Server-Aided Anonymous Credentials

Rutchathon Chairattana-Apirom! ®, Franklin Harding? ©,

Anna Lysyanskaya? ©, and Stefano Tessaro!

! Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, US
{rchairat,tessaro}@cs.washington.edu
2 Brown University
Providence, RI, US
{franklin harding,anna_lysyanskaya}@brown.edu

Abstract. This paper formalizes the notion of server-aided anonymous credentials (SAACs), a new
model for anonymous credentials (ACs) where, in the process of showing a credential, the holder is
helped by additional auxiliary information generated in an earlier (anonymous) interaction with the
issuer. This model enables lightweight instantiations of publicly verifiable and multi-use ACs from
pairing-free elliptic curves, which is important for compliance with existing national standards. A
recent candidate for the EU Digital Identity Wallet, BBS#, roughly adheres to the SAAC model we
have developed; however, it lacks formal security definitions and proofs.

In this paper, we provide rigorous definitions of security for SAACs, and show how to realize SAACs
from the weaker notion of keyed-verification ACs (KVACs) and special types of oblivious issuance
protocols for zero-knowledge proofs. We instantiate this paradigm to obtain two constructions: one
achieves statistical anonymity with unforgeability under the Gap ¢-SDH assumption, and the other
achieves computational anonymity and unforgeability under the DDH assumption.

1 Introduction

Anonymous credentials (ACs), introduced by Chaum [Cha82], allow a user (or holder) to obtain a credential
from an issuer. Typically, a credential is associated with a number of attributes, such as the credential’s
expiration date, or the credential holder’s date of birth. This credential can be shown to a verifier unlinkably,
i.e. such that it cannot be linked to the transaction in which it was issued, and different showings of the same
credential cannot be linked to each other. Further, a showing only reveals the minimum necessary amount of
information about the attributes—typically, that these attributes satisfy a certain relevant predicate (e.g.,
that the holder is not a minor, that they have a valid driver’s license, etc.).

ACs were first practically realized by Camenisch and Lysyanskaya [CL01, CL03, CLO04]. In the standard
approach to designing ACs [LRSW99, Lys02], a credential is a signature on the user’s attributes, generated
by the issuer via a secure protocol that protects the privacy of the user’s attributes. Credentials are shown
via a zero-knolwedge proof of knowledge of a credential whose attributes satisfy the relevant predicate. In
principle, one can build ACs from any signature scheme by using generic zero-knowledge proof systems,
but in a practical instantiation, a digital signature scheme which enables efficient realizations of such proofs
is a better approach. Examples include RSA- and pairing-based CL signatures [CL03, CL04], as well as
pairing-based BBS signatures [CL04, BBS04, ASM06, TZ23b].

Systems using ACs have been proposed over the years, such as Microsoft’s U-Prove [Bra99, PZ13] and
IBM’s IDEMIX [CV02]. Recently, credentials have regained popularity as components of decentralized/self-
sovereign identity services like Hyperledger Indy, Veramo and Okapi. These come with ongoing companion
standardization efforts by the IETF [LKWL24] and the World Wide Web Consortium (W3C). Technol-
ogy policy, especially that of the EU and its member states, has mandated privacy-preserving authentica-
tion [ARF24, Ger24] for which anonymous credentials appear to be the right solution [BBC™24].

https://orcid.org/0009-0006-1990-1329
https://orcid.org/0009-0004-9811-1610
https://orcid.org/0000-0002-3567-3550
https://orcid.org/0000-0002-3751-8546

CREDENTIALS BASED ON PAIRING-FREE ELLIPTIC CURVES. Elliptic-curve-based cryptography has outper-
formed and outpaced cryptographic constructions based on RSA. Especially desirable from the practical
point of view — both for efficiency reasons and because of standardized curves — is elliptic-curve-based
cryptography that does not require pairing-friendly curves [BL, BCR™]. The lack of suitable standards, in
particular, often prevents the use of pairing-based solutions in the public sector, where ACs find a natural
use case. Other natural application scenarios are web applications and anonymous browsing, and pairings
are often not supported by browser libraries such as NSS and BoringSSL. Unfortunately, however, the only
approach to (multi-show) ACs based on pairing-free curves relies on generic zero-knowledge proofs, and is
mostly very costly, and this is due to the fact that pairing-free signature schemes are inherently non-algebraic
(as proved e.g. in [DHH*21]).

To overcome this inherent barrier, prior works have considered different settings where pairing-free ACs
are possible:

. Blind signatures with attributes. Baldimtsi and Lysyanskaya [BL13] presented an approach extending
the notion of blind signatures to include attributes, formalizing ideas implicit in U-Prove [PZ13]. The
resulting construction gives a use-once AC, referred to as “AC light” (ACL), i.e., one needs to interact
with the issuer to obtain as many copies of the credential as the number of intended showings. This also
introduces a tradeoff between privacy and efficiency: either each user needs to get as many copies of
the ACL credential as a reasonable upper bound on the lifetime use of the credential, or it needs to get
credentials reissued upon running out of them, revealing the rate of credential use.

« Keyed-Verification Anonymous Credentials (KVAC). The single-use aspect of ACL can be a feature, but
is mostly a bottleneck. Chase, Meiklejohn and Zaverucha [CMZ14] considered multi-use credentials in
an alternative setting where the issuer and the verifier are the same entity, and provided pairing-free
solutions that rely on the lack of public verifiability when showing credentials. The resulting schemes are
very practical, and are widely adopted in the Signal messaging system [CPZ20].

THIS PAPER: SERVER-AIDED ANONYMOUS CREDENTIALS. This paper formalizes an alternative model for
multi-use credentials in which efficient pairing-free credentials are possible, and which we refer to as Server-
Aided Anonymous Credentials (or SAAC, for short). In contrast to KVAC, SAAC enable publicly verifiable
showing of credentials, and this is achieved by allowing the holder to interact with the issuer’s helper server
to generate additional helper proofs. To preserve anonymity, this interaction with the helper is entirely obliv-
ious (in a way related, but not formally equivalent, to the work of Orru et al. [OTZZ24)): the helper server
does not need to verify anything about the user it is interacting with, and can neither link the interaction
to any other by the same user, nor learn anything about the user’s credential attributes. The extra cost of
this interaction with the helper is limited, in particular as the generation of these proofs can be performed
offline, and not at the time of showing the credential.

The helper flow is somewhat natural in the context of credentials. In OAuth 2.0 [Har12], the industry-
standard authorization protocol for the web, users obtain a refresh token and must query that refresh
token to an issuer to obtain access tokens which they can later spend. However, in the setting of anonymous
credentials, the use of a helper server was, to the best of our knowledge, only recently brought up in the BBS#
white paper [TD, Ora]. BBS# is an industry white paper that explores several ideas for the development
of a European Digital Identity Wallet.> However, it does not contain a formal security model or analysis.
As a result, we are the first to provide the foundations behind such an approach, as well as provably secure
solutions.

This work develops a formal treatment of SAAC, for which we give security definitions. We also develop
generic constructions that lift KVACs, which are not meant to be publicly verifiable, to SAAC with the help
of specific protocols for oblivious issuance of zero-knowledge proofs. Interestingly, our security needs for the
latter are weaker than those considered by the recent work of Orrui et al. [OTZZ24], as our helper protocol
is not required to resist strong attacks such as ROS [BLL*21], and thus we can prove security based on a
standard cryptographic assumption without relying on the algebraic group model (AGM) [KLR23].

3 BBS# includes other ideas besides including a helper server; and in particular integration with an HSM, which are
outside the scope of this paper.

Issuer (sk) Holder (pk) Verifier (pk)

sk, ¢ s) pk, m, ¢
....... i- Issuance§ ‘L
Iss u
.. R
o
sk e pk’m’o-
........ ¢ Helper ¢/
Help ObtHelp
.. | N—
aux
pk,m,o,aux, ¢ ... pk, ¢
........ ¢ ShOW ¢
Show SVer
U U
0/1

Fig. 1. Server-Aided Anonymous Credentials. Illustration of the SAAC setting. Note that the secret and public
keys (sk, pk) are generated by the SAAC.KeyGen algorithm, which is not described here. Also, we allow each showing
to be linked to some additional value nonce, which is a joint input of SAAC.Show and SAAC.SVer, and this is not
illustrated here.

We instantiate our framework with two concrete constructions: A first solution based on BBS (without
pairings), which we prove unforgeable, in the random-oracle (RO) model, under the Gap ¢-SDH assump-
tion, and statistically anonymous. We also present a second instantiation for which both unforgeability and
anonymity hold under the DDH assumption in the RO model. Our security analysis is in the random oracle
model [BR93], but does not make any use of the AGM or any other ideal group model.

The next section provides a detailed overview of our contributions.

1.1 Overview of this paper

We now give a detailed overview of our results and contributions. This section also serves as a roadmap for
the paper.

SYNTAX FOR SAAC. We provide a definition of Server-Aided Anonymous Credentials (SAAC). A SAAC
scheme is parameterized by a set of predicates @, and consists of a number of protocols, involving the issuer,
the credential holders, and the verifier. The setting is also defined in Figure 1.

. Key generation. The issuer generates a secret-key/public-key pair (sk, pk) by running the key genera-
tion algorithm.

. Issuance. A credential o is issued to the holder as the output of an interaction with the issuer—in the
same way as with a classical credential system. The issuer’s input is sk, whereas the holder’s inputs are
pk and a vector of attributes m. Further, their shared input is a predicate ¢ € @. The intuition (which
will be a consequence of our security notions we introduce below) is that the credential is only issued
if indeed ¢(m) = 1, and that the issuer only learns ¢ and that ¢(m) = 1. The holder’s output is a
credential o.

. Helper protocol. The main new component is a helper protocol between a holder and the issuer. The
issuer’s input is sk, whereas the holder’s inputs are pk, a vector of attributes m, along with a credential

o for it. The protocol outputs a string aux, which we refer to as the helper information to the holder,
and produces no output for the issuer.

. Credential showing and verification. Showing and verification are similar to those in any (publicly
verifiable) credential system, in that the user can select a predicate ¢ € @, an attribute vector m, and
a corresponding credential o, and produce some showing message T which can be verified (under the
public key pk and given ¢) to assess that indeed ¢(m) = 1. But in addition to this, we allow the
process of creating 7 to also depend on helper information aux output by the helper protocol. Looking
ahead once again to our definitions, unlinkability is meant to hold as long as each showing uses a freshly
generated aux. But crucially, we note that aux does not depend on ¢, and thus can be precomputed by
running the helper at any prior time after receiving the credential o and it is obtained via a privacy-
preserving protocol that will ensure that an execution of the protocol generating aux cannot be linked
to the credential showing using this aux.

Here, predicates model information about the attributes which is revealed either at issuance or at showing—
in both cases, it is only revealed that ¢(m) = 1. The most relevant class of predicates describes selective
disclosure. As part of the showing protocol, the user sends a list of indices I = (i1,...,%x) and a list
of disclosed attributes a € M?* which determines the predicate ¢rq given by érq(mi,...,me) = 1 if
a;;, = my; for all j € [k], and otherwise 0.

UNFORGEABILITY OF SAAC. We formalize a strong notion of unforgeability for a SAAC scheme which
postulates that a malicious holder can only convince the verifier to accept a showing for a predicate ¢ such
that the holder has previously obtained a credential for some attribute vector m such that ¢(m) = 1.

A definitional challenge is that a malicious holder may arbitrarily deviate from the protocol when inter-
acting with the issuer, and therefore, care must be taken to ensure that the set of attribute vectors for which
a credential was issued is well-defined. To this end, our definition relies on an ezxtractor which, whenever
a malicious message p from the holder is successfully answered by the issuer (run on input ¢), extracts
attribute vector m from p such that ¢(m) = 1. The holder wins if a verifier is convinced by a showing for a
predicate ¢* not satisfied by any of the extracted attribute vectors.

Furthermore, we allow the malicious holder to leverage additional types of interactions:

. Helper interaction. The malicious holder can interact as they please, in a fully concurrent and arbi-
trarily interleaved way, with the helper protocol.

. Honest showings. The malicious holder can obtain honest showings of credentials; the winning condi-
tion disallows a win for the adversary by simply replaying a showing of an honest user’s credential.

Our unforgeability notion, however, does not require that the helper protocol is run for a successful showing.
One could envision that the helper protocol serves some rate-limiting purpose, but effectively our formalism
and our instantiations allow re-use of the helper string aux (at the cost of losing anonymity), and thus the
rate-limiting effect is inconsequential. As a result of not making such a (in our view, unnecessary) restriction
in the definition, we get the benefit that existing (multi-show, helper-free) anonymous credential systems
immediately satisfy our definition.

AnonyMITY OF SAAC. Our anonymity notion is meant to protect the credential holder from an adversary
that controls the issuer (and thus both the issuance and the helper processes), and that is also shown
credentials. The only information that is leaked at issuance is that the predicate ¢ holds for the attribute
vector m, and the only information leaked at showing is that the holder has a credential for some vector m
satisfying the predicate ¢. Crucially, we need to ensure that the helper protocol interaction is unlinkable to
a particular showing of a credential, a fact which is also guaranteed by the security definition.

A GENERIC CONSTRUCTION. Our main contribution is a generic construction that lifts a KVAC scheme to a
SAAC scheme. Informally, KVAC differ from a regular credential system in that the credential is meant to
be verified by the same party that issued it; i.e. verification of the showing of a credential requires the secret
key. Unlike in SAAC, no helper is involved. Despite not requiring the issuer’s public key for verification,
the public key of KVAC allows the issuer to prove to their holders that the credential was issued correctly.
Several constructions of KVAC have been given in the literature [CMZ14, BBDT16, CDDH19].

Our generic construction replaces the keyed verification of a KVAC scheme with a non-interactive proof
that the showing message satisfies the keyed-verification algorithm. The helper protocol will be an oblivious
issuance of proof (oNIP) [OTZZ24] protocol, which allows the holder to obtain the proof without leaking its
showing message. Implementing this construction requires a KVAC scheme with a specific structure where
showing and verification are done in two steps:

. Key-dependent verification. The holder first uses its attributes m and credential o to compute a
key-dependent showing message Tiey and a state st which are independent of the predicate ¢. The verifier
can then verify 7., using its secret key sk.

. Public verification. The holder then continues showing using its state st to compute public showing
message Tpub, Which is dependent on the predicate ¢ and can be bound to some additional value nonce.
Then, (Tkey, Tpub, ¢, nonce) can be publicly verified using pk. (Note that both key-dependent and public
verification needs to return 1.)

The key-dependent verification defines a relation Ry containing statement (pk, 7key) and witness sk such that
(1) the secret key sk corresponds to pk based on the key generation, and (2) Tk, is a valid key-dependent
showing message when verified by sk. Then, using an oNIP protocol for the relation Ry (refer to Section 4.1 for
the deviation from the prior oNIP formalization in [OTZZ24]), we arrive at the following SAAC construction:

. Key generation and issuance are exactly those of the KVAC scheme.

. Helper protocol. The helper protocol begins with the holder computing the key-dependent showing
message Tkey and a state st. Then, the issuer and the holder runs the oNIP protocol with the holder
obtaining a proof my attesting that 7., is valid with respect to sk. The helper information aux contains
(Tkeya v, St).

. Showing. To show that the holder’s credential satisfies a predicate ¢, the holder computes the public
showing message T,up for ¢ with the additional value nonce set as my. The final showing message contains
(Tkeyv Tpub) 7TV)~

. Verification. The verifier checks the validity of the proof my with respect to 7k, and the KVAC showing
message (Tkey, Tpub) with respect to ¢ and my.

It is important that 7o, is dependent on my. Otherwise, the showing message is malleable. In particu-
lar, a malicious holder can forge by obtaining an honest user’s showing message and requesting a new my
through the helper. With that said, there are still other requirements for the security of our generic SAAC
construction.

Achieving unforgeability. At a high level, unforgeability of the generic SAAC construction requires the
following properties:

« The proof my is sound. This ensures that a valid forgery (Tkey, Tpub, Tv) contains Tye, that is valid with
respect to the issuer’s secret key sk. However, soundness by itself only guarantees that there exists a
secret key sk’ (not necessarily sk) that verifies Tyey. Hence, we require an additional property for KVAC,
denoted validity of key generation, which is implied if each public key corresponds to a unique secret key.
This ensures that 7y, is valid with respect to the issuer’s secret key sk.

« Helper protocol does not leak sk. A malicious holder should not be able to distinguish between interac-
tions with an honest helper or interactions with a simulator. Looking ahead, the simulator may require
some sk-dependent computation, e.g., checking whether sk verifies a rerandomized statement. Hence,
we formalize instead the O-zero-knowledge property, where the simulator is assisted by an oracle O
embedded with sk.

« Unforgeability of KVAC. We require a stronger than standard unforgeability for KVAC with the following
main changes:

1. Instead of a verification oracle, the adversary has access to the same oracle O from O-zero-knowledge
of oNIP. This is for our reduction to successfully run the simulator discussed above. For our instan-
tiations, the oracle O can be used to simulate the verification oracle as well.

2. Similarly to SAAC unforgeability, the adversary can query honest users’ showing messages. Each
query access, however, is split into two steps: first the adversary obtains an honest 7y, then it
adaptively chooses both the predicate ¢ it wants the honest user to show and the nonce it wants to
be tied to the message, and gets Ty, in response.

One challenging point in giving a secure instantiation from our generic construction is to balance the strength
of O. Notably, if O reveals too much information about sk, the KVAC would be insecure; on the other hand,
if it reveals too little, the oNIP would be insecure.

Achieving anonymity. Anonymity of our SAAC construction follows from anonymity of KVAC and obliv-
iousness of oNIP. Here are some modifications made to the definitions.

« Obliviousness of oNIP. To satisfy our simulation-based definition of SAAC anonymity, we require a
simulation-based obliviousness definition. However, in our instantiations, we are able to show oblivious-
ness only when honest users request proofs for valid statements; specifically, (pk, 7key) must be in the
language induced by the relation Ry. Hence, we additionally require an extra property of KVAC which
ensures that even under a malicious issuer, if the user obtains a credential and does not abort, it should
be able to produce a valid 7iey (in the sense that (pk, Tkey) is in the induced language).

« Anonymity of KVAC. Similar to anonymity of SAAC (without the helper protocol), we require that both
during issuance and during showing, the only information leaked to the adversary is that the relevant
predicate ¢ is satisfied by the attributes m. For showing, the adversary chooses the predicate ¢ and the
value nonce adaptively, after obtaining the key-dependent value 7ey.

We refer the readers to Section 4 for the formalization of KVAC and oNIP required and our generic con-
struction.

INSTANTIATION FROM BBS. Our first SAAC instantiation is inspired by the KVAC by Barki et al. [BBDT16],
which builds upon an algebraic message authentication code (MAC) based on BBS/BBS+ signatures [BBS04,
ASMO06, TZ23a]. The scheme is based on a pairing-free group G of prime order p and generator G. The secret
and public keys are z € Z, and X = zG, respectively. A credential for attributes m e Zf) is of the form
(A€ G,e€Zy,s € Zp,) such that A = (z + €)71C, where C = G + ZlemiHi + sHyyy and Hy, ..., Hpiq
are public parameters. To show, the holder rerandomizes A, B = C' — eA, and C into A, B,C and proves
knowledge of the underlying attributes with a valid credential via CDL proofs [CDL16]. To verify the showing
message, one uses the secret key x to check that (G, X, A, B) form a valid Diffie-Hellman tuple. By giving
an oNIP for this relation (adapting Orru et al. [OTZZ24]), we turn this KVAC into SAAC. Note that our
oNIP is zero-knowledge with respect to the restricted DDH oracle rDDH(z,) which checks that its input
(A, B) satisfies A = B.

In order to use Barki et al.’s KVAC, however, we need to show that it satisfies our required (stronger)
security notions. Specifically, recall that our unforgeability notions allows the adversary to (1) query the
restricted DDH oracle embedded with the secret key and (2) view showing messages of honest users (in the
manner described above). We show that this stronger version of unforgeability holds in the ROM under the
Gap-¢-SDH assumption. This “gap” assumption is necessary for simulating the restricted DDH oracle. Note
that Barki et al. already require Gap-¢-SDH to simulate the verification oracle. The efficiency of the resulting
SAAC is comparable to that of Barki et al.’s KVAC (see Table 1). For more details on this instantiation, we
refer the readers to Section 5.

INSTANTIATION FROM DDH. Sacrificing some efficiency (see Table 1), our second SAAC instantiation com-
pletely removes the dependency on a gap gq-type assumption and only relies on the much more standard
DDH assumption. Our starting point is the KVAC scheme introduced by Chase, Meiklejohn, and Za-
verucha [CMZ14], building upon an algebraic MAC. We then give a corresponding oNIP protocol for the
algebraic relation induced by the key-dependent verification. Similar to the BBS-based instantiation, the
zero-knowledge of this oNIP is proved with respect to a simulator with access to an oracle, which we denote
OsverppH (and will define later on in Section 6), that essentially runs the key-dependent verification of this
KVAC with the embedded secret key.

4 This oracle is exactly the key-dependent verification.

Table 1. Comparison of group-based KVAC, AC, and BSA schemes and our highlighted SAAC instantiations. The
number of attributes is . Showing size depends on the number of disclosed attributes and is given as a close-to-
tight upper-bound. Denote G and Z, as the sizes of group elements and scalars, respectively. All security analyses
assume the ROM. *: Showing requires two rounds of communication with the helper server (helper interactions can
be batched). This is “multi-show” in the sense that the user does not have to re-prove that their attributes satisfy
an issuance predicate, which may be expensive or no longer allowed by the issuer, to compute a showing (in contrast
to, e.g., ACL). f : Only BBS is pairing-based and G1 denotes the size of a source group element.

Helper Security
Scheme &‘;Fé:ﬁ’e 1\8/[}‘11(1):_ Crcgiic;rétlal Usr. Comm‘ Iss Comm ‘Rnds Shé)i\;/;ng Unforgeability ‘Anonymity
] j] B (£+2)G

CMZ14 [CMZ14] No Yes 2G (20 4 2)Z, GGM DDH

BBDT16 3G .
[BBDT16] No Yes 2G + 2Z, - - - (€ +), Gap-¢-SDH Statistical

KVAC,gB 2G s
[CDDH19] No Yes ¢+ 1)G - - - +(+ 12, ¢-SCDHI Statistical

.]] ~ €+ 2)G] s
pCMZ [Orr24] No Yes 2G (204 2)2, AGM + 3-DL | Statistical

2G e
1BBS [Orr24] No Yes 1G + 1z, - - - 4+ 4)Z, AGM + ¢-DL | Statistical

MBS+25 s
[MBS+25] No Yes ¢+ 2)G - - - 2G GGM Statistical

2G
’ ACL [BL13] ‘ Yes ‘ No ‘ 2G + 6Zy ‘ - ‘ - ‘ - ‘ (0 +8)Z, ‘ DL+AGM ‘ DDH ‘
SAACggs Yes Yes* | 1G + 2Z, | 2G + 1Z,, | 3G + 3Z, 2 1 Gap-¢q-SDH Statistical
+ (£+8)Zy
% “+4)G [(2¢ + 9)G £+ 6)G +
SAACppH Yes Yes 4G 117, ¥ 20+ 1T 2 (4 + 1)z, DDH DDH
2G e
t S - - - 1 -

’ BBS [TZ23a] ‘ Yes ‘ Yes | 1Gy + 1Zyp ‘ ‘ ‘ ‘ 4+ 3)Z, ‘ ¢-SDH ‘ Statistical

This KVAC was already known to be provably secure but under a definition that is weaker than what
we need to instantiate our generic construction. To address this gap, we made the following contributions:

1. We revisited the unforgeability of the underlying MAC and gave a new proof (albeit using similar
techniques) for the security against adversaries who have access to the oracle Osyerppn instead of the
verification oracle. Additionally, this new security still implies the standard UFCMVA security of MACs.

2. Building on the unforgeability of the MAC, we showed unforgeability of the resulting KVAC scheme in
the ROM. As we require unforgeability against adversaries who can see honest users’ showings, there
were several technical difficulties to overcome. Mainly, the reduction (to unforgeability of the algebraic
MAC) needs to be constructed so that it can simulate the honest users’ showings correctly, but still
extract a valid MAC forgery from the adversary.

3. We gave a more efficient blind issuance protocol. In particular, our issuer’s communication is independent
of the number of attributes compared to the one sketched in [CMZ14] which contains a linear number
of group elements.

For more details on this instantiation, we refer the readers to Section 6.

2 Preliminaries

NOTATIONS. We use A as the security parameter. We denote [n..m] = {n,n+1,...,m} forany n < meZ
and [n] = [1..n] for any n € N. We often vectors using bold-sized letters (e.g., v, H). If u = (u1,...,uy)
and v = (v1,...,0y), then uf|v := (u1,...,Up,v1,...,0y). Denote x « a as assigning value a to a variable

x. Denote a «<s S as uniformly sampling a from a finite set S. We denote y «s A(z) as running a (prob-
abilistic) algorithm A on input x with fresh randomness and [A(z)] as the set of possible outputs of A;
(y1,y2) <3 (A(z1) = B(z2)) denotes a pair of interactive algorithms A, B with inputs z1,z2 and outputs
Y1, Yo respectively. We often use the words messages and attributes interchangably.

Game DLZ,, (\): Game (g, 0)-SDHZg.,(A)

par = (p, G, G) «$ GGen(1") par = (p, G, G) <8 GGen(1%)
X G T <«$7Zp
x «$ A(par, X) (e, Z) <8 AP =G (par (4 G)ierq))

return zG = X

return (Z = (z 4+)" 'G)
Game DDHZ,, ,(\):

A
par = (p, G, G) <8 GGen(1") Oracle rDDH (par, z, X, (A, B))
T,Y,z <8 Ly

return A = B
Zo — xyG; Z1 < 2G // X is unused.

b s A(par, zG, yG, Zp)

/
return b

Fig. 2. Games DDH, DL, and (¢, O)-SDH, and a definition of the oracle rDDH.

GROUP PARAMETER GENERATOR. A group parameter generator is a probabilistic polynomial time algorithm
GGen taking as input 1* and outputting a cyclic group G of ©())-bit prime order p with a generator G. We
assume that standard group operations in G can be performed in polynomial time in A and adopt additive
notation (i.e., A + B for applying group operation on A, B € G).

CRYPTOGRAPHIC ASSUMPTIONS. In Figure 2, we define games for Decisional Diffie-Hellman (DDH), Discrete
Logarithm (DL), and a pairing-free analog of the ¢-Strong Diffie- Hellman assumption [BB08] augmented with
a restricted DDH oracle. Denote the advantage of an adversary A against these assumptions as

Adv 2L (@ PPI-SPI (4 3y :— Pr[(DL/(g,rDDH)-SDH)¢gen(A) = 1],
Advadh (A, \) := |Pr[DDHZGe 0(A) = 1] — Pr[DDHZG,, , (V) = 1]].

For modularity of our security proofs, we will rely on the rel-DL and n-DDH (a multi-instance version of
DDH) assumptions with the games described in Figure 3. With the corresponding advantage defined as

Advgeé-eil(‘/h /\) = Pr[rel_DLéGen (A) = 1] ’
Advg((i;};n,n(/la)‘) = {Pr[n'DDHéGen,O(/\) = 1] - Pr[DDHéGen,l(/\) = 1]| .

The following lemmas establish tight reduction between rel-DL and DL and n-DDH and DDH. Lemma 2.2
follows from the random self-reducibility of DDH (see e.g., [EHKT13]).

Lemma 2.1 ([JT20]). Let n = n(\) and GGen be a group generation algorithm outputs groups of prime
order p = p(\). For any A running in time t 4 =t 4(\), there exists B running in time t 4 + O(n) such that

1
AdVEEah (A, \) < Adveee (B, A) + ;

Lemma 2.2. Let n = n(\) and GGen be a group generation algorithm outputs groups of prime order p =
p(A). For any A running in time t4 =t 4(\), there exists B running in time t 4 + O(n) such that

1
AVl (A V) < AVEE (BN + =

RANDOM ORACLES. Most of our analyses assume one or more random oracles, and we will clearly indicate
so in the theorem statements. The random oracles are modeled as additional oracles to which the adversary
A is given access.

Game n-DDH, (\) Game rel-DL(\) :

par = (G,p,G) « GGen(lA) : par = (G,p,G) « GGen(l)‘) :

T 8 Ly (Xi)?:l «—sG"

(yi)ic1, (z0)imy S Zy (:)i—o < Alpar, (X:)i_y)

Zio < 2yiG; Zi1 < 2;G for all i € [n] | |if (y;);—; = 0" then return 0
b «$ A(par, zG, (b:G)1_ 1, (Zip)7_1) return 37 | y; X; = yoG

Fig. 3. Games n-DDH and rel-DL

L R u
Games UFCMA{ixc o (\), I UFCMVA{ ¢ o(A) 1 Oracle MAC(m)
i L 2 |

MsgQ «— J; par <3 MAC.Setup(l)‘) o «—$ MAC.M(par, sk, m)
(sk, ipk) «3$ MAC.KG(par) if 0 # 1 then

r
(m*, o*) s AMACOLV] (par ink) MsgQ « MsgQ u {m}
return o

if m* ¢ MsgQ A MAC.Ver(par, sk, m*, o*) = 1

then return 1 Oracle V(m, o)

return 0

return MAC.Ver(par, sk, m, o)

Fig. 4. Unforgeability under chosen message attack (UFCMA) and unforgeability under chosen message and verifi-
cation queries (UFCMVA) games

MESSAGE AUTHENTICATION CODES. A message authentication code MAC is a tuple of algorithms (MAC.Setup,
MAC.KG, MAC.M, MAC.Ver) with the following syntax:

. The setup algorithm MAC.Setup(1*) generates public parameters par. We let the public parameters par
define the message space MAC.M = MAC.M(par).

. The key generation algorithm MAC.KG(par) outputs the secret key sk and the issuer’s public parameters
ipk.

. The randomized MAC algorithm MAC.M(par,sk,m) takes as inputs, the secret key sk and a message
m € MAC.M, and outputs a message authentication code o.

. The deterministic verification algorithm outputs a bit MAC.Ver(par, sk, m, o).

Note that the issuer’s public key ipk is not used in the MAC and verification algorithms, but will be relevant
in the keyed-verification anonymous credentials (KVAC) building on algebraic MACs, which we define later
on.

Correctness is defined as usual in that for any public parameters par and key sk generated from the
setup and key generation algorithms and any message m € M, the message authentication code o «—
MAC.M(par, sk, m) always satisfies MAC.Ver(par, sk, m, o) = 1. We consider two security definitions: unforge-
ability under chosen message attack (UFCMA) and unforgeability under chosen message and verification
queries attack, which are respectively defined by the games UFCMAfiac(A) and UFCMVA{A(A) (both
given in Figure 4). Additionally, we define UFCMA/UFCMVA in the presence of an arbitrary oracle, de-
noted O-UFCMA. (Note that for some schemes and oracles that we consider in this paper, O-UFCMA
implies UFCMVA.) The corresponding advantage of any adversary A playing the game (O is optional) is:

Adviacn ™ (A, X) := Pr{(O-UFCMA/O-UFCMVA)jiac(\) = 1] .

RELATIONS AND Y-PROTOCOL. Let R € X x W be a relation and Lg := {z € X|3w € W : (z,w) € R}
denotes its induced language. A X-protocol for a relation R is a tuple of algorithms:

« Init(z, w): given a statement and witness (z,w) € R, output a commitment R and a state st.
. Resp(st,c) : given a challenge ¢ € CH, output a response z.

. Verify(z, R, ¢, z) : output a bit b € {0, 1}.

The transcript (R, c,z) is valid for a statement x if Verify(x, R, ¢, z) = 1. X-protocols satisfy correctness,
honest-verifier zero-knowledge, special soundness, and high min-entropy.

. Correctness. For any (z,w) € R, (R, st) € [Init(z,w)],c € CH, z « Resp(st, ¢), Verify(z, R, ¢, z) = 1.

. Honest-verifier zero-knowledge (HVZK). There exists an efficient simulator Sim such that for
any (z,w) € R, ¢ € CH the following distributions are identical: {(R,c,z) : (R,st) «<s Init(z,w),z «
Resp(st,¢)} = {(R, ¢, 2) : (R, z) <s Sim(z,¢)}

. Special soundness. There exists an efficient deterministic extractor Ext such that for any x and two
transcripts (R, ¢, z), (R,c,2') where ¢ # ¢, the output w «— Ext(z, (R,c,2),(R,c,z")) is such that

(z,w) e R.
. High Min-Entropy. For any (z,w) € R, (R, st) <s Init(z,w) is such that 2-Hmn(%) is negligible, where
Humin (X) := —log max,ex Pr[X = z] denotes the min entropy of a random variable X with values drawn

from a finite domain X'. Moreover, we denote Hpmin(X) := mingerq Hmin(R).

NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS. A non-interactive zero-knowledge (NIZK) proof system for
a relation R is a tuple of algorithms (NIZK.Prove", NIZK.Ver™) with access to a random oracle H : {0,1}* — R
with the following syntax:

. 7 «s NIZK.Prove" (z, w): outputs a proof 7 on input (z,w) € R.

« 0/1 — NIZK.Ver(z,): verifies a proof 7 for statement z.
The proof systems used in this work only rely on the random oracle. We require that NIZK satisfies the
following properties:

. Correctness. For any (z,w) € R,
Pr[1 = NIZK.Ver (&, 7)|m «<s NIZK.Prove" (z,w)] = 1 — n()\)

where the probability is over the random choice of H and the random coins of NIZK.Prove. We denote 1
as the correctness error.
. Soundness. For any adversary A with bounded access to H, the following advantage is bounded

Adv (A, N) == Pr[z ¢ Lr A NIZK.Ver(z,7) = 1](z,7) s A" (1Y)] .

« Zero-knowledge. There exists a simulator Sim which is allowed to reprogram H such that for any
adversary A with bounded access to H, the following advantage is bounded:

Adviiizk sim (A, A) i= [PrAPPo (1) = 1] — PriAfPr(1?) = 1] .

The oracles Py (z, w) does the following: If (z, w) ¢ R then return L. If b = 0, then return 7 «s NIZK.Prove" (z, w).
Otherwise, return 7 «s Sim" (x).

. Relaxed knowledge-soundness. A NIZK is straight-line extractable knowledge-sound for a relazed
relation R 2 R if there exists an extractor Ext who has access to the adversary’s random oracle queries
such that for any adversary A playing the game KSND (defined in Figure 5), the following advantage is
bounded

ksnd L A B
Adviend | (ALX) = PrKSNDL, 0 (0 =17

PROOFS FOR LINEAR RELATIONS. Throughout the paper, we will use X-protocol for proving preimage of
linear maps over a prime-order group G [Maul5]. The relation Rg contains statements of the form (M €
G"*™,Y € G") and the witnesses are € Z;' such that Y = M. In particular, we consider the following
X-protocol X\;, = (Init, Resp, Verify) described as

o (R,st) «sInit((M e G"*™,Y € G"),x € Z;') : sample 7 < Z* and output (R < Mr,st < (z,7))
« z < Resp(st,c € Z,) : output z < r + cx.

10

Game KSNDRﬁZK,Ext,ﬁ()‘): Oracle H(str): Oracle Ogu(z, m):
win — 0;Q « & if T[str] # L then if NIZK.Ver(z,7) # 1 then
Map: T « [-] return T[str] return 0
AP (1Y) Q — Qu {str} w — Ext"(Q, z, 7)

. $ ~
return win Tlstr] s R if (2, w) ¢ R then win — 1

return T[str]
return 1

Fig. 5. Straightline extractable knowledge soundness game for NIZK.

Lin.Prove" (M € G"*™,Y e G"),z € Zy", nonce) Lin.Ver' (M € G™*™,Y € G™), w, nonce)
r«$Z"; R« Mr;c— H(M,Y, R,nonce) (c,8) «m

S—r+c-x R« Ms—c-Y

return 7 := (c, 8) return H(M,Y, R, nonce) = ¢

Fig. 6. NIZK proof system Lin = Lin[H, G] for Rg := {((M,Y),2) : Y = Mx}. The prover optionally takes an input
nonce which will also be hashed by H.

o bes\Verify((M,Y), R, ¢, z): output 1 if and only if R+ cY = Mz.

Additionally, we will repeatedly use a non-interactive proof system Lin for Rg which is obtained by applying
the Fiat-Shamir transform to X, (see the description of proof system Lin in Figure 6). Note in particular
that the prover and verifier take an additional (and optional) input string nonce which will be an additional
input to H.

The following theorem then establishes the security of the proof system Lin in Figure 6. This follows from
Fiat-Shamir transform applying to X;, (see e.g., Boneh-Shoup [BS20, Chapter 19-20]).

Theorem 2.3. Lin satisfies perfect correctness, zero-knowledge, and soundness in the ROM.

3 Server-Aided Anonymous Credentials

In this section, we introduce Server-Aided Anonymous Credentials (SAAC), with the syntax and security
definitions given in Sections 3.1 and 3.2, respectively. SAAC allow a user to obtain a credential for its at-
tributes through a (blind) issuance protocol and to anonymously show that it owns a credential for attributes
which satisfies some specified predicate. However, in contrast to anonymous credentials (AC), the user may
request the issuer to help produce helper information which the user can use to output a publicly-verifiable
showing message. This is modeled as an unlinkable helper protocol, which is independent of the predicate
specified during showing. Users may then ask for several pieces of helper information ahead of time and
spend them later during showing.

3.1 Syntax

A server-aided anonymous credential scheme SAAC = SAAC[®P, M] defined with respect to a predicate class
family @ = {®par}par’ and an attribute space M = { M }par consists of the following algorithms.
. par <s SAAC.Setup(1*, 1) outputs public parameters par which defines the attribute space M = Mopar
and a corresponding class of predicates @ = @, For succinctness, we will abuse the notation and omit
the subscript par.

5 Alternatively, one can define the scheme with respect to two classes of predicates ®is and Pshow Which model
predicates accepted during issuance and showing. However, we define our SAAC syntax with respect to a single
class of predicates @ = Piss U Pspow covering both predicate classes for issuance and showing. This will be the case
for our constructions which consider the class of selective disclosure predicates for both issuance and showing.

11

. (sk, pk) <—s SAAC.KeyGen(par) outputs the secret and public key pair.

« (L,0) «<s(SAAC.Iss(par,sk,») = SAAC.U(par, pk,m,@)) is an interactive protocol between the issuer
and the user where at the end, the user obtains a credential o for its vector of attributes m € M¥, which
satisfies a predicate ¢ € @ (i.e., p(m) = 1). We consider a round-optimal issuance protocol consisting of
the following algorithms:

— (u,st*) « SAAC.Uq (par, pk, m, ¢) outputs the first protocol message and a state.

— imsg <« SAAC.Iss(par, sk, i1, ¢) outputs issuer’s message imsg, and if the issuer aborts, we say that
imsg = L.

— 0 <« SAAC.Uy(st", imsg) outputs a credential ¢ for the attributes m.

« (L,aux) <s (SAAC.Helper(par, sk) = SAAC.ObtHelp(par, pk, m, o)) is a r-round protocol where the user
interacts with the issuer to obtain a helper information aux. Formally, the protocol execution is of the
following format:

(umsg,, st*) «s SAAC.ObtHelp, (par, pk, m, o) ,

(hmsg,,st") «<s SAAC.Helper, (par, sk, umsg;) ,

(umsg;, st") <s SAAC.ObtHelp, (st*, hmsg, ;) ,
(hmsg;, st") <—s SAAC.Helper, (st", umsg,) ,

aux <s SAAC.ObtHelp,. ; (st“,hmsg,.) .

fori=2,...,r

« 7 <35 SAAC.Show(par, pk, m, o, aux, ¢, nonce) outputs a showing 7 of the credential o issued for attributes
m such that ¢(m) = 1.

« 0/1 « SAAC.SVer(par, pk, 7, ¢, nonce) outputs a bit.
In the showing and verification algorithms, we allow the showing message 7 to be bound to some additional
value nonce (which in some cases is the token identifier or a nonce chosen by the verifier). We do not require
a credential verification algorithm, since the credential itself might not be publicly verifiable, and a secret
key credential verification is not required for our security properties.
CORRECTNESS. A SAAC scheme is n-correct if for any A, ¢ = £(\) € N, any par € [SAAC.Setup(1*,1¢)], any
(sk, pk) € [SAAC.KeyGen(par)], any attributes m € M, any nonce € {0, 1}*, and any predicates ¢, ¢’ € Ppar

par»

such that ¢(m) = ¢'(m) = 1, the following experiment returns 1 with probability at least 1 — n(X).

(L,0) «<s{SAAC.Iss(par, sk, ¢) = SAAC.U(par, pk,m, ®)>

(L, aux) «s (SAAC.Helper(par, sk) = SAAC.ObtHelp(par, pk, m, o))
7 <3 SAAC.Show(par, pk, m, o, aux, ¢, nonce)

return SAAC.SVer(par, pk, 7, ¢’, nonce) .

3.2 Security Definitions

We consider two main security notions for anonymous credentials: unforgeability and anonymity. At the end
of the section, we define an additional security notion, denoted integrity, and discuss its importance.
UNFORGEABILITY. A SAAC scheme is unforgeable if there exists an extractor Ext = (EXtsetup, Extiss) such
that
1. The distribution of par from the setup algorithm and Extsetyp are indistinguishable, i.e., for any adversary
A, the following advantage is bounded

Advgi\rzgfﬁES;t(A7 \) := |Pr[A(par) = 1|par <—s SAAC.Setup(1*,1%)]—
Pr[A(par) = 1|(par, td) <= Extserp(1*,19)]] .

2. Denote the advantage of any adversary A in the unforgeability game, defined in Figure 7 with respect
to Ext (more discussion on the game below), as

AdVngAC,Ext(Av A) = Pr[UNFg‘AAC,Ext(A) =1].

12

Game UNFQ\AC’E“(A): Oracle NewUsr(cid, m, ¢):

MsgQ, PfQ,Z1,...,Z,,C «— &;win «— 0 if cide C v ¢(m) = 0 then abort
(par, td) «$ Extserup (17, 1% C « C v {cid}; mcg < m
(sk, pk) <% SAAC.KeyGen(par) ocid <8 (SAAC.lss(par, sk, ¢)

= SAAC.U (par, pk, m, ¢))
return closed
Oracle SH(cid, ¢, nonce):
if cid ¢ C then abort

(¢* ,nonce™, -r*)

s AIss,Helpl,Help,.,NewUsr,SH(par7 pk)

if (SAAC.SVer(par, pk, 7¥, ¢* nonce®) = 1) A

(¥m € MsgQ : ¢ (m) = 0) A (L, aux) «<$ (SAAC.Helper (par, sk)
((¢*, nonce™® ‘r*) ¢ PfQ) = SAAC.ObtHelp(par, pk, mcid, 0cid))
then return 1 7 «$% SAAC.Show(par, pk, M, 0cid, aux, ¢, nonce)

return win PfQ < PfQ u {(¢, nonce, 7)}
Oracle Iss(u, ¢) : return 7
imsg <% SAAC.Iss (par, sk, 1, ¢) Oracle Help; (sid, umsgj) s Ji=1,...,r
if imsg = L then abort ifsid¢ Zy,...,Z;_1 v sideZ;
m «— Exts(td, p, ¢) then abort
if $(m) =0 v m = 1 then win < 1 Z; <« I; u {sid}

/A wins if it can request if j = 1 then / For j =, St:ild — L

/| credentials for non-authorized attributes
MsgQ «— MsgQ u {m}

return imsg

(hmsg;;, st) «$ SAAC.Helper, (par, sk, umsg;;)

else (hmsg;, sth)) s SAAC.Helper;; (sth, umsg)

return hmsg;

Fig. 7. Unforgeability game for SAAC = SAAC[®, M]. We assume that all the predicates output by A are in &.

We now discuss in more detail our unforgeability game. First, the game generates public parameters par and

a trapdoor td using the extractor along with the secret and public keys (sk, pk). Then, it runs the adversary

A (acting as a malicious user) which can arbitrarily interleave the execution of the following oracles.

Issuance oracle Iss. The adversary A can request a credential to be issued via the blind issuance protocol
modeled with Iss. In this oracle, the game extracts the underlying attributes m using Exti,s. The game
keeps track of the attributes of which a credential has been issued so far.

Helper oracles Help,,...,Help,. The adversary can run multiple helper protocol sessions with the issuer,
with each identified with the session ID sid.

New user oracle NewUsr. The adversary can request generation of a credential for attributes m satisfying
the predicate ¢ for honest users. The adversary do not see the credential o4 generated from this oracle,
but can identify them in SH with a credential ID cid.

Showing oracle SH. The adversary specifies the credential ID cid (which links to mq and ogq4) along with
the predicate ¢ and a value nonce. Then, the game will compute 7 by running (1) the helper protocol with
the honest user (using mq and ogq) and (2) the showing algorithm Show using the helper information
aux obtained from the protocol, the predicate ¢, and the given value nonce. The tuple (¢, nonce,) is
recorded by the game.

Finally, A wins the game if one of the following occurs:

. During issuance, the issuer does not abort *and* the extractor extracts attributes m that do not sat-
isfy the predicate ¢ specified at issuance. This prevents adversaries who try to request credentials for
unauthorized attributes.

. They output a tuple (¢*, nonce®, 7*) of which the game considers a forgery if (1) 7* is valid with respect
to the predicate ¢* and the value nonce*, (2) ¢* is not satisfied by any of the extracted attributes,and
(3) they do not replay honest users’ showing messages.

Below, we discuss the design choices for our unforgeability definition and other scenarios which we do
not consider as an attack on SAAC.

On the adversary winning if the extractor fails. We require this winning condition for two important
reasons:

13

The extractor should output attributes satisfying the predicate. Consider a similar game where the issuance
oracle aborts if the extracted attributes does not satisfy the predicate. It is possible that a SAAC is secure
with respect to an extractor that always aborts. In particular, the adversary will not get any credential
in this game, so the security only prevents key-only attacks. Hence, we cannot simply allow the game
nor the issuer oracle to abort when the extraction fails.

Credentials should only be granted for authorized attributes. Consider the game that only extracts and record
the attributes into MsgQ without aborting. One could construct a SAAC scheme where the issuer algo-
rithm ignores the predicate and always computes imsg. An adversary can then request credentials for
unauthorized attributes, a scenario which should not be allowed.

On the (non-)requirement of the helper interaction. Our unforgeability notion only aims to prevent
malicious holders from showing credentials that do not correspond to their attributes, and does not prevent
a situation where a user is able to show a credential without helper interaction. In a way, we view SAAC as
a relaxed notion of multi-show AC where the helper protocol helps us achieve public verification, and this
means that standard AC should satisfy SAAC notion. We note however that, for our instantiations, at least
one helper interaction is required to output a showing message.

The NewUsr and SH oracles model adversaries who can obtain showing messages of honest users. This
is to provide a non-malleability guarantee where the adversary cannot forge by modifying previous show-
ing messages of honest users. This scenario is also considered by the unforgeability of Privacy-Enhancing
Attribute-Based Signatures (PABS) from [CKL*16] and the extractability security of KVAC given in [Orr24],
but not in the original KVAC unforgeability definition [CMZ14].

Honest users reusing aux. As mentioned in the overview, it is possible that the helper information aux
is reused at the cost of anonymity. However, we do not consider an adversary who forges a showing by
forcing honest users to reuse a helper information aux. In our view, honest users should not compromise
their anonymity by reusing the helper information aux. One could argue that (a) this can occur given a bug
in the system or (b) honest users might not care about their anonymity. However, we see (a) as a problem
in the system implementation. For (b), it would be more convenient (and efficient) for such users to instead
use non-anonymous credentials systems.

Adversary’s power over the honest users. We consider adversaries who can see only the final showing
message 7 of honest users. Our definition does not cover an adversary that can see the transcript between
the user and the helper or intercept user’s messages during the helper protocol. We leave the consideration
of a stronger (and more complicated) model of adversaries for future work.

ANONYMITY. For anonymity, no adversary can distinguish between interactions with an honest user and

interactions with a simulator Sim. In particular, a SAAC is anonymous if there exists a simulator Sim =
(Simsetup, Simy, SimoptH, Simspew) such that

1. The distribution of par from the setup algorithm and Simsep are indistinguishable, i.e., for any adversary
A, the following advantage is bounded

AV (A, \) := |Pr[A(par) = 1|par < SAAC.Setup(1*, 1°)] -
Pr[A(par) = 1|(par,td) «s Simg,etup(lk7 1Z)]| .

2. The advantage of A in the anonymity game, defined in Figure 8 with respect to Sim, is bounded
AdVaSrAO/QC,Sim(A, A) = ‘Pr[AnonéAAC,Sim,O()‘) =1] - PV[AHOH?AAC,SimJ()\) =1]|.

For readability, we give more detail on our anonymity game below. The adversary (acting as a malicious
issuer) will first receive both the public parameters par and the trapdoor td generated by the simulator and
will do the following:

Determine pk, m,$: The adversary determines its (possibly malicious) public key pk, the attributes m,
and the issuance predicate ¢ for which the honest user will use to request a credential. The user (or the
simulator) then computes a protocol message p and sends them to the adversary.

Finish credential issuance: The adversary sends imsg which lets the honest user derive a credential o or
abort. The simulator needs to correctly simulate the abort as well.

14

Game Anong‘}\Ac,Sim:b(}\): Oracle ObtH; (sid) :

init « 0;Z1,...,Zry1, HP « & if sid € Z; then abort
(par, td) «8 Simserup(1*, 1°) Ii « I1 v {sid}

~ ettt bl
(pk, m, §,sta) <5 A(par, td) lif j=1then /b=0 |
if $(m) = 0 then return 1 L (umsg; , stsiq) «<$ SAAC.ObtHelp, (par, pk, m, o) I
os) 3 SMAC UL T] S b= Tr oo :
Lk, sE") B SAAC.U. 1(parpkom, 9)} / if j=1then [b=1 ;
i
| (i, stsim) <=8 Simy (td, pk, ¢) /b=1 | (umsgy, stsiq) < Simopr (td, pk) !
(imsg, st'y) «$ A(sta, 1) return umsg;
[0'74;$7STA7A6 (J;(;ta:m;;g) Jb=0 Oracle ObtH(sid,hmsg;_;): /j=2,...,7+1
’_::::::::: 777777 if sid¢ Z;,...,Z;_1 v sid € Z; then abort
L0 < Simy(stsin, imsg) |/ b =1 I, < I; U {sid}
if o = 1 then return 1 F - ST ST TS TS TS ST m e T

:ifl<j$rthen Jb=0

b s AOPUH1, - ObtH . | 1,SH
- (sta) (umsgj , Stsig) «<$ SAAC.Otheij (stsid, hmsgjfl)

return b’

Oracle SH(sid, ¢, nonce) :

if ¢(m) =0 v sid ¢ HP then abort
HP «— HP \ {sid}

return umsg;

I
I

I

I

:ifj:r-i—lthen

I auXgg <$ SAAC.Otheij (stsid, hmsgjfl)
I

I

if auxgg = L then abort

// Each auxsq is used ‘only once’. L o o ________ i
7777777777777777777777777 kil
L7' <% SAAC.Show(par, pk, m, o, auxsd, ¢, nonce)j lifl<j<rthem Jb=1
J b= (umsg;;, stsia) < SimoptH (Stsid, hmsg; 1)

return umsg;

_______________ if j =7+ 1 then
return 7

|
|
|
|
|
|
|
|
auXsig <=3 SimoptH (Stsid, hmsg;_1) :
|

I
I
|
|
|
|
|
|
I
I if auxgq = | then abort

HP «— HP v {sid} / Only occurs for j =r +1

return closed

Fig. 8. Anonymity game for SAAC = SAAC[®, M], parameterized with a simulator Sim and a bit b. We denote case
b = 0 in the dashed boxes and case b = 1, denoted in the dashed and highlighted boxes. When querying the oracle
SH, the adversary specifies a helper information auxsq via input sid. We assume all predicates output by A are in .

The adversary then outputs a guess b’ after interacting with the following oracles.

Obtain-help oracles ObtHy,...ObtH,1: The adversary forces the user holding o to request a helper
information. In these oracles, the adversary would interact with either (a) the honest user, who knows
the attributes m and the credential o, or (b) the simulator, who knows neither the attributes nor the
credential. At the end, the honest user will either abort or receive a helper information auxsq tied to the
session ID sid. On the other hand, the simulator would only need to simulate the abort correctly.

Showing oracle SH: The adversary is allowed to specify a helper information (via sid) owned by an honest
user, a predicate ¢, and a value nonce, such that the honest user computes 7 via SAAC.Show using the
helper information auxggq, the attributes myq4 satisfying ¢ and the credential oq. Fach helper information
is restricted to be used only once. On the other hand, the simulator only requires the trapdoor td, the
public key pk, and the specified predicate ¢ to simulate.

We stress that, in oracle SH, the simulator does not depend on the helper information auxgq nor the attributes

and credential of the honest user. This captures the fact that the helper protocol sessions and the final showing

messages are unlinkable, as the simulator is independent of the session ID sid.
Moreover, although we stated the anonymity game with respect to a single honest user, the multi-

user/session security, where the adversary interacts with multiple credential holders, is also satisfied via a

hybrid argument. We include the security definition and the proof in Appendix A.

INTEGRITY. The integrity property, formalized in Figure 9, ensures that a malicious issuer cannot convince a
user that they have been issued a valid credential and helper information, when in fact, these cannot be used

15

********** R e
I

A .
ntegianc,weak (17) 1
i 1

r—-—-——-~-zZ-"~--=-=7==—=-=- A | A
{(pk, 1, &, 5ta) « A(par) I 1(p,m, &, sta) < A(pan); (sk, pk) < SAAC.KeyGen(par; p)

(USRS A L o T T e T L T T T I J
(st'y, 0) <3 (A(sta) = SAAC.U(par, pk, m, ¢))

(st’y, aux) < (A(st’y) = SAAC.ObtHelp(par, pk, m, o))

(¢, nonce) — A(st’y)

7 <% SAAC.Show(par, pk, m, o, aux, ¢, nonce)

return ¢(m) = ¢p(m) = 1 A o # L A aux # L A SAAC.SVer(par, pk, T, ¢, nonce) = 0

Fig. 9. Strong and weak integrity games of SAAC = SAAC[®, M]. The strong version uses the unboxed and dashed
code. The weak version uses the unboxed and highlighted code. We assume that .4 outputs predicates in &.

to create a valid showing for some adversarially-chosen (valid) predicate. This protects against a scenario
where a user does not immediately compute a showing and check that it is valid, perhaps because they do
not yet know the predicate that they want to show the credential for. We define two variants: strong integrity,
where the public key can be chosen maliciously; and weak integrity, where the adversary reveals its random
coins p used to generate the key. Denote the integrity advantage of A as

Adyintes (A, N) = Pr[Integ?AAc,(

SAAC, (strong/weak))‘) = 1] ’

strong/weak) (
and in Appendix B, we prove the following theorem.

Theorem 3.1. If SAAC satisfies correctness and anonymity, then SAAC satisfies weak integrity.

Remark 3.2. If generic NIZK proof systems exist, any SAAC satisfying weak integrity can be transformed
into a SAAC’ satisfying strong integrity. This is because the issuer can publish a proof of knowledge of p such
that for (sk’, pk’) <— SAAC.KeyGen(par; p) the string pk’ equals their public key.

4 Generic Construction from Keyed-Verification Anonymous Credentials

In this section, we introduce our building blocks, keyed-verification anonymous credentials (KVAC) and
oblivious proof issuance protocol (oNIP), in Section 4.1, and give a generic construction of SAAC in Sec-
tion 4.2.

4.1 Building Blocks

In this subsection, we give the syntax and definitions related to our building blocks and point out several
distinctions from prior works. These include (1) global parameters generator, (2) syntax for relations and
languages for oNIP, (3) KVAC syntax and definitions, and (4) oNIP syntax and definitions.

GLOBAL PARAMETERS GENERATOR. Inspired by the formalization in [CKL"16], we define global parameters
generator Gen(1?), a probabilistic algorithm which generates public parameters par,. Note that par, are
shared by both of our building blocks KVAC and oNIP. In practice, an example for Gen is a group parameters
generator GGen which outputs a group description (p, G,G). In our instantiations, the underlying building
blocks KVAC and oNIP may require the global parameters to be generated with some trapdoor td,, used to
simulate components of both building blocks in the security proofs. In that case, we need a simulator Simgen,
which returns (par,,td,) such that par, is indistinguishable from Gen. Denote the distinguishing advantage
of A as

AdyP3r-indist (AN = |Pr[.,4(parg) = l|par, «s Gen(1")] — Pr[A(par,) = 1|(par,, tdy) «s SimGen(l’\)]|)

Gen,Simgen

16

SYNTAX ON RELATIONS FOR OBLIVIOUS PROOF ISSUANCE. Particularly for this section, we use a similar syn-
tax for relations and languages from [OTZZ24]. In [OTZZ24], a relation R contains tuples of the form
((X,Y,Z),x), denoting X the statement, = the witness, Y an argument and Z an augmented statement. In
our case, a relation contains tuples ((X,Y),z) and we instead call Y an augmented statement, containing
both (Y, Z) in their syntax. Further, we denote the relation Core(R) and the induced language Lr as

Core(R) := {(X, z) : Y such that ((X,Y),x) € R},
Lr:={(X,Y) : 3z such that ((X,Y),z) e R} .

The membership (X, z) € Core(R) can be efficiently checked.

KEYED-VERIFICATION ANONYMOUS CREDENTIALS. A keyed-verification anonymous credential (KVAC) scheme
KVAC = KVAC[Gen, @, M], defined with respect to the global parameters generator Gen, a predicate family
@ and an attribute space M, consists of the following algorithms.

« paryac <s KVAC.Setup(1%, parg) takes as input par, and outputs public parameters pargyac defining the
an attribute space M = M and a predicate class ¢ = & We assume that pargyac contains
par,.

. (sk,gpk) «—s KVAC.KeyGen(pargyac) outputs the secret/public key pair.

« (L,0) «s(KVAC.Iss(paryac; sk, ®) = KVAC.U (parxyac, pk, m, ¢)) is a round-optimal protocol with sim-
ilar syntax to SAAC’s issuance (see Section 3.1).

« T = (Tkeys Tpub) < KVAC.Show(parkyac, Pk, m, 0, ¢, nonce) outputs a showing message 7. The showing
algorithm is split into the two algorithms.

— (Tkey, St) «<—s KVAC.Showey (parkyac, Pk, m, o) outputs a state st and a key-dependent showing message
Tkey -

- Tpuyb «—s KVAC.Showp,p(st, ¢, nonce) outputs a message Tpub showing the credential o issued for at-
tributes m such that ¢(m) = 1.

« 0/1 < KVAC.SVer(parkyac, sk, pk, (Tkey, Tpub), ¢, Nonce) outputs a bit. Similar to showing, verification also

splits into key-dependent and public verification as follows. The output bit is determined by by A b.

— by «— KVAC.SVeryey(parkyac sk, Tkey) verifies 7ie, using sk.

— by «— KVAC.SVer,ub(parkyac, PK; Tkeys Tpubs @, nonce) verifies 7iey and Tpup.
One distinction from prior works’ syntax is that the showing and verification algorithms are split into two
parts: the key-dependent and public verification. In the showing algorithm, the showing message T,up is
bound to an additional value nonce (which in some cases can be a token identifier or a nonce chosen by
the verifier). For our generic SAAC construction, we require that 7iey is independent of the predicate ¢ and
nonce. This syntax is applicable to some existing KVAC schemes (e.g., [BBDT16, CMZ14]), but not for
some others [MBS™*25] where the predicate-dependent parts of the showing message require the secret key
to verify. The key-dependent verification algorithm KVAC.SVer,,, induces a relation

Parkvac Parkyac*

Parkvac = (Pa"g,) A
Rv,par, 1= 1 ((Parkvac, PK), Tkey),Sk) : (sk, pk) € [KVAC.KeyGen(parkyac)] A
KVAC.SVeryey (Pargvac, sk; Tkey) = 1

The relation contains a statement ((pargyac,Pk), Tkey) and a witness sk such that paryyac contains par,,
(sk, pk) can be generated from KVAC.KeyGen(paryyac), and Tiey is valid with respect to sk. The member-
ship (sk, pk) € [KVAC.KeyGen(paryac)] can be efficiently checked (interpreting sk as random coins used to
generate pk). We denote ﬁv,parg as the induced language of RV,parg'
Then, we require a KVAC scheme to satisfy the following properties.
n-Correctness. For any A\, ¢ = {(\) € N, any global parameters par, € [Gen(1*)], any KVAC public
paramters paryac € [KVAC.Setup(1, par,)], any keys (sk, pk) € [KVAC.KeyGen(paryyac)], any m € M,
any ¢, ¢’ € & where ¢p(m) = ¢'(m) = 1, and any nonce € {0, 1}*, the following experiment returns 1 with
probability 1 — n(\).
(L, o) «s (KVAC.Iss(pargyac, sk, &) = KVAC.U(pargyac, Pk, m, ¢)),
7 «s KVAC.Show(pargyac, pk, m, o, ¢, nonce),

return KVAC.SVer(paryyac, sk, pk, 7, ¢’, nonce) .

17

Game UNFKAVAC.Ext,O (N): Oracle NewUsr(cid, m, ¢):
MsgQ, PfQ, C, S « (;sctr,win < 0 if cide C v ¢(m) =0 then

A ’
par, <=5 Gen(1"); (paryac, td) <% Extsewp(1°, par,) return L

(sk, pk) <8 KVAC.KeyGen(paryyac)

(r*, ¢*, nonce™®) s

C «— Cu {cid};mcq «— m
ocid <3 (KVAC.Iss (pargyac, sk, ¢)
= KVAC.U (paryyac; Pk, m, ¢))

Iss,NewUsr,SHyg, ,SH ub,(’)(pary,sk,(pavKVAc,pk),~)
A v (Parkvac: PK) return closed

if (KVAC.SVer(pargyac, sk, pk, *, ¢7* s nonce*) =1) A Oracle SHiy (cid):
(¥m € MsgQ : ¢ (m) = 0) A if cid ¢ C then abort
((¢*, nonce®, 7¥) ¢ PfQ) then sctr «— sctr + 1
return 1 (Tiey, sctr» Stsctr) <%
return win KVAC.Showyey (parkyacs Pk, Meid, Ocid)
Oracle Iss(u, @) : return (sctr, Tiey,sctr)

imsg < KVAC.lss (pargyac, sk, 1, §) Oracle SHpyp(sid, ¢, nonce):

if imsg = | then abort if sid e S v sid > sctr then abort
m «— Extiss(td, p, ¢) S « S v {sid}
if m=_1 v ¢(m) =0 then Tpub <8 KVAC.Show,p (stsid, ¢, nonce)
win «— 1 // A wins if it can request T < (Tkey,sid7 Tpub)
/| credentials for non-authorized attributes PfQ « PfQ u {(¢, nonce, 7)}
MsgQ «— MsgQ u {m} return Ty

return imsg

Game AnoanAc7STmGen’Simyb()\): Oracle SHyey():

sctr «— 0; S «—

sctr «— sctr + 1
(parg,tdg) «$Simgen (1Y) pTT T Toooossssosoooooooo- 3|

. £
(Parkyac tdkvac) <3 Simsetup (17, pary)

L —3$ KVAC. Showkey(parKVAc, pk,m, o)
— (tdg, tdkvac) e
(Pk m q‘; St_A) s .A(Par td) L(Tkey sctry Stsctr) 8 SImShow(key”, td, Pk)
, M, @, Kvac,td) b
if ¢(m) = 0 then return 1 /=1

777777777777777777777 return (sctr, Tyey,sctr)

(lf’,St,),Tf KYA,C,U} Spf"gvf\gf'i m, ?) /=0 Oracle SHpb(sid, ¢, nonce):

(p,sts,m) % Simy (td, pk, gb) Jb=1 if (m) =0 v side S v sid > sctr
_______________ then abort
,,,,,,,,,,,,, S « S u {sid}

************* \Tpub 3 KVAC.Showpyp (stsid, ¢, nonce)j Jb=0

S
\T b <3 Simshow (“pub”, stiq, ¢, nonce) 1/ b =1
1fo'=J_then return 1 ce2 oo ITTY S LS Rk S A

return 7,
b/ s ASery=SHpub (sth) pu

U
return b

Fig. 10. Unforgeability and anonymity game for KVAC = KVAC[Gen, ®, M] on the top and bottom, respectively.
We note that both the adversary and the simulator are given access to the global trapdoor td, and KVAC trapdoor
tdkvac. We assume that all the predicates output by A are in &.

Unforgeability. Let O(par,, sk, (parcyac; Pk),") be an oracle embedded with par, parkyac, sk, pk, and tak-
ing a to-be-determined input. A KVAC scheme is O-unforgeable if there exists an extractor Ext =
(Extsetup, Extiss) such that

1. The distribution of paryyac from KVAC.Setup(par,) and Extsetup(par,) for par, <s Gen(1*) are indis-
tinguishable. Denote the distinguishing advantage of A as

Adv&i;_AiE(?Eit(A A) |Pr (parkyac) = 1| par, «s Gen(11); pargyac <5 KVAC.Setup(lZ, parg)]—

18

Pr[A(parkyac) = 1| par, «s Gen(1); (parkyac, td) < Extsetup(lz, parg)]’ .

2. The following advantage of A in the unforgeability game, defined in Figure 10 with respect to the
oracle O and the extractor Ext, is bounded.

AdvuKVAc Ext, o(AN) = Pr[UNF£VAC,Ext,O(A7 A =1]].

The KVAC unforgeability game is defined similarly to SAAC unforgeability with the following exceptions:
no helper oracle is involved, the adversary can query the oracle O which parameterized the game, and
the adversary can request honest users’ showing messages adaptively by first querying SHy., and then
SHpup with a predicate ¢ and a value nonce. The adversary’s goal is still to forge a valid (¢*, nonce*, 7*)
for a predicate ¢* not satisfied by any extracted attributes and without replaying honest users’ showings.
Compared to the original KVAC unforgeability in [CMZ14], we rely on an extractor instead of having
the adversary reveals the attributes, but we do not give the adversary access to a verification oracle.
Compared to the extractability definition of KVAC in [Orr24], we do not require an extractor for the
final forgery. In their game, the issuer oracle also extracts the underlying attributes; however, the game
aborts if they do not satisfy the predicate, instead of allowing the adversary to win (as in our case).
Anonymity. A KVAC scheme is anonymous if there exists a simulator Simge, which generates par, indis-
tinguishable from Gen and a simulator Sim = (Simsetyp, Simy, Simshow) such that
1. The distribution of pargyac from KVAC.Setup(par,) and Simsetyp(par,) for par, «<s Gen(1*) are indis-
tinguishable. , i.e., an adversary A’s advantage is

Adv ﬂi;A'Ed;tm(A A) ‘Pr [(parkyac) = 1} par, «s Gen(17); pargyac <3 KVAC.Setup(1%, parg)] —
Pr [A(parKVAc) = 1‘ par, «s Gen(171); (parkyacs td) < Simsetup(lz, parg)]| .

2. No adversary can distinguish between interactions with an honest user and interactions with the
simulator Sim. This property is defined via the anonymity game in Figure 10 with A’s advantage
defined as

AdVEVAC Simc.,.sim (A A) i= \Pr[Anon“évAc,SimGen,Sim,O()‘) =1]- Pr[AHOHR4VAc,SimGen,Sim,1()\) =1].

The anonymity game of KVAC’s is similar to that of SAAC’s without the helper, except that we split
the showing oracle into SHye, and SH,,,. This allows the adversary to adaptively choose the predicate
¢ and value nonce depending on 7yey. Compared to the anonymity definition in [CMZ14], our definition
incorporates blind issuance and considers maliciously generated key.

Integrity of issued credentials. No adversary can force the honest user to output an invalid showing
message even when the public key pk is adversarially chosen and the public parameters pargyac are
sampled with a trapdoor using the simulator Simge, and Sim (defined in the anonymity definition).
Denote the integrity advantage of A as

(par dg) s Simgen (1)
(parKVAOtdKVAC) s Slmsetup(l par,)
integ L oc# LA (pk m, (b, St) <« A(parKVAO (tdg, tdKVAC))
AdVICVAC imeu, sim (A A)i=Pr (pk, Tkey) ¢ Ly par, |if ¢(m) = 0 then abort
(L, 0) s (A(st) = KVAC.U(pargyac, Pk, m, $))
(Tkey, St) <3 KVAC.Showyey (paryac, Pk, m, o)

Validity of key generation with respect to extractor Ext: For any A,¢=/(X) €N, par, € [Gen(1")],
(Parkyac, td) € [Extsetup(1, par,)] and ((parkyac, Pk), Tiey) € Lv jpar,» for any sk that corresponds to pk
(i.e., (sk, pk) € [KVAC.KeyGen(parkyac)]), we have ((parkyac, pk), Tkey) sk) € Ry par,. This property en-
sures that for any 7, that is valid for some secret key sk which corresponds to the public key pk, it
should also be valid for any other secret key sk’ corresponding to pk. This property is satisfied if the
secret key is unique for each public key.

19

Remark 4.1. At a glance, integrity and validity of key generation, defined with respect to a simulator and an
extractor, might seem strong. However, we view them as extensions of anonymity and unforgeability which
allows composition with oNIP. Moreover, they are satisfied in our KVAC instantiations. This is because
(1) our simulator and extractor generates public parameters that are identically distributed to honestly
generated ones, (2) for integrity, the issuer needs to prove that it issued the credential correctly, so an honest
user is then likely to get a valid credential allowing them to produce valid 7iey, and (3) the public key of
these schemes fixes an underlying secret key, which immediately implies validity of key generation.

OBLIVIOUS ISSUANCE OF NON-INTERACTIVE PROOFS. An oblivious issuance of non-interactive proofs oNIP =
oNIP[Gen,R] defined with respect to a global parameters generator Gen and a family of relations R =
{Rparg}pa,g consists of the following algorithms.
« pargyp <—s oNIP.Setup(par,) outputs public parameters paryyp. The input par, defines the relation R =
Rpar, , omitting subscript par, when clear from the context. We also assume that pargyp contains par,.
« (L,7) <s{oNIP.Iss(par,yp,x, X) = oNIP.U(paroyp, X,Y)) is a r-round interactive protocol starting
with the user algorithm oNIP.U; and concluding with oNIP.U,.; outputting the proof 7.
« 0/1 < oNIP.Ver(paryyp, (X,Y), 7) outputs a bit.
Our syntax deviates from [OTZZ24] in that the user algorithm does not output an augmented statement
Z, but the user takes as input the augmented statement Y (which we think of as (Y, Z) in their work).
We require an oNIP scheme to satisfy the following properties, but unlike [OTZZ24], unforgeability is not
required for our generic construction.

Correctness. An oNIP scheme is nonip-correct if for any A € N and parameters par, € [Gen(1*)], par,yp €
[oNIP.Setup(par,)], any ((X,Y),z) € Rpar,, the following experiment returns 1 with probability 1 —

NoNIP ().

(L, 7) «—s (oNIP.Iss(par yip, z, X) = oNIP.U(paroyp, (X,Y)))
return oNIP.Ver(par yp, (X,Y), 7)

Soundness. Soundness is defined similarly to an NIZK where no adversary can output a statement (X,Y)
and a proof 7 such that 7 verifies and (X,Y’) ¢ Lg. Denote the soundness advantage for A as

par, <s Gen(1*)
par,yp < oNIP.Setup(par,)
(X, Y, 7) s A(paryyip)

sound (Xv Y) ¢ Lr arg

AdVaRip (A A) =P\ N 1P Ver(pareap, (X,),) — 1

Zero-knowledge. Let O(par,,r, X, ") be a deterministic oracle embedded with par, (which defines Rparg)7
and statement and witness X,z and taking in a to-be-determined input. An oNIP is O-Zero-knowledge
if there exists a simulator Sim = (Simsetup, Simiss), such that no adversary can distinguish between an
honest issuer using the witness x from a simulator who does not know the witness. Unconventionally, our
simulator Sim is assisted by the oracle O embedded with x, modeling witness-dependent computation
that is not efficiently simulatable (e.g., checking if a rerandomized statement is in the language). The
advantage of A in the ZK game in Figure 11 is

AdvékNIP,Sim,O(Av A) = |Pr[ZK84N|P,Sim,o,0(>\) =1] - Pr[ZKoANIP,Sim,O,l(/\) =1]|

Obliviousness for valid statements. An oNIP is oblivious for valid statements if there exists a simulator
Simgen generating par, indistinguishable from Gen and a simulator Sim = (Simsetup, Simy, Simp¢) such
that

1. The distribution of parype from oNIP.Setup(par,) and Simsetp(par,) for par, «s Gen(1*) are indis-
tinguishable. Denote the advantage of A as

AdVEEIan (A, A) :=|Pr[A(pargyp) = 1] par, «s Gen(1*); pargyp < oNIP.Setup(par,) |-
PrlA(pargup) = 1|par, «<s Gen(1%); (pargypp, tdonip) < Simserp(par,) | -

20

Game ZK;?\IIP,Sim,O,b(A): Oracle Iss;(sid,umsg;) : [/ j=1,....,7r

init «— 0;71,...,Z, «< J ifsid¢ Zy,...,Z;_1 v sideZ; v init =0
par, «$ Gen(1>‘) then abort
777777777777777 Z; « I; v {sid}
[Pargup S oNIP-Setwp(par,)} /b =0 o j =1 then
! (_Pa_ro_NT 5 tﬂ)_t$_51n15ejug(géir%)/ b=1 (hmsg, , styg) <5 ONIP.Iss1 (pargyp, sk, umsg,) / b =
s AT TS (g) CoTT oS Ts T T 25 S

I (hmsgl,sts,d) «$ Sim__
returnd® L oo

Oracle INIT(X’, z):
if init =1 v (X, &) ¢ Core(R) then

abort

.
B I (hmsgj,sts,d) <8 Sim; (stsid, umng) L /b=1

init — 13} X « X522 = b

return hmsg;

O(parg,z X,-)

return closed

Game OBLV\p simc,,,,sim,s (V) Oracle Uy (sid, Ysq)
init « 0;Z1,...,Zy41, P «— J ifsideZ; v init=0 v (X,Y.d) ¢ [’Rparg then
(pary,tdg) < Simgen (1) abort
(paroNlpatdoNIP) «—$ SimSetup(parg) Ih Ty v {Sid}
td (tdg, tdonip) r(J.%sg; stga) <8 oNIP.U (paryp, X, f/s.;) Jb=0
N, Uy, Uy p, PE T
A (Pargnip, td, st.4) (umsgl,sts.d) «—$ Simy (td, X) Jb=1
returnb T TTTTTTmoTTmomomoms

- return umsg;
Oracle INIT(X):

Oracle Uj(sid,imsg;) [/ j=2,...,7+1
if init = 1then~abort ifsid¢ Zy,...,Z;,_1 v side T,
init « ;X « X then abort
return closed T; «— I, u {sid}
Oracle Pf(sid): if j <7+ 1 then
ifsid¢ Ty,...,Trs1 v side P [(En?sé; stag) <5 oNIP. [Ji(;t;djlr;]sig;) Jb=0

then abort ,_ __________________
PPy {sid} {(umsg stsa) <= Simy (stag, imsg,) 1/ b =1

F-—— - —————— - - —— ~ else

Vif 7o 1 th g

4 el 7 en ! \7r5,d 3 oNIP.U; (stsid, |msg]) Jb=0
L

: return m «3$ Simp¢(td, X, Ysiq) : 777777777777777

Lelse abort D b=1 \71'5.d «—$ Simy (stsid, |mng)\ Jb=1

return closed

Fig. 11. Zero-knowledge and obliviousness games of oNIP = oNIP[Gen, R] on the top and bottom, respectively. The
ZK game is parameterized by the simulator Sim with access to the oracle O. As with the KVAC’s anonymity definition,
both the adversary and the simulator in OBLV game are given access to the global trapdoor td, and oNIP trapdoor
tdonip. Crucially, the OBLV simulator gets the ‘core’ statement X but not the ‘augmented’ statement Y during the
protocol.

2. The adversary A, given the simulation trapdoor, cannot distinguish between an honest user who
obtains the proof from the issuance protocol and a simulator who simulates the proof independent
of the protocol. Importantly, the simulator only gets the ‘core’ statement X but not the ‘augmented’
statement Yjq during the protocol. The advantage of A in the obliviousness game in Figure 11 is
defined as

AdVgtl{lIIVP,Simcen,Sim(A» A) = ‘Pr[OBLV:;l‘\IIP,SimGen,Sim,O()‘) =1] - Pr[OBLV;ANIP,SimGen,Sim,l()‘) =1].

21

Our obliviousness definition is simulation-based instead of the definition in [OTZZ24]. Further, it only
applies for statements in the language and not any statements. This is to achieve anonymity for our
SAAC where the SAAC.ObtHelp algorithms in the game the helper protocol is simulated.

4.2 Construction

In this section, we construct a server-aided anonymous credential scheme SAAC = SAAC[Gen, KVAC, oNIP]
for predicate family ¢ and attribute space M, using a KVAC = KVAC[Gen, &, M] scheme and an oNIP =
oNIP[Gen, Ry] protocol for the relation family Ry defined by the KVAC.SVerye, algorithm.

The high-level idea of our generic construction is to replace the key-dependent part KVAC.SVer,e, of the
keyed-verification credentials with oblivious proof issuance protocols. In particular, the key generation and
issuance protocol remains that of the KVAC scheme, while the helper protocol starts by having the user
runs KVAC.Showy, algorithm to obtain a state st and 7, which is then used to run the oNIP protocol
to produce a proof my of the statement ((parkyac,Pk),Tkey) € Lv par,. To produce the showing message
7, the user would use the state to compute 7, by running KVAC.Show,,, with the specified predicate
¢ and the message (my,nonce). Then, the user returns 7 = (Tkey, Tpub, Tv). The generic construction of
SAAC = SAAC[Gen, KVAC, oNIP] is given below.

Setup: SAAC.Setup(1*) :
. Run par, s Gen(1*), parxyac <s KVAC.Setup(1, par,), and par,yp <s oNIP.Setup(par,)
« Return par = (parxyac; Paronip)
Key generation and Issuance: These are defined exactly as those of KVAC.
Helper protocol: (L,aux) <s (SAAC.Helper(par,sk) = SAAC.ObtHelp(par, pk, o)) is defined as follows:
. First, SAAC.ObtHelp runs (7iey, st) <—s KVAC.Showiey (paryyac, pk, m, o).
« Then, SAAC.Helper and SAAC.ObtHelp run the oNIP protocol
(L, mv) <= (oNIP.Iss(parqyp, sk, (parkyac, Pk)) == oNIP.U(pargyp, (Parkyacs PK); Tkey))-
. Finally, SAAC.ObtHelp returns aux = (7iey, v, st).
Show: SAAC.Show(par, pk, m, ¢, aux = (Tiey, Ty, st), ¢, nonce):
. Compute Tpyp «—s KVAC.Show,p(st, ¢, (mv, nonce))
« Return m = (Tiey; Tpub, Tv)
Verify: SAAC.SVer(par, pk, T = (Tkey; Tpub, Tv), ¢, nonce): returns by A by where
« by < oNIP.Ver(par, (parkyac, Pk), Tkey, Tv)
« by — KVAC.SVerpyb(par, pk, (Tkey; Tpub); @, (v, nonce))

The following theorem then establishes the security properties of our generic SAAC construction.

Theorem 4.2. Let £ = ¢(\) and Gen be a global parameters generator, KVAC be a keyed-verification anony-
mous credential, and oNIP be an oblivious proof issuance protocol for the relation family Ry induced by
KVAC.SVeryey. Then, the server-aided anonymous credential scheme SAAC = SAAC[Gen, KVAC, oNIP] is
« (nkvac + monip)-correct if KVAC is nkyac-correct and oNIP is nonip-correct.
« Unforgeable if there exists an oracle O such that oNIP is O-zero-knowledge and sound and KVAC satisfies
O-unforgeability and validity of key generation with respect to the same extractor Ext.
« Anonymous if there exist simulators Simgen, Simonip, Simkvac such that oNIP is oblivious with respect to
Simgen and Simg, and KVAC satisfies anonymity and integrity with respect to Simge, and Simgyac.

Proof (of Theorem 4.2). Correctness easily follows from the correctness of the KVAC and the correctness
of oNIP. In particular, if KVAC is nkyac-correct and oNIP is nonip-correct, SAAC is n-correct for n(\) =
Nkvac(A) + nonip(A) for all positive integers A. Unforgeability and anonymity guarantees of SAAC, including
the concrete security bounds, are stated in the two following lemmas, which are proved in Sections 4.3
and 4.4, respectively.

Lemma 4.3 (Unforgeability of SAAC). Let O(par,, sk, (parcyac, Pk),-) be an oracle, Sim be a simulator
and Ext be an extractor, such that oNIP is O-zero-knowledge with respect to Sim, and KVAC satisfies O-
unforgeability and validity of key generation with respect to Ext. There exists an extractor Ext’ such that

22

. For any A running in time t 4 = t o(\), there exists an adversary B running in time roughly t 4 such that
-indist -indist
AVERAC B (A A) < AdVIGC e (B) A) -

« For any A playing the game UNF of SAAC, running in time t 4 = t 4(\), making at most qiss, qrelp to Iss
and Help, oracles (resp.), there exist adversaries B, Bsound, Bunf, against the O-zero-knowledge of oNIP,
soundness of oNIP, and O-unforgeability of KVAC (resp.), all running in time roughly t 4 such that

Advgr/I\fAC,Ext' (Av)‘) < AdvékNIP,Sim,O(szv)‘) + Advicl)\lulrl;d (Bsounda)‘)
+ AquKr{;Ac,Ext,o(Bunﬁ A,

Additionally, B starts at most quelp sessions with the proof issuance oracle, and Buns makes at most
q1ss queries to its credential issuance oracle.

Unforgeability of our construction follows from O-Unforgeability and validity of key-generation of KVAC
and O-Zero-Knowledge and soundness of oNIP. Note in particular that the oracle O needs to be the same for
both security properties of KVAC and oNIP. At a high level, the proof would first apply soundness (along with
validity of key-generation of KVAC) to restrict the forgery of the adversary to satisfy the keyed-verification
algorithm KVAC.SVer with respect to the secret key sk that the game sampled. Then, we will simulate the
helper protocol using the O-Zero-Knowledge simulator. At this point, the game is still dependent on the
secret key sk of the KVAC scheme, but only during the issuance protocol and to answer O queries from the
simulator. This allows a simple reduction to O-Unforgeability game of KVAC.

Lemma 4.4 (Anonymity of SAAC). Let Simgen, Simonip, and Simgyac be simulators such that oNIP is
oblivious with respect to Simge, and Simonp, and KVAC satisfies anonymity and integrity with respect to
Simgen and Simgvac. Then, there exists a simulator Sim’ such that

« For any A running in time t 4 = t o(\), there exists an adversary Bo, B1, By running in time roughly t 4
such that
AdVEN A sim (A, A) < AdVERESn L (Bos A) + AdVEVA Simne (B1s) + AdvE S (Ba,) -

Gen,Simgen

« For any A playing the game Anon of SAAC, running in time t 4 = ta(\), making at most qobtu, gsu
to ObtH and SH oracles (resp.), there exist adversaries Bopiv, Banon, Binteg, against obliviousness of oNIP,
anonymity of KVAC, and integrity of issued credentials of KVAC (resp.), all running in time roughly ta
such that

anon oblv anon
AdVSAAC,Sim’ (AN < AdVoNIP,SimGen,Simomp (Bobivs A) + AdVKVAC,SimGen,SimKVAC(Banona A)
integ
+ gobtH - AdVKVAC,SimGen,SimKVAC(Bimeg’ A) s

Additionally, Bonp starts at most qowntu sessions with the user oracle of the obliviousness game, and
Banon makes at most qsu queries to its SH oracle.

Anonymity of our construction follows from anonymity and integrity of credential issuance of KVAC along
with obliviousness of proofs for valid statements of oNIP. As a rough proof sketch, we first apply integrity
of credential issuance to restrict Ty, so that the honest user generates to be a valid statement with high
probability. Then, applying (a) obliviousness of oNIP for valid statements to simulate the user-side of the
helper protocol and (b) anonymity of KVAC to simulate the issuance and showing concludes the proof. o

4.3 Proof of Lemma 4.3
We first give the description on the extractor Ext’.
. Extgetup(lk, 1%) : Run par, «s Gen(1%), (parkyac, td) <—s Extsetup (1, par,) and par,yp <—s oNIP.Setup(par,)

and return (par = (pargyac, Paronip)s td)-

23

o Extj(td, p,) : Run m « Exti(td, i1, ¢) and return m.

The public parameters sampled from Exts,,, are indistinguishable from the one sampled from SAAC.Setup.
This is because pargyac sampled from Extserp are indistinguishable from KVAC.Setup, and the concrete
bound follows easily.

Next, we want to show that no adversary can succeed in the unforgeability game. Hence, we consider an
adversary A as described in the theorem statement. Now, we consider the following sequence of games.
Game G()4()\): This game is exactly the unforgeability game with respect to the extractor Ext’. The adver-
sary A has access to a credential issuance oracle Iss, new user oracle NewUsr, showing oracle SH and the
helper oracles Helpy, ..., Help,. At the end of the game, it tries to output a valid forgery (¢*, nonce*, 7* =
(Tiey: Toubs ™)) In particular, A succeeds if (a) the extractor fails or (b) ¢*(m) = 0 for all m extracted in
the issuance oracle, (¢*, nonce®, 7*) was not an output of the SH oracle, and

oNIP.Ver(paronip, ((Parkyac: PK); Tiey), 7)) = 1, and

KVAC.SVerpub (parkyac, P (Treys Taub) @5 (3, nonce™)) = 1.

Game G7'()\): In this game, the simulation of the oracles are unchanged. However, the success event of the
adversary A is now modified: in addition to checking the winning condition in Gy, the game also checks
that KVAC.SVeryey (parkyacs sk, (T, s Toup)» @ (1, nonce™)) = 1. In particular, we can bound the the success
probability of A in G; as follows

Pr[Gy'(\) = 1] = Pr[Gg'(A) = 1 A KVAC.SVerye(paryyac, sk, pk, 7i&,) = 0]
+ Pr[G{;‘()\) =1 A KVAC.SVeryey(parkyacs sk, pk,T;’;y) =1]
< Pr[ONIP'Ver(paroNIP7 ((parKVAC7 pk)77-lj;y)a7r\>;) =1
A KVAC.SVerye, (parkyac, sk, pk, i,) = 0] + Pr[G1'(\) = 1]

We will now analyze the first term on the right-hand side. By the validity of key generation property of
KVAC, if ((parkyacs pk),le‘ey) € ['V,parg7 then KVAC.SVerye, (parkyac; sk, pk,le;y) = 1. Hence, this particular
event implies that the adversary outputs a valid 7y proof for a statement ((parkyac,Pk), 7i,) not in the
language ﬁv,parg- Therefore, we can construct a reduction Bgoung breaking soundness of oNIP and running in
time roughly ¢4 such that

Pr[oNIP.Ver(par e, ((Parkvacs pk),ﬂ:’;y),ﬂ\’ﬁ) =1
A KVAC.SVeriey (parcyac, sk, Pk, 7,) = 0] < AdVENIE' (Bsound; A) -

Game G3'(\): In this game, the simulation of the helper oracles are now done using the simulator Sim. In
particular, (1) pargyp is now generated with a trapdoor tdonip using Simsetyp and (2) the helper oracle is run
with Simss, which takes as input the trapdoor tdenip, the public key pk, and the protocol messages and has
access to the oracle O(pary, sk, (pargyac; Pk),), and (3) the SH oracle now computes 7y by running the oNIP
issuance protocol with the issuer replaced by the simulator Simss as in the helper oracle. Note that since the
game at this point still knows the secret key sk, it can simulate the oracle O efficiently to the simulator.
Then, we show the change in winning probability of A by giving a reduction B, described as follows:

. Takes as input par,yp (which implicitly contains par,). Then, generate (parkyac,td) «s Extserup (17, par,).
. Generate the secret and public keys (sk, pk) <s KVAC.KeyGen(parkyac) and call the INIT using (pk, sk) as
the witness and the partial statement. It then runs the adversary A on input (par = (pargyac, Paronip)s PK)-

. For credential issuance oracle Iss, it uses sk and td as in the game.

. For each query to helper oracle Help; with session ID sid, the reduction forwards the user message to
its proof issuance oracle Iss; of the corresponding round and sid. The output from the issuance oracle is
then the output of the helper oracle.

. For NewUsr oracle, it computes the credential o using the secret key sk via the algorithm KVAC.lss.

24

. For SH oracle, it uses the credential o¢jq and the attributes mciq to compute 7iey and st via KVAC.Showyey.
Then, it computes my by starting a new Iss session with its game while running the oNIP user-side
algorithms with statement ((pargyac;Pk),Tkey) to obtain the proof my. Finally, it computes 7pu, via
KVAC.Showp,(st, ¢, (myv, M)). Return (Tiey, Toub, Tv) to the adversary.

. At the end of the game, the reduction checks, using its generated secret key sk, whether A wins the
game, and if so it outputs 1. Otherwise, output 0.

We can easily see that if the ZK game uses an honest issuer, the view of A corresponds to its view in game
G+ (). Similarly, if the game uses a simulator, the view of A corresponds to its view in game Gz'(\). Thus,
proving that

Pr[GF'(A) = 1] = Pr[G3'(N) = 1]| < Advehp sim,0 Bz A) -

Finally, we show that there exists an adversary B¢ playing the unforgeability game of KVAC with respect
to the extractor Ext and the oracle O. In particular, By,s does the following

. It takes as input the public parameters paryac (containing parg) and the public key pk, and samples
(Pargnips tdonip) <=5 Simserup(par,). It then runs A with (par = (parkyac, Paronip); Pk). Note that Byss does
not know the extraction trapdoor td.

. For credential issuance oracle, it forwards the input from A to its own issuance oracle.

. For the helper oracles, it runs the simulator Sims using tdonip and pk, and uses the access to oracle O
to simulate the output of O without knowing sk.

. For NewUsr oracle, it forwards the query to the NewUsr oracle of its game.

. For SH oracle, it forwards the cid part of the query to the SHye, oracle of its game, which returns (sid, Tiey).
Then, it computes the proof my as in Gg. Then, it queries SHyup for 7pu, with input (sid, ¢, (wy, M)),
and returns (Tkey, Tpub, TV)-

. Finally, it outputs the forgery (¢*, (7, nonce*), (T;“ey, T;‘ub)) returned from A.

It is easy to see that the view of A within the reduction is identical to its view in Gy. Now, if A wins in
Go, then the extraction fails or we have that the forgery (¢*, (my, nonce*), (&, 7,)) does not correspond
to any (¢, M, 7) tuples returned by the simulation of SH and ¢* is not satisfied by any extracted attributes
during issuance. Therefore, in both cases By,s wins in the unforgeability game. Thus,

Pr[G3'(\) = 1] < AdVitac exe.0 (Bunfs) |

concluding the proof for unforgeability. m]

4.4 Proof of Lemma 4.4

We first give the description on the simulator Sim’ which uses the simulators Simgen, Simonip, and Simkvac
as subroutines.

o Simge, (1%, 1) :
— Run (par,,tdy) < Simgen(1%)
— Run (parKVAC, tdK\/Ac) 8 SimKVAC,Setup(lev Parg) and (paroNIP’ tdo'\“P) s SimONlpvset“P(parg)

— Return (par = (paryyac; Paronip), td = (tdy, tdkvac, tdonip))
. Sim{J : This simulator runs Simkyac,u in both moves of the issuance protocol with inputs tdg, tdkvac, pk

and the predicate ¢.
« Simgy: This simulator runs Simenip,u in all rounds of the helper protocol with inputs tdg, tdonip and
pk.
. Simg,,, (td, pk, ¢, M):
— (Tkey, St) <=8 Simkvac,show (“key”, (tdg, tdkvac), pk)
— 7y s Simonip,pe((tdg, tdonip), PK, Tkey)
— Tpub 3 SimKVAC,ShoW(‘LPUb”) Sta (ba ('/TV, M))
— Return 7 = (Tkey, Tpub, TV)

25

It is easy to see that the public parameters from Sim’ are indistinguishable from SAAC.Setup, and this follows
from the indistinguishability of public parameters for Simgen, SimoniP,Setup and Simkvac,setup-

Now, we need to show that no adversary A can distinguish between the game Anonsaac sim’,0 and
Anonsaac sim,1, and we do so by considering the following sequence of games.

Game Ga“(A) : This game is exactly the game Anongaac sim’,0 Where A is interacting with honest users in
all oracles. In particular, A interacts with the following:

. During the issuance phase, the game runs the user algorithms SAAC.U;, SAAC.Us,.

. For the ObtH; oracles, the game runs the user side of the protocol SAAC.ObtHelp;. Specifically, note
that the first move of the user SAAC.ObtHelp; involves computing Tyey and st using KVAC.Showye, using
the attributes m and the credential o. At the end of sessions sid, the game obtains auxsqg, which contains
Tkey, St (computed in the first move), my (obtained as a result of oNIP protocol), and

. For the SH oracle, A specifies an sid such that the game would run the SAAC.Show algorithm using auxgq
obtained from the helper protocol in session sid.

Game G7'()) : In this game, the ObtH; for j € [r + 1] is now run using Simgyy, and the 7y part in SH is
now computed using Simenip,ps. More precisely, the simulation of the following oracles are modified.

. Oracle ObtH;: The game runs the simulator Simgnip,y for oNIP in all moves of the helper protocol. Note
that in the first move, the game does not compute 7iey and st using KVAC.Showy., anymore, since the
simulator Simenip,y does not depend on the statement 7ye,.

. SH(sid, ¢, M) : The game now computes T = (Tkey; Tpub, Tv) by

— Running (7key, st) «<—s KVAC.Showey (par, pk,m, o),
— Simulating 7y «<s Simonip,pe((tdg, tdonip), Pk, Tkey), and
— Computing Toup <3 KVAC.Showpyp(st, ¢, (my, M)).

Now, we show the change in the probability that A outputs 1 from Gg to Gi. First, we consider the event
Bad that there exists a session sid such that ((parkyac,Pk), Tkey,sid) & Lv,par,- Then, denote Pr;[Bad] as the
probability that Bad occurs in G; for 7 € {0,1}. But notice that this event only depends on the public
parameters par, the trapdoor td, the public key pk, the issued credential o, and the random coins of the
KVAC.Showye, algorithm. These are all independent of whether Simgnip is used in the helper oracles or not.
Hence, Pro[Bad] = Pri[Bad]. Also, we have that

Pr[G#(\) = 1] = Pr[G#(\) = 1|Bad]Pro[Bad] + Pr[Gi'(\) =1 A —Bad] .
Then,

Pr[G1'()) = 1] = Pr[Gg'()) = 1]]
< Prg[Bad] + [Pr[G7{(\) =1 A —Bad] — Pr[Gg'(\) =1 A —Bad]|.

We will then bound the two terms above separately: (1) Pro[Bad] will be bounded via a reduction Binteg
to the integrity property of KVAC, and (2) the second term will be bounded using a reduction Bgpy to the
obliviousness property of oNIP.

For Pry[Bad], notice that

par, td) «<s Simgqy,, (1%, 1°)
ok, m, ,st) s A(par, td)

(

(
oL A If ¢(m) = 0, abort
(
(

Pro[Bad] < P
rolBadl < domnPr (o1) ¢ £y

1,0) «s{A(st) = KVAC.U(par, pk, m, ¢)>
Tkey, St) «—s KVAC.Show,ey (par, pk, m, o)

Thus, there exists a reduction Binteg such that Pro[Bad] < gops - AdViIE:/eAgC,SimKVAC (Bintegs A)-

Next, consider the following reduction By, playing the game OBLV of oNIP:

26

. The reduction takes as input par,yp, tdg, tdonip and samples (parkyac; tdkvac) < SimKVAc’Setup(lf, parg).
(Again par, is contained in pargyp).

. Then, the reduction runs A with (par = (parkyac;Parenip),td = (tdg, tdkvac, tdonip)), who outputs
(pk, m, ¢).

« The issuance protocol is run using the user algorithm SAAC.U and the reduction obtains a credential o
of attributes m.

. For the ObtH oracles in sessions sid, the reduction runs (7Tkey,sid; Stsia) <= KVAC.Showyey (paryyac, Pk, m, o),
and opens a new oNIP protocol session sid using the statement ((paryyac, PK), Tkey,sid) With its OBLV game.
If (pk, Tkey,sid) ¢ EV,parq7 the game will return | and the reduction would simply return a random guess
b’ «s{0,1}. Otherwise, it would forward the protocol messages back and forth between A and the OBLV
game.

. For the SH oracle on input (sid, ¢, M), the reduction first queries the Pf oracle with sid to get my. Then,
it computes Tpup «s KVAC.Show b (Stsid, ¢, M) and returns (Tkey.sid; Tpub, 7v) t0 A.

. Finally, it forwards the guess b’ from A to its game.

Here, it is easy to see that if Bad occurs the probability that the reduction outputs 1 is 1/2 in both cases of
OBLV game. Also, when Bad does not occur, the views of A within the reduction when OBLV is run with
honest user and the simulator Simgyp are identical to its view in Gg and G, respectively. Therefore,

IPr[Gf'(\) =1 A —Bad] — Pr[G{'(\) =1 A —Bad]| < AdVaRib simoe (Bintegs A) -

Hence, |Pr[G{()) = 1] — Pr[Gg'(\) = 1]| < AV simonye (Bintegs A) + Advi,szfgsmwm(antey A).

Game G3'()\) : This game is exactly the game Anongsaac sim’,1 Where A is interacting with the simulator Sim’
in all steps of the game. To show the change in probability that A returns 1, we can construct a reduction
Banon to the anonymity game of KVAC. In particular, the reduction does the following:

1. To simulate the issuance protocol, it forwards the issuance protocol message and sends the outputs back
to A.

2. To simulate the helper protocol in ObtHy, ..., ObtH, 1, it runs Simenip,u-

3. to simulate SH queries of the form (sid, ¢, M), it first queries SHyey to get Tiey. Then, it uses Simonip,pt
to compute the proof my for 7iey. Finally, it queries SHy,, with (¢, (my, M)) to get 7oy, and returns
(Tkeya Tpub, 7"'V)-

4. Tt will then return the guess b’ that A outputs.

Hence, the view of A corresponds to G; and Ga when the Anon game is run with honest user and Simgyac,
respectively. Therefore,

IPr[G5'(A) = 1] = Pr[G{'(A) = 1]] < AdVI&RC Simpunc (Banon: A)

concluding the proof. =

5 Instantiation from BBS

In this section, we instantiate our generic SAAC construction with a KVAC based on the BBS MAC and a
corresponding oNIP. We introduce the BBS MAC in Section 5.1, the KVAC in Section 5.2, and the oNIP in
Section 5.3. Also, we discuss the final instantiation in Section 5.4.

GLOBAL PARAMETERS GENERATOR. Following the syntax in Section 4.1, we note that the global parame-
ters generator for this instantiation is exactly the group generator GGen and the corresponding simulator
Simgen (1) simply outputs par, = (p,G,G) < GGen(1*) and does not output any trapdoor.

27

Algorithm MACBBSASetup(lk) : Algorithm MACggs.M(par,sk = z,m € Zé) :

(p, G,G) <8 GGen(1*); H «<$ G e« Zp; A — (x4 ¢) (G + Zle m[i|H[i])
par — (p,G, H,G) return (A,e)

return par Algorithm MACggs.Ver(par, sk, m,o = (A, e)) :
Algorithm MACggs.KG(par) :

C — G+ ¥, m[i]H[i]
TS Zp return ((z + e)A = C)

return (sk « z,ipk «— zG)

Fig. 12. Message Authentication Code from BBS Signatures.

5.1 BBS-based MAC

In this section, we give the MACggs scheme in Figure 12. The MAC tag for message m = (m;)%_, is computed

as (A := (x + e)71C,e < Z,) where z € Z, is the secret key, C = G + Zle m;H;, and Hy...,H; € G
are parts of the public parameters. This scheme is similar to the one presented in Orri’s paper [Orr24],
and Barki et al. [BBDT16] considered a variant of this scheme where the tag also includes a random scalar
s € Zyp. The following theorem then establishes the unforgeability of MACggs in standard model.

Theorem 5.1 (Unforgeability of MACggs). Let GGen be a group generator that outputs groups of prime
order p = p(A), and let MACggs = MACgps[GGen]. For any adversary A playing the 'tDDH-UFCMA game of
MACggs making at most ¢ = q(\) queries to MAC and running in time t4 = t 4(\), there exist adversaries
B, Ba, B3 running in time roughly t 4 such that

Advia® opm(AA) < g - AdVEST D (Br,) + AdviacE (Ba, A)

2
-SDH ¢ q+2
+ AdVgGen,rDDH<B3’)‘> + % + P

Moreover, the same holds for UFCMA without any of the tDDH oracles appearing anywhere in the statement.

Proof. The result follows from a minor adaptation of Tessaro and Zhu’s proof of security for BBS [TZ23a,
Proof of Theorem 1]. For plain UFCMA, their proof does not rely on pairings and thus easily transfers to
the MAC setting. For rDDH-UFCMA, it suffices to show that oracles V and rDDH can be simulated by the
reduction. For verification, we use the fact that for C = G + Zle m;H; we have (z + e)~1C if and only
if (G,zG,A,C — eA) is a DDH quadruple. This enables us to simulate verification with a restricted DDH
oracle instead of knowledge of the secret key x. More precisely, the Tessaro-Zhu BBS SUF proof consists of
three reductions:

1. Two reductions to ¢-SDH which simulate the game to A by signing using the secret key = from the
¢-SDH challenge.

2. A reduction to ¢-DL which simulates the game by signing using a randomly sampled secret key known
to the reduction.

The first two reductions can simulate the verification oracle with their restricted DDH oracle as discussed,
and obviously can simulate the restricted DDH oracle by passing queries to their restricted DDH oracle.
The final reduction knows the secret key so verification and the restricted DDH oracle can be simulated
canonically.]

Remark 5.2. Theorem 5.1 cannot be found in prior work, although similar results have been shown: Barki
et al. showed that MACggs+ is UFCMVA under the assumption that ¢-SDH is hard with a (unrestricted)
DDH oracle [BBDT16]. Orrti proved that the slightly more efficient MACgps still achieves UFCMVA under
the ¢-DL assumption in the AGM.

28

5.2 BBS-based KVAC

We first describe the KVACggs scheme in Figure 13, which can be seen as a variant of the KVAC from
[BBDT16]. The blind issuance starts by the user computing a Pedersen commitment C' = Zle m;H;+sHypq
of its attributes m with randomness s, and the issuer signing this commitment by computing the MACggs
tag (A, e) where A = (x + ¢)"1(G + C). The credential for attributes m is then (A, e,s). We note that in
contrast to [BBDT16], our issuer does not rerandomize the scalar s and thus saving one scalar in issuer’s
communication. To show a credential, a holder can sample 7,r" «$ Z, and compute C —1rC, A — r'rA,
and B « 1'C — eA. The holder sends to the issuer (fl, B, C'), along with a proof of knowledge of e,r, 7', m
(using CDL proofs [CDL16]), and the issuer can check that zA = B.

RELEVANT PROOF SYSTEMS. Our KVAC makes use of proof systems Ilcom, I, and Il for the following
relations (implicitly parameterized by the group description), respectively:

Reom := {((H,C, %), (s,m)) : C = sHy 1 + Zf=1 miH; A (m) = 1}
Ry :={((X,A,B),z) : 2G =X A zA = B}

. - e~ ' ’n . 'I"”é + <HpriV7 (Th’HS)> =Yn
Rpub T {((A,B,C,Hprlv,Y),(e,T7T ,m78). B:r’é—ez& .

The first proof system Ilcom is used for the user to prove knowledge of openings to the commitment C' during
issuance. We require Il to be straightline-extractable for the relaxed relation Reom defined as

N (0g = Zle miH; + sHypy 1 A
Reom := < ((H,C, %), (s,m)) : (s|lm) # 0) v)
((H,C,¢),(s,m)) € Reom

and it is instantiated using a variant of the Fischlin transform [Fis05, Ks22], which we describe in Appendix C.
The proof systems Il, and Il,,, are used for proving validity of the issued credentials by the issuer and
showing the credentials by the users, respectively. These proof systems are instantiated using the proof
system Lin for linear relations on G (described in Section 2), with the corresponding linear maps for the
relations R, and R, defined as follows:

o L G pub L é Hpriv,l e Hpriv,k: 00
Mg A = <A)’ ME e HisA <0 0 -~ 0 C-4)°

We further note that to bind a value nonce to the showing message, the hash computation in I,y also takes
nonce as an input. We emphasize that this is crucial for the security of our final SAAC construction.

KEY-DEPENDENT VERIFICATION INDUCED-RELATION. We point out that SVere, induces the following DLEQ
relation (parameterized by par, = (p, G,G) which we will omit) for which we give a corresponding oNIP
protocol.

Raieq := {((X, (A4, B)),z): X = 2G A B =zA}, (1)

Note that the augmented statement is (/L B) while the core relation Core(Rgeq) contains public-secret key
pairs (X = G,) defined by the key generation of KVACggs. We further note that checking if an augmented
statement (A, B) is in the language can be done via the rDDH oracle, described in Figure 2.

CORRECTNESS. Correctness of KVACggs follows from n-correctness of Ileom, perfect correctness of 11, and
IT,ub, and that the honest user aborts with probability 1/p if the commitment C = Zle m;H;+sHp 1 = —G.
In particular, the correctness error of the scheme is n(\) + %.

UNFORGEABILITY. Unforgeability of KVACggs against adversaries with access to the rDDH oracle, established
in the following lemma, mainly follows from online-extractability of I1.om and a reduction to rDDH-UFCMA
security of MACggs. Crucially, the reduction needs to (1) simulate the honest user showings and (2) rewind
the adversary to extract a MACggs forgery. To this end, our analysis, despite relying on standard techniques,
is non-trivial, and we refer to Section 5.5 for the formal proof.

29

KVACggs.Setup (1, par, = (p,G,G)) KVACggs.U1 (par, X, m € Zé,)

Select Ho,Hy, Hs : {0,1}¥ — 7, 5§82y C — sHopy + 30 mH;
H = (Hz)f:% s Glt? if C + G = 0g then abort
My « Lin[H1,G]; oy, — Lin[Hz, G] Ticom = Heom-Prove™ ((H, C,), (s, m))
return par = (p, G, G, H,Hp, Hy,Hs) return p := (C, Tcom)
KVACggs.KeyGen(par) KVACggs.Uz (imsg = (A, e, 7))
T «S8Zp; X «— G B—G+C—eA
return (sk < z, pk < X) if IT, .Ver'l (MZ 4,(X,B)),m5) =0
KVACggs.Iss(par, =, 9, i = (C, Teom)) then abort
if C+ G = 0g v Heom Ve (H, C,), Teom) = 0 return o — (A, e,s)

then abort KVACggs . Showey (par, pk, m, o = (A, €, 5))
e <87y

rr' <—$Zj:
A—(z+e) (G+C);B—C—eA

C —r(G+sHepr + Y5, miHy)
7o — I, .Prove" (ME 4, (X, B)),z)

A — 7"7‘A; B« 1r'C—cA
return imsg «— (A, e, 7,)

KVACggs.SVeryey (par, &, Tkey = (;1, B))

return Ty, := (4, B)
KVACggs.Showpub (¢ 1,a, Nonce)
if ¢1,o(m) = 0 then abort

return zA = B

KVACggs.SVerpus (par, X, Tkey, Tpubs PI,a, NONCE) Hyiv — (Hi)iepons

parse (Av B) < Tkeys (Cv 7Tpub) < Tpub Y « G+ <("Li)1'617 (Hi)iel>

Hopriv (Hi)iepe+ Tpub — Mpup-Prove™2 ((]\lgmH o B)),
H iy

Y — G+ {(m/, (Hi)ier)

-1 ’
return Upub.VEFH2 ((]wgle o (v, é)), Tpubs ($1,a, nONCE)) (r " (mi)ierens, r's 8, €), (¢1,a, nonce))
Hpriv,

return 7oy := (C, Tpub)

Fig. 13. Scheme KVACggs = KVACggs[GGen]. The proof systems Ilcom, II, IIpu are NIZKs for Reom, Ro, Rpus defined
in Section 5, respectively. States are omitted for readability — subsequent algorithms can use values defined before
(e.g. KVACggs.U2 can use variables from KVACggs.U1). In Showpy, the value nonce is bound to mpub-

Lemma 5.3. Let GGen be a group generator that outputs groups of prime order p = p(\), Exteom be
an extractor for the knowledge-soundness Il.om, and Sim, be a zero-knowledge simulator for II,. Define
Extggs := (Extsetup, Extiss) as follows:

« Extsetup on input par, generates H as in KVACggs.Setup and does not output any trapdoor.

« Extis on input (i = (C,Teom), V) outputs m —s Ext?® (Q, (H,C,1)), Teom) where Q is the set of Hg

queries the adversary has made so far.
Then,

« For any adversary A, Advﬂi;ggii:;ExtBBs (A, \) = 0.

. Let A be an adversary against the (Extggs, TDDH)-unforgeability of KVACggps = KVACggs[GGen], running
in time ta = ta(\) making at most qn, = qno(N),qhy = qny (A), Gy = Qna(A); Giss = Giss(A); Gshow =
gshow(A), &epDH = ¢rDDH(A) queries to Ho,Hq, Ha, Iss, SH, and rDDH oracles, respectively. Let ¢ =
Giss + Qhy + qshow- There exist adversaries Bugema (playing rDDH-UFCMA game of MACggs), Beom (playing
KSND game of Heom), Bd10g78é10g78510g (playing DL game) and B, (playing the ZK game of II,) such
that

1

f f dl
AdVErE;en,ExtBBS,rDDH (AN < \/q : (AdVK/ICAn(]Z?ggs,rDDH(Bufcmaa A) + Advg s (fﬁoga A) + p)

ksnd dlo
+ AdVUcongXtcom:ﬁcom (Bcom, A) + AdVGGegn (B:iloga A)
2
o z +qg+2
+ Advgngn (Bd10g7)\) + AdVI%a,SimU (B(ﬂ)\) + % .

30

Simserup (14, par, = (p, G, G)): Simy, (td = L, pk, %):

H = (H)'t] «sG"! C G

i=1
return par = (p, G, G, H) if C + G = Og then abort

// Sim programs Hg
Simghow (“key”,td = L, X): "
Teom <= Simc$ (Hi C, 1[’)

com

a «$ Z:‘; A— aG;B — aX return (g <« (C, Tcom), Stsim < C)

return ((4, B),st = X) Simu, (stsim, imsg):

Si “pub”, st once): .
imshow (“pub”, st, ¢1,q, nonce) C stem; (A, e, 70) — imsg

C s G*; Hyriv — (Hi)ic[er1)\1 Be—G+C—eca
Y « G+ Y, aiH; if IT,.Ver'" (G, A), (X, B)), 7,) = 0 then
// Sim programs Ha return L

Ho o<« 1

T = SIA((MEYy 1 (V2 B). (61, nonce))

return (C, mpub)

Fig. 14. Simulator Simggs = Simggs[SiMmcom, Simpub |

Additionally, Bdlog,Bélog runs in time roughly t 4, while Bufcma,Bglog runs in time roughly 2t 4. Also,
Butema makes at most 2¢iss and 2¢,ppu queries to its MAC and rDDH oracles, respectively. Finally, Beom
makes at most qn, queries to Hy and giss queries to Ogxt-

ANONYMITY. The following lemma establishes anonymity of KVACggs which follows from zero-knowledge
properties of ITcom, Ipub, soundness of I, (to ensure that the maliciously issued credential is valid), and
the rerandomization of the credential during showing as described earlier. The formal proof is given in
Section 5.6.

Lemma 5.4 (Anonymity of KVACggs). Let GGen be a group generator that outputs groups of prime order
p = p(\) and Simge, be the simulator for the global parameters generator (note again that it does not output
any trapdoor). Let Simcom and Simpuy, be zero-knowledge simulators for Ilcom and Iy, and define Simggs =
SiMKVACggs [SiMcom, Simpu | as in Figure 14. Then,

« For any adversary A, Advﬂi;gz‘;:‘;,SimBBs (A, \) =0.

« For any adversary A against the anonymity of KVACggs making at most qny = qne(N)s qhy = qhy (A), Ghy, =
Gh, (A) queries to Ho, H1,Ha, there exist adversaries Beom playing the ZK game of Icom and making at
most qn, queries to Hy, B, playing the soundness game of II, making at most qp, queries to Hy, and
Bpub playing the ZK game of I, making at most qn, queries to Ha such that:

k k d
AdVaKVECBBS,SimGen,SimBBS (A N) < AV sime, (Beom) + AdV?Ipub,Sim,,ub(Bpub) + 2Adv™(B,)

INTEGRITY AND VALIDITY OF KEY GENERATION. The following two lemmas establish the integrity (with
respect to the simulators Simgen, Simpgs defined in Lemma 5.4) and validity of key generation (with respect
to the extractor Extggs defined in Lemma 5.3) for KVACgpgs.

Lemma 5.5 (Validity of Key Generation of KVACggs). Let GGen and Extggs be as defined in Lemma 5.3.
KVACggs satisfies validity of key generation with respect to Extggs defined in Lemma 5.3.

Proof. The relation Rgeq induced from the definition of KVACggs.SVerye, is defined in Equation (1). The

lemma follows from the fact that, since G is prime-order, the public key X € G fixes a unique underlying
secret key x € Zy,.

31

Algorithm oNIP.Setup(par, = (p, G, G)):

Algorithm oNIP.Uy (pargyp, (X, A, B))

W «$G

Select H, : {0,1}* — 7,

return paryye = (p, G, G, W, Hc)
Algorithm oNIP.lIss; (par,yp, z, (A, B)):

B S 7,
(A,B) « (A + BG, B + BX)
return (A, B)

Algorithm oNIP.U2(Ro, G, Ro, 4, R1):

if xA # B then abort
r0,81,C1 <S8 Zp

Ro,¢ < 10G; Ry «— 51G —c1 W
Ro, 4 < 10A

return (Ro,g, Ro, A, R1)
Algorithm oNIP.lIssz(c):

Cop <« C—C1;8) < Tg +Co T

return (co, So, 51)

30,01,70, V1 <38 Zyp

RIJ,G — Ro,¢ + 680G —v0X

Ry s < Ro,a = BRo,G + 80A — 7B
R} « Ri +6:G — W

¢ «$H.(X,A, B, Ry ¢, R) 4, RY)
return ¢ «— ¢ — Yo — V1

Algorithm oNIP.Us(co, so, s1):

Algorithm oNIP.Ver(paroyp, (X, A, B),7): €1 < ¢—Co
if Ro,g + coX # s0G v
Ro,a +coB # soA v
Ry 4+ c1 W # s1G then abort

parse (co, c1,80,81) < T

Ro,g < s0G — co X

Ro, 4 < soA —coB

Ry «— s1G— a1 W

¢« H.(X,A,B,Ro,g,Ro,a, R1)

return (co + ¢1 = ¢)

/ ’
co < Co + Y0; 8¢ < S0 + do

/ ’
¢y —c1+7v138] «— 851+ 01

U / ’ !’
return m « (¢, ¢y, 5, 57)

Fig. 15. Oblivious proof issuance oNIP = oNIP[GGen, Rqieq] for the DLEQ relation. We omitted the user and issuer’s
states and assume that any variable defined in the previous round is accessible in the next round.

Lemma 5.6 (Integrity of KVACggs). Let GGen,Simge, and Simggs be as defined in Lemma 5.4. Let A
be an adversary playing the integrity of issued credentials game of KVACggs with respect to the simulators
Simgen and Simggs defined in Lemma 5.4 and making at most qn, = qn, (\) queries to Hy. There exists an
adversary B against the soundness of I, and making at most qn, queries to Hy such that

integ sound
AVKVAC s Simeen Simpss (A A) < AdVET (B, A)

Proof. The reduction B simulates the integrity of issuance game to A and outputs the statement (A, (B :=
C — eA)) along with proof 7,. Winning the integrity of issuance game implies x A # B, which can occur for
an honest user only if zA’ # B’, and 7, must have been valid otherwise the honest user would have aborted.

5.3 oNIP for BBS-based instantiation

In this section, we give the oNIPggs = oNIP[GGen, Ryieq] protocol (described in Figure 15) for the family of
relations Ryieq, defined in Equation (1). The protocol starts by the user sending a rerandomized statement
(A = A+ BG,B = B+ BX) to the issuer. The issuer first checks that (X, (A, B)) is actually in the
language Lg,,,. Then, the two parties interact in a blinded X-protocol to compute an OR-proof that (1)
(X, (A, B)) € Lry,, or (2) the issuer knows the discrete logarithm of public parameters W e G. At the end
of the protocol, the user obtains a proof 7 for its statement of choice ([L B) We remark that this protocol
is similar to a recent blind signature scheme [CATZ24] and the oNIP for Ryieq in [OTZZ24], except that in
their cases the issuer computes B = x A for the user who sends A.

The following theorem then establishes the security properties of oNIPggs with the proof in Section 5.7.
Note that oNIPggs is zero-knowledge with respect to rDDH, because the simulator needs to check that
B = zA without z. On the technical side, the proofs for both zero-knowledge and obliviousness utilize the
structure of OR-proofs in that they generate the public parameters W < wG with a trapdoor w < Z, and
use w to simulate the issuance protocol and the non-interactive proof.

32

Theorem 5.7. Let GGen be a group generator outputting groups of prime order p = p(\), tDDH be a
restricted DDH oracle, and Simge, be the simulator for the global parameters generator. Then, oNIPggs =
oNIPggs[GGen, Ryieq] satisfies perfect correctness, soundness in the ROM assuming DL, perfect rDDH-zero-
knowledge, and perfect obliviousness for valid statements with respect to Simgen.

5.4 BBS-based SAAC

The following corollary establishes the security of SAACggs, a BBS-based instantiation of our generic SAAC
construction from Section 4.2. The corollary immediately follows from Theorems 4.2 and 5.7 and Lemmas 5.3
to 5.6.

Corollary 5.8. Let SAACggs = SAAC[GGen, KVACggs, oNIPggs] be a SAAC scheme from KVACggs and
oNIPggs according to Theorem 4.2. Then, SAACggs satisfies correctness, unforgeability in the ROM assuming
(¢,vDDH)-SDH, and anonymity in the ROM.

INTEGRITY. Although we do not formally show this, strong integrity of SAACggs (defined in Figure 9) follows
from (1) the public key X fixing a unique underlying secret key x and (2) soundness of I1, ensuring that
the issued credential is valid.

5.5 Unforgeability proof of KVACggs

Proof (of Lemma 5.3). Since Extserp is exactly KVACggs.Setup, parameter indistinguishability follows im-
mediately.
To show the advantage of A in the unforgeability game, consider the following sequence of games:

G1(A\): (Extggs, rDDH)-unforgeability of KVACggs.

G2(X): The oracle Iss is modified so that after checking validity of C, meom it runs the extractor (s,m) «
Ext™ (Q, (H,C, 1), eom)- If ((H,C, 1), (s,m)) ¢ Reom, call this event BadCom, then abort.

We now construct a reduction B, to knowledge soundness of I, with oracle access to Ogy. The
reduction Beom simulates G to A and on every Iss query, queries its oracle Og, with (H,C, %), Tcom-
By definition of the straight-line extractable knowledge-soundness game, Beom wins if BadCom occurs.
Hence,

PriGo (V) = 1] 2 PG (N) = 1] = Advis™ L & (Beom, A) -

G3(A): In this game, we abort if the extracted attributes m and randomness s satisfies Og = Zf=1 m;H; +
sHyy1, denote this event as BadExt. This is to ensure that in each session ((H,C,), (s,m)) € Reom and
¥(m) = 1. Note that the event BadExt implies breaking rel-DL on H. Thus, by Lemma 2.1, there exists
a reduction Bgiog running in time roughly ¢4 such that

R 1
PrlGs™(\) = 1] = Pr{GoA(A) = 1] — AdveE (Buiog, \) — =L

G4()\): In this game, we simulate the proof 7, in the issuance oracle using Sim,, which programs H;. The
reduction B, simulates the entire game A, in one case using the real NIZK protocol and in the other
case using the simulator.

Pr[Ga()) = 1] = Pr[G3*(\) = 1] — Adviy g, (Bo, A)

Gs(A): The game now simulates the new user oracle and the showing oracles as follows:
. At the start of the game we initialize table Ty « () and use it for Hy lazy-sampling.
. Oracle NewUsr is modified so that it just sets oqq < L instead of using KVACggs.lIss.

33

. Oracle SHye, does the following instead of running KVACggs.Show: sample 7,1’ «s Z"‘7 compute
They < (/1 =rG,B = rX). Then, SHp,, computes C «— 1'G, output L if ¢1,a(Mcig) # 1, otherwise
simulate the proof mp,p by programming values into T5. Explicitly, the reduction sets k := ¢ — |I|,
sets H iy < (Hy)ie[ep a1, computes Y <« G +{(m;)icr, (H;)icr), samples ¢ < Z, and s < Z];+3, then

computes R « Mg“;pm ot S Y, B)T. Tt then sets TQ(Mg“‘I’{W Ho A (Y,B)T,R, M) —

¢, unless that value has already been set in which case the reduction aborts — call this event CollShow.
Considering the distribution of (IZX,B,C’) in the prior game, we start with A,B,C = G + sHyyq +
Zf;l m; H; such that A = B = C —eA, then sample r, 7’ «s Z;’;, and then compute C « rC, A« r'rA,
and B « 1'C — eA = 1'rC — er'rA = r'r(C — eA) = 7'rB. By inspection C is uniform in G* and
independent of (A, B) which are uniform in the set of DH tuples. Thus, the distribution is exactly the
same assuming that CollShow does not occur. Note that the input being programmed contains group
elements which are uniform in G. A collision occurs if the value was already set which could occur during
lazy sampling or programming for simulation. By the union bound,

PF[G5A()\) _ 1] > PI’[G4A()\) _ 1] . QShow(QShow + th)
p

Goe(N): This game aborts if the forgery corresponds to a programmed random oracle input. In particular,
when A outputs the forgery (¢*, nonce™, 7*), the game checks the validity of the forgery and does the

following: o
. Parse 7* as ((4, B), (C, (¢, s))).
. The game computes Y = G + >,.;m;H; and R Mg“;[How A5 c(Y,B)T.
priv, 15+ priv, k>
. The game aborts if the hash query HQ(MEU:I o (Y7 B)T, R, nonce*) was programmed in
priv,1 sy L priv,k
SHpub-

Note that since (¢*, nonce*, 7%) is not the same as any output from SH (by the winning condition) and
the hash query contains A, B, C, nonce*, ¢* it can only be the case that s # &, where & are contained
in the output of SHp,, query which programs Hy at the same input. By how R is computed we have

MP® -(s —58) = 0. Let s1 be the first k + 1 elements of s, and sy be the last two elements.
c Hprlv 1yeees Hpriv 1, A

Let 81, 8o analogously relative to 8. We break s # § into two cases: (a) 81 # 81 and (b) s3 # 82. In both
cases, we have a non-trivial linear equation over C H,,;, or C A which allows us to break rel-DL.

The reduction, on a rel-DL instance (p, G,G) with 2¢gshow + £ + 1 group element challenges which we
parse to the form (/L, C’)ZG [asnew] @0 H € G“l The reduction then samples the secret key sk = z < Z),
and runs the game as in G¢ with an exception that each SH query (indexed with i), use A; and C;, and
computes B = zA. Note that the view of A remains as in Gg. Now, when the added abort is supposed
to occur, we have a non-trivial linear equation over the challenges. Hence, by Lemma 2.1, there exists
an adversary B(/ilog running in time roughly ¢4 such that

1
PrGe*(\) = 1] = Pr[Gs*(\) = 1] — - AdveeE (Bliog: M) -

G7(A): At the start of the game we sample (hq,e1),. .., (hq,eq) <3 Zp x Z;, and initialize a counter cnt — 0.
Whenever we need to program an RO value for T5, we use hcne and then set cnt < cnt 4+ 1. Similarly, in
Iss, instead of e «$ Z,, we do e « ecnt and set cnt <« cnt + 1. We then sample a set p = (p’, pa) of coins
chosen uniformly at random, where p’ is used for the game to run other components not associated with
the issuance, Hy, or Hq, (i.e., these contains the random coins for Hy and SHye, simulations) and p4 will
be the random coins for 4. We run 4 with random coins p 4, simulating the game to them as described.
When A outputs (¢*, nonce™, 7*), first check the winning conditions and abort if they are not satisfied.
After A outputs their forgery (7*, ¢*, nonce*), we parse ((4, B), (C, (¢, s))) < 7 and (I,m’) < ¢*. Then,

34

compute Y, R as in Gg. Note that even if the hash query HQ(MCP,”?{ Ho A (Y, B)T7 R, nonce*) was
priv, 15+ priv, k 5

not made after A stopped, in that case the reduction makes it on its own while checking if 7 is valid, so
the index of that hash query exists-let it be J. Now (h';,€/}),..., (hy,e) <8 Zy x Zy, clear Ty and set
cnt < 0. We run the game again with the same random coins p and do everything exactly the same up
until cnt > J, at which point we start using h.,, and e, instead of heqe and ecne. Again we check A’s
winning conditions and if they are satisfied then look up the index of the forgery hash query at the end
of the game, let it be J'. If J # J' or hy = h/; then abort. Note that due to the change in Gg, J and
J’ do not correspond to an RO query programmed in SH. Finally, use the two different RO responses
to extract a witness (e, r’,r”, s*,m) for Ry, using special soundness of the underlying sigma protocol of
IT,ub. Reconstruct m* from 7 (undisclosed attributes), I (indices of disclosed attributes), and (m;).;

(disclosed attributes). By the generalized forking lemma,%

PrGe(\) = 1] < /g PAGA() = 1] +

Gg(A): We add the winning condition that »” # 0. If A wins with #” = 0 then 0 = G + (H, (m*|s*)),
which allows us to break rel-DL on (G| H). We have that there exists B, with running time roughly
2t 4 such that

AN

o 1
PrlGs™(A) = 1] > Pr[Gr™(A) = 1] — Advigh, (Biog: A) — o

Finally, let Byfema be the algorithm playing the rtDDH-UFCMA game for MACggs, which on input
(p,G,G, H),ipk and with access to oracles MAC and rDDH’ simulates Gg with the following changes the
first time we run .A:

1. Set 1,...,04 — L

2. Instead of (sk, pk) < KVACggs.KeyGen(1%), do pk < ipk

3. To form A’ e without knowledge of z in an Iss query, query (A,e) « MAC((m|s)) where m and s are
extracted from meom. Additionally, record ocne < (4, €).

4. Forward any rDDH oracle queries to the rDDH’ oracle

This yields (Tkey,1 = (1211, Bl), Toub,1 = (C~’1, Tpub,1)) and @1, ,m;, - Also, Bugema aborts if mpup 1 is not valid. When
we run A for the second time, we still set up the key in the same way and forward rDDH oracles queries.
For all Iss queries where cnt < J we respond with oy, and after that point we query (A,e) < MAC(m)
and set A’ — sA. Running A for the second time yields (Tiey,2 = (AQ, B2) Tpub,2 = (CQ, Tpub,2)) and 1y my
described as (I2,m5). Also, Buema aborts if mpub 2 is not valid. Since A is run with the same randomness
and inputs up to the point where cnt < J, they will make the exact same oracle queries to Hy and Iss up to
that point, so our simulation of the last game is perfect.

Once we extract m*, s*, A, 7", e, we first check if 7/ = 0. This implies B = —eA = zA, thus z = e, and
we can forge a MAC using the secret key. Otherwise, we compute A « ()~ ()~ 1A and output (4, e) If
2 A = B, which is part of A’s winning condition in the last game then rearranging B = 1'C' —eA = 2 A yields
(x + e)A ' (r") (G + (H, (m*|s*))) and thus A = (x +)" (G + (H, (m*|s*))), so (A, e) is a valid BBS
signature on (m*|s). Moreover, we have by the winning condition of A in the last game that m™* satisfies
the selective disclosure predicate ¢r, m/, meaning that mj = m/ ; for all i € I, whereas this does not hold
true for any of the messages extracted during issuance (due to the winning condition of .4). This guarantees
that m* is a fresh forgery with regard to the MAC queries in the first run of A, and the analogous argument
guarantees that it is a fresh forgery with regard to the MAC queries in the second run, and thus fresh overall.
We conclude that

Advléfégla (Bufcm37)\) = AdVGrs (.A, /\) .
O

5 The generalized forking lemma applied to our setting only guarantees (h,es) # (h;,€’;) as tuples, which is not
sufficient for our proof. This is merely a technicality of the theorem statement, and it is not hard to see how the
proof can be modified so that we may expect hy # h’; with the probability shown.

35

5.6 Anonymity proof of KVACggs

Proof (of Lemma 5.4). Parameter indistinguishability for Simggs follows because Simse,p is identical to the
Setup algorithm.

We assume without loss of generality that the queries made to H; when the game verifies 7, are already
made by A. (To be more precise, this increases the query count by 1). We proceed via a sequence of games.

G1(A): This is the game ANONKVACgss,Simeen,Simess.0-

G2(A): We simulate meom as in Simy, instead of generating it honestly. There exists Beom making at most
qh, queries to Hy such that ‘Pr[GzA(A) = 1] — Pr[G1A()) = 1]‘ < Adv?}meSimwm (Beom)-

G3(N): We simulate mp,p making at most g, queries to Hy as in Simghow instead of generating it honestly.
There exists By such that)Pr[Gg,A(A) —1] - Pr[GoA(\) = 1]‘ <AV | i (Boub)-

G4(\): We add a condition in KVACggs.Us that if (C, A,e) ¢ R, then the game aborts. There exists B,
making at most ¢, queries to Hy such that ‘Pr[G4A()\) = 1] - Pr[GsA()) = 1]| < Advi%i”d([)’g).

Gs(A): We use Simy, and Simy, instead of KVACggs.U; and KVACggs.Us, but keep the relation check as part
of the winning condition, so we have that o = (A4, e) is such that 4 = C—eA where C = G+{(H, (m/|s)).
Consider the following equal distributions:

{(rC,r'rA,r'rC —er'rA) crr’ <8 L} = {(rC,r" A,r' (C — eA)) s ry 1’ s 7oy}
{(rC, 1" A" (xA) sy’ s 73}
{(C,aG,aX):C «$G* a «s 7%}

Also {sHp41 + (G + Zle m;H;) s < Z,} = {C : C <s G} (the above equations then follows due to
the abort introduced in U; and Simy, that ensures C 4+ G # 0g), so Pr[Gs™(\) = 1] = Pr[G4(\) = 1]
G (N): We remove the inefficient check that (C, A, e) ¢ R, which yields the game Anonkvacggs,Simeen,Simsgs,1-

We have |Pr[Ge?()\) = 1] — Pr[Gs™()\) = 1]| < Adv$3"™(B,), which yields the claim.

5.7 Security Proof of oNIPggs

In this section, we prove Theorem 5.7. Correctness of the protocol follows easily from the algebra. The
following lemmas then establish soundness, zero-knowledge, and obliviousness for valid statements.

Lemma 5.9 (Soundness of oNIPggs). For any adversary A making at most qq = qu(\) queries to H.
modeled as a random oracle and running in time t 4 = t 4(X\), there exists an adversary B playing the DL
game and running in time roughly 2t 4 such that

n o, qH + 1
AV (A, 2) < A/ (an + 1AVESE (B, \) + m—

Proof. Let A be an adversary as described in the lemma statement and w.l.o.g. assume that A already made
the RO query corresponding to the verification of its output ((X, 4, B), 7) (This increases gy by 1).

Consider an adversary B playing the DL game such that it sets par yp as its input (p, G, G, W) and runs
(X, A, B,) <s A" (par yp). Note that B answers RO queries with uniformly random Ay, ..., hg 41 < Zp.
Let I be the index of the RO queries which corresponds to the verification of (X, A, B, 7). Then, B rewinds A
to when the I-th query is made and from that point on uses uniformly random h7, ..., h;H +1 <5 Zyp to answer
the RO queries. Finally, A outputs (X', A, B’, n’). If the verification of this output does not correspond to
the I-th RO query, B aborts. Otherwise, it parses

7 = (co,c1,50,51) , 7 = (c(,), 80, 81)

and if ¢; # ¢}, it returns (s] — s1)/(c) — ¢1).

36

First, let Succ be the event that hy # h%, and A successfully outputs (X, A, B,n) and (X', A, B,)
such that (dlog-X) - A # B and (dlogoX') - A’ # B’ but the proofs verifies and they corresponds to the
same RO query. Then, by the forking lemma,

+1
Advsend (A, \) < +/(gn + 1)Pr[Succ] + qu :

Now, notice that when Succ occurs, 7 and 7’ corresponds to the same hash query which implies that:

(a) (X, 4,B) = (X", A", B')
(b) s0G — co X = 5,G — ¢4 X and soA — ¢oB = s4A — ¢y B
(¢) $1G — W = $1/G — W

Since B # (dlogX) - A, by (b), it is only the case that ¢y = ¢f. Hence, by (c¢) and with ¢o +¢; = hy # b} =
¢ + ¢4, we have ¢1 # ¢}, so B extracts the discrete log of W. Therefore, Pr[Succ] < Advglgfn (B, \), proving
the lemma. O

Lemma 5.10 (Zero-Knowledge of oNIPggs). For the restricted DDH oracle tDDH((p, G,G),z, X,),
there exists a simulator Sim = (Simsetup, Simiss) and such that for any adversary A, AdvékNlPBBs,Sim,rDDH (A, N) =
0.

Proof. Consider the following simulator Sim:

« Simsetup(p, G, G) : Sample w € Z, and return (pargyp = (p, G, G, W), td = w).

. Sim2PH(td, X, umsg, = (A, B)) : Query rtDDH((p, G, G), z, X, (A, B)) and if the oracle outputs 0, abort.
Otherwise, sample sg, co,r1 «<s Z, and set (Ro g, Ro,a) < ($0G — co X, s0A — ¢oB) and Ry < r1G and
return these elements. On the next round with umsg, = ¢, return ¢g, ¢; = ¢ — o, S, $1 = 11 + ¢1 - w. (For
simplicity, we assume cp, ¢; are both send — but in the protocol, only one can be derived from the other.)

To see that the distribution of the view of A is identical in ZKg and ZK; games, we consider the following;:

. The distribution on pargyp is identical to oNIP.Setup, since W is still uniformly random.

. Next, because the simulator aborts correctly with the help of the oracle rDDH, we only have to consider
the case when zA = B. Now, it is easy to see that the distributions of (R g, Ro,4, R1, co, 1, S0, 1)
conditioned on (A, B, ¢) are identical between the two games.

]

Lemma 5.11 (Obliviousness of oNIPggs). Let Simgen be the simulator for global parameters generator
GGen. There exists a simulator Sim = (Simsetup, Simy, Simpg) such that

. For any adversary A, Advgi,rl'g,r;‘;issfSim(A, A) =0.

« For any adversary A, Advf)k,\“PBBS’Simcemgm(.A7 A) =0.

Proof. As a reminder, Simge, does not output any trapdoor and samples (p, G, G) as in GGen. Consider the
following simulator Sim:

« Simsetup(p, G, G) : Sample w € Z, and return (pargyp = (p, G, G, W), td = w).

.« Simy(td, X) : For the first move, return (4, B) = (8G, 8X) for § «<sZ,. For the second move, return
c<sZ,. At the end of the protocol, the simulator checks if the transcript ((A4, B), (Ro,q, Ro,x, R1), ¢,
(co, c1, S0, 1)) satisfies the check identical to the one in oNIP.Us.

. Simp¢(td, X, (A, B)) : Compute the proof by (1) sampling 80, €071 <3 Zp and set (R o, Ry 4) <
(soG — cp X, spA — ¢y B) and R} < r{ G, (2) computing HC(XJI,B,RB,G, 0.4, 1), (3) Return (cp, ¢ =
c—chy 8y, 81 =11+ w).

37

First, the distribution of paryp stays identical to that of oNIP.Setup. Next, to show the advantage of A
in the obliviousness game, we first only consider the game where A only starts 1 session. Note that we can
easily extend this to @ sessions via standard hybrid argument, since the reduction could use the trapdoor
(in the OBLV game the adversary knows the trapdoor) to simulate other sessions. In the following, we follow
similar proof strategy from [OTZZ24].

To show indistinguishability, we first w.l.o.g. assume that 4’s randomness is fixed and it finishes the
proof issuance session and sees the proof 7. Also, we remark again that the game only starts the issuance
protocol if a valid statement is given i.e., B = zA. We define the view of A after its execution as VA =
(W, X, (;1, B),T, 7) where T is the transcript of the protocol and 7 is the proof from Pf defined as T :
(A,B,Ro.c,Ro,4,R1,¢,c0,c1,80,51) and m := (¢, ¢, 8¢, 87). For simplicity, we assume cg, ¢, are both sent.
Since the randomness of A is fixed, we only consider the randomness of the honest user (i.e., Uy, Us) and
the simulator Simy, Simp¢. Denote 7, as the randomness of the honest user/simulator in the OBLV}; game,
which are of the form

o = (ﬁ770’71750’51) yTh = (6757 56,56,7/1) .

Note that (-) is used to distinct the value in the transcript and the randomness of the simulator. Now, we
only need to show that the distribution of V4 is identical in both cases of b = 0,b = 1, which we do so by
showing that for any fixed view A where Pr[V4 = Alb = 1] > 0, there is a unique randomness 7, 7; which
results in V4 = A for both cases. Thus, proving that the probability of V4 = A are 1/p® in both cases. (We
note some abuse of notations here, and denote values in A using the corresponding letters for the random
variables in V4.)

For b =0, V4 = A if and only if

B =dlogg(A—A), Yie{0,1}:6; =5, —si, vi =, —ci .

The if direction (=) follows easily from the equations. The only-if direction (<) follows similarly from
the blindness proof in [CATZ24]. In particular, § fixes the first message of the user to be (A4, B) since
B = dlogo X A. Then, by inspection and the fact that 7 is valid, the user sense ¢ = ¢y + ¢; in the second
move and the final proof is .

For b =1, V4 = A if and only if

B =dlog,(A), c=c, ¢y =cp, 5y = sy, T =) —cdloge(W) .

The if direction (=) follows easily from the equations and the fact that the final proof 7 verifies. For the
only-if direction, 8 ensures that (3G,3X) = (A, B), ¢ ensures that the second user message is c¢. Finally,
because the ﬁnal proof is valid, ¢, + ¢| = H.(X, A, B RO c o 4, RY) where R o, Ry 4, Ry are defined as in
the verification algorithm. Then, the values of ¢, 5, 7] ensures that the proof 7 is exactly what is in the
transcript A. m]

6 Instantiation from DDH

In this section, we instantiate our generic construction with a DDH-based KVAC by Chase, Meiklejohn, and
Zaverucha’s [CMZ14] and a corresponding oNIP scheme. We first introduce the underlying algebraic MAC
in Section 6.1. Then, we discuss the DDH-based KVAC in Section 6.2, and the oNIP in Section 6.3. Finally,
we discuss the SAAC instantiation in Section 5.4.

GLOBAL PARAMETERS GENERATOR. Following the syntax in Section 4.1, our global parameters generator,
denoted Genppp(1*), runs (p, G,G) «<—s GGen(1*), samples H «<—s G*, and returns par, = (p,G,G, H). For
security of both KVAC and oNIP, we define the simulator Simge, which samples (p, G,G) from GGen(1*)
and H = vG with a trapdoor v <—s Z5. It is easy to see that the security of

38

6.1 DDH-based MAC

In Figure 16, we describe a variant of the DDH-based MAC introduced by Chase, Meiklejohn, and Za-
verucha [CMZ14]. Everything is roughly the same, with the only difference being that zH is included in ipk,
which we justify later in Section 6.2. A tag for message m = (m;)¢_, is

(Suws Sa, Sy, S2) = (U <5 G, (zo + Xo_, 2ima)U, (yo + X, yimi)U, 2U)

with the secret key containing scalars (mi)fzo, (yi)fzo, and z. The issuer’s public key includes (X; = z; H,Y; =
yiH)t_, with H being the public parameters. The following theorem, proved in Section 6.5, establishes the
UFCMA security of MACppn against any adversary with access to the Osyeppn oracle (defined in Figure 16).
The verification of MACppy can also be simulated by OsverppH, SO in some sense we have shown a stronger
security notion for this scheme than prior works. An outline of the security proof for this scheme follows:

1. We generate the parameters and ipk in an indistinguishable way which allows us to simulate the
OsverppH oracle, and the winning condition at the end of the game, using the twin Diffie-Hellman tech-
nique [CKSO08]. In this step, we deviate from [CMZ14] in how we generate ipk to be able to simulate
OsverppH instead of the verification algorithm MACppy.Ver

2. We show one-by-one that each MAC oracle query reveals nothing about x. To do this, we use DDH to
introduce noise into how we compute S, which allows us to argue that each S, is uniformly random.

3. After all of these transitions, the verification equation uses a value (essentially z) which is information-
theoretically hidden. At this point, a forgery can be valid with only negligible probability.

Theorem 6.1. Let GGen be a group generator that outputs groups of prime order p = p(\), and let
MACppn = MACppn[GGen]. Additionally, let Osveppn be as described in Figure 16. For any adversary
A making at most qoe.oon = Osvepon(A) queries t0 Osveppn and ¢m = gm(X) queries to MACppn.M and
running in time t4 = t4(\), there exists an adversary Bppn (technically g, different ones) running in time
roughly t 4 such that

SqOSVerDDH +3

Adyufema (A, N) < g - AdVER (Bop, A) + D

MACppH,OsverbpH

6.2 DDH-based KVAC

We first discuss the DDH-based KVAC in [CMZ14], building on top of MACppy. The credential for m is
exactly a MACppy tag. For blind issuance in [CMZ14], the user ElGamal encrypts each of their attributes,
and the issuer homomorphically creates a tag for the user to decrypt.

To show a credential: the user randomizes the tag as (S!, = rSy,Cy = 7Sy + 1, H,Cy = 1S, +1,H, S, =
rS,) for r «s Z;‘; Tz, Ty <s Zp. Then, the user computes commitments C; = m;U’ + ;G to their attributes.
With U’ and (C;)_,, the issuer can use their secret key to compute (for example) V, = zoU"’ + Zle z,C; =
(o +Zf=1 ximy)U’ —|—Zf=1 r; X; which is close to C,, but with added randomness from the blinding. Hence, the
user also sends I}, := Zle r;X; — r, H (and similarly I';). The issuer checks that C, + I, = V., (respectively
for y; and Cy, I'y, Vy) This is the key-dependent part of the verification. The user also includes a publicly
verifiable proof of knowledge of representations of (C;)¢_q, I, I,

Our KVACppy, described in Figure 17, then made the following changes to their scheme:

1. Public key: In [CMZ14], Pedersen commitments of xg, yo, z are included in the public key, allowing the
issuer to prove correct credential issuance. In this case, the underlying secret key is uniquely determined
(binding is computational), which is insufficient for our SAAC compiler. We (a) instead include ElGamal
ciphertexts of xg,yo (security is not affected), and (b) publish Z = zH in the clear. For the latter, we
noticed that revealing Z does not affect the underlying MAC’s security, saving us one group element.”

7 Intuitively, this is because (U, 2U) is included in every tag anyways.

39

MACppH.Setup(1*) : MACppH.M(par, sk, m € Z5)

(p, G, G) «— GGen(1") T s Zp

H «—sG Sw —1rG; S, « rzG
return (p,G,G, H) Sy« r(zo + Zle miz;)G
MACppn.KeyGen(p, G, G, H) : Sy« r(yo + ¢, miyi)G

return (S, Sz, Sy, Sz)

z «$Zyp)
@ = (2;)f_o <525 MACppH - Ver(par, sk, m € Z,, o)
Y= (yi)i_o s Zot" (Suw, Sas Sy, S2) — o
for i € [{] do return (2S5, = S:)A

Xi o aidy Yy —yill (o + Xf_y miz:i)Suw = Sx) A
Z =i ((yo + X6 miyi)Sw = Sy) A Sw # 0g
return (sk := (z, @, y), ipk := ((X:)'_y, (Y2)i_y, Z))

i .

' Oracle Osvernp (P, G, G, H), sk, Sw, S, (Ci){_1, Co, Cy)
:return S, = 25w A (e = 20Sw + Zle x;Cyi A

: Cy = Y0Sw + 21 ¥iCi A Sw # 0g

Fig. 16. MACppn = MACppH[GGen] Scheme and Oracle OsverppH-

2. Blind Issuance: In [CMZ14], users individually encrypt each m;, and let the issuer computes and sends
ciphertexts of Sz, S,. Observe that pk contains X; = o, H, Y; = y; H for ¢ € [£], so the user can compute
ciphertexts of Zle m; X; and Zle m;Y;, while the issuer can still compute ciphertexts of S, S,. Now,
the issuer’s communication is independent of £ as it only has to compute a proof with respect to a smaller
witness.

RELEVANT PROOF SYSTEMS. Our KVAC makes use of proof systems Ilcom, I, and Iy, for the relations
Reoms Ros Rpub, respectively defined below.

E., E) ¢
Reoy 1= { (Ea» By, D, (Xi)f:p(leﬁ)le,w), . Ea= (umG,uzDﬁ 2im1 MiXi)
(um;uy;m = (ml)z:l)) Ey = (UyG7UyD + Zi:1 mlm)7w(m) = 1
Z = ZHa TISw = G, Sz = ZSw
EB E,=1E, - D H
= (EI’E ?DvswaSZaExaE 327Ctmvct)7 . = "o (VOG”YO + Zo)
R, := Yy Yy Y . E =’I”/E _(G D+ H)
7 (2,20, Y0, 7", tas tys Yo Vy)) Y y — &% Yo
)) I » Y v 1Y Cta: = (th,th—FJZ()G)
Ctll = (tvatyH + yoG)
Vie[l]: C; = miSy + 1 H
Nier (XD, (V3! e
Rpub = (<m1)1€17 (Xl)zzl’ <YZ)Z:1’SW7 (01)1:17F17Fy>7 Iy = (Zf=1 i Xi) —roH

((ml)z V4 Iv(ri)g: s Ty T) V4
< ! ! Iy = Qo miYs) —ryH

The first proof system Il.om is used for the user to prove knowledge of openings to the ciphertexts E, I,
during issuance. We require Il to be straightline-extractable for a relaxed relation Reom 2 Reom defined as

(Zf:l miX; = 25:1 miY; = 0g A
m # 0) v
(Ey = (ueG,usD + Zle m;X;) A
E, = (u,G,uyD + Zle m;Y;) A
Y(m) =1)
and it is instantiated using a variant of the Fischlin transform [Fis05, Ks22], which we describe in Appendix C.
The proof systems II, and II,,, are used for proving validity of the issued credentials by the issuer and

((Em’Ey’D’ (Xi)ze=1a (Yi)f=17¢)a :

Reom 1=
° (g s Uy, M = (mi)f=1))

40

KVACDDH.Setup(lf, par, = (p,G,G, H))
Select Ho, Hy, Ha : {0,1}¥ — Z,

II, « Lin[H1, G]; ITou, < Lin[H2, G]
return par = (p, G, G, H,Hp,Hi, H2)
KVACppH.KeyGen(par)

KVACppH. U1 (par, pk, m € Z,, 1))

@,y <SZL 2t by ST,

d, Ug, Uy <8 Lp; D «— dG

By — (usGuaD + X[, miX;)

E'y — (uyG,uyD + Zf=1 m;Y;)

Teom “— Hcom.ProveHO((E‘x,E'y, D, X.,Y,y),

(v, Uy, m))

cty «— (t2 Gtz H + 20G);cty «— (ty G, tyH + yoG)

sk — (x,y, 2, tz, ty)

pk — (X := (X)L, Y := (Yi)L,, Z, cta, cty)

return (sk, pk)

KVACppH.Iss(par, @, ¢, i1 = (Eq, By, D, Team))

if Heom.Ver™® (Ey, Ey, D, X, Y, %), Teom) = 0
then abort

return p = (E,, Ey, D, Tcom)
KVACDDH.UQ(imSg = (Sw7 Ey, Ey7 S, 776))

if I7,.Ver'l (M& 1,500,084 .5,

(Ey, By, Z,cty, cty), 75) = 0
then abort
(E.'I:,OvE-’l:,l) — Eg; (Ey,Ov E?/-,l) — Ey
Sy < Ez1 —dEz,0;Sy < Ey,1 —dEy 0
return o « (Sy, Sz, Sy, Sz)

T <—$Zj;’yz,fyy «$Zp; Sw —rH,S, «—1Z
E; — 1r((72G,v2D + z0H) + E.) KVACppH.Showiey (par, pk, m, o)
Ey «— r(vG,vD +yoH) + Ey) r','rz,ry —$ Lp; T i= (ri)le —$ Zf?

! / / /7
Sm,Sy,Sz) —7ro

H
o « II5.Prove 1((M8,H,Sw,D,E1‘Ey7 (SL,,
(Ez,lg‘y,Z,ctx,cty)), (z,mo,yo,r_l,tm,ty,'yz,'yy)) forie [{]:C; « m,v,Siv +riH
return (Su, B, By, Sz, 75) Co — 8o +1:H;Cy «— S) + 1y H

KVACpp .SVeriey (par, sk, Tiey)
(S, 8%, (Ci)i_y, Ca, Cy, T, Ty) < Tiey

return S/ # 0g A S_ = 25!

Iy« riXi—r.H
Iy < 25:1 riYs —ryH
v return (S, S., (Ci){_1, Ca, Cy, I, Ty)
j— ’ . .
ATz +Co = (208, + Xy ©iCi) KVACppH.-Showyu, (@1, , nonce)
ATy + Cy = (yOS;) +Zf:1 yLCL)

forieI:C; <—C’i—aiS:ﬂ
KVACDDH-sverpub(parv pk, Tkey s Tpub; ¢I,av nonce)

H pub
Tpub < pup.Prove 2((MG,H,S’

w’

X, Y’
return My Ver™ (M%°, o L ((Ci)icrenr,
T Twe ((Ci)ietena, (Chier, T, Ty)),

’
(Ci - aiSw)iEI7 Iy, FZI/))7 Tpub s (¢I,a7 nonce)) ((mi)ie[f]\la e, Ty)7 (¢I.a7 nonce))

return mpp

Fig.17. Scheme KVACppn = KVACppn[Genppn].Lcom, 1o, Ipus are NIZKs for Reom, Ro, Rpub defined in Section 6,
respectively. States are omitted for readability — subsequent algorithms can use values defined before (e.g. KVACggs.U>
can use variables from KVACggs.U1). In Showp, the value nonce is bound to mpub.

showing the credentials by the users, respectively. These proof systems are instantiated using the proof system
Lin for linear relations on G (described in Section 2), with the corresponding linear maps M¢ ys,pE,. B, and

Mg‘jl}{, s,.x,y for the relations R, and Rpyp, analogously defined to what was done in Section 5.2 (omitting
the explicit representation for brevity).
KEY-DEPEDENT VERIFICATION INDUCED-RELATION. The algorithm SVer,e, induces the relation family Rppn
(defined below), parameterized by par, = (p, G, G, H) (which we omit in the subscript), for which we give a
corresponding oNIP protocol.

Z
((Pk = ((Xi)i_1, (Yi)io1, Z, cta, cty),
Thkey = (Sw’ (Cz)ze[f]) CI? gy» Sz))
sk = ((wi)f:O’ (yi)f:Oa 2ty ty))

zH, S, # 0g, S, = 2S5,
"o = 208w + 3y 20y Gy = Y0Sw + X 4iCi
cty = (t.G, t:H + 20G), cty = (t,G, t, H + 1G)

(2)

RppH :=

Note that ¢, and (, represent C + I'; and Cy + I’y and can be computed from the output 7yey of Showey.
We further note that checking if the augmented statement 7yey = (Sw, (Ci)ie[e], Cz» Cy» S-) can be done using
the oracle Osyerppy described in Figure 17.

CORRECTNESS. Correctness of KVACppy follows from n-correctness of Il.om, perfect correctness of 11, and
IT,ub, and inspecting the algebra. In particular, the correctness error of the scheme is n(A).

41

UNFORGEABILITY. The following lemma establishes the unforgeability of KVACppy against adversaries with
access to the Osyeppn oracle (described in Figure 17). Then, we give a reduction from unforgeability of
MACppH (established in Theorem 6.1) to that of KVACppn’s. We remark that with our stronger unforgeability
requirement of KVAC, there are several non-trivial steps in the proof:

(1) We need to take into account the attributes extracted that is in the relaxed relation ﬁcom but not in
Reom- To rule out this event, we give a reduction to the security of MACppy using the structure of ﬁcom.

(2) We give a careful rewinding argument to extract a MAC forgery from the KVAC forgery. Our reduction
simulates the showings honest users by querying for a tag on uniformly random attributes. Crucially,
these attributes need to be hidden from the view of the adversary, in order for the extracted forgery to
be fresh with high probability.

Lemma 6.2 (Unforgeability of KVACppn). Let Genppy be a global parameters generator defined in Sec-
tion 6 which outputs a group of prime order p = p(\) and a generator H, Exteom be an extractor for knowledge
soundness of Hcom, and Sim, be a ZK simulator for II,. Define Extppn := (EXtsetup, Extiss) as follows:

« Extsewp on input par, = (p,G,G, H), 1% returns par = (p, G, G, H, () without any trapdoor.
« Extiss on input (u (E’I,E D, Teom),) returns (ug, u,, m) < Extio (Q, <X7Y7EN‘I7E~’y7D7’(/J),7Tcom).

Then,

« For any adversary A, Adv &’\;A'E‘;'s; Extoon (A A) = 0.

. Let A be an adversary against the (Extppn, Osverbbh) -unforgeability of KVACppn = KVACppn[GGen],
runmng intimety = tA(A) makmg at most qhy = qho()‘)a dhy = qhy ()‘)7 dh, = Ghy ()‘)7 Giss = qiss()‘)a 4Show =
dshow (A)s @0svenon = Osvenon (N) queries to Ho, H1, Hs, Iss, SHyey, and Osverpph respectively. Let ¢ = qp, +
Giss + 2qshow- There exist adversaries Busema, Bliema (playmg the OsverppH-UFCMA game of MACppn),
Beom (playing the KSND game of Ilcom), Bopn (playing the DDH game), Baiog, B, (playing the DL

dlog
game), and B, (playing the ZK game of II,) such that

1

unf ufcma /
AdVKVACDDH,EXtDDH,OSVerDDH (‘A’ >\) <\/q ’ <AdVMACDDHyoSVerDDH (Bufcma’) + p/)

+ Advge, (Baiog, A) + Advide, (Boow, A)
+ AV b (Beoms A) + Advgen? (Bufemas)

GGen,OsverbbH

Z+q+3
+ AdVE g (B,) + 2172

Also, Bufemas Bhjog Tun in time roughly ta, and B, Baog Tun in time roughly 2ta. Moreover, Beom
makes at most qp, queries to Hy and ¢iss queries to Oy, while B, makes at most gy, queries to Hy.
Additionally, Butema makes at most Giss and qogpon t0 its Iss and Osverppn, respectively, and B!

makes at most 2¢iss and 2qog,.oon t0 its Iss and OsverppH, Tespectively.

ufcma

ANONYMITY. The following lemma establishes anonymity of KVACggs which follows from zero-knowledge
properties of Icom, Ipu, soundness of I1, (to ensure that the maliciously issued credential is valid), and the
DDH assumption (which comes into play when arguing that the ciphertexts E,, E, sent by the user during
issuance hide the underlying attributes m). The formal proof is given in Section 6.7.

Lemma 6.3 (Anonymity of KVACppn). Let Genppy be a global parameters generator defined in Section 6
which outputs a group of prime order p = p(\) and a generator H. Let Simge, be the simulator for the
global parameters generator Genppu and SiMcom, Simpu, be the simulators for the zero-knowledge properties
of Hcom, Hpun. There exists a simulator Simppu = Sim[SiMcom, Simpup], described in Figure 18, such that

par-indist
« For any adversary A, AdViyac, o Simopy (A A) =

42

Simsewp (1, par, = (p, G, G, H)): Simshow (“key”, td = (tdg = v, tdkvac = L), pk):

par — (p,G,G, H) parse (X,Y, Z, ctg,cty) < pk
return (par, tdkvac = 1) Xo « Cty,1 — vCty,0; Yo < cty,1 — vcty o
Tw <—$Z:;r1, vy e <87y Cr, Cy «8G

Simy, (td = v, pk, ¥):

’ ’ —1
Sy — TGS, —rv " Z

parse (X,Y, Z, cty,cty) < pk forie[¢]:C; « r;H

! !
Uy Uy Uy, Wy <5 L Iy e roXo + X0 mi X — Ca
D <3G

Iy < ryYo + Zf:l riYi = Cy

= ’ = !

By (u$G7 uID)’ Ey < (uyG’ uyG) Tkey < (Szw (Ci)ie[é]v Cq, Cy7 Iy, Fy7 S;)
// Simcom programs Ho return (7iey, st = (td, pk, Tiey))

Teom <8 SimH0 (D, B, By, X, Y,)

com - . Simghow (“pub”, st, ¢1,q, nonce):

return (p «— (D, Ey, Ey, Tcom),
~ ~ ’

stsim < (D, B, Ey)) parse (S.,, (Ci)icpe]> Ca, Cys Ty Ty, SL) — Tiey

/| Simpyp programs Ha

Simuy, (stsim, imsg):

. H
Tpub <— Slmpfb((M?}u,bH,S{U,X,Y’ ((Ci)ie[f]\lv Iy, I'y)), (¢1,a,n0nce))
parse (Suw, Bz, By, Sz, mo) < imsg
if 1T, .Ver' ((pk, D, By, E,,
Sw; Bz, Ey,S2),7s) = 0 then

return |

return mpyp

return 1

Fig. 18. Simulator Simppn = Sim[Simcom, Simpub]

« For any adversary A playing the Anon game of KVACppu making at most gshow = qshow(A); qny =
Gho(N)s@hy = qny(A),qry = qn,(A) to the oracles SHyey, Ho, Hi, Ha, respectively, and running in time
ta = ta(N), there exist adversaries Beom,Bpub (Playing the ZK game of Heom and Iy, Tesp.), Be
(playing the soundness game of Il), and Bppu (playing the DDH game) such that

anon zk zk
AdVKVACDDH,SimGen,SimDDH (AN < AdVHmm,Simcom (Beom; A) + Advﬂpub,Simpub(BPUb7 A)
1

+ AV (Boom, \) + 2V (B,,0) + =

Additionally, Beom makes at most gy, queries to Ho, By makes at most qn, queries to Hy, and By makes
at most qn, queries to Ha and qshow queries to its prover oracle. Moreover, Bppu runs in time roughly
ta.

INTEGRITY AND VALIDITY OF KEY GENERATION. The following two lemmas establish the integrity (with
respect to the simulators Simge,, Simppy defined in Lemma 6.3) and validity of key generation (with respect
to the extractor Extppy defined in Lemma 6.2) for KVACppp.

Lemma 6.4 (Validity of Key Generation of KVACppy). Let Genppy and Extppy be as defined in
Lemma 6.2. Then, KVACppy satisfies validity of key generation with respect to Ext.

Proof. Note that since Extppy generates the public parameters as in Setup, we will consider any public
keys pk generated honestly. Recall that the public keys are of the form (X,Y,Z, ct,,ct,). Then, since

G,H are generators of G, we have that there exists a unique secret key sk = (x,y, z,t,t,) such that
X, = x;H,)Y; = y;H fori € [{], Z = zH, and ct, = (t,G,t, H + 20G), ct, = (t,G,t,H + yoG). Therefore,
the validity of key generation follows immediately.]

Lemma 6.5 (Integrity of KVACppn). Let Genppn, Simgen, and Simppn be as defined in Lemma 6.3. Let
A be an adversary playing the integrity of issued credentials game of KVACggs with respect to the simulators

43

Simgen and Simppy making at most qn, = qn, () queries to Hy. There exists an adversary B against the
soundness of I, making at most qn, queries to Hy such that

integ sound
AdVKVACDDH7SimGen7SimDDH (A, N) < Advi (B, A) .

Proof. First, we note that Simge, returns (p, G, G, H) which is identically distributed to Gen. Now, consider
interaction with a malicious issuer as in the integrity game such that

« The adversary on input pargyac,td = (tdg, tdkvac), generated from Simsetyp, picks its own public key pk,
a vector of attributes m € Z{ and a predicate ¢ such that ¢(m) = 1.

« The honest user computes D « dG for d «s Z, and E’m — (8:G, 8. D + Zle ml-Xi),E'y — (syG,syD +
Zf=1 m;Y;) for sg, sy «<s Z, along with a proof of knowledge mcom.

. The adversary replies with (S, Ey, Ey, S.,7,). Then, the user checks 7, uses d to compute S, «
E;,l - dE;,m Sy — Ez/;,l - dEz;,O'

Then, consider the public key pk and 7iey = (57,, (Cl-)iem,C’z,C’sz,Fy,S;) such that (pk, Tkey) ¢ ﬁv,parg~
Since the public key pk = (X,Y, Z, ct,, ct,) fixes the underlying secret key (x,y, 2,15, ty), (Pk, Tkey) ¢ LV par,
implies that one of the following is true:

4 4
Co+ I # 20S, + Y 2iCi v Cy+ Ty #1y0S), + Y, 4:Ci v S.#28,. (3)

i=1 i=1

Next, suppose that Sy, E, Ey, S, which the issuer sends during the issuance protocol is such that S, =
rH, E, = (7.G, 7D + 20Sy) + rE‘mEy = (G, 1D + x0Sw) + rEy, and S, = rzH for some r € Z%, then
Sy = r(xo + Zle myx;)H, Sy = r(yo + Zle m;y;)H. With a similar argument from the anonymity proof,
we have that this contradicts Equation (3).

Therefore, if (pk, Tkey) ¢ Lv,par,, we have that (Sw, Bz, By, S.) does not satisfy the equations defined by
R,, and A breaks the soundness of 7, since the proof verifies. Hence, this implies the lemma. O

6.3 oNIP for DDH-based instantiation

In this section, we give the protocol oNIPppy = oNIP[Genppn, Ropn], in Figure 19 for the family of relations
Ropn described in Equation (2), containing a statement pk, an augmented statement 7y, and witness sk.
We explicitly note that the relation induces the linear maps Mcore and Mayg = Mp g, Su (C)E_, > such that

Mcoresk = pk, Maygsk = (Cz[[¢y[lS=). More specifically, Mcore and Mayg map elements from Z2+> to G5
and G3, respectively, such that

Mecore(®|y|z|t2(ty) = ((ziH)iepo)| (il)iee |2H [t Gt H + 20G |ty Gty H + yoG)
Maug(y[2[tzlty) = (20Sw + 2icg 2iCillyoSw + Liepg ¥iCil 25w) -

Note that Mcore is a bijection since G and H are generators of G and the public key has unique underlying
secret key.

Our oNIPppy construction follows a similar structure to oNIPggs relying on a blinded OR-proof of either
(1) membership of the induced language Lr,p, or (2) knowledge of discrete logarithm of public parameters
W. The key difference lies in the first move, where the user rerandomizes the augmented statement (S,
(CHE_y, ¢y y»S2) by computing S, = aS;,,C; = aC] + B;H with random scalars a, f1, ..., 8¢ and uses
X,Y in the public key to compute ¢, = a(, + Zle BiXi, ¢y = ag, + Zle B:Y:, S, = aS., which still
preserves the membership of the language. The issuer then checks whether the rerandomized statement is in
the language.

The following theorem then establishes the security properties of oNIPppy with the proof given in Sec-
tion 6.8. Most of the proofs follow from standard techniques as with oNIPggs, with an exception of oblivious-
ness where we inherently requires the global trapdoor v to efficiently simulate honest users without knowing
the augmented statement Tiey.

44

Algorithm oNIPppy.Issy (pargyp, sk, umsg;):

Algorithm oNIPppy.Setup(par, = (p, G, G, H)):

parse (S, (Ci)f:lv Cas Cy, Sz) < umsgy

i My s opt_ 6 F (GlGlS:)
then abort

$1,€1 <8 Zp;ro <3 Zius

Ro,core < McoreTo

RO,Aug «— To

Aug, Sw,(Cy)_y
Ri « 511G —c1 W
return (Ro,core; Ro,Aug; R1)

Algorithm oNIPppy.Iss2(c):

co < c—c1;80 < To + co - sk
return (co, So, 1)

Algorithm oNIPppy.Us(co, S0, s1):

c1 «—c—co
if (Ro,core + Co - pk # McoreS0) v
(Ro,aug + co - (CzlCyllS2) #
MAug,sw,(ci)f:lSO) v

(R1 + c1W # s1G) then abort

WG

Select H, : {0,1}* - 7,

return pargyp = (p, G, G, H, W, H.)
Algorithm oNIPppH.U1 (pargyp, (Pk, Tkey)):
parse ((Xi)le, (Yi)le, Z,cty, cty) <« pk
parse (57, (C})i1, s €y 52) They

arse May «— M e
p ug Aug, S/, . (CHE_,

// Randomize the augmented statement.
if S;} = Og then abort
o <3 Zj R Zf?
Sw «— aSi; S, «— aS.,
for i € [¢] do C; «— aC; + 8 H
o all + X0, BiXi
x i=1
Cy aly, + X5, B
return (S, S, (C’i)f=1, Cayr Cy)
Algorithm oNIPppH.U2 (Ro,core; Ro,Augs R1):

¢} — co + Y03 8 < S0 + 8o /| Derandomize Rg aug-
parse ((Ra,i, Ry,i)i_y, R:

Rct,au Rct,y) «— Ro,core
parse (R¢ z, Ry, Rs,z) < Ro A
R¢o < oM (Rew — Yy PiRai)
Rc‘y - ail(RC‘y - 2f=1 BiRy,i)
RU,AUg - (RC,mHRC,yHailRS,z)
// Blind Ro, Rl.

¢) 18] —s1+ 6

return ™ = (cg, c'l, s:], sll)

Algorithm oNIPppy.Ver(paryyp, (Pk, Tkey), 7):
parse (Su, (Ci){_1: oy Cy» S=) — They

parse (co,c1,80,81) < T

RO,Core «— Mcores0 — copk
Ro,pug — AUngww(Ci)f=1so —co(Cz[¢ylS2)

2046
Ry « 51G — 1 W 81,70, 71 «<$ Zp; 60 < S Z,,

¢ < H.(H, pk, Tkey, Ro,Core, Ro,Aug, R1)

return (co + ¢1 = ¢)

Ré,core «— Ry, core + Mcore6o — vopk

R{ g — Ro,aug + Magdo — 10(¢4 11, 11S0)
R, « R +6,G — W

¢ S Hc(H, pk, Tey, RE),Core’ RlO,Aug’ RY)

return ¢ = ¢’ — Yo — V1

Fig. 19. Oblivious proof issuance oNIPppn = oNIP[Genpph, Ropr]. We omitted the user and issuer’s states and assume
that any variable defined in the previous round is accessible in the next round.

Theorem 6.6. Let Genppy be a global parameters generator defined in Section 6 and OsveppH be the oracle
in Figure 17. Then, oNIPppy = oNIP[Genppn, Ropu] satisfies perfect correctness, soundness in the ROM
assuming DL, perfect Osyeppn-zero-knowledge, and perfect obliviousness for valid statements with respect to
the simulator Simgen-

6.4 DDH-based SAAC

The following corollary establishes the security of SAACppH, a DDH-based instantiation of our generic SAAC
construction from Section 4.2. The corollary immediately follows from Theorems 4.2 and 6.6 and Lemmas 6.2
to 6.5.

Corollary 6.7. Let SAACppy = SAAC[Genppn, KVACppH, oNIPppn] be a SAAC scheme from KVACppy and
oNIPppn according to Theorem 4.2. Then, SAACppn satisfies correctness, unforgeability, and anonymity (both
in the ROM and assuming DDH).

45

INTEGRITY. Similar to SAACggs, although we do not give a formal proof, strong integrity of SAACppy follows
from the structure of KVACppy’s public key, which uniquely fixes the secret key, and the soundness of I,
which ensures validity of the (possibly maliciously) issued credentials.

6.5 Unforgeability Proof of MACppy

Proof (Theorem 6.1). The proof is similar to Chase, Meiklejohn, and Zaverucha’s UFCMVA proof [CMZ14],
except our version of the scheme is slightly different since we publish zH, we consider a stronger security
notion (UFCMA in the presence of Osyerpph), and we go about certain steps of the proof differently. Consider
the following sequence of games.

Gl()\): This is exactly OSVerDDH‘UFCMA for MACDDH.
G2(N): We modify Setup to trapdoor H: do § «$ Z,, and set H «— BG. If 8 = 0, then abort. Also, modify
KeyGen to do the following:
L (h)i—0, (U))io» (0i)ig < Zﬁ“ and z,s,t <8 Z;
2. Set x; «— %Urvi and y; < y;—sx; for all i € [¢]. Set yo — —fsxo and z < %ft Set X; — x,G+v;H
Y, —y.H — sX;,and Z <« Z/G — tH.
Lastly, in MACppy.M, compute everything relative to H instead of G, i.e., do Sy, <« rH, S, « rzH,
Sy «— (zo + Zle x;m;)Sy and Sy — (yo + Zle yim;)Sy. Everything is distributed exactly the same
assuming that we do not abort due to 8 = 0, which occurs with probability 1/p, so

Pr[Go*(\) = 1] = Pr[G1A(\) = 1] — = .

p
G3()): We handle queries to Osverppn like so: on input (par, sk, (5, ¢y, (Ci)i_y, Sw, S2) compute b « 2 (Cy +
sCp — Zle YiCy) = y((S, +tSy) and b« (25, = Sy A Cp = 2SSy + Zle z;C;i A Gy = yoSw + Zle e
If b # b, then abort. Otherwise, output b. This change is perfect unless an abort happens. Call E; the
event that the game aborts on the i-th query to Osverppn, and fix i € [¢og.oon]- We will show that E;
occurs with negligible probability. Event E; occurs only if the game has not aborted in a previous step,

which means that, up to the i-th query, the game is perfectly indistinguishable from Gs . Suppose that
b =1, which implies S, = 28y, (= (x, Sw||C), and {, = {y, S, |C). Observe that

1
BSwHC>— s(x, Su[C)

~ %swuc» s,

Cy = <y> SwHC> = <y/7

hence 2'(¢y + s¢z) = Bz +)Y/, %Sw ICY) = y((S. + tSw) + z’(Zle y:C;), so it must be the case

that o’ = 1 as well. On the other hand, suppose that b’ = 1, meaning that 2'(¢, + sz — Zle yiCy) =
Yo (Sz + tSy). Define A, 1= (, — <z, S4|C), 4y := ¢, — (Y, Sw|C), and A, := 25, — S, and note that
b=1ifonly if A;, Ay, A, are all zero. We have

2 Gy + 5 — Zy = yo (S + tSu)
2 (Ay+<y,Sw|C>+s(Ax+<w,SwC> Zyz) Yh (28w — A, +Sy,)
14
2 (Ay +{y), Su|C + s (Az + (&, Sw|C)) — Z (y; + sz C’Z> =y, (28w — A, + tSy)
=1

14
2 (Ay + (Y, Suwl[C) + 5 (Ag + (@, 5[C)) = D (yi + sa; C’l> = yh (28w — AL + 1Sy)
1=1

46

2 (Ay + sAz + (Yo + s20)Sw) = yp(2Sw — Az + tSy)

!
Y (Ay +sA, + yosw) = (250 — A, +tSy)

B
Bz +1t) (Ay +5A, + yﬂéSw) =y (28w — A, + tSy)
B(z+1t) (Ay + 54, + y;sw) =yo((z+t)Sw — A,)

Bz +1) (Ay + s4;) = yo(—A.)
(z4+1) (Ay +sA;) = (yo + szo)(—A4,) .

Recall that, up until the i-th query to OsveppH, everything is exactly the same as in Gs. This means
that s and ¢ are information-theoretically hidden from A’s view as none of the values y., y;, or 2’ were
used in G3. We have yg + sz¢ # 0 with probability 1 — 1/p, and in this case

(z+1t)(Ay + s4;)

=—A,. 4
Yo + ST ()

Additionally, A, + sA, # 0 with probability 1 — 1/p due to the fact that s is perfectly hidden from
A and uniform in Z,. Lastly, since ¢ is also hidden from A and uniform in Z,, so is the left-hand side

of Equation (4). Thus —A, = 0 with probability 1/p. In total, we have Pr[E;] < % + (1 - %) % +

2 b
(1 — l) L <3 Then
p) p S p

‘Pr[G3«4()\) —1] - Pr[Go()) = 1]) <SPIEVEsv ..oV By,]
9OgverpDH
_ 2 PF[EZ] < 3qOSVerDDH]
i=1 p

G4(\): We handle queries to Osverppr like so: on input ((, (y, (Ci)i_y, Sw, S2), output 1 if and only if
2 (Cy + 5Co — Zle yiCy) =y (S: + tSy). We have
PriG4A(\) = 1] = Pr[GsA () = 1],

as the only way the games can differ is that the adversary can cause the game to abort in G3 , and if this
does not happen then everything is exactly the same, so an adversary that wins in the previous game
necessarily wins in this game.

Gs()\): Instead of MACppy.Ver at the end of the game, we check

Yo(S57 — (v, 1[m*)SE) = (&', 1 m*)(Sy + 557 — (', 0|m™)) .

This condition is implied by the previous winning condition. We can see this by plugging in definitions
and winning conditions to the left-hand side as

Yo(Sy — (v, 1[m*)S}) = yo ((z, 1[m™)S, — (v, 1[m*)S})
= yo(((&', 1[m™)/B + (v, 1|m*)) Sy — (v, 1|m*)S.,)
= (@', 1|m*)(yo/B) Sy,
= &', m*)(Sy + sSy — (y',0lm*)S.,) .

Hence, an adversary that wins in the prior game must win in this game, meaning

Pr(Gs™(\) = 1] = Pr[G4A () = 1] .

47

Gg(A): We now revert to H < G instead of generating a trapdoor. The only difference is that previously

the game would abort if 8 = 0. Note that nowhere in the game do we use the values (z;)¢_,, (1;)f_, or

B anymore, this is because we compute

Sw=rH
S, =rzH =72/ —t)H =r(z'G — tH)

Sy =1r(xo + Zf=1 mx;)H = r(x(G + voH + Zf;l m; X;)
Sy = r(yo + Zle muy) H = r(y,G — s(x(G + voH) + Zle m;Y;)
= (UG + Xiey yimiH) — 55,
Hence,
Pr(Ge™(\) = 1] = Pr[Gs™(\) = 1],
G7(A): Consider a sequence of sub-games Gg = G71 ,...,G7gq, = G7 where Gy} is such that the first i — 1

queries to MACppy.M are computed in the following manner:

1orw,x <$Z,

2. Sy —wH; S, «r2G —twH

3. S, — xH,

4. Sy —ryG +w Zle yim;H — sS,
and the rest are computed as in Gg. To argue that A has roughly the same advantage in G7; and G711
for all i € [¢m — 1], we need a few hybrids for each step. Fix ¢ € [g, — 1]. Let G7; . be Gy7; with the
change that on the i-th query a tag is computed as:

1. rwesZ,

2. Sy —wH; S, «1r2G—twH

3. Sy — (', 1|m)G + wv, 1|m)H

4. S, —ry,G+w Zle yim;H — S,
We'll first show that G7; ~ Gy7,i «, and then show that Gz . ~ G7,;+1. The only difference between G7; .
and Gy is this tag for the i-th query; in particular, in G the tag for the i-th query was computed as:

1. r<s$Z,

2. Sy, «—rH;S, —r(z’G—tH)

3. Sy —rlx,1ym)H = r({(x’,1|m)G + (v, 1|m)H)

4. S, — r(y,G + Zle yim;H) — sS,
Consider the reduction Bppy playing the DDH game, which on challenge (p, G, G, A, B, C') simulates the
entire game to A with H <« A and the following for the i-th tag oracle query:

1. S, < C;S, — 2ZB—tC

2. S, < (x',1/m)B + (v, 1|m)C

3.8, —ybB+ Y yimiC — 55,
If (A, B,C) is a DDH triple then the above perfectly simulates G7;. On the other hand, if A, B,C are
all sampled independently and uniformly at random from Z, then the above perfectly simulates Gz ;1.
We may conclude that

Pr(G7,A(\) = 1] — Pr[Gr,.A(\) = 1]| < Advi® (Boph, A) .

We now argue that A behaves roughly the same in Gz, and Gz,+1. It suffices to show that (v, 1|m) is
uniform in Z,, and independent from all values in the game. The value v does not appear at any point prior
to the i-th MAC query. After this point, it is only used in two places: (1) future (i + 1, ..., g,-th) MAC
queries, and (2) at the end of the game as part of the winning condition. Regarding (1), v is information-
theoretically hidden by @, and the tag oracle only uses «, not x’ or v. For (2), when A outputs (m* =

(m¥,...,m¢),0* = (S5, S5, Sy, %)) they win if m* ¢ MsgQ and S = S ((z/, 1[m*)G + (v, 1[m*)H)

48

among other conditions not involving v. As m # m®, there exists j € [¢] such that m; # m;‘. For any
o, ay € Zy, we have

Pr[{v,1|m) = ay A {v,1|m*) = as]
= Prl{v,1|m) = o | (v, 1[m") = az] - Pr[(w, 1|m™) =]

= Pr[{v,1|m) — (v,1|m*) = a1 — as] - %

¢
1
= Pr Zvi(mi—m;")=a1—a2 =
i=1 p

1
=Pr|vj(m; —m}) =1 —az — Z vi(m; —m™) T

ie[N\{5}

Where the final equality can be seen by viewing (v;)iee (5 @s fixed and taking the probability over the
random choice of v;; the left-hand side is uniform in Z, (since m; —m? # 0) and equal to a fixed value.
This means that (v, 1|m) and (v, 1|m*) are independent. We have

Pr[G74(A) = 1] = Pr[G6™ (A) = 1]| < g - AdviL2, (Boom, A) -

Gg()): Finally, we have that A’s forgery (m* = (mf,...,m}),0* = (55,55, Sy, S5%)) at the end of the
game has to satisfy

Yo(S7 — (v, 1[m*)S) = (@', 1Im™*)(Sy + 557 — @', 0[m*)Sw)

Assuming that y{, # 0, which occurs with probability 1 —1/p, since vy is information-theoretically hidden
due to the fact that vy and z(are never used in any value given to A and S¥ # 0, their output can only
satisfy this equation with probability 1/p. Therefore

1 N1 2
PriGs*(A\) =1] < = + (1 -) - <=
p p/p P

6.6 Unforgeability Proof of KVACppy

Proof (of Lemma 6.2). Parameter indistinguishability follows from Extse,, generating par as in Setup.

Now, we show the advantage of A in the unforgeability game. We assume without loss of generality that
any RO query (except for programming) the game has to make in the verification of some proofs or showing
messages is already made by A. (To be more precise, this increases the number of queries to Hg, Hq, Hs by
at most q.)

Gl()\): (EXtDDH, OsverDDH)—unforgeability of KVACppH.
G2(\): The oracle Iss is modified so that after checking validity of 7eom and running (w, u,, m) « Extio (Q,
(X,Y, Ey, Ey, D), Teom), it aborts if (X,Y, Ey, Ey, D, 1), (U, uy,m)) ¢ Reom. We call this event
BadCom.
We now define a reduction Beom playing the KSND game for Il with respect to the extractor Extcom.
With orwaclew access to Ogy, it simulates G; to A on every Iss query, queries its oracle Og, with
(X,Y,E;, Ey, D,¢), Tcom. By definition of the straight-line extractable knowledge soundness game, Beom
wins if BadCom ever occurs. Hence,
PriG,™(\) = 1] = Pr[G1A()\) = 1] — Advis™d

com

Extcom (Bcoma)\> .

49

G3(A): In this game, we simulate the proof 7, in the issuance oracle using Sim,, which programs H;. To
argue the change in advantage, we construct a straightforward reduction B, to the ZK game of I1,, such
that

Pr[Gs*(\) = 1] = Pr[Go*(\) = 1] — Advy sim. (Bo, M)

G4(N): At the start of the game we initialize a table To « () and use it to lazy-sample values for Hs.
Then SH,up simulates the proof ., by programming values into T5. Explicitly, in SHyey, the reduction
computes S’ (Ci)¢_;,Cy, Iy, Cy, I, and S’ as an honest user would. Then, the reduction first samples
¢ <«$Zyand s < Z;‘;”Z sets Y pub 1= (Cy)¢_, |||, and computes R = Mgl:tI)_I7SL,7X;YpubS — Y pup, and

then sets TQ(ME}TZ,S;,X,YP“.,’ Y pub. R, ¢, nonce) < ¢, or aborts if it is already set. Since the hash query
contains elements uniform in G, and queries to Hy happen either on a query to SHy,, or directly (which
in total is less than ¢ queries), we have the following by the union bound:

2
Pr{G4A(\) = 1] = Pr[GsA(\) = 1] — % .
Gs(\): We modify KeyGen so that ct, and ct, are each sampled uniformly at random from G?. In this game,
the public keys are now independent of zy and yy. By Lemma 2.2,
1

Pr[Gs?(A\) = 1] = Pr[G4™ () = 1] — Advi®® (Bopu, A) — 1

Gg(A): This game aborts if during issuance the extracted witness (ug,u,,m) is such that m # 0 and
Zle m;X; = Zf=1 m;Y; = Og. Denote this event as BadExt. This is to rule out the case that straightline-

extraction outputs m that does not correspond to the openings of Ex, Ey

Notice that this breaks rel-DL with respect to bases X and Y, but we cannot directly reduce to rel-DL,
since the game needs the discrete log of X;,Y;’s to simulate. Hence, we will reduce to the security of
MACppy instead. In particular, we construct the following reduction Byfcma playing the UFCMA game
for MACppy with access to the oracle O. It takes as input the public parameters par = (p, G, G, H) and
ipk = (X,Y,Z) and samples ct,, ct, «<s G? as in the previous game. It then runs the adversary A on
par and pk = (X,Y, Z, ct,, ct,). Then, it simulates the oracles as follows:

. On issuance queries, it runs the extractor to extract (ug,u,, m). If BadExt occurs, i.e., m # 0 and
Zf=1 m;X; = Zle m;Y; = Og. The reduction queries its MAC oracle to get a tag (Sy, Sy, Sy, S;) on
message 0 and return (S, Sz, Sy, S>) as its forgery for m.

Otherwise, it queries the MAC oracle on message m for a tag (Sy, Sz, Sy,S:). Then, it returns
Sw, By = (G, veD + Sz), By = (G, v, D + Sy), S, and a simulated proof 7.

« The NewUsr oracle on input m and ¢ (for ¢(m) = 1) is simulated honestly: Byfcma queries its MAC
oracle on m to get the credential. Note that if m # 0 is such that Zle m; X; = Zle m;Y; = Og,
we compute the forgery as when BadExt occurs.

. The SHyey and SHp,, are simulated as in the previous game, and this can be done since the game
knows the credential and the attributes.

. Queries to O are forwarded to its oracle O.

Note that the view of A is identical to its view in Gs. Moreover, if BadExt occurs, then Byfems wins the
game. Hence,
Pr[Ge™(\) = 1] = Pr[Gs™(\) = 1] — AdVIA® . ocvuonn (Bufemas A) -

G7()A): The oracle NewUsr is modified so that it just sets ogq < L instead of using KVACggs.lss. We modify
SHyey to do the following instead of running KVACggs.Showyey:

r <$ Z;’j

.S —1rG; S, — 25y,

(Ci)i_y <8 GY O, Cy <8 G

. F:c <~ .’E()S{U + (Zf=1 mzCz) - Czr; Fy <~ yOSqlﬂ + (Zf:l ylcl) - Cy

W N =

50

5. Output (S.,, 5%, (Ci)é 1, Cx, Cy, I, Ty).
This makes no external change as Sw7 (C)le are still random, and C, + I, and Cy + I, still satisfies
SVeryey, s0

Pr(G;A(\) = 1] = Pr[Ge*(\) = 1] .

Gg(A): The game aborts if the forgery (¢*, nonce®, 7*) corresponds to an RO value which was programmed
via simulation in SHpu,. More specifically, at the end of the game:
1. Parse ((S,, 8%, (Ci)i_1,Cu, Cy, Iy, T, (7, Tpub) < 7 and (I, m') « ¢*.
2. Parse (¢, 8) < Tpub, define M := Mglj?I,S;,,X,Ypub and Y pup 1= (C3)¢_1 ||| Ty Compute R = Ms —
CYpub.
3. Abort if H(M,Y", R, ¢*,nonce™) was programmed in the act of simulating a mpu, proof (rather than
via lazy sampling).
Note that, as part of A’s winning condition, (¢*, nonce*, 7*) ¢ PfQ. However, as we know that the hash
query input is the same as one that was simulated, and the hash query contains G, H, S, X,Y and
(Ci)e_y, Iy, Ty, as well as nonce®, and ¢*, there must a simulated (¢, nonce, 7) which is exactly the same
as the forgery except s # 8, Where § corresponds to the simulated proof. Since (¢*, nonce®, 7*) ¢ PfQ,
the only way this can occur is if s # s, where s is part of the simulated proof. Unpacking s into
(8m,)6y, (sm)le,s%,srv) and doing the same for 8, we have the following system of equations (by
Ms = M35): ‘

(Sm; — 8m;)Sw + (8¢, — 8-,)H =0 for i € [{]

(Sn- - gTy)Xi - (Srm - gTz)H =0

-

s
Il
—

-

(8r, = 5r,)Yi — (55, — §Ty)H =0

=1

Using s # 8, at first glance there are roughly four cases to consider. However, if H # 0, which occurs
with probability 1 — %7 then s,,, — 8§y, = 0 for all ¢ € [¢] would imply s,, — §,, = 0 for all ¢ € [£], and
that in turn would imply s, — §,, = 0 and s,, — 5, = 0. Thus, it suffices to consider only the case
that s,,, — S, for some ¢ € [¢]. Consider the reduction Bqiog which on challenge P € G samples § < Z,,
and sets H = $G. It then simulates proofs by computing S, as a;P for a; <$ Z,. When the adversary
forges, we obtain an equation of the form (s, — §m,)a; P + (sr, — 8r,) 3G = 0 from which we can recover
log P assuming that a; # 0. We can conclude that

1
PriGs™ (V) = 1] = PrlGr*(%) = 1] = — Advees, (Batog: V) -

Go()): At the start of the game we sample (hy,71), ..., (hg,7q) <$ Zy x Z;; and initialize a counter cnt « 0.
Whenever we need to program an RO value for T, we use hcye and then set cnt < cnt + 1. Similarly, in
Iss, instead of r <8 Z,,, we use 1 < rene and set cnt < cnt + 1. For other oracles (Hp, H; and SHiey) and
the adversary A, the game samples random coins p = (p, p.4) where p’ is used to program Hg, H; and
SHyey, while p_4 is the random coins for A. Via an essentially identical rewinding argument to our proof
of KVACggs unforgeability, we can extract a witness ((1m;,74);e[e\1, 72, Ty) corresponding to the forgery
(¢*, nonce*, 7*) with high probability. Concretely, by the forking lemma,

q

Gg = q- Pr Gg + =

Prl 1<y ~1+2.

We now describe the reduction B, playing the Osverppn-UFCMA game for MACppn, which on input

(p,G,G, H),ipk and with access to oracle MAC simulates Gg to A. At the start of the game, sample mgy =

(misu)i_, < Zf; and query osg < MAC(mgg). Sample (a;){2] < (Z x foz)%ﬂ. The first run of A, we
make the following changes:

51

1. Set 1,...,04 < L

Instead of (sk’,ipk’) < MACppn.KeyGen(par), do (sk’,ipk’) < (sk, ipk).

3. InIss, query o := (Sw, Sz, Sy, S=) < MAC(m) (where m is extracted from Ilcom), set E, — (7. G,%H—k
Sz) and By «— (v,G, vyH +Sy). Record et «<— o and increment cnt by 1. Simulation is perfect since E,

o

is an encryption of Zl 1 szz, E is an encryption of Zz 1 mY5.

4. On the query to SH, do (v (rl)ffl,rm,ry) « «a;. Compute (S,,,5;,S,,5,) < r'osu, then C; «
m;isuS,, + riH, C; — S, + r,H, and Cy — S’y + ryH. Compute I, «— Zf=1 rX; — ryH and T,
similarly. These outputs have the same distribution as in Gg since the MAC tag ogy is valid for (m; su).
Note that due to the change in game G7 and the rewinding in Gy, the key-dependent showing message
Tkey Will be the same in both runs, identically distributed to the ones in this reduction.

When the reduction runs A a second time, it does everything the same except for cnt < J it return oy in
Iss instead of querying MAC(m). Since A is run with the same randomness and inputs for the entire period
of the game when cnt < J, they will make the same queries to Iss up to that point, so our simulation is
perfect. For the queries after cnt > J, it runs the game using the newly sampled 7/, ..., h; «—$ 7, instead
as described for the first run.

At the end of the game A outputs (¢*, nonce*, 7*) and we parse ((Sw, Sz, (Ci)i_1, Cu, Cy, T, Ty), (7, Topub)) <

7* and (I,m’) « ¢*. We also have the extracted ((1m;)e[e 1, (1)1, 72, 7y). Reconstruct m* = (mf}, ... ,my)
from m/ and (m;)efe 1. If the forgery verifies,

4
Iy + Co = 208, + Y, iC

i=1

¢
=205, + Z zi(m} S, + 1:G)

i=1
xOJerZ S'JrZrZ

and I, = (Zf 17iX;) —roH, s0o Cp —ryH = (zo + 2 _,x;m})S,,, and analogously Cy — ryH = (yo +

Zle y;m})S,,. We can make the same argument for E,. At the end, we obtain a valid MAC tag (S}, C,

ryH,Cy —ryH,S.). Finally, note that since the combined view of A in both runs is identical to that in Gg,

mgsy is information-theoretically hidden in all values given to A. Thus, m* = mgy with probability at most
, and otherwise, B/ wins. Therefore,

ufcma

Advk/leEEDH7OSVerDDH (B(chmav)‘) = Pr[G9A(>‘) = 1] -]? -0

6.7 Anonymity Proof of KVACppy

Proof (of Lemma 6.3). We note first that the global parameters generator Gen(1*) outputs par, = (p,G,G, H)
and Simge, additionally outputs a trapdoor v € Z; such that vG = H. Note that v will also be given to the
simulator Sim

We assume without loss of generality that the queries made to H; when the game verifies 7, are already
made by A. (This includes the query count by 1). To show security, we consider the following sequence of
games:

G1(N): This is the game ANONKVACHpH,Simeen,Simpps,0-
G2(N): We simulate 7eom as in Simy, and mpup as in Simshew instead of generating it honestly. There exists
Beom and Bgyp, where By, makes at most gsphow queries to its prover oracle such that

Pr[G2A()‘) = 1] - PF[G]_‘A()\) =] Advﬂcom,&mcom (Bcom7) + Ade pub > ST Mpub (BPUb7)‘) .

The RO query count follows as in the lemma statement.

52

G3()\): We add an inefficient check in U, that checks whether the issuer’s message (Sy, Ez, Ey,S.), the

public key pk, and the user’s first message (D, Ex, Ey) is in the induced language of R,. If not, abort the
game. By soundness of II,, we have that

Pr[Gs?(\) = 1] — Pr[Go()) = 1]| < Advi™™ (B, \) .

The RO query count follows as in the lemma statement.

G4(N): This game simulates SHiey as in Simgpow. At this point, the showing oracles are all independent of
the attributes m (except for when checking validity of ¢(m) = 1 in SHp,p).
Now, we argue the indistinguishability. First, we consider 7y, as in Gz. Let sk = (z,y, 2,t;,t,) be the
underlying secret key fixed by pk. By the introduced check in the previous game and with how an honest
user compute F,, Ey, we have that for some r € Z,

Se=1mH .S, =rzH

4 4

i=1 i=1

By how KVACppH.Show,e, is defined,

S:U = T/Sw =rm'H 75; = T/SZ =rr'zH
¢
Co=1'Sy +1.H Iy = ZriXi —r.H
i=1

¢
Cy=1'Sy+ryH I,= ZHYi —ryH
i=1

Cz' = sz:U +rH 7VZ € [E]
where 7’ «<s Z;, Tly... 70Tz, Ty <3 Zp. Next, notice that
‘

¢
Cop+Ly=1"5S, + Z riX; =r'reoH + Z(r’rmixiH + 7. X;)
i—1 i=1

¢ ¢
= .1‘051/1} + Z xz(mlSq’U + ’I“iH) = .1305;} + Z x;C;
i=1 =1
4 4
Cy+1I,=r'S,+ Z r;Y; = r'ryoH + Z(r’rmiyiH +7Y;)
i=1 i=1
¢ ‘
=05, + > yi(miS, +riH) = yoSi, + > 5iC; .
i=1 i=1
Since r’ «—s Z%, 71, ..., ¢ < Ly, we have that S, (C;)[¢ are uniformly random. Moreover, they deter-

mine C, + I, Cy + Iy, S.. Hence, with r;, 7, < Z,, we have that C,,Cy, I, I, can be sampled by
sampling Cy, Cy «<s G and computing I, «— 205, + Zle 2;C; — Cy, Iy < yoSh, + Zle y;C; — C,. Note
that with the simulator sampling S, (C;);e[¢] while knowing their discrete logarithms, it computes I%, I,
efficiently using the elements in the public key and the trapdoor v. Hence, the distributions of 7ye, from
KVACppH.Showyey and Simshow are identical. Thus, Pr[G4A()\) =1]= Pr[GgA()\) =1].

Gs(A): This game removes the check introduced in Gz and also does not compute S;, S, in Uy anymore.
With a similar argument as in G3, we have that there exists B, such that

Pr[Gs?(\) = 1] — Pr[G4™()) = 1]| < Adv"™ (B, \) .

53

Ge(A): This game simulates U; by computing E, «— (u,G, u, D), E, — (u,G, u;D) with ug, uy, ul, u’y —s7Z,
for i € [¢]. This game hop follows by a reduction Bppn to n-DDH. Hence, by Lemma 2.2,

Pr(Ge*(\) = 1] — Pr[Gs™()) = 1]| < Adveds, (Bopm,) + ﬁ :

Since G is exactly AnonkvaCypy,Simeen,Simoon,1, this concludes the proof. i

6.8 Security Proof of oNIPppy

In this section, we give the proof of Theorem 6.6. Correctness follows easily by inspection. The following
lemmas then establish soundness, zero-knowledge, and obliviousness for valid statements.

Lemma 6.8 (Soundness of oNIPppy.). For any adversary A making at most qu = qu(\) queries to H,.
modeled as a random oracle and running in time t 4 = t4(X\), there exists an adversary B playing the DL
game such that

n o g +1
AV (A N) </ (an + DADVEZE (B,) + "t

Proof. The proof for this lemma follows similarly from the rewinding reduction in Lemma 5.9, except that in
the event that the adversary outputs a statement (pk, Tkey) ¢ Lrppy and a valid proof m, we have to show that
there exists only one bad challenge ¢y which allows the adversary to find sy which satisfies the verification
equation.

To see this, consider (pk, Tkey) € Lrppu, Ro,Cores Ro,Aug, and two tuples (co, 0) and (cp, sj) such that

(a) Tkey = (Sun Szv (Ci)f=17 Cma Cy) with Sw 7 OG'
(b) RO,Core = MCoreSO - COPk = MCore36 - C6pk , ,
(€) Roaug = Maugs,,.(c.)t_, 50 = co(CllCyllSz) = Mayg s, (ciye_, 80 — c6(Call Gyl Sz)

=1

Suppose ¢y # cj. Then, by (b) and (c), we have that for sk’ = (cj — co)~1(sh — 80), Mcoresk’ = pk and
MAugysw’(Ci)lesk’ = (¢zlI¢yllS=), which contradicts with the fact that (pk, Tiey) is not in the language. There-
fore, ¢ = . Hence, a similar rewinding reduction strategy from the proof of Lemma 5.9 solves the DL
problem when A4 wins in the soundness game in both runs. O

Lemma 6.9 (Zero-Knowledge of oNIPppy.). For the oracle Osverppn as described in Figure 17, there

exists a simulator Sim = (SiMsetup, Simiss) such that for any adversary A, AdvékNlPDDH,Sim;OSVevDDH (A,N) =0.

Proof. Consider the following simulator Sim:

o« SiMsetyp(p, G, G, H) : Sample w € Z,, and return (pargyp = (p, G, G, W, H),td = w).
. Siml(gssve’DD“(td,pk,umsg1 = (Sw, S, (Ci)i_1,Ce, Gy)) = Query Osvernpn((p, G, G, H), sk, pk,-) with umsg,
and if the oracle outputs 0, abort. Otherwise, sample sy «<—s Z%HG, o, 1 <5 Zyp and set
- RO,Core < McoreSo — COpk
— Roavg — Mpyg.s, .0y, 50 — (Gl Gyl Sz)
- R1 <« TlG
Then, it returns these elements to the adversary.
On the next round with umsg, = ¢, return ¢y, ¢1 = ¢ — ¢, g, 81 = r1 + ¢1 - w. (For simplicity, we assume
¢o, ¢1 are both send — but in the protocol, only one can be derived from the other.)

To see that the distribution of the view of A is identical in ZKg and ZK; games, we consider the following;:

« The distribution on par,yp is identical to oNIP.Setup, since W is still uniformly random.

. Next, because the simulator aborts correctly with the help of the oracle Ogsyeppn, We only have to
consider the case when ([¢ylSz) = Mayg s, (c,)e_, sk- Then, it is easy to see that the joint distribution
of (Ro,cores Ro,augs R1,Co,¢1,80,81) conditioned on (umsg,,c) are identical regardless of whether the
issuer uses sk or w to run the protocol. O

54

Lemma 6.10 (Obliviousness of oNIPppy). Let Simgen be the global parameters simulator for Genppp.
There exists a simulator Sim = (Simsetyp, Simy, Simpg) such that
« For any adversary A, Advgaer'li;rDi:fSim(A, A)=0

« For any adversary A, Advf)kNlPDDH,SimGen,Sim(A? A) =0.

Proof. First, we note again that the simulator Simge,(1*) for the global parameters generator returns par, =
(p,G,G,H) and tdy = v «s Z; such that vG = H. Now, consider the following simulator Sim:

o Simsetup(p, G, G, H) : Sample w € Z,, and return (pargyp = (p, G, G, W), td = w).
. Simy(td = (v, w), pk) :
— First, parse pk = ((X;)f_q, (Yi)i_1, Z,cty = (ctyo,Cts1),cty = (Cty.0,Cty1))
— The simulator then uses v to compute Xy « ct; 1 — vcty g, Yo < cty 1 — vcty 0.
— For the first move, sample a «s Z;‘,,Bess Zf,. Compute Sy, «— aG,C; «— B;H and (, «— aXy +
S BiXi, Gy — aYy + i, BiYi, 8. — aZ.
— For the second move, return ¢ «s Z,,.
— At the end of the protocol, the simulator checks if the transcript satisfies the check in oNIP.Us.
« Simpg(td = (v, w), pk, Tkey = (S7,, 5%, (C{)le,(;,(;)) : Sample sg «s Z?,“ﬁ,co,rl s Z, and set
- RO Core <= McoreSo — copk
— Roaug < Mayg,s,, (ci)t_, S0 — co(CallyS2)
— R1 <« 7’1G
Compute ¢ < Hc(pk, Tkey, Ro,core; Ro,Aug, R1) and return (cp,c1 = ¢ — co, S0, 81 = 71 + ¢1 - w).

The distribution of par,yp stays identical to that of oNIP.Setup. Next, to show the advantage of A in the
obliviousness game, we only consider the game where A only starts 1 session. Then, we can easily extend
this to @ sessions via standard hybrid argument, since the reduction could use the trapdoor (in the OBLV
game the adversary knows the trapdoor) to simulate other sessions which was changed to using a simulator.

To show indistinguishability, we first w.l.o.g. assume that 4’s randomness is fixed and it finishes the
proof issuance session and sees the proof w. Also, we remark again that the game only consider issuance
protocol for valid statements. We define the view of A after its execution as V4 = (H, W, pk, ey, T', m) where
(pk, Tkey) is the statement the adversary selected, T is the transcript of the protocol, and = is the proof from
Pf defined as

(X)z 1 (Yoo, Z,cta = (ctz,0,Cta,1), Cty = (cty,0,Cty,1))
(St 52, (CDiz1:Car Cy)

((S’w7SZ7()1, 1;Cz7<y) RO CoreaRO Aug7R1>C 00701780781))
= (o

ch, €15 80, 81) - (6)

7-key

For simplicity, we assume cg,c; are both sent. Since the randomness of A is fixed, we only consider the
randomness of the honest user (i.e., Uy, Us) and the simulator Simy, Simp¢. Denote 7, as the randomness of
the honest user/simulator in the OBLV,, game, which are of the form

o = (av/Bv’YO,’yla(sO»(sl) M = (Oé,ﬁ,é, E{Jagéaf/l) .

Note that (-) is used to distinct the value in the transcript and the randomness of the simulator. Now, we
only need to show that the distribution of V4 is identical in both cases of b = 0,b = 1, which we do so by
showing that for any fixed view A where Pr[V4 = A|b = 1] > 0, there is a unique randomness 79,7, which
results in V4 = A for both cases. Since both 7,71 consist of the same number of scalars (1Z5 + (2¢ + 3)Z,
elements), this concludes the proof.

Now, we show that the claim above is true. (We note some abuse of notations here, and denote values in
A using the corresponding letters for the random variables in V4.)

55

For b =0, V4 = A if and only if

a = dlogg (Sw)/dlogg(Sy,) » B = (dlogg(Ci — CY))iee

50 286_80 751 23/1_817’70 :CO_COa’Yl 201—61 .
The if part (=) follows easily from how the user algorithm is defined. To show the only-if direction, we have
to show that with the defined randomness the protocol messages are as in 4, i.e., as given in Equation (6).
This follows from inspection, but due to the complexity of the protocol, we show the implication below.

First, we note that the statement (pk,Tkey) in A needs to be in the language, meaning there exists
sk = (z,y,2,t:,t,) such that Mceesk = pk and My, o (cne, = (Czl¢y15%)- By how a, B is defined, the
user outputs Sy, (Ci)f_; as in A, and for ({s, ¢y, S:),
OzC; + Z 6; X; = 05(3305;) + Z JJZC,Z) + Z 8: X
ie[£] ie[4] i

= 208w + Y, 2iCi = (o

i€[4]
ady + Z BiYi = a(yoS,, + 2 ¥iCY) + Z BiYi
i€[{] €[] %

= Yo Sw + Z ¥:Ci = Cy
1€[4]

aS, =azSl, =25,=385, .

Next, we have to show that the honest user sends ¢ as in A. For the equations below, we additionally let sg
contains ((50,z;)ie[e], (50,y:)ic[e]> 50,25 S0,t, 50,¢,)- To see this, we consider the blinded values R6,core7 R&Aug, R}

B,Core = RO,Core + MCore(sO - ’YOPk

= McoreSo — copkMcoredo — Yopk By oNIP.U3 checks
= MCore36 — ¢ - pk Def of dq, 0
Ropug = o (Roaug — Z Bi(Rzi| Ry,i]0))
i€[£]
= 0 (Mpyg s, (0,50 — €0(CallCyllS2) =) Bi(Ra il Ry.ill0)) By oNIP.Us checks

i€[£]

so’wosw - COng - Zf:l SO,ziCi - ﬁi(SO,IiH — C()XZ')
=a! 50,50 9w — CoGy — Zle 50,4:Ci — Bi(s0,9, H — oY) By oNIP.U3 checks
SO,ZS’LU — C()SZ

50,2050 — €0y — Zle 50,2, C;

50,405 — €0Cl) — Y1 50.4,C} Def of 3,
S0, ZS C()S/

= Mpug.s1,.(cryt_, So = co(G[IGy115%)
0.0 = Ro,aug + Maugdo — 70(C,[1G,15%)
)

= Mpug,s1,cye_, S0 — oGl Gyl1Se Def of &, 70
R, =Ry +6,G — W

=51G—c W+ 6G—nW By oNIP.U3 checks

= S&G—C&W Def of 517’}/1

Hence, because verifies, the user sends Hc(pk, Tye,, B cores By pug: F21) = %0 — 71 = ¢+ ¢4 =y —n =
co + ¢1 = c. Finally, it is clear from the equations above and how 7y, 1, 89, d1 are defined that the output of
the oracle Pf is (¢, ¢}, s(, 87)-

56

For b =1, V4 = A if and only if

a = dlogg(Sw) , B = (legG(Oi))ie[e])

c=c,c,=cy,8,=8,,r =5, —cidlogoW .

The if direction (=) follows easily from the equations and the fact that the final proof m verifies. For the
only-if direction, a, 3 ensures that (S, S:, (Ci)le,@,(y) as in A is sent, and ¢ ensures that the second
user message is c. Finally, because the final proof verifies, ¢ + ¢ = He(pk, Tyeys Rj) cores 120 aug: [11) Where

0.Cores 120 Aug: 11 are defined as in the verification algorithm. Then, the values of ¢, 5j, 7 ensures that the
proof 7 is exactly what is in the transcript A. O

57

Acknowledgements

Anna Lysyanskaya was supported by NSF Grants 2312241, 2154170, and 2247305 as well as the Ethereum
Foundation. Chairattana-Apirom and Tessaro’s research was partially supported by NSF grants CNS-2026774,
CNS-2154174, CNS-2426905, a gift from Microsoft, and a Stellar Development Foundation Academic Re-
search Award.

References

ARF24. The european digital identity wallet architecture and reference framework, 2024. Accessed: 2025-02-13.

ASMO06. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In Roberto De Prisco and Moti
Yung, editors, SCN 06, volume 4116 of LNCS, pages 111-125. Springer, Berlin, Heidelberg, September
2006.

BBO0S. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption in
bilinear groups. Journal of Cryptology, 21(2):149-177, April 2008.

BBC'24. Carsten Baum, Olivier Blazy, Jan Camenisch, Jaap-Henk Hoepman, Eysa Lee, Anja Lehmann, Anna
Lysyanskaya, René Mayrhofer, Hart Montgomery, Ngoc Khanh Nguyen, Bart Praneel, abhi shelat,
Daniel Slamanig, Stefano Tessaro, Sgren Eller Thomsen, and Carmela Troncoso. Cryptographers’
feedback on the eu digital identity’s ARF. https://github.com/user-attachments/files/15904122/
cryptographers-feedback.pdf, 2024.

BBDT16. Amira Barki, Solenn Brunet, Nicolas Desmoulins, and Jacques Traoré. Improved algebraic MACs and
practical keyed-verification anonymous credentials. In Roberto Avanzi and Howard M. Heys, editors, SAC
2016, volume 10532 of LNCS, pages 360-380. Springer, Cham, August 2016.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41-55. Springer, Berlin, Heidelberg, August 2004.

BCR*. Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard Davis. Recommendation for pair-
wise key-establishment schemes using discrete logarithm cryptography. Technical Report NIST Special
Publication 800-56A, National Institute of Standards (NIST). Accessed: 2025-02-13.

BL. Daniel J. Bernstein and Tanja Lange. Safecurves: choosing safe curves for elliptic-curve cryptography.
Accessed: 2025-02-13.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087-1098. ACM Press, November 2013.

BLL"21. Fabrice Benhamouda, Tancréde Lepoint, Julian Loss, Michele Orrli, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and Francois-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33-53. Springer, Cham, October 2021.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62-73. ACM Press, November 1993.

Bra99. Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building in Privacy. PhD
thesis, Eindhoven Inst. of Tech. The Netherlands, 1999.

BS20. Dan Boneh and Victor Shoup. A graduate course in applied cryptography (2020). A book in preparation,
v0, 5:80, 2020.

CATZ24. Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu. Pairing-free blind signatures from
CDH assumptions. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I, volume 14920
of LNCS, pages 174-209. Springer, Cham, August 2024.

CDDH19. Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-verification anonymous cre-
dentials on standard smart cards. In ICT Systems Security and Privacy Protection: 34th IFIP TC 11
International Conference, SEC 2019, Lisbon, Portugal, June 25-27, 2019, Proceedings 34, pages 286—298.
Springer, 2019.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using the strong diffie hellman
assumption revisited. In Trust and Trustworthy Computing: 9th International Conference, TRUST 2016,
Vienna, Austria, August 29-80, 2016, Proceedings 9, pages 1-20. Springer, 2016.

Chag2. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPT0’82, pages 199-203. Plenum Press, New York, USA, 1982.

58

https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf

CKL™16.

CKS08.

CLOL1.

CLO03.

CLO04.

CMZ14.

CPZ20.

CVvo02.

DHH™"21.

EHK™13.

Fis05.

Ger24.
Harl2.
JT20.

KLR23.

KRW24.

Ks22.

LKWL24.

LRSW99.
Lys02.

Maulb.
MBSt 25.

Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Laessge Mikkelsen, Gregory Neven, and
Michael @stergaard Pedersen. Formal treatment of privacy-enhancing credential systems. In Orr Dunkel-
man and Liam Keliher, editors, SAC 2015, volume 9566 of LNCS, pages 3-24. Springer, Cham, August
2016.

David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 127-145. Springer, Berlin, Heidelberg,
April 2008.

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In Birgit Pfitzmann, editor, FEUROCRYPT 2001, volume 2045 of
LNCS, pages 93-118. Springer, Berlin, Heidelberg, May 2001.

Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio Cimato,
Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages 268-289. Springer,
Berlin, Heidelberg, September 2003.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56—72. Springer, Berlin,
Heidelberg, August 2004.

Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and keyed-verification anonymous
credentials. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1205-1216.
ACM Press, November 2014.

Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal private group system and anonymous
credentials supporting efficient verifiable encryption. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, ACM CCS 2020, pages 1445-1459. ACM Press, November 2020.

Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous credential
system. In Vijayalakshmi Atluri, editor, ACM CCS 2002, pages 21-30. ACM Press, November 2002.
Nico Doéttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz, Sven Schéige, and Bogdan Ursu. On
the impossibility of purely algebraic signatures. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part III, volume 13044 of LNCS, pages 317-349. Springer, Cham, November 2021.

Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar. An algebraic framework for
Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129-147. Springer, Berlin, Heidelberg, August 2013.

Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152-168. Springer, Berlin, Heidelberg,
August 2005.

Architecture proposal for the german eIDAS implementation, 2024. Accessed: 2025-02-13.

Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October 2012.

Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic techniques and applications to
concrete soundness. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of
LNCS, pages 414-443. Springer, Cham, November 2020.

Julia Kastner, Julian Loss, and Omar Renawi. Concurrent security of anonymous credentials light, revis-
ited. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM CCS
2023, pages 45-59. ACM Press, November 2023.

Michael Kloofl, Michael Reichle, and Benedikt Wagner. Practical blind signatures in pairing-free groups.
In Kai-Min Chung and Yu Sasaki, editors, ASTACRYPT 2024, Part I, volume 15484 of LNCS, pages
363-395. Springer, Singapore, December 2024.

Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random oracle model with
applications to signature aggregation. In Shweta Agrawal and Dongdai Lin, editors, ASTACRYPT 2022,
Part II, volume 13792 of LNCS, pages 279-309. Springer, Cham, December 2022.

Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The BBS Signature Scheme.
Internet-Draft draft-irtf-cfrg-bbs-signatures-07, Internet Engineering Task Force, September 2024. Work
in Progress.

Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In Howard Heys and
Carlisle Adams, editors, Selected Areas in Cryptography, volume 1758 of LNCS, 1999.

Anna Lysyanskaya. Signature schemes and applications to cryptographic protocol design. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2002.

Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. DCC, 77(2-3):663-676, 2015.
Omid Mirzamohammadi, Jan Bobolz, Mahdi Sedaghat, Emad Heydari Beni, Aysajan Abidin, Dave Sin-
gelee, and Bart Preneel. Keyed-verification anonymous credentials with highly efficient partial disclosure.
Cryptology ePrint Archive, Paper 2025/041, 2025.

59

Ora.
Orr24.

OTZZ24.

PZ13.

TD.

TZ23a.

TZ23b.

Orange Innovation. The BBS# protocol: technical details. Accessed: 2025-02-13.

Michele Orru. Revisiting keyed-verification anonymous credentials. Cryptology ePrint Archive, Paper
2024/1552, 2024.

Michele Orru, Stefano Tessaro, Greg Zaverucha, and Chenzhi Zhu. Oblivious issuance of proofs. In Leonid
Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part IX, volume 14928 of LNCS, pages 254-287.
Springer, Cham, August 2024.

Christian Paquin and Greg Zaverucha. U-prove cryptographic specification v1.1
(revision 3), December 2013. Released under the Open Specification Promise
(http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx).

Jacques Traoré and Antoine Dumanois. BBS# and eIDAS 2.0.: Making BBS anonymous credentials eIDAS
2.0 compliant. Accessed: 2025-02-13.

Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 691-721. Springer, Cham, April 2023.
Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash functions. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages
628—658. Springer, Cham, April 2023.

60

A Multi-User Anonymity of SAAC

The multi-user anonymity game of SAAC is defined in Figure 20. The game is similar to the single-user case,
except that the adversary is allowed to issue more than one credential through the U;, Uy oracles. Note that
the adversary is also allowed specify which user/credential is being shown (through specifying the credential
ID cid) when the user requests the helper proof and during showing in the SH oracle. The corresponding
advantage of A is

AdV?AuA?%?m(Av A) = |Pr[MU'An0n§4AAC,Sim,O =1] - Pr[MU'AnonéAAC,Sim,l =1].

For readability, we give more details on our multi-user anonymity game here. The adversary will first
receive the public parameters par and the trapdoor td generated by the simulator. It will then have access
to the following oracles.

. Initialization oracle Init: This oracle allows the adversary to initialize its own issuer’s public key.

. User oracles Ujp,Uy: The adversary (as a malicious issuer) can specify the attributes m and the
predicate ¢. For these oracles, the adversary would interact with either an honest user requesting a
credential of m or a simulator which does not know m. Note that each attributes vector mgqy and
credential o¢q obtained by the honest user is indexed with a credential ID cid.

. Obtain/Request help oracle ObtHy,...ObtH, 1: The adversary is allowed to specify a credential
ID cid to force a user holding oq to request a helper information. In these oracles, the adversary
would interact with either an honest user, who knows the attributes m.q and the credential ogq, or
the simulator, who does not know either of those values. At the end, the user would receive a helper
information auxgq tied to the session ID sid.

. Credential showing oracle SH: The adversary is allowed to specify a helper information (via sid)
owned by a honest user, a predicate ¢, and an additional value nonce, such that the honest user uses
the helper information auxgq to show a credential oq for attributes satisfying ¢. Note that each helper
information is restricted to only be used once. On the other hand, the simulator only needs the trapdoor
td, the public key pk, and the specified predicate ¢ to simulate.

The following lemma shows that single-user anonymity (defined in Section 3.2) implies multi-user anonymity.

Lemma A.1 (Multi-User Anonymity). Let SAAC be a server-aided anonymous credentials scheme which
is single-user anonymous with respect to a simulator Sim. For any adversary A playing the MU-Anon game
with respect to the simulator Sim making at most ¢ = q(\), gobtn = qovtu(N), gsu = gsu(A) queries to oracles
U1, ObtHy, SH respectively, there exists an adversary B playing the Anon game with respect to the simulator
Sim such that

AdVSmAuAaCng?m (-Aa /\) <q- AdVg&oAnC,Sim(Av >‘) .

Additionally, B makes at most qowtu, qgsuy queries to its ObtHy, SH oracles.

Proof. Let A be the adversary playing MU-Anon game making q, qoptH, gsu queries to oracles Uy, ObtHy, SH
respectively. We then consider the following sequence of games Gg'()), . . ., GS(/\).

For i =0,...,q, the game G7*()\) is defined as follows:

« The public parameters and trapdoor (par, td) are generated from the simulator Simset,p. The oracle INIT
stays the same.
. For the j-th query to U; for j € [q]:
— Denote cid?) as the corresponding credential ID cid of this session (only if the oracle does not abort
after checking the validity of the inputs).
— If 1 < j <i: Compute g using the simulator Simy (as in the game MU-Anonsaac,sim,1)-
— Else i < j < ¢: Compute p using the user algorithm SAAC.U; (as in the game MU-Anonsaac sim,1)-

61

Game MU—Anong‘;\AC‘Sim,b(A): Oracle INIT(pk):
init «— 0;Zy,...,Z,,HP,C1,Co «— & if init = 1 then abort

(par, td) «$ SimSQmP(f‘7 14 init « 1;pk < pk
b s ANTU1,Uz,ObtH; ,....omHTJrl,SH(par’ td) return closed
Oracle Uj (cid, m, ¢):

if ¢(m) =0 v init =0 v cid € C; then

U
return b

Oracle ObtH; (cid, sid):

abort
if side Z; v cid ¢ Co €1 < C1 U {cid}
then abort Med — ™
Cli
Ty «— Iy v {sid}; cidsq « cid b 5
i 1 L1 Stda) =% SAACUn(par,plo . 9)
jif j=1then /b=0 \ Jb=0
: (Umsgp Stsid) 3 : I -
! ! im.ci $ Si =
I SAAC.ObtHelp, (par, pk, mcid, ocid) ! L("_J”_St_S'T’i'd_) D _Sling (_td_’ F_)k_’ ¢_))_1 s
I I
I return umsg, J return p
P oS-SS TTITTTITTITTTTTTTTT Oracle Uy (cid, imsg):
'if j=1then Jb=1 | . .
: (toq) <8 Si (td, pk) : if cid¢ C; v cid e Cy then L
umsg , stsig) <% Sim s
(S0 e <79 S QM LY Cy « C3 U {cid}
return umsg, Femmmm e e e m = A
Oracle ObtHj(sid,hmsg;_;): / j=2,...,7+1 :Ucid 8 SAAC.Ua(stgy, imsg) :
1if oi4q = L then abort I /b=
if sid¢ Zy,...,Z;_1 v sideZ; b e e e — - - - -
F=- -~~~ ~~-—— - - - Bl
then abort :0 8 Simy (stsim, imsg) /J b= 1:
Z; « Z; v {sid} 1if 0 = L then abort !
L o ______ a

return closed
Oracle SH(sid, ¢, nonce):

'if l<j<rthen Jb=0
(umsgj , Stsid) <% SAAC.ObtHelp; (stsid, hmsgjfl)

return umsg;
cid « Cidsid

ifcd=1 v ¢p(mas) =0 v sid¢ HP

I
I
I
I
I
I
if j =r + 1 then :
auxsig <3 SAAC.ObtHelp,. , ; (stsid, hmsg,.) :

I

I

I

then abort
if auxsg = L then abort .
) HP «— HP \ {sid}
,i”fi ﬁzji{f"f}, ,,,,,,,,,,,,,,, . T
F~—~~—~~ =~~~ ~-—~——-———-—-—-—-——~— T 'mes$ Jb=0

s ; _
ifl<j<rthen /Jb=1 I SAAC.Show(par, pk, mid, 0cid, aUxsid, ¢, nonce)
(umsg;;, stsia) <3 SimoptH (Stsia, hmsg,; 1) - b

return umsg;

bsig <8 SimoptH (Stsid, hmsg,; 1)
if bsqy = 0 then abort
HP — HP U {sid)

|
| |
| |
| |
| |
| |
lif j = + 1 then ; return 7
| |
| |
| |
| |
| |

return closed

Fig. 20. Anonymity game for SAAC for multi-user and single-user (defined including the dotted boxes). The game is
parameterized with a simulator Sim and the goal of the adversary A is to guess whether it is interacting with honest
users (case b = 0, denoted in the dashed boxes) or the simulator (case b = 1, denoted in the dashed and highlighted
boxes). We note that when querying the oracle SH, the adversary can specify the session ID corresponding to a helper
information aux which the user will use in the showing algorithm.

62

. For query to Uy corresponding to cid¥) for some J € [q]: If the oracle does not abort while checking
the validity of the input (cid,imsg), it uses the simulator as in the game MU-Anonsaac,sim,1 if j < 4;
otherwise, it runs the user algorithm as in the game MU-Anonsaac,sim,o-

. For oracles ObtHy,...,ObtH,1: Let j be such that cid? corresponds to cidgy. (Assuming the input
to the oracles do not force the validity checks to abort.) Then, these oracles are run with the simu-
lator Simopey if j < ¢; otherwise, they are run with the SAAC.ObtHelp algorithms while knowing the

corresponding attributes mciq,, and credential o4,

. For oracle SH on input (sid, ¢, nonce): Let j be such that cid? corresponds to cidsq. (Again, assuming no
input-check aborts.) Then, these oracles are run with the simulator Simgpow if 7 < 7; otherwise, they are
run with the SAAC.ObtHelp algorithms while knowing the corresponding attributes mgq,,, the credential
Ocidgq, and the helper proof 7.

. The output ¥’ of A is returned by the game.

sid ?

Notice that Gg'()\) and G;;‘(/\) are exactly MU-Anonsaac,sim,0 and MU-Anonsaac,sim,1 games, respectively.
Moreover, there exists a reduction B playing the Anon game with respect to the same simulator Sim such
that the bound in the lemma is satisfied. The reduction B is defined as follows:

. It takes as input (par,td) and samples i* € [¢]. It then runs A on input (par,td). Note that for the INIT
call by A, the reduction simply saves the public key pk into its state.

. Simulates the oracles as in the game G;« with the exception that in the oracles where the corresponding
index j (added in the description of the game) is i*, the reduction forwards the values to its own game
as follows:

— For Uy on input (cid, m, ¢), it returns (pk, m, ¢) along with its state and receives p which is forwarded
to A
For Uj on input (cid, imsg), it returns imsg along with its state.
— For oracles ObtH, with k € [+ 1] and SH, the inputs are forwarded to its ObtHy oracle and the
returned values are forwarded to A.
. The output &' of A is returned to its game.

It is easy to see that if the Anon game uses honest user and i* = i, the view of A is identical to its view in
G;_1. Similarly, the view of A when the Anon game uses the simulator is identical to its view in G;. Hence,
it follows that

q
AdVSAAC Sim (A Z PrIGH (V) = 1] = PrIGiL 1 (A) = 1]] < - AdvERRC sim (A,) -

B Integrity of SAAC

In this section we prove Theorem 3.1, which states that weak integrity is implied by anonymity and correct-
ness. We remark that this result relies on the fact that our n-correctness definition states that the correctness
experiment should succeed with probability 1 — 7 for any fixed key pair which can possibly be output by the
key generation algorithm. If our definition instead stated that the probability should be 1 — 7 taken over a
set of random coins used to generate a key pair (in addition to the random coins used to run the algorithms),
then Theorem 3.1 would be false.

Proof (Theorem 3.1). Suppose that SAAC satisfies anonymity with respect to some simulator Sim. This
immediately implies that SAAC satisfies an even harder (for an adversary to win) version of the anonymity
game where the adversary does not get to see the trapdoor, and they have to output p which will be used
as randomness for key generation, i.e., pk < SAAC.KeyGen(par; p). We consider a version of that anonymity
game parameterized by a bit b where, after outputting the randomness for the key, the adversary first outputs
two message-predicate pairs (my, éo) (my, él) The adversary interacts with two honest users both using
pk in separately identifiable sessions, user A using mg and ¢0, and user B using m; and (bl, for one run

63

of the issuance protocol and one run of the helper protocol. The respective credentials and pieces of helper
information are not revealed to the adversary, and if either honest user outputs L for their credential or
showing then the game aborts, i.e. outputs 1. At the end of the game, the adversary gets to output a predicate
¢ and a nonce nonce, and is given 7 < SAAC.Show(par, pk, my, oy, auxy, ¢, nonce). Additionally, the game
aborts (outputs 1) if any of bo (my), g{)l(ml), or ¢(my) are zero. The adversary outputs a bit representing
a guess for whether it got a credential produced by user A or user B. If we call this game Gy, then one can
show via a hybrid argument that

PG (A) = 1] = Pr[G{'(A) = 1]| < 2AdvERAC sim (A,).

Also, suppose that G, does par < SAAC.Setup(1*, 1) instead of (par, td) «—s Simsetyp(1*, 1), which we can
argue by using parameter indistinguishability of Sim twice.

Let A be an adversary against the integrity of SAAC. On input par, the reduction B runs (p, m, b, st A) —
A(par) and outputs randomness p and message-signature pairs (m, q~5) and (m, q~5) The reduction B interacts
with the challenger, in the first session using the honest issuer protocols, and in the second session using
A. After the interactions, B runs (¢, nonce) < A(st”y). To finish, B requests a showing 7 for (¢, nonce) and
outputs SAAC.SVer(par, pk, 7, ¢, nonce). If the showing is relative to the first session, then the showing is valid
by correctness with probability at least 1 — 7. On the other hand, if the showing is relative to the second
session, then the showing is valid with probability that A loses the integrity game. More formally, if SAAC
has n-correctness, then

PAGE() = 1] = PAGEM) = 11| > |(1 = m) — (1 — AdVERE (A, V)]

Thus Advis (A, \) < [Pr[GE(\) = 1] — Pr[GB(\) = 1]| + 7. O

C Construction of Straight-line Extractable Proofs

In this section, we recall a variant of the (randomized) Fischlin transform [Fis05, Ks22] for X-protocols
with super-polynomial challenge space which was given in [KRW24]. The transformation require that the
XY-protocol X' = (Init, Resp, Verify) for a relation R satisfies the following property in addition to correctness,
HVZK, high min-entropy, and special soundness: N
(Relaxed) Strong Special Soundness. For a relaxed relation R © R, there exists an efficient deter-
ministic extractor Ext such that for any statement z and valid transcripts (R,c,z) # (R,c,2), w <
Ext(z, R, ¢, z,2') is such that (z,w) € R.8

Although we do not recall the transformation, we remark that the simplified randomized Fischlin trans-
form gives an NIZK in the random oracle model where the construction depends on the following parameters:

. Challenge space: k = log(|CH|) = 4 where CH is the challenge space of X.

. Random oracle output bit-size: b = b(\) such that H : {0, 1}* — {0, 1}°.

. Parallel repetition: r = r(\) € N.

. Tterations: ¢ = ¢(\) € N denoting the maximum restart 2!. Note that we require 2¢ = poly(\).

Now, we restate the results given in [KRW24, Appendix C.].

Theorem C.1. Let X' be a X-protocol for a relation R that also satisfies high min-entropy and strong special
soundness for a relazed relation R. Then, the proof system NIZK obtained from compiling X via the simplified
randomized Fischlin transform satisfies the following properties.
Correctness. NIZK has correctness error r-e=2"" and the prover runs in time poly(2).
(Relaxed) Knowledge Soundness. There exists a straight-line extractor Ext can observe the adversary’s
random oracle queries such that for any A making at most Q = Q(\) queries to H,
AV a4) < Q2770

8 In contrast to special soundness, this does not require ¢ # ¢’

64

Algorithm Xeom ges-Init((H,C’, ¢1.4), (s, m)) : Algorithm Ycom ges-Resp(st, ¢) :

C=0 - Z1EI
Hyiy (Hi)ie[£+1]\1 Algorithm Ycom gas. Verify((H, c’, ¢1,0), (R, ¢, 2)) :
(R, St) «—$ ELi"Jnit((Hpri\,, C),

((mi)ierens, s))
return (R, st)

a; H; return X;,.Resp(st, c)

C = Cl - ZieI a,;Hi
Hyiv — (Hi)iepe+1n 1
return X, .Verify((Hpriv, C), (R, ¢, 2))

Fig. 21. Y-Protocol for Reom of BBS-based scheme.

Zero-Knowledge. There exists a simulator Sim which can program the random oracle H such that for any
adversary A making at most Q@ = Q(\) queries to H

AdVZNkIZK,Sim(-Aa A) < Q-2 Hein(E) gy 9= (k=b)/2

Now, to obtain a straight-line extractable proof for our KVAC constructions, we show that the X-protocols
for the linear relations Reom induced by the constructions of KVACggs and KVACppy satisfies High Min-
Entropy and Relaxed Strong Special Soundness for the relaxed relations described in Sections 5 and 6,
respectively. Note again that for our instantiations we only consider selective disclosure predicates. For
simplicity, let X\;, be a X-protocol for general linear relation, described in Section 2, which we can easily
that the min-entropy is Hpin(X) = log p.

RELATION AND PROOF SYSTEM FOR BBS-BASED SCHEME. Recall from Section 5 the description of Reom
and Reom (omitting par in the subscript).

Rcom = {((H,C/ﬂ/)), (Sam)) : C/ = SHEJrl + Zf:l mZHZ N ¢(m) = 1} ’

- (0g = Zf=1 miH; + sHyp 1 A
Reom 1= { (H,C", 1), (s,m)) : (s[|m) #0) v
((H,C",v),(s,m)) € Reom

For a selective disclosure predicate 1o for I < [{], the linear relation being proved by Xii, becomes
s+ Hppr + 2igricomili = C' = X pai;.

Now, fix a statement (H,C’, ¢r4), and consider any two different valid transcripts (R, ¢, 2), (R, ¢, 2’).
If ¢ # ¢/, we simply rely on the special soundness of Y;, and extract (s,mpr) such that C" = sHy 1 +
Dier @iHi + Zi¢1 m; H;, which is a witness for Reom.

Otherwise, ¢ = ¢/. Then, by the validity of (R, ¢, z),(R,c, 2'),

iel gl ¢l

Therefore, with z # 2/, we have a ﬁcom—witness m' =z— 2z # 0 and Zz‘y miH; = 0g.
RELQTION AND PROOF SYSTEM FOR DDH-BASED SCHEME. Recall from Section 5 the description of Reom
and Reom (omitting par in the subscript).

E,. = (usG,u.D + ¢ m; X;
(Ey By D, (X0) oy, (Yoo), (i1 i)

Rcom = _ A\ : Ey = (uyG,uyD + Zf=1 mZY;)
(u:l”uy’m (mz)lZI)) ¢(m) -1
(Zle m; X; = Zle m;Y; = 0g A
#0) v
~ B, E,, D, (X)), (Y;)! m
Rcom .= (()y Y ?()z:l’()z:le)v . (Ex _ (umGyua:D'f'Zf:lszz) A

(Us, Uy, = (M)5_1))

Ey = (uyG,uyD + Zle m;Y;) A
Y(m) =1)

65

Algorithm Xeom, ppH.Init(z, w) : Algorithm Xcom ppH-Resp(st, ¢) :

parse (Ey, By, D, (Xi)i_y, (Yi)i_1, ¢1.0) < return Xy;,.Resp(st, c)

parse (ug, Uy, (Mi)le) —w Algorithm Xcom ppn.Verify(z, (R, ¢, 2)) :
[— . .

By = Eo = (0, Xier ai Xi) arse (E.,E,, D, (X; £ Y; ¢ L Pr.a) —
, 1Y s Y i=17 =1 s

Ey = Ey - (0721,(;1 aiYi)

E, =E; — (0, 2ier aiXi)

E; =E, — (O’Ziel a;Y;)

return X, . Verify((Mr1 p,x,v, (E;HE;)),
(R’ c7z))

(127 St) —$ ZLin~|nit((MI,D,X.Y7 (E./z HE‘;))7

((mi)ierenr))
return (R, st)

Fig. 22. Y-Protocol for Reom of DDH-based scheme.

For a selective disclosure predicate ¢y, for I < [f], the linear relation being proved by Xii, becomes
(uzGyup D + Y apmiXs) = Ep — (0,205 a:X;) and (uyGouyD + > pmiYs) = Ey — (0,3, a;Y;). In

particular, this corresponds to the following linear map for I = (iy,..., %)
GO 0 ... 0
D 0 X, X,
Mroxy=\og o ... 0
0DY, ...V,

Again, fix a statement (E,, E,, D, (X;)¢_1, (Yi)i—1,%1.4) and two transcripts (R, ¢, z) # (R,c,2). We
additionally denote z = (24, 2y, (2i)igr) and 2" = (27, 2, (2)igr). Now, consider the two cases: ¢ # ¢’ and
¢ = . For the former, special soundness allows us to extract the witness corresponding to Reom, S0 we are
done. For the latter, we have that z # 2z’ and by the validity of (R, ¢, 2z), (R, c,z'),

Eqo 2, G 2, G

R+c Eac,l — ZiEI aiXi _ ZmD — Zi¢1 ZZX’L _ Z;D — Zigél Z;Xz
Eyo 2yG 2, G

Ey1—Yier a:Yi zyD — Zi¢I ziY; zy D — Zi$1 %Y

Subtracting the equations on z and 2’, we have that 2, = z;, 2, = 2, and Zi¢1(zi -2 X; = Ziﬂ(zi —20)Y,; =

Og, which gives us a witness for Reom.

66

	Server-Aided Anonymous Credentials
	Introduction
	Overview of this paper

	Preliminaries
	Server-Aided Anonymous Credentials
	Syntax
	Security Definitions

	Generic Construction from Keyed-Verification Anonymous Credentials
	Building Blocks
	Construction
	Proof of lemma:unf-acwh
	Proof of lemma:anon-acwh

	Instantiation from BBS
	BBS-based MAC
	BBS-based KVAC
	oNIP for BBS-based instantiation
	BBS-based SAAC
	Unforgeability proof of KVACBBS
	Anonymity proof of KVACBBS
	Security Proof of oNIPBBS

	Instantiation from DDH
	DDH-based MAC
	DDH-based KVAC
	oNIP for DDH-based instantiation
	DDH-based SAAC
	Unforgeability Proof of MACDDH
	Unforgeability Proof of KVACDDH
	Anonymity Proof of KVACDDH
	Security Proof of oNIPDDH

	Multi-User Anonymity of SAAC
	Integrity of SAAC
	Construction of Straight-line Extractable Proofs

