
fi(X) and sends it to P0. The master prover P0 computes the aggregated commitment C =

∑M−1
i=0 comfi

and sends it to the verifier.
To compute an evaluation proof for f(Y,X) at a point (y, x), each sub-prover Pi computes fi(x) and

π
(i)
1 , which is a “univariate KZG commitment” to the quotient polynomial q(i)1 (X) = fi(X)−fi(x)

X−x offset by

Ri(τY ). Each sup-prover Pi then sends fi(x) and π
(i)
1 to P0. The master prover P0 aggregates all partial

proofs π(i)
1 into π1 =

∑M−1
i=0 π

(i)
1 . Then, P0 computes f(Y, x) =

∑M−1
i=0 Ri(Y )fi(x), the evaluation of f(y, x),

and the quotient polynomial q2(Y ) = f(Y,x)−f(y,x)
Y−y . It then constructs π2 as a commitment to q2(Y ). Finally,

P0 sends (z, π = (π1, π2)) to the verifier, who accepts based on the verification check

(C − [z]1) • [1]2 = π1 • [τX − x]2 ⊗ π2 • [τY − y]2,

which is exactly the bivariate KZG check.

Extractability of DKZG under ARSDH and GARSDH. To illustrate the assumption underlying the
proof of extractability for the bivariate DKZG scheme, we present the ARSDH(2) security game explicitly
in Definition 19 below.

Definition 19 (Bivariate ARSDH Game). For a PPT adversary A, a bilinear-group generator PGen, and
n,m ∈ poly(λ), the Bivariate ARSDH Game is defined as follows:

1. Sample gp← PGen(1λ) and σ, τ ← Fp.

2. On input 1λ, gp and
(([

σiτ j
]
1

)m,n

i,j=0
, [σ]2 , [τ ]2

)
A outputs [χ]1, [φ]1, [ψ]1, α ∈ Fp, and a set S ⊆ Fp.
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A wins if and only if:

|S| = m+ 1, and [χ]T ̸= [φ]1 • [σ − α]2, and [χ]1 • [1]2 = [φ]1 • [σ − α]2 ⊗ [ψ]1 • [ZS(τ)]2.

We write ARSDH.Game(A,PGen, n,m) = 1 if A wins and 0 otherwise.

First note that, even though the scheme is defined using a commitment key w.r.t. the Lagrange basis, we
can still reduce to ARSDH or GARSDH postulated w.r.t. to the standard monomial basis since it is possible
to efficiently compute the DKZG commitment from

(
[τ iσj ]1

)m,n

i,j=0
and the rest of the input in the ARSDH,

resp. GARSDH game. Moreover, the DKZG scheme still supports the extended PoKoP, as all sub-provers only
need the X-coordinate of the evaluation point (x, y) to construct the sub-proofs π(i)

1 . Thus, we can extract
π-consistent transcripts and rely on ARSDH when analyzing the extended DKZG PoKoP. Additionally, as we
already pointed out, the verification check is exactly that of the standard bivariate KZG. Thus, as a direct
corollary of our Theorem 7, we get extractability for the extended DKZG PoKoP under ARSDH(2) and for
the canonical DKZG PoKoP under GARSDH(2).

Theorem 8. Let d = (M − 1, T − 1) ∈ poly(λ) be degree bounds and PGen be a bilinear group generator.

1. If the ARSDH(2) assumption holds for PGen then the extended DKZG PoKoP is a proof of knowledge of
a polynomial for DKZG with respect to PGen and d.

2. If the GARSDH(2) assumption holds for PGen then both the extended and canonical DKZG PoKoPs are
proofs of knowledge of a polynomial for DKZG with respect to PGen and d.

7.2 Distributed Multivariate KZG from HyperPianist [LLZ+24]

HyperPianist is a distributed zero-knowledge proof system designed to achieve linear-time prover cost and
logarithmic communication cost. Similarly to how the Pianist ZKP [LXZ+24] improves the scalability of
proving in the Plonk proof system [GWC19], the HyperPianist scheme extends the HyperPlonk multivariate
proof system [CBBZ23] by efficiently distributing computation across multiple machines with minimal addi-
tional overhead. In this section, we show that our extractability results extend to the distributed multilinear
KZG (deMKZG) scheme introduced in [LLZ+24] to serve as a building block in their scheme.

We present the deMKZG scheme in Figure 8, following closely the notation from their paper. The
deMKZG builds on top of the basic multilinear KZG scheme [PST13]. The authors observe that, since an
n-variate multilinear polynomial f(X1, . . . , Xn) ∈ F[X1, . . . , Xn] is uniquely determined by its evaluations
on the vertices of the n-dimensional Boolean hypercube, we can split f into M = 2m sub-polynomials
f (i)(X1, . . . , Xn−m) = f(X1, . . . , Xn−m,bin(i)), where bin(i) ∈ {0, 1}m is the binary representation of
i ∈ [M ], i.e., f (i) is the restriction of f with the last m variables fixed to the bits of bin(i). Then, we
can represent f as follows:

f(X1, . . . , Xn) =
∑

x∈{0,1}n

f(x)ẽq(x, X1, . . . , Xn) =
∑
i∈[M ]

∑
x∈{0,1}n−m

f (i)(x)ẽq(x|| bin(i), X1, . . . , Xn),

where ẽq(x, X1, . . . , Xn) =
∏n

j=1(xjXj + (1 − xj)(1 − Xj)) is simply the Lagrange basis polynomial for
multilinear interpolation over the Boolean hypercube corresponding to the evaluation point x ∈ {0, 1}n.

The commitment key contains evaluations of the multilinear Lagrange bases w.r.t. the n-dimensional
Boolean hypercube on a secret evaluation point t← Fn

p , i.e., ([ẽq(x, t)]1)x∈{0,1}n . In the commitment phase,

each sub-prover Pi locally commits to its polynomial f (i)(X1, . . . , Xn−m), and sends the commitment com(i)
f

to the master node P0. The partial commitments are then aggregated by P0 into a global commitment
comf =

∑
i∈[M ] com

(i)
f , which is sent to the verifier.

To provide an evaluation proof for value v = f(r) at an evaluation point r, each sub-prover Pi computes
all its quotient polynomials Q(i)

k (x) w.r.t. the evaluation point r for all 1 ≤ k ≤ n − m, computes the
commitments com

(i)
Qk

to all of its quotient polynomials, and sends them to the master prover. P0 then
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deMKZG.KGen
(
1λ, 1n, aux = gp = (p, [1]1, [1]2, •)

)
:

Sample t← Fn
P .

Output ck =
(
gp, ([ẽq(x, t)]1)x∈{0,1}n , ([ti]2)i∈[1,n]

)
, where ẽq(x, t) =

∏n
j=1(xjtj + (1− xj)(1− tj)).

deMKZG.Com(ck, f):
1. For all i ∈ [M ], compute com

(i)
f =

∑
x∈{0,1}n−m f (i)(x)[ẽq(x|| bin(i), t)]1,

where f (i)(X1, . . . , Xn−m) = f(X1, . . . , Xn−m, bin(i)).
2. Compute comf =

∑
i∈[M ] com

(i)
f .

Output comf .
deMKZG.Open(ck, f, r = (r1, . . . , rn)):

1. For all k ∈ [1, n−m] and all i ∈ [1,M ] compute:
– R

(i)
k (x) = (1− rk) ·R(i)

k−1(0,x) + rk ·R(i)
k−1(1,x), ∀x ∈ {0, 1}

n−k,
– Q

(i)
k (x) = R

(i)
k−1(1,x)−R

(i)
k−1(0,x), ∀x ∈ {0, 1}

n−k,
– the commitment for Q

(i)
k as com

(i)
Qk

.
2. For all k = 1, . . . , n−m, compute comQk =

∑
i∈[M ] com

(i)
Qk

.
3. Construct the evaluation table for Qn−m and Rn−m.
4. For all k ∈ [n−m+ 1, n] compute:

– Rk(x) = (1− rk) ·Rk−1(0,x) + rk ·Rk−1(1,x) for all x ∈ {0, 1}n−k,
– Qk(x) = Rk−1(1,x)−Rk−1(0,x), ∀x ∈ {0, 1}n−k.
– Compute the commitment for Qk as comQk .

Output (f(r), (comQ1 , . . . , comQn)).
deMKZG.Ver(ck, comf , r = (r1, . . . , rn), v, π = (comQ1 , . . . , comQn)):

If (comf −[v]1) • [1]2 =
⊗n

i=1 comQi •[ti − ri] output 1, otherwise 0.

Fig. 8. The deMKZG Polynomial Commitment Scheme.

combines these partial commitments from sub-provers into the final commitments comQk
=
∑

i∈[M ] com
(i)
Qk

,
for all 1 ≤ k ≤ n −m. Then, for n −m + 1 ≤ k ≤ n, the master prover computes the commitments to the
last m quotient polynomials comQk

on its own and sends the complete proof π = (comQ1
, . . . , comQn

) along
with the value v = f(r) to the verifier. The verifier accepts the evaluation proof based on the check

(comf −[v]1) • [1]2 =

n⊗
i=1

comQi •[ti − ri],

which is exactly the multivariate KZG check.
While the computation of the quotient polynomials is performed differently, the underlying structure of

the deMKZG scheme remains exactly the same as in the basic multilinear KZG scheme. Thus, the proof of
extractability of deMKZG follows directly from Theorem 7.

Theorem 9. Let d = (1, . . . , 1) ∈ poly(λ) be degree bounds specifying the set of n-variate multilinear poly-
nomials and PGen be a bilinear group generator.

1. If the ARSDH(n) assumption holds for PGen then the extended deMKZG PoKoP is a proof of knowledge
of a polynomial for deMKZG with respect to PGen and d.

2. If the GARSDH(n) assumption holds for PGen then both extended and canonical deMKZG PoKoPs are
proofs of knowledge of a polynomial for deMKZG with respect to PGen and d.

7.3 Randomized KZG from [PST13]

Rather than standard evaluation binding, [PST13] proved a slightly weaker notion of evaluation binding
on average for the multivariate KZG scheme presented in Figure 2 (see Section 10 for further discussion).
Additionally, they introduced a randomized multivariate KZG scheme based on the following parameterized
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multivariate polynomial decomposition lemma, for which they proved the standard notion of evaluation
binding under the Strong Diffie-Hellmann assumption in bilinear groups.

Lemma 8 (Parameterized polynomial decomposition [PST13]). Let f(X1, . . . , Xn) ∈ Fp[X1, . . . , Xn]

be an n-variate polynomial. For all (x1, . . . , xn) ∈ Fn
p and (α1, . . . , αn−1) ∈ Fn−1

p such that
∏n−1

i=1 αi ̸= 0, it
holds that

f(X1, . . . , Xn)− f(x1, . . . , xn) =
n−1∑
i=1

(αi(Xi − xi) +Xi+1 − xi+1)qi(Xi, . . . , Xn) + qn(Xn)(Xn − xn), (14)

where qi(Xi . . . , Xn) ∈ Fp[Xi, . . . , Xn] for all i ∈ [1, n].

In the randomized multivariate KZG scheme from [PST13] based on the lemma above, the procedures
KGen and Com are the same as in KZG. The construction of an evaluation proof for value z = f(x) at an
evaluation point x in the randomized scheme can be seen as the following interactive protocol between the
prover and the verifier: The verifier samples (α1, . . . , αn−1) ← Fn−1

p uniformly and sends it to the prover.5
The prover then uses polynomial division to compute the quotient polynomials {qi(Xi . . . , Xn)}ni=1 implicitly
defined for all 1 ≤ i ≤ n− 1 as

ri(Xi+1, . . . , Xn) = (αi(Xi+1 − xi+1) +Xi+2 − xi+2) qi+1(Xi+1, . . . , Xn) + ri+1(Xi+2, . . . , Xn),

where r0(X1, . . . , Xn) = f(X1, . . . , Xn)−f(x). Finally, the last quotient polynomial is defined via rn−1(Xn) =
(Xn − xn)qn(Xn) (By Lemma 8, we have that rn = 0). Analogously to the standard KZG scheme, the
prover then computes the evaluation proof as a vector of commitments to the n quotient polynomials, i.e.,
π = ([q1(t1, . . . , tn)]1, . . . , [qn(tn)]1), and sends (z, π) to the verifier. The verification check corresponding to
Equation (14) has the form:

[f(t)− z]1 • [1]2
?
=

n−1⊗
i=1

πi • [αi(ti − xi) + ti+1 − xi+1]2 ⊗ πn • [tn − xn]2. (15)

The above check has a different structure than the verification check in KZG. Thus, it is a priori unclear
whether our results on the extractability of the KZG PoKoPs imply directly anything for the randomized
multivariate scheme from [PST13] described above.

However, we show that eq. (14) can be rearranged to support a verification check with the same structure
as in KZG and use this observation to prove the extractability of the randomized scheme. By redistributing
the summation and combining terms containing (Xi − xi), we can rewrite eq. (14) as

f(X)−f(x) = α1q1(X)(X1−x1)+

(
n−1∑
i=2

(qi−1(X) + αiqi(X))(Xi − xi)

)
+(qn−1(X)+qn(X))(Xn−xn). (16)

We can define alternative quotient polynomials q̃i(X) for 1 ≤ i ≤ n as follows:

– q̃1(X1, . . . , Xn) = α1q1(X1, . . . , Xn),
– q̃i(Xi−1, . . . , Xn) = qi−1(Xi−1, . . . , Xn) + αiqi(Xi, . . . , Xn) for i ∈ [2, n− 1],
– q̃n(Xn−1, Xn) = qn−1(Xn−1, Xn) + qn(Xn).

By eq. (16), for the evaluation proof π̃ = ([q̃1(t1, . . . , tn)]1, . . . , [q̃n(tn−1, tn)]1) computed as the vector of
commitments to the alternative quotient polynomials, the verification check can be performed as

[f(t)− z]1 • [1]2
?
=

n⊗
i=1

π̃i • [ti − xi],

5 To avoid cumbersome notation, we do not exclude 0 when sampling the αi’s. We can afford this since the probability
of sampling any 0 is at most (n− 1)/|Fp|, which is exponentially small in the security parameter λ.
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PrKZG(f) C
?
∈ LRrKZG

ck
VrKZG

(d1, . . . , dn) = dck

x, α x← Fn
p , α← Fn−1

p

z = f(x)

π = Open(ck, C, f,x, α) z, π

return Ver(ck, C,x, z, π, α)

Fig. 9. The canonical PoKoP for rKZG = (KGen,Com,Open,Ver).

which is exactly the original multivariate KZG check. Importantly, the verifier can efficiently compute π̃ from
π using the vector of challenges α since, by the definition of the polynomials q̃i, it holds that

π̃ = (α1π1, π1 + α2π2, . . . , πn−2 + αn−1πn−1, πn−1 + πn). (17)

To summarize, for the randomized KZG scheme from [PST13], there is an equivalent scheme rKZG =
(KGen,Com,Open,Ver), where the procedures KGen and Com are the same as in KZG. The evaluation proof
is constructed by rKZG.Open(ck, C, f,x, α) as a KZG evaluation proof using the quotient polynomials qi
computed w.r.t. α via the parameterized polynomial decomposition lemma (Lemma 8). The verification
check rKZG.Ver(ck, C,x, z, π, α) first computes π̃ defined in eq. (17) and then outputs KZG.Ver(ck, C,x, z, π̃).
Next, we discuss the extractability of the rKZG scheme.

In Figure 9, we present the canonical PoKoP for rKZG. Note that the first round still slightly differs from
the canonical KZG PoKoP. Specifically, verifier samples a uniform evaluation point x = (x1, . . . , xn) ← Fn

q

and a randomization vector α = (α1, . . . , αn−1)← Zn−1
p and sends them to the prover. We can establish the

knowledge-soundness of the canonical PoKoP for GARSDH, as stated in the following theorem.

Theorem 10. Let gp ← PGen(1λ) and ck ← rKZG.KGen(1λ, (d1, . . . , dn), gp) for some d1, . . . , dn ∈ N. If
the GARSDH(n) assumption holds for PGen then the canonical rKZG PoKoP is an interactive argument of
knowledge for RrKZG

ck .

Proof. If we want to proceed along the lines of the proof of Theorem 7, we have to at first establish that if the
GARSDH(n) assumption holds, then the canonical randomized KZG PoKoP is a restricted (d1+1) . . . (dn+1)-
special sound interactive argument for the relation RrKZG

ck w.r.t. the class of tree constructing algorithms that
output consistent trees. To do this, we construct a PPT extractor Ext. Note that the transcripts look different
now, namely each transcript now contains also a randomization vector α

tr(i) =
(
ck, [c]1, x

(i1)
1 , x

(i1,i2)
2 , . . . , x(i1,...,in)n , [φ

(i)
1 ]1, . . . , [φ

(i)
n ]1, z

(i), α
)
.

However, we can see that this does not change the extractor from the one we have constructed in the
Theorem 5, because for the interpolation, we do not need α. Therefore the extractor is the same as in
Figure 6. We can continue identically as in Theorem 5 to get the same result.

By the above, we know that if the GARSDH(n) assumption holds, then the canonical randomized KZG
PoKoP is a restricted ((d1 +1) · · · (dn +1))-special sound interactive argument of knowledge for the relation
RrKZG

ck . To prove knowledge-soundness of the canonical randomized KZG PoKoP it remains to construct a
PPT algorithm that outputs ((d1 +1) · · · (dn +1)) accepting transcripts that are consistent, given black-box
access to an adversary A that on input (ck, C) convinces the verifier VKZG with probability δ.

Define H ∈ {0, 1}R×p×...×p×(p−1)n as follows. Element Hi0,i1,...,in,j contains rKZG.Ver(ck, C,x, z, π, α),
where i0 denotes the randomness of A (which determines z and π), ij = xj for all j ∈ [1, n] and j denotes
the randomization vector α. We can emulate an oracle for H by interacting with A. ⊓⊔
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8 (G)ARSDH in AGM and GGM

In this section, we prove hardness of the ARSDH and GARSDH assumptions in two idealized models:
Shoup’s Generic Group Model (GGM) [Sho97] and the Algebraic Group Model (AGM) [FKL18]. In Shoup’s
GGM [Sho97], we assume that an adversary only sees uniformly random labels of group elements and gets
access to an oracle that can be queried on two labels δ1, δ2 and outputs the label of the group element
obtained by performing the group operation on the elements corresponding to δ1 and δ2. In contrast, in
the AGM [FKL18] the adversary does have access to the group’s representation. However, whenever the
adversary outputs a group element, it must explain how it obtained this element from the input elements.
Due to the strong restriction on the adversary, the AGM allows for simple reductions between hardness
assumptions we do not know of in the standard model. The GGM enables us to compute lower bounds on
the number of group operations needed to break an assumption. For a detailed comparison of the two models
see, e.g., [Zha22].

8.1 Hardness of ARSDH and GARSDH in the AGM

In the AGM, we assume an (algebraic) adversary that has access to the group and can see the representation
of the elements of the group. Since the adversary is not confined to work with just labels as is the case of
the GGM, it can plausibly exploit the specific structure of the group. However, for every group element it
outputs, the adversary must output its representation with respect to all of the previous group elements.
Specifically, assume the adversary A received input elements ([x1]1, . . . , [xn]1), then whenever A outputs
an element [x]1 ∈ G1, it also has to output elements αi ∈ F, such that [x]1 = α1 · [x1]1 + . . . + αn · [xn]1
holds, i.e., the adversary always outputs [x]1 together with the explanation vector (α1, . . . , αn). The fact
that algebraic adversaries output a linear representation of each output element is very helpful in reductions
between hardness assumptions.

The common approach of reductions in the AGM is to reduce the hardness of one assumption to the
hardness of a variant of the Power Discrete Logarithm (PDL) assumption. This assumption states that,
given q + 1 group elements of the form [1], [x], [x2], . . . , [xq], it is hard to find x. Below, we define the PDL
assumption in bilinear groups.

Definition 20 ((d1, d2)-PDL assumption). Let PGen be a bilinear group generator, and d1(λ), d2(λ) ∈
poly(λ). We say the (d1, d2)-Power Discrete Logarithm ((d1, d2)-PDL) assumption holds for PGen if, for all
PPT A,

Pr
[
A
(
gp,
(
[σi]1

)d1

i=0
,
(
[σi]2

)d2

i=0

)
= σ

∣∣∣ gp← PGen(1λ);σ ← F∗
p

]
≤ negl(λ).

In a typical security proof in the Algebraic Group Model (AGM), we analyze a polynomial V (X), called
the verification polynomial. This polynomial comes from the requirement that an algebraic adversary must
provide a linear representation for any group element it outputs. Because of this constraint, we can express the
adversary’s responses as polynomial equations involving the discrete logarithms of the input group elements.
The main idea of the proof is that if this polynomial equals zero at some point, then the assumption being
analyzed has been broken. In the proof, we consider two cases:

1. Case 1: V (X) is identically zero:
If V (X) = 0 for all values ofX, it means the adversary’s responses always satisfy the verification equation,
regardless of the input. We show that this case is impossible.

2. Case 2: V (X) ̸= 0, but V (x) = 0 for some specific x:
In this case, we assume that V (X) is a nonzero polynomial, but there exists some value x such that
V (x) = 0. This allows us to reduce the problem to a known computational hardness assumption. In the
AGM section, we are using the (n, 1)-PDL (Power Discrete Logarithm) assumption.

Now, we show how a proof of security in AGM proceeds on an example from [LPS23]. We are asked
to prove that solving the Computational Diffie-Hellman (CDH) (given gp, [a]1, [b]1, it is intractable to find
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[ab]1) problem in AGM is not easier than solving the Discrete Logarithm (DL) problem (given gp, [a]1, it is
intractable to find a).

The adversary A is given input elements from a group G1. Specifically, A receives: [1]1, [a]1, [b]1, where
[1]1 is the generator of the group, [a]1 is a group element whose discrete logarithm is a, and [b]1 is another
group element whose discrete logarithm is b. The adversary’s goal is to compute the element [ab]1, which is
the result of multiplying the discrete logarithms of the given elements. Since A is algebraic, it cannot simply
output a group element as its response. Instead, it must also provide integer coefficients v1, v2, v3 such that
[ab]1 = v1[1]1 + v2[a]1 + v3[b]1 holds. This equation expresses [ab]1 as a linear combination of the known
group elements.

Now, let us construct a reduction algorithm B that solves the Discrete Logarithm problem. The reduction
works as follows. B receives the DL challenge, which is to compute a given [a]1 and [1]1. It chooses a random
integer b and sets up the CDH problem by computing [b]1. It then runs the algebraic adversary A, providing
[1]1, [a]1, [b]1 as input. If A successfully outputs [ab]1, it must also provide the coefficients v1, v2, v3, satisfying
equation [ab]1 = v1[1]1 + v2[a]1 + v3[b]1. This equation can be rewritten in terms of discrete logarithms
ab = v1 + v2a+ v3b. Rearranging, we obtain the polynomial V (X) = v1 + v2X + v3b−Xb. If A successfully
solves the CDH problem, then this polynomial must have a as a root. The reduction B can now find a by
finding the root of the polynomial V (X).

The key insight is that the algebraic adversary is forced to express its output in a specific way, making
it possible to extract useful information. If A can solve CDH, then the verification polynomial V (X) must
satisfy certain conditions, which allows B to extract the discrete logarithm. By leveraging the structure
imposed by the AGM, we can show that solving the CDH problem cannot be easier than solving the DL
problem in AGM.

First, we show that ARSDH(n) is equivalent to PDL in the AGM.

Lemma 9 (PDL reduces to ARSDH(n) in AGM). Let PGen be a bilinear group generator. If the (k, 1)-
PDL assumption holds for PGen for all k ∈ poly(λ), then the ARSDH(n) holds in the AGM for PGen for all
n ∈ poly(λ).

Proof. Let gp be sampled by PGen and, for k ∈ poly(λ), let
(
gp, [1]1, [σ]1, . . . , [σ

k]1, [1]2, [σ]2
)

be a (k, 1)-PDL
instance. For arbitrary n ∈ poly(λ), we show how to reduce the above PDL instance to an ARSDH(n) instance
with degree bounds d = (d1, . . . , dn) = (k, . . . , k). Recall that the input for an ARSDH(n) adversary is a
tuple

(
gp,
([
ti11 · · · tinn

]
1

)d1,...,dn

i1,...,in=0
, [1]2, ([ti]2)i∈[1,n]

)
for (t1, . . . , tn)← Fn

p . To embed the above PDL instance
to an ARSDH(n) instance, we set t1 = σ and sample the remaining ti uniformly at random from Fp for
2 ≤ i ≤ n. Then, we compute the instance as

(
gp,
([
σi1ti22 · · · tinn

]
1

)k,...,k
i1,...,in=0

, [1]2, [σ]2, ([ti]2)i∈[2,n]

)
and give

it as input to an algebraic adversary for ARSDH(n). Note that since we sampled t2, . . . , tn, we can compute
all the cross terms

[
σi1ti22 · · · tinn

]
1

simply as (ti22 · · · tinn )[σi1 ]1. With a non-negligible probability, the algebraic
ARSDH(n) adversary wins the ARSDH(n) game, i.e., it returns

[χ]1, {[φi]1}n−1
i=1 , {xi}n−1

i=1 ⊆ Fp, [ψ]1, and S ⊆ Fp,

and the explanations of all the output group elements w.r.t. its input, such that

– |S| = k + 1,
– [χ]T ̸=

⊗n−1
i=1 [φi]1 • [ti − xi]2, and

– [χ]1 • [1]2 =
⊗n−1

i=1 [φi]1 • [ti − xi]2 ⊗ [ψ]1 • [ZS(tn)]2.

We use the explanations the adversary provided to construct an n-variate verification polynomial

V (X1, . . . , Xn) = χ(X1, . . . , Xn)−
n−1∑
i=1

φi(X1, . . . , Xn) · (Xi − xi)− ψ(X1, . . . , Xn) · ZS(Xn).

The verification check [χ]1 • [1]2 =
⊗n−1

i=1 [φi]1 • [ti− xi]2⊗ [ψ]1 • [ZS(tn)]2 is equivalent to V (t1, . . . , tn) = 0,
which can happen in two ways:
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V (X1, . . . , Xn) ≡ 0 is the identically zero polynomial: In this case, we get the polynomial identity

χ(X1, . . . , Xn)−
∑n−1

i=1 φi(X1, . . . , Xn) · (Xi − αi)

ZS(Xn)
= ψ(X1, . . . , Xn).

Thus, ZS(Xn) must divide χ(X1, . . . , Xn) −
∑n−1

i=1 φi(X1, . . . , Xn) · (Xi − xi) without remainder since
ψ(X1, . . . , Xn) is a polynomial. Note that the degree ofXn in χ(X1, . . . , Xn)−

∑n−1
i=1 φi(X1, . . . , Xn)·(Xi−

xi) is at most k while the degree ofXn in ZS(Xn) is k+1, and thus χ(X1, . . . , Xn)−
∑n−1

i=1 φi(X1, . . . , Xn)·
(Xi − xi) must be the identically zero polynomial. However, this is in contradiction with the second
condition in the ARSDH(n) game, which states that [χ]T ̸=

⊗n−1
i=1 [φi]1 • [ti − xi]2. Hence, this case

cannot occur.
V (X1, . . . , Xn) ̸≡ 0, but V (t1, . . . , tn) = 0: Since we have set t1 = σ, we have that V (σ, t2, . . . , tn) = 0.

Consider the univariate polynomial V ∗(X1) = V (X1, t2, . . . , tn), which depends only on the first variable.
Since V ∗(σ) = 0, we can compute σ and break the (k, 1)-PDL assumption by factoring V ∗. ⊓⊔

Next, we show that GARSDH(n) is also equivalent to PDL in the AGM.

Lemma 10 (PDL reduces to GARSDH(n) in AGM). Let PGen be a bilinear group generator. If the
(k, 1)-PDL assumption holds for PGen for all k ∈ poly(λ), then the GARSDH(n) holds in the AGM for PGen
for all n ∈ poly(λ).

Proof. The proof is similar to the above proof of Lemma 9. The main difference is that, due to the different
winning condition in GARSDH, we get a slightly different n-variate verification polynomial V (X1, . . . , Xn).
Let gp be sampled by PGen and, for k ∈ poly(λ), let

(
gp, [1]1, [σ]1, . . . , [σ

k]1, [1]2, [σ]2
)

be a (k, 1)-PDL
instance. For arbitrary n ∈ poly(λ), we show how to reduce the above PDL instance to a GARSDH(n) instance
with degree bounds d = (d1, . . . , dn) = (k, . . . , k). Recall that the input for an GARSDH(n) adversary is a
tuple

(
gp,
([
ti11 · · · tinn

]
1

)d1,...,dn

i1,...,in=0
, [1]2, ([ti]2)i∈[1,n]

)
for (t1, . . . , tn)← Fn

p . To embed the above PDL instance
to an ARSDH(n) instance, we set t1 = σ and sample the remaining ti uniformly at random from Fp for
2 ≤ i ≤ n. Then, we compute the instance as

(
gp,
([
σi1ti22 · · · tinn

]
1

)k,...,k
i1,...,in=0

, [1]2, [σ]2, ([ti]2)i∈[2,n]

)
and give

it as input to an algebraic adversary for GARSDH(n). Note that since we sampled t2, . . . , tn, we can compute
all the cross terms

[
σi1ti22 · · · tinn

]
1

simply as (ti22 · · · tinn )[σi1 ]1. With a non-negligible probability, the algebraic
GARSDH(n) adversary wins the GARSDH(n) game, i.e., it returns

[χ]1,

{{
S
(i1,...,ij−1)
j

}
i1∈[d1],...,ij−1∈[dj−1]

,
{
[φ

(i1,...,ij−1)
j ]1

}
i1∈[d1],...,ij−1∈[dj−1]

}
j∈[1,n]

and the explanations of all the output group elements w.r.t. its input, such that

– |S(i1,...,ij−1)
j | = k + 1 for all j ∈ [1, n] and all i1 ∈ [k], . . . , ij−1 ∈ [k],

– [χ]T ̸=
⊗n

j=2

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

, and

– [χ]1 • [1]2 =
⊗n

j=1

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

.

We can use the explanations the adversary provided to construct an n-variate verification polynomial

V (X1, . . . , Xn) = χ(X1, . . . , Xn)−
n∑

j=1

d1,...,dj−1∑
i1,...,ij−1=0

φ
(i1,...,ij−1)
j (X1, . . . , Xn)Z

S
(i1,...,ij−1)

j

(Xj).

The verification check [χ]1 • [1]2 =
⊗n

j=1

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

is equivalent to

V (t1, . . . , tn) = 0, which can happen in two ways:
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V (X1, . . . , Xn) ≡ 0 is the identically zero polynomial: In this case, we get the polynomial identity

χ(X1, . . . , Xn)−
∑n

j=2

∑d1,...,dj−1

i1,...,ij−1=0 φ
(i1,...,ij−1)
j (X1, . . . , Xn)Z

S
(i1,...,ij−1)

j

(Xj)

ZS(X1)
= φ(X1, . . . , Xn).

Thus, ZS(X1) must divide χ(X1, . . . , Xn)−
∑n

j=2

∑d1,...,dj−1

i1,...,ij−1=0 φ
(i1,...,ij−1)
j (X1, . . . , Xn)Z

S
(i1,...,ij−1)

j

(Xj)

without remainder since φ(X1, . . . , Xn) is a polynomial. Note that the degree of X1 in χ(X1, . . . , Xn)−∑n
j=2

∑d1,...,dj−1

i1,...,ij−1=0 φ
(i1,...,ij−1)
j (X1, . . . , Xn)Z

S
(i1,...,ij−1)

j

(Xj) is at most k while the degree ofX1 in ZS(X1)

is k + 1, and thus χ(X1, . . . , Xn)−
∑n

j=2

∑d1,...,dj−1

i1,...,ij−1=0 φ
(i1,...,ij−1)
j (X1, . . . , Xn)Z

S
(i1,...,ij−1)

j

(Xj) must be

the identically zero polynomial. However, this is in contradiction with the second condition in the

GARSDH(n) game, which states that [χ]T ̸=
⊗n

j=2

⊗d1,...,dj−1

i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

.

Hence, this case cannot occur.
V (X1, . . . , Xn) ̸≡ 0, but V (t1, . . . , tn) = 0: Since we have set t1 = σ, we have that V (σ, t2, . . . , tn) = 0.

Consider the univariate polynomial V ∗(X1) = V (X1, t2, . . . , tn), which depends only on the first variable.
Since V ∗(σ) = 0, we can compute σ and break the (k, 1)-PDL assumption by factoring V ∗. ⊓⊔

Lipmaa, Parisella, and Siim [LPS23] recently proposed the AGM with Oblivious Sampling (AGMOS),
which is a strengthening of the algebraic group model that accounts for adversaries’ possibility of sampling
group elements without knowing their discrete logarithms, and, thus, not necessarily being able to explain the
sampled group elements algebraically relative to group elements received as input. We believe our analyses
of ARSDH and GARSDH in AGM would easily extend to AGMOS under the TOFR assumption suggested
by [LPS23].

8.2 Hardness of ARSDH and GARSDH in the GGM

In the GGM, the adversary sees only labels of group elements and has access to an oracle that computes
the group operations and outputs the label of the result. These labels do not contain any information about
the group’s structure since they are uniformly random. We can think of an adversary as a generic algorithm
that operates as follows. At the beginning of the execution, it obtains some labels of group elements. During
its execution, the adversary specifies labels, for example, δi corresponding to the group element gi and δj
corresponding to the group element gj . The oracle then finds gi and gj if they exist, computes gi + gj = g
and outputs a label δ corresponding to the element g.

In the setting of bilinear groups the adversary has access to five oracles. The first three oracles compute
group operations in groups G1,G2 and GT respectively. Then, it can query the oracle that computes the
pairing e : G1×G2 7→ GT . Finally, we give the adversary access to an oracle that computes the isomorphism
ψ from elements of G2 to elements of G1. Let us denote the order of the groups G1,G2 and GT by q. We
denote the labeling functions of the three groups by ξ1, ξ2 and ξT respectively, where ξi for i ∈ {1, 2, T}
maps element in Gi to some (large enough) subset E ⊂ {0, 1}k, where k > ⌈log2 q⌉. These mappings ξi can
be thought of as mappings from Fp to the subset E of {0, 1}k, because we can identify each group element
[x]i from Gi with its exponent x from Fp.

In the rest of the section, we prove lower bounds on the query complexity of any adversary solving
ARSDH(n) or GARSDH(n) in the GGM. Our proofs are similar to other lower bounds in GGM, such as [BB04].

Theorem 11 (Hardness of ARSDH(n) in GGM).
Let A be an ARSDH(n) adversary for d = (d1, . . . , dn) in the generic group model, making a total of at
most q queries to the oracles that compute the group operations in G1, G2, GT , the oracle computing the
isomorphism ψ, and the oracle computing the bilinear pairing e. If t1, . . . , tn ∈ Fn

p and ξ1, ξ2, ξT are chosen
uniformly at random, then the probability ϵ that

A(p, ξ1(ti11 . . . tinn )i1∈[d1],...,in∈[dn], ξ2(1), ξ2(ti)i∈[1,n])
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outputs
(
ξ1(χ), ξ1(φi)i∈[1,n−1], ξ1(ψ), {xi}i∈[1,n−1], S

)
such that xi ∈ Fp for all i ∈ [1, n − 1], S ⊆ Fp, |S| =

dn + 1, [χ]T =
⊗n−1

i=1 [φi]1 • [ti − xi]⊗ [ψ]1 • [ZS(tn)]2, and [χ]T ̸=
⊗n−1

i=1 [φi]1 • [ti − xi] is bounded by:

ϵ ≤

(
q +

n∏
i=1

(di + 1) + n+ 1

)2 ∑n
i=1 di
pn

+

∑n
i=1 di + dn
pn

.

Proof. Consider an algorithm B that plays the following game with A. B keeps track of the following lists:
L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i = 0, . . . , τ2 − 1} and LT = {(FT,i, ξT,i) : i =
0, . . . , τT −1}. Each list contains tuples (F, ξ(F )), of polynomials F (X1, . . . , Xn) ∈ F[X1, . . . , Xn] and binary
strings ξ(F ) ∈ E ⊂ {0, 1}∗, where ξ(F ) is the encoding of the polynomial F . The generic adversary can
only see the binary strings ξ(F ). At the beginning of the game, the algorithm B initializes all of the lists
L1, L2 and LT . To initialize the list L1, B assigns every monomial Xi1

1 . . . Xin
n for i1 ∈ [d1], . . . , in ∈ [dn]

to a distinct polynomial F1,i. The binary encodings of these polynomials F1,i are selected one by one, so
that different polynomials correspond to different binary encodings. After B finishes initialization of the list
L1, there are τ1 = (d1 + 1) · · · (dn + 1) tuples. For the list L2, the algorithm B initializes F2,0 to 1, F2,i to
Xi for all i ∈ [1, n]. B then computes the encodings of these polynomials using encoding ξ2, so that binary
strings for different polynomials are distinct. We can see that the size of the list L2 after B finishes the
initialization is τ2 = n + 1. The list LT is initialized as empty, because A does not get any encodings of
the elements of the target group. Therefore τT = 0. At the beginning of the game, the sizes of the lists
are: τ1 = (d1 + 1) . . . (dn + 1), τ2 = n + 1, and finally τT = 0. During the game, the generic adversary
will be querying five oracles. These oracles will be producing new polynomials and new encodings, so the
lists L1, L2 and LT will be augmented by B. Below, we specify how these new polynomials are constructed.
The polynomials F1,i, F2,i are of degree ≤ di with respect to Xi for all i ∈ {1, . . . , n} and of total degree
≤ d1 + . . .+ dn. The polynomials FT,i are of total degree ≤ 2(d1 + . . .+ dn). Note that for any ξ1,i, ξ2,i and
ξT,i, B can determine the F1,i, F2,i and FT,i, such that ξ1,i = ξ1(F1,i), ξ2,i = ξ1(F2,i) and ξT,i = ξT (FT,i).
After B provides A with the τ1 + τ2 + τT = (d1 + 1) · · · (dn + 1) + n + 1 binary strings, A starts sending
queries to B. These queries are either group operation queries, isomorphism queries, or pairing queries.

Group operation: Given a add/subtract selection bit and two operands ξ1,i, ξ1,j compute:

F1,τ1 = F1,i ± F1,j ∈ Fp[X1, . . . , Xn].

If F1,τ1 = F1,l for some l that has been already defined, set ξ1,τ1 = ξ1,l. Otherwise, assign ξ1,τ1 a new
random string from E \ {ξ1,0, . . . , ξ1,τ1−1}. Add (F1,τ1 , ξ1,τ1) to L1, give ξ1,τ1 to A, and increment τ1.
Similar operations are performed for L2 and LT .

Isomorphism: Given a string ξ1,i with 0 ≤ i < τ1, we let:

F2,τ2 = F1,i ∈ Fp[X1, . . . , Xn].

If F2,τ2 = F2,l for some l already defined, we set ξ2,τ1 = ξ2,l. Otherwise, we set ξ2,τ2 to a string in
E \ {ξ2,0, . . . , ξ2,τ2−1}. We add (F2,τ2 , ξ2,τ2) to L2, give ξ2,τ2 to A, and increment τ2 by one.

Pairing: Given ξ1,i and ξ2,j with i, j already defined, compute:

FT,τT = F1,i · F2,j ∈ Fp[X1, . . . , Xn].

If FT,τT = FT,l for some l that has been already defined, set ξT,τT = ξT,l. Otherwise, assign a new random
string, distinct from all of the previous strings. Add (FT,τT , ξT,τT ) to LT , give ξT,τT to A, and increment
τT .

From the way how the algorithm B augments the lists, it is obvious that at step τ in the game, τ1+τ2+τT ≤
τ + (d1 + 1) . . . (dn + 1) + n+ 1, because τ + (d1 + 1) . . . (dn + 1) + n+ 1 is the maximum possible number
of tuples in lists L1, L2 and LT .

After at most q queries to oracles, A terminates and outputs the following tuple:(
ξ1(χ), ξ1(φi)i∈[1,n−1], ξ1(ψ), {xi}i∈[1,n−1], S

)
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such that |S| = dn + 1. There are some F1,l, F1,li for i ∈ [1, n − 1] and F1,k that correspond to ξ1(χ),
{ξ1(φi)}i∈[1,n−1] and ξ1(ψ) respectively. We define the polynomial FT,∗(X1, . . . , Xn) as

FT,∗(X1, . . . , Xn) = F1,l(X1, . . . , Xn)−
n−1∑
i=1

F1,li(X1, . . . , Xn)(Xi − xi)− F1,k(X1, . . . , Xn)ZS(Xn).

At this stage, the algorithm B samples random (t1, . . . , tn) ∈ Fn
p . If A’s answer is correct, then:

FT,∗(t1, . . . , tn) = 0, F1,l(t1, . . . , tn) ̸=
n−1∑
i=1

F1,li(t1, . . . , tn)(ti − xi) (3)

The Equation (3) corresponds to the adversary A breaking the ARSDH(n) instance (for d = (d1, . . . , dn))
in the discrete logarithms of the group elements.

There are two possibilities for A to solve the ARSDH(n) instance (for d = (d1 . . . , dn)).
Either FT,∗(X1, . . . , Xn) = 0 identically, or FT,∗(X1, . . . , Xn) ̸= 0 and (t1, . . . , tn) is among the zeros of

the polynomial FT,∗(X1, . . . , Xn).
The equation FT,∗(X1, . . . , Xn) = 0 could be satisfied in two ways. Either the total degree of FT,∗(X1, . . . , Xn)

would be more than pn, or FT,∗(X1, . . . , Xn) would be equal to 0 identically. The first case could happen
only if d1 + . . . + dn−1 + 2dn + 1 ≥ pn, where d1 + . . . + dn−1 + 2dn + 1 is the maximum possible total
degree of FT,∗(X1, . . . , Xn). The second case could happen, but only if F1,k(X1, . . . , Xn) is the identically
zero polynomial. In this case, we would have

F1,l(X1, . . . , Xn)−
n−1∑
i=1

F1,li(X1, . . . , Xn)(Xi − xi) = 0.

However this is in contradiction with the winning condition of the ARSDH(n) game. Hence, we can assume
that there exists a tuple (x′1, . . . , x

′
n), such that FT,∗(x

′
1, . . . , x

′
n) ̸= 0.

Now the adversary A may win in two possible ways. Either the simulation provided by B is not perfect, in
which case we can assume that A won, or substituting (t1, . . . , tn) into (X1, . . . Xn) satisfies equation (3). The
simulation provided by B is perfect unless the substitution of (t1, . . . , tn) into (X1, . . . Xn) creates an equality
relation between the simulated group elements that was not revealed to A, during the query phase. Hence,
the success probability of A is bounded by the probability of one of the following four events happening.
The first three events correspond to the simulation provided by B to A not being perfect and the last event
corresponds to A succeeding in breaking the ARSDH(n) instance for d = (d1 . . . , dn).

1. F1,i(t1, . . . , tn) = F1,j(t1, . . . , tn) for a pair of polynomials such that i ̸= j.
2. F2,i(t1, . . . , tn) = F2,j(t1, . . . , tn) for any a pair of polynomials such that i ̸= j.
3. FT,i(t1, . . . , tn) = FT,j(t1, . . . , tn) for a pair of polynomials such that i ̸= j.
4. FT,∗(t1, . . . , tn) = 0 and F1,l(t1, . . . , tn)−

∑n−1
i=1 F1,li(t1, . . . , tn)(ti − xi) ̸= 0

The probabilities of the first three events are at most(
τ1
2

)∑n
i=1 di
pn

,

(
τ2
2

)∑n
i=1 di
pn

,

(
τT
2

)
2(
∑n

i=1 di)

pn

respectively. This follows from applying the Schwartz-Zippel lemma on the maximum possible degrees of
the polynomials F1,i(X1, . . . , Xn), F2,i(X1, . . . , Xn) and FT,i(X1, . . . , Xn). These maximum possible degrees
are

∑n
i=1 di,

∑n
i=1 di and 2(

∑n
i=1 di) respectively. For the analysis of the probability of event four, we can

omit the condition that F1,l(t1, . . . , tn)−
∑n−1

i=1 F1,li(t1, . . . , tn)(ti− xi) ̸= 0, since considering it, only lowers
the overall probability of event four happening. Hence, the probability of event four is at most (d1 + . . . +
dn−1 + 2dn + 1)/pn, where (d1 + . . . + dn−1 + 2dn + 1) is the maximum possible degree of the polynomial
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FT,∗(X1, . . . , Xn). We have obtained this upper bound by applying Schwartz-Zippel lemma on the maximum
possible total degree of the polynomial FT,∗(X1, . . . , Xn). A wins the game with probability at most

ϵ ≤
(
τ1
2

)∑n
i=1 di
pn

+

(
τ2
2

)∑n
i=1 di
pn

+

(
τT
2

)
2(
∑n

i=1 di)

pn
+
d1 + . . .+ dn−1 + 2dn + 1

pn

≤ τ21
∑n

i=1 di
pn

+ τ22

∑n
i=1 di
pn

+ τ2T
2(
∑n

i=1 di)

pn
+
d1 + . . .+ dn−1 + 2dn + 1

pn

≤ (τ1 + τ2 + τT )
2

∑n
i=1 di
pn

+

∑n
i=1 di + dn
pn

.

Using the fact that τ1 + τ2 + τT ≤ q + (d1 + 1) . . . (dn + 1) + n+ 1, we obtain the following upper bound on
the probability:

ϵ ≤

(
q +

n∏
i=1

(di + 1) + n+ 1

)2 ∑n
i=1 di
pn

+

∑n
i=1 di + dn
pn

,

which concludes the proof. ⊓⊔

Theorem 12 (Hardness of GARSDH(n) in GGM).
Let A be a GARSDH(n) adversary for d = (d1, . . . , dn) in the generic group model, making a total of at
most q queries to the oracles that compute the group operations in G1, G2, GT , the oracle computing the
isomorphism ψ, and the oracle computing the bilinear pairing e. If t1, . . . , tn ∈ Fn

p and ξ1, ξ2, ξT are chosen
uniformly at random, then the probability ϵ that

A(p, ξ1(ti11 . . . tinn )i1∈[d1],...,in∈[dn], ξ2(1), ξ2(ti)i∈[1,n])

outputs a tuple(
ξ1(χ),

{{
S
(i1,...,ij−1)
j

}
i1∈[d1],...,ij−1∈[dj−1]

,
{
ξ1

(
φ
(i1,...,ij−1)
j

)}
i1∈[d1],...,ij−1∈[dj−1]

}
j∈[1,n]

)
,

such that for all j ∈ [1, n] and for all i1 ∈ [d1], . . . , ij−1 ∈ [dj−1], S
(i1,...,ij−1)
j ⊆ Fj

p, |S
(i1,...,ij−1)
j | = dj +1 and

[χ]1 • [1]2 =

n⊗
j=1

d1,...,dj−1⊗
i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

such that

[χ]T ̸=
n⊗

j=2

d1,...,dj−1⊗
i1,...,ij−1=0

[
φ
(i1,...,ij−1)
j

]
1
•
[
Z
S

(i1,...,ij−1)

j

(tj)

]
2

is bounded by:

ϵ ≤

(
q +

n∏
i=1

(di + 1) + n+ 1

)2 ∑n
i=1 di
pn

+

∑n
i=1 di + d′

pn
,

where d′ = max{d1, . . . , dn}.

Proof. Consider an algorithm B that plays the following game with A. B keeps track of the following lists:
L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i = 0, . . . , τ2 − 1} and LT = {(FT,i, ξT,i) : i =
0, . . . , τT −1}. Each list contains tuples (F, ξ(F )), of polynomials F (X1, . . . , Xn) ∈ F[X1, . . . , Xn] and binary
strings ξ(F ) ∈ E ⊂ {0, 1}∗, where ξ(F ) is the encoding of the polynomial F . The generic adversary can
only see the binary strings ξ(F ). At the beginning of the game, the algorithm B initializes all of the lists
L1, L2 and LT . To initialize the list L1, B assigns every monomial Xi1

1 . . . Xin
n for i1 ∈ [d1], . . . , in ∈ [dn]

49



to a distinct polynomial F1,i. The binary encodings of these polynomials F1,i are selected one by one, so
that different polynomials correspond to different binary encodings. After B finishes initialization of the list
L1, there are τ1 = (d1 + 1) · · · (dn + 1) tuples. For the list L2, the algorithm B initializes F2,0 to 1, F2,i to
Xi for all i ∈ [1, n]. B then computes the encodings of these polynomials using encoding ξ2, so that binary
strings for different polynomials are distinct. We can see that the size of the list L2 after B finishes the
initialization is τ2 = n + 1. The list LT is initialized as empty, because A does not get any encodings of
the elements of the target group. Therefore τT = 0. At the beginning of the game, the sizes of the lists
are: τ1 = (d1 + 1) . . . (dn + 1), τ2 = n + 1, and finally τT = 0. During the game, the generic adversary
will be querying five oracles. These oracles will be producing new polynomials and new encodings, so the
lists L1, L2 and LT will be augmented by B. Below, we specify how these new polynomials are constructed.
The polynomials F1,i, F2,i are of degree ≤ di with respect to Xi for all i ∈ {1, . . . , n} and of total degree
≤ d1 + . . .+ dn. The polynomials FT,i are of total degree ≤ 2(d1 + . . .+ dn). Note that for any ξ1,i, ξ2,i and
ξT,i, B can determine the F1,i, F2,i and FT,i, such that ξ1,i = ξ1(F1,i), ξ2,i = ξ1(F2,i) and ξT,i = ξT (FT,i).
After B provides A with the τ1 + τ2 + τT = (d1 + 1) · · · (dn + 1) + n + 1 binary strings, A starts sending
queries to B. These queries are either group operation queries, isomorphism queries, or pairing queries.

Group operation: Given a add/subtract selection bit and two operands ξ1,i, ξ1,j compute:

F1,τ1 = F1,i ± F1,j ∈ Fp[X1, . . . , Xn].

If F1,τ1 = F1,l for some l that has been already defined, set ξ1,τ1 = ξ1,l. Otherwise, assign ξ1,τ1 a new
random string from E \ {ξ1,0, . . . , ξ1,τ1−1}. Add (F1,τ1 , ξ1,τ1) to L1, give ξ1,τ1 to A, and increment τ1.
Similar operations are performed for L2 and LT .

Isomorphism: Given a string ξ1,i with 0 ≤ i < τ1, we let:

F2,τ2 = F1,i ∈ Fp[X1, . . . , Xn].

If F2,τ2 = F2,l for some l already defined, we set ξ2,τ1 = ξ2,l. Otherwise, we set ξ2,τ2 to a string in
E \ {ξ2,0, . . . , ξ2,τ2−1}. We add (F2,τ2 , ξ2,τ2) to L2, give ξ2,τ2 to A, and increment τ2 by one.

Pairing: Given ξ1,i and ξ2,j with i, j already defined, compute:

FT,τT = F1,i · F2,j ∈ Fp[X1, . . . , Xn].

If FT,τT = FT,l for some l that has been already defined, set ξT,τT = ξT,l. Otherwise, assign a new random
string, distinct from all of the previous strings. Add (FT,τT , ξT,τT ) to LT , give ξT,τT to A, and increment
τT .

From the way how the algorithm B augments the lists, it is obvious that at step τ in the game, τ1+τ2+τT ≤
τ + (d1 + 1) . . . (dn + 1) + n+ 1, because τ + (d1 + 1) . . . (dn + 1) + n+ 1 is the maximum possible number
of tuples in lists L1, L2 and LT .

After at most q queries to oracles, A terminates and outputs the following tuple:(
ξ1(χ),

{
{S(i1,...,ij−1)

j }i1∈[d1],...,ij−1∈[dj−1], {ξ1(φ
(i1,...,ij−1)
j )}i1∈[d1],...,ij−1∈[dj−1]

}
j∈[1,n]

)
,

such that S(i1,...,ij−1)
j ⊆ Fj

p and the cardinality of S(i1,...,ij−1)
j is dj + 1. There are some F1,i that correspond

to ξ1
(
φ
(i1,...,ij−1)
j

)
. There is also F1,l corresponding to ξ1(χ). We define the polynomial FT,∗(X1, . . . , Xn) as

FT,∗(X1, . . . , Xn) = F1,l(X1, . . . , Xn)−
n∑

j=1

d1,...,dj−1∑
i1,...,ij−1=0

F1,i(X1, . . . , Xn)Z
S

(i1,...,ij−1)

j

(Xj),

where the first sum in the double sum goes from j = 1 to n and the second one goes through all polynomials
F1,i corresponding to all φ(i1,...,ij−1)

j .
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At this stage, the algorithm B samples random (t1, . . . , tn) ∈ Fn
p . If A’s answer is correct, then:

FT,∗(t1, . . . , tn) = 0, F1,l(t1, . . . , tn)−
n∑

j=2

d1,...,dj−1∑
i1,...,ij−1=0

F1,i(t1, . . . , tn)Z
S

(i1,...,ij−1)

j

(tj) ̸= 0 (3)

The Equation (3) corresponds to the adversaryA breaking the GARSDH(n) instance (for d = (d1, . . . , dn))
in the discrete logarithms of the group elements.

There are two possibilities for A to break the GARSDH(n) instance. Either FT,∗(X1, . . . , Xn) = 0, or
FT,∗(X1, . . . , Xn) ̸= 0 and (t1, . . . , tn) is among the zeros of the polynomial FT,∗(X1, . . . , Xn). The polynomial
FT,∗(X1, . . . , Xn) cannot be the identically zero polynomial, because it would violate the second winning
condition from the GARSDH(n) assumption.

Now the adversary A may win in two possible ways. Either the simulation provided by B is not perfect, in
which case we can assume that A won, or the substitution of (t1, . . . , tn) into (X1, . . . Xn) satisfies eq. (3). The
simulation provided by B is perfect unless the substitution of (t1, . . . , tn) into (X1, . . . Xn) creates an equality
relation between the simulated group elements that was not revealed to A, during the query phase. Hence,
the success probability of A is bounded by the probability of one of the following four events happening.

1. F1,i(t1, . . . , tn) = F1,j(t1, . . . , tn) for a pair of polynomials such that i ̸= j.
2. F2,i(t1, . . . , tn) = F2,j(t1, . . . , tn) for a pair of polynomials such that i ̸= j.
3. FT,i(t1, . . . , tn) = FT,j(t1, . . . , tn) for a pair of polynomials such that i ̸= j.
4. FT,∗(t1, . . . , tn) = 0 and F1,l(t1, . . . , tn)−

∑n
j=2

∑d1,...,dj−1

i1,...,ij−1=0 F1,i(t1, . . . , tn)Z
S

(i1,...,ij−1)

j

(tj) ̸= 0.

The first three events correspond to the simulation provided by B to A not being perfect and the last
event corresponds to event when A succeeds in breaking the GARSDH(n) instance for d = (d1, . . . , dn). The
probabilities of the first three events are at most(

τ1
2

)∑n
i=1 di
pn

,

(
τ2
2

)∑n
i=1 di
pn

,

(
τT
2

)
2(
∑n

i=1 di)

pn

respectively. This follows from applying the Schwartz-Zippel lemma on the maximum possible degrees of
the polynomials F1,i(X1, . . . , Xn), F2,i(X1, . . . , Xn) and FT,i(X1, . . . , Xn). These maximum possible degrees
are

∑n
i=1 di,

∑n
i=1 di and 2(

∑n
i=1 di) respectively. The probability of the last event happening is at most

(d1+. . .+dn+d
′+1)/pn, where d1+. . .+dn+d′+1 is the upper bound on the total degree of FT,∗(X1, . . . , Xn)

and d′ = max{d1, . . . , dn}. We have obtained this upper bounds by applying Schwartz-Zippel lemma on the
maximum possible total degree of the polynomial FT,∗(X1, . . . , Xn).

Hence A wins the game with probability at most

ϵ ≤
(
τ1
2

)∑n
i=1 di
pn

+

(
τ2
2

)∑n
i=1 di
pn

+

(
τT
2

)
2(
∑n

i=1 di)

pn
+
d1 + . . .+ dn + d′ + 1

pn
.

Using the same argument as in the proof of ARSDH(n), we can show the same upper bound on the probability
of GGM adversary breaking the GARSDH(n) assumption:

ϵ ≤

(
q +

n∏
i=1

(di + 1) + n+ 1

)2 ∑n
i=1 di
pn

+

∑n
i=1 di + d′

pn
.

This concludes the proof. ⊓⊔

Note that the upper bounds on the success probabilities of an ARSDH(n) adversary and a GARSDH(n)

adversary differ only in the last term
∑n

i=1 di+dn

pn respectively
∑n

i=1 di+d′

pn , where dn is the maximal degree
of Xn and d′ is the maximal degree of any variable. Thus, to some extent, the respective degrees of the
variables might affect the hardness of GARSDH, unlike in ARSDH, where the additional term depends only
on dn. In more detail, the two bounds are so similar due to the following two specific points in the proofs:
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1. The number of bit strings the generic ARSDH(n) adversary for d = (d1, . . . , dn) gets is the same as the
number of bit strings the generic GARSDH(n) for d = (d1, . . . , dn) adversary gets. So we are using the
same upper bound on the number of elements in the lists provided by the algorithm B.

2. The degrees of the polynomials that ensure that the simulation was correct, or that the adversary failed
in breaking the ARSDH(n) assumption are almost the same as the degrees of the same polynomials
ensuring correctness of the GARSDH(n) simulation. So the probabilities of events 1 through 3 are very
similar in the two proofs.

9 (Non-)Uniqueness of Proofs of the KZG PCS Family

In this section, we revisit the notion of (computational) uniqueness of proofs for the KZG family. Our
motivation is the following. Instead of the extended KZG PoKoP, our multivariate batching lemma (Lemma 2)
could be used to analyze the canonical KZG PoKoP if we were able to efficiently extract a π-consistent
accepting tree for the canonical KZG PoKoP. Thus, giving a proof of the knowledge-soundness of the canonical
KZG PoKoP under the plausibly weaker ARSDH assumption.

As it turns out, the task of extracting π-consistent transcripts for the canonical KZG PoKoP is closely
related to the property of computational uniqueness of proofs for polynomial commitment schemes, which
ensures that an efficient adversary cannot generate distinct accepting proofs on the same pair of evaluation
point x and value z. The formal definition of this notion, which is orthogonal to evaluation binding or
knowledge-soundness, is presented below.

Definition 21 (Computational Uniqueness of Proofs). We say a multivariate polynomial commit-
ment scheme PCS = (KGen,Com,Open,Ver) has computationally unique proofs w.r.t. PGen if, for all degree
bounds d = (d1, . . . , dn) ∈ poly(λ) and PPT adversaries A, it holds that

Pr

π ̸= π′,

Ver(ck, C,x, z, π) = 1,

Ver(ck, C,x, z, π′) = 1

∣∣∣∣∣∣∣
aux← PGen(λ),

ck← KGen(1λ,d, aux),

(C,x, z, π, π′)← A(ck)

 ∈ negl(λ).

Note that the computational uniqueness of proofs for the multivariate KZG scheme is a necessary condi-
tion to establishing that any efficiently extractable tree of accepting transcripts for the canonical KZG PoKoP
is π-consistent. Next, we discuss the KZG PCS family from the perspective of uniqueness of proofs. First, we
show that even though the univariate KZG proofs are not unique the univariate scheme has computational
uniqueness of proofs under SBDH. Then, we show that, already in the bivariate setting, the computational
uniqueness of proofs strongly does not hold as it is possible to rerandomize the evaluation proofs. Even
though it hinders the applicability of our proof technique based on ARSDH, the possibility of rerandomizing
evaluation proofs for multivariate KZG might be of independent interest in the future.

Computational uniqueness of proofs for univariate KZG. In this subsection, we use n to correspond
to the degree of a univariate polynomial. Below, we formally recall the standard SBDH assumption.

Definition 22 (SBDH Assumption). For n ∈ N and a bilinear group generator PGen, we say that the
n-SBDH assumption holds for PGen if, for all PPT adversaries A, it holds that

Pr

γ + c ̸= 0,

[φ]1 =

[
1

γ + c

]
1

∣∣∣∣∣∣∣
gp = (p, [1]1, [1]2, •)← PGen(λ), γ ← Fp,

(c, [φ]1)← A(gp, ([γi]1)ni=1, [γ]2)

 ∈ negl(λ).

We say the SBDH assumption holds for PGen if the n-SBDH assumption holds for PGen for all n ∈ poly(λ).

The univariate KZG scheme is the special case of the multivariate KZG scheme (Figure 2) that we recall
in Figure 10.
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KZG.KGen(1λ, n, aux = gp = (p, [1]1, [1]2, •)):
Sample σ ← Fp.
Output ck =

(
gp,

([
σi
]
1

)n
i=1

, [σ]2

)
.

KZG.Com(ck, f):
Output C = [f(σ)]1.

KZG.Open(ck, f, x):
Compute z = f(x) and π =

[
f(X)−z
σ−x

]
1
.

Output (z, π).
KZG.Ver(ck, C, x, z, π):

If (C − [z]1) • [1]2 = π • [σ − x]2 then output 1, and 0 otherwise.

Fig. 10. The univariate KZG PCS defined w.r.t. bilinear group parameters gp.

Lemma 11. If the n-SBDH assumption holds for PGen then the univariate KZG scheme (Figure 10) has
computational uniqueness of proofs w.r.t. PGen when used with degree bound n.

Proof. We show how any adversary breaking the computational uniqueness of univariate KZG could be used
to break the n-SBDH assumption.

Let srs = (([σi]1)
n
i=0, [1, σ]2) be the challenge we are given in n-SBDH and let A be the PPT adversary

that can break the computational uniqueness of KZG with non-negligible probability. We call A on the srs
as the commitment key and we get back a tuple (C, x, z, π, π′) that should satisfy

(C − [z]1) • [1]2 = π • [σ − x]2,
(C − [z]1) • [1]2 = π′ • [σ − x]2.

We set π = [p]1, π
′ = [p′]1. By multiplying the first equation by the inverse of the second we get

[0]T = [p− p′]1 • [σ − x]2, (18)

[0]T = ([1]1 • [1]2)(σ−x)(p−p′).

The only way this equation can be satisfied is if the order of the element gT denoted as ord(gT ) divides
(σ−x)(p− p′). We know that if the target group has prime order q, then every element in the group has the
same prime order q and so ord(gT ) = q.

To satisfy q | (σ − x)(p − p′), either q|(p − p′) or q|(σ − x). In the first case, since both p and p′ come
from the field Fq, the only way q could divide p − p′ is only if p − p′ ≡ 0 mod q. If p′ = p + k · q for some
k ∈ Z, then we would have π′ = [p′]1 = [p+ kq]1 = [p]1 = π. This happens only with a negligible probability
as we assume that A can break the computational uniqueness with a non-negligible probability.

Now, if q divides (σ−x) we have σ−x = 0 as σ is chosen randomly from Fq. Thus, we know the value of
σ = x and we can compute [φ]1 = [ 1

σ−x ]1. We can set c = −x and output c and [φ]1, breaking the n-SBDH
instance. ⊓⊔

Note that the above proof would be simpler under the somewhat stronger SBDH∗ assumption where
the adversary’s winning condition is described in the target group (Definition 25). Under SBDH∗, we could
conclude the proof after eq. (18) since we obtain

([1]1 • [1]2)
1

σ−x = [p− p′]1 • [1]2,

where the left side already satisfies the winning condition in the target group, and the right side is easily
computable. However, establishing the computational uniqueness of proofs under SBDH∗ assumption is, in
some sense, weaker, as it allows the adversary to exploit the pairing to construct elements in the target group
that it might not be able to produce in the source groups.

53



Non-uniqueness of proofs for multivariate KZG. Next, we show that the computational uniqueness
of proofs does not hold for the bivariate KZG scheme. Below, we demonstrate that, for any evaluation point,
it is possible to construct exponentially many distinct accepting proofs.

Theorem 13. Let ck← KZG.KGen(1λ,d = (m,n), gp) be a KZG commitment key for some gp = (p, [1]1, [1]2, •)
and d = (m,n) ∈ N2. If Ver(ck, C, (x, y), z, π = (π1, π2)) = 1 for some C, π1, π2 ∈ G1 and x, y, z ∈ Fp then

|{π′ ∈ G1 ×G1 | Ver(ck, C, (x, y), z, π′) = 1}| ≥ |G1|.

Proof. Let us have a transcript (ck, C, (x, y), z, π) such that Ver(ck, C, (x, y), z, π) = 1. We show how to
construct a new proof π′ such that Ver(ck, C, (x, y), z, π′) = 1. Let π = (π1, π2) where π1, π2 ∈ G1 and let
us have arbitrary µ1, µ2 ∈ G1. Then we can shift the original proof by these values, creating a new proof
π′ = (π′

1, π
′
2) = (π1 + µ1, π2 + µ2).

For this to be a valid proof, we have to have

(C − [z]1) • [1]2 = π′
1 • [σ − x]2 ⊗ π′

2 • [τ − y]2.

this can be rewritten as

(C − [z]1) • [1]2 = (π1 + µ1) • [σ − x]2 ⊗ (π2 + µ2) • [τ − y]2,
(C − [z]1) • [1]2 = π1 • [σ − x]2 ⊗ π2 • [τ − y]2 ⊗ µ1 • [σ − x]2 ⊗ µ2 • [τ − y]2,
(C − [z]1) • [1]2 = (C − [z]1) • [1]2 ⊗ µ1 • [σ − x]2 ⊗ µ2 • [τ − y]2.

When we set µ1 = [µ̃1]1 and µ2 = [µ̃2]1 we can derive the following

[µ̃1]1 • [x− σ]2 = [µ̃2]1 • [τ − y]2,
µ̃1(x− σ) ≡ µ̃2(τ − y) mod p,

µ̃1 ≡ µ̃2
τ − y
x− σ

mod p.

From this we can see that for every µ1 ∈ G1 there is a µ2 ∈ G1 such that the shifted proof π′ =
(π1 + µ1, π2 + µ2) is also a valid proof. Thus, we have at least |G1| different proofs that are accepted by the
verifier. ⊓⊔

The above result demonstrates that the KZG scheme defined in Figure 2 does not satisfy the computational
uniqueness of proofs, as uniqueness fails already in the bivariate case. Moreover, to see that computational
uniqueness does not hold for an arbitrary number of variables n > 2, we can use our discussion about the
randomized multivariate KZG scheme in Section 7.3. Specifically, using the quotient polynomials q̃i defined
from the standard quotient polynomials qi by an arbitrary vector α, one can construct multiple distinct
yet valid proofs, reinforcing the conclusion that computational uniqueness strongly does not hold for the
multivariate scheme.

10 Evaluation Binding of the KZG PCS Family

The multivariate KZG scheme from [PST13] was introduced as a multivariate polynomial evaluation scheme
in the context of “signatures of correct computation.” In fact, Papamanthou et al. do not discuss their
scheme’s standard evaluation binding property but, instead, prove the selective security of their multivariate
polynomial evaluation scheme. In this section, we present their results in the language of evaluation binding
for polynomial schemes since translating between standard evaluation binding for polynomial commitment
schemes and their notion of selective (resp. adaptive) security for multivariate polynomial evaluation schemes
is not completely straightforward.

Recall that evaluation binding ensures that an adversary cannot generate two distinct yet valid opening
proofs for a committed polynomial at a single evaluation point. Intuitively, this guarantees that the adversary
behaves consistently with a function. The formal definition of standard evaluation binding, which has been
previously studied for various polynomial commitment schemes, is presented below.
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Definition 23. We say a multivariate polynomial commitment scheme PCS = (KGen,Com,Open,Ver) is
evaluation binding w.r.t. PGen if, for all degree bounds d = (d1, . . . , dn) ∈ poly(λ) and PPT adversaries A,
it holds that

Pr

z ̸= z′,

Ver(ck, C,x, z, π) = 1,

Ver(ck, C,x, z′, π′) = 1

∣∣∣∣∣∣∣
aux← PGen(λ),

ck← KGen(1λ,d, aux),

(C,x, z, π, z′, π′)← A(ck)

 ∈ negl(λ).

Evaluation binding for univariate KZG supporting polynomials of degree at most d has been proven under
the d-SBDH assumption [KZG10]. However, proving evaluation binding for the multivariate KZG presents
additional challenges. In the language of signatures of correct computation, evaluation binding corresponds
to adaptive security, whereas [PST13] proved only the weaker notion of selective security for the multivariate
KZG scheme. Selective security for multivariate polynomial evaluation schemes corresponds to a relaxation
of the standard evaluation binding that we call evaluation binding on average and define below.

Definition 24. We say a multivariate polynomial commitment scheme PCS = (KGen,Com,Open,Ver) is
evaluation binding on average w.r.t. PGen if, for any d = (d1, . . . , dn) ∈ poly(λ) and for all PPT adversaries
A, it holds that

Pr


z ̸= z′,

Ver(ck, C,x, z, π) = 1,

Ver(ck, C,x, z′, π′) = 1

∣∣∣∣∣∣∣∣∣∣
aux← PGen(λ),

ck← KGen(1λ,d, aux),

x← Fn
p ,

(C, z, π, z′, π′)← A(ck,x)

 ∈ negl(λ).

The above relaxation effectively means that, while there might exist specific evaluation points where an
adversary could violate evaluation binding, the probability of breaking the property over a randomly chosen
evaluation point remains negligible. Note that this definition, though slightly weaker, might be sufficient for
applications such as SNARKs, where we only need to evaluate polynomials at random points. The proof
of evaluation binding on average for the multivariate KZG scheme from [PST13] relies on a variant of the
SBDH assumption with the winning identity defined in the target group, which we recall next.

Definition 25 (SBDH∗ Assumption). For n ∈ N and a bilinear group generator PGen, we say that the
n-SBDH∗ assumption holds for PGen if, for all PPT adversaries A, it holds that

Pr

[
γ + c ̸= 0,

[φ]T = ([1]1 • [1]2)
1

γ+c

∣∣∣∣∣gp = (p, [1]1, [1]2, •)← PGen(λ), γ ← Zp,

(c, [φ]T )← A(gp, ([γi]1)ni=1, [γ]2)

]
∈ negl(λ).

We say the SBDH∗ assumption holds for PGen if the n-SBDH∗ assumption holds for PGen for all n ∈ poly(λ).

Next, we illustrate the proof of evaluation binding on average from [PST13] on the bivariate variant of
KZG.

Theorem 14. Under the (m+n)-SBDH∗ assumption, the multivariate polynomial commitment scheme KZG
presented in Figure 2 used with degree bounds d = (m,n) is evaluation binding on average.

Proof. We show that any adversary A breaking the evaluation binding property of the KZG polynomial
commitment scheme when used with degree bounds d = (m,n) can be used to break the (m + n)-SBDH∗

assumption. Given an (m+ n)-SBDH∗ challenge
(
[1]1, [γ]1, [γ

2]1, . . . , [γ
n+m]1

)
, where γ is chosen uniformly

randomly from F∗
p, our goal is to output a pair (c, φ) ∈ (Fp,G1) such that c ̸= −γ and φ = ([1]1 • [1]2)

1
γ+c .

First set σ = γ and sample (x, y)← F2
p and r ← Fp. Then compute s = y − r and set τ = rγ + s. In this

way, we have set up the secret evaluation point for the commitment key (σ, τ) and the uniform evaluation
point (x, y) such that both σ − x = γ − x and τ − y = r(γ − x) are divisible by γ − x. Now, we compute
the KZG commitment key ck with respect to (σ, τ) and degree bounds (m,n), which we can do because the
(m + n)-SBDH∗ instance contains the values [γi]1 for i = 0, . . . , n + m, and n + m is exactly the highest
degree that we need to compute to create the bivariate commitment key.
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Next, we argue that even though we have created a correlated pair of a commitment key ck and evaluation
point (x, y), its distribution is identical to A’s input in the evaluation binding experiment in Definition 24.
Since (x, y) is a uniformly random evaluation point and σ = γ is also uniformly random, it remains to be
shown that τ = rγ + s = rγ + y − r = r(γ − 1) + y is also uniformly random and independent of (x, y) and
σ. To this end, consider the function φb : Fp → Fp, φb : r 7→ rb. It is easy to see that φb is a bijection for
all 0 ̸= b ∈ N, since all non-zero b have a multiplicative inverse in Fp. Thus, if γ ̸= 1 then τ is distributed
uniformly independently of y. On the other hand, γ = 1 with probability exactly p−1, which is exponentially
small in the security parameter.

Thus, A(ck, (x, y)) returns a tuple (C, z, z′, π, π′) that breaks the evaluation binding with a non-negligible
probability, i.e., if we denote π = (π1, π2) and π′ = (π′

1, π
′
2), we get that

(C − [z]1) • [1]2 = π1 • [σ − x]2 ⊗ π2 • [τ − y]2,
(C − [z′]1) • [1]2 = π′

1 • [σ − x]2 ⊗ π′
2 • [τ − y]2.

After rewriting π1 = [p1]1, π2 = [p2]1, π
′
1 = [p′1]1, π

′
2 = [p′2]1 and multiplying the first equation by the

inverse of the second, we get

[z′ − z]1 • [1]2 = [p1 − p′1]1 • [σ − x]2 ⊗ [p2 − p′2]1 • [τ − y]2.

If we set δ = z′ − z ̸= 0 and raise both sides of the equations to 1
δ(γ−x) , we get that

([1]1 • [1]2)
1

γ−x = ([p1 − p′1]1 • [1]2 ⊗ [p2 − p′2]1 • [r]2)
1
δ .

Notice that, on the left side, we have the desired ([1]1 • [1]2)
1

γ+c for c = −x, while we can compute the
element on the right side of the equality from the tuple (C, z, z′, (π1, π2), (π

′
1, π

′
2)) we got from A. Thus, we

can break the (m+ n)-SBDH∗ instance by outputting (x, ([p1 − p′1] • [1]2 ⊗ [p2 − p′2] • [r]2)
1
δ ). ⊓⊔

Generally, when dealing with an n-variate polynomial commitment scheme where the verification check
is of the form

(C − [z]1) • [1]2 =

n⊗
i=1

πi • [ti − xi]2

with trapdoors ti, we can apply the same trick to derive the relation

([1]1 • [1]2)
1

γ−x1 =

(
n⊗

i=1

[pi − p′i]1 • [ri]2

) 1
δ

.

To achieve this, we must choose ti such that ti − xi = ri(γ − x1).
The key observation is that the trick works by setting the trapdoors ti such that we can later divide

by t1 − x1. However, this dependency prevents us from applying this proof to the standard definition of
evaluation binding, where the evaluation point x is not given in advance. In [PST13], this issue is addressed
by introducing the randomized multivariate KZG scheme we discussed in Section 7.3. The randomization of
the KZG proof enables again the selection of random evaluation points, ensuring the divisibility by t1 − x1.
Therefore, for the randomized KZG scheme, [PST13] proved the standard evaluation binding as presented
in Definition 23.
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