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Abstract. This paper formalizes the notion of server-aided anonymous credentials (SAACs), a new
model for anonymous credentials (ACs) where, in the process of showing a credential, the holder is
helped by additional auxiliary information generated in an earlier (anonymous) interaction with the
issuer. This model enables lightweight instantiations of publicly verifiable and multi-use ACs from
pairing-free elliptic curves, which is important for compliance with existing national standards. A
recent candidate for the EU Digital Identity Wallet, BBS#, roughly adheres to the SAAC model we
have developed; however, it lacks formal security definitions and proofs.

In this paper, we provide rigorous definitions of security for SAACs, and show how to realize SAACs
from the weaker notion of keyed-verification ACs (KVACs) and special types of oblivious issuance
protocols for zero-knowledge proofs. We instantiate this paradigm to obtain two constructions: one
achieves statistical anonymity with unforgeability under the Gap q-SDH assumption, and the other
achieves computational anonymity and unforgeability under the DDH assumption.

1 Introduction

Anonymous credentials (ACs), introduced by Chaum [Cha82], allow a user (or holder) to obtain a credential
from an issuer. Typically, a credential is associated with a number of attributes, such as the credential’s
expiration date, or the credential holder’s date of birth. This credential can be shown to a verifier unlinkably,
i.e. such that it cannot be linked to the transaction in which it was issued, and different showings of the same
credential cannot be linked to each other. Further, a showing only reveals the minimum necessary amount of
information about the attributes—typically, that these attributes satisfy a certain relevant predicate (e.g.,
that the holder is not a minor, that they have a valid driver’s license, etc.).

ACs were first practically realized by Camenisch and Lysyanskaya [CL01, CL03, CL04]. In the standard
approach to designing ACs [LRSW99, Lys02], a credential is a signature on the user’s attributes, generated
by the issuer via a secure protocol that protects the privacy of the user’s attributes. Credentials are shown
via a zero-knolwedge proof of knowledge of a credential whose attributes satisfy the relevant predicate. In
principle, one can build ACs from any signature scheme by using generic zero-knowledge proof systems,
but in a practical instantiation, a digital signature scheme which enables efficient realizations of such proofs
is a better approach. Examples include RSA- and pairing-based CL signatures [CL03, CL04], as well as
pairing-based BBS signatures [CL04, BBS04, ASM06, TZ23b].

Systems using ACs have been proposed over the years, such as Microsoft’s U-Prove [Bra99, PZ13] and
IBM’s IDEMIX [CV02]. Recently, credentials have regained popularity as components of decentralized/self-
sovereign identity services like Hyperledger Indy, Veramo and Okapi. These come with ongoing companion
standardization efforts by the IETF [LKWL24] and the World Wide Web Consortium (W3C). Technol-
ogy policy, especially that of the EU and its member states, has mandated privacy-preserving authentica-
tion [ARF24, Ger24] for which anonymous credentials appear to be the right solution [BBC`24].
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Credentials based on pairing-free elliptic curves. Elliptic-curve-based cryptography has outper-
formed and outpaced cryptographic constructions based on RSA. Especially desirable from the practical
point of view – both for efficiency reasons and because of standardized curves – is elliptic-curve-based
cryptography that does not require pairing-friendly curves [BL, BCR`]. The lack of suitable standards, in
particular, often prevents the use of pairing-based solutions in the public sector, where ACs find a natural
use case. Other natural application scenarios are web applications and anonymous browsing, and pairings
are often not supported by browser libraries such as NSS and BoringSSL. Unfortunately, however, the only
approach to (multi-show) ACs based on pairing-free curves relies on generic zero-knowledge proofs, and is
mostly very costly, and this is due to the fact that pairing-free signature schemes are inherently non-algebraic
(as proved e.g. in [DHH`21]).

To overcome this inherent barrier, prior works have considered different settings where pairing-free ACs
are possible:

‚ Blind signatures with attributes. Baldimtsi and Lysyanskaya [BL13] presented an approach extending
the notion of blind signatures to include attributes, formalizing ideas implicit in U-Prove [PZ13]. The
resulting construction gives a use-once AC, referred to as “AC light” (ACL), i.e., one needs to interact
with the issuer to obtain as many copies of the credential as the number of intended showings. This also
introduces a tradeoff between privacy and efficiency: either each user needs to get as many copies of
the ACL credential as a reasonable upper bound on the lifetime use of the credential, or it needs to get
credentials reissued upon running out of them, revealing the rate of credential use.

‚ Keyed-Verification Anonymous Credentials (KVAC). The single-use aspect of ACL can be a feature, but
is mostly a bottleneck. Chase, Meiklejohn and Zaverucha [CMZ14] considered multi-use credentials in
an alternative setting where the issuer and the verifier are the same entity, and provided pairing-free
solutions that rely on the lack of public verifiability when showing credentials. The resulting schemes are
very practical, and are widely adopted in the Signal messaging system [CPZ20].

This paper: Server-aided anonymous credentials. This paper formalizes an alternative model for
multi-use credentials in which efficient pairing-free credentials are possible, and which we refer to as Server-
Aided Anonymous Credentials (or SAAC, for short). In contrast to KVAC, SAAC enable publicly verifiable
showing of credentials, and this is achieved by allowing the holder to interact with the issuer’s helper server
to generate additional helper proofs. To preserve anonymity, this interaction with the helper is entirely obliv-
ious (in a way related, but not formally equivalent, to the work of Orrú et al. [OTZZ24]): the helper server
does not need to verify anything about the user it is interacting with, and can neither link the interaction
to any other by the same user, nor learn anything about the user’s credential attributes. The extra cost of
this interaction with the helper is limited, in particular as the generation of these proofs can be performed
offline, and not at the time of showing the credential.

The helper flow is somewhat natural in the context of credentials. In OAuth 2.0 [Har12], the industry-
standard authorization protocol for the web, users obtain a refresh token and must query that refresh
token to an issuer to obtain access tokens which they can later spend. However, in the setting of anonymous
credentials, the use of a helper server was, to the best of our knowledge, only recently brought up in the BBS#
white paper [TD, Ora]. BBS# is an industry white paper that explores several ideas for the development
of a European Digital Identity Wallet.3 However, it does not contain a formal security model or analysis.
As a result, we are the first to provide the foundations behind such an approach, as well as provably secure
solutions.

This work develops a formal treatment of SAAC, for which we give security definitions. We also develop
generic constructions that lift KVACs, which are not meant to be publicly verifiable, to SAAC with the help
of specific protocols for oblivious issuance of zero-knowledge proofs. Interestingly, our security needs for the
latter are weaker than those considered by the recent work of Orrù et al. [OTZZ24], as our helper protocol
is not required to resist strong attacks such as ROS [BLL`21], and thus we can prove security based on a
standard cryptographic assumption without relying on the algebraic group model (AGM) [KLR23].

3 BBS# includes other ideas besides including a helper server; and in particular integration with an HSM, which are
outside the scope of this paper.
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Fig. 1. Server-Aided Anonymous Credentials. Illustration of the SAAC setting. Note that the secret and public
keys psk, pkq are generated by the SAAC.KeyGen algorithm, which is not described here. Also, we allow each showing
to be linked to some additional value nonce, which is a joint input of SAAC.Show and SAAC.SVer, and this is not
illustrated here.

We instantiate our framework with two concrete constructions: A first solution based on BBS (without
pairings), which we prove unforgeable, in the random-oracle (RO) model, under the Gap q-SDH assump-
tion, and statistically anonymous. We also present a second instantiation for which both unforgeability and
anonymity hold under the DDH assumption in the RO model. Our security analysis is in the random oracle
model [BR93], but does not make any use of the AGM or any other ideal group model.

The next section provides a detailed overview of our contributions.

1.1 Overview of this paper

We now give a detailed overview of our results and contributions. This section also serves as a roadmap for
the paper.

Syntax for SAAC. We provide a definition of Server-Aided Anonymous Credentials (SAAC). A SAAC
scheme is parameterized by a set of predicates Φ, and consists of a number of protocols, involving the issuer,
the credential holders, and the verifier. The setting is also defined in Figure 1.

‚ Key generation. The issuer generates a secret-key/public-key pair psk, pkq by running the key genera-
tion algorithm.

‚ Issuance. A credential σ is issued to the holder as the output of an interaction with the issuer—in the
same way as with a classical credential system. The issuer’s input is sk, whereas the holder’s inputs are
pk and a vector of attributes m. Further, their shared input is a predicate φ P Φ. The intuition (which
will be a consequence of our security notions we introduce below) is that the credential is only issued
if indeed φpmq “ 1, and that the issuer only learns φ and that φpmq “ 1. The holder’s output is a
credential σ.

‚ Helper protocol. The main new component is a helper protocol between a holder and the issuer. The
issuer’s input is sk, whereas the holder’s inputs are pk, a vector of attributes m, along with a credential
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σ for it. The protocol outputs a string aux, which we refer to as the helper information to the holder,
and produces no output for the issuer.

‚ Credential showing and verification. Showing and verification are similar to those in any (publicly
verifiable) credential system, in that the user can select a predicate φ P Φ, an attribute vector m, and
a corresponding credential σ, and produce some showing message τ which can be verified (under the
public key pk and given φ) to assess that indeed φpmq “ 1. But in addition to this, we allow the
process of creating τ to also depend on helper information aux output by the helper protocol. Looking
ahead once again to our definitions, unlinkability is meant to hold as long as each showing uses a freshly
generated aux. But crucially, we note that aux does not depend on φ, and thus can be precomputed by
running the helper at any prior time after receiving the credential σ and it is obtained via a privacy-
preserving protocol that will ensure that an execution of the protocol generating aux cannot be linked
to the credential showing using this aux.

Here, predicates model information about the attributes which is revealed either at issuance or at showing—
in both cases, it is only revealed that φpmq “ 1. The most relevant class of predicates describes selective
disclosure. As part of the showing protocol, the user sends a list of indices I “ pi1, . . . , ikq and a list
of disclosed attributes a P M` which determines the predicate φI,a given by φI,apm1, . . . ,m`q “ 1 if
aij “ mij for all j P rks, and otherwise 0.

Unforgeability of SAAC. We formalize a strong notion of unforgeability for a SAAC scheme which
postulates that a malicious holder can only convince the verifier to accept a showing for a predicate φ such
that the holder has previously obtained a credential for some attribute vector m such that φpmq “ 1.

A definitional challenge is that a malicious holder may arbitrarily deviate from the protocol when inter-
acting with the issuer, and therefore, care must be taken to ensure that the set of attribute vectors for which
a credential was issued is well-defined. To this end, our definition relies on an extractor which, whenever
a malicious message µ from the holder is successfully answered by the issuer (run on input φ), extracts
attribute vector m from µ such that φpmq “ 1. The holder wins if a verifier is convinced by a showing for a
predicate φ˚ not satisfied by any of the extracted attribute vectors.

Furthermore, we allow the malicious holder to leverage additional types of interactions:

‚ Helper interaction. The malicious holder can interact as they please, in a fully concurrent and arbi-
trarily interleaved way, with the helper protocol.

‚ Honest showings. The malicious holder can obtain honest showings of credentials; the winning condi-
tion disallows a win for the adversary by simply replaying a showing of an honest user’s credential.

Our unforgeability notion, however, does not require that the helper protocol is run for a successful showing.
One could envision that the helper protocol serves some rate-limiting purpose, but effectively our formalism
and our instantiations allow re-use of the helper string aux (at the cost of losing anonymity), and thus the
rate-limiting effect is inconsequential. As a result of not making such a (in our view, unnecessary) restriction
in the definition, we get the benefit that existing (multi-show, helper-free) anonymous credential systems
immediately satisfy our definition.

Anonymity of SAAC. Our anonymity notion is meant to protect the credential holder from an adversary
that controls the issuer (and thus both the issuance and the helper processes), and that is also shown
credentials. The only information that is leaked at issuance is that the predicate φ holds for the attribute
vector m, and the only information leaked at showing is that the holder has a credential for some vector m
satisfying the predicate φ. Crucially, we need to ensure that the helper protocol interaction is unlinkable to
a particular showing of a credential, a fact which is also guaranteed by the security definition.

A generic construction.Our main contribution is a generic construction that lifts a KVAC scheme to a
SAAC scheme. Informally, KVAC differ from a regular credential system in that the credential is meant to
be verified by the same party that issued it; i.e. verification of the showing of a credential requires the secret
key. Unlike in SAAC, no helper is involved. Despite not requiring the issuer’s public key for verification,
the public key of KVAC allows the issuer to prove to their holders that the credential was issued correctly.
Several constructions of KVAC have been given in the literature [CMZ14, BBDT16, CDDH19].
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Our generic construction replaces the keyed verification of a KVAC scheme with a non-interactive proof
that the showing message satisfies the keyed-verification algorithm. The helper protocol will be an oblivious
issuance of proof (oNIP) [OTZZ24] protocol, which allows the holder to obtain the proof without leaking its
showing message. Implementing this construction requires a KVAC scheme with a specific structure where
showing and verification are done in two steps:

‚ Key-dependent verification. The holder first uses its attributes m and credential σ to compute a
key-dependent showing message τkey and a state st which are independent of the predicate φ. The verifier
can then verify τkey using its secret key sk.

‚ Public verification. The holder then continues showing using its state st to compute public showing
message τpub, which is dependent on the predicate φ and can be bound to some additional value nonce.
Then, pτkey, τpub, φ, nonceq can be publicly verified using pk. (Note that both key-dependent and public
verification needs to return 1.)

The key-dependent verification defines a relation RV containing statement ppk, τkeyq and witness sk such that
(1) the secret key sk corresponds to pk based on the key generation, and (2) τkey is a valid key-dependent
showing message when verified by sk. Then, using an oNIP protocol for the relation RV (refer to Section 4.1 for
the deviation from the prior oNIP formalization in [OTZZ24]), we arrive at the following SAAC construction:

‚ Key generation and issuance are exactly those of the KVAC scheme.

‚ Helper protocol. The helper protocol begins with the holder computing the key-dependent showing
message τkey and a state st. Then, the issuer and the holder runs the oNIP protocol with the holder
obtaining a proof πV attesting that τkey is valid with respect to sk. The helper information aux contains
pτkey, πV, stq.

‚ Showing. To show that the holder’s credential satisfies a predicate φ, the holder computes the public
showing message τpub for φ with the additional value nonce set as πV. The final showing message contains
pτkey, τpub, πVq.

‚ Verification. The verifier checks the validity of the proof πV with respect to τkey and the KVAC showing
message pτkey, τpubq with respect to φ and πV.

It is important that τpub is dependent on πV. Otherwise, the showing message is malleable. In particu-
lar, a malicious holder can forge by obtaining an honest user’s showing message and requesting a new πV
through the helper. With that said, there are still other requirements for the security of our generic SAAC
construction.

Achieving unforgeability. At a high level, unforgeability of the generic SAAC construction requires the
following properties:

‚ The proof πV is sound. This ensures that a valid forgery pτkey, τpub, πVq contains τkey that is valid with
respect to the issuer’s secret key sk. However, soundness by itself only guarantees that there exists a
secret key sk1 (not necessarily sk) that verifies τkey. Hence, we require an additional property for KVAC,
denoted validity of key generation, which is implied if each public key corresponds to a unique secret key.
This ensures that τkey is valid with respect to the issuer’s secret key sk.

‚ Helper protocol does not leak sk. A malicious holder should not be able to distinguish between interac-
tions with an honest helper or interactions with a simulator. Looking ahead, the simulator may require
some sk-dependent computation, e.g., checking whether sk verifies a rerandomized statement. Hence,
we formalize instead the O-zero-knowledge property, where the simulator is assisted by an oracle O
embedded with sk.

‚ Unforgeability of KVAC. We require a stronger than standard unforgeability for KVAC with the following
main changes:

1. Instead of a verification oracle, the adversary has access to the same oracle O from O-zero-knowledge
of oNIP. This is for our reduction to successfully run the simulator discussed above. For our instan-
tiations, the oracle O can be used to simulate the verification oracle as well.
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2. Similarly to SAAC unforgeability, the adversary can query honest users’ showing messages. Each
query access, however, is split into two steps: first the adversary obtains an honest τkey, then it
adaptively chooses both the predicate φ it wants the honest user to show and the nonce it wants to
be tied to the message, and gets τpub in response.

One challenging point in giving a secure instantiation from our generic construction is to balance the strength
of O. Notably, if O reveals too much information about sk, the KVAC would be insecure; on the other hand,
if it reveals too little, the oNIP would be insecure.

Achieving anonymity. Anonymity of our SAAC construction follows from anonymity of KVAC and obliv-
iousness of oNIP. Here are some modifications made to the definitions.

‚ Obliviousness of oNIP. To satisfy our simulation-based definition of SAAC anonymity, we require a
simulation-based obliviousness definition. However, in our instantiations, we are able to show oblivious-
ness only when honest users request proofs for valid statements; specifically, ppk, τkeyq must be in the
language induced by the relation RV. Hence, we additionally require an extra property of KVAC which
ensures that even under a malicious issuer, if the user obtains a credential and does not abort, it should
be able to produce a valid τkey (in the sense that ppk, τkeyq is in the induced language).

‚ Anonymity of KVAC. Similar to anonymity of SAAC (without the helper protocol), we require that both
during issuance and during showing, the only information leaked to the adversary is that the relevant
predicate φ is satisfied by the attributes m. For showing, the adversary chooses the predicate φ and the
value nonce adaptively, after obtaining the key-dependent value τkey.

We refer the readers to Section 4 for the formalization of KVAC and oNIP required and our generic con-
struction.

Instantiation from BBS.Our first SAAC instantiation is inspired by the KVAC by Barki et al. [BBDT16],
which builds upon an algebraic message authentication code (MAC) based on BBS/BBS+ signatures [BBS04,
ASM06, TZ23a]. The scheme is based on a pairing-free group G of prime order p and generator G. The secret
and public keys are x P Zp and X “ xG, respectively. A credential for attributes m P Z`p is of the form

pA P G, e P Zp, s P Zpq such that A “ px ` eq´1C, where C “ G `
ř`
i“1miHi ` sH``1 and H1, . . . ,H``1

are public parameters. To show, the holder rerandomizes A,B “ C ´ eA, and C into Ã, B̃, C̃ and proves
knowledge of the underlying attributes with a valid credential via CDL proofs [CDL16]. To verify the showing
message, one uses the secret key x to check that pG,X, Ã, B̃q form a valid Diffie-Hellman tuple. By giving
an oNIP for this relation (adapting Orrù et al. [OTZZ24]), we turn this KVAC into SAAC. Note that our
oNIP is zero-knowledge with respect to the restricted DDH oracle rDDHpx, ¨q which checks that its input
pA,Bq satisfies xA “ B.4

In order to use Barki et al.’s KVAC, however, we need to show that it satisfies our required (stronger)
security notions. Specifically, recall that our unforgeability notions allows the adversary to (1) query the
restricted DDH oracle embedded with the secret key and (2) view showing messages of honest users (in the
manner described above). We show that this stronger version of unforgeability holds in the ROM under the
Gap-q-SDH assumption. This “gap” assumption is necessary for simulating the restricted DDH oracle. Note
that Barki et al. already require Gap-q-SDH to simulate the verification oracle. The efficiency of the resulting
SAAC is comparable to that of Barki et al.’s KVAC (see Table 1). For more details on this instantiation, we
refer the readers to Section 5.

Instantiation from DDH. Sacrificing some efficiency (see Table 1), our second SAAC instantiation com-
pletely removes the dependency on a gap q-type assumption and only relies on the much more standard
DDH assumption. Our starting point is the KVAC scheme introduced by Chase, Meiklejohn, and Za-
verucha [CMZ14], building upon an algebraic MAC. We then give a corresponding oNIP protocol for the
algebraic relation induced by the key-dependent verification. Similar to the BBS-based instantiation, the
zero-knowledge of this oNIP is proved with respect to a simulator with access to an oracle, which we denote
OSVerDDH (and will define later on in Section 6), that essentially runs the key-dependent verification of this
KVAC with the embedded secret key.

4 This oracle is exactly the key-dependent verification.
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Table 1. Comparison of group-based KVAC, AC, and BSA schemes and our highlighted SAAC instantiations. The
number of attributes is `. Showing size depends on the number of disclosed attributes and is given as a close-to-
tight upper-bound. Denote G and Zp as the sizes of group elements and scalars, respectively. All security analyses
assume the ROM. ˚: Showing requires two rounds of communication with the helper server (helper interactions can
be batched). This is “multi-show” in the sense that the user does not have to re-prove that their attributes satisfy
an issuance predicate, which may be expensive or no longer allowed by the issuer, to compute a showing (in contrast
to, e.g., ACL). : : Only BBS is pairing-based and G1 denotes the size of a source group element.

Helper Security

Scheme
Publicly
Verifiable

Multi-
Show

Credential
Size

Usr. Comm Iss Comm Rnds
Showing

Size
Unforgeability Anonymity

CMZ14 [CMZ14] No Yes 2G - - -
p`` 2qG

`p2`` 2qZp
GGM DDH

BBDT16
[BBDT16]

No Yes 2G` 2Zp - - -
3G

`p`` 7qZp
Gap-q-SDH Statistical

KVACwBB

[CDDH19]
No Yes p`` 1qG - - -

2G
`p`` 1qZp

`-SCDHI Statistical

µCMZ [Orr24] No Yes 2G - - -
p`` 2qG

`p2`` 2qZp
AGM + 3-DL Statistical

µBBS [Orr24] No Yes 1G` 1Zp - - -
2G

`p`` 4qZp
AGM + q-DL Statistical

MBS+25
[MBS`25]

No Yes p`` 2qG - - - 2G GGM Statistical

ACL [BL13] Yes No 2G` 6Zp - - -
2G

`p`` 8qZp
DL+AGM DDH

SAACBBS Yes Yes˚ 1G` 2Zp 2G` 1Zp 3G` 3Zp 2
3G

` p`` 8qZp
Gap-q-SDH Statistical

SAACDDH Yes Yes˚ 4G p`` 4qG
`1Zp

p2` ` 9q G
` p2`` 7qZp

2
p`` 6qG`
p4`` 11qZp

DDH DDH

BBS [TZ23a]: Yes Yes 1G1 ` 1Zp - - -
2G1

`p`` 3qZp
q-SDH Statistical

This KVAC was already known to be provably secure but under a definition that is weaker than what
we need to instantiate our generic construction. To address this gap, we made the following contributions:

1. We revisited the unforgeability of the underlying MAC and gave a new proof (albeit using similar
techniques) for the security against adversaries who have access to the oracle OSVerDDH instead of the
verification oracle. Additionally, this new security still implies the standard UFCMVA security of MACs.

2. Building on the unforgeability of the MAC, we showed unforgeability of the resulting KVAC scheme in
the ROM. As we require unforgeability against adversaries who can see honest users’ showings, there
were several technical difficulties to overcome. Mainly, the reduction (to unforgeability of the algebraic
MAC) needs to be constructed so that it can simulate the honest users’ showings correctly, but still
extract a valid MAC forgery from the adversary.

3. We gave a more efficient blind issuance protocol. In particular, our issuer’s communication is independent
of the number of attributes compared to the one sketched in [CMZ14] which contains a linear number
of group elements.

For more details on this instantiation, we refer the readers to Section 6.

2 Preliminaries

Notations. We use λ as the security parameter. We denote rn..ms “ tn, n ` 1, . . . ,mu for any n ď m P Z
and rns “ r1..ns for any n P N. We often vectors using bold-sized letters (e.g., v,H). If u “ pu1, . . . , unq
and v “ pv1, . . . , vmq, then u}v :“ pu1, . . . , un, v1, . . . , vmq. Denote x Ð a as assigning value a to a variable
x. Denote aÐ$ S as uniformly sampling a from a finite set S. We denote yÐ$ Apxq as running a (prob-
abilistic) algorithm A on input x with fresh randomness and rApxqs as the set of possible outputs of A;
py1, y2q Ð$ xApx1q é Bpx2qy denotes a pair of interactive algorithms A,B with inputs x1, x2 and outputs
y1, y2 respectively. We often use the words messages and attributes interchangably.
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Game DLA
GGenpλq:

par “ pp,G,Gq Ð$ GGenp1λq

X Ð$ G
xÐ$ Appar, Xq
return xG “ X

Game DDHA
GGen,bpλq:

par “ pp,G,Gq Ð$ GGenp1λq

x, y, z Ð$ Zp
Z0 Ð xyG;Z1 Ð zG

b
1
Ð$ Appar, xG, yG,Zbq

return b
1

Game pq,Oq-SDHA
GGenpλq

par “ pp,G,Gq Ð$ GGenp1λq

xÐ$ Zp

pe, Zq Ð$ AOppar,x,xG,¨q
ppar, pxiGqiPrqsq

return pZ “ px` eq
´1
Gq

Oracle rDDHppar, x,X, pA,Bqq

return xA “ B

// X is unused.

Fig. 2. Games DDH, DL, and pq ,Oq-SDH, and a definition of the oracle rDDH.

Group parameter generator.A group parameter generator is a probabilistic polynomial time algorithm
GGen taking as input 1λ and outputting a cyclic group G of Θpλq-bit prime order p with a generator G. We
assume that standard group operations in G can be performed in polynomial time in λ and adopt additive
notation (i.e., A`B for applying group operation on A,B P G).

Cryptographic assumptions. In Figure 2, we define games for Decisional Diffie-Hellman (DDH), Discrete
Logarithm (DL), and a pairing-free analog of the q-Strong Diffie-Hellman assumption [BB08] augmented with
a restricted DDH oracle. Denote the advantage of an adversary A against these assumptions as

Adv
pDL,pq,rDDHq-SDHq
GGen pA, λq :“ PrrpDL{pq , rDDHq-SDHqAGGenpλq “ 1s ,

Advddh
GGenpA, λq :“

ˇ

ˇPrrDDHA
GGen,0pλq “ 1s ´ PrrDDHA

GGen,1pλq “ 1s
ˇ

ˇ .

For modularity of our security proofs, we will rely on the rel-DL and n-DDH (a multi-instance version of
DDH) assumptions with the games described in Figure 3. With the corresponding advantage defined as

Advrel-dl
GGen pA, λq :“ Prrrel-DLA

GGenpλq “ 1s ,

Advddh
GGen,npA, λq :“

ˇ

ˇPrrn-DDHA
GGen,0pλq “ 1s ´ PrrDDHA

GGen,1pλq “ 1s
ˇ

ˇ .

The following lemmas establish tight reduction between rel-DL and DL and n-DDH and DDH. Lemma 2.2
follows from the random self-reducibility of DDH (see e.g., [EHK`13]).

Lemma 2.1 ([JT20]). Let n “ npλq and GGen be a group generation algorithm outputs groups of prime
order p “ ppλq. For any A running in time tA “ tApλq, there exists B running in time tA `Opnq such that

Advrel-DL
GGen,npA, λq ď Advdlog

GGenpB, λq `
1

p

Lemma 2.2. Let n “ npλq and GGen be a group generation algorithm outputs groups of prime order p “
ppλq. For any A running in time tA “ tApλq, there exists B running in time tA `Opnq such that

Advddh
GGen,npA, λq ď Advddh

GGenpB, λq `
1

p´ 1
.

Random oracles. Most of our analyses assume one or more random oracles, and we will clearly indicate
so in the theorem statements. The random oracles are modeled as additional oracles to which the adversary
A is given access.
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Game n-DDHbpλq

par “ pG, p,Gq Ð GGenp1λq :

xÐ$ Zp
pyiq

n
i“1, pziq

n
i“1 Ð$ Znp

Zi,0 Ð xyiG;Zi,1 Ð ziG for all i P rns

b
1
Ð$ Appar, xG, pbiGqni“1, pZi,bq

n
i“1q

Game rel-DLpλq :

par “ pG, p,Gq Ð GGenp1λq :

pXiq
n
i“1 Ð$ Gn

pyiq
n
i“0 Ð Appar, pXiqni“1q

if pyiq
n
i“1 “ 0

n
then return 0

return
řn
i“1 yiXi “ y0G

Fig. 3. Games n-DDH and rel-DL

Games UFCMAA
MAC,Opλq, UFCMVAA

MAC,Opλq

MsgQÐ H; parÐ$ MAC.Setupp1λq

psk, ipkq Ð$ MAC.KGpparq

pm
˚
, σ
˚
q Ð$ AMAC,O, V

ppar, ipkq

if m
˚
R MsgQ ^ MAC.Verppar, sk,m˚, σ˚q “ 1

then return 1

return 0

Oracle MACpmq

σÐ$ MAC.Mppar, sk,mq

if σ ‰ K then

MsgQÐ MsgQY tmu

return σ

Oracle Vpm,σq

return MAC.Verppar, sk,m, σq

Fig. 4. Unforgeability under chosen message attack (UFCMA) and unforgeability under chosen message and verifi-
cation queries (UFCMVA) games

Message authentication codes.A message authentication code MAC is a tuple of algorithms pMAC.Setup,
MAC.KG,MAC.M,MAC.Verq with the following syntax:

‚ The setup algorithm MAC.Setupp1λq generates public parameters par. We let the public parameters par
define the message space MAC.M “ MAC.Mpparq.

‚ The key generation algorithm MAC.KGpparq outputs the secret key sk and the issuer’s public parameters
ipk.

‚ The randomized MAC algorithm MAC.Mppar, sk,mq takes as inputs, the secret key sk and a message
m P MAC.M, and outputs a message authentication code σ.

‚ The deterministic verification algorithm outputs a bit MAC.Verppar, sk,m, σq.

Note that the issuer’s public key ipk is not used in the MAC and verification algorithms, but will be relevant
in the keyed-verification anonymous credentials (KVAC) building on algebraic MACs, which we define later
on.

Correctness is defined as usual in that for any public parameters par and key sk generated from the
setup and key generation algorithms and any message m P M, the message authentication code σ Ð

MAC.Mppar, sk,mq always satisfies MAC.Verppar, sk,m, σq “ 1. We consider two security definitions: unforge-
ability under chosen message attack (UFCMA) and unforgeability under chosen message and verification
queries attack, which are respectively defined by the games UFCMAA

MACpλq and UFCMVAA
MACpλq (both

given in Figure 4). Additionally, we define UFCMA/UFCMVA in the presence of an arbitrary oracle, de-
noted O-UFCMA. (Note that for some schemes and oracles that we consider in this paper, O-UFCMA
implies UFCMVA.) The corresponding advantage of any adversary A playing the game (O is optional) is:

Adv
ufcma{ufcmva
MAC,O pA, λq :“ PrrpO-UFCMA{O-UFCMVAqAMACpλq “ 1s .

Relations and Σ-protocol. Let R Ď X ˆW be a relation and LR :“ tx P X |Dw P W : px,wq P Ru
denotes its induced language. A Σ-protocol for a relation R is a tuple of algorithms:

‚ Initpx,wq: given a statement and witness px,wq P R, output a commitment R and a state st.
‚ Resppst, cq : given a challenge c P CH, output a response z.
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‚ Verifypx,R, c, zq : output a bit b P t0, 1u.

The transcript pR, c, zq is valid for a statement x if Verifypx,R, c, zq “ 1. Σ-protocols satisfy correctness,
honest-verifier zero-knowledge, special soundness, and high min-entropy.

‚ Correctness. For any px,wq P R, pR, stq P rInitpx,wqs, c P CH, z Ð Resppst, cq, Verifypx,R, c, zq “ 1.
‚ Honest-verifier zero-knowledge (HVZK). There exists an efficient simulator Sim such that for

any px,wq P R, c P CH the following distributions are identical: tpR, c, zq : pR, stq Ð$ Initpx,wq, z Ð
Resppst, cqu ” tpR, c, zq : pR, zq Ð$ Simpx, cqu

‚ Special soundness. There exists an efficient deterministic extractor Ext such that for any x and two
transcripts pR, c, zq, pR, c1, z1q where c ‰ c1, the output w Ð Extpx, pR, c, zq, pR, c1, z1qq is such that
px,wq P R.

‚ High Min-Entropy. For any px,wq P R, pR, stq Ð$ Initpx,wq is such that 2´HminpRq is negligible, where
HminpXq :“ ´ log maxxPX PrrX “ xs denotes the min entropy of a random variable X with values drawn
from a finite domain X . Moreover, we denote HminpΣq :“ minxPLR

HminpRq.

Non-interactive zero-knowledge proofs. A non-interactive zero-knowledge (NIZK) proof system for
a relation R is a tuple of algorithms pNIZK.ProveH,NIZK.VerHq with access to a random oracle H : t0, 1u˚ Ñ R
with the following syntax:
‚ πÐ$ NIZK.ProveHpx,wq: outputs a proof π on input px,wq P R.
‚ 0{1 Ð NIZK.VerHpx, πq: verifies a proof π for statement x.

The proof systems used in this work only rely on the random oracle. We require that NIZK satisfies the
following properties:

‚ Correctness. For any px,wq P R,

Prr1 “ NIZK.VerHpx, πq|πÐ$ NIZK.ProveHpx,wqs ě 1´ ηpλq

where the probability is over the random choice of H and the random coins of NIZK.Prove. We denote η
as the correctness error.

‚ Soundness. For any adversary A with bounded access to H, the following advantage is bounded

AdvsoundNIZK pA, λq :“ Pr
“

x R LR ^ NIZK.VerHpx, πq “ 1
ˇ

ˇpx, πq Ð$ AHp1λq
‰

.

‚ Zero-knowledge. There exists a simulator Sim which is allowed to reprogram H such that for any
adversary A with bounded access to H, the following advantage is bounded:

AdvzkNIZK,SimpA, λq :“
ˇ

ˇPrrAH,P0p1λq “ 1s ´ PrrAH,P1p1λq “ 1s
ˇ

ˇ .

The oracles Pbpx,wq does the following: If px,wq R R then return K. If b “ 0, then return πÐ$ NIZK.ProveHpx,wq.
Otherwise, return πÐ$ SimH

pxq.
‚ Relaxed knowledge-soundness. A NIZK is straight-line extractable knowledge-sound for a relaxed

relation rR Ě R if there exists an extractor Ext who has access to the adversary’s random oracle queries
such that for any adversary A playing the game KSND (defined in Figure 5), the following advantage is
bounded

Advksnd
NIZK,Ext,rR

pA, λq :“ PrrKSNDA
NIZK,Ext,rR

pλq “ 1s .

Proofs for linear relations. Throughout the paper, we will use Σ-protocol for proving preimage of
linear maps over a prime-order group G [Mau15]. The relation RG contains statements of the form pM P

Gnˆm,Y P Gnq and the witnesses are x P Zmp such that Y “ Mx. In particular, we consider the following
Σ-protocol ΣLin “ pInit,Resp,Verifyq described as

‚ pR, stq Ð$ InitppM P Gnˆm,Y P Gnq,x P Zmp q : sample rÐ$ Zmp and output pRÐMr, stÐ px, rqq
‚ z Ð Resppst, c P Zpq : output z Ð r ` cx.
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Game KSNDA
NIZK,Ext,rR

pλq:

winÐ 0;QÐ H

Map: TÐ r¨s

AH,OExt p1
λ
q

return win

Oracle Hpstrq:

if Trstrs ‰ K then

return Trstrs

QÐ QY tstru
Trstrs Ð$ R
return Trstrs

Oracle OExtpx, πq:

if NIZK.VerHpx, πq ‰ 1 then

return 0

w Ð ExtHpQ, x, πq

if px,wq R rR then winÐ 1

return 1

Fig. 5. Straightline extractable knowledge soundness game for NIZK.

Lin.ProveHppM P Gnˆm,Y P Gnq,x P Zmp , nonceq
r Ð$ Zmp ;RÐMr; cÐ HpM,Y ,R, nonceq

sÐ r ` c ¨ x

return π :“ pc, sq

Lin.VerHppM P Gnˆm,Y P Gnq, π, nonceq
pc, sq Ð π

RÐMs´ c ¨ Y

return HpM,Y ,R, nonceq “ c

Fig. 6. NIZK proof system Lin “ LinrH,Gs for RG :“ tppM,Y q,xq : Y “Mxu. The prover optionally takes an input
nonce which will also be hashed by H.

‚ bÐ$ VerifyppM,Y q,R, c,zq: output 1 if and only if R` cY “Mz.

Additionally, we will repeatedly use a non-interactive proof system Lin for RG which is obtained by applying
the Fiat-Shamir transform to ΣLin (see the description of proof system Lin in Figure 6). Note in particular
that the prover and verifier take an additional (and optional) input string nonce which will be an additional
input to H.

The following theorem then establishes the security of the proof system Lin in Figure 6. This follows from
Fiat-Shamir transform applying to ΣLin (see e.g., Boneh-Shoup [BS20, Chapter 19-20]).

Theorem 2.3. Lin satisfies perfect correctness, zero-knowledge, and soundness in the ROM.

3 Server-Aided Anonymous Credentials

In this section, we introduce Server-Aided Anonymous Credentials (SAAC), with the syntax and security
definitions given in Sections 3.1 and 3.2, respectively. SAAC allow a user to obtain a credential for its at-
tributes through a (blind) issuance protocol and to anonymously show that it owns a credential for attributes
which satisfies some specified predicate. However, in contrast to anonymous credentials (AC), the user may
request the issuer to help produce helper information which the user can use to output a publicly-verifiable
showing message. This is modeled as an unlinkable helper protocol, which is independent of the predicate
specified during showing. Users may then ask for several pieces of helper information ahead of time and
spend them later during showing.

3.1 Syntax

A server-aided anonymous credential scheme SAAC “ SAACrΦ,Ms defined with respect to a predicate class
family Φ “ tΦparupar

5 and an attribute space M “ tMparupar consists of the following algorithms.
‚ parÐ$ SAAC.Setupp1λ, 1`q outputs public parameters par which defines the attribute space M “ Mpar

and a corresponding class of predicates Φ “ Φpar. For succinctness, we will abuse the notation and omit
the subscript par.

5 Alternatively, one can define the scheme with respect to two classes of predicates ΦIss and ΦShow which model
predicates accepted during issuance and showing. However, we define our SAAC syntax with respect to a single
class of predicates Φ “ ΦIss Y ΦShow covering both predicate classes for issuance and showing. This will be the case
for our constructions which consider the class of selective disclosure predicates for both issuance and showing.
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‚ psk, pkq Ð$ SAAC.KeyGenpparq outputs the secret and public key pair.
‚ pK, σq Ð$ xSAAC.Issppar, sk, φq é SAAC.Uppar, pk,m, φqy is an interactive protocol between the issuer

and the user where at the end, the user obtains a credential σ for its vector of attributes m PM`, which
satisfies a predicate φ P Φ (i.e., φpmq “ 1). We consider a round-optimal issuance protocol consisting of
the following algorithms:
´ pµ, stuq Ð SAAC.U1ppar, pk,m, φq outputs the first protocol message and a state.
´ imsg Ð SAAC.Issppar, sk, µ, φq outputs issuer’s message imsg, and if the issuer aborts, we say that

imsg “ K.
´ σ Ð SAAC.U2pst

u, imsgq outputs a credential σ for the attributes m.
‚ pK, auxq Ð$ xSAAC.Helperppar, skq é SAAC.ObtHelpppar, pk,m, σqy is a r-round protocol where the user

interacts with the issuer to obtain a helper information aux. Formally, the protocol execution is of the
following format:

pumsg1, st
uq Ð$ SAAC.ObtHelp1ppar, pk,m, σq ,

phmsg1, st
hq Ð$ SAAC.Helper1ppar, sk, umsg1q ,

pumsgi, st
uq Ð$ SAAC.ObtHelpipst

u, hmsgi´1q ,
phmsgi, st

hq Ð$ SAAC.Helperipst
h, umsgiq ,

*

for i “ 2, . . . , r

auxÐ$ SAAC.ObtHelpr`1pst
u, hmsgrq .

‚ τ Ð$ SAAC.Showppar, pk,m, σ, aux, φ, nonceq outputs a showing τ of the credential σ issued for attributes
m such that φpmq “ 1.

‚ 0{1 Ð SAAC.SVerppar, pk, τ, φ, nonceq outputs a bit.
In the showing and verification algorithms, we allow the showing message τ to be bound to some additional
value nonce (which in some cases is the token identifier or a nonce chosen by the verifier). We do not require
a credential verification algorithm, since the credential itself might not be publicly verifiable, and a secret
key credential verification is not required for our security properties.

Correctness. A SAAC scheme is η-correct if for any λ, ` “ `pλq P N, any par P rSAAC.Setupp1λ, 1`qs, any
psk, pkq P rSAAC.KeyGenpparqs, any attributes m PM`

par, any nonce P t0, 1u˚, and any predicates φ, φ1 P Φpar

such that φpmq “ φ1pmq “ 1, the following experiment returns 1 with probability at least 1´ ηpλq.

pK, σq Ð$ xSAAC.Issppar, sk, φq é SAAC.Uppar, pk,m, φqy

pK, auxq Ð$ xSAAC.Helperppar, skq é SAAC.ObtHelpppar, pk,m, σqy

τ Ð$ SAAC.Showppar, pk,m, σ, aux, φ1, nonceq

return SAAC.SVerppar, pk, τ, φ1, nonceq .

3.2 Security Definitions

We consider two main security notions for anonymous credentials: unforgeability and anonymity. At the end
of the section, we define an additional security notion, denoted integrity, and discuss its importance.

Unforgeability. A SAAC scheme is unforgeable if there exists an extractor Ext “ pExtSetup,ExtIssq such
that
1. The distribution of par from the setup algorithm and ExtSetup are indistinguishable, i.e., for any adversary

A, the following advantage is bounded

Advpar-indistSAAC,ExtpA, λq :“ |PrrApparq “ 1|parÐ$ SAAC.Setupp1λ, 1`qs´

PrrApparq “ 1|ppar, tdq Ð$ ExtSetupp1
λ, 1`qs| .

2. Denote the advantage of any adversary A in the unforgeability game, defined in Figure 7 with respect
to Ext (more discussion on the game below), as

AdvunfSAAC,ExtpA, λq :“ PrrUNFA
SAAC,Extpλq “ 1s .
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Game UNFA
SAAC,Extpλq:

MsgQ,PfQ, I1, . . . , Ir, C Ð H;winÐ 0

ppar, tdq Ð$ ExtSetupp1
λ
, 1
`
q

psk, pkq Ð$ SAAC.KeyGenpparq

pφ
˚
, nonce˚, τ˚q

Ð$ AIss,Help1,...,Helpr,NewUsr,SH
ppar, pkq

if pSAAC.SVerppar, pk, τ˚, φ˚, nonce˚q “ 1q ^

p@m P MsgQ : φ
˚
pmq “ 0q ^

ppφ
˚
, nonce˚, τ˚q R PfQq

then return 1

return win

Oracle Isspµ, φq :

imsgÐ$ SAAC.Issppar, sk, µ, φq

if imsg “ K then abort

mÐ ExtIssptd, µ, φq

if φpmq “ 0 _ m “ K then winÐ 1

// A wins if it can request

// credentials for non-authorized attributes

MsgQÐ MsgQY tmu

return imsg

Oracle NewUsrpcid,m, φq:

if cid P C _ φpmq “ 0 then abort

C Ð C Y tcidu;mcid Ðm

σcid Ð$ xSAAC.Issppar, sk, φq

é SAAC.Uppar, pk,m, φqy

return closed

Oracle SHpcid, φ, nonceq:

if cid R C then abort

pK, auxq Ð$ xSAAC.Helperppar, skq

é SAAC.ObtHelpppar, pk,mcid, σcidqy

τ Ð$ SAAC.Showppar, pk,mcid, σcid, aux, φ, nonceq

PfQÐ PfQY tpφ, nonce, τqu

return τ

Oracle Helpjpsid, umsgjq : // j “ 1, . . . , r

if sid R I1, . . . , Ij´1 _ sid P Ij
then abort

Ij Ð Ij Y tsidu

if j “ 1 then // For j “ r, sthsid “ K

phmsgj , st
h
sidq Ð$ SAAC.Helper1ppar, sk, umsgjq

else phmsgj , st
h
sidq Ð$ SAAC.Helperjpst

h
sid, umsgjq

return hmsgj

Fig. 7. Unforgeability game for SAAC “ SAACrΦ,Ms. We assume that all the predicates output by A are in Φ.

We now discuss in more detail our unforgeability game. First, the game generates public parameters par and
a trapdoor td using the extractor along with the secret and public keys psk, pkq. Then, it runs the adversary
A (acting as a malicious user) which can arbitrarily interleave the execution of the following oracles.

Issuance oracle Iss. The adversary A can request a credential to be issued via the blind issuance protocol
modeled with Iss. In this oracle, the game extracts the underlying attributes m using ExtIss. The game
keeps track of the attributes of which a credential has been issued so far.

Helper oracles Help1, . . . ,Helpr. The adversary can run multiple helper protocol sessions with the issuer,
with each identified with the session ID sid.

New user oracle NewUsr. The adversary can request generation of a credential for attributes m satisfying
the predicate φ for honest users. The adversary do not see the credential σcid generated from this oracle,
but can identify them in SH with a credential ID cid.

Showing oracle SH. The adversary specifies the credential ID cid (which links to mcid and σcid) along with
the predicate φ and a value nonce. Then, the game will compute τ by running (1) the helper protocol with
the honest user (using mcid and σcid) and (2) the showing algorithm Show using the helper information
aux obtained from the protocol, the predicate φ, and the given value nonce. The tuple pφ, nonce, τq is
recorded by the game.

Finally, A wins the game if one of the following occurs:

‚ During issuance, the issuer does not abort *and* the extractor extracts attributes m that do not sat-
isfy the predicate φ specified at issuance. This prevents adversaries who try to request credentials for
unauthorized attributes.

‚ They output a tuple pφ˚, nonce˚, τ˚q of which the game considers a forgery if (1) τ˚ is valid with respect
to the predicate φ˚ and the value nonce˚, (2) φ˚ is not satisfied by any of the extracted attributes,and
(3) they do not replay honest users’ showing messages.

Below, we discuss the design choices for our unforgeability definition and other scenarios which we do
not consider as an attack on SAAC.

On the adversary winning if the extractor fails. We require this winning condition for two important
reasons:
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The extractor should output attributes satisfying the predicate. Consider a similar game where the issuance
oracle aborts if the extracted attributes does not satisfy the predicate. It is possible that a SAAC is secure
with respect to an extractor that always aborts. In particular, the adversary will not get any credential
in this game, so the security only prevents key-only attacks. Hence, we cannot simply allow the game
nor the issuer oracle to abort when the extraction fails.

Credentials should only be granted for authorized attributes. Consider the game that only extracts and record
the attributes into MsgQ without aborting. One could construct a SAAC scheme where the issuer algo-
rithm ignores the predicate and always computes imsg. An adversary can then request credentials for
unauthorized attributes, a scenario which should not be allowed.

On the (non-)requirement of the helper interaction. Our unforgeability notion only aims to prevent
malicious holders from showing credentials that do not correspond to their attributes, and does not prevent
a situation where a user is able to show a credential without helper interaction. In a way, we view SAAC as
a relaxed notion of multi-show AC where the helper protocol helps us achieve public verification, and this
means that standard AC should satisfy SAAC notion. We note however that, for our instantiations, at least
one helper interaction is required to output a showing message.
The NewUsr and SH oracles model adversaries who can obtain showing messages of honest users. This
is to provide a non-malleability guarantee where the adversary cannot forge by modifying previous show-
ing messages of honest users. This scenario is also considered by the unforgeability of Privacy-Enhancing
Attribute-Based Signatures (PABS) from [CKL`16] and the extractability security of KVAC given in [Orr24],
but not in the original KVAC unforgeability definition [CMZ14].
Honest users reusing aux. As mentioned in the overview, it is possible that the helper information aux
is reused at the cost of anonymity. However, we do not consider an adversary who forges a showing by
forcing honest users to reuse a helper information aux. In our view, honest users should not compromise
their anonymity by reusing the helper information aux. One could argue that (a) this can occur given a bug
in the system or (b) honest users might not care about their anonymity. However, we see (a) as a problem
in the system implementation. For (b), it would be more convenient (and efficient) for such users to instead
use non-anonymous credentials systems.
Adversary’s power over the honest users. We consider adversaries who can see only the final showing
message τ of honest users. Our definition does not cover an adversary that can see the transcript between
the user and the helper or intercept user’s messages during the helper protocol. We leave the consideration
of a stronger (and more complicated) model of adversaries for future work.

Anonymity. For anonymity, no adversary can distinguish between interactions with an honest user and
interactions with a simulator Sim. In particular, a SAAC is anonymous if there exists a simulator Sim “

pSimSetup,SimU,SimObtH,SimShowq such that
1. The distribution of par from the setup algorithm and SimSetup are indistinguishable, i.e., for any adversary

A, the following advantage is bounded

Advpar-indistSAAC,SimpA, λq :“ |PrrApparq “ 1|parÐ$ SAAC.Setupp1λ, 1`qs´

PrrApparq “ 1|ppar, tdq Ð$ SimSetupp1
λ, 1`qs| .

2. The advantage of A in the anonymity game, defined in Figure 8 with respect to Sim, is bounded

AdvanonSAAC,SimpA, λq :“ |PrrAnonA
SAAC,Sim,0pλq “ 1s ´ PrrAnonA

SAAC,Sim,1pλq “ 1s| .

For readability, we give more detail on our anonymity game below. The adversary (acting as a malicious
issuer) will first receive both the public parameters par and the trapdoor td generated by the simulator and
will do the following:
Determine pk,m, φ̃: The adversary determines its (possibly malicious) public key pk, the attributes m,

and the issuance predicate φ̃ for which the honest user will use to request a credential. The user (or the
simulator) then computes a protocol message µ and sends them to the adversary.

Finish credential issuance: The adversary sends imsg which lets the honest user derive a credential σ or
abort. The simulator needs to correctly simulate the abort as well.
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Game AnonA
SAAC,Sim,bpλq:

initÐ 0; I1, . . . , Ir`1,HP Ð H

ppar, tdq Ð$ SimSetupp1
λ
, 1
`
q

ppk,m, φ̃, stAq Ð$ Appar, tdq

if φ̃pmq “ 0 then return 1

pµ, stuq Ð$ SAAC.U1ppar, pk,m, φ̃q // b “ 0

pµ, stSimq Ð$ SimUptd, pk, φ̃q // b “ 1

pimsg, st1Aq Ð$ ApstA, µq

σÐ$ SAAC.U2pst
u, imsgq // b “ 0

σÐ$ SimUpstSim, imsgq // b “ 1

if σ “ K then return 1

b
1
Ð$ AObtH1,...,ObtHr`1,SH

pst1Aq

return b
1

Oracle SHpsid, φ, nonceq :

if φpmq “ 0 _ sid R HP then abort

HP Ð HP z tsidu

// Each auxsid is used ‘only once’.

τ Ð$ SAAC.Showppar, pk,m, σ, auxsid, φ, nonceq

// b “ 0

τ Ð$ SimShowptd, pk, φ, nonceq // b “ 1

return τ

Oracle ObtH1psidq :

if sid P I1 then abort

I1 Ð I1 Y tsidu

if j “ 1 then // b “ 0

pumsg1, stsidq Ð$ SAAC.ObtHelp1ppar, pk,m, σq

if j “ 1 then // b “ 1

pumsg1, stsidq Ð$ SimObtHptd, pkq

return umsg1

Oracle ObtHjpsid, hmsgj´1q : // j “ 2, . . . , r ` 1

if sid R I1, . . . , Ij´1 _ sid P Ij then abort

Ij Ð Ij Y tsidu

if 1 ă j ď r then // b “ 0

pumsgj , stsidq Ð$ SAAC.ObtHelpjpstsid, hmsgj´1q

return umsgj

if j “ r ` 1 then

auxsid Ð$ SAAC.ObtHelpjpstsid, hmsgj´1q

if auxsid “ K then abort

if 1 ă j ď r then // b “ 1

pumsgj , stsidq Ð$ SimObtHpstsid, hmsgj´1q

return umsgj

if j “ r ` 1 then

auxsid Ð$ SimObtHpstsid, hmsgj´1q

if auxsid “ K then abort

HP Ð HP Y tsidu // Only occurs for j “ r ` 1

return closed

Fig. 8. Anonymity game for SAAC “ SAACrΦ,Ms, parameterized with a simulator Sim and a bit b. We denote case
b “ 0 in the dashed boxes and case b “ 1, denoted in the dashed and highlighted boxes. When querying the oracle
SH, the adversary specifies a helper information auxsid via input sid. We assume all predicates output by A are in Φ.

The adversary then outputs a guess b1 after interacting with the following oracles.

Obtain-help oracles ObtH1, . . .ObtHr`1: The adversary forces the user holding σ to request a helper
information. In these oracles, the adversary would interact with either (a) the honest user, who knows
the attributes m and the credential σ, or (b) the simulator, who knows neither the attributes nor the
credential. At the end, the honest user will either abort or receive a helper information auxsid tied to the
session ID sid. On the other hand, the simulator would only need to simulate the abort correctly.

Showing oracle SH: The adversary is allowed to specify a helper information (via sid) owned by an honest
user, a predicate φ, and a value nonce, such that the honest user computes τ via SAAC.Show using the
helper information auxsid, the attributesmcid satisfying φ and the credential σcid. Each helper information
is restricted to be used only once. On the other hand, the simulator only requires the trapdoor td, the
public key pk, and the specified predicate φ to simulate.

We stress that, in oracle SH, the simulator does not depend on the helper information auxsid nor the attributes
and credential of the honest user. This captures the fact that the helper protocol sessions and the final showing
messages are unlinkable, as the simulator is independent of the session ID sid.

Moreover, although we stated the anonymity game with respect to a single honest user, the multi-
user/session security, where the adversary interacts with multiple credential holders, is also satisfied via a
hybrid argument. We include the security definition and the proof in Appendix A.

Integrity.The integrity property, formalized in Figure 9, ensures that a malicious issuer cannot convince a
user that they have been issued a valid credential and helper information, when in fact, these cannot be used
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Game IntegA
SAAC,strongp1

λ
q IntegA

SAAC,weakp1
λ
q :

par Ð SAAC.Setupp1λ, 1`q

ppk,m, φ̃, stAq Ð Apparq pρ,m, φ̃, stAq Ð Apparq; psk, pkq Ð SAAC.KeyGenppar; ρq

pst1A, σq Ð$ xApstAq é SAAC.Uppar, pk,m, φ̃qy

pst2A, auxq Ð$ xApst1Aq é SAAC.ObtHelpppar, pk,m, σqy

pφ, nonceq Ð Apst2Aq
τ Ð$ SAAC.Showppar, pk,m, σ, aux, φ, nonceq

return φ̃pmq “ φpmq “ 1^ σ ‰ K ^ aux ‰ K ^ SAAC.SVerppar, pk, τ, φ, nonceq “ 0

Fig. 9. Strong and weak integrity games of SAAC “ SAACrΦ,Ms. The strong version uses the unboxed and dashed
code. The weak version uses the unboxed and highlighted code. We assume that A outputs predicates in Φ.

to create a valid showing for some adversarially-chosen (valid) predicate. This protects against a scenario
where a user does not immediately compute a showing and check that it is valid, perhaps because they do
not yet know the predicate that they want to show the credential for. We define two variants: strong integrity,
where the public key can be chosen maliciously; and weak integrity, where the adversary reveals its random
coins ρ used to generate the key. Denote the integrity advantage of A as

AdvintegSAAC,pstrong{weakqpA, λq :“ PrrIntegA
SAAC,pstrong{weakqpλq “ 1s ,

and in Appendix B, we prove the following theorem.

Theorem 3.1. If SAAC satisfies correctness and anonymity, then SAAC satisfies weak integrity.

Remark 3.2. If generic NIZK proof systems exist, any SAAC satisfying weak integrity can be transformed
into a SAAC1 satisfying strong integrity. This is because the issuer can publish a proof of knowledge of ρ such
that for psk1, pk1q Ð SAAC.KeyGenppar; ρq the string pk1 equals their public key.

4 Generic Construction from Keyed-Verification Anonymous Credentials

In this section, we introduce our building blocks, keyed-verification anonymous credentials (KVAC) and
oblivious proof issuance protocol (oNIP), in Section 4.1, and give a generic construction of SAAC in Sec-
tion 4.2.

4.1 Building Blocks

In this subsection, we give the syntax and definitions related to our building blocks and point out several
distinctions from prior works. These include (1) global parameters generator, (2) syntax for relations and
languages for oNIP, (3) KVAC syntax and definitions, and (4) oNIP syntax and definitions.

Global parameters generator. Inspired by the formalization in [CKL`16], we define global parameters
generator Genp1λq, a probabilistic algorithm which generates public parameters parg. Note that parg are
shared by both of our building blocks KVAC and oNIP. In practice, an example for Gen is a group parameters
generator GGen which outputs a group description pp,G,Gq. In our instantiations, the underlying building
blocks KVAC and oNIP may require the global parameters to be generated with some trapdoor tdg, used to
simulate components of both building blocks in the security proofs. In that case, we need a simulator SimGen

which returns pparg, tdgq such that parg is indistinguishable from Gen. Denote the distinguishing advantage
of A as

Advpar-indistGen,SimGen
pA, λq :“

ˇ

ˇPrrAppargq “ 1|pargÐ$ Genp1λqs ´ PrrAppargq “ 1|pparg, tdgq Ð$ SimGenp1
λqs

ˇ

ˇ .
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Syntax on relations for oblivious proof issuance.Particularly for this section, we use a similar syn-
tax for relations and languages from [OTZZ24]. In [OTZZ24], a relation R contains tuples of the form
ppX,Y, Zq, xq, denoting X the statement, x the witness, Y an argument and Z an augmented statement. In
our case, a relation contains tuples ppX,Y q, xq and we instead call Y an augmented statement, containing
both pY,Zq in their syntax. Further, we denote the relation CorepRq and the induced language LR as

CorepRq :“ tpX,xq : DY such that ppX,Y q, xq P Ru ,

LR :“ tpX,Y q : Dx such that ppX,Y q, xq P Ru .

The membership pX,xq P CorepRq can be efficiently checked.

Keyed-verification anonymous credentials.A keyed-verification anonymous credential (KVAC) scheme
KVAC “ KVACrGen, Φ,Ms, defined with respect to the global parameters generator Gen, a predicate family
Φ and an attribute space M, consists of the following algorithms.
‚ parKVACÐ$ KVAC.Setupp1`, pargq takes as input parg and outputs public parameters parKVAC defining the

an attribute space M “ MparKVAC and a predicate class Φ “ ΦparKVAC . We assume that parKVAC contains
parg.

‚ psk, pkq Ð$ KVAC.KeyGenpparKVACq outputs the secret/public key pair.
‚ pK, σq Ð$ xKVAC.IsspparKVAC, sk, φq é KVAC.UpparKVAC, pk,m, φqy is a round-optimal protocol with sim-

ilar syntax to SAAC’s issuance (see Section 3.1).
‚ τ “ pτkey, τpubq Ð$ KVAC.ShowpparKVAC, pk,m, σ, φ, nonceq outputs a showing message τ . The showing

algorithm is split into the two algorithms.
´ pτkey, stq Ð$ KVAC.ShowkeypparKVAC, pk,m, σq outputs a state st and a key-dependent showing message
τkey.

´ τpubÐ$ KVAC.Showpubpst, φ, nonceq outputs a message τpub showing the credential σ issued for at-
tributes m such that φpmq “ 1.

‚ 0{1 Ð KVAC.SVerpparKVAC, sk, pk, pτkey, τpubq, φ, nonceq outputs a bit. Similar to showing, verification also
splits into key-dependent and public verification as follows. The output bit is determined by b0 ^ b1.
´ b0 Ð KVAC.SVerkeypparKVAC, sk, τkeyq verifies τkey using sk.
´ b1 Ð KVAC.SVerpubpparKVAC, pk, τkey, τpub, φ, nonceq verifies τkey and τpub.

One distinction from prior works’ syntax is that the showing and verification algorithms are split into two
parts: the key-dependent and public verification. In the showing algorithm, the showing message τpub is
bound to an additional value nonce (which in some cases can be a token identifier or a nonce chosen by
the verifier). For our generic SAAC construction, we require that τkey is independent of the predicate φ and
nonce. This syntax is applicable to some existing KVAC schemes (e.g., [BBDT16, CMZ14]), but not for
some others [MBS`25] where the predicate-dependent parts of the showing message require the secret key
to verify. The key-dependent verification algorithm KVAC.SVerkey induces a relation

RV,parg :“

$

&

%

ppparKVAC, pkq, τkeyq, skq :
parKVAC “ pparg, ¨q ^
psk, pkq P rKVAC.KeyGenpparKVACqs ^
KVAC.SVerkeypparKVAC, sk, τkeyq “ 1

,

.

-

.

The relation contains a statement ppparKVAC, pkq, τkeyq and a witness sk such that parKVAC contains parg,
psk, pkq can be generated from KVAC.KeyGenpparKVACq, and τkey is valid with respect to sk. The member-
ship psk, pkq P rKVAC.KeyGenpparKVACqs can be efficiently checked (interpreting sk as random coins used to
generate pk). We denote LV,parg as the induced language of RV,parg .

Then, we require a KVAC scheme to satisfy the following properties.
η-Correctness. For any λ, ` “ `pλq P N, any global parameters parg P rGenp1

λqs, any KVAC public

paramters parKVAC P rKVAC.Setupp1
`, pargqs, any keys psk, pkq P rKVAC.KeyGenpparKVACqs, any m PM`,

any φ, φ1 P Φ where φpmq “ φ1pmq “ 1, and any nonce P t0, 1u˚, the following experiment returns 1 with
probability 1´ ηpλq.

pK, σq Ð$ xKVAC.IsspparKVAC, sk, φq é KVAC.UpparKVAC, pk,m, φqy,

τ Ð$ KVAC.ShowpparKVAC, pk,m, σ, φ1, nonceq,

return KVAC.SVerpparKVAC, sk, pk, τ, φ
1, nonceq .
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Game UNFA
KVAC,Ext,Opλq:

MsgQ,PfQ, C,S Ð H; sctr,winÐ 0

parg Ð$ Genp1λq; pparKVAC, tdq Ð$ ExtSetupp1
`
, pargq

psk, pkq Ð$ KVAC.KeyGenpparKVACq

pτ
˚
, φ
˚
, nonce˚q Ð$

AIss,NewUsr,SHkey,SHpub,Opparg,sk,pparKVAC,pkq,¨qpparKVAC, pkq

if pKVAC.SVerpparKVAC, sk, pk, τ
˚
, φ
˚
, nonce˚q “ 1q ^

p@m P MsgQ : φ
˚
pmq “ 0q ^

ppφ
˚
, nonce˚, τ˚q R PfQq then

return 1

return win

Oracle Isspµ, φq :

imsgÐ$ KVAC.IsspparKVAC, sk, µ, φq

if imsg “ K then abort

mÐ ExtIssptd, µ, φq

if m “ K _ φpmq “ 0 then

winÐ 1 // A wins if it can request

// credentials for non-authorized attributes

MsgQÐ MsgQY tmu

return imsg

Oracle NewUsrpcid,m, φq:

if cid P C _ φpmq “ 0 then

return K

C Ð C Y tcidu;mcid Ðm

σcid Ð$ xKVAC.IsspparKVAC, sk, φq

é KVAC.UpparKVAC, pk,m, φqy

return closed

Oracle SHkeypcidq:

if cid R C then abort

sctr Ð sctr ` 1

pτkey,sctr, stsctrq Ð$

KVAC.ShowkeypparKVAC, pk,mcid, σcidq

return psctr, τkey,sctrq

Oracle SHpubpsid, φ, nonceq:

if sid P S _ sid ą sctr then abort

S Ð S Y tsidu
τpub Ð$ KVAC.Showpubpstsid, φ, nonceq

τ Ð pτkey,sid, τpubq

PfQÐ PfQY tpφ, nonce, τqu

return τpub

Game AnonA
KVAC,SimGen,Sim,b

pλq:

sctr Ð 0;S Ð H

pparg, tdgq Ð$ SimGenp1
λ
q

pparKVAC, tdKVACq Ð$ SimSetupp1
`
, pargq

tdÐ ptdg, tdKVACq

ppk,m, φ̃, stAq Ð$ ApparKVAC, tdq

if φ̃pmq “ 0 then return 1

pµ, stuq Ð$ KVAC.U1pparKVAC, pk,m, φ̃q // b “ 0

pµ, stSimq Ð$ SimUptd, pk, φ̃q // b “ 1

pimsg, st1Aq Ð$ ApstA, µq

σÐ$ KVAC.U2pst
u, imsgq // b “ 0

σÐ$ SimUpstSim, imsgq // b “ 1

if σ “ K then return 1

b
1
Ð$ ASHkey,SHpub pst1Aq

return b
1

Oracle SHkeypq:

sctr Ð sctr ` 1

pτkey,sctr, stsctrq // b “ 0

Ð$ KVAC.ShowkeypparKVAC, pk,m, σq

pτkey,sctr, stsctrq Ð$ SimShowp“key”, td, pkq

// b “ 1

return psctr, τkey,sctrq

Oracle SHpubpsid, φ, nonceq:

if φpmq “ 0 _ sid P S _ sid ą sctr

then abort

S Ð S Y tsidu

τpub Ð$ KVAC.Showpubpstsid, φ, nonceq // b “ 0

τpub Ð$ SimShowp“pub”, stsid, φ, nonceq // b “ 1

return τpub

Fig. 10. Unforgeability and anonymity game for KVAC “ KVACrGen, Φ,Ms on the top and bottom, respectively.
We note that both the adversary and the simulator are given access to the global trapdoor tdg and KVAC trapdoor
tdKVAC. We assume that all the predicates output by A are in Φ.

Unforgeability. Let Opparg, sk, pparKVAC, pkq, ¨q be an oracle embedded with parg, parKVAC, sk, pk, and tak-
ing a to-be-determined input. A KVAC scheme is O-unforgeable if there exists an extractor Ext “
pExtSetup,ExtIssq such that
1. The distribution of parKVAC from KVAC.Setupppargq and ExtSetupppargq for pargÐ$ Genp1λq are indis-

tinguishable. Denote the distinguishing advantage of A as

Advpar-indistKVAC,ExtpA, λq :“
ˇ

ˇPrrApparKVACq “ 1
ˇ

ˇpargÐ$ Genp1λq; parKVACÐ$ KVAC.Setupp1`, pargq s´
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PrrApparKVACq “ 1
ˇ

ˇpargÐ$ Genp1λq; pparKVAC, tdq Ð$ ExtSetupp1
`, pargq s

ˇ

ˇ .

2. The following advantage of A in the unforgeability game, defined in Figure 10 with respect to the
oracle O and the extractor Ext, is bounded.

AdvunfKVAC,Ext,OpA, λq :“ PrrUNFA
KVAC,Ext,OpA, λq “ 1ss .

The KVAC unforgeability game is defined similarly to SAAC unforgeability with the following exceptions:
no helper oracle is involved, the adversary can query the oracle O which parameterized the game, and
the adversary can request honest users’ showing messages adaptively by first querying SHkey and then
SHpub with a predicate φ and a value nonce. The adversary’s goal is still to forge a valid pφ˚, nonce˚, τ˚q
for a predicate φ˚ not satisfied by any extracted attributes and without replaying honest users’ showings.

Compared to the original KVAC unforgeability in [CMZ14], we rely on an extractor instead of having
the adversary reveals the attributes, but we do not give the adversary access to a verification oracle.
Compared to the extractability definition of KVAC in [Orr24], we do not require an extractor for the
final forgery. In their game, the issuer oracle also extracts the underlying attributes; however, the game
aborts if they do not satisfy the predicate, instead of allowing the adversary to win (as in our case).

Anonymity. A KVAC scheme is anonymous if there exists a simulator SimGen which generates parg indis-
tinguishable from Gen and a simulator Sim “ pSimSetup,SimU,SimShowq such that
1. The distribution of parKVAC from KVAC.Setupppargq and SimSetupppargq for pargÐ$ Genp1λq are indis-

tinguishable. , i.e., an adversary A’s advantage is

Advpar-indistKVAC,SimpA, λq :“
ˇ

ˇPr
“

ApparKVACq “ 1
ˇ

ˇpargÐ$ Genp1λq; parKVACÐ$ KVAC.Setupp1`, pargq
‰

´

Pr
“

ApparKVACq “ 1
ˇ

ˇpargÐ$ Genp1λq; pparKVAC, tdq Ð$ SimSetupp1
`, pargq

‰
ˇ

ˇ .

2. No adversary can distinguish between interactions with an honest user and interactions with the
simulator Sim. This property is defined via the anonymity game in Figure 10 with A’s advantage
defined as

AdvanonKVAC,SimGen,SimpA, λq :“ |PrrAnonA
KVAC,SimGen,Sim,0pλq “ 1s ´ PrrAnonA

KVAC,SimGen,Sim,1pλq “ 1s| .

The anonymity game of KVAC’s is similar to that of SAAC’s without the helper, except that we split
the showing oracle into SHkey and SHpub. This allows the adversary to adaptively choose the predicate
φ and value nonce depending on τkey. Compared to the anonymity definition in [CMZ14], our definition
incorporates blind issuance and considers maliciously generated key.

Integrity of issued credentials. No adversary can force the honest user to output an invalid showing
message even when the public key pk is adversarially chosen and the public parameters parKVAC are
sampled with a trapdoor using the simulator SimGen and Sim (defined in the anonymity definition).
Denote the integrity advantage of A as

AdvintegKVAC,SimGen,Sim
pA, λq :“ Pr

»

—

—

—

—

—

—

–

σ ‰ K ^
ppk, τkeyq R LV,parg

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pparg, tdgq Ð$ SimGenp1
λq

pparKVAC, tdKVACq Ð$ SimSetupp1
`, pargq

ppk,m, φ, stq Ð$ ApparKVAC, ptdg, tdKVACqq
if φpmq “ 0 then abort
pK, σq Ð$ xApstq é KVAC.UpparKVAC, pk,m, φqy
pτkey, stq Ð$ KVAC.ShowkeypparKVAC, pk,m, σq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Validity of key generation with respect to extractor Ext: For any λ, ` “ `pλq P N, parg P rGenp1
λqs,

pparKVAC, tdq P rExtSetupp1
`, pargqs and ppparKVAC, pkq, τkeyq P LV,parg , for any sk that corresponds to pk

(i.e., psk, pkq P rKVAC.KeyGenpparKVACqs), we have ppparKVAC, pkq, τkeyq, skq P RV,parg . This property en-
sures that for any τkey that is valid for some secret key sk which corresponds to the public key pk, it
should also be valid for any other secret key sk1 corresponding to pk. This property is satisfied if the
secret key is unique for each public key.
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Remark 4.1. At a glance, integrity and validity of key generation, defined with respect to a simulator and an
extractor, might seem strong. However, we view them as extensions of anonymity and unforgeability which
allows composition with oNIP. Moreover, they are satisfied in our KVAC instantiations. This is because
(1) our simulator and extractor generates public parameters that are identically distributed to honestly
generated ones, (2) for integrity, the issuer needs to prove that it issued the credential correctly, so an honest
user is then likely to get a valid credential allowing them to produce valid τkey, and (3) the public key of
these schemes fixes an underlying secret key, which immediately implies validity of key generation.

Oblivious issuance of non-interactive proofs.An oblivious issuance of non-interactive proofs oNIP “
oNIPrGen,Rs defined with respect to a global parameters generator Gen and a family of relations R “

tRparguparg consists of the following algorithms.
‚ paroNIPÐ$ oNIP.Setupppargq outputs public parameters paroNIP. The input parg defines the relation R “
Rparg , omitting subscript parg when clear from the context. We also assume that paroNIP contains parg.

‚ pK, πq Ð$ xoNIP.IsspparoNIP, x,Xq é oNIP.UpparoNIP, X, Y qy is a r-round interactive protocol starting
with the user algorithm oNIP.U1 and concluding with oNIP.Ur`1 outputting the proof π.

‚ 0{1 Ð oNIP.VerpparoNIP, pX,Y q, πq outputs a bit.
Our syntax deviates from [OTZZ24] in that the user algorithm does not output an augmented statement
Z, but the user takes as input the augmented statement Y (which we think of as pY, Zq in their work).
We require an oNIP scheme to satisfy the following properties, but unlike [OTZZ24], unforgeability is not
required for our generic construction.

Correctness. An oNIP scheme is ηoNIP-correct if for any λ P N and parameters parg P rGenp1
λqs, paroNIP P

roNIP.Setupppargqs, any ppX,Y q, xq P Rparg , the following experiment returns 1 with probability 1 ´
ηoNIPpλq.

pK, πq Ð$ xoNIP.IsspparoNIP, x,Xq é oNIP.UpparoNIP, pX,Y qqy

return oNIP.VerpparoNIP, pX,Y q, πq

Soundness. Soundness is defined similarly to an NIZK where no adversary can output a statement pX,Y q
and a proof π such that π verifies and pX,Y q R LR. Denote the soundness advantage for A as

AdvsoundoNIP pA, λq :“ Pr

»

–

pX,Y q R LRparg
^

oNIP.VerpparoNIP, pX,Y q, πq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pargÐ$ Genp1λq
paroNIPÐ$ oNIP.Setupppargq
pX,Y, πq Ð$ ApparoNIPq

fi

fl .

Zero-knowledge. Let Opparg, x,X, ¨q be a deterministic oracle embedded with parg (which defines Rparg ),
and statement and witness X,x and taking in a to-be-determined input. An oNIP is O-Zero-knowledge
if there exists a simulator Sim “ pSimSetup,SimIssq, such that no adversary can distinguish between an
honest issuer using the witness x from a simulator who does not know the witness. Unconventionally, our
simulator Sim is assisted by the oracle O embedded with x, modeling witness-dependent computation
that is not efficiently simulatable (e.g., checking if a rerandomized statement is in the language). The
advantage of A in the ZK game in Figure 11 is

AdvzkoNIP,Sim,OpA, λq :“ |PrrZKA
oNIP,Sim,O,0pλq “ 1s ´ PrrZKA

oNIP,Sim,O,1pλq “ 1s|

Obliviousness for valid statements. An oNIP is oblivious for valid statements if there exists a simulator
SimGen generating parg indistinguishable from Gen and a simulator Sim “ pSimSetup,SimU,SimPfq such
that
1. The distribution of paroNIP from oNIP.Setupppargq and SimSetupppargq for pargÐ$ Genp1λq are indis-

tinguishable. Denote the advantage of A as

Advpar-indistoNIP,SimpA, λq :“|PrrApparoNIPq “ 1|pargÐ$ Genp1λq; paroNIPÐ$ oNIP.Setupppargq s´

PrrApparoNIPq “ 1|pargÐ$ Genp1λq; pparoNIP, tdoNIPq Ð$ SimSetupppargq s| .
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Game ZKA
oNIP,Sim,O,bpλq:

initÐ 0; I1, . . . , Ir Ð H

parg Ð$ Genp1λq

paroNIP Ð$ oNIP.Setupppargq // b “ 0

pparoNIP, tdq Ð$ SimSetupppargq // b “ 1

b
1
Ð$ AInit,Iss1,...,Issr pparoNIPq

return b
1

Oracle InitpX̃, x̃q:

if init “ 1 _ pX̃, x̃q R CorepRq then

abort

initÐ 1;X Ð X̃; xÐ x̃

return closed

Oracle Issjpsid, umsgjq : // j “ 1, . . . . , r

if sid R I1, . . . , Ij´1 _ sid P Ij _ init “ 0

then abort

Ij Ð Ij Y tsidu
if j “ 1 then

phmsg1, stsidq Ð$ oNIP.Iss1pparoNIP, sk, umsg1q // b “ 0

phmsg1, stsidq Ð$ Sim
Opparg,x,X,¨q
Iss ptd, X, umsg1q // b “ 1

else // For j “ r, stsid “ K

phmsgj , stsidq Ð$ oNIP.Issjpstsid, umsgjq // b “ 0

phmsgj , stsidq Ð$ Sim
Opparg,x,X,¨q
Iss pstsid, umsgjq // b “ 1

return hmsgj

Game OBLVA
oNIP,SimGen,Sim,b

pλq:

initÐ 0; I1, . . . , Ir`1,P Ð H

pparg, tdgq Ð$ SimGenp1
λ
q

pparoNIP, tdoNIPq Ð$ SimSetupppargq

tdÐ ptdg, tdoNIPq

b
1
Ð$ AInit,U1,...,Ur`1,Pf

pparoNIP, td, stAq

return b
1

Oracle InitpX̃q:

if init “ 1 then abort

initÐ 1;X Ð X̃

return closed

Oracle Pfpsidq:

if sid R I1, . . . , Ir`1 _ sid P P
then abort

P Ð P Y tsidu

return πsid // b “ 0

if πsid ‰ K then

return πÐ$ SimPf ptd, X, Ysidq

else abort // b “ 1

Oracle U1psid, Ysidq

if sid P I1 _ init “ 0 _ pX,Ysidq R LRparg
then

abort

I1 Ð I1 Y tsidu

pumsg1, stsidq Ð$ oNIP.U1pparoNIP, X, Ysidq // b “ 0

pumsg1, stsidq Ð$ SimUptd, Xq // b “ 1

return umsg1

Oracle Ujpsid, imsgjq // j “ 2, . . . , r ` 1

if sid R I1, . . . , Ij´1 _ sid P Ij
then abort

Ij Ð Ij Y tsidu
if j ă r ` 1 then

pumsgj , stsidq Ð$ oNIP.Ujpstsid, imsgjq // b “ 0

pumsgj , stsidq Ð$ SimUpstsid, imsgjq // b “ 1

return umsgj

else

πsid Ð$ oNIP.Ujpstsid, imsgjq // b “ 0

πsid Ð$ SimUpstsid, imsgjq // b “ 1

return closed

Fig. 11. Zero-knowledge and obliviousness games of oNIP “ oNIPrGen,Rs on the top and bottom, respectively. The
ZK game is parameterized by the simulator Sim with access to the oracle O. As with the KVAC’s anonymity definition,
both the adversary and the simulator in OBLV game are given access to the global trapdoor tdg and oNIP trapdoor
tdoNIP. Crucially, the OBLV simulator gets the ‘core’ statement X but not the ‘augmented’ statement Y during the
protocol.

2. The adversary A, given the simulation trapdoor, cannot distinguish between an honest user who
obtains the proof from the issuance protocol and a simulator who simulates the proof independent
of the protocol. Importantly, the simulator only gets the ‘core’ statement X but not the ‘augmented’
statement Ysid during the protocol. The advantage of A in the obliviousness game in Figure 11 is
defined as

AdvoblvoNIP,SimGen,SimpA, λq :“ |PrrOBLVA
oNIP,SimGen,Sim,0pλq “ 1s ´ PrrOBLVA

oNIP,SimGen,Sim,1pλq “ 1s| .
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Our obliviousness definition is simulation-based instead of the definition in [OTZZ24]. Further, it only
applies for statements in the language and not any statements. This is to achieve anonymity for our
SAAC where the SAAC.ObtHelp algorithms in the game the helper protocol is simulated.

4.2 Construction

In this section, we construct a server-aided anonymous credential scheme SAAC “ SAACrGen,KVAC, oNIPs
for predicate family Φ and attribute space M, using a KVAC “ KVACrGen, Φ,Ms scheme and an oNIP “
oNIPrGen,RVs protocol for the relation family RV defined by the KVAC.SVerkey algorithm.

The high-level idea of our generic construction is to replace the key-dependent part KVAC.SVerkey of the
keyed-verification credentials with oblivious proof issuance protocols. In particular, the key generation and
issuance protocol remains that of the KVAC scheme, while the helper protocol starts by having the user
runs KVAC.Showkey algorithm to obtain a state st and τkey which is then used to run the oNIP protocol
to produce a proof πV of the statement ppparKVAC, pkq, τkeyq P LV,parg . To produce the showing message
τ , the user would use the state to compute τpub by running KVAC.Showpub with the specified predicate
φ and the message pπV, nonceq. Then, the user returns τ “ pτkey, τpub, πVq. The generic construction of
SAAC “ SAACrGen,KVAC, oNIPs is given below.

Setup: SAAC.Setupp1λq :
‚ Run pargÐ$ Genp1λq, parKVACÐ$ KVAC.Setupp1`, pargq, and paroNIPÐ$ oNIP.Setupppargq
‚ Return par “ pparKVAC, paroNIPq

Key generation and Issuance: These are defined exactly as those of KVAC.
Helper protocol: pK, auxq Ð$ xSAAC.Helperppar, skq é SAAC.ObtHelpppar, pk, σqy is defined as follows:

‚ First, SAAC.ObtHelp runs pτkey, stq Ð$ KVAC.ShowkeypparKVAC, pk,m, σq.
‚ Then, SAAC.Helper and SAAC.ObtHelp run the oNIP protocol
pK, πVq Ð$ xoNIP.IsspparoNIP, sk, pparKVAC, pkqq é oNIP.UpparoNIP, pparKVAC, pkq, τkeyqy.

‚ Finally, SAAC.ObtHelp returns aux “ pτkey, πV, stq.
Show: SAAC.Showppar, pk,m, σ, aux “ pτkey, πV, stq, φ, nonceq:

‚ Compute τpubÐ$ KVAC.Showpubpst, φ, pπV, nonceqq
‚ Return π “ pτkey, τpub, πVq

Verify: SAAC.SVerppar, pk, π “ pτkey, τpub, πVq, φ, nonceq: returns b0 ^ b1 where
‚ b0 Ð oNIP.Verppar, pparKVAC, pkq, τkey, πVq
‚ b1 Ð KVAC.SVerpubppar, pk, pτkey, τpubq, φ, pπV, nonceqq

The following theorem then establishes the security properties of our generic SAAC construction.

Theorem 4.2. Let ` “ `pλq and Gen be a global parameters generator, KVAC be a keyed-verification anony-
mous credential, and oNIP be an oblivious proof issuance protocol for the relation family RV induced by
KVAC.SVerkey. Then, the server-aided anonymous credential scheme SAAC “ SAACrGen,KVAC, oNIPs is
‚ pηKVAC ` ηoNIPq-correct if KVAC is ηKVAC-correct and oNIP is ηoNIP-correct.
‚ Unforgeable if there exists an oracle O such that oNIP is O-zero-knowledge and sound and KVAC satisfies
O-unforgeability and validity of key generation with respect to the same extractor Ext.

‚ Anonymous if there exist simulators SimGen,SimoNIP,SimKVAC such that oNIP is oblivious with respect to
SimGen and Sim0, and KVAC satisfies anonymity and integrity with respect to SimGen and SimKVAC.

Proof (of Theorem 4.2). Correctness easily follows from the correctness of the KVAC and the correctness
of oNIP. In particular, if KVAC is ηKVAC-correct and oNIP is ηoNIP-correct, SAAC is η-correct for ηpλq “
ηKVACpλq ` ηoNIPpλq for all positive integers λ. Unforgeability and anonymity guarantees of SAAC, including
the concrete security bounds, are stated in the two following lemmas, which are proved in Sections 4.3
and 4.4, respectively.

Lemma 4.3 (Unforgeability of SAAC). Let Opparg, sk, pparKVAC, pkq, ¨q be an oracle, Sim be a simulator
and Ext be an extractor, such that oNIP is O-zero-knowledge with respect to Sim, and KVAC satisfies O-
unforgeability and validity of key generation with respect to Ext. There exists an extractor Ext1 such that
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‚ For any A running in time tA “ tApλq, there exists an adversary B running in time roughly tA such that

Advpar-indistSAAC,Ext1pA, λq ď Advpar-indistKVAC,ExtpB, λq .

‚ For any A playing the game UNF of SAAC, running in time tA “ tApλq, making at most qIss, qHelp to Iss
and Help1 oracles (resp.), there exist adversaries Bzk,Bsound,Bunf , against the O-zero-knowledge of oNIP,
soundness of oNIP, and O-unforgeability of KVAC (resp.), all running in time roughly tA such that

AdvunfSAAC,Ext1pA, λq ď AdvzkoNIP,Sim,OpBzk, λq ` AdvsoundoNIP pBsound, λq

` AdvunfKVAC,Ext,OpBunf , λq ,

Additionally, Bzk starts at most qHelp sessions with the proof issuance oracle, and Bunf makes at most
qIss queries to its credential issuance oracle.

Unforgeability of our construction follows from O-Unforgeability and validity of key-generation of KVAC
and O-Zero-Knowledge and soundness of oNIP. Note in particular that the oracle O needs to be the same for
both security properties of KVAC and oNIP. At a high level, the proof would first apply soundness (along with
validity of key-generation of KVAC) to restrict the forgery of the adversary to satisfy the keyed-verification
algorithm KVAC.SVer with respect to the secret key sk that the game sampled. Then, we will simulate the
helper protocol using the O-Zero-Knowledge simulator. At this point, the game is still dependent on the
secret key sk of the KVAC scheme, but only during the issuance protocol and to answer O queries from the
simulator. This allows a simple reduction to O-Unforgeability game of KVAC.

Lemma 4.4 (Anonymity of SAAC). Let SimGen,SimoNIP, and SimKVAC be simulators such that oNIP is
oblivious with respect to SimGen and SimoNIP, and KVAC satisfies anonymity and integrity with respect to
SimGen and SimKVAC. Then, there exists a simulator Sim1 such that

‚ For any A running in time tA “ tApλq, there exists an adversary B0,B1,B2 running in time roughly tA
such that

Advpar-indistSAAC,SimpA, λq ď Advpar-indistoNIP,SimoNIP
pB0, λq ` Advpar-indistKVAC,SimKVAC

pB1, λq ` Advpar-indistGen,SimGen
pB2, λq .

‚ For any A playing the game Anon of SAAC, running in time tA “ tApλq, making at most qObtH, qSH

to ObtH and SH oracles (resp.), there exist adversaries Boblv,Banon,Binteg, against obliviousness of oNIP,
anonymity of KVAC, and integrity of issued credentials of KVAC (resp.), all running in time roughly tA
such that

AdvanonSAAC,Sim1pA, λq ď AdvoblvoNIP,SimGen,SimoNIP
pBoblv, λq ` AdvanonKVAC,SimGen,SimKVAC

pBanon, λq

` qObtH ¨ Adv
integ
KVAC,SimGen,SimKVAC

pBinteg, λq ,

Additionally, BoNIP starts at most qObtH sessions with the user oracle of the obliviousness game, and
Banon makes at most qSH queries to its SH oracle.

Anonymity of our construction follows from anonymity and integrity of credential issuance of KVAC along
with obliviousness of proofs for valid statements of oNIP. As a rough proof sketch, we first apply integrity
of credential issuance to restrict τkey so that the honest user generates to be a valid statement with high
probability. Then, applying (a) obliviousness of oNIP for valid statements to simulate the user-side of the
helper protocol and (b) anonymity of KVAC to simulate the issuance and showing concludes the proof. [\

4.3 Proof of Lemma 4.3

We first give the description on the extractor Ext1.

‚ Ext1Setupp1
λ, 1`q : Run pargÐ$ Genp1λq, pparKVAC, tdq Ð$ ExtSetupp1

`, pargq and paroNIPÐ$ oNIP.Setupppargq
and return ppar “ pparKVAC, paroNIPq, tdq.
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‚ Ext1Issptd, µ, φq : Run mÐ ExtIssptd, µ, φq and return m.

The public parameters sampled from Ext1Setup are indistinguishable from the one sampled from SAAC.Setup.
This is because parKVAC sampled from ExtSetup are indistinguishable from KVAC.Setup, and the concrete
bound follows easily.

Next, we want to show that no adversary can succeed in the unforgeability game. Hence, we consider an
adversary A as described in the theorem statement. Now, we consider the following sequence of games.
Game GA

0 pλq: This game is exactly the unforgeability game with respect to the extractor Ext1. The adver-
sary A has access to a credential issuance oracle Iss, new user oracle NewUsr, showing oracle SH and the
helper oracles Help1, . . . ,Helpr. At the end of the game, it tries to output a valid forgery pφ˚, nonce˚, τ˚ “
pτ˚key, τ

˚
pub, π

˚
Vqq. In particular, A succeeds if (a) the extractor fails or (b) φ˚pmq “ 0 for all m extracted in

the issuance oracle, pφ˚, nonce˚, τ˚q was not an output of the SH oracle, and

oNIP.VerpparoNIP, ppparKVAC, pkq, τ
˚
keyq, π

˚
Vq “ 1, and

KVAC.SVerpubpparKVAC, pk, pτ
˚
key, τ

˚
pubq, φ

˚, pπ˚V, nonce
˚qq “ 1 .

Game GA
1 pλq: In this game, the simulation of the oracles are unchanged. However, the success event of the

adversary A is now modified: in addition to checking the winning condition in G0, the game also checks
that KVAC.SVerkeypparKVAC, sk, pτ

˚
key, τ

˚
pubq, φ

˚, pπ˚V, nonce
˚qq “ 1. In particular, we can bound the the success

probability of A in G1 as follows

PrrGA
0 pλq “ 1s “ PrrGA

0 pλq “ 1 ^ KVAC.SVerkeypparKVAC, sk, pk, τ
˚
keyq “ 0s

` PrrGA
0 pλq “ 1 ^ KVAC.SVerkeypparKVAC, sk, pk, τ

˚
keyq “ 1s

ď PrroNIP.VerpparoNIP, ppparKVAC, pkq, τ
˚
keyq, π

˚
Vq “ 1

^ KVAC.SVerkeypparKVAC, sk, pk, τ
˚
keyq “ 0s ` PrrGA

1 pλq “ 1s

We will now analyze the first term on the right-hand side. By the validity of key generation property of
KVAC, if ppparKVAC, pkq, τ

˚
keyq P LV,parg , then KVAC.SVerkeypparKVAC, sk, pk, τ

˚
keyq “ 1. Hence, this particular

event implies that the adversary outputs a valid π˚V proof for a statement ppparKVAC, pkq, τ
˚
keyq not in the

language LV,parg . Therefore, we can construct a reduction Bsound breaking soundness of oNIP and running in
time roughly tA such that

PrroNIP.VerpparoNIP, ppparKVAC, pkq, τ
˚
keyq, π

˚
Vq “ 1

^ KVAC.SVerkeypparKVAC, sk, pk, τ
˚
keyq “ 0s ď AdvsoundoNIP pBsound, λq .

Game GA
2 pλq: In this game, the simulation of the helper oracles are now done using the simulator Sim. In

particular, (1) paroNIP is now generated with a trapdoor tdoNIP using SimSetup and (2) the helper oracle is run
with SimIss, which takes as input the trapdoor tdoNIP, the public key pk, and the protocol messages and has
access to the oracle Opparg, sk, pparKVAC, pkq, ¨q, and (3) the SH oracle now computes πV by running the oNIP
issuance protocol with the issuer replaced by the simulator SimIss as in the helper oracle. Note that since the
game at this point still knows the secret key sk, it can simulate the oracle O efficiently to the simulator.

Then, we show the change in winning probability of A by giving a reduction Bzk described as follows:

‚ Takes as input paroNIP (which implicitly contains parg). Then, generate pparKVAC, tdq Ð$ ExtSetupp1
`, pargq.

‚ Generate the secret and public keys psk, pkq Ð$ KVAC.KeyGenpparKVACq and call the Init using ppk, skq as
the witness and the partial statement. It then runs the adversary A on input ppar “ pparKVAC, paroNIPq, pkq.

‚ For credential issuance oracle Iss, it uses sk and td as in the game.
‚ For each query to helper oracle Helpj with session ID sid, the reduction forwards the user message to

its proof issuance oracle Issj of the corresponding round and sid. The output from the issuance oracle is
then the output of the helper oracle.

‚ For NewUsr oracle, it computes the credential σ using the secret key sk via the algorithm KVAC.Iss.
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‚ For SH oracle, it uses the credential σcid and the attributesmcid to compute τkey and st via KVAC.Showkey.
Then, it computes πV by starting a new Iss session with its game while running the oNIP user-side
algorithms with statement ppparKVAC, pkq, τkeyq to obtain the proof πV. Finally, it computes τpub via
KVAC.Showpubpst, φ, pπV,Mqq. Return pτkey, τpub, πVq to the adversary.

‚ At the end of the game, the reduction checks, using its generated secret key sk, whether A wins the
game, and if so it outputs 1. Otherwise, output 0.

We can easily see that if the ZK game uses an honest issuer, the view of A corresponds to its view in game
GA

1 pλq. Similarly, if the game uses a simulator, the view of A corresponds to its view in game GA
2 pλq. Thus,

proving that
|PrrGA

1 pλq “ 1s ´ PrrGA
2 pλq “ 1s| ď AdvzkoNIP,Sim,OpBzk, λq .

Finally, we show that there exists an adversary Bunf playing the unforgeability game of KVAC with respect
to the extractor Ext and the oracle O. In particular, Bunf does the following

‚ It takes as input the public parameters parKVAC (containing parg) and the public key pk, and samples
pparoNIP, tdoNIPq Ð$ SimSetupppargq. It then runs A with ppar “ pparKVAC, paroNIPq, pkq. Note that Bunf does
not know the extraction trapdoor td.

‚ For credential issuance oracle, it forwards the input from A to its own issuance oracle.
‚ For the helper oracles, it runs the simulator SimIss using tdoNIP and pk, and uses the access to oracle O

to simulate the output of O without knowing sk.
‚ For NewUsr oracle, it forwards the query to the NewUsr oracle of its game.
‚ For SH oracle, it forwards the cid part of the query to the SHkey oracle of its game, which returns psid, τkeyq.

Then, it computes the proof πV as in G2. Then, it queries SHpub for τpub with input psid, φ, pπV,Mqq,
and returns pτkey, τpub, πVq.

‚ Finally, it outputs the forgery pφ˚, pπ˚V, nonce
˚q, pτ˚key, τ

˚
pubqq returned from A.

It is easy to see that the view of A within the reduction is identical to its view in G2. Now, if A wins in
G2, then the extraction fails or we have that the forgery pφ˚, pπ˚V, nonce

˚q, pτ˚key, τ
˚
pubqq does not correspond

to any pφ,M, τq tuples returned by the simulation of SH and φ˚ is not satisfied by any extracted attributes
during issuance. Therefore, in both cases Bunf wins in the unforgeability game. Thus,

PrrGA
2 pλq “ 1s ď AdvunfKVAC,Ext,OpBunf , λq ,

concluding the proof for unforgeability. [\

4.4 Proof of Lemma 4.4

We first give the description on the simulator Sim1 which uses the simulators SimGen, SimoNIP, and SimKVAC

as subroutines.

‚ Sim1Setupp1
λ, 1`q :

´ Run pparg, tdgq Ð$ SimGenp1
λq

´ Run pparKVAC, tdKVACq Ð$ SimKVAC,Setupp1
`, pargq and pparoNIP, tdoNIPq Ð$ SimoNIP,Setupppargq

´ Return ppar “ pparKVAC, paroNIPq, td “ ptdg, tdKVAC, tdoNIPqq
‚ Sim1U : This simulator runs SimKVAC,U in both moves of the issuance protocol with inputs tdg, tdKVAC, pk

and the predicate φ.
‚ Sim1ObtH: This simulator runs SimoNIP,U in all rounds of the helper protocol with inputs tdg, tdoNIP and
pk.

‚ Sim1Showptd, pk, φ,Mq:
´ pτkey, stq Ð$ SimKVAC,Showp“key”, ptdg, tdKVACq, pkq
´ πV Ð$ SimoNIP,Pfpptdg, tdoNIPq, pk, τkeyq
´ τpubÐ$ SimKVAC,Showp“pub”, st, φ, pπV,Mqq
´ Return τ “ pτkey, τpub, πVq
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It is easy to see that the public parameters from Sim1 are indistinguishable from SAAC.Setup, and this follows
from the indistinguishability of public parameters for SimGen, SimoNIP,Setup and SimKVAC,Setup.

Now, we need to show that no adversary A can distinguish between the game AnonSAAC,Sim1,0 and
AnonSAAC,Sim1,1, and we do so by considering the following sequence of games.

Game GA
0 pλq : This game is exactly the game AnonSAAC,Sim1,0 where A is interacting with honest users in

all oracles. In particular, A interacts with the following:

‚ During the issuance phase, the game runs the user algorithms SAAC.U1,SAAC.U2.
‚ For the ObtHj oracles, the game runs the user side of the protocol SAAC.ObtHelpj . Specifically, note

that the first move of the user SAAC.ObtHelp1 involves computing τkey and st using KVAC.Showkey using
the attributes m and the credential σ. At the end of sessions sid, the game obtains auxsid, which contains
τkey, st (computed in the first move), πV (obtained as a result of oNIP protocol), and

‚ For the SH oracle, A specifies an sid such that the game would run the SAAC.Show algorithm using auxsid
obtained from the helper protocol in session sid.

Game GA
1 pλq : In this game, the ObtHj for j P rr ` 1s is now run using Sim1ObtH, and the πV part in SH is

now computed using SimoNIP,Pf . More precisely, the simulation of the following oracles are modified.

‚ Oracle ObtHj : The game runs the simulator SimoNIP,U for oNIP in all moves of the helper protocol. Note
that in the first move, the game does not compute τkey and st using KVAC.Showkey anymore, since the
simulator SimoNIP,U does not depend on the statement τkey.

‚ SHpsid, φ,Mq : The game now computes τ “ pτkey, τpub, πVq by
´ Running pτkey, stq Ð$ KVAC.Showkeyppar, pk,m, σq,
´ Simulating πV Ð$ SimoNIP,Pfpptdg, tdoNIPq, pk, τkeyq, and
´ Computing τpubÐ$ KVAC.Showpubpst, φ, pπV,Mqq.

Now, we show the change in the probability that A outputs 1 from G0 to G1. First, we consider the event
Bad that there exists a session sid such that ppparKVAC, pkq, τkey,sidq R LV,parg . Then, denote PrirBads as the
probability that Bad occurs in Gi for i P t0, 1u. But notice that this event only depends on the public
parameters par, the trapdoor td, the public key pk, the issued credential σ, and the random coins of the
KVAC.Showkey algorithm. These are all independent of whether SimoNIP is used in the helper oracles or not.
Hence, Pr0rBads “ Pr1rBads. Also, we have that

PrrGA
b pλq “ 1s “ PrrGA

b pλq “ 1|BadsPr0rBads ` PrrGA
b pλq “ 1 ^  Bads .

Then,

|PrrGA
1 pλq “ 1s ´ PrrGA

0 pλq “ 1s|

ď Pr0rBads ` |PrrG
A
1 pλq “ 1 ^  Bads ´ PrrGA

0 pλq “ 1 ^  Bads| .

We will then bound the two terms above separately: (1) Pr0rBads will be bounded via a reduction Binteg

to the integrity property of KVAC, and (2) the second term will be bounded using a reduction Boblv to the
obliviousness property of oNIP.

For Pr0rBads, notice that

Pr0rBads ď qObtHPr

»

—

—

—

—

–

σ ‰ K ^
ppk, τkeyq R LV

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ppar, tdq Ð$ Sim1Setupp1
λ, 1`q

ppk,m, φ, stq Ð$ Appar, tdq
If φpmq “ 0, abort
pK, σq Ð$ xApstq é KVAC.Uppar, pk,m, φqy
pτkey, stq Ð$ KVAC.Showkeyppar, pk,m, σq

fi

ffi

ffi

ffi

ffi

fl

.

Thus, there exists a reduction Binteg such that Pr0rBads ď qObtH ¨ Adv
integ
KVAC,SimKVAC

pBinteg, λq.
Next, consider the following reduction Boblv playing the game OBLV of oNIP:
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‚ The reduction takes as input paroNIP, tdg, tdoNIP and samples pparKVAC, tdKVACq Ð$ SimKVAC,Setupp1
`, pargq.

(Again parg is contained in paroNIP).

‚ Then, the reduction runs A with ppar “ pparKVAC, paroNIPq, td “ ptdg, tdKVAC, tdoNIPqq, who outputs
ppk,m, φq.

‚ The issuance protocol is run using the user algorithm SAAC.U and the reduction obtains a credential σ
of attributes m.

‚ For the ObtH oracles in sessions sid, the reduction runs pτkey,sid, stsidq Ð$ KVAC.ShowkeypparKVAC, pk,m, σq,
and opens a new oNIP protocol session sid using the statement ppparKVAC, pkq, τkey,sidq with its OBLV game.
If ppk, τkey,sidq R LV,parg , the game will return K and the reduction would simply return a random guess
b1Ð$ t0, 1u. Otherwise, it would forward the protocol messages back and forth between A and the OBLV
game.

‚ For the SH oracle on input psid, φ,Mq, the reduction first queries the Pf oracle with sid to get πV. Then,
it computes τpubÐ$ KVAC.Showpubpstsid, φ,Mq and returns pτkey,sid, τpub, πVq to A.

‚ Finally, it forwards the guess b1 from A to its game.

Here, it is easy to see that if Bad occurs the probability that the reduction outputs 1 is 1{2 in both cases of
OBLV game. Also, when Bad does not occur, the views of A within the reduction when OBLV is run with
honest user and the simulator SimoNIP are identical to its view in G0 and G1, respectively. Therefore,

|PrrGA
1 pλq “ 1 ^  Bads ´ PrrGA

0 pλq “ 1 ^  Bads| ď AdvoblvoNIP,SimoNIP
pBinteg, λq .

Hence, |PrrGA
1 pλq “ 1s ´ PrrGA

0 pλq “ 1s| ď AdvoblvoNIP,SimoNIP
pBinteg, λq ` AdvintegKVAC,SimKVAC

pBinteg, λq.

Game GA
2 pλq : This game is exactly the game AnonSAAC,Sim1,1 where A is interacting with the simulator Sim1

in all steps of the game. To show the change in probability that A returns 1, we can construct a reduction
Banon to the anonymity game of KVAC. In particular, the reduction does the following:

1. To simulate the issuance protocol, it forwards the issuance protocol message and sends the outputs back
to A.

2. To simulate the helper protocol in ObtH1, . . . ,ObtHr`1, it runs SimoNIP,U.

3. to simulate SH queries of the form psid, φ,Mq, it first queries SHkey to get τkey. Then, it uses SimoNIP,Pf

to compute the proof πV for τkey. Finally, it queries SHpub with pφ, pπV,Mqq to get τpub and returns
pτkey, τpub, πVq.

4. It will then return the guess b1 that A outputs.

Hence, the view of A corresponds to G1 and G2 when the Anon game is run with honest user and SimKVAC,
respectively. Therefore,

|PrrGA
2 pλq “ 1s ´ PrrGA

1 pλq “ 1s| ď AdvanonKVAC,SimKVAC
pBanon, λq ,

concluding the proof. [\

5 Instantiation from BBS

In this section, we instantiate our generic SAAC construction with a KVAC based on the BBS MAC and a
corresponding oNIP. We introduce the BBS MAC in Section 5.1, the KVAC in Section 5.2, and the oNIP in
Section 5.3. Also, we discuss the final instantiation in Section 5.4.

Global parameters generator. Following the syntax in Section 4.1, we note that the global parame-
ters generator for this instantiation is exactly the group generator GGen and the corresponding simulator
SimGenp1

λq simply outputs parg “ pp,G,Gq Ð$ GGenp1λq and does not output any trapdoor.
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Algorithm MACBBS.Setupp1
λ
q :

pp,G,Gq Ð$ GGenp1λq;H Ð$ G`

par Ð pp,G,H,Gq
return par

Algorithm MACBBS.KGpparq :

xÐ$ Zp
return pskÐ x, ipkÐ xGq

Algorithm MACBBS.Mppar, sk “ x,m P Z`pq :

eÐ$ Zp;AÐ px` eq´1
pG`

ř`
i“1mrisHrisq

return pA, eq

Algorithm MACBBS.Verppar, sk,m, σ “ pA, eqq :

C Ð G`
ř`
i“1mrisHris

return ppx` eqA “ Cq

Fig. 12. Message Authentication Code from BBS Signatures.

5.1 BBS-based MAC

In this section, we give the MACBBS scheme in Figure 12. The MAC tag for messagem “ pmiq
`
i“1 is computed

as pA :“ px ` eq´1C, e Ð$ Zpq where x P Zp is the secret key, C “ G `
ř`
i“1miHi, and H1 . . . , H` P G

are parts of the public parameters. This scheme is similar to the one presented in Orrú’s paper [Orr24],
and Barki et al. [BBDT16] considered a variant of this scheme where the tag also includes a random scalar
s P Zp. The following theorem then establishes the unforgeability of MACBBS in standard model.

Theorem 5.1 (Unforgeability of MACBBS). Let GGen be a group generator that outputs groups of prime
order p “ ppλq, and let MACBBS “ MACBBSrGGens. For any adversary A playing the rDDH-UFCMA game of
MACBBS making at most q “ qpλq queries to MAC and running in time tA “ tApλq, there exist adversaries
B1,B2,B3 running in time roughly tA such that

Advufcma
MACBBS,rDDHpA, λq ď q ¨ Advq-SDH

GGen,rDDHpB1, λq ` Advdlog
GGenpB2, λq

` Advq-SDH
GGen,rDDHpB3, λq `

q2

2p
`
q ` 2

p

Moreover, the same holds for UFCMA without any of the rDDH oracles appearing anywhere in the statement.

Proof. The result follows from a minor adaptation of Tessaro and Zhu’s proof of security for BBS [TZ23a,
Proof of Theorem 1]. For plain UFCMA, their proof does not rely on pairings and thus easily transfers to
the MAC setting. For rDDH-UFCMA, it suffices to show that oracles V and rDDH can be simulated by the
reduction. For verification, we use the fact that for C “ G `

ř`
i“1miHi we have px ` eq´1C if and only

if pG, xG,A,C ´ eAq is a DDH quadruple. This enables us to simulate verification with a restricted DDH
oracle instead of knowledge of the secret key x. More precisely, the Tessaro-Zhu BBS SUF proof consists of
three reductions:

1. Two reductions to q-SDH which simulate the game to A by signing using the secret key x from the
q-SDH challenge.

2. A reduction to q-DL which simulates the game by signing using a randomly sampled secret key known
to the reduction.

The first two reductions can simulate the verification oracle with their restricted DDH oracle as discussed,
and obviously can simulate the restricted DDH oracle by passing queries to their restricted DDH oracle.
The final reduction knows the secret key so verification and the restricted DDH oracle can be simulated
canonically. [\

Remark 5.2. Theorem 5.1 cannot be found in prior work, although similar results have been shown: Barki
et al. showed that MACBBS` is UFCMVA under the assumption that q-SDH is hard with a (unrestricted)
DDH oracle [BBDT16]. Orrú proved that the slightly more efficient MACBBS still achieves UFCMVA under
the q-DL assumption in the AGM.
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5.2 BBS-based KVAC

We first describe the KVACBBS scheme in Figure 13, which can be seen as a variant of the KVAC from
[BBDT16]. The blind issuance starts by the user computing a Pedersen commitment C “

ř`
i“1miHi`sH``1

of its attributes m with randomness s, and the issuer signing this commitment by computing the MACBBS

tag pA, eq where A “ px ` eq´1pG ` Cq. The credential for attributes m is then pA, e, sq. We note that in
contrast to [BBDT16], our issuer does not rerandomize the scalar s and thus saving one scalar in issuer’s
communication. To show a credential, a holder can sample r, r1 Ð$ Zp and compute C̃ Ð rC, Ã Ð r1rA,

and B̃ Ð r1C̃ ´ eÃ. The holder sends to the issuer pÃ, B̃, C̃q, along with a proof of knowledge of e, r, r1,m
(using CDL proofs [CDL16]), and the issuer can check that xÃ “ B̃.

Relevant proof systems. Our KVAC makes use of proof systems Πcom, Πσ, and Πpub for the following
relations (implicitly parameterized by the group description), respectively:

Rcom :“ tppH, C, ψq, ps,mqq : C “ sH``1 `
ř`
i“1miHi ^ ψpmq “ 1u

Rσ :“ tppX,A,Bq, xq : xG “ X ^ xA “ Bu

Rpub :“

"

ppÃ, B̃, C̃,Hpriv, Y q, pe, r
1, r2, m̂, sq :

r2C̃ ` xHpriv, pm̂}sqy “ Y^

B̃ “ r1C̃ ´ eÃ

*

.

The first proof system Πcom is used for the user to prove knowledge of openings to the commitment C during
issuance. We require Πcom to be straightline-extractable for the relaxed relation rRcom defined as

rRcom :“

$

&

%

ppH, C, ψq, ps,mqq :
p0G “

ř`
i“1miHi ` sH``1 ^

ps}mq ‰ 0q _
ppH, C, ψq, ps,mqq P Rcom

,

.

-

,

and it is instantiated using a variant of the Fischlin transform [Fis05, Ks22], which we describe in Appendix C.
The proof systems Πσ and Πpub are used for proving validity of the issued credentials by the issuer and
showing the credentials by the users, respectively. These proof systems are instantiated using the proof
system Lin for linear relations on G (described in Section 2), with the corresponding linear maps for the
relations Rσ and Rpub defined as follows:

Mσ
G,A :“

ˆ

G
A

˙

, Mpub

C̃,Hpriv,1,...,Hpriv,k,Ã
:“

ˆ

C̃ Hpriv,1 ¨ ¨ ¨ Hpriv,k 0 0

0 0 ¨ ¨ ¨ 0 C̃ ´Ã

˙

.

We further note that to bind a value nonce to the showing message, the hash computation in Πpub also takes
nonce as an input. We emphasize that this is crucial for the security of our final SAAC construction.

Key-dependent verification induced-relation.We point out that SVerkey induces the following DLEQ
relation (parameterized by parg “ pp,G,Gq which we will omit) for which we give a corresponding oNIP
protocol.

Rdleq :“ tppX, pÃ, B̃qq, xq : X “ xG ^ B̃ “ xÃu , (1)

Note that the augmented statement is pÃ, B̃q while the core relation CorepRdleqq contains public-secret key
pairs pX “ xG, xq defined by the key generation of KVACBBS. We further note that checking if an augmented
statement pÃ, B̃q is in the language can be done via the rDDH oracle, described in Figure 2.

Correctness. Correctness of KVACBBS follows from η-correctness of Πcom, perfect correctness of Πσ and
Πpub, and that the honest user aborts with probability 1{p if the commitment C “

ř`
i“1miHi`sH``1 “ ´G.

In particular, the correctness error of the scheme is ηpλq ` 1
p .

Unforgeability.Unforgeability of KVACBBS against adversaries with access to the rDDH oracle, established
in the following lemma, mainly follows from online-extractability of Πcom and a reduction to rDDH-UFCMA
security of MACBBS. Crucially, the reduction needs to (1) simulate the honest user showings and (2) rewind
the adversary to extract a MACBBS forgery. To this end, our analysis, despite relying on standard techniques,
is non-trivial, and we refer to Section 5.5 for the formal proof.
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KVACBBS.Setupp1
`, parg “ pp,G,Gqq

Select H0,H1,H2 : t0, 1u
˚
Ñ Zp

H “ pHiq
``1
i“1 Ð$ G``1

Πσ Ð LinrH1,Gs;Πpub Ð LinrH2,Gs
return par “ pp,G,G,H,H0,H1,H2q

KVACBBS.KeyGenpparq

xÐ$ Zp;X Ð xG

return pskÐ x, pkÐ Xq

KVACBBS.Issppar, x, ψ, µ “ pC, πcomqq

if C `G “ 0G _Πcom.Ver
H0 ppH, C, ψq, πcomq “ 0

then abort

eÐ$ Zp

AÐ px` eq
´1
pG` Cq;B Ð C ´ eA

πσ Ð Πσ.Prove
H1 ppM

σ
G,A, pX,Bqq, xq

return imsg Ð pA, e, πσq

KVACBBS.SVerkeyppar, x, τkey “ pÃ, B̃qq

return xÃ “ B̃

KVACBBS.SVerpubppar, X, τkey, τpub, φI,a, nonceq

parse pÃ, B̃q Ð τkey; pC̃, πpubq Ð τpub

Hpriv Ð pHiqiPr``1szI

Y Ð G` xm1, pHiqiPIy

return Πpub.Ver
H2 ppM

pub

C̃,Hpriv,Ã
, pY, B̃qq, πpub, pφI,a, nonceqq

KVACBBS.U1ppar, X,m P Z`p, ψq
sÐ$ Zp;C Ð sH``1 `

ř`
i“1miHi

if C `G “ 0G then abort

πcom Ð Πcom.Prove
H0 ppH, C, ψq, ps,mqq

return µ :“ pC, πcomq

KVACBBS.U2pimsg “ pA, e, πσqq

B Ð G` C ´ eA

if Πσ.Ver
H1 ppM

σ
G,A, pX,Bqq, πσq “ 0

then abort

return σ Ð pA, e, sq

KVACBBS.Showkeyppar, pk,m, σ “ pA, e, sqq

r, r
1
Ð$ Z˚p

C̃ Ð rpG` sH``1 `
ř`
i“1miHiq

ÃÐ r
1
rA; B̃ Ð r

1
C̃ ´ eÃ

return τkey :“ pÃ, B̃q

KVACBBS.ShowpubpφI,a, nonceq

if φI,apmq “ 0 then abort

Hpriv Ð pHiqiPr`szI

Y Ð G` xpmiqiPI , pHiqiPIy

πpub Ð Πpub.Prove
H2 ppM

pub

C̃,Hpriv,Ã
, pY, B̃qq,

pr
´1
, pmiqiPr`szI , r

1
, s, eq, pφI,a, nonceqq

return τpub :“ pC̃, πpubq

Fig. 13. Scheme KVACBBS “ KVACBBSrGGens. The proof systems Πcom, Πσ, Πpub are NIZKs for Rcom,Rσ,Rpub defined
in Section 5, respectively. States are omitted for readability – subsequent algorithms can use values defined before
(e.g. KVACBBS.U2 can use variables from KVACBBS.U1). In Showpub, the value nonce is bound to πpub.

Lemma 5.3. Let GGen be a group generator that outputs groups of prime order p “ ppλq, Extcom be
an extractor for the knowledge-soundness Πcom, and Simσ be a zero-knowledge simulator for Πσ. Define
ExtBBS :“ pExtSetup,Extissq as follows:

‚ ExtSetup on input parg generates H as in KVACBBS.Setup and does not output any trapdoor.

‚ Extiss on input pµ “ pC, πcomq, ψq outputs mÐ$ ExtH0
compQ, pH, C, ψq, πcomq where Q is the set of H0

queries the adversary has made so far.

Then,

‚ For any adversary A, Advpar-indistKVACBBS,ExtBBS
pA, λq “ 0.

‚ Let A be an adversary against the pExtBBS, rDDHq-unforgeability of KVACBBS “ KVACBBSrGGens, running
in time tA “ tApλq making at most qh0

“ qh0
pλq, qh1

“ qh1
pλq, qh2

“ qh2
pλq, qiss “ qisspλq, qShow “

qShowpλq, qrDDH “ qrDDHpλq queries to H0,H1, H2, Iss, SH, and rDDH oracles, respectively. Let q “
qiss`qh2`qShow. There exist adversaries Bufcma (playing rDDH-UFCMA game of MACBBS), Bcom (playing
KSND game of Πcom), Bdlog,B1dlog,B2dlog (playing DL game) and Bσ (playing the ZK game of Πσ) such
that

AdvunfGGen,ExtBBS,rDDHpA, λq ď

d

q ¨

ˆ

Advufcma
MACBBS,rDDHpBufcma, λq ` Advdlog

GGenpB2dlog, λq `
1

p

˙

` Advksnd
Πcom,Extcom,rRcom

pBcom, λq ` Advdlog
GGenpB

1
dlog, λq

` Advdlog
GGenpBdlog, λq ` AdvzkΠσ,Simσ pBσ, λq `

q2 ` q ` 2

p
.
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SimSetupp1
`, parg “ pp,G,Gqq:

H “ pHiq
``1
i“1 Ð$ G``1

return par “ pp,G,G,Hq

SimShowp“key”, td “ K, Xq:

αÐ$ Z˚p ; ÃÐ αG; B̃ Ð αX

return ppÃ, B̃q, st “ Xq

SimShowp“pub”, st, φI,a, nonceq:

C̃ Ð$ G˚;Hpriv Ð pHiqiPr``1szI

Y Ð G`
ř

iPI aiHi

// Sim programs H2

πpub Ð Sim
H2
pubppM

pub

C̃,Hpriv,Ã
, pY, B̃qq, pφI,a, nonceqq

return pC̃, πpubq

SimU1
ptd “ K, pk, ψq:

C Ð$ G
if C `G “ 0G then abort

// Sim programs H0

πcom Ð SimH0
compH, C, ψq

return pµÐ pC, πcomq, stSim Ð Cq

SimU2
pstSim, imsgq:

C Ð stSim; pA, e, πσq Ð imsg

B Ð G` C ´ eA

if Πσ.Ver
H1 pppG,Aq, pX,Bqq, πσq “ 0 then

return K

σ Ð 1

Fig. 14. Simulator SimBBS “ SimBBSrSimcom, Simpubs

Additionally, Bdlog,B1dlog runs in time roughly tA, while Bufcma,B2dlog runs in time roughly 2tA. Also,
Bufcma makes at most 2qiss and 2qrDDH queries to its MAC and rDDH oracles, respectively. Finally, Bcom

makes at most qh0 queries to H0 and qiss queries to OExt.

Anonymity. The following lemma establishes anonymity of KVACBBS which follows from zero-knowledge
properties of Πcom, Πpub, soundness of Πσ (to ensure that the maliciously issued credential is valid), and
the rerandomization of the credential during showing as described earlier. The formal proof is given in
Section 5.6.

Lemma 5.4 (Anonymity of KVACBBS). Let GGen be a group generator that outputs groups of prime order
p “ ppλq and SimGen be the simulator for the global parameters generator (note again that it does not output
any trapdoor). Let Simcom and Simpub be zero-knowledge simulators for Πcom and Πpub, and define SimBBS “

SimKVACBBS
rSimcom,Simpubs as in Figure 14. Then,

‚ For any adversary A, Advpar-indistKVACBBS,SimBBS
pA, λq “ 0.

‚ For any adversary A against the anonymity of KVACBBS making at most qh0
“ qh0

pλq, qh1
“ qh1

pλq, qh2
“

qh2
pλq queries to H0,H1,H2, there exist adversaries Bcom playing the ZK game of Πcom and making at

most qh0 queries to H0, Bσ playing the soundness game of Πσ making at most qh1 queries to H1, and
Bpub playing the ZK game of Πpub making at most qh2 queries to H2 such that:

AdvanonKVACBBS,SimGen,SimBBS
pA, λq ď AdvzkΠcom,Simcom

pBcomq ` AdvzkΠpub,Simpub
pBpubq ` 2AdvsoundΠσ pBσq .

Integrity and Validity of key generation. The following two lemmas establish the integrity (with
respect to the simulators SimGen,SimBBS defined in Lemma 5.4) and validity of key generation (with respect
to the extractor ExtBBS defined in Lemma 5.3) for KVACBBS.

Lemma 5.5 (Validity of Key Generation of KVACBBS). Let GGen and ExtBBS be as defined in Lemma 5.3.
KVACBBS satisfies validity of key generation with respect to ExtBBS defined in Lemma 5.3.

Proof. The relation Rdleq induced from the definition of KVACBBS.SVerkey is defined in Equation (1). The
lemma follows from the fact that, since G is prime-order, the public key X P G fixes a unique underlying
secret key x P Zp.
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Algorithm oNIP.Setuppparg “ pp,G,Gqq:
W Ð$ G

Select Hc : t0, 1u
˚
Ñ Zp

return paroNIP “ pp,G,G,W,Hcq
Algorithm oNIP.Iss1pparoNIP, x, pA,Bqq:

if xA ‰ B then abort

r0, s1, c1 Ð$ Zp
R0,G Ð r0G;R1 Ð s1G´ c1W

R0,A Ð r0A

return pR0,G, R0,A, R1q

Algorithm oNIP.Iss2pcq:

c0 Ð c´ c1; s0 Ð r0 ` c0 ¨ x

return pc0, s0, s1q

Algorithm oNIP.VerpparoNIP, pX,A,Bq, πq:

parse pc0, c1, s0, s1q Ð π

R0,G Ð s0G´ c0X

R0,A Ð s0A´ c0B

R1 Ð s1G´ c1W

cÐ HcpX,A,B,R0,G, R0,A, R1q

return pc0 ` c1 “ cq

Algorithm oNIP.U1pparoNIP, pX, Ã, B̃qq:

βÐ$ Zp
pA,Bq Ð pÃ` βG, B̃ ` βXq

return pA,Bq

Algorithm oNIP.U2pR0,G, R0,A, R1q:

δ0, δ1, γ0, γ1 Ð$ Zp
R
1
0,G Ð R0,G ` δ0G´ γ0X

R
1
0,A Ð R0,A ´ βR0,G ` δ0Ã´ γ0B̃

R
1
1 Ð R1 ` δ1G´ γ1W

c
1
Ð$ HcpX, Ã, B̃, R

1
0,G, R

1
0,A, R

1
1q

return cÐ c
1
´ γ0 ´ γ1

Algorithm oNIP.U3pc0, s0, s1q:

c1 Ð c´ c0

if R0,G ` c0X ‰ s0G _

R0,A ` c0B ‰ s0A _

R1 ` c1W ‰ s1G then abort

c
1
0 Ð c0 ` γ0; s

1
0 Ð s0 ` δ0

c
1
1 Ð c1 ` γ1; s

1
1 Ð s1 ` δ1

return π Ð pc
1
0, c

1
1, s

1
0, s

1
1q

Fig. 15. Oblivious proof issuance oNIP “ oNIPrGGen,Rdleqs for the DLEQ relation. We omitted the user and issuer’s
states and assume that any variable defined in the previous round is accessible in the next round.

Lemma 5.6 (Integrity of KVACBBS). Let GGen,SimGen and SimBBS be as defined in Lemma 5.4. Let A
be an adversary playing the integrity of issued credentials game of KVACBBS with respect to the simulators
SimGen and SimBBS defined in Lemma 5.4 and making at most qh1

“ qh1
pλq queries to H1. There exists an

adversary B against the soundness of Πσ and making at most qh1
queries to H1 such that

AdvintegKVACBBS,SimGen,SimBBS
pA, λq ď AdvsoundΠσ pB, λq .

Proof. The reduction B simulates the integrity of issuance game to A and outputs the statement pA, pB :“
C ´ eAqq along with proof πσ. Winning the integrity of issuance game implies xÃ ‰ B̃, which can occur for
an honest user only if xA1 ‰ B1, and πσ must have been valid otherwise the honest user would have aborted.

5.3 oNIP for BBS-based instantiation

In this section, we give the oNIPBBS “ oNIPrGGen,Rdleqs protocol (described in Figure 15) for the family of
relations Rdleq, defined in Equation (1). The protocol starts by the user sending a rerandomized statement

pA “ Ã ` βG,B “ B̃ ` βXq to the issuer. The issuer first checks that pX, pA,Bqq is actually in the
language LRdleq

. Then, the two parties interact in a blinded Σ-protocol to compute an OR-proof that (1)
pX, pA,Bqq P LRdleq

or (2) the issuer knows the discrete logarithm of public parameters W P G. At the end

of the protocol, the user obtains a proof π for its statement of choice pÃ, B̃q. We remark that this protocol
is similar to a recent blind signature scheme [CATZ24] and the oNIP for Rdleq in [OTZZ24], except that in
their cases the issuer computes B “ xA for the user who sends A.

The following theorem then establishes the security properties of oNIPBBS with the proof in Section 5.7.
Note that oNIPBBS is zero-knowledge with respect to rDDH, because the simulator needs to check that
B “ xA without x. On the technical side, the proofs for both zero-knowledge and obliviousness utilize the
structure of OR-proofs in that they generate the public parameters W Ð wG with a trapdoor w Ð Zp and
use w to simulate the issuance protocol and the non-interactive proof.
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Theorem 5.7. Let GGen be a group generator outputting groups of prime order p “ ppλq, rDDH be a
restricted DDH oracle, and SimGen be the simulator for the global parameters generator. Then, oNIPBBS “

oNIPBBSrGGen,Rdleqs satisfies perfect correctness, soundness in the ROM assuming DL, perfect rDDH-zero-
knowledge, and perfect obliviousness for valid statements with respect to SimGen.

5.4 BBS-based SAAC

The following corollary establishes the security of SAACBBS, a BBS-based instantiation of our generic SAAC
construction from Section 4.2. The corollary immediately follows from Theorems 4.2 and 5.7 and Lemmas 5.3
to 5.6.

Corollary 5.8. Let SAACBBS “ SAACrGGen,KVACBBS, oNIPBBSs be a SAAC scheme from KVACBBS and
oNIPBBS according to Theorem 4.2. Then, SAACBBS satisfies correctness, unforgeability in the ROM assuming
pq , rDDHq-SDH, and anonymity in the ROM.

Integrity.Although we do not formally show this, strong integrity of SAACBBS (defined in Figure 9) follows
from (1) the public key X fixing a unique underlying secret key x and (2) soundness of Πσ ensuring that
the issued credential is valid.

5.5 Unforgeability proof of KVACBBS

Proof (of Lemma 5.3). Since ExtSetup is exactly KVACBBS.Setup, parameter indistinguishability follows im-
mediately.

To show the advantage of A in the unforgeability game, consider the following sequence of games:

G1pλq: pExtBBS, rDDHq-unforgeability of KVACBBS.
G2pλq: The oracle Iss is modified so that after checking validity of C, πcom it runs the extractor ps,mq Ð

ExtH0
compQ, pH, C, ψq, πcomq. If ppH, C, ψq, ps,mqq R rRcom, call this event BadCom, then abort.

We now construct a reduction Bcom to knowledge soundness of Πcom with oracle access to OExt. The
reduction Bcom simulates G1 to A and on every Iss query, queries its oracle OExt with pH, C, ψq, πcom.
By definition of the straight-line extractable knowledge-soundness game, Bcom wins if BadCom occurs.
Hence,

PrrG2
A
pλq “ 1s ě PrrG1

A
pλq “ 1s ´ Advksnd

Πcom,Extcom,rRcom
pBcom, λq .

G3pλq: In this game, we abort if the extracted attributes m and randomness s satisfies 0G “
ř`
i“1miHi `

sH``1, denote this event as BadExt. This is to ensure that in each session ppH, C, ψq, ps,mqq P Rcom and
ψpmq “ 1. Note that the event BadExt implies breaking rel-DL on H. Thus, by Lemma 2.1, there exists
a reduction Bdlog running in time roughly tA such that

PrrG3
A
pλq “ 1s ě PrrG2

A
pλq “ 1s ´ Advdlog

GGenpBdlog, λq ´
1

p
.

G4pλq: In this game, we simulate the proof πσ in the issuance oracle using Simσ, which programs H1. The
reduction Bσ simulates the entire game A, in one case using the real NIZK protocol and in the other
case using the simulator.

PrrG4
A
pλq “ 1s ě PrrG3

A
pλq “ 1s ´ AdvzkΠσ,Simσ pBσ, λq

G5pλq: The game now simulates the new user oracle and the showing oracles as follows:

‚ At the start of the game we initialize table T2 Ð p q and use it for H2 lazy-sampling.
‚ Oracle NewUsr is modified so that it just sets σcid Ð K instead of using KVACBBS.Iss.

33



‚ Oracle SHkey does the following instead of running KVACBBS.Show: sample r, r1Ð$ Z˚p , compute

τkey Ð pÃ :“ rG, B̃ :“ rXq. Then, SHpub computes C̃ Ð r1G, output K if φI,apmcidq ‰ 1, otherwise
simulate the proof πpub by programming values into T2. Explicitly, the reduction sets k :“ ` ´ |I|,
sets Hpriv Ð pHiqiPr`szI , computes Y Ð G`xpmiqiPI , pHiqiPIy, samples cÐ$ Zp and sÐ$ Zk`3

p , then

computes RÐMpub

C̃,Hpriv,1,...,Hpriv,k,Ã
s´cpY, B̃qT . It then sets T2pM

pub

C̃,Hpriv,1,...,Hpriv,k,Ã
, pY, B̃qT , R,Mq Ð

c, unless that value has already been set in which case the reduction aborts – call this event CollShow.
Considering the distribution of pÃ, B̃, C̃q in the prior game, we start with A,B,C “ G ` sH``1 `
ř`
i“1miHi such that xA “ B “ C´eA, then sample r, r1Ð$ Z˚p , and then compute C̃ Ð rC, ÃÐ r1rA,

and B̃ Ð r1C̃ ´ eÃ “ r1rC ´ er1rA “ r1rpC ´ eAq “ r1rB. By inspection C̃ is uniform in G˚ and
independent of pÃ, B̃q which are uniform in the set of DH tuples. Thus, the distribution is exactly the
same assuming that CollShow does not occur. Note that the input being programmed contains group
elements which are uniform in G. A collision occurs if the value was already set which could occur during
lazy sampling or programming for simulation. By the union bound,

PrrG5
A
pλq “ 1s ě PrrG4

A
pλq “ 1s ´

qShowpqShow ` qh2
q

p

ě PrrG4
A
pλq “ 1s ´

q2

p
.

G6pλq: This game aborts if the forgery corresponds to a programmed random oracle input. In particular,
when A outputs the forgery pφ˚, nonce˚, τ˚q, the game checks the validity of the forgery and does the
following:
‚ Parse τ˚ as ppÃ, B̃q, pC̃, pc, sqqq.

‚ The game computes Y “ G`
ř

iPI miHi and RÐMpub

C̃,Hpriv,1,...,Hpriv,k,Ã
s´ cpY, B̃qT .

‚ The game aborts if the hash query H2pM
pub

C̃,Hpriv,1,...,Hpriv,k,Ã
, pY, B̃qT , R, nonce˚q was programmed in

SHpub.
Note that since pφ˚, nonce˚, τ˚q is not the same as any output from SH (by the winning condition) and
the hash query contains Ã, B̃, C̃, nonce˚, φ˚, it can only be the case that s ‰ s̃, where s̃ are contained
in the output of SHpub query which programs H2 at the same input. By how R is computed we have

Mpub

C̃,Hpriv,1,...,Hpriv,k,Ã
ps´ s̃q “ 0. Let s1 be the first k ` 1 elements of s, and s2 be the last two elements.

Let s̃1, s̃2 analogously relative to s̃. We break s ‰ s̃ into two cases: (a) s1 ‰ s̃1 and (b) s2 ‰ s̃2. In both
cases, we have a non-trivial linear equation over C̃,Hpriv or C̃, Ã, which allows us to break rel-DL.
The reduction, on a rel-DL instance pp,G,Gq with 2qShow ` ` ` 1 group element challenges which we
parse to the form pÃi, C̃iqiPrqShows and H P G``1. The reduction then samples the secret key sk “ xÐ$ Zp
and runs the game as in G6 with an exception that each SH query (indexed with i), use Ãi and C̃i, and
computes B̃ “ xÃ. Note that the view of A remains as in G6. Now, when the added abort is supposed
to occur, we have a non-trivial linear equation over the challenges. Hence, by Lemma 2.1, there exists
an adversary B1dlog running in time roughly tA such that

PrrG6
A
pλq “ 1s ě PrrG5

A
pλq “ 1s ´

1

p
´ Advdlog

GGenpB
1
dlog, λq .

G7pλq: At the start of the game we sample ph1, e1q, . . . , phq, eqq Ð$ ZpˆZp and initialize a counter cntÐ 0.
Whenever we need to program an RO value for T2, we use hcnt and then set cntÐ cnt` 1. Similarly, in
Iss, instead of eÐ$ Zp we do eÐ ecnt and set cntÐ cnt` 1. We then sample a set ρ “ pρ1, ρAq of coins
chosen uniformly at random, where ρ1 is used for the game to run other components not associated with
the issuance, H1, or H2, (i.e., these contains the random coins for H0 and SHkey simulations) and ρA will
be the random coins for A. We run A with random coins ρA, simulating the game to them as described.
When A outputs pφ˚, nonce˚, τ˚q, first check the winning conditions and abort if they are not satisfied.
After A outputs their forgery pτ˚, φ˚, nonce˚q, we parse ppÃ, B̃q, pC̃, pc, sqqq Ð τ and pI,m1q Ð φ˚. Then,

34



compute Y,R as in G6. Note that even if the hash query H2pM
pub

C̃,Hpriv,1,...,Hpriv,k,Ã
, pY, B̃qT , R, nonce˚q was

not made after A stopped, in that case the reduction makes it on its own while checking if τ is valid, so
the index of that hash query exists–let it be J . Now ph1J , e

1
Jq, . . . , ph

1
q, e

1
qq Ð$ Zp ˆ Zp, clear T2 and set

cntÐ 0. We run the game again with the same random coins ρ and do everything exactly the same up
until cnt ě J , at which point we start using h1cnt and e1cnt instead of hcnt and ecnt. Again we check A’s
winning conditions and if they are satisfied then look up the index of the forgery hash query at the end
of the game, let it be J 1. If J ‰ J 1 or hJ “ h1J then abort. Note that due to the change in G6, J and
J 1 do not correspond to an RO query programmed in SH. Finally, use the two different RO responses
to extract a witness pe, r1, r2, s˚, m̂q for Rpub using special soundness of the underlying sigma protocol of
Πpub. Reconstruct m˚ from m̂ (undisclosed attributes), I (indices of disclosed attributes), and pmiq

1
iPI

(disclosed attributes). By the generalized forking lemma,6

PrrG6
A
pλq “ 1s ď

b

q ¨ PrrG7
A
pλq “ 1s `

q

p

G8pλq: We add the winning condition that r2 ‰ 0. If A wins with r2 “ 0 then 0 “ G ` xH, pm˚}s˚qy,
which allows us to break rel-DL on pG}Hq. We have that there exists B2dlog with running time roughly
2tA such that

PrrG8
A
pλq “ 1s ě PrrG7

A
pλq “ 1s ´ Advdlog

GGenpB
2
dlog, λq ´

1

p
.

Finally, let Bufcma be the algorithm playing the rDDH-UFCMA game for MACBBS, which on input
pp,G,G, Hq, ipk and with access to oracles MAC and rDDH1 simulates G8 with the following changes the
first time we run A:

1. Set σ1, . . . , σq Ð K

2. Instead of psk, pkq Ð KVACBBS.KeyGenp1
λq, do pkÐ ipk

3. To form A1, e without knowledge of x in an Iss query, query pA, eq Ð MACppm}sqq where m and s are
extracted from πcom. Additionally, record σcnt Ð pA, eq.

4. Forward any rDDH oracle queries to the rDDH1 oracle

This yields pτkey,1 “ pÃ1, B̃1q, τpub,1 “ pC̃1, πpub,1qq and φI1,m1
1

. Also, Bufcma aborts if πpub,1 is not valid. When
we run A for the second time, we still set up the key in the same way and forward rDDH oracles queries.
For all Iss queries where cnt ă J we respond with σcnt, and after that point we query pA, eq Ð MACpmq
and set A1 Ð sA. Running A for the second time yields pτkey,2 “ pÃ2, B̃2q, τpub,2 “ pC̃2, πpub,2qq and φI2,m1

2

described as pI2,m
1
2q. Also, Bufcma aborts if πpub,2 is not valid. Since A is run with the same randomness

and inputs up to the point where cnt ă J , they will make the exact same oracle queries to H2 and Iss up to
that point, so our simulation of the last game is perfect.

Once we extract m˚, s˚, Ã, r2, e, we first check if r1 “ 0. This implies B̃ “ ´eÃ “ xÃ, thus x “ e, and
we can forge a MAC using the secret key. Otherwise, we compute AÐ pr2q´1pr1q´1Ã and output pA, eq. If
xÃ “ B̃, which is part of A’s winning condition in the last game, then rearranging B̃ “ r1C̃´eÃ “ xÃ yields
px` eqÃ “ r1pr2qpG` xH, pm˚}s˚qyq and thus A “ px` eq´1pG` xH, pm˚}s˚qyq, so pA, eq is a valid BBS
signature on pm˚}sq. Moreover, we have by the winning condition of A in the last game that m˚ satisfies
the selective disclosure predicate φI1,m1

1
, meaning that m˚

i “m
1
1,i for all i P I1, whereas this does not hold

true for any of the messages extracted during issuance (due to the winning condition of A). This guarantees
that m˚ is a fresh forgery with regard to the MAC queries in the first run of A, and the analogous argument
guarantees that it is a fresh forgery with regard to the MAC queries in the second run, and thus fresh overall.
We conclude that

Advufcma
BBS pBufcma, λq ě AdvG8pA, λq .

[\

6 The generalized forking lemma applied to our setting only guarantees phJ , eJq ‰ ph
1
J , e

1
Jq as tuples, which is not

sufficient for our proof. This is merely a technicality of the theorem statement, and it is not hard to see how the
proof can be modified so that we may expect hJ ‰ h1J with the probability shown.
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5.6 Anonymity proof of KVACBBS

Proof (of Lemma 5.4). Parameter indistinguishability for SimBBS follows because SimSetup is identical to the
Setup algorithm.

We assume without loss of generality that the queries made to H1 when the game verifies πσ are already
made by A. (To be more precise, this increases the query count by 1). We proceed via a sequence of games.

G1pλq: This is the game AnonKVACBBS,SimGen,SimBBS,0.
G2pλq: We simulate πcom as in SimU1

instead of generating it honestly. There exists Bcom making at most

qh0
queries to H0 such that

ˇ

ˇ

ˇ
PrrG2

A
pλq “ 1s ´ PrrG1

A
pλq “ 1s

ˇ

ˇ

ˇ
ď AdvzkΠcom,Simcom

pBcomq.

G3pλq: We simulate πpub making at most qh2
queries to H2 as in SimShow instead of generating it honestly.

There exists Bpub such that
ˇ

ˇ

ˇ
PrrG3

A
pλq “ 1s ´ PrrG2

A
pλq “ 1s

ˇ

ˇ

ˇ
ď AdvzkΠpub,Simpub

pBpubq.

G4pλq: We add a condition in KVACBBS.U2 that if pC,A, eq R Rσ then the game aborts. There exists Bσ
making at most qh1

queries to H1 such that
ˇ

ˇ

ˇ
PrrG4

A
pλq “ 1s ´ PrrG3

A
pλq “ 1s

ˇ

ˇ

ˇ
ď AdvsoundΠσ pBσq.

G5pλq: We use SimU1
and SimU2

instead of KVACBBS.U1 and KVACBBS.U2, but keep the relation check as part
of the winning condition, so we have that σ “ pA, eq is such that xA “ C´eA where C “ G`xH, pm}sqy.
Consider the following equal distributions:

tprC, r1rA, r1rC ´ er1rAq : r, r1 Ð$ Z˚pu ” tprC, r1A, r1pC ´ eAqq : r, r1 Ð$ Z˚pu
” tprC, r1A, r1pxAq : r, r1 Ð$ Z˚pu

” tpC̃, αG, αXq : C̃ Ð$ G˚, αÐ$ Z˚pu .

Also tsH``1 ` pG `
ř`
i“1miHiq : s Ð$ Zpu ” tC : C Ð$ Gu (the above equations then follows due to

the abort introduced in U1 and SimU1
that ensures C `G ‰ 0G), so PrrG5

A
pλq “ 1s “ PrrG4

A
pλq “ 1s

G6pλq: We remove the inefficient check that pC,A, eq R Rσ, which yields the game AnonKVACBBS,SimGen,SimBBS,1.

We have
ˇ

ˇ

ˇ
PrrG6

A
pλq “ 1s ´ PrrG5

A
pλq “ 1s

ˇ

ˇ

ˇ
ď AdvsoundΠσ pBσq, which yields the claim.

[\

5.7 Security Proof of oNIPBBS

In this section, we prove Theorem 5.7. Correctness of the protocol follows easily from the algebra. The
following lemmas then establish soundness, zero-knowledge, and obliviousness for valid statements.

Lemma 5.9 (Soundness of oNIPBBS). For any adversary A making at most qH “ qHpλq queries to Hc
modeled as a random oracle and running in time tA “ tApλq, there exists an adversary B playing the DL
game and running in time roughly 2tA such that

AdvsoundoNIPBBS
pA, λq ď

b

pqH ` 1qAdvdlog
GGenpB, λq `

qH ` 1

p
.

Proof. Let A be an adversary as described in the lemma statement and w.l.o.g. assume that A already made
the RO query corresponding to the verification of its output ppX,A,Bq, πq (This increases qH by 1).

Consider an adversary B playing the DL game such that it sets paroNIP as its input pp,G,G,W q and runs
pX,A,B, πq Ð$ AHcpparoNIPq. Note that B answers RO queries with uniformly random h1, . . . , hqH`1 Ð$ Zp.
Let I be the index of the RO queries which corresponds to the verification of pX,A,B, πq. Then, B rewinds A
to when the I-th query is made and from that point on uses uniformly random h1I , . . . , h

1
qH`1 Ð$ Zp to answer

the RO queries. Finally, A outputs pX 1, A1, B1, π1q. If the verification of this output does not correspond to
the I-th RO query, B aborts. Otherwise, it parses

π “ pc0, c1, s0, s1q , π
1 “ pc10, c

1
1, s

1
0, s

1
1q ,

and if c1 ‰ c11, it returns ps11 ´ s1q{pc
1
1 ´ c1q.
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First, let Succ be the event that hI ‰ h1I , and A successfully outputs pX,A,B, πq and pX 1, A1, B1, π1q
such that pdlogGXq ¨ A ‰ B and pdlogGX

1q ¨ A1 ‰ B1 but the proofs verifies and they corresponds to the
same RO query. Then, by the forking lemma,

AdvsoundoNIPBBS
pA, λq ď

a

pqH ` 1qPrrSuccs `
qH ` 1

p
.

Now, notice that when Succ occurs, π and π1 corresponds to the same hash query which implies that:

(a) pX,A,Bq “ pX 1, A1, B1q
(b) s0G´ c0X “ s10G´ c

1
0X and s0A´ c0B “ s10A´ c

1
0B

(c) s1G´ c1W “ s11G´ c
1
1W

Since B ‰ pdlogGXq ¨A, by (b), it is only the case that c0 “ c10. Hence, by (c) and with c0` c1 “ hI ‰ h1I “

c10 ` c11, we have c1 ‰ c11, so B extracts the discrete log of W . Therefore, PrrSuccs ď Advdlog
GGenpB, λq, proving

the lemma. [\

Lemma 5.10 (Zero-Knowledge of oNIPBBS). For the restricted DDH oracle rDDHppp,G,Gq, x,X, ¨q,
there exists a simulator Sim “ pSimSetup,SimIssq and such that for any adversary A, AdvzkoNIPBBS,Sim,rDDHpA, λq “
0.

Proof. Consider the following simulator Sim:

‚ SimSetuppp,G,Gq : Sample w P Zp and return pparoNIP “ pp,G,G,W q, td “ wq.

‚ SimrDDH
Iss ptd, X, umsg1 “ pA,Bqq : Query rDDHppp,G,Gq, x,X, pA,Bqq and if the oracle outputs 0, abort.

Otherwise, sample s0, c0, r1 Ð$ Zp and set pR0,G, R0,Aq Ð ps0G ´ c0X, s0A ´ c0Bq and R1 Ð r1G and
return these elements. On the next round with umsg2 “ c, return c0, c1 “ c´ c0, s0, s1 “ r1` c1 ¨w. (For
simplicity, we assume c0, c1 are both send – but in the protocol, only one can be derived from the other.)

To see that the distribution of the view of A is identical in ZK0 and ZK1 games, we consider the following:

‚ The distribution on paroNIP is identical to oNIP.Setup, since W is still uniformly random.
‚ Next, because the simulator aborts correctly with the help of the oracle rDDH, we only have to consider

the case when xA “ B. Now, it is easy to see that the distributions of pR0,G, R0,A, R1, c0, c1, s0, s1q

conditioned on pA,B, cq are identical between the two games.
[\

Lemma 5.11 (Obliviousness of oNIPBBS). Let SimGen be the simulator for global parameters generator
GGen. There exists a simulator Sim “ pSimSetup,SimU,SimPfq such that

‚ For any adversary A, Advpar-indistoNIPBBS,Sim
pA, λq “ 0.

‚ For any adversary A, AdvzkoNIPBBS,SimGen,SimpA, λq “ 0.

Proof. As a reminder, SimGen does not output any trapdoor and samples pp,G,Gq as in GGen. Consider the
following simulator Sim:

‚ SimSetuppp,G,Gq : Sample w P Zp and return pparoNIP “ pp,G,G,W q, td “ wq.
‚ SimUptd, Xq : For the first move, return pA,Bq “ pβG, βXq for βÐ$ Zp. For the second move, return
cÐ$ Zp. At the end of the protocol, the simulator checks if the transcript ppA,Bq, pR0,G, R0,H , R1q, c,
pc0, c1, s0, s1qq satisfies the check identical to the one in oNIP.U3.

‚ SimPfptd, X, pÃ, B̃qq : Compute the proof π by (1) sampling s10, c
1
0, r

1
1 Ð$ Zp and set pR10,G, R

1
0,Aq Ð

ps10G´ c
1
0X, s

1
0A´ c

1
0Bq and R11 Ð r11G, (2) computing HcpX, Ã, B̃, R

1
0,G, R

1
0,A, R

1
1q, (3) Return pc10, c

1
1 “

c´ c10, s
1
0, s

1
1 “ r11 ` c

1
1 ¨ wq.
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First, the distribution of paroNIP stays identical to that of oNIP.Setup. Next, to show the advantage of A
in the obliviousness game, we first only consider the game where A only starts 1 session. Note that we can
easily extend this to Q sessions via standard hybrid argument, since the reduction could use the trapdoor
(in the OBLV game the adversary knows the trapdoor) to simulate other sessions. In the following, we follow
similar proof strategy from [OTZZ24].

To show indistinguishability, we first w.l.o.g. assume that A’s randomness is fixed and it finishes the
proof issuance session and sees the proof π. Also, we remark again that the game only starts the issuance
protocol if a valid statement is given i.e., B̃ “ xÃ. We define the view of A after its execution as VA “

pW,X, pÃ, B̃q, T, πq where T is the transcript of the protocol and π is the proof from Pf defined as T :“
pA,B,R0,G, R0,A, R1, c, c0, c1, s0, s1q and π :“ pc10, c

1
1, s

1
0, s

1
1q. For simplicity, we assume c0, c1 are both sent.

Since the randomness of A is fixed, we only consider the randomness of the honest user (i.e., U1,U2) and
the simulator SimU,SimPf . Denote ηb as the randomness of the honest user/simulator in the OBLVb game,
which are of the form

η0 “ pβ, γ0, γ1, δ0, δ1q , η1 “ pβ, c̄, c̄
1
0, s̄

1
0, r̄

1
1q .

Note that p̄¨q is used to distinct the value in the transcript and the randomness of the simulator. Now, we
only need to show that the distribution of VA is identical in both cases of b “ 0, b “ 1, which we do so by
showing that for any fixed view ∆ where PrrVA “ ∆|b “ 1s ą 0, there is a unique randomness η0, η1 which
results in VA “ ∆ for both cases. Thus, proving that the probability of VA “ ∆ are 1{p5 in both cases. (We
note some abuse of notations here, and denote values in ∆ using the corresponding letters for the random
variables in VA.)

For b “ 0, VA “ ∆ if and only if

β “ dlogGpA´ Ãq, @i P t0, 1u : δi “ s1i ´ si, γi “ c1i ´ ci .

The if direction (ñ) follows easily from the equations. The only-if direction (ð) follows similarly from
the blindness proof in [CATZ24]. In particular, β fixes the first message of the user to be pA,Bq since
B̃ “ dlogGXÃ. Then, by inspection and the fact that π is valid, the user sense c “ c0 ` c1 in the second
move and the final proof is π.

For b “ 1, VA “ ∆ if and only if

β “ dlogGpAq, c̄ “ c, c̄10 “ c10, s̄
1
0 “ s10, r̄

1
1 “ s11 ´ c

1
1dlogGpW q .

The if direction (ñ) follows easily from the equations and the fact that the final proof π verifies. For the
only-if direction, β ensures that pβG, βXq “ pA,Bq, c̄ ensures that the second user message is c. Finally,
because the final proof is valid, c10 ` c

1
1 “ HcpX, Ã, B̃, R

1
0,G, R

1
0,A, R

1
1q where R10,G, R

1
0,A, R

1
1 are defined as in

the verification algorithm. Then, the values of c̄10, s̄
1
0, r̄

1
1 ensures that the proof π is exactly what is in the

transcript ∆. [\

6 Instantiation from DDH

In this section, we instantiate our generic construction with a DDH-based KVAC by Chase, Meiklejohn, and
Zaverucha’s [CMZ14] and a corresponding oNIP scheme. We first introduce the underlying algebraic MAC
in Section 6.1. Then, we discuss the DDH-based KVAC in Section 6.2, and the oNIP in Section 6.3. Finally,
we discuss the SAAC instantiation in Section 5.4.

Global parameters generator. Following the syntax in Section 4.1, our global parameters generator,
denoted GenDDHp1

λq, runs pp,G,Gq Ð$ GGenp1λq, samples H Ð$ G˚, and returns parg “ pp,G,G, Hq. For

security of both KVAC and oNIP, we define the simulator SimGen which samples pp,G,Gq from GGenp1λq
and H “ vG with a trapdoor vÐ$ Z˚p . It is easy to see that the security of
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6.1 DDH-based MAC

In Figure 16, we describe a variant of the DDH-based MAC introduced by Chase, Meiklejohn, and Za-
verucha [CMZ14]. Everything is roughly the same, with the only difference being that zH is included in ipk,
which we justify later in Section 6.2. A tag for message m “ pmiq

`
i“1 is

pSw, Sx, Sy, Szq :“ pU Ð$ G, px0 `
ř`
i“1 ximiqU, py0 `

ř`
i“1 yimiqU, zUq

with the secret key containing scalars pxiq
`
i“0, pyiq

`
i“0, and z. The issuer’s public key includes pXi “ xiH,Yi “

yiHq
`
i“1 with H being the public parameters. The following theorem, proved in Section 6.5, establishes the

UFCMA security of MACDDH against any adversary with access to the OSVerDDH oracle (defined in Figure 16).
The verification of MACDDH can also be simulated by OSVerDDH, so in some sense we have shown a stronger
security notion for this scheme than prior works. An outline of the security proof for this scheme follows:

1. We generate the parameters and ipk in an indistinguishable way which allows us to simulate the
OSVerDDH oracle, and the winning condition at the end of the game, using the twin Diffie-Hellman tech-
nique [CKS08]. In this step, we deviate from [CMZ14] in how we generate ipk to be able to simulate
OSVerDDH instead of the verification algorithm MACDDH.Ver

2. We show one-by-one that each MAC oracle query reveals nothing about x. To do this, we use DDH to
introduce noise into how we compute Sx which allows us to argue that each Sx is uniformly random.

3. After all of these transitions, the verification equation uses a value (essentially x0) which is information-
theoretically hidden. At this point, a forgery can be valid with only negligible probability.

Theorem 6.1. Let GGen be a group generator that outputs groups of prime order p “ ppλq, and let
MACDDH “ MACDDHrGGens. Additionally, let OSVerDDH be as described in Figure 16. For any adversary
A making at most qOSVerDDH

“ qOSVerDDH
pλq queries to OSVerDDH and qm “ qmpλq queries to MACDDH.M and

running in time tA “ tApλq, there exists an adversary BDDH (technically qm different ones) running in time
roughly tA such that

Advufcma
MACDDH,OSVerDDH

pA, λq ď qm ¨ Adv
ddh
GGenpBDDH, λq `

3qOSVerDDH
` 3

p

6.2 DDH-based KVAC

We first discuss the DDH-based KVAC in [CMZ14], building on top of MACDDH. The credential for m is
exactly a MACDDH tag. For blind issuance in [CMZ14], the user ElGamal encrypts each of their attributes,
and the issuer homomorphically creates a tag for the user to decrypt.

To show a credential: the user randomizes the tag as pS1w “ rSw, Cx “ rSx` rxH,Cy “ rSy ` ryH,S
1
z “

rSzq for r Ð$ Z˚p , rx, ryÐ$ Zp. Then, the user computes commitments Ci “ miU
1 ` riG to their attributes.

With U 1 and pCiq
`
i“1, the issuer can use their secret key to compute (for example) Ṽx “ x0U

1`
ř`
i“1 xiCi “

px0`
ř`
i“1 ximiqU

1`
ř`
i“1 riXi which is close to Cx, but with added randomness from the blinding. Hence, the

user also sends Γx :“
ř`
i“1 riXi ´ rxH (and similarly Γy). The issuer checks that Cx`Γx “ Ṽx (respectively

for yi and Cy, Γy, Ṽy). This is the key-dependent part of the verification. The user also includes a publicly
verifiable proof of knowledge of representations of pCiq

`
i“1, Γx, Γy.

Our KVACDDH, described in Figure 17, then made the following changes to their scheme:
1. Public key: In [CMZ14], Pedersen commitments of x0, y0, z are included in the public key, allowing the

issuer to prove correct credential issuance. In this case, the underlying secret key is uniquely determined
(binding is computational), which is insufficient for our SAAC compiler. We (a) instead include ElGamal
ciphertexts of x0, y0 (security is not affected), and (b) publish Z “ zH in the clear. For the latter, we
noticed that revealing Z does not affect the underlying MAC’s security, saving us one group element.7

7 Intuitively, this is because pU, zUq is included in every tag anyways.
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MACDDH.Setupp1
λ
q :

pp,G,Gq Ð GGenp1λq

H Ð$ G
return pp,G,G, Hq

MACDDH.KeyGenpp,G,G, Hq :

z Ð$ Zp

x :“ pxiq
`
i“0 Ð$ Z``1

p

y :“ pyiq
`
i“0 Ð$ Z``1

p

for i P r`s do

Xi Ð xiH;Yi Ð yiH

Z Ð zH

return psk :“ pz,x,yq, ipk :“ ppXiq
`
i“1, pYiq

`
i“1, Zqq

MACDDH.Mppar, sk,m P Z`pq

r Ð$ Zp
Sw Ð rG;Sz Ð rzG

Sx Ð rpx0 `
ř`
i“1mixiqG

Sy Ð rpy0 `
ř`
i“1miyiqG

return pSw, Sx, Sy, Szq

MACDDH.Verppar, sk,m P Z`p, σq

pSw, Sx, Sy, Szq Ð σ

return pzSw “ Szq^

ppx0 `
ř`
i“1mixiqSw “ Sxq^

ppy0 `
ř`
i“1miyiqSw “ Syq ^ Sw ‰ 0G

Oracle OSVerDDHppp,G, G,Hq, sk, Sw, Sz, pCiq`i“1, ζx, ζyq

return Sz “ zSw ^ ζx “ x0Sw `
ř`
i“1 xiCi^

ζy “ y0Sw `
ř`
i“1 yiCi ^ Sw ‰ 0G

Fig. 16. MACDDH “ MACDDHrGGens Scheme and Oracle OSVerDDH.

2. Blind Issuance: In [CMZ14], users individually encrypt each mi, and let the issuer computes and sends
ciphertexts of Sx, Sy. Observe that pk contains Xi “ xiH, Yi “ yiH for i P r`s, so the user can compute

ciphertexts of
ř`
i“1miXi and

ř`
i“1miYi, while the issuer can still compute ciphertexts of Sx, Sy. Now,

the issuer’s communication is independent of ` as it only has to compute a proof with respect to a smaller
witness.

Relevant proof systems. Our KVAC makes use of proof systems Πcom, Πσ, and Πpub for the relations
Rcom,Rσ,Rpub, respectively defined below.

Rcom :“

#

pp rEx, rEy, D, pXiq
`
i“1, pYiq

`
i“1, ψq,

pux, uy,m “ pmiq
`
i“1qq

:
rEx “ puxG, uxD `

ř`
i“1miXiq

rEy “ puyG, uyD `
ř`
i“1miYiq, ψpmq “ 1

+

Rσ :“

$

’

’

’

’

&

’

’

’

’

%

pEx, Ey, D, Sw, Sz, rEx, rEy, Z, ctx, ctyq,
pz, x0, y0, r

1, tx, ty, γx, γyqq
:

Z “ zH, r1Sw “ G,Sz “ zSw
rEx “ r1Ex ´ pγ0G, γ0D ` x0Hq
rEy “ r1Ey ´ pγ0G, γ0D ` y0Hq

ctx “ ptxG, txH ` x0Gq
cty “ ptyG, tyH ` y0Gq

,

/

/

/

/

.

/

/

/

/

-

Rpub :“

$

&

%

ppmiqiPI , pXiq
`
i“1, pYiq

`
i“1, Sw, pCiq

`
i“1, Γx, Γyq,

ppmiqiPr`szI , priq
`
i“1, rx, ryq

:

@i P r`s : Ci “ miSw ` riH

Γx “ p
ř`
i“1 riXiq ´ rxH

Γy “ p
ř`
i“1 riYiq ´ ryH

,

.

-

.

The first proof system Πcom is used for the user to prove knowledge of openings to the ciphertexts Ex, Ey
during issuance. We require Πcom to be straightline-extractable for a relaxed relation rRcom Ě Rcom defined as

rRcom :“

$

’

’

’

’

&

’

’

’

’

%

ppEx, Ey, D, pXiq
`
i“1, pYiq

`
i“1, ψq,

pux, uy,m “ pmiq
`
i“1qq

:

p
ř`
i“1miXi “

ř`
i“1miYi “ 0G ^

m ‰ 0q _

pEx “ puxG, uxD `
ř`
i“1miXiq ^

Ey “ puyG, uyD `
ř`
i“1miYiq ^

ψpmq “ 1q

,

/

/

/

/

.

/

/

/

/

-

.

and it is instantiated using a variant of the Fischlin transform [Fis05, Ks22], which we describe in Appendix C.
The proof systems Πσ and Πpub are used for proving validity of the issued credentials by the issuer and
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KVACDDH.Setupp1
`, parg “ pp,G,G, Hqq

Select H0,H1,H2 : t0, 1u
˚
Ñ Zp

Πσ Ð LinrH1,Gs;Πpub Ð LinrH2,Gs
return par “ pp,G,G, H,H0,H1,H2q

KVACDDH.KeyGenpparq

x,yÐ$ Z``1
p ; z, tx, ty Ð$ Zp

ctx Ð ptxG, txH ` x0Gq; cty Ð ptyG, tyH ` y0Gq

skÐ px,y, z, tx, tyq

pkÐ pX :“ pXiq
`
i“1,Y :“ pYiq

`
i“1, Z, ctx, ctyq

return psk, pkq

KVACDDH.Issppar, x, ψ, µ “ p rEx, rEy, D, πcomqq

if Πcom.Ver
H0 pp rEx, rEy, D,X,Y , ψq, πcomq “ 0

then abort

r Ð$ Z˚p ; γx, γy Ð$ Zp;Sw Ð rH, Sz Ð rZ

Ex Ð rppγxG, γxD ` x0Hq ` rExq

Ey Ð rppγyG, γyD ` y0Hq ` rEyq

πσ Ð Πσ.Prove
H1 ppM

σ
G,H,Sw,D,Ex,Ey

,

p rEx, rEy, Z, ctx, ctyqq, pz, x0, y0, r
´1
, tx, ty, γx, γyqq

return pSw, Ex, Ey, Sz, πσq

KVACDDH.SVerkeyppar, sk, τkeyq

pS
1
w, S

1
z, pCiq

`
i“1, Cx, Cy, Γx, Γyq Ð τkey

return S
1
w ‰ 0G ^ S

1
z “ zS

1
w

^ Γx ` Cx “ px0S
1
w `

ř`
i“1 xiCiq

^ Γy ` Cy “ py0S
1
w `

ř`
i“1 yiCiq

KVACDDH.SVerpubppar, pk, τkey, πpub, φI,a, nonceq

return Πpub.Ver
H2 ppM

pub

G,H,S1w,X,Y
, ppCiqiPr`szI ,

pCi ´ aiS
1
wqiPI , Γx, Γyqq, πpub, pφI,a, nonceqq

KVACDDH.U1ppar, pk,m P Z`p, ψq
d, ux, uy Ð$ Zp;D Ð dG

rEx Ð puxG, uxD `
ř`
i“1miXiq

rEy Ð puyG, uyD `
ř`
i“1miYiq

πcom Ð Πcom.Prove
H0 pp rEx, rEy, D,X,Y , ψq,

pux, uy,mqq

return µ :“ p rEx, rEy, D, πcomq

KVACDDH.U2pimsg “ pSw, Ex, Ey, Sz, πσqq

if Πσ.Ver
H1 ppM

σ
G,H,Sw,D,Ex,Ey

,

p rEx, rEy, Z, ctx, ctyq, πσq “ 0

then abort

pEx,0, Ex,1q Ð Ex; pEy,0, Ey,1q Ð Ey

Sx Ð Ex,1 ´ dEx,0;Sy Ð Ey,1 ´ dEy,0

return σ Ð pSw, Sx, Sy, Szq

KVACDDH.Showkeyppar, pk,m, σq

r
1
, rx, ry Ð$ Zp; r :“ priq

`
i“1 Ð$ Z`p

pS
1
w, S

1
x, S

1
y, S

1
zq Ð r

1
σ

for i P r`s : Ci Ð miS
1
w ` riH

Cx Ð S
1
x ` rxH;Cy Ð S

1
y ` ryH

Γx Ð
ř`
i“1 riXi ´ rxH

Γy Ð
ř`
i“1 riYi ´ ryH

return pS
1
w, S

1
z, pCiq

`
i“1, Cx, Cy, Γx, Γyq

KVACDDH.ShowpubpφI,a, nonceq

for i P I : C
1
i Ð Ci ´ aiS

1
w

πpub Ð Πpub.Prove
H2 ppM

pub

G,H,S1w,X,Y
,

ppCiqiPr`szI , pC
1
iqiPI , Γx, Γyqq,

ppmiqiPr`szI , r, rx, ryq, pφI,a, nonceqq

return πpub

Fig. 17. Scheme KVACDDH “ KVACDDHrGenDDHs.Πcom, Πσ, Πpub are NIZKs for Rcom,Rσ,Rpub defined in Section 6,
respectively. States are omitted for readability – subsequent algorithms can use values defined before (e.g. KVACBBS.U2

can use variables from KVACBBS.U1). In Showpub, the value nonce is bound to πpub.

showing the credentials by the users, respectively. These proof systems are instantiated using the proof system
Lin for linear relations on G (described in Section 2), with the corresponding linear maps Mσ

G,H,Sw,D,Ex,Ey
and

Mpub
G,H,Sw,X,Y

for the relations Rσ and Rpub, analogously defined to what was done in Section 5.2 (omitting
the explicit representation for brevity).

Key-depedent verification induced-relation.The algorithm SVerkey induces the relation family RDDH

(defined below), parameterized by parg “ pp,G,G, Hq (which we omit in the subscript), for which we give a
corresponding oNIP protocol.

RDDH :“

$

’

’

&

’

’

%

pppk “ ppXiq
`
i“1, pYiq

`
i“1, Z, ctx, ctyq,

τkey “ pSw, pCiqiPr`s, ζx, ζy, Szqq
sk “ ppxiq

`
i“0, pyiq

`
i“0, z, tx, tyqq

:

Z “ zH, Sw ‰ 0G, Sz “ zSw
@i P r`s : Xi “ xiH,Yi “ yiH

ζx “ x0Sw `
ř`
i“1 xiCi, ζy “ y0Sw `

ř`
i“1 yiCi

ctx “ ptxG, txH ` x0Gq, cty “ ptyG, tyH ` y0Gq

,

/

/

.

/

/

-

. (2)

Note that ζx and ζy represent Cx ` Γx and Cy ` Γy and can be computed from the output τkey of Showkey.
We further note that checking if the augmented statement τkey “ pSw, pCiqiPr`s, ζx, ζy, Szq can be done using
the oracle OSVerDDH described in Figure 17.

Correctness. Correctness of KVACDDH follows from η-correctness of Πcom, perfect correctness of Πσ and
Πpub, and inspecting the algebra. In particular, the correctness error of the scheme is ηpλq.
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Unforgeability.The following lemma establishes the unforgeability of KVACDDH against adversaries with
access to the OSVerDDH oracle (described in Figure 17). Then, we give a reduction from unforgeability of
MACDDH (established in Theorem 6.1) to that of KVACDDH’s. We remark that with our stronger unforgeability
requirement of KVAC, there are several non-trivial steps in the proof:

(1) We need to take into account the attributes extracted that is in the relaxed relation rRcom but not in

Rcom. To rule out this event, we give a reduction to the security of MACDDH using the structure of rRcom.
(2) We give a careful rewinding argument to extract a MAC forgery from the KVAC forgery. Our reduction

simulates the showings honest users by querying for a tag on uniformly random attributes. Crucially,
these attributes need to be hidden from the view of the adversary, in order for the extracted forgery to
be fresh with high probability.

Lemma 6.2 (Unforgeability of KVACDDH). Let GenDDH be a global parameters generator defined in Sec-
tion 6 which outputs a group of prime order p “ ppλq and a generator H, Extcom be an extractor for knowledge
soundness of Πcom, and Simσ be a ZK simulator for Πσ. Define ExtDDH :“ pExtSetup,Extissq as follows:

‚ ExtSetup on input parg “ pp,G,G, Hq, 1` returns par “ pp,G,G, H, `q without any trapdoor.

‚ Extiss on input pµ “ p rEx, rEy, D, πcomq, ψq returns pux, uy,mq Ð ExtH0
compQ, pX,Y , rEx, rEy, D, ψq, πcomq.

Then,

‚ For any adversary A, Advpar-indistKVACDDH,ExtDDH
pA, λq “ 0.

‚ Let A be an adversary against the pExtDDH,OSVerDDHq-unforgeability of KVACDDH “ KVACDDHrGGens,
running in time tA “ tApλq making at most qh0 “ qh0pλq, qh1 “ qh1pλq, qh2 “ qh2pλq, qiss “ qisspλq, qShow “
qShowpλq, qOSVerDDH

“ qOSVerDDH
pλq queries to H0,H1, H2, Iss, SHkey, and OSVerDDH respectively. Let q “ qh2

`

qiss ` 2qShow. There exist adversaries Bufcma, B1ufcma (playing the OSVerDDH-UFCMA game of MACDDH),
Bcom (playing the KSND game of Πcom), BDDH (playing the DDH game), Bdlog, B1dlog (playing the DL
game), and Bσ (playing the ZK game of Πσ) such that

AdvunfKVACDDH,ExtDDH,OSVerDDH
pA, λq ď

d

q ¨

ˆ

Advufcma
MACDDH,OSVerDDH

pB1ufcma, λq `
1

p`

˙

` Advdlog
GGenpBdlog, λq ` Advddh

GGenpBDDH, λq

` Advksnd
Πcom,ExtcompBcom, λq ` Advufcma

GGen,OSVerDDH
pBufcma, λq

` AdvzkΠσ,Simσ pBσ, λq `
q2 ` q ` 3

p
.

Also, Bufcma,B1dlog run in time roughly tA, and B1ufcma,Bdlog run in time roughly 2tA. Moreover, Bcom

makes at most qh0
queries to H0 and qiss queries to OExt, while Bσ makes at most qh1

queries to H1.
Additionally, Bufcma makes at most qiss and qOSVerDDH

to its Iss and OSVerDDH, respectively, and B1ufcma

makes at most 2qiss and 2qOSVerDDH
to its Iss and OSVerDDH, respectively.

Anonymity. The following lemma establishes anonymity of KVACBBS which follows from zero-knowledge
properties of Πcom, Πpub, soundness of Πσ (to ensure that the maliciously issued credential is valid), and the
DDH assumption (which comes into play when arguing that the ciphertexts Ex, Ey sent by the user during
issuance hide the underlying attributes m). The formal proof is given in Section 6.7.

Lemma 6.3 (Anonymity of KVACDDH). Let GenDDH be a global parameters generator defined in Section 6
which outputs a group of prime order p “ ppλq and a generator H. Let SimGen be the simulator for the
global parameters generator GenDDH and Simcom,Simpub be the simulators for the zero-knowledge properties
of Πcom, Πpub. There exists a simulator SimDDH “ SimrSimcom,Simpubs, described in Figure 18, such that

‚ For any adversary A, Advpar-indistKVACDDH,SimDDH
pA, λq “ 0.
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SimSetupp1
`, parg “ pp,G,G, Hqq:

par Ð pp,G,G, Hq
return ppar, tdKVAC “ Kq

SimU1
ptd “ v, pk, ψq:

parse pX,Y , Z, ctx, ctyq Ð pk

ux, u
1
x, uy, u

1
y Ð$ Zp

DÐ$ G
rEx Ð puxG, u

1
xDq,

rEy Ð puyG, u
1
yGq

// Simcom programs H0

πcom Ð$ SimH0
compD,Ex, Ey,X,Y , ψq

return pµÐ pD, rEx, rEy, πcomq,

stSim Ð pD, rEx, rEyqq

SimU2
pstSim, imsgq:

parse pSw, Ex, Ey, Sz, πσq Ð imsg

if Πσ.Ver
H1 pppk, D, rEx, rEy,

Sw, Ex, Ey, Szq, πσq “ 0 then

return K

return 1

SimShowp“key”, td “ ptdg “ v, tdKVAC “ Kq, pkq:

parse pX,Y , Z, ctx, ctyq Ð pk

X0 Ð ctx,1 ´ vctx,0;Y0 Ð cty,1 ´ vcty,0

rw Ð$ Z˚p ; r1, . . . , r`Ð$ Zp;Cx, Cy Ð$ G

S
1
w Ð rwG;S

1
z Ð rv

´1
Z

for i P r`s : Ci Ð riH

Γx Ð rwX0 `
ř`
i“1 riXi ´ Cx

Γy Ð rwY0 `
ř`
i“1 riYi ´ Cy

τkey Ð pS
1
w, pCiqiPr`s, Cx, Cy, Γx, Γy, S

1
zq

return pτkey, st “ ptd, pk, τkeyqq

SimShowp“pub”, st, φI,a, nonceq:

parse pS
1
w, pCiqiPr`s, Cx, Cy, Γx, Γy, S

1
zq Ð τkey

// Simpub programs H2

πpub Ð Sim
H2
pubppM

pub

G,H,S1w,X,Y
, ppCiqiPr`szI , Γx, Γyqq, pφI,a, nonceqq

return πpub

Fig. 18. Simulator SimDDH “ SimrSimcom,Simpubs

‚ For any adversary A playing the Anon game of KVACDDH making at most qShow “ qShowpλq, qh0 “

qh0
pλq, qh1

“ qh1
pλq, qh2

“ qh2
pλq to the oracles SHkey,H0,H1,H2, respectively, and running in time

tA “ tApλq, there exist adversaries Bcom,Bpub (playing the ZK game of Πcom and Πpub, resp.), Bσ
(playing the soundness game of Πσ), and BDDH (playing the DDH game) such that

AdvanonKVACDDH,SimGen,SimDDH
pA, λq ď AdvzkΠcom,Simcom

pBcom, λq ` AdvzkΠpub,Simpub
pBpub, λq

` Advddh
GGenpBDDH, λq ` 2AdvsoundΠσ pBσ, λq `

1

p´ 1
.

Additionally, Bcom makes at most qh0 queries to H0, Bσ makes at most qh1 queries to H1, and Bpub makes
at most qh2 queries to H2 and qShow queries to its prover oracle. Moreover, BDDH runs in time roughly
tA.

Integrity and validity of key generation. The following two lemmas establish the integrity (with
respect to the simulators SimGen,SimDDH defined in Lemma 6.3) and validity of key generation (with respect
to the extractor ExtDDH defined in Lemma 6.2) for KVACDDH.

Lemma 6.4 (Validity of Key Generation of KVACDDH). Let GenDDH and ExtDDH be as defined in
Lemma 6.2. Then, KVACDDH satisfies validity of key generation with respect to Ext.

Proof. Note that since ExtDDH generates the public parameters as in Setup, we will consider any public
keys pk generated honestly. Recall that the public keys are of the form pX,Y , Z, ctx, ctyq. Then, since
G,H are generators of G, we have that there exists a unique secret key sk “ px,y, z, tx, tyq such that
Xi “ xiH,Yi “ yiH for i P r`s, Z “ zH, and ctx “ ptxG, txH ` x0Gq, cty “ ptyG, tyH ` y0Gq. Therefore,
the validity of key generation follows immediately. [\

Lemma 6.5 (Integrity of KVACDDH). Let GenDDH,SimGen, and SimDDH be as defined in Lemma 6.3. Let
A be an adversary playing the integrity of issued credentials game of KVACBBS with respect to the simulators
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SimGen and SimDDH making at most qh1 “ qh1pλq queries to H1. There exists an adversary B against the
soundness of Πσ making at most qh1 queries to H1 such that

AdvintegKVACDDH,SimGen,SimDDH
pA, λq ď AdvsoundΠσ pB, λq .

Proof. First, we note that SimGen returns pp,G,G, Hq which is identically distributed to Gen. Now, consider
interaction with a malicious issuer as in the integrity game such that

‚ The adversary on input parKVAC, td “ ptdg, tdKVACq, generated from SimSetup, picks its own public key pk,
a vector of attributes m P Z`p and a predicate φ such that φpmq “ 1.

‚ The honest user computes D Ð dG for dÐ$ Zp and rEx Ð psxG, sxD `
ř`
i“1miXiq, rEy Ð psyG, syD `

ř`
i“1miYiq for sx, syÐ$ Zp along with a proof of knowledge πcom.

‚ The adversary replies with pSw, Ex, Ey, Sz, πσq. Then, the user checks πσ uses d to compute Sx Ð
E1x,1 ´ dE

1
x,0, Sy Ð E1y,1 ´ dE

1
y,0.

Then, consider the public key pk and τkey “ pS
1
w, pCiqiPr`s, Cx, Cy, Γx, Γy, S

1
zq such that ppk, τkeyq R LV,parg .

Since the public key pk “ pX,Y , Z, ctx, ctyq fixes the underlying secret key px,y, z, tx, tyq, ppk, τkeyq R LV,parg
implies that one of the following is true:

Cx ` Γx ‰ x0S
1
w `

ÿ̀

i“1

xiCi _ Cy ` Γy ‰ y0S
1
w `

ÿ̀

i“1

yiCi _ S1z ‰ zS1w . (3)

Next, suppose that Sw, Ex, Ey, Sz which the issuer sends during the issuance protocol is such that Sw “

rH,Ex “ pγxG, γxD ` x0Swq ` r rEx, Ey “ pγyG, γyD ` x0Swq ` r rEy, and Sz “ rzH for some r P Z˚p , then

Sx “ rpx0 `
ř`
i“1mixiqH,Sy “ rpy0 `

ř`
i“1miyiqH. With a similar argument from the anonymity proof,

we have that this contradicts Equation (3).
Therefore, if ppk, τkeyq R LV,parg , we have that pSw, Ex, Ey, Szq does not satisfy the equations defined by

Rσ, and A breaks the soundness of πσ, since the proof verifies. Hence, this implies the lemma. [\

6.3 oNIP for DDH-based instantiation

In this section, we give the protocol oNIPDDH “ oNIPrGenDDH,RDDHs, in Figure 19 for the family of relations
RDDH described in Equation (2), containing a statement pk, an augmented statement τkey and witness sk.

We explicitly note that the relation induces the linear maps MCore and MAug “MAug,Sw,pCiq`i“1
, such that

MCoresk “ pk,MAugsk “ pζx}ζy}Szq. More specifically, MCore and MAug map elements from Z2``5
p to G2``5

and G3, respectively, such that

MCorepx}y}z}tx}tyq “ ppxiHqiPr`s}pyiHqiPr`s}zH}txG}txH ` x0G}tyG}tyH ` y0Gq

MAugpx}y}z}tx}tyq “ px0Sw `
ř

iPr`s xiCi}y0Sw `
ř

iPr`s yiCi}zSwq .

Note that MCore is a bijection since G and H are generators of G and the public key has unique underlying
secret key.

Our oNIPDDH construction follows a similar structure to oNIPBBS relying on a blinded OR-proof of either
(1) membership of the induced language LRDDH

or (2) knowledge of discrete logarithm of public parameters
W . The key difference lies in the first move, where the user rerandomizes the augmented statement pS1w,
pC 1iq

`
i“1, ζ

1
x, ζ

1
y, S

1
zq by computing Sw “ αS1w, Ci “ αC 1i ` βiH with random scalars α, β1, . . . , β` and uses

X,Y in the public key to compute ζx “ αζ 1x `
ř`
i“1 βiXi, ζy “ αζ 1y `

ř`
i“1 βiYi, Sz “ αS1z, which still

preserves the membership of the language. The issuer then checks whether the rerandomized statement is in
the language.

The following theorem then establishes the security properties of oNIPDDH with the proof given in Sec-
tion 6.8. Most of the proofs follow from standard techniques as with oNIPBBS, with an exception of oblivious-
ness where we inherently requires the global trapdoor v to efficiently simulate honest users without knowing
the augmented statement τkey.
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Algorithm oNIPDDH.Iss1pparoNIP, sk, umsg1q:

parse pSw, pCiq
`
i“1, ζx, ζy, Szq Ð umsg1

if M
Aug,Sw,pCiq

`
i“1

sk ‰ pζx}ζy}Szq

then abort

s1, c1 Ð$ Zp; r0 Ð$ Z2``5
p

R0,Core ÐMCorer0

R0,Aug ÐM
Aug,Sw,pCiq

`
i“1

r0

R1 Ð s1G´ c1W

return pR0,Core,R0,Aug, R1q

Algorithm oNIPDDH.Iss2pcq:

c0 Ð c´ c1; s0 Ð r0 ` c0 ¨ sk

return pc0, s0, s1q

Algorithm oNIPDDH.U3pc0, s0, s1q:

c1 Ð c´ c0

if pR0,Core ` c0 ¨ pk ‰MCores0q _

pR0,Aug ` c0 ¨ pζx}ζy}Szq ‰

M
Aug,Sw,pCiq

`
i“1

s0q _

pR1 ` c1W ‰ s1Gq then abort

c
1
0 Ð c0 ` γ0; s

1
0 Ð s0 ` δ0

c
1
1 Ð c1 ` γ1; s

1
1 Ð s1 ` δ1

return π “ pc
1
0, c

1
1, s

1
0, s

1
1q

Algorithm oNIPDDH.VerpparoNIP, ppk, τkeyq, πq:

parse pSw, pCiq
`
i“1, ζx, ζy, Szq Ð τkey

parse pc0, c1, s0, s1q Ð π

R0,Core ÐMCores0 ´ c0pk

R0,Aug ÐM
Aug,Sw,pCiq

`
i“1

s0 ´ c0pζx}ζy}Szq

R1 Ð s1G´ c1W

cÐ HcpH, pk, τkey,R0,Core,R0,Aug, R1q

return pc0 ` c1 “ cq

Algorithm oNIPDDH.Setuppparg “ pp,G,G, Hqq:
W Ð$ G

Select Hc : t0, 1u
˚
Ñ Zp

return paroNIP “ pp,G,G, H,W,Hcq
Algorithm oNIPDDH.U1pparoNIP, ppk, τkeyqq:

parse ppXiq
`
i“1, pYiq

`
i“1, Z, ctx, ctyq Ð pk

parse pS
1
w, pC

1
iq
`
i“1, ζ

1
x, ζ

1
y, S

1
zq Ð τkey

parse MAug ÐM
Aug,S1w,pC

1
i
q`
i“1

// Randomize the augmented statement.

if S
1
w “ 0G then abort

αÐ$ Z˚p ,βÐ$ Z`p
Sw Ð αS

1
w;Sz Ð αS

1
z

for i P r`s do Ci Ð αC
1
i ` βiH

ζx Ð αζ1x `
ř`
i“1 βiXi

ζy Ð αζ1y `
ř`
i“1 βiYi

return pSw, Sz, pCiq
`
i“1, ζx, ζyq

Algorithm oNIPDDH.U2pR0,Core,R0,Aug, R1q:

// Derandomize R0,Aug.

parse ppRx,i, Ry,iq
`
i“1, Rz

Rct,x, Rct,yq Ð R0,Core

parse pRζ,x, Rζ,y, RS,zq Ð R0,Aug

R̄ζ,x Ð α´1
pRζ,x ´

ř`
i“1 βiRx,iq

R̄ζ,y Ð α´1
pRζ,y ´

ř`
i“1 βiRy,iq

R̄0,Aug Ð pR̄ζ,x}R̄ζ,y}α
´1RS,zq

// Blind R0, R1.

δ1, γ0, γ1 Ð$ Zp; δ0 Ð$ Z2``6
p

R
1
0,Core Ð R0,Core `MCoreδ0 ´ γ0pk

R
1
0,Aug Ð R̄0,Aug `MAugδ0 ´ γ0pζ

1
x}ζ

1
y}S

1
zq

R
1
1 Ð R1 ` δ1G´ γ1W

c
1
Ð$ HcpH, pk, τkey,R

1
0,Core,R

1
0,Aug, R

1
1q

return c “ c
1
´ γ0 ´ γ1

Fig. 19. Oblivious proof issuance oNIPDDH “ oNIPrGenDDH,RDDHs. We omitted the user and issuer’s states and assume
that any variable defined in the previous round is accessible in the next round.

Theorem 6.6. Let GenDDH be a global parameters generator defined in Section 6 and OSVerDDH be the oracle
in Figure 17. Then, oNIPDDH “ oNIPrGenDDH,RDDHs satisfies perfect correctness, soundness in the ROM
assuming DL, perfect OSVerDDH-zero-knowledge, and perfect obliviousness for valid statements with respect to
the simulator SimGen.

6.4 DDH-based SAAC

The following corollary establishes the security of SAACDDH, a DDH-based instantiation of our generic SAAC
construction from Section 4.2. The corollary immediately follows from Theorems 4.2 and 6.6 and Lemmas 6.2
to 6.5.

Corollary 6.7. Let SAACDDH “ SAACrGenDDH,KVACDDH, oNIPDDHs be a SAAC scheme from KVACDDH and
oNIPDDH according to Theorem 4.2. Then, SAACDDH satisfies correctness, unforgeability, and anonymity (both
in the ROM and assuming DDH).
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Integrity. Similar to SAACBBS, although we do not give a formal proof, strong integrity of SAACDDH follows
from the structure of KVACDDH’s public key, which uniquely fixes the secret key, and the soundness of Πσ,
which ensures validity of the (possibly maliciously) issued credentials.

6.5 Unforgeability Proof of MACDDH

Proof (Theorem 6.1). The proof is similar to Chase, Meiklejohn, and Zaverucha’s UFCMVA proof [CMZ14],
except our version of the scheme is slightly different since we publish zH, we consider a stronger security
notion (UFCMA in the presence of OSVerDDH), and we go about certain steps of the proof differently. Consider
the following sequence of games.

G1pλq: This is exactly OSVerDDH-UFCMA for MACDDH.
G2pλq: We modify Setup to trapdoor H: do β Ð$ Zp and set H Ð βG. If β “ 0, then abort. Also, modify

KeyGen to do the following:
1. px1iq

`
i“0, py

1
iq
`
i“0, pviq

`
i“0 Ð$ Z``1

p and z, s, tÐ$ Zp
2. Set xi Ð

x1i
β `vi and yi Ð y1i´sxi for all i P r`s. Set y0 Ð

y10
β ´sx0 and z Ð z1

β ´t. Set Xi Ð x1iG`viH,

Yi Ð y1iH ´ sXi, and Z Ð z1G´ tH.
Lastly, in MACDDH.M, compute everything relative to H instead of G, i.e., do Sw Ð rH, Sz Ð rzH,
Sx Ð px0 `

ř`
i“1 ximiqSw and Sy Ð py0 `

ř`
i“1 yimiqSw. Everything is distributed exactly the same

assuming that we do not abort due to β “ 0, which occurs with probability 1{p, so

PrrG2
A
pλq “ 1s ě PrrG1

A
pλq “ 1s ´

1

p
.

G3pλq: We handle queries to OSVerDDH like so: on input ppar, sk, ζx, ζy, pCiq
`
i“1, Sw, Szq compute b1 Ð z1pζy`

sζx´
ř`
i“1 y

1
iCiq “ y10pSz ` tSwq and bÐ pzSw “ Sz ^ ζx “ x0Sw `

ř`
i“1 xiCi^ ζy “ y0Sw `

ř`
i“1 yiCi.

If b ‰ b1, then abort. Otherwise, output b. This change is perfect unless an abort happens. Call Ei the
event that the game aborts on the i-th query to OSVerDDH, and fix i P rqOSVerDDH

s. We will show that Ei
occurs with negligible probability. Event Ei occurs only if the game has not aborted in a previous step,
which means that, up to the i-th query, the game is perfectly indistinguishable from G3 . Suppose that
b “ 1, which implies Sz “ zSw, ζx “ xx, Sw}Cy, and ζy “ xy, Sw}Cy. Observe that

ζy “ xy, Sw}Cy “ xy
1,

1

β
Sw}Cy ´ sxx, Sw}Cy

“ xy1,
1

β
Sw}Cy ´ sζx ,

hence z1pζy ` sζxq “ βpz ` tqpxy1, 1
βSw}Cyq “ y10pSz ` tSwq ` z1p

ř`
i“1 y

1
iCiq, so it must be the case

that b1 “ 1 as well. On the other hand, suppose that b1 “ 1, meaning that z1pζy ` sζx ´
ř`
i“1 y

1
iCiq “

y10pSz ` tSwq. Define ∆x :“ ζx ´ xx, Sw}Cy, ∆y :“ ζy ´ xy, Sw}Cy, and ∆z :“ zSw ´ Sz, and note that
b “ 1 if only if ∆x, ∆y, ∆z are all zero. We have

z1pζy ` sζx ´
ÿ̀

i“1

y1iCiq “ y10pSz ` tSwq

z1

˜

∆y ` xy, Sw}Cy ` s p∆x ` xx, Sw}Cyq ´
ÿ̀

i“1

y1iCi

¸

“ y10pzSw ´∆z ` tSwq

z1

˜

∆y ` xyy, Sw}C ` s p∆x ` xx, Sw}Cyq ´
ÿ̀

i“1

pyi ` sxiqCi

¸

“ y10pzSw ´∆z ` tSwq

z1

˜

∆y ` xy, Sw}Cy ` s p∆x ` xx, Sw}Cyq ´
ÿ̀

i“1

pyi ` sxiqCi

¸

“ y10pzSw ´∆z ` tSwq
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z1 p∆y ` s∆x ` py0 ` sx0qSwq “ y10pzSw ´∆z ` tSwq

z1
ˆ

∆y ` s∆x `
y10
β
Sw

˙

“ y10pzSw ´∆z ` tSwq

βpz ` tq

ˆ

∆y ` s∆x `
y10
β
Sw

˙

“ y10pzSw ´∆z ` tSwq

βpz ` tq

ˆ

∆y ` s∆x `
y10
β
Sw

˙

“ y10ppz ` tqSw ´∆zq

βpz ` tq p∆y ` s∆xq “ y10p´∆zq

pz ` tq p∆y ` s∆xq “ py0 ` sx0qp´∆zq .

Recall that, up until the i-th query to OSVerDDH, everything is exactly the same as in G3. This means
that s and t are information-theoretically hidden from A’s view as none of the values y1i, y

1
0, or z1 were

used in G3. We have y0 ` sx0 ‰ 0 with probability 1´ 1{p, and in this case

pz ` tqp∆y ` s∆xq

y0 ` sx0
“ ´∆z . (4)

Additionally, ∆y ` s∆x ‰ 0 with probability 1 ´ 1{p due to the fact that s is perfectly hidden from
A and uniform in Zp. Lastly, since t is also hidden from A and uniform in Zp, so is the left-hand side

of Equation (4). Thus ´∆z “ 0 with probability 1{p. In total, we have PrrEis ď
1
p `

´

1´ 1
p

¯

1
p `

´

1´ 1
p

¯2
1
p ď

3
p . Then

ˇ

ˇ

ˇ
PrrG3

A
pλq “ 1s ´ PrrG2

A
pλq “ 1s

ˇ

ˇ

ˇ
ď PrrE1 _ E2 _ . . ._ EqOSVerDDH

s

“

qOSVerDDH
ÿ

i“1

PrrEis ď
3qOSVerDDH

p
.

G4pλq: We handle queries to OSVerDDH like so: on input pζx, ζy, pCiq
`
i“1, Sw, Szq, output 1 if and only if

z1pζy ` sζx ´
ř`
i“1 y

1
iCiq “ y10pSz ` tSwq. We have

PrrG4
A
pλq “ 1s ě PrrG3

A
pλq “ 1s ,

as the only way the games can differ is that the adversary can cause the game to abort in G3 , and if this
does not happen then everything is exactly the same, so an adversary that wins in the previous game
necessarily wins in this game.

G5pλq: Instead of MACDDH.Ver at the end of the game, we check

y10pS
˚
x ´ xv, 1}m

˚yS˚wq “ xx
1, 1}m˚ypS˚y ` sS

˚
x ´ xy

1, 0}m˚yq .

This condition is implied by the previous winning condition. We can see this by plugging in definitions
and winning conditions to the left-hand side as

y10pS
˚
x ´ xv, 1}m

˚yS˚wq “ y10pxx, 1}m
˚ySw ´ xv, 1}m

˚yS˚wq

“ y10ppxx
1, 1}m˚y{β ` xv, 1}m˚yqSw ´ xv, 1}m

˚ySwq

“ xx1, 1}m˚ypy10{βqS
˚
w

“ xx1,m˚ypS˚y ` sS
˚
x ´ xy

1, 0}m˚ySwq .

Hence, an adversary that wins in the prior game must win in this game, meaning

PrrG5
A
pλq “ 1s ě PrrG4

A
pλq “ 1s .
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G6pλq: We now revert to H Ð$ G instead of generating a trapdoor. The only difference is that previously
the game would abort if β “ 0. Note that nowhere in the game do we use the values pxiq

`
i“0, pyiq

`
i“0 or

β anymore, this is because we compute

Sw “ rH

Sz “ rzH “ rpz1{β ´ tqH “ rpz1G´ tHq

Sx “ rpx0 `
ř`
i“1mixiqH “ rpx10G` v0H `

ř`
i“1miXiq

Sy “ rpy0 `
ř`
i“1miyiqH “ rpy10G´ spx

1
0G` v0Hq `

ř`
i“1miYiq

“ rpy10G`
ř`
i“1 y

1
imiHq ´ sSx

Hence,

PrrG6
A
pλq “ 1s ě PrrG5

A
pλq “ 1s ,

G7pλq: Consider a sequence of sub-games G6 “ G7,1 , . . . ,G7,qm “ G7 where G7,i is such that the first i´ 1
queries to MACDDH.M are computed in the following manner:
1. r, ω, χÐ$ Zp
2. Sw Ð ωH;Sz Ð rz1G´ tωH
3. Sx Ð χH,
4. Sy Ð ry10G` ω

ř`
i“1 y

1
imiH ´ sSx

and the rest are computed as in G6. To argue that A has roughly the same advantage in G7,i and G7,i`1

for all i P rqm ´ 1s, we need a few hybrids for each step. Fix i P rqm ´ 1s. Let G7,i,‹ be G7,i with the
change that on the i-th query a tag is computed as:
1. r, ω Ð$ Zp
2. Sw Ð ωH;Sz Ð rz1G´ tωH
3. Sx Ð rxx1, 1}myG` ωxv, 1}myH

4. Sy Ð ry10G` ω
ř`
i“1 y

1
imiH ´ sSx

We’ll first show that G7,i « G7,i,‹, and then show that G7,i,‹ « G7,i`1. The only difference between G7,i,‹

and G7,i is this tag for the i-th query; in particular, in G7,i the tag for the i-th query was computed as:
1. r Ð$ Zp
2. Sw Ð rH;Sz Ð rpz1G´ tHq
3. Sx Ð rxx, 1}myH “ rpxx1, 1}myG` xv, 1}myHq

4. Sy Ð rpy10G`
ř`
i“1 y

1
imiHq ´ sSx

Consider the reduction BDDH playing the DDH game, which on challenge pp,G,G, A,B,Cq simulates the
entire game to A with H Ð A and the following for the i-th tag oracle query:
1. Sw Ð C;Sz Ð z1B ´ tC
2. Sx Ð xx1, 1}myB ` xv, 1}myC

3. Sy Ð y10B `
ř`
i“1 y

1
imiC ´ sSx

If pA,B,Cq is a DDH triple then the above perfectly simulates G7,i. On the other hand, if A,B,C are
all sampled independently and uniformly at random from Zp then the above perfectly simulates G7,i`1.
We may conclude that

ˇ

ˇ

ˇ
PrrG7,i

A
pλq “ 1s ´ PrrG7,i,‹

A
pλq “ 1s

ˇ

ˇ

ˇ
ď Advddh

GGenpBDDH, λq .

We now argue that A behaves roughly the same in G7,‹ and G7,i`1. It suffices to show that xv, 1}my is
uniform in Zp and independent from all values in the game. The value v does not appear at any point prior
to the i-th MAC query. After this point, it is only used in two places: (1) future (i` 1, . . . , qm-th) MAC
queries, and (2) at the end of the game as part of the winning condition. Regarding (1), v is information-
theoretically hidden by x, and the tag oracle only uses x, not x1 or v. For (2), when A outputs pm˚ “

pm˚1 , . . . ,m
˚
` q, σ

˚ “ pS˚w, S
˚
x , S

˚
y , S

˚
wqq they win if m˚ R MsgQ and S˚x “ S˚wpxx

1, 1}m˚yG`xv, 1}m˚yHq
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among other conditions not involving v. As m ‰ m˚, there exists j P r`s such that mj ‰ m˚j . For any
α1, α2 P Zp, we have

Prrxv, 1}my “ α1 ^ xv, 1}m
˚y “ α2s

“ Prrxv, 1}my “ α1 | xv, 1}m˚y “ α2s ¨ Prrxv, 1}m
˚y “ α2s

“ Prrxv, 1}my ´ xv, 1}m˚y “ α1 ´ α2s ¨
1

p

“ Pr

«

ÿ̀

i“1

vipmi ´m
˚
i q “ α1 ´ α2

ff

¨
1

p

“ Pr

»

–vjpmj ´m
˚
j q “ α1 ´ α2 ´

ÿ

iPr`sztju

vipmi ´m
˚q

fi

fl ¨
1

p
“

1

p2
.

Where the final equality can be seen by viewing pviqiPr`sztju as fixed and taking the probability over the
random choice of vj ; the left-hand side is uniform in Zp (since mj ´m

˚
j ‰ 0) and equal to a fixed value.

This means that xv, 1}my and xv, 1}m˚y are independent. We have

ˇ

ˇ

ˇ
PrrG7

A
pλq “ 1s ´ PrrG6

A
pλq “ 1s

ˇ

ˇ

ˇ
ď qm ¨ Adv

ddh
GGenpBDDH, λq .

G8pλq: Finally, we have that A’s forgery pm˚ “ pm˚1 , . . . ,m
˚
` q, σ

˚ “ pS˚w, S
˚
x , S

˚
y , S

˚
wqq at the end of the

game has to satisfy

y10pS
˚
x ´ xv, 1}m

˚yS˚wq “ xx
1, 1}m˚ypS˚y ` sS

˚
x ´ xy

1, 0}m˚ySwq

Assuming that y10 ‰ 0, which occurs with probability 1´1{p, since v0 is information-theoretically hidden
due to the fact that v0 and x0 are never used in any value given to A and S˚w ‰ 0, their output can only
satisfy this equation with probability 1{p. Therefore

PrrG8
A
pλq “ 1s ď

1

p
`

ˆ

1´
1

p

˙

1

p
ď

2

p
.

[\

6.6 Unforgeability Proof of KVACDDH

Proof (of Lemma 6.2). Parameter indistinguishability follows from ExtSetup generating par as in Setup.
Now, we show the advantage of A in the unforgeability game. We assume without loss of generality that

any RO query (except for programming) the game has to make in the verification of some proofs or showing
messages is already made by A. (To be more precise, this increases the number of queries to H0,H1,H2 by
at most q.)

G1pλq: pExtDDH,OSVerDDHq-unforgeability of KVACDDH.
G2pλq: The oracle Iss is modified so that after checking validity of πcom and running pux, uy,mq Ð ExtH0

compQ,
pX,Y , rEx, rEy, D, ψq, πcomq, it aborts if ppX,Y , rEx, rEy, D, ψq, pux, uy,mqq R rRcom. We call this event
BadCom.
We now define a reduction Bcom playing the KSND game for Πcom with respect to the extractor Extcom.
With oracle access to OExt, it simulates G1 to A on every Iss query, queries its oracle OExt with
pX,Y , rEx, rEy, D, ψq, πcom. By definition of the straight-line extractable knowledge soundness game, Bcom

wins if BadCom ever occurs. Hence,

PrrG2
A
pλq “ 1s ě PrrG1

A
pλq “ 1s ´ Advksnd

Πcom,ExtcompBcom, λq .
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G3pλq: In this game, we simulate the proof πσ in the issuance oracle using Simσ, which programs H1. To
argue the change in advantage, we construct a straightforward reduction Bσ to the ZK game of Πσ, such
that

PrrG3
A
pλq “ 1s ě PrrG2

A
pλq “ 1s ´ AdvzkΠσ,Simσ pBσ, λq .

G4pλq: At the start of the game we initialize a table T2 Ð p q and use it to lazy-sample values for H2.
Then SHpub simulates the proof πpub by programming values into T2. Explicitly, in SHkey, the reduction
computes S1w, pCiq

`
i“1, Cx, Γx, Cy, Γy, and S1z as an honest user would. Then, the reduction first samples

c Ð$ Zp and s Ð$ Z4``2
p sets Y pub :“ pCiq

`
i“1}Γx}Γy and computes R “ Mpub

G,H,S1w,X,Y pub
s ´ cY pub, and

then sets T2pM
pub
G,H,S1w,X,Y pub

,Y pub,R, φ, nonceq Ð c, or aborts if it is already set. Since the hash query

contains elements uniform in G, and queries to H2 happen either on a query to SHpub or directly (which
in total is less than q queries), we have the following by the union bound:

PrrG4
A
pλq “ 1s ě PrrG3

A
pλq “ 1s ´

q2

p
.

G5pλq: We modify KeyGen so that ctx and cty are each sampled uniformly at random from G2. In this game,
the public keys are now independent of x0 and y0. By Lemma 2.2,

PrrG5
A
pλq “ 1s ě PrrG4

A
pλq “ 1s ´ Advddh

GGenpBDDH, λq ´
1

p´ 1
.

G6pλq: This game aborts if during issuance the extracted witness pux, uy,mq is such that m ‰ 0 and
ř`
i“1miXi “

ř`
i“1miYi “ 0G. Denote this event as BadExt. This is to rule out the case that straightline-

extraction outputs m that does not correspond to the openings of rEx, rEy.
Notice that this breaks rel-DL with respect to bases X and Y , but we cannot directly reduce to rel-DL,
since the game needs the discrete log of Xi, Yi’s to simulate. Hence, we will reduce to the security of
MACDDH instead. In particular, we construct the following reduction Bufcma playing the UFCMA game
for MACDDH with access to the oracle O. It takes as input the public parameters par “ pp,G,G, Hq and
ipk “ pX,Y , Zq and samples ctx, ctyÐ$ G2 as in the previous game. It then runs the adversary A on
par and pk “ pX,Y , Z, ctx, ctyq. Then, it simulates the oracles as follows:
‚ On issuance queries, it runs the extractor to extract pux, uy,mq. If BadExt occurs, i.e., m ‰ 0 and
ř`
i“1miXi “

ř`
i“1miYi “ 0G. The reduction queries its MAC oracle to get a tag pSw, Sx, Sy, Szq on

message 0 and return pSw, Sx, Sy, Szq as its forgery for m.
Otherwise, it queries the MAC oracle on message m for a tag pSw, Sx, Sy, Szq. Then, it returns
Sw, Ex “ pγxG, γxD ` Sxq, Ey “ pγyG, γyD ` Syq, Sz and a simulated proof πσ.

‚ The NewUsr oracle on input m and φ (for φpmq “ 1) is simulated honestly: Bufcma queries its MAC

oracle on m to get the credential. Note that if m ‰ 0 is such that
ř`
i“1miXi “

ř`
i“1miYi “ 0G,

we compute the forgery as when BadExt occurs.
‚ The SHkey and SHpub are simulated as in the previous game, and this can be done since the game

knows the credential and the attributes.
‚ Queries to O are forwarded to its oracle O.

Note that the view of A is identical to its view in G5. Moreover, if BadExt occurs, then Bufcma wins the
game. Hence,

PrrG6
A
pλq “ 1s ě PrrG5

A
pλq “ 1s ´ Advufcma

MACDDH,OSVerDDH
pBufcma, λq .

G7pλq: The oracle NewUsr is modified so that it just sets σcid Ð K instead of using KVACBBS.Iss. We modify
SHkey to do the following instead of running KVACBBS.Showkey:
1. r Ð$ Z˚p
2. Sw Ð rG;Sz Ð zSw
3. pCiq

`
i“1 Ð$ G`; Cx, Cy Ð$ G

4. Γx Ð x0S
1
w ` p

ř`
i“1 xiCiq ´ Cx; Γy Ð y0S

1
w ` p

ř`
i“1 yiCiq ´ Cy
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5. Output pS1w, S
1
z, pCiq

`
i“1, Cx, Cy, Γx, Γyq.

This makes no external change as Sw, pCiq
`
i“1 are still random, and Cx ` Γx and Cy ` Γy still satisfies

SVerkey, so

PrrG7
A
pλq “ 1s ě PrrG6

A
pλq “ 1s .

G8pλq: The game aborts if the forgery pφ˚, nonce˚, τ˚q corresponds to an RO value which was programmed
via simulation in SHpub. More specifically, at the end of the game:
1. Parse ppS1w, S

1
z, pCiq

`
i“1, Cx, Cy, Γx, Γyq, pr

1, πpubq Ð τ and pI,m1q Ð φ˚.

2. Parse pc, sq Ð πpub, define M :“ Mpub
G,H,S1w,X,Y pub

and Y pub :“ pCiq
`
i“1}Γx}Γy. Compute R “ Ms ´

cY pub.
3. Abort if HpM,Y 1,R, φ˚, nonce˚q was programmed in the act of simulating a πpub proof (rather than

via lazy sampling).
Note that, as part of A’s winning condition, pφ˚, nonce˚, τ˚q R PfQ. However, as we know that the hash
query input is the same as one that was simulated, and the hash query contains G,H, S1w,X,Y and
pCiq

`
i“1, Γx, Γy, as well as nonce˚, and φ˚, there must a simulated pφ, nonce, τq which is exactly the same

as the forgery except s ‰ s̃, where s̃ corresponds to the simulated proof. Since pφ˚, nonce˚, τ˚q R PfQ,
the only way this can occur is if s ‰ s̃, where s̃ is part of the simulated proof. Unpacking s into
psmiq

`
i“1, psriq

`
i“1, srx , sry q and doing the same for s̃, we have the following system of equations (by

Ms “Ms̃):

psmi ´ s̃miqSw ` psri ´ s̃riqH “ 0 for i P r`s

ÿ̀

i“1

psri ´ s̃riqXi ´ psrx ´ s̃rxqH “ 0

ÿ̀

i“1

psri ´ s̃riqYi ´ psry ´ s̃ry qH “ 0

Using s ‰ s̃, at first glance there are roughly four cases to consider. However, if H ‰ 0, which occurs
with probability 1 ´ 1

p , then smi ´ s̃mi “ 0 for all i P r`s would imply sri ´ s̃ri “ 0 for all i P r`s, and
that in turn would imply srx ´ s̃rx “ 0 and sry ´ s̃ry “ 0. Thus, it suffices to consider only the case
that smi ´ s̃mi for some i P r`s. Consider the reduction Bdlog which on challenge P P G samples β Ð Zp
and sets H “ βG. It then simulates proofs by computing Sw as aiP for ai Ð$ Zp. When the adversary
forges, we obtain an equation of the form psmi ´ s̃miqaiP `psri ´ s̃riqβG “ 0 from which we can recover
logG P assuming that ai ‰ 0. We can conclude that

PrrG8
A
pλq “ 1s ě PrrG7

A
pλq “ 1s ´

1

p
´ Advdlog

GGenpBdlog, λq .

G9pλq: At the start of the game we sample ph1, r1q, . . . , phq, rqq Ð$ ZpˆZ˚p and initialize a counter cntÐ 0.
Whenever we need to program an RO value for T2, we use hcnt and then set cntÐ cnt` 1. Similarly, in
Iss, instead of r Ð$ Zp, we use r Ð rcnt and set cntÐ cnt` 1. For other oracles (H0,H1 and SHkey) and
the adversary A, the game samples random coins ρ “ pρ1, ρAq where ρ1 is used to program H0,H1 and
SHkey, while ρA is the random coins for A. Via an essentially identical rewinding argument to our proof
of KVACBBS unforgeability, we can extract a witness ppmi, riqiPr`szI , rx, ryq corresponding to the forgery
pφ˚, nonce˚, τ˚q with high probability. Concretely, by the forking lemma,

PrrG8
A
pλq “ 1s ď

b

q ¨ PrrG9
A
pλq “ 1s `

q

p
.

We now describe the reduction B1ufcma playing the OSVerDDH-UFCMA game for MACDDH, which on input
pp,G,G, Hq, ipk and with access to oracle MAC simulates G9 to A. At the start of the game, sample mSH “

pmi,SHq
`
i“1 Ð$ Z`p and query σSH Ð MACpmSHq. Sample pαiq

qSH
i“1 Ð$ pZ˚p ˆ Z``2

p qqSH . The first run of A, we
make the following changes:
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1. Set σ1, . . . , σq Ð K

2. Instead of psk1, ipk1q Ð MACDDH.KeyGenpparq, do psk1, ipk1q Ð psk, ipkq.
3. In Iss, query σ :“ pSw, Sx, Sy, Szq Ð MACpmq (wherem is extracted from Πcom), set Ex Ð pγxG, γxH`

Sxq and Ey Ð pγyG, γyH `Syq. Record σcnt Ð σ and increment cnt by 1. Simulation is perfect since ĂEx
is an encryption of

ř`
i“1miXi, ĂEy is an encryption of

ř`
i“1miYi.

4. On the query to SH, do pr1, priq
`
i“1, rx, ryq Ð αj . Compute pS1w, S

1
x, S

1
y, S

1
zq Ð r1σSH, then Ci Ð

mi,SHS
1
w ` riH, Cx Ð S1x ` rxH, and Cy Ð S1y ` ryH. Compute Γx Ð

ř`
i“1 riXi ´ rxH and Γy

similarly. These outputs have the same distribution as in G9 since the MAC tag σSH is valid for pmi,SHq.
Note that due to the change in game G7 and the rewinding in G9, the key-dependent showing message
τkey will be the same in both runs, identically distributed to the ones in this reduction.

When the reduction runs A a second time, it does everything the same except for cnt ă J it return σcnt in
Iss instead of querying MACpmq. Since A is run with the same randomness and inputs for the entire period
of the game when cnt ă J , they will make the same queries to Iss up to that point, so our simulation is
perfect. For the queries after cnt ě J , it runs the game using the newly sampled h1J , . . . , h

1
q Ð$ Zp instead

as described for the first run.
At the end of the game A outputs pφ˚, nonce˚, τ˚q and we parse ppSw, Sz, pCiq

`
i“1, Cx, Cy, Γx, Γyq, pr

1, πpubqq Ð
τ˚ and pI,m1q Ð φ˚. We also have the extracted ppmiqiPr`szI , priq

`
i“1, rx, ryq. Reconstructm˚ “ pm˚1 , . . . ,m

˚
` q

from m1 and pmiqiPr`szI . If the forgery verifies,

Γx ` Cx “ x0S
1
w `

ÿ̀

i“1

xiCi

“ x0S
1
w `

ÿ̀

i“1

xipm
˚
i S
1
w ` riGq

“ px0 `
ÿ̀

i“1

xim
˚
i qS

1
w `

ÿ̀

i“1

riXi

and Γx “ p
ř`
i“1 riXiq ´ rxH, so Cx ´ rxH “ px0 `

ř`
i“1 xim

˚
i qS

1
w, and analogously Cy ´ ryH “ py0 `

ř`
i“1 yim

˚
i qS

1
w. We can make the same argument for Ey. At the end, we obtain a valid MAC tag pS1w, Cx ´

rxH,Cy ´ ryH,S
1
zq. Finally, note that since the combined view of A in both runs is identical to that in G9,

mSH is information-theoretically hidden in all values given to A. Thus, m˚ “mSH with probability at most
1
p`

, and otherwise, B1ufcma wins. Therefore,

Advufcma
MACDDH,OSVerDDH

pB1ufcma, λq ě PrrG9
A
pλq “ 1s ´

1

p`
.[\

6.7 Anonymity Proof of KVACDDH

Proof (of Lemma 6.3). We note first that the global parameters generator Genp1λq outputs parg “ pp,G,G, Hq
and SimGen additionally outputs a trapdoor v P Z˚p such that vG “ H. Note that v will also be given to the
simulator Sim

We assume without loss of generality that the queries made to H1 when the game verifies πσ are already
made by A. (This includes the query count by 1). To show security, we consider the following sequence of
games:

G1pλq: This is the game AnonKVACDDH,SimGen,SimDDH,0.
G2pλq: We simulate πcom as in SimU1

and πpub as in SimShow instead of generating it honestly. There exists
Bcom and Bpub where Bpub makes at most qShow queries to its prover oracle such that

ˇ

ˇ

ˇ
PrrG2

A
pλq “ 1s ´ PrrG1

A
pλq “ 1s

ˇ

ˇ

ˇ
ď AdvzkΠcom,Simcom

pBcom, λq ` AdvzkΠpub,Simpub
pBpub, λq .

The RO query count follows as in the lemma statement.
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G3pλq: We add an inefficient check in U2 that checks whether the issuer’s message pSw, Ex, Ey, Szq, the

public key pk, and the user’s first message pD, rEx, rEyq is in the induced language of Rσ. If not, abort the
game. By soundness of Πσ, we have that

ˇ

ˇ

ˇ
PrrG3

A
pλq “ 1s ´ PrrG2

A
pλq “ 1s

ˇ

ˇ

ˇ
ď AdvsoundΠσ pBσ, λq .

The RO query count follows as in the lemma statement.
G4pλq: This game simulates SHkey as in SimShow. At this point, the showing oracles are all independent of

the attributes m (except for when checking validity of φpmq “ 1 in SHpub).
Now, we argue the indistinguishability. First, we consider τkey as in G3. Let sk “ px,y, z, tx, tyq be the
underlying secret key fixed by pk. By the introduced check in the previous game and with how an honest
user compute rEx, rEy, we have that for some r P Zp

Sw “ rH ,Sz “ rzH

Sx “ rpx0 `
ÿ̀

i“1

mixiqH ,Sy “ rpy0 `
ÿ̀

i“1

miyiqH . (5)

By how KVACDDH.Showkey is defined,

S1w “ r1Sw “ rr1H ,S1z “ r1Sz “ rr1zH

Cx “ r1Sx ` rxH ,Γx “
ÿ̀

i“1

riXi ´ rxH

Cy “ r1Sy ` ryH ,Γy “
ÿ̀

i“1

riYi ´ ryH

Ci “ miS
1
w ` riH ,@i P r`s

where r1Ð$ Z˚p , r1, . . . , r`, rx, ryÐ$ Zp. Next, notice that

Cx ` Γx “ r1Sx `
ÿ̀

i“1

riXi “ r1rx0H `
ÿ̀

i“1

pr1rmixiH ` riXiq

“ x0S
1
w `

ÿ̀

i“1

xipmiS
1
w ` riHq “ x0S

1
w `

ÿ̀

i“1

xiCi

Cy ` Γy “ r1Sy `
ÿ̀

i“1

riYi “ r1ry0H `
ÿ̀

i“1

pr1rmiyiH ` riYiq

“ y0S
1
w `

ÿ̀

i“1

yipmiS
1
w ` riHq “ y0S

1
w `

ÿ̀

i“1

yiCi .

Since r1Ð$ Z˚p , r1, . . . , r`Ð$ Zp, we have that S1w, pCiqiPr`s are uniformly random. Moreover, they deter-
mine Cx ` Γx, Cy ` Γy, S

1
z. Hence, with rx, ry Ð Zp, we have that Cx, Cy, Γx, Γy can be sampled by

sampling Cx, CyÐ$ G and computing Γx Ð x0S
1
w `

ř`
i“1 xiCi´Cx, Γy Ð y0S

1
w `

ř`
i“1 yiCi´Cy. Note

that with the simulator sampling S1w, pCiqiPr`s while knowing their discrete logarithms, it computes Γx, Γy
efficiently using the elements in the public key and the trapdoor v. Hence, the distributions of τkey from

KVACDDH.Showkey and SimShow are identical. Thus, PrrG4
A
pλq “ 1s “ PrrG3

A
pλq “ 1s.

G5pλq: This game removes the check introduced in G3 and also does not compute Sx, Sy in U2 anymore.
With a similar argument as in G3, we have that there exists Bσ such that

ˇ

ˇ

ˇ
PrrG5

A
pλq “ 1s ´ PrrG4

A
pλq “ 1s

ˇ

ˇ

ˇ
ď AdvsoundΠσ pBσ, λq .
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G6pλq: This game simulates U1 by computing Ex Ð puxG, u
1
xDq, Ey Ð puyG, u

1
yDq with ux, uy, u

1
x, u

1
yÐ$ Zp

for i P r`s. This game hop follows by a reduction BDDH to n-DDH. Hence, by Lemma 2.2,

ˇ

ˇ

ˇ
PrrG6

A
pλq “ 1s ´ PrrG5

A
pλq “ 1s

ˇ

ˇ

ˇ
ď Advddh

GGenpBDDH, λq `
1

p´ 1
.

Since G6 is exactly AnonKVACDDH,SimGen,SimDDH,1, this concludes the proof. [\

6.8 Security Proof of oNIPDDH

In this section, we give the proof of Theorem 6.6. Correctness follows easily by inspection. The following
lemmas then establish soundness, zero-knowledge, and obliviousness for valid statements.

Lemma 6.8 (Soundness of oNIPDDH.). For any adversary A making at most qH “ qHpλq queries to Hc
modeled as a random oracle and running in time tA “ tApλq, there exists an adversary B playing the DL
game such that

AdvsoundoNIPDDH
pA, λq ď

b

pqH ` 1qAdvdlog
GGenpB, λq `

qH ` 1

p
.

Proof. The proof for this lemma follows similarly from the rewinding reduction in Lemma 5.9, except that in
the event that the adversary outputs a statement ppk, τkeyq R LRDDH

and a valid proof π, we have to show that
there exists only one bad challenge c0 which allows the adversary to find s0 which satisfies the verification
equation.

To see this, consider ppk, τkeyq R LRDDH , R0,Core,R0,Aug, and two tuples pc0, s0q and pc10, s
1
0q such that

(a) τkey “ pSw, Sz, pCiq
`
i“1, ζx, ζyq with Sw ‰ 0G.

(b) R0,Core “MCores0 ´ c0pk “MCores
1
0 ´ c

1
0pk.

(c) R0,Aug “MAug,Sw,pCiq`i“1
s0 ´ c0pζx}ζy}Szq “MAug,Sw,pCiq`i“1

s10 ´ c
1
0pζx}ζy}Szq

Suppose c0 ‰ c10. Then, by (b) and (c), we have that for sk1 “ pc10 ´ c0q
´1ps10 ´ s0q, MCoresk

1
“ pk and

MAug,Sw,pCiq`i“1
sk1 “ pζx}ζy}Szq, which contradicts with the fact that ppk, τkeyq is not in the language. There-

fore, c0 “ c10. Hence, a similar rewinding reduction strategy from the proof of Lemma 5.9 solves the DL
problem when A wins in the soundness game in both runs. [\

Lemma 6.9 (Zero-Knowledge of oNIPDDH.). For the oracle OSVerDDH as described in Figure 17, there
exists a simulator Sim “ pSimSetup,SimIssq such that for any adversary A, AdvzkoNIPDDH,Sim,OSVerDDH

pA, λq “ 0.

Proof. Consider the following simulator Sim:

‚ SimSetuppp,G,G, Hq : Sample w P Zp and return pparoNIP “ pp,G,G,W,Hq, td “ wq.

‚ SimOSVerDDH

Iss ptd, pk, umsg1 “ pSw, Sz, pCiq
`
i“1, ζx, ζyqq : Query OSVerDDHppp,G,G, Hq, sk, pk, ¨q with umsg1

and if the oracle outputs 0, abort. Otherwise, sample s0 Ð$ Z2``6
p , c0, r1 Ð$ Zp and set

´ R0,Core ÐMCores0 ´ c0pk
´ R0,Aug ÐMAug,Sw,pCiq`i“1

s0 ´ c0pζx}ζy}Szq
´ R1 Ð r1G

Then, it returns these elements to the adversary.
On the next round with umsg2 “ c, return c0, c1 “ c´ c0, s0, s1 “ r1 ` c1 ¨w. (For simplicity, we assume
c0, c1 are both send – but in the protocol, only one can be derived from the other.)

To see that the distribution of the view of A is identical in ZK0 and ZK1 games, we consider the following:

‚ The distribution on paroNIP is identical to oNIP.Setup, since W is still uniformly random.
‚ Next, because the simulator aborts correctly with the help of the oracle OSVerDDH, we only have to

consider the case when pζx}ζy}Szq “MAug,Sw,pCiq`i“1
sk. Then, it is easy to see that the joint distribution

of pR0,Core,R0,Aug, R1, c0, c1, s0, s1q conditioned on pumsg1, cq are identical regardless of whether the
issuer uses sk or w to run the protocol. [\
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Lemma 6.10 (Obliviousness of oNIPDDH). Let SimGen be the global parameters simulator for GenDDH.
There exists a simulator Sim “ pSimSetup,SimU,SimPfq such that

‚ For any adversary A, Advpar-indistoNIPDDH,Sim
pA, λq “ 0.

‚ For any adversary A, AdvzkoNIPDDH,SimGen,SimpA, λq “ 0.

Proof. First, we note again that the simulator SimGenp1
λq for the global parameters generator returns parg “

pp,G,G, Hq and tdg “ vÐ$ Z˚p such that vG “ H. Now, consider the following simulator Sim:

‚ SimSetuppp,G,G, Hq : Sample w P Zp and return pparoNIP “ pp,G,G,W q, td “ wq.
‚ SimUptd “ pv, wq, pkq :

´ First, parse pk “ ppXiq
`
i“1, pYiq

`
i“1, Z, ctx “ pctx,0, ctx,1q, cty “ pcty,0, cty,1qq

´ The simulator then uses v to compute X0 Ð ctx,1 ´ vctx,0, Y0 Ð cty,1 ´ vcty,0.
´ For the first move, sample aÐ$ Z˚p ,βÐ$ Z`p. Compute Sw Ð αG,Ci Ð βiH and ζx Ð αX0 `

ř`
i“1 βiXi, ζy Ð αY0 `

ř`
i“1 βiYi, Sz Ð αZ.

´ For the second move, return cÐ$ Zp.
´ At the end of the protocol, the simulator checks if the transcript satisfies the check in oNIP.U3.

‚ SimPfptd “ pv, wq, pk, τkey “ pS
1
w, S

1
z, pC

1
iq
`
i“1, ζ

1
x, ζ

1
yqq : Sample s0 Ð$ Z2``6

p , c0, r1 Ð$ Zp and set

´ R0,Core ÐMCores0 ´ c0pk
´ R0,Aug ÐMAug,Sw,pCiq`i“1

s0 ´ c0pζx}ζy}Szq
´ R1 Ð r1G.

Compute cÐ Hcppk, τkey,R0,Core,R0,Aug, R1q and return pc0, c1 “ c´ c0, s0, s1 “ r1 ` c1 ¨ wq.

The distribution of paroNIP stays identical to that of oNIP.Setup. Next, to show the advantage of A in the
obliviousness game, we only consider the game where A only starts 1 session. Then, we can easily extend
this to Q sessions via standard hybrid argument, since the reduction could use the trapdoor (in the OBLV
game the adversary knows the trapdoor) to simulate other sessions which was changed to using a simulator.

To show indistinguishability, we first w.l.o.g. assume that A’s randomness is fixed and it finishes the
proof issuance session and sees the proof π. Also, we remark again that the game only consider issuance
protocol for valid statements. We define the view of A after its execution as VA “ pH,W, pk, τkey, T, πq where
ppk, τkeyq is the statement the adversary selected, T is the transcript of the protocol, and π is the proof from
Pf defined as

pk :“ ppXiq
`
i“1, pYiq

`
i“1, Z, ctx “ pctx,0, ctx,1q, cty “ pcty,0, cty,1qq

τkey :“ pS1w, S
1
z, pC

1
iq
`
i“1, ζ

1
x, ζ

1
yq ,

T :“ ppSw, Sz, pCiq
`
i“1, ζx, ζyq,R0,Core,R0,Aug, R1, c, c0, c1, s0, s1q ,

π :“ pc10, c
1
1, s

1
0, s

1
1q . (6)

For simplicity, we assume c0, c1 are both sent. Since the randomness of A is fixed, we only consider the
randomness of the honest user (i.e., U1,U2) and the simulator SimU,SimPf . Denote ηb as the randomness of
the honest user/simulator in the OBLVb game, which are of the form

η0 “ pα,β, γ0, γ1, δ0, δ1q , η1 “ pα,β, c̄, c̄
1
0, s̄

1
0, r̄

1
1q .

Note that p̄¨q is used to distinct the value in the transcript and the randomness of the simulator. Now, we
only need to show that the distribution of VA is identical in both cases of b “ 0, b “ 1, which we do so by
showing that for any fixed view ∆ where PrrVA “ ∆|b “ 1s ą 0, there is a unique randomness η0, η1 which
results in VA “ ∆ for both cases. Since both η0, η1 consist of the same number of scalars (1Z˚p + p2`` 3qZp
elements), this concludes the proof.

Now, we show that the claim above is true. (We note some abuse of notations here, and denote values in
∆ using the corresponding letters for the random variables in VA.)
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For b “ 0, VA “ ∆ if and only if

α “ dlogGpSwq{dlogGpS
1
wq ,β “ pdlogGpCi ´ C

1
iqqiPr`s ,

δ0 “ s
1
0 ´ s0 , δ1 “ s11 ´ s1, γ0 “ c10 ´ c0, γ1 “ c11 ´ c1 .

The if part (ñ) follows easily from how the user algorithm is defined. To show the only-if direction, we have
to show that with the defined randomness the protocol messages are as in ∆, i.e., as given in Equation (6).
This follows from inspection, but due to the complexity of the protocol, we show the implication below.

First, we note that the statement ppk, τkeyq in ∆ needs to be in the language, meaning there exists
sk “ px,y, z, tx, tyq such that MCoresk “ pk and MAug,S1w,pC

1
iq
`
i“1

“ pζ 1x}ζ
1
y}S

1
zq. By how α,β is defined, the

user outputs Sw, pCiq
`
i“1 as in ∆, and for pζx, ζy, Szq,

αζ 1x `
ÿ

iPr`s

βiXi “ αpx0S
1
w `

ÿ

iPr`s

xiC
1
iq `

ÿ

iPr`s

βiXi

“ x0Sw `
ÿ

iPr`s

xiCi “ ζx ,

αζ 1y `
ÿ

iPr`s

βiYi “ αpy0S
1
w `

ÿ

iPr`s

yiC
1
iq `

ÿ

iPr`s

βiYi ,

“ y0Sw `
ÿ

iPr`s

yiCi “ ζy ,

αS1z “ αzS1w “ zSw “ Sz .

Next, we have to show that the honest user sends c as in ∆. For the equations below, we additionally let s0

contains pps0,xiqiPr`s, ps0,yiqiPr`s, s0,z, s0,tx , s0,ty q. To see this, we consider the blinded valuesR10,Core,R
1
0,Aug,R

1
1

R10,Core “ R0,Core `MCoreδ0 ´ γ0pk

“MCores0 ´ c0pkMCoreδ0 ´ γ0pk By oNIP.U3 checks

“MCores
1
0 ´ c

1
0 ¨ pk Def of δ0, γ0

R̄0,Aug “ α´1pR0,Aug ´
ÿ

iPr`s

βipRx,i}Ry,i}0qq

“ α´1pMAug,Sw,pCiq`i“1
s0 ´ c0pζx}ζy}Szq ´

ÿ

iPr`s

βipRx,i}Ry,i}0qq By oNIP.U3 checks

“ α´1

»

–

s0,x0Sw ´ c0ζx ´
ř`
i“1 s0,xiCi ´ βips0,xiH ´ c0Xiq

s0,y0Sw ´ c0ζy ´
ř`
i“1 s0,yiCi ´ βips0,yiH ´ c0Yiq
s0,zSw ´ c0Sz

fi

fl By oNIP.U3 checks

“

»

–

s0,x0
S1w ´ c0ζ

1
x ´

ř`
i“1 s0,xiC

1
i

s0,y0S
1
w ´ c0ζ

1
y ´

ř`
i“1 s0,yiC

1
i

s0,zS
1
w ´ c0S

1
z

fi

fl Def of β, α

“MAug,S1w,pC
1
iq
`
i“1
s0 ´ c0pζ

1
x}ζ

1
y}S

1
zq

R10,Aug “ R̄0,Aug `MAugδ0 ´ γ0pζ
1
x}ζ

1
y}S

1
zq

“MAug,S1w,pC
1
iq
`
i“1
s10 ´ c

1
0pζ

1
x}ζ

1
y}S

1
zq Def of δ0, γ0

R11 “ R1 ` δ1G´ γ1W

“ s1G´ c1W ` δ1G´ γ1W By oNIP.U3 checks

“ s11G´ c
1
1W Def of δ1, γ1

Hence, because π verifies, the user sends Hcppk, τ
1
key,R

1
0,Core,R

1
0,Aug, R1q ´ γ0 ´ γ1 “ c10 ` c11 ´ γ0 ´ γ1 “

c0 ` c1 “ c. Finally, it is clear from the equations above and how γ0, γ1, δ0, δ1 are defined that the output of
the oracle Pf is pc10, c

1
1, s

1
0, s

1
1q.
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For b “ 1, VA “ ∆ if and only if

α “ dlogGpSwq ,β “ pdlogGpCiqqiPr`s ,

c̄ “ c , c̄10 “ c10 , s̄
1
0 “ s

1
0 , r̄

1
1 “ s11 ´ c

1
1dlogGW .

The if direction (ñ) follows easily from the equations and the fact that the final proof π verifies. For the
only-if direction, α,β ensures that pSw, Sz, pCiq

`
i“1, ζx, ζyq as in ∆ is sent, and c̄ ensures that the second

user message is c. Finally, because the final proof verifies, c10 ` c11 “ Hcppk, τ
1
key, R

1
0,Core, R

1
0,Aug, R

1
1q where

R10,Core, R
1
0,Aug, R

1
1 are defined as in the verification algorithm. Then, the values of c̄10, s̄

1
0, r̄

1
1 ensures that the

proof π is exactly what is in the transcript ∆. [\
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(in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33–53. Springer, Cham, October 2021.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

Bra99. Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building in Privacy. PhD
thesis, Eindhoven Inst. of Tech. The Netherlands, 1999.

BS20. Dan Boneh and Victor Shoup. A graduate course in applied cryptography (2020). A book in preparation,
v0, 5:80, 2020.

CATZ24. Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu. Pairing-free blind signatures from
CDH assumptions. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I, volume 14920
of LNCS, pages 174–209. Springer, Cham, August 2024.

CDDH19. Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-verification anonymous cre-
dentials on standard smart cards. In ICT Systems Security and Privacy Protection: 34th IFIP TC 11
International Conference, SEC 2019, Lisbon, Portugal, June 25-27, 2019, Proceedings 34, pages 286–298.
Springer, 2019.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using the strong diffie hellman
assumption revisited. In Trust and Trustworthy Computing: 9th International Conference, TRUST 2016,
Vienna, Austria, August 29-30, 2016, Proceedings 9, pages 1–20. Springer, 2016.

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

58

https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf


CKL`16. Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen, Gregory Neven, and
Michael Østergaard Pedersen. Formal treatment of privacy-enhancing credential systems. In Orr Dunkel-
man and Liam Keliher, editors, SAC 2015, volume 9566 of LNCS, pages 3–24. Springer, Cham, August
2016.

CKS08. David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 127–145. Springer, Berlin, Heidelberg,
April 2008.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 93–118. Springer, Berlin, Heidelberg, May 2001.

CL03. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio Cimato,
Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer,
Berlin, Heidelberg, September 2003.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, Berlin,
Heidelberg, August 2004.

CMZ14. Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and keyed-verification anonymous
credentials. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1205–1216.
ACM Press, November 2014.

CPZ20. Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal private group system and anonymous
credentials supporting efficient verifiable encryption. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1445–1459. ACM Press, November 2020.

CV02. Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous credential
system. In Vijayalakshmi Atluri, editor, ACM CCS 2002, pages 21–30. ACM Press, November 2002.
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A Multi-User Anonymity of SAAC

The multi-user anonymity game of SAAC is defined in Figure 20. The game is similar to the single-user case,
except that the adversary is allowed to issue more than one credential through the U1,U2 oracles. Note that
the adversary is also allowed specify which user/credential is being shown (through specifying the credential
ID cid) when the user requests the helper proof and during showing in the SH oracle. The corresponding
advantage of A is

Advmu-anon
SAAC,SimpA, λq :“ |PrrMU-AnonA

SAAC,Sim,0 “ 1s ´ PrrMU-AnonA
SAAC,Sim,1 “ 1s| .

For readability, we give more details on our multi-user anonymity game here. The adversary will first
receive the public parameters par and the trapdoor td generated by the simulator. It will then have access
to the following oracles.

‚ Initialization oracle Init: This oracle allows the adversary to initialize its own issuer’s public key.
‚ User oracles U1,U2: The adversary (as a malicious issuer) can specify the attributes m and the

predicate φ. For these oracles, the adversary would interact with either an honest user requesting a
credential of m or a simulator which does not know m. Note that each attributes vector mcid and
credential σcid obtained by the honest user is indexed with a credential ID cid.

‚ Obtain/Request help oracle ObtH1, . . .ObtHr`1: The adversary is allowed to specify a credential
ID cid to force a user holding σcid to request a helper information. In these oracles, the adversary
would interact with either an honest user, who knows the attributes mcid and the credential σcid, or
the simulator, who does not know either of those values. At the end, the user would receive a helper
information auxsid tied to the session ID sid.

‚ Credential showing oracle SH: The adversary is allowed to specify a helper information (via sid)
owned by a honest user, a predicate φ, and an additional value nonce, such that the honest user uses
the helper information auxsid to show a credential σcid for attributes satisfying φ. Note that each helper
information is restricted to only be used once. On the other hand, the simulator only needs the trapdoor
td, the public key pk, and the specified predicate φ to simulate.

The following lemma shows that single-user anonymity (defined in Section 3.2) implies multi-user anonymity.

Lemma A.1 (Multi-User Anonymity). Let SAAC be a server-aided anonymous credentials scheme which
is single-user anonymous with respect to a simulator Sim. For any adversary A playing the MU-Anon game
with respect to the simulator Sim making at most q “ qpλq, qObtH “ qObtHpλq, qSH “ qSHpλq queries to oracles
U1,ObtH1,SH respectively, there exists an adversary B playing the Anon game with respect to the simulator
Sim such that

Advmu-anon
SAAC,SimpA, λq ď q ¨ AdvanonSAAC,SimpA, λq .

Additionally, B makes at most qObtH, qSH queries to its ObtH1,SH oracles.

Proof. Let A be the adversary playing MU-Anon game making q, qObtH, qSH queries to oracles U1,ObtH1,SH
respectively. We then consider the following sequence of games GA

0 pλq, . . . ,G
A
Qpλq.

For i “ 0, . . . , q, the game GA
i pλq is defined as follows:

‚ The public parameters and trapdoor ppar, tdq are generated from the simulator SimSetup. The oracle Init
stays the same.

‚ For the j-th query to U1 for j P rqs:

´ Denote cidpjq as the corresponding credential ID cid of this session (only if the oracle does not abort
after checking the validity of the inputs).

´ If 1 ď j ď i: Compute µ using the simulator SimU (as in the game MU-AnonSAAC,Sim,1).
´ Else i ă j ď q: Compute µ using the user algorithm SAAC.U1 (as in the game MU-AnonSAAC,Sim,1).

61



Game MU-AnonA
SAAC,Sim,bpλq:

initÐ 0; I1, . . . , Ir,HP, C1, C2 Ð H

ppar, tdq Ð$ SimSetupp1
λ
, 1
`
q

b
1
Ð$ AInit,U1,U2,ObtH1,...,ObtHr`1,SHppar, tdq

return b
1

Oracle ObtH1pcid, sidq:

if sid P I1 _ cid R C2

then abort

I1 Ð I1 Y tsidu; cidsid Ð cid

if j “ 1 then // b “ 0

pumsg1, stsidq Ð$

SAAC.ObtHelp1ppar, pk,mcid, σcidq

return umsg1

if j “ 1 then // b “ 1

pumsg1, stsidq Ð$ SimObtHptd, pkq

return umsg1

Oracle ObtHjpsid, hmsgj´1q: // j “ 2, . . . , r ` 1

if sid R I1, . . . , Ij´1 _ sid P Ij
then abort

Ij Ð Ij Y tsidu

if 1 ă j ď r then // b “ 0

pumsgj , stsidq Ð$ SAAC.ObtHelpjpstsid, hmsgj´1q

return umsgj

if j “ r ` 1 then

auxsid Ð$ SAAC.ObtHelpr`1pstsid, hmsgrq

if auxsid “ K then abort

HP Ð HP Y tsidu

if 1 ă j ď r then // b “ 1

pumsgj , stsidq Ð$ SimObtHpstsid, hmsgj´1q

return umsgj

if j “ r ` 1 then

bsid Ð$ SimObtHpstsid, hmsgj´1q

if bsid “ 0 then abort

HP Ð HP Y tsidu

return closed

Oracle Initpp̃kq:

if init “ 1 then abort

initÐ 1; pkÐ p̃k

return closed

Oracle U1pcid,m, φq:

if φpmq “ 0 _ init “ 0 _ cid P C1 then

abort

C1 Ð C1 Y tcidu

mcid Ðm

pµ, stucidq Ð$ SAAC.U1ppar, pk,m, φq

// b “ 0

pµ, stSim,cidq Ð$ SimUptd, pk, φq // b “ 1

return µ

Oracle U2pcid, imsgq:

if cid R C1 _ cid P C2 then K

C2 Ð C2 Y tcidu

σcid Ð$ SAAC.U2pst
u
cid, imsgq

if σcid “ K then abort // b “ 0

σÐ$ SimUpstSim, imsgq

if σ “ K then abort

// b “ 1

return closed

Oracle SHpsid, φ, nonceq:

cidÐ cidsid

if cid “ K _ φpmcidq “ 0 _ sid R HP
then abort

HP Ð HP z tsidu

πÐ$ // b “ 0

SAAC.Showppar, pk,mcid, σcid, auxsid, φ, nonceq

πÐ$ SimShowptd, pk, φ, nonceq // b “ 1

return π

Fig. 20. Anonymity game for SAAC for multi-user and single-user (defined including the dotted boxes). The game is
parameterized with a simulator Sim and the goal of the adversary A is to guess whether it is interacting with honest
users (case b “ 0, denoted in the dashed boxes) or the simulator (case b “ 1, denoted in the dashed and highlighted
boxes). We note that when querying the oracle SH, the adversary can specify the session ID corresponding to a helper
information aux which the user will use in the showing algorithm.
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‚ For query to U2 corresponding to cidpjq for some j P rqs: If the oracle does not abort while checking
the validity of the input pcid, imsgq, it uses the simulator as in the game MU-AnonSAAC,Sim,1 if j ď i;
otherwise, it runs the user algorithm as in the game MU-AnonSAAC,Sim,0.

‚ For oracles ObtH1, . . . ,ObtHr`1: Let j be such that cidpjq corresponds to cidsid. (Assuming the input
to the oracles do not force the validity checks to abort.) Then, these oracles are run with the simu-
lator SimObtH if j ď i; otherwise, they are run with the SAAC.ObtHelp algorithms while knowing the
corresponding attributes mcidsid and credential σcidsid .

‚ For oracle SH on input psid, φ, nonceq: Let j be such that cidpjq corresponds to cidsid. (Again, assuming no
input-check aborts.) Then, these oracles are run with the simulator SimShow if j ď i; otherwise, they are
run with the SAAC.ObtHelp algorithms while knowing the corresponding attributes mcidsid , the credential
σcidsid , and the helper proof π.

‚ The output b1 of A is returned by the game.

Notice that GA
0 pλq and GA

q pλq are exactly MU-AnonSAAC,Sim,0 and MU-AnonSAAC,Sim,1 games, respectively.
Moreover, there exists a reduction B playing the Anon game with respect to the same simulator Sim such
that the bound in the lemma is satisfied. The reduction B is defined as follows:

‚ It takes as input ppar, tdq and samples i˚ P rqs. It then runs A on input ppar, tdq. Note that for the Init
call by A, the reduction simply saves the public key pk into its state.

‚ Simulates the oracles as in the game Gi˚ with the exception that in the oracles where the corresponding
index j (added in the description of the game) is i˚, the reduction forwards the values to its own game
as follows:
´ For U1 on input pcid,m,φq, it returns ppk,m,φq along with its state and receives µ which is forwarded

to A
For U2 on input pcid, imsgq, it returns imsg along with its state.

´ For oracles ObtHk with k P rr ` 1s and SH, the inputs are forwarded to its ObtHk oracle and the
returned values are forwarded to A.

‚ The output b1 of A is returned to its game.

It is easy to see that if the Anon game uses honest user and i˚ “ i, the view of A is identical to its view in
Gi´1. Similarly, the view of A when the Anon game uses the simulator is identical to its view in Gi. Hence,
it follows that

Advmu-anon
SAAC,SimpA, λq ď

q
ÿ

i“1

|PrrGA
i pλq “ 1s ´ PrrGA

i´1pλq “ 1s| ď q ¨ AdvanonSAAC,SimpA, λq .

B Integrity of SAAC

In this section we prove Theorem 3.1, which states that weak integrity is implied by anonymity and correct-
ness. We remark that this result relies on the fact that our η-correctness definition states that the correctness
experiment should succeed with probability 1´ η for any fixed key pair which can possibly be output by the
key generation algorithm. If our definition instead stated that the probability should be 1´ η taken over a
set of random coins used to generate a key pair (in addition to the random coins used to run the algorithms),
then Theorem 3.1 would be false.

Proof (Theorem 3.1). Suppose that SAAC satisfies anonymity with respect to some simulator Sim. This
immediately implies that SAAC satisfies an even harder (for an adversary to win) version of the anonymity
game where the adversary does not get to see the trapdoor, and they have to output ρ which will be used
as randomness for key generation, i.e., pkÐ SAAC.KeyGenppar; ρq. We consider a version of that anonymity
game parameterized by a bit b where, after outputting the randomness for the key, the adversary first outputs
two message-predicate pairs pm0, φ̃0q, pm1, φ̃1q. The adversary interacts with two honest users both using
pk in separately identifiable sessions, user A using m0 and φ̃0, and user B using m1 and φ̃1, for one run
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of the issuance protocol and one run of the helper protocol. The respective credentials and pieces of helper
information are not revealed to the adversary, and if either honest user outputs K for their credential or
showing then the game aborts, i.e. outputs 1. At the end of the game, the adversary gets to output a predicate
φ and a nonce nonce, and is given τ Ð SAAC.Showppar, pk,mb, σb, auxb, φ, nonceq. Additionally, the game
aborts (outputs 1) if any of φ̃0pm0q, φ̃1pm1q, or φpmbq are zero. The adversary outputs a bit representing
a guess for whether it got a credential produced by user A or user B. If we call this game Gb, then one can
show via a hybrid argument that

ˇ

ˇPrrGA
0 pλq “ 1s ´ PrrGA

1 pλq “ 1s
ˇ

ˇ ď 2AdvanonSAAC,SimpA, λq.

Also, suppose that Gb does par Ð SAAC.Setupp1λ, 1`q instead of ppar, tdq Ð$ SimSetupp1
λ, 1`q, which we can

argue by using parameter indistinguishability of Sim twice.
Let A be an adversary against the integrity of SAAC. On input par, the reduction B runs pρ,m, φ̃, stAq Ð

Apparq and outputs randomness ρ and message-signature pairs pm, φ̃q and pm, φ̃q. The reduction B interacts
with the challenger, in the first session using the honest issuer protocols, and in the second session using
A. After the interactions, B runs pφ, nonceq Ð Apst2Aq. To finish, B requests a showing τ for pφ, nonceq and
outputs SAAC.SVerppar, pk, τ, φ, nonceq. If the showing is relative to the first session, then the showing is valid
by correctness with probability at least 1 ´ η. On the other hand, if the showing is relative to the second
session, then the showing is valid with probability that A loses the integrity game. More formally, if SAAC
has η-correctness, then

ˇ

ˇPrrGB
0 pλq “ 1s ´ PrrGB

1 pλq “ 1s
ˇ

ˇ ě

ˇ

ˇ

ˇ
p1´ ηq ´ p1´ AdvintegSAACpA, λqq

ˇ

ˇ

ˇ
.

Thus AdvintegSAACpA, λq ď
ˇ

ˇPrrGB
0 pλq “ 1s ´ PrrGB

1 pλq “ 1s
ˇ

ˇ` η. [\

C Construction of Straight-line Extractable Proofs

In this section, we recall a variant of the (randomized) Fischlin transform [Fis05, Ks22] for Σ-protocols
with super-polynomial challenge space which was given in [KRW24]. The transformation require that the
Σ-protocol Σ “ pInit,Resp,Verifyq for a relation R satisfies the following property in addition to correctness,
HVZK, high min-entropy, and special soundness:
(Relaxed) Strong Special Soundness. For a relaxed relation rR Ě R, there exists an efficient deter-
ministic extractor Ext such that for any statement x and valid transcripts pR, c, zq ‰ pR, c1, z1q, w Ð

Extpx,R, c, c1, z, z1q is such that px,wq P rR.8

Although we do not recall the transformation, we remark that the simplified randomized Fischlin trans-
form gives an NIZK in the random oracle model where the construction depends on the following parameters:

‚ Challenge space: k “ logp|CH|q ě 4 where CH is the challenge space of Σ.
‚ Random oracle output bit-size: b “ bpλq such that H : t0, 1u˚ Ñ t0, 1ub.
‚ Parallel repetition: r “ rpλq P N.
‚ Iterations: t “ tpλq P N denoting the maximum restart 2t. Note that we require 2t “ polypλq.

Now, we restate the results given in [KRW24, Appendix C.].

Theorem C.1. Let Σ be a Σ-protocol for a relation R that also satisfies high min-entropy and strong special
soundness for a relaxed relation rR. Then, the proof system NIZK obtained from compiling Σ via the simplified
randomized Fischlin transform satisfies the following properties.

Correctness. NIZK has correctness error r ¨ e´2t´b and the prover runs in time polyp2tq.
(Relaxed) Knowledge Soundness. There exists a straight-line extractor Ext can observe the adversary’s

random oracle queries such that for any A making at most Q “ Qpλq queries to H,

Advksnd
NIZK,ExtpA, λq ď Q ¨ 2´r¨b .

8 In contrast to special soundness, this does not require c ‰ c1.
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Algorithm Σcom,BBS.InitppH, C1, φI,aq, ps,mqq :

C “ C1 ´
ř

iPI aiHi

Hpriv Ð pHiqiPr``1szI

pR, stq Ð$ΣLin.InitppHpriv, Cq,

ppmiqiPr`szI , sqq

return pR, stq

Algorithm Σcom,BBS.Resppst, cq :

return ΣLin.Resppst, cq

Algorithm Σcom,BBS.VerifyppH, C1, φI,aq, pR, c, zqq :

C “ C1 ´
ř

iPI aiHi

Hpriv Ð pHiqiPr``1szI

return ΣLin.VerifyppHpriv, Cq, pR, c, zqq

Fig. 21. Σ-Protocol for Rcom of BBS-based scheme.

Zero-Knowledge. There exists a simulator Sim which can program the random oracle H such that for any
adversary A making at most Q “ Qpλq queries to H

AdvzkNIZK,SimpA, λq ď Q ¨ 2´HminpΣq ` 3r ¨ 2´pk´bq{2 .

Now, to obtain a straight-line extractable proof for our KVAC constructions, we show that the Σ-protocols
for the linear relations Rcom induced by the constructions of KVACBBS and KVACDDH satisfies High Min-
Entropy and Relaxed Strong Special Soundness for the relaxed relations described in Sections 5 and 6,
respectively. Note again that for our instantiations we only consider selective disclosure predicates. For
simplicity, let ΣLin be a Σ-protocol for general linear relation, described in Section 2, which we can easily
that the min-entropy is HminpΣq “ log p.

Relation and proof system for BBS-based scheme. Recall from Section 5 the description of Rcom

and rRcom (omitting par in the subscript).

Rcom :“ tppH, C 1, ψq, ps,mqq : C 1 “ sH``1 `
ř`
i“1miHi ^ ψpmq “ 1u ,

rRcom :“

$

&

%

ppH, C 1, ψq, ps,mqq :
p0G “

ř`
i“1miHi ` sH``1 ^

ps}mq ‰ 0q _
ppH, C 1, ψq, ps,mqq P Rcom

,

.

-

.

For a selective disclosure predicate ψI,a for I Ď r`s, the linear relation being proved by ΣLin becomes
s`H``1 `

ř

iRI,iď`miHi “ C 1 ´
ř

iPI aiHi.
Now, fix a statement pH, C 1, φI,aq, and consider any two different valid transcripts pR, c, zq, pR, c1, z1q.

If c ‰ c1, we simply rely on the special soundness of ΣLin and extract ps,mr`szIq such that C 1 “ sH``1 `
ř

iPI aiHi `
ř

iRI miHi, which is a witness for Rcom.
Otherwise, c “ c1. Then, by the validity of pR, c, zq, pR, c1, z1q,

R` c

˜

C 1 ´
ÿ

iPI

aiHi

¸

“
ÿ

iRI

ziHi “
ÿ

iRI

ziHi .

Therefore, with z ‰ z1, we have a rRcom-witness m1 “ z ´ z1 ‰ 0 and
ř

iRI m
1
iHi “ 0G.

Relation and proof system for DDH-based scheme. Recall from Section 5 the description of Rcom

and rRcom (omitting par in the subscript).

Rcom :“

$

&

%

ppEx, Ey, D, pXiq
`
i“1, pYiq

`
i“1, ψq,

pux, uy,m “ pmiq
`
i“1qq

:
Ex “ puxG, uxD `

ř`
i“1miXiq

Ey “ puyG, uyD `
ř`
i“1miYiq

ψpmq “ 1

,

.

-

rRcom :“

$

’

’

’

’

&

’

’

’

’

%

ppEx, Ey, D, pXiq
`
i“1, pYiq

`
i“1, ψq,

pux, uy,m “ pmiq
`
i“1qq

:

p
ř`
i“1miXi “

ř`
i“1miYi “ 0G ^

m ‰ 0q _

pEx “ puxG, uxD `
ř`
i“1miXiq ^

Ey “ puyG, uyD `
ř`
i“1miYiq ^

ψpmq “ 1q

,

/

/

/

/

.

/

/

/

/

-

.
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Algorithm Σcom,DDH.Initpx,wq :

parse pEx, Ey, D, pXiq
`
i“1, pYiq

`
i“1, φI,aq Ð x

parse pux, uy, pmiq
`
i“1q Ð w

E1x “ Ex ´ p0,
ř

iPI aiXiq

E1y “ Ey ´ p0,
ř

iPI aiYiq

pR, stq Ð$ΣLin.InitppMI,D,X,Y , pE
1
x}E

1
yqq,

ppmiqiPr`szIqq

return pR, stq

Algorithm Σcom,DDH.Resppst, cq :

return ΣLin.Resppst, cq

Algorithm Σcom,DDH.Verifypx, pR, c, zqq :

parse pEx, Ey, D, pXiq
`
i“1, pYiq

`
i“1, φI,aq Ð x

E1x “ Ex ´ p0,
ř

iPI aiXiq

E1y “ Ey ´ p0,
ř

iPI aiYiq

return ΣLin.VerifyppMI,D,X,Y , pE
1
x}E

1
yqq,

pR, c, zqq

Fig. 22. Σ-Protocol for Rcom of DDH-based scheme.

For a selective disclosure predicate ψI,a for I Ď r`s, the linear relation being proved by ΣLin becomes
puxG, uxD `

ř

iRI miXiq “ Ex ´ p0,
ř

iPI aiXiq and puyG, uyD `
ř

iRI miYiq “ Ey ´ p0,
ř

iPI aiYiq. In
particular, this corresponds to the following linear map for I “ pi1, . . . , ikq

MI,D,X,Y “

»

—

—

–

G 0 0 . . . 0
D 0 Xi1 . . . Xik

0 G 0 . . . 0
0 D Yi1 . . . Yik

fi

ffi

ffi

fl

Again, fix a statement pEx, Ey, D, pXiq
`
i“1, pYiq

`
i“1, ψI,aq and two transcripts pR, c,zq ‰ pR, c1, z1q. We

additionally denote z “ pzx, zy, pziqiRIq and z1 “ pz1x, z
1
y, pz

1
iqiRIq. Now, consider the two cases: c ‰ c1 and

c “ c1. For the former, special soundness allows us to extract the witness corresponding to Rcom, so we are
done. For the latter, we have that z ‰ z1 and by the validity of pR, c,zq, pR, c1, z1q,

R` c

»

—

—

–

Ex,0
Ex,1 ´

ř

iPI aiXi

Ey,0
Ey,1 ´

ř

iPI aiYi

fi

ffi

ffi

fl

“

»

—

—

–

zxG
zxD ´

ř

iRI ziXi

zyG
zyD ´

ř

iRI ziYi

fi

ffi

ffi

fl

“

»

—

—

–

z1xG
z1xD ´

ř

iRI z
1
iXi

z1yG
z1yD ´

ř

iRI z
1
iYi

fi

ffi

ffi

fl

.

Subtracting the equations on z and z1, we have that zx “ z1x, zy “ z1y and
ř

iRIpzi´z
1
iqXi “

ř

iRIpzi´z
1
iqYi “

0G, which gives us a witness for rRcom.
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