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Abstract. The Advanced Encryption Standard (AES) in Galois/Counter
Mode (GCM) delivers both confidentiality and integrity yet poses per-
formance and security challenges on resource-limited microcontrollers. In
this paper, we present an optimized AES-GCM implementation for the
ARM Cortex-M4 that combines Fixslicing AES with the FACE (Fast
AES-CTR Encryption) strategy, significantly reducing redundant com-
putations in AES-CTR. We further examine two GHASH implementa-
tions—a 4-bit Table-based approach and a Karatsuba-based constant-
time variant—to balance speed, memory usage, and resistance to tim-
ing attacks. Our evaluations on an STM32F4 microcontroller show that
Fixslicing+FACE reduces AES-128 GCTR cycle counts by up to 19.41%,
while the Table-based GHASH achieves nearly double the speed of its
Karatsuba counterpart. These results confirm that, with the right mix of
bitslicing optimizations, counter-mode caching, and lightweight polyno-
mial multiplication, secure and efficient AES-GCM can be attained even
on low-power embedded devices.

Keywords: AES-GCM · ARM Cortex-M4 · Optimization Implementa-
tion · Embedded Systems.

1 Introduction

In small embedded systems, such as Internet of Things (IoT) devices or wear-
able devices, ensuring secure communications is particularly difficult because
of limited computational performance, memory, and energy. Because these de-
vices exchange sensitive information over networks, cryptographic algorithms
that guarantee confidentiality, integrity, and authentication are essential. It is
standardized as an AEAD (Authenticated Encryption with Associated Data)
mode in TLS (Transport Layer Security) and is currently widely used in vari-
ous security protocols. However, a straightforward software implementation of
AES-GCM on resource-constrained microcontrollers (e.g., ARM Cortex-M4) of-
ten leads to performance degradation and vulnerability to timing attacks.
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One of the main challenges in implementing AES-GCM for embedded en-
vironments lies in the limited computational power and cache architecture of
the microcontroller. For instance, an ARM Cortex-M4 lacks specialized crypto-
graphic instructions and high-performance caches, causing block cipher opera-
tions to take much longer than on desktop or server platforms [26]. Furthermore,
Table-based AES implementations are prone to side-channel attacks that exploit
cache hit/miss patterns to infer internal round keys [4, 6]. Consequently, there
has been extensive research into efficient, constant-time AES implementations
that avoid table lookups, even on microcontroller unit (MCU) platforms [24, 14,
2]. Meanwhile, GHASH is the authentication tag generator in GCM. It relies
on multiplication in GF(2128). Although x86/AMD64 architectures support in-
structions like PCLMULQDQ [10], and ARMv8 supports PMULL [7], the Cortex-M4
lacks such dedicated instructions, forcing GHASH to depend solely on general
arithmetic and logical operations [3]. This limitation significantly increases the
overhead of GHASH computations.

In this study, we propose techniques to optimize AES-GCM’s two core com-
ponents. Specifically, AES-CTR and GHASH are the targets, and we aim to
make them both more secure and faster on embedded devices. For AES-CTR,
we apply Fixslicing AES [2] to eliminate Table-based operations and integrate
it with the FACE (Fast AES-CTR Encryption) technique [18] to minimize re-
dundant computations. Fixslicing replaces AES S-box operations with bit-wise
logical functions, thereby mitigating cache-based timing attacks [1] while achiev-
ing high efficiency. Consequently, AES-128 can operate at roughly 80 cycles/byte
on an ARM Cortex-M4 [24]. Building on this, we incorporate the FACE idea of
“reusing fixed segments of the CTR counter” to further reduce unnecessary op-
erations for large-message processing [18].

For GHASH, various methods have been proposed to accelerate GF(2128)
multiplication on resource-limited MCUs, such as 4/8/16-bit Table-based al-
gorithms [16] and Karatsuba multiplication [8]. Although using 8-bit or 16-bit
tables can theoretically cut down the number of multiplication operations, it
requires a large amount of Flash/ROM, which is problematic in real-world em-
bedded settings. Therefore, in this work, we focus on two methods that balance
memory footprint and security. Specifically, we consider a 4-bit Table-based ap-
proach and a Karatsuba-based constant-time approach, and compare them in
terms of performance, memory usage, and security. To address these challenges,
we adopt a 4-bit (nibble) Table-based method that reduces the multiplication
process to 32 iterations, and compare it against a Karatsuba-based constant-time
implementation. The 4-bit table method can achieve a significant speed advan-
tage on the Cortex-M4, which has minimal cache, but does not strictly achieve
constant time. As a result, depending on security requirements (e.g., cache avail-
ability, memory constraints, and authentication speed), either method can be
chosen. The main contributions of this paper are as follows:

1. CTR Mode Optimization: By combining Fixslicing AES with the FACE
technique, we reduce the cycle count for AES-128 GCTR on ARM Cortex-M4
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by up to 19.41% and for AES-256 GCTR by up to 14.63% when processing
large messages (e.g., 40,KB).

2. GHASH Acceleration: We present a 4-bit Table-based GF(2128) multi-
plication method and experimentally demonstrate that it can be up to twice
as fast as a Karatsuba-based constant-time implementation.

3. Comprehensive Embedded Evaluation: We analyze the trade-offs in
memory usage, performance, and security for various AES-CTR and GHASH
configurations, providing AES-GCM solutions optimized for different embed-
ded scenarios (e.g., cache architecture, memory constraints, and authentica-
tion requirements).

4. We open-source our code to encourage reproducibility and future develop-
ment at [upon the completion of the review process].

The remainder of this paper is organized as follows. Section 2 introduces
background concepts and related work on Fixslicing AES, FACE, and GF(2128)
multiplication. In Section 3, we describe how to integrate Fixslicing AES with
the FACE technique, along with key implementation considerations. Section 4
compares the pros and cons of the 4-bit Table-based GHASH approach and
the Karatsuba-based approach. Section 5 presents performance results for AES-
GCM on a Cortex-M4 across different message lengths. Finally, Section 6 con-
cludes the paper and suggests avenues for future research.

2 Background

2.1 AES and GCM

AES (Advanced Encryption Standard). AES is a symmetric-key block cipher
standardized by the U.S. National Institute of Standards and Technology (NIST) [25].
It encrypts 128-bit blocks using 128-, 192-, or 256-bit keys, performing 10, 12,
or 14 rounds, respectively. Each round applies four transformations:

– SubBytes: Non-linear byte substitution using a fixed S-box.
– ShiftRows: Cyclic row shifting in a 4×4 byte matrix.
– MixColumns: Polynomial-based mixing over GF(28) (omitted in the final

round).
– AddRoundKey: XOR with the round key, derived from the main key.

CTR (Counter) Mode. CTR mode transforms a block cipher into a stream cipher
by encrypting a counter combined with an a unique initialization vector (IV).
For each block, an incremented counter is encrypted, and the result is XORed
with the plaintext to produce the ciphertext:

Ci = Pi ⊕ EK(Ji).

Because the counter changes for each block and the IV is never reused, CTR
provides confidentiality but requires an additional mechanism for integrity.



4 H. Kim and H. Seo

AES-GCM AES-GCM combines AES-CTR with the GHASH authentication
function over GF(2128) [16], as shown in Figure 1. A hash subkey H is derived by
encrypting an all-zero block with AES. The additional data (AD) and ciphertext
blocks are then processed by GHASH:

Xi ← (Xi−1 ⊕Bi)×H,

after which a final length block is appended before XORing the GHASH output
with an AES encryption to form the authentication tag T . Typically, a 96-bit
IV is recommended for GCM, and its parallel-friendly structure makes it well
suited for high-speed protocols such as TLS.

Counter 0

EKK

incr Counter 0

EK

Plaintext 1

Ciphertext 1 

GF128 Mult(H)GF128 Mult(H)

Auth Data

K

incr Counter i

EK

Plaintext i

Ciphertext i

GF128 Mult(H)

K

GF128 Mult(H)

Len(A) || Len(C)

Auth Tag

IV

Fig. 1: Overview of AES-GCM encryption. The GHASH function processes the
AD and ciphertext while AES-CTR provides confidentiality. The final authenti-
cation tag T is derived from the GHASH output and an AES-encrypted value.

2.2 Bitslicing Implementation

Bitslicing was originally introduced by Biham [5] to implement DES more ef-
ficiently. Rather than relying on S-box table lookups, it uses parallel, bitwise
logical operations, thereby eliminating data-dependent memory accesses and re-
ducing cache-based side-channel vulnerabilities. Instead of storing 8-bit values
in a table, bitslicing distributes each bit across multiple registers so that a single
logic instruction can process many blocks in parallel. Modern processors handle
bitwise operations very efficiently [11, 17, 9], making bitslicing particularly ad-
vantageous for large data sets. Although this technique requires an initial bit
interleaving step and may increase code size, it has been shown to be highly
effective for AES and other ciphers on a wide range of platforms [23, 13, 12].

2.3 ARM Cortex-M4 Processor

The ARM Cortex-M4 is a 32-bit RISC processor based on the ARMv7-M ar-
chitecture, widely used in low-power embedded systems such as IoT devices,
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sensor nodes, and real-time control applications. While the Cortex-M4 includes
digital signal processing (DSP) extensions—such as multiply-accumulate and
barrel-shift instructions—it does not provide dedicated AES or cryptographic
instructions [3]. Consequently, ciphers like AES and operations such as GHASH
must be implemented via general-purpose arithmetic and logical operations.

Despite lacking cryptographic instructions, the Cortex-M4 includes several
DSP-oriented features that can accelerate bitslicing cryptographic code. For ex-
ample, the single-cycle MUL instruction (for certain operand sizes) and multiply-
accumulate instructions can speed up polynomial multiplications in GHASH.
The barrel shifter allows arithmetic and logical shifts or rotations in a single cy-
cle with another operation, effectively combining two operations into one. These
features prove useful in bitslicing implementations, where rotations and bit ma-
nipulations are frequent.

With only 16 general-purpose 32-bit registers (several of which are reserved
for the program counter, stack pointer, and link register), the Cortex-M4 has
fewer general-purpose register than desktop-class CPUs. bitslicing implementa-
tions that process multiple blocks in parallel must therefore carefully manage reg-
ister usage, spilling values to the stack or memory. Even with these constraints,
hand-optimized bitslicing AES on the Cortex-M4 can reach impressive speeds,
80 cycles/byte for AES-128 [2]. These results underscore that even resource-
constrained microcontrollers can exploit bitslicing’s parallelism, provided the
code is carefully tuned to the pipeline, memory layout, and register limits of the
ARMv7-M architecture.

2.4 Notation

Throughout this paper, we consistently use the notation presented in Table 1.
We denote the i-th byte of the AES state as S[i]. Because AES operates on
16-byte blocks, S[0] corresponds to the most significant byte (MSB), and S[15]
corresponds to the least significant byte (LSB). To clarify the handling of mul-
tiple data blocks, we write Si[j] for the j-th byte of the i-th block. Additionally,
Xi[j] represents the j-th column of the AES state (i.e., a round state) for the
i-th block. In a bitsliced implementation (e.g., Fixslicing), the AES state is
distributed across multiple 32-bit registers Ri. Within each 32-bit register Ri,
we refer to its i-th bit specifically as bi for fine-grained manipulation. Further-
more, we define four variants of the MixColumns transformation in Fixslicing
AES, denoted by MixColumns0 through MixColumns3. Lastly, Ark_Sub refers to
a combined routine of AddRoundKey and SubBytes.

2.5 Overview of Fixslicing AES

Fixslicing AES [2] is a specialized variant of bitslicing AES that aims to reduce
overhead on 32-bit embedded processors by keeping each bit fixed in a register
throughout the entire encryption process. Unlike conventional bitslicing, which
frequently rearranges bits (particularly for ShiftRows), Fixslicing uses a sin-
gle consistent representation across all rounds. This strategy significantly cuts
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Table 1: Notation
Notation Description
S[i] i-th byte of the AES state (i ∈ {0, . . . , 15})
Si[j] j-th byte (j ∈ {0, . . . , 15}) of the i-th block’s AES state
Xi[j] j-th column (j ∈ {0, 1, 2, 3}) of the AES round state in the i-th block
Ri i-th 32-bit register in a bitsliced implementation (e.g., Fixslicing)
bi i-th bit of a 32-bit register R

MixColumns0 ∼ 3 Four variations of MixColumns in Fixslicing AES (one per round)
Ark_Sub Combined routine of AddRoundKey and SubBytes in Fixslicing AES

down on data shuffling, preserves constant-time execution, and can yield faster
performance on devices like the ARM Cortex-M4.

Eliminating Repeated Bit Shuffling. In standard bitslicing AES, each round may
involve explicit row shifts or additional permutations to handle ShiftRows. By
contrast, Fixslicing encodes the state so that ShiftRows is implicitly “merged”
into a sequence of round-dependent MixColumns variants. After carefully choos-
ing how bits map to registers, the code no longer requires rearranging the inter-
nal state to implement row shifting. This “fixes” each bit in place for all rounds,
removing a major source of overhead in classical bitslicing AES (see Figure 2).

(a) Classical

(b) Fully-fixed

Fig. 2: Overview of the AES internal state over 4 rounds under different repre-
sentations [2].

Merging SubBytes and AddRoundKey. Because Fixslicing distributes each byte’s
bits across multiple 32-bit registers, traditional byte-oriented S-box lookups are
replaced by Boolean circuits or short bit-wise logic sequences. Furthermore,
Fixslicing often merges AddRoundKey into SubBytes (sometimes referred to as
Ark_Sub), since XOR operations can be absorbed into the bit-wise S-box at
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negligible extra cost. This merging shortens the overall round sequence, thereby
reducing instruction counts and memory references.

Modified MixColumns Variants. In standard AES, each round uses the same
MixColumns polynomial on four columns, with ShiftRows providing the byte
rotations. In Fixslicing, ShiftRows is omitted entirely, so each round applies
a slightly different version of MixColumns—often referred to as MixColumns0,
MixColumns1, MixColumns2, and MixColumns3. Over four rounds, these variants
collectively achieve the same row-shifting effect without the runtime cost of
additional shuffling. Although this approach expands the code base, it avoids
the overhead of dynamic data rearrangement. After the final round, a small
adjustment step realigns the output into the standard AES format.

Packing and Unpacking in Fixslicing. As with general bitslicing, Fixslicing re-
quires an initial packing step in which plaintext bytes (and later, round keys)
are loaded into registers in a bitsliced form. In many Cortex-M4 implementa-
tions, two 128-bit plaintext blocks (256 bits total) are distributed across eight
32-bit registers. This layout allows core bit-wise operations (AND, OR, EOR, etc.)
to process multiple blocks in parallel. Figure 3 illustrates how the bits of two
blocks can be “sliced” and placed into eight registers on a Cortex-M4.
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R0 b024 b124 b056 b156 b088 b188 b0120 b1120 · · · b00 b10 b032 b132 b064 b164 b096 b196
...
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R7 b031 b131 b063 b163 b095 b195 b0127 b1127 · · · b07 b17 b039 b139 b071 b171 b0103 b1103

Fig. 3: bitslicing representation from [24] using 8 32-bit registers R0, . . . , R7 to
process two blocks b0, b1 in parallel. Here bij denotes the j-th bit of the i-th
block, illustrating how Fixslicing distributes bits across registers after the pack-
ing step [2].

After encryption, an unpacking step reassembles the bitsliced ciphertext back
into the standard byte-oriented format. While these packing and unpacking rou-
tines add a fixed overhead, the cost is significantly amortized when encrypting
large messages (e.g., in CTR or GCM mode).

Fixslicing aligns well with the ARM Cortex-M4 instruction set. Logical op-
erations (e.g., AND, EOR) and barrel shifts are highly efficient, and avoiding large
S-box lookups eliminates potential timing channels or cache misses. Benchmarks
show that Fixslicing AES-128 on a Cortex-M4 can run at 80 cycles/byte, roughly
20% faster than older constant-time bitslice approaches.
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Fig. 4: Diffusion of the state difference between the first and second blocks in
Rounds1 and Rounds2 of AES-CTR.

2.6 Overview of FACE

FACE (Fast AES-CTR Encryption) [18] is a set of techniques designed to reduce
redundant computations when encrypting multiple blocks in CTR mode. In CTR
mode, each block is formed by combining a nonce (IV) with an incrementing
counter, which is then encrypted with AES. Typically, only a small portion of
the counter bytes change from one block to the next, while the rest of the block
input remains the same.

As shown in Figure 4, FACE exploits this property by caching partial AES
round outputs—focusing on portions unaffected by the counter increment—so
that large parts of the encryption process need not be recomputed for each
subsequent block.

FACE provides five caching variants, each progressively capturing more partial-
round data and thus offering different trade-offs between memory usage and
performance. Table 2 summarizes these key variants.

FACErd0 (Round-0 caching) FACErd0 caches the result of the initial AddRoundKey
(the “whitening” step) for all but the single counter byte that changes across
blocks. This approach precomputes 12 of the 16 state bytes, using 12 bytes of
extra memory. By avoiding about 75% of Round 0’s repeated operations, it offers
a modest speedup.

FACErd1 (Round-1 caching) FACErd1 extends caching into the first AES round,
storing the three unchanged state columns after Round 1. This requires only 12
bytes of additional memory and yields a greater speedup than FACErd0, as three-
quarters of the Round 1 operations are skipped for each new block.
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FACErd1+ (Round-1 plus caching) FACErd1+ builds on FACErd1 by also caching
the variable part of Round 1 through a precomputed lookup table (256 entries)
for the first column. This table demands 1 KB of memory and significantly boosts
performance, replacing the remaining Round 1 computations with simple table
lookups and XOR merges.

FACErd2 (Round-2 caching) FACErd2 further extends caching into the second
AES round by reusing previously cached intermediate values and storing par-
tial Round 2 results. Thus, only the newly affected bytes must be processed in
Round 2, incurring minimal extra memory while delivering a substantial per-
formance gain. As shown below, the operational part of the unchanged state
bytes in each column is cached. After ShiftRows, the 4-byte result of Mix-
Columns+AddRoundKey for the column into which S[5], S[10], S[15] of the first
column are placed is cached.

3 · S[5] ⊕ 1 · S[10] ⊕ 1 · S[15] ⊕ roundkey2,0,

2 · S[5] ⊕ 3 · S[10] ⊕ 1 · S[15] ⊕ roundkey2,1,

1 · S[5] ⊕ 2 · S[10] ⊕ 3 · S[15] ⊕ roundkey2,2,

1 · S[5] ⊕ 1 · S[10] ⊕ 2 · S[15] ⊕ roundkey2,3.

FACErd2+ (Round-2 plus caching) FACErd2+ builds on FACErd2, precomputing
Round 2 outcomes for the changing byte using a 256-entry table that requires
4 KB of memory. With this table, the first two rounds can be performed via
lookups and XOR operations alone, yielding the highest speedup among the
FACE variants.

These caching strategies exploit the fact that consecutive CTR blocks differ
only in a few bits of the incremented counter, leaving most of the round com-
putations invariant. Consequently, any large segment of round operations that
remains unchanged can be reused, accelerating the encryption of subsequent
blocks.

Variant Caching Idea Memory Overhead Reset Interval
(Blocks)

FACErd0 Cache AddRoundKey for static bytes 12 bytes 28

FACErd1 Extend caching into Round 1 12 bytes 28

FACErd1+ 256-entry lookup for Round 1 1 KB 240

FACErd2 Cache Round 2 intermediates 16 bytes 28

FACErd2+ Precompute Round 2 via table 4 KB 240

Table 2: Key characteristics of each FACE variant.



10 H. Kim and H. Seo

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[1]

S[6]

S[11]

S[0]

S[5]

S[10]

S[15]

S[4]

S[9]

S[14]

S[3]

S[8]

S[13]

S[2]

S[7]

Round 0 Round 1

Subbyte SiftRows

S[12]

S[13]

S[14]

S[15]

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

: Different Part

: Byte that 
using as index

: Same Part

(a) Standard AES
LSB

𝑅!"#

(b) Fixslicing AES
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3 Integrating Fixslicing AES with FACE

By applying the FACE method to reuse any unchanged parts of the state, we
can reduce redundant operations. At the same time, we preserve both constant-
time behavior and the high efficiency of Fixslicing, ultimately boosting overall
throughput. Indeed, Park et al. [18] have shown that FACE can be applied
efficiently to various AES implementation strategies—such as Table-based, bit-
slicing, or AES-NI—without depending on a specific implementation style.

However, detailed explanations of FACE are primarily focused on conven-
tional (Table-based) AES, with only brief performance comparisons given for
bitslicing and AES-NI implementations. In other words, there is a lack of concrete
examples demonstrating how to incorporate the five FACE caching methods into
a bitslicing context. Furthermore, Fixslicing differs internally from standard bit-
slicing, requiring additional care in directly applying the five FACE caching
methods. This section therefore proposes a concrete approach for integrating
FACE into a Fixslice AES-based implementation.

3.1 Adapted FACErd0

FACErd0 caches the state immediately after the initial AddRoundKey in AES,
thereby reducing redundant operations (e.g., the XOR involved in AddRoundKey)
for subsequent blocks. Typically, a Fixslicing AES implementation follows the
sequence:

Packing → AddRoundKey → SubBytes

Because AddRoundKey occurs after the bitslicing state has been packed, the main
challenge in applying FACErd0 lies in deciding which state (i.e., after which
transformation) to cache.
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Columns. Fixslicing AES does not change the position of the Different Part.

One naive approach would be to unpack the bitslicing state back into a
conventional AES-like format, apply caching, then re-pack. However, packing and
unpacking can introduce a nontrivial cycle overhead, which may be significant
compared to the rest of the encryption process. Hence, a strategy that applies
FACE while preserving the bitslicing state is essential.

Depending on the implementation approach, there are two main methods:
(i) maintaining the Fixslicing sequence by performing Packing, XOR with the
packed round key, and then caching the resulting state, or (ii) performing XOR
with an unpacked round key and then caching.

In the first method, the changing bytes are first Packed, then XORed with
the packed round key, after which they are XORed with the cached value; finally,
SubBytes is performed. In the second method, the changing bytes are XORed
with the unpacked round key, followed by XOR with the cached value, and then
Packing and SubBytes are performed.

In both methods, only the 32 bits that change due to the counter are XORed
for the initial AddRoundKey, thereby omitting three load instructions and three
XOR instructions. However, there is little practical difference between the two
methods, and since the second method is effectively the same as the original
approach, no separate performance evaluation was conducted.
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3.2 Adapted FACErd1

In CTR mode, when the counter increases by 1, the state change that starts as a
single byte eventually spreads to an entire column after the Round-1 MixColumns
step (see Figure 5a. Hence, FACErd1 is designed to isolate only the portion Xi[0]
that changes after Round 1 while caching the unchanged portions X0[1], X0[2],
X0[3] thereby reducing redundant operations.

In a typical byte-oriented (Table-based) AES implementation, MixColumns
processes each column independently, making it simple to handle a specific col-
umn by itself. However, in a Bitslicing or Fixslicing implementation, the state is
rearranged at the bit level, such that the bits belonging to one column can be
scattered across multiple registers.

Because MixColumns of Fixslicing performs the same matrix multiplication
on all columns simultaneously, extracting only a single column for separate pro-
cessing offers no tangible benefit. Moreover, to isolate just that column, one
would have to undo parts of the already-performed bit transpose and then re-
assemble those bits, which increases the overall complexity without providing a
meaningful performance gain.

Therefore, by performing a parallel operation using the MixColumns0 step
from Fixslicing AES, we apply a mask to the bitslicingd result so that only the
relevant bits remain.

Additionally, as shown in Figure 6b, the byte affected by the counter does
not undergo any additional position transformations until before MixColumns in
Round 2. Thus, caching the state up to the Round-2 Ark_Sub step allows for a
high degree of reuse and improved efficiency.

Below is the detailed FACErd1 process.

in = {S0[0], S0[1], . . . , S0[15], S1[0], S1[1], . . . , S1[15]}
packing−−−−−→

Ark_Sub
−−−−−−→ MixColumns0−−−−−−−−−→

Ark_Sub
−−−−−−→ ∧0xFCF3CF3F−−−−−−−−−−→

FACErd1 = {b0, b1, b2, b3, b4, b5, 0, 0, b8, b9, b10, b11, 0, 0, b14, b15,
b16, b17, 0, 0, b20, b21, b22, b23, 0, 0, b26, b27, b28, b29, b30, b31}

After completing the round-2 Ark_Sub step, we apply an AND operation with
mask value Ri ∧ 0xFCF3CF3F to the bitslicingd state across all registers, thus
caching the bit positions corresponding to two blocks. In a typical byte-oriented
implementation, storing the columns (X0[1], X0[2], X0[3]) for a single block re-
quire 12 bytes of memory.

However, Fixslicing AES stores the columns (X0[1], X0[2], X0[3]) for two
blocks in a bitslicing manner, consuming 64 bytes of storage.

3.3 Adapted FACErd1+

FACErd1+ precomputes (and stores in a lookup table) the varying portion Xi[0]
that emerges after Round 1. In alignment with FACErd1, it can be configured to
handle only Xi[0], Xi+1[0] separately. Below is the detailed process.
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in = {Si[0], Si[1], . . . , Si[15], Si+1[0], Si+1[1], . . . , Si+1[15]}
packing−−−−−→

Ark_Sub
−−−−−−→ MixColumns0−−−−−−−−−→

Ark_Sub
−−−−−−→ ∧0x030c30c0−−−−−−−−→

FACErd1+ = {0, 0, 0, 0, 0, 0, b6, b7, 0, 0, 0, 0, b12, b13, 0, 0,
0, 0, b18, b19, 0, 0, 0, 0, b24, b25, 0, 0, 0, 0, 0, 0}

By combining the cached FACErd1 values with the counter, we can call
the FACErd1+ table and XOR them, effectively processing through Round 2
SubBytes. This method, however, requires storing a 4,096-byte table—four times
larger than the 1,024 bytes needed in previous FACErd1+.

Parallel-Processing Method In the single-processing method, the operation Ri ∧
0x030c30c0 sets 24 bytes, meaning some input bytes (S0[0], S0[5], S0[10], etc.)
do not contribute to the result.

The FACErd1+ parallel processing method is optimized by filling the ’empty’
spaces to process eight columns at once, as shown in 7. Because it processes
four times more columns in parallel, the overall operation count and memory
usage can be significantly reduced.
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S[10]

S[15]

S[0]

S[5]

S[10]

S[15]
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S[15]
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S[15]
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S[15]
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S[15]

Packing Ark_Sub MixColumns0 Ark_Sub

LSB

𝑅!"#

Fig. 7: Parallel processing method of FACErd1+. Shows that 8 columns are pro-
cessed at once.

The first and second block columns remain in their original positions, and
from the third block onward, each column is shifted one position to the right
when stored. Since S0,0, S0,5, and S0,10 are effectively identical in each column,
only the position of Si,15 needs to be considered.

In practice, assuming a little-endian environment, we sequentially store 32
bits in memory in the order of S0[15], S0[10], S0[5], S0[0] (eight bits each). Then,
we increment the value by 1 using the ADD instruction. To align the position of
Si,15, we stores the increased values in order, as shown below.
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S0[0], S0[5], S0[10], Si[15] : R3 S0[0], S0[5], S0[10], Si+1[15] : R7

S0[0], S0[5], S0[10], Si+2[15] : R2 S0[0], S0[5], S0[10], Si+3[15] : R6

S0[0], S0[5], S0[10], Si+4[15] : R1 S0[0], S0[5], S0[10], Si+5[15] : R5

S0[0], S0[5], S0[10], Si+6[15] : R0 S0[0], S0[5], S0[10], Si+7[15] : R4

Finally, the REV instruction reverses the byte order of each register. Af-
ter that, we perform operations up through the second round’s Ark_Sub while
preserving the bitslicingd state and storing the result.

With this approach, a total of 32 bytes (eight columns × 4 bytes) is used,
and because 256 blocks are stored, the lookup table requires 1 KB of space.

After loading the first column (e.g., R4) from memory, each subsequent col-
umn is placed by incrementing the counter (via ADD instruction). As shown
in Figure 7, we then apply

packing → Ark_Sub → MixColumns0 → Ark_Sub,

When subsequent round operations proceed, the eight block columns stored
in memory must be rearranged into the correct positions to combine with FACErd1.
Because Fixslicing AES does not rearrange bits and maintains a consistent rep-
resentation across all rounds, these positions correspond to the same S0, S5,
S10, and S15 as the original input. The process of rearranging to maintain the
Fixslice structure is shown in Fig 8. We apply masking and rotation operations
to eight registers according to each block. Blocks 1 and 2 can directly extract
bits using only the 0x030C30C0 mask, but Blocks 3 and 4, 5 and 6, and 7 and 8
partially use rotation and masking to move bits into the correct positions.

1 if (block < 2) // block 1,2
2 {out = x & 0x030C30C0 ;}
3 else if (block < 4) // block 3,4
4 {out = (ROR32(x, 2) & 0x030C3000) ^ ROR32(x & 3, 26); }
5 else if (block < 6) // block 5,6
6 {out = (ROR32(x, 4) & 0x030C0000) ^ (ROR32(x, 28) & 0

x000030C0);}
7 else if (block < 8) // block 7,8
8 {t = ROR32(x, 30); out = (t & 0x000C30C0) ^ ROR32(t & 3,

8);}

Fig. 8: C code for rearranging the FACErd1+ columns of each block, where
ROR32 denotes a 32-bit right-rotation operation.

Round key modification In the FACErd1+ parallel-processing method, the Fixslice
round key must be adjusted to align with the input layout. This adjustment is
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done only once before encryption begins. Figure 9 shows the detailed procedure.
From the packed round keys of Rounds 1 and 2, we extract the round key
bits corresponding to S0,0, S0,5, S0,10, and S0,15, and then copy them to the
matching positions.

1 for(int idx = 0; idx < 16; idx ++){
2 temp = (original_rk[idx] & 0x030c30c0);
3 rk[idx] ^= temp;
4 rk[idx] ^= ((temp & 0x3000000) << 6) |(( temp & 0xC30C0)

>> 2);
5 rk[idx] ^= ((temp & 0x3000000) << 4) | ((temp & 0xC0000)

<< 4)
6 | ((temp & 0x3000) >> 4) | ((temp & 0xC0) >>

4);
7 rk[idx] ^= ((temp & 0x3000000) << 2) | ((temp & 0xC0000)

<< 2)
8 | ((temp & 0x3000) << 2) | ((temp & 0xC0) >>

6);
9 }

Fig. 9: C code for round key modification

Table-Free Approach (FACErd1) We also introduce a variant of FACErd1+ that
omits building any precomputation table. We also introduce a variant of FACErd1+
that omits building any precomputation table. In this scheme, we apply the
parallel-processing version of FACErd1+ “on the fly,” processing eight blocks in
parallel, and then combine it with FACErd1 to handle computations up through
the second round’s Ark_Sub. As a result, by using only the FACErd1 cache without
relying on FACErd1+, we avoid the cost and complexity of a large LUT.

3.4 Adapted FACErd2

As shown in Figure 6a, only S[0], S[1], S[2], S[3] change before Round 2 Mix-
Columns, while all bytes are affected later. Recognizing that the bytes outside
S[0], S[1], S[2], S[3] remain constant, one can cache the intermediate results.

However, as with Round 1, splitting MixColumns column-by-column to handle
only S[0], S[1], S[2], S[3] is not well suited to Fixslicing. Consequently, we retain
the standard Round 2 MixColumns step and then store the bitslicing state by
masking only the changing bytes.

In a conventional FACErd2 procedure, caches data up to the Round 2 Add-
RoundKey step. To accommodate the Ark_Sub structure in Fixslicing, however,
we opt to store the state immediately after MixColumns1.
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Fig. 10: Schematic of FACErd2 and FACErd2+on Fixslicing AES.

3.5 Adapted FACErd2+

FACErd2+ extends FACErd2 by further precomputing the remaining intermedi-
ate values not covered in FACErd2. The approach parallels that in Section 3.4
FACErd2:

1. After MixColumns1, store the internal state in bitslicing form.
2. Mask (zero) bits outside of (S[0], S[1], S[2], S[3]).

Since this is essentially the same procedure as FACErd1+, one can implement
it by feeding the FACErd1+ single-processing (or parallel-processing) output into
this step. Hence, as depicted in Figure 10, the final operation simply XORs the
cached FACErd2 value with the FACErd2+ data to complete Round 2 (including
MixColumns).

4 GF(2128) Multiplication in GHASH

AES-GCM uses the GHASH function to authenticate 128-bit blocks by per-
forming polynomial multiplication in GF(2128). On x86 platforms, specialized
instructions such as PCLMULQDQ allow fast carry-less multiplications. However,
the ARM Cortex-M4 lacks such instructions, forcing GF(2128) multiplication to
rely on general-purpose arithmetic and logical operations. Our primary design
goal is to directly compare a faster, small table-based GHASH implementation
against a table-free, constant-time Karatsuba approach. Although both methods
are well-known in the literature, we have integrated and evaluated them within
the same AES-GCM framework on the ARM Cortex-M4. Below, we highlight
the key details of each implementation.

4.1 Naive bit-wise Multiplication

The most straightforward method is to iterate over each bit of a 128-bit operand.
To compute X ×H, for every set bit in X, we XOR the appropriately shifted H
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into an accumulator. The procedure repeats for 128 iterations, as illustrated in
the pseudo-code below:

Z = 0
for i in range(128):

if ((X >> i) & 1) == 1:
Z = Z ^ (H << i)

# Modular reduction (if overflow occurs)
Z = reduce(Z)

return Z

While simple to implement and virtually memory-free, this naive approach
is computationally expensive. It involves 128 iterations, each with at least one
shift and one conditional branch, creating a performance bottleneck on resource-
constrained platforms.

4.2 4-Bit Table-Based Multiplication

An alternative method for performing GF(2) multiplication efficiently on resource-
constrained devices is the 4-bit Table-based approach. This method utilizes pre-
computed values to accelerate carry-less multiplication by decomposing operands
into 4-bit segments, significantly reducing the number of required arithmetic op-
erations compared to direct bit-wise computation.

Precomputed Lookup Table The core idea behind this approach is to store the
precomputed results of multiplying a fixed operand by all possible 4-bit values
(0 through 15). Given an operand H, a table T is created such that:

T [i] = H × i, ∀i ∈ {0, 1, 2, . . . , 15}

where × represents carry-less multiplication in GF(2). Since each operand is
decomposed into 4-bit chunks, the full multiplication can be reconstructed by
summing (via XOR) appropriately shifted table entries.

Efficient Computation To multiply a 128-bit operand X with H, X is split into
32 nibbles of 4 bits each: X = (x31, x30, . . . , x0). The result is then computed as:

Z =

31⊕
i=0

T [xi]≪ (4× i).

This approach substantially reduces the number of shift and XOR operations
compared to bit-wise polynomial multiplication. Additionally, since all table
lookups are independent, this method can be parallelized efficiently on archi-
tectures that support SIMD or word-wise operations.

Trade-offs and Performance Considerations While the 4-bit table method pro-
vides a significant speed improvement over direct bit-wise multiplication, it re-
quires 256 bytes of storage for the precomputed table. In most embedded environ-
ments, including Cortex-M4, this overhead is relatively small and manageable.
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4.3 GHASH Timing Attack Vulnerabilities

Because GHASH produces authentication tags, any timing variation dependent
on secret data (e.g., the hash key H) may be exploitable. Conditional branches
or table lookups that vary with the key can introduce observable timing patterns
(e.g., memory access delays, branch mispredictions).

Although many Cortex-M4 systems have limited or no cache, making clas-
sical L1/L2 cache attacks less plausible, subtle timing differences in branch
logic or flash-memory access may still be exploited. Consequently, libraries like
BearSSL [19] strive for constant-time or near-constant-time GHASH implemen-
tations by avoiding data-dependent branches or, at minimum, masking accesses
during table lookups.

4.4 Karatsuba-Based Multiplication

This method divides the 128-bit multiplication into several smaller multiplica-
tions and combines them through XOR. We adapted a constant-time implemen-
tation from BearSSL which avoids large lookup tables [20]. This process involves
two major steps: first, preparing a carry-less multiplication routine for 32-bit
integers, and second, using Karatsuba decomposition to handle the full 128-bit
product efficiently. Below, we briefly introduce the 32-bit Karatsuba approach
used by BearSSL and describe how it operates on the ARM Cortex-M4.

BearSSL adopts a 32-bit Karatsuba algorithm for GF(2128) multiplication
(GHASH), comprising two principal steps: (i) constructing a carry-less multipli-
cation routine for 32-bit integers, and (ii) applying Karatsuba decomposition
to achieve a full 128-bit product. The following discussion briefly introduces
BearSSL’s 32-bit Karatsuba approach and examines its operation on the ARM
Cortex-M4.

32-bit Carry-Less Multiplication
In BearSSL’s design, each 32-bit operand is subdivided so that ordinary integer
multiplications yield carries only into “gaps,” which are subsequently masked out
to produce a pure carry-less result in GF(2). Concretely, by leveraging masks
such as 0x11111111, 0x22222222, 0x44444444, and 0x88888888, the implemen-
tation isolates specific bit subsets, multiplies them separately as normal 32×32
integers, and merges the partial products through XOR. This procedure remains
constant time by following a fixed sequence of bit-wise and arithmetic operations,
avoiding any data-dependent branching.

Karatsuba for 128-Bit Operands
After establishing the 32-bit routine, BearSSL applies the Karatsuba algorithm
to handle GF(2128) multiplication. In particular, each 128-bit operand is divided
into two 64-bit segments, (Ahi∥Alo) and (Bhi∥Blo). The method computes three
partial products:

P = Ahi ⊗Bhi, Q = Alo ⊗Blo, R = (Ahi ⊕Alo)⊗ (Bhi ⊕Blo),
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and combines them as:

C = (P ≪ 128) ⊕ Q ⊕
(
(R⊕ P ⊕Q)≪ 64

)
.

Here, ⊗ denotes carry-less multiplication in GF(2), while ⊕ is XOR. Each 64-bit
multiplication (P , Q, and R) invokes the 32-bit routine multiple times, resulting
in nine calls rather than the sixteen a naive schoolbook approach would require,
thereby reducing the total count of partial multiplications.

On ARM Cortex-M4 and similar embedded architectures, the 4-bit table
technique is a practical middle ground of speed, memory (256 bytes), and mod-
erate design complexity. In scenarios with extreme memory constraints or height-
ened demand for timing-attack resistance, Karatsuba remains an appealing alter-
native—provided one can manage its more intricate implementation. We present
benchmark results for both GHASH options in combination with our Fixslicing
+ FACE AES-CTR in Section 5, demonstrating AES-GCM performance on the
ARM Cortex-M4 platform.

5 Evaluations

We conducted our experiments on an STM32F407G-DISC1 board featuring an
ARM Cortex-M4 core. The source code are available at: [upon the completion
of the review process]. For AES-128 and AES-256, we employed an optimized
Fixslicing AES assembly code from prior work, and to optimize CTR mode, we
implemented three FACE variants (i.e., FACErd1, FACErd1+, and FACErd2+)
in assembly. For the GHASH computation, we compared two implementations:
Karatsuba, which is a modified constant-time Karatsuba-based code derived
from BearSSL, and Table-based, which uses a 4-bit lookup table. We measured
cycle counts by sampling the Cortex-M4’s DWT (Data Watchpoint and Trace)
counter before and after each cryptographic routine, taking the average of 100
runs for messages of various sizes under the same key and nonce. These cycle
counts include both round key generation and the precomputation overhead
of FACE. We tested message sizes from 1KB to 40 KB to observe performance
trends. In all tables, ‘Basic’ refers to our Fixslicing AES implementation without
any of the FACE optimizations.

Below, we present a comprehensive analysis of how the chosen CTR-mode
optimizations (FACE) and GHASH implementations influence the overall speed
and resource usage of AES-GCM.

5.1 Analysis of GCTR Measurement Results

We evaluated the cycle counts for AES-128 and AES-256 GCTR (counter mode
encryption) on message sizes ranging from 1 KB to 40 KB, comparing our Basic
GCTR implementation to three FACE variants: FACErd1, FACErd1+, and FACErd2+.
The measurement results are summarized in Table 3. It is particularly notewor-
thy that small messages (1 KB) yield only limited benefits from FACE optimiza-
tions. For both AES-128 and AES-256, certain FACE variants even introduce
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slight overheads at 1 KB, largely due to the initial precomputation required for
partial round-key caching or lookup-table setup. These overheads are not fully
amortized when relatively few blocks are processed.

However, significant performance improvements emerge as soon as the mes-
sage size grows beyond 4 KB. In particular, FACErd2+ consistently delivers the
largest cycle reduction, achieving savings of up to 19.4% for AES-128 and 14.6%
for AES-256 at the 40 KB scale. Despite AES-256 having more rounds—and
hence a higher baseline cycle count—FACE-based caching also provides mean-
ingful relative gains for AES-256, reducing cycles by over 14% at 20 KB and
40 KB. From a practical standpoint, these results indicate that precomputation
and caching strategies are most beneficial when a single key and nonce are used
to encrypt many blocks.In strictly resource-constrained environments, FACErd1
may be appealing due to its smaller memory footprint, despite lower speedups
compared to FACErd2+. Meanwhile, devices with sufficient RAM/flash headroom
may prefer FACErd2+, which substantially reduces encryption latency at scale.
Although AES-256 inherently demands more cycles than AES-128, FACE opti-
mizations scale effectively to the extended round structure. Systems requiring
256-bit security can still gain considerable performance improvements—albeit at
slightly smaller percentage reductions.

Table 3: Cycle counts (and in parentheses: percentage improvement over Basic)
for AES-GCTR with various FACE variants (AES-128 and AES-256), from 1 KB
to 40 KB messages.

FACE Variant
1KB 4KB 20KB 40KB

128 256 128 256 128 256 128 256

Basic 117,456
(0%)

158,453
(0%)

469,488
(0%)

633,461
(0%)

2,345,712
(0%)

3,166,837
(0%)

4,691,312
(0%)

6,333,557
(0%)

FACErd1
118,666
(-1.03%)

164,420
(-3.77%)

431,971
(+8.00%)

599,738
(+5.32%)

2,102,571
(+10.36%)

2,920,616
(+7.78%)

4,190,821
(+10.67%)

5,821,796
(+8.08%)

FACErd1+
118,259
(-0.68%)

164,366
(-3.73%)

411,574
(+12.34%)

580,511
(+8.36%)

1,980,866
(+15.55%)

2,799,003
(+11.62%)

3,941,041
(+16.00%)

5,572,118
(+12.03%)

FACErd2+
119,107
(-1.41%)

164,763
(-3.98%)

400,915
(+14.60%)

568,391
(+10.28%)

1,903,287
(+18.87%)

2,718,579
(+14.15%)

3,781,252
(+19.41%)

5,406,764
(+14.63%)

5.2 Analysis of GHASH Measurement Results

We compared two GHASH implementations, based on Karatsuba and based
on tables, over message sizes ranging from 1 KB to 40KB, as summarized in
Table 4. Our measurements indicate that the Table-based approach consistently
runs at roughly twice the speed of the Karatsuba variant across all tested message
lengths. For instance, at 1KB, the Table-based method requires 79,402 cycles,
which is nearly half of Karatsuba’s 158,749 cycles, and this performance gap
remains similar at larger sizes (e.g., 2,978,281 vs. 6,041,821 cycles at 40 KB).
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Both implementations scale linearly with message size, reflecting the fixed-
block nature of GHASH. As a result, the absolute difference in cycle counts
grows in proportion to the input length—reaching nearly three million addi-
tional cycles for Karatsuba at 40KB. Although the Table-based variant offers
clear throughput advantages, it may also demand a larger memory footprint and
pose cache-based side-channel risks, especially if table lookups are not performed
in constant time. By contrast, the Karatsuba-based version relies on a divide-
and-conquer polynomial multiplication strategy that is inherently constant-time,
potentially making it better suited for highly constrained or security-critical en-
vironments, despite its higher overall cycle count.

Table 4: Cycle counts (with improvements over Karatsuba in parentheses) for
GHASH, tested on 1 KB to 40 KB messages.

GHASH 1KB 4 KB 20KB 40KB

Karatsuba 158,749
(0%)

611,293
(0%)

3,024,861
(0%)

6,041,821
(0%)

Table-based 79,402
(+50.0%)

302,390
(+50.5%)

1,491,670
(+50.7%)

2,978,281
(+50.7%)

5.3 Analysis of AES-GCM Mode Measurement Results

We next examined the performance of AES-GCM encryption by using each of
the four FACE variants with Table-based or Karatsuba GHASH. Table 5 summa-
rizes the cycle counts for AES-GCM in messages 1 /,KB, 4 /,KB, 20 /,KB and 40
/,KB under both AES-128 and AES-256. It is particularly noteworthy that, while
FACE primarily optimizes AES-CTR, its gains are partially offset once GHASH
computation is included. Because GHASH can occupy a substantial portion of
the total runtime, the net speedup from FACE over the Basic GCM typically
remains in the 5–10% range—less than the larger improvements observed in
GCTR alone. Nevertheless, Table-based GHASH (generally faster) underscores
the effect of FACE more clearly, offering cycle reductions of up to 12–13% for
AES-128 GCM at 40/,KB and around 10% for AES-256. By contrast, the rela-
tively slower Karatsuba GHASH diminishes the net impact of FACE, although
FACE-based implementations still provide measurable gains (e.g., 5–8%) when
the message size is sufficiently large. As with the GCTR measurements, mes-
sage size strongly influences the benefits of FACE. Larger messages (≥ 4/,KB)
amortize the precomputation and caching overheads more effectively, resulting in
higher net speedups. At 40/,KB, for instance, FACErd2+ can reduce cycle counts
by roughly 12% under Table-based GHASH for AES-128, and around 10% for
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AES-256. Conversely, 1/,KB inputs may yield less pronounced gains—or even
minor slowdowns—since initialization overhead can dominate at smaller scales.

Table 5: Cycle counts (with percentages relative to the Basic approach) for AES-
GCM (1KB to 40 KB) under different GHASH implementations and FACE vari-
ants, , from 1 KB to 40 KB messages.

GHASH
Technique

FACE
Variant

Input Size (bytes)

1 KB 4KB 20KB 40KB

128 256 128 256 128 256 128 256

Table-based

Basic 206,377
(0%)

250,657
(0%)

780,148
(0%)

946,962
(0%)

3,929,031
(0%)

4,659,716
(0%)

7,664,348
(0%)

9,301,295
(0%)

FACErd1
207,123
-0.36%

257,089
-2.57%

740,507
(+5.07%)

915,445
(+3.32%)

3,592,621
(+8.56%)

4,425,658
(+5.02%)

7,156,129
(+6.62%)

8,813,752
(+5.23%)

FACErd1+
206,894
-0.25%

256,506
-2.33%

721,076
(+7.56%)

893,638
(+5.63%)

3,470,230
(+11.69%)

4,291,684
(+7.88%)

6,904,704
(+9.90%)

8,539,152
(+8.20%)

FACErd2+
207,315
-0.45%

256,511
-2.33%

708,758
(+9.16%)

880,339
(+7.03%)

3,382,451
(+13.92%)

4,206,896
(+9.72%)

6,724,602
(+12.26%)

8,365,109
(+10.05%)

Karatsuba

Basic 286,425
(0%)

330,735
(0%)

1,091,001
(0%)

1,257,903
(0%)

5,381,427
(0%)

6,201,513
(0%)

10,744,627
(0%)

12,381,353
(0%)

FACErd1
287,956
-0.53%

337,339
-1.99%

1,054,620
(+3.33%)

1,226,429
(+2.50%)

5,143,006
(+4.42%)

5,967,503
(+3.77%)

10,253,496
(+4.57%)

11,893,853
(+3.94%)

FACErd1+
287,320
-0.31%

336,580
-1.76%

1,033,309
(+5.28%)

1,204,553
(+4.24%)

5,011,815
(+6.87%)

5,833,415
(+5.93%)

9,984,955
(+7.06%)

11,619,500
(+6.16%)

FACErd2+
288,077
-0.58%

337,182
-1.95%

1,022,429
(+6.28%)

1,193,035
(+5.16%)

4,938,363
(+8.24%)

5,756,741
(+7.16%)

9,833,288
(+8.49%)

11,461,381
(+7.45%)

6 Conclusion

In this paper, we proposed methods to optimize both the AES-CTR mode and
the GHASH phase in order to efficiently and securely implement AES-GCM
in an ARM Cortex-M4 environment. First, for the AES-CTR component, we
removed or replaced Table-based S-box lookups by employing Fixslicing AES,
and integrated the caching concept from the FACE (Fast AES-CTR Encryption)
scheme to minimize redundant operations when processing large messages. Ex-
periments on an ARM Cortex-M4 showed that our approach reduces the cycle
count by up to 19.41% for AES-128 GCTR and 14.63% for AES-256 GCTR,
offering a significant performance improvement over approaches that rely solely
on Fixslicing.

Meanwhile, for GHASH operations, we compared a 4-bit Table-based mul-
tiplication method with a Karatsuba-based constant-time approach. While the
4-bit Table-based method can be nearly twice as fast as Karatsuba, it cannot
guarantee fully constant-time execution due to its reliance on cache-based mem-
ory accesses. Hence, although the risk of cache-timing attacks may be lower in
MCU environments with limited or no caches, certain security requirements or
attack models might still favor table-free implementations like Karatsuba.
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Based on these findings, future work could explore applying the proposed
optimization techniques to a broader range of embedded processors and crypto-
graphic algorithms beyond the ARM Cortex-M4. For example, one could leverage
instructions from ARMv8-M or RISC-V, or extend these methods. Additionally,
side-channel countermeasures such as masking [21] could be integrated into our
design to further enhance security against power [22] or electromagnetic analy-
sis [15].
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