
VeriSSO: A Privacy-Preserving Legacy-Compatible
Single Sign-On Protocol Using Verifiable

Credentials
Ifteher Alom, Sudip Bhujel, Yang Xiao

University of Kentucky, Lexington, KY, USA
Email: {ifteheralom,sudipbhujel,xiaoy}@uky.edu

Abstract—Single Sign-On (SSO) is a popular authentication
mechanism enabling users to access multiple web services with
a single set of credentials. Despite its convenience, SSO faces
outstanding privacy challenges. The Identity Provider (IdP)
represents a single point of failure and can track users across
different Relying Parties (RPs). Multiple colluding RPs may
track users through common identity attributes. In response,
anonymous credential-based SSO solutions have emerged to offer
privacy-preserving authentication without revealing unnecessary
user information. However, these solutions face two key chal-
lenges: supporting RP authentication without compromising user
unlinkability and maintaining compatibility with the predomi-
nant Authorization Code Flow (ACF).

This paper introduces VeriSSO, a novel SSO protocol based on
verifiable credentials (VC) that supports RP authentication while
preserving privacy and avoiding single points of failure. VeriSSO
employs an independent authentication server committee to man-
age RP and user authentication, binding RP authentication with
credential-based anonymous user authentication. This approach
ensures user unlinkability while supporting RP authentication
and allows RPs to continue using their existing verification
routines with identity tokens as in the ACF workflow. VeriSSO’s
design also supports lawful de-anonymization, ensuring user
accountability for misbehavior during anonymity. Experimental
evaluations of VeriSSO demonstrate its efficiency and practicality,
with authentication processes completed within 100 milliseconds.

Index Terms—User Authentication, Privacy-Preserving SSO,
Verifiable Credentials, Anonymization, Decentralization.

I. Introduction

Single Sign-On (SSO) is a widely used authentication
method that allows users to access various web services with
a single set of login credentials instead of separate logins. In
a typical execution of SSO, a user attempts to log into the
service portal of a Relying Party (RP) by authenticating with
an Identity Provider (IdP) with whom the user has a preexisting
registration. Upon authenticating the user, the IdP generates an
identity token specifying certain user information (e.g., name,
email, age) required by the RP. The IdP signs the identity
token with its private key attesting to the user’s identity to
the RP. Currently, OpenID Connect (OIDC) [1] is the most
commonly used SSO standard. OIDC is based on the popular
authorization protocol OAuth 2.0 [2].

Despite SSO’s convenience and wide adoption by web ap-
plications, it faces increasing privacy and security challenges.
First, an IdP’s central role poses a significant privacy risk to

users. In OIDC’s specification, the user has to inform its IdP
about which RP will be accessed, enabling the IdP to track
the user’s accesses to different RPs. By analyzing the nature
of each RP website, a curious IdP can infer private information
of the user, leading to privacy loss [3]. Second, SSO users also
face privacy threats from curious and colluding RPs [4], [5].
The identity tokens generated by an IdP for an individual user
often contain common user identifiers, such as email, zip code,
and name, enabling a group of RPs to perform linkage attacks
to track and profile a user’s behavior [6], [7]. Last but not least,
the IdP also represents a single point of failure, since it is solely
responsible for managing and verifying user login credentials.
The IdP must always be online to authenticate users and issue
identity tokens; any IdP service downtime would hinder its
users from timely access to RP services [8], [9].

Recently, anonymous credential (AC) has emerged as a
promising solution for enabling robust privacy-preserving SSO
[10]–[13], particularly for addressing the linkability and single-
point failure challenges. AC is a type of attribute-based cre-
dential that enables a user to prove certain identity attributes
to a verifier without revealing unnecessary information. It has
been studied extensively in the past [14]–[17] with emerging
applications in privacy-preserving user/device authentication
and identity management [18]. When AC is applied to SSO,
a user typically obtains a digital credential Cred containing
a list of identity attributes along with a signature from the
IdP. During a login session with an RP, the user generates a
modified version (called a “presentation”) of Cred which se-
lectively discloses Cred’s attributes as required by the RP; no
unnecessary user information is disclosed. Crucially, the pre-
sentation contains a zero-knowledge proof (ZKP) that attests
to the authenticity and integrity of the disclosed attributes (as
inherited from a valid credential) while revealing no linkage to
the original credential Cred or other presentations of the same
credential. The presentation can be independently verified by
the RP, fulfilling user authentication without involving the IdP.
This rules out the IdP for a single point of failure or user
tracking.

While AC-based solutions offer appealing privacy benefits,
they face outstanding challenges with respect to the support of
essential SSO security functions and deployment efficiency.

Challenge-1: RP authentication vs. unlinkability. Exist-
ing AC-based SSO schemes lack support for RP authenti-

cation, which is nonetheless important for protecting users
from illegal content and phishing scams by unauthorized RPs.
In OIDC’s specification [1], RP authentication is mandatory
in the Authorization Code Flow (ACF), where the RP must
authenticate to the IdP before proceeding to receive the autho-
rization token and eventually the identity token. In particular,
RP authentication requires a user to report the target RP to
the IdP who keeps the list of all approved RPs. For AC-
based SSO solutions, this would reintroduce the risk of user
linkage since the verifier could trivially track the user’s access
requests to different RPs, forfeiting the unlinkability property
once achieved through anonymous authentication. For this
reason, existing AC-based SSO schemes [10], [11], [13] are
only designed to support the Implicit Flow (IF) which does
not require RP authentication nor any interaction between
the RP and the IdP.1 A practical solution should support RP
authentication without creating new risks of user linkage.

Challenge-2: Efficiency and backward compatibility. AC-
based SSO schemes commonly require the RP to undertake
user authentication that typically involves verifying the zero-
knowledge proof in a credential presentation. The verification
workload is nontrivial compared to the existing practice in
OIDC where the RP only needs to verify the public key
signature in an identity token. This not only leads to perfor-
mance bottlenecks when the RP has to handle millions of user
requests in a short time frame but also, to some extent, defeats
the purpose of single sign-on since each AC-based user-RP in-
teraction constitutes a standalone authentication process [19].
To preserve an RP’s operational efficiency, the new solution
should not significantly increase an RP’s verification workload.
RPs should be able to continue using their legacy verification
routines (i.e., verifying signatures in identity tokens) in the
incumbent ACF workflow.

Recent privacy-preserving SSO proposals positioned as
OIDC extensions have partially addressed the above chal-
lenges. AIF [12] extends the Implicit Flow with AC-based
RP authentication so that the IdP does not know which exact
RP is accessed by the user. This approach, however, requires
RPs to get involved in AC management and presentation that
brings non-trivial overhead. MISO [19] leverages a trusted
execution environment (TEE) to establish a trusted identity
mixing service to perform RP authentication for privacy-
sensitive users. It nonetheless requires full trust in the TEE
hardware for the mixing service, which may pose a new risk
of single-point failure.

We introduce VeriSSO, a new AC-based privacy-preserving
SSO protocol that supports RP authentication and is fully
compatible with the incumbent OIDC’s ACF workflow. For
a consistent narrative, we adopt the World Wide Web Consor-
tium’s (W3C) Verifiable Credential (VC) terminology [20] to
describe AC functionalities. In the registration phase, each user
receives from its IdP a VC containing a list of attributes. In the
authentication phase, the VC can be used to compute verifiable

1Implicit Flow was deprecated by OIDC due to the lack of RP authentication
among other security risks, making ACF the predominant flow.

presentations (VPs) that selectively disclose the user’s at-
tributes along with ZKPs attesting to the VP’s validity. The key
novelty of VeriSSO is to employ an independent committee
of authentication servers to provide RP authentication, VP-
based user authentication, as well as identity token generation
in a threshold manner. This preserves user unlinkability while
allowing the RPs to continue operating in the incumbent ACF
workflow and being robust to a single point of failure.

Binding RP Authentication with Anonymous User Au-
thentication. To perform RP authentication without creating
user linkage, we require a user to present the RP’s authen-
tication code AuthRP to every authentication server (instead
of the IdP as in the incumbent ACF). The user then presents
a VP to the authentication servers, disclosing the minimally
required attributes per the RP. This two-step process essentially
binds the RP authentication with VP-based anonymous user
authentication. As long as the VP cannot be linked to a
specific user, neither can AuthRP. The authentication servers
also cannot learn the user’s real identity or RP accessing
patterns, addressing Challenge-1. The IdP is not involved in
any stage of the user authentication flow. Our VP design also
supports lawful de-anonymization to hold a user accountable if
anonymity is misused. The user identifier is encoded in the VP
and can be decrypted by a threshold majority of authentication
servers.

Threshold-based Generation of Authorization Code and
Identity Token. After verifying the user VP, VeriSSO requires
the committee of authentication servers to generate shares of
the authorization code τac through a multiparty computation
(MPC) protocol so that the user can reconstruct τac from a
threshold fraction of the shares and delivers it to the RP. With
τac, the RP can then retrieve a share of the identity token τid
from each authentication server, resembling a similar identity
token retrieval process between the RP and IdP in the legacy
ACF procedure. For the RP, τid can be reconstructed from a
threshold fraction of the identity token shares, and then it can
be used for signature verification as in the legacy procedure.
Throughout the process, there is no single point of failure as
long as the threshold fraction of authentication servers behave
correctly.

In summary, we make the following contributions with
VeriSSO:

• It is the first privacy-preserving SSO solution that fully
supports RP authentication without introducing new risks
of user linkage or single-point failures. This is achieved
by binding RP authentication with AC-based user authen-
tication with the help of an authentication committee.

• It allows RPs to continue their legacy user verification
routine, i.e., verifying the user authentication success by
the public key signature in an identity token. The added
time cost, which is for reconstructing an identity token,
is minimal (at the scale of milliseconds).

• We implemented a prototype of VeriSSO. The experi-
ments show that a complete SSO authentication flow can
finish within 100ms, demonstrating a reasonable time cost

2

for a privacy-preserving solution.

II. Background
A. Single Sign-On Basics

In a common SSO setting, a user is prompted with a “login
with SSO” option when requesting access to an RP’s web
portal. The user is then redirected to its IdP for the actual
authentication, which can involve normal login methods such
as username-password or biometrics. Once authenticated, the
IdP produces a signed identity token and delivers it to the
RP. The RP extracts the user identity attributes, e.g., email and
institution, from the identity token and verifies their legitimacy
with the IdP’s signature. As a result, the RP does not need
to authenticate the user independently, and the user does not
need to keep separate login credentials for different RPs. SSO
also enables a user to authorize resource access from across
different providers. For example, a user may request an RP
to download their profile data, images, credit score, etc, from
remote servers. The user authorizes the host server using an
access token that allows it to fetch the required data. In the
actual SSO deployment, represented by OIDC, there exist two
main types of workflow.

The Implicit Flow (IF) was developed around 2010 when
mobile app platforms were new, and single-page apps were
emerging. Browsers at that time did not support cross-domain
POST requests, making it necessary to use the implicit flow
for OAuth in browsers. The implicit flow omits the client
secret and returns the access token directly in the redirect
from the authorization server, simplifying the process by
skipping the second step. The access token is returned in
the redirect URL, which can be intercepted if the redirect
is compromised. Examples of vulnerabilities include captive
Wi-Fi portals intercepting redirects or browser extensions that
can access the address bar and log URLs. Extensions can
monitor and capture access tokens from the URL. Browser
sync features (like Chrome syncing) can propagate access
tokens across multiple devices, increasing the risk of theft.

The Authorization Code Flow (ACF) involves a two-
step process (depicted in Figure 1) where a code is received
and then exchanged for an access token, providing an extra
layer of security. By not returning the access token directly
in the redirect, the authorization code flow reduces the risk
of interception during the initial request. Modern browsers
now support cross-origin resource sharing (CORS) policies,
enabling secure cross-domain POST requests needed for the
authorization code flow. Proof Key for Code Exchange (PKCE)
[21] was developed to enhance security, especially for public
clients (e.g., mobile apps), by using a dynamically generated
cryptographically random secret during the authorization pro-
cess. This removes the need for a static client secret. The
authorization code is exchanged in a server-to-server back
channel, reducing the points where the access token can be
intercepted. PKCE uses dynamically generated secrets for each
authorization request, making it harder for attackers to use
intercepted codes. With modern browser capabilities and the
introduction of PKCE, the implicit flow is no longer necessary

RP User

RegisterRP

initAuth

user authentication

SUCCESS

Front channel

Back channel

RP Registration

IdP

Fig. 1: OIDC’s Authorization Code Flow (ACF)

or recommended. The ACF with PKCE offers a more secure
alternative [22], [23]. Due to the security risks of IF, ACF has
evolved as the most widely used and recommended protocol
flow for SSO in the developer community [24].

B. Verifiable Credentials

A Verifiable Credential (VC) is a digital credential docu-
ment comprising a set of claims (also called attributes) about
a user and a digital signature certifying the integrity of these
claims [20], [25]. A VC is generated by an issuer who creates
the digital signature with its private key and assigns it to
the user. To users, VCs are analogous to everyday credentials
like driver’s licenses or medical insurance cards and can be
stored in digital wallets. A user can generate a Verifiable
Presentation (VP) of attributes from one or more VCs which
can be used to access a certain resource or service from a
provider. The provider, also called a verifier, can verify the
authenticity and integrity of the VP’s attributes before granting
access. Both VCs and VPs are tamper-evident as they can be
cryptographically verified.

Under the W3C’s Verifiable Credential framework [20],
Anonymous Credential (AC) is a special type of VC scheme
that protects users’ privacy, albeit it evolved independently in
the past [14], [17], [26], [27]. AC enables selective disclo-
sure—the VP generated from an AC can selectively disclose
the AC’s attributes so that sensitive attributes like the user’s
identifier or age are hidden from the verifier. Crucially, a zero-
knowledge proof (ZKP) is used to attest to the integrity of the
disclosed attributes in a VP. A ZKP is proof that the prover
(i.e., user) knows a value (i.e., the undisclosed attributes in the
original AC) without conveying any information apart from
the fact that they know the value [28]. Therefore, the VP is
sufficient for the verifier to authenticate the user. Moreover,

3

VPs generated from the same AC are also unlinkable [29],
further protecting the AC owner’s anonymity from signature-
based tracking. An AC scheme can be composed by a multi-
message short signature scheme, such as the CL signatures
[14], [15], [30] and BBS signatures [31]–[33], and an efficient
ZKP scheme.

III. System Overview

A. Participant Model

We consider five types of participants in the SSO ecosystem:
identity provider (IdP), relying party (RP), user, authentication
server (AS), and verifiable data registry (VDR).

An IdP is an entity that maintains a trustworthy identity
database of registered users and RPs. It is capable of gener-
ating public key signatures over a registered identity, attesting
to its validity. Common IdPs include public web platforms
(e.g., Google and Meta), universities,and specialized identity
management services (e.g., Okta).

An RP offers online services/resources to users. In the SSO
ecosystem, RPs register their service terms with an IdP, stating
their own digital identities, resource URLs, and user attributes
policy (i.e., what identity attributes are required for providing
service to a user).

A user is a customer who wants to access online services/re-
sources from RPs via the SSO option. Users have pre-existing
registration with the IdP, stating their digital identity attributes.

An AS is capable of verifying the validity of users and
RPs. The vanilla SSO standards defined by OIDC do not
require a standalone AS since the IdP verifies users and
RPs all by itself. However, in commercial space, standalone
authentication services such as Auth0 [34] and OneLogin [35]
begin to gain popularity due to their benefits in alleviating
IdP workload and user convenience. Building on this intuition,
VeriSSO relies on a committee of independent ASs to work
in a decentralized fashion to fulfill user/RP authentication as
well as identity token generation.

A VDR provides a public bulletin board for publicly ac-
cessible PKI information to all the participants. These may
include the public key certificates of the RPs and IdPs and the
list of blacklisted user credentials or users. VDR also provides
the ASs with access to the IdP’s Trusted Anchor List (TAL)
where it publishes the metadata of registered RPs and their
service terms.

B. System Goals

We aim for the following privacy, security, and practicality
goals for our SSO solution.

Privacy Goals:
• Minimal disclosure. In each SSO session, a user only

needs to disclose minimally required identity information
to the RP and ASs, for instance, the association with a
certain IdP. By hiding personally identifiable information
from the disclosure, users can remain anonymous in SSO
operations.

• IdP/RP/AS unlinkability. An SSO access attempt should
be unlinkable by a curious IdP, RP, or AS to any specific
user. Specifically, the IdP cannot decide which RPs a
particular user has accessed; an RP or an AS cannot
decide which specific user is making the access attempt
among multiple access attempts.

• Collusion resistance. The above minimal disclosure and
unlinkability properties should hold against any collusion
between the IdP, RPs, and ASs.

Security Goals:
• User authentication: For an RP, only legitimate users

registered with an IdP (with whom the RP has also
registered) can sign on for service.

• RP authentication: Only legitimate RPs registered with
an IdP can provide service to the IdP’s users.

• User accountability: Anonymized/derived user creden-
tials should be traceable and de-anonymized in case of
misuse or lawful interception.

• No single point failure: The compromise of individual
IdP/RP/AS cannot affect the integrity and availability of
the SSO process in the user authentication phase. The
scheme also does not have to use trusted hardware like
TEE.

Practicality Goals:
• Legacy-compatibility. RPs should be allowed to continue

their incumbent SSO routines as in OIDC’s ACF work-
flow. An RP can verify the success of user authentication
by checking the digital signature embedded in an identity
token.

• Efficiency. The added cost for RPs and users should be
lightweight. Particularly, RPs do not need to perform
expensive zero-knowledge proof verification as in existing
AC-based SSO solutions [10], [11], [13].

C. Threat Model
Below we describe the adversarial cases for each participant

type considered in the design of VeriSSO.
IdP. We assume an IdP is honest-but-curious in that it will

execute assigned routines faithfully but is motivated to track
the user’s access history to different RPs.

RP. A malicious unregistered RP may spoof users for the
aim of phishing or scams. We also consider registered RPs to
be curious about users’ sensitive identity information. Multiple
RPs may collude to discover the real user identity behind
different SSO sessions.

User. Malicious unregistered users are motivated to obtain
access to an RP. Similarly, a registered user may also wish to
access RPs without passing the SSO authentication process.

AS. Individual ASs may not follow the designated routine
due to either compromise or service outage. ASs are also
curious about a user’s access history, just like IdP and RP.
However, we require a threshold fraction of the AS committee
be honest (i.e., executing the designated routine correctly) and
available. Moreover, an individual AS may collude with RPs
(to help phish the users) or collude with the users (to help
scam the RPs for service).

4

VDR

User

RP

Auth. Servers

IdP

1. init
7. Auth. Code

2. RPid, schema
10. Access

9. User ID token

8. Auth. Code

3. RPid, Schema
5. VP

6. Auth. Code

Signed VC

VC Request
TAL, Schema

Update

4. RP Verify

Authenticaton Phase

Registration Phase

VCmeta

Fig. 2: VeriSSO Overview

D. VeriSSO Overview

VeriSSO is an authentication protocol that helps a user sign
on for the resources or services provided by an RP. VeriSSO is
based on the intuition that by binding RP verification with VP-
based user verification, an AS is able to authenticate the RP
(for its registered identity) and the user (for the validity of its
VC) without learning the full identity profile of the user. The
committee of ASs (i.e., the authentication committee) can then
jointly issue an identity token that can be verified by the RP.
Specifically, VeriSSO has two phases: the registration phase
and the authentication phase. Figure 2 shows an overview of
the VeriSSO workflow.

In the registration phase, users and RPs register their
identities and service terms with the IdP, who are trusted
organizations such as universities, government agencies such
as the Department of Motor Vehicles (DMV), or online
platforms such as Google [36]. A user obtains VCs from
the IdP, with each VC consisting of several attributes of the
user. The attributes are drawn from the IdP’s internal records
such as student databases, and/or physical identities such as
driver’s license or passport. The user is equipped with a digital
wallet application (e.g., as a browser extension) capable of
verifying and storing VCs issued by the IdP. The wallet can
generate VPs based on a VC according to the user’s interaction
with an RP. The user VC request and issuance process is
shown in the upper section of Figure 2. The RPs need to
register their identities and service terms with the IdP as the
condition to serve the IdP’s registered users. A registered RP’s
identity and its associated terms/requirements are stored in
the VDR as a metadata entry in the IdP’s TAL, which is
accessible by the ASs. We note that RP’s metadata is usually
in a specified format (like XML) in existing IdP’s databases
[37]. It contains several pieces of information such as entity
descriptor (RP identifier and IdP identifier), service endpoints,
public key certificates of IdP and RP, the expiration time of
metadata, and the RP’s contact information. In our system,
storing RP metadata in the VDR allows the IdP to delegate

the RP authentication task to the ASs.
In the authentication phase, the user proves its identity

(using an RP-specific pseudonym) to an AS committee-verified
RP and gets access to the resources in a privacy-preserving
manner. As shown in the lower section of Figure 2, after
the user initiates the SSO option (step 1), RP delivers its
requirements and proof of its registration with the IdP (step
2) to the user. Then, the user relays the RP’s information

to the AS committee (step 3) who verifies the RP’s claims
with the TAL records on the VDR (step 4). Following the
RP’s requirements and TAL specifications, the user derives a
VP by selectively disclosing attributes from its VC (step 5).
The committee verifies the VP (step 4) and returns an autho-
rization code to the user (step 6), who forwards it to the RP
(step 7). Next, the RP establishes a secure back-channel with
the committee nodes and exchanges the authorization code
(step 8) for the user identity token (step 9). The identity
token comprises the disclosed user attributes in a standard
JSON Web Token (JWT) format with a threshold signature.
Upon successful aggregation of the threshold signature and
verification of JWT, the RP grants access to the user (step
10). Specifically, the generation of an authorization code (step
6) and identity token (step 9) leverages efficient threshold

schemes to resist single point of failure, which we will show
in section §V.

IV. Cryptographic Building Blocks

A. BBS Signatures

The Boneh-Boyen-Shacham (BBS) signature scheme [31]
was originally proposed as a group signature scheme. BBS
signature has been used as a building block for anonymous cre-
dentials and attestation schemes, represented by the schemes
by Camenisch et al. [15], [17]. An extension of the BBS
signature called BBS+ by Au et al. [33] slightly modifies the
signature composition so that it is proved secure under the q-
SDH assumption. Recently, Tessaro and Zhu [38] showed the
security properties of the original BBS signature scheme [31]
under the same q-SDH assumption and it has been adopted
for standardization in the latest RFC draft [39]. We provide an
outline of the BBS signature algorithm in Appendix A.

Threshold BBS Signature. In the context of anonymous
credential issuance, the single issuer can be a single point of
failure because it may become unavailable or corrupt leading
to an inconsistent state of the credential issuance phase. To
tackle this limitation, Doerner et al. [40] extended the signing
protocol of the BBS+ signature scheme into a threshold multi-
party signing protocol. The idea mainly leverages the concepts
of threshold secret sharing and MPC protocols to distribute the
anonymous credential issuance phase. The threshold BBS+
protocol can be broken down into the setup phase, shared
signing phase, and aggregation phase.

In the setup phase, the MPC servers collectively generate
a key pair. Each server commits to a set of (L + 1) random
scalars. The key generation functionality selects the secret key
x and distributes it using Shamir’s secret sharing algorithm.

5

The signing phase is initiated by a client who submits a
signing request for L-messages to a certain number of MPC
servers. At first, the servers use Lagrange coefficients to
produce shares of the secret key xi and select a secret blinding
factor ri. Then the servers collectively commit to random
scalars (e, s) and engage in a pairwise multiplication protocol
to secretly compute functions involving (ri, xi). The client
combines results from J threshold number of servers in the
aggregation phase to produce a valid BBS+ signature given by
σ = (A, e, s), where the aggregated element A is defined as:

A :=

∑
i∈J Ri∑
i∈J ui

; Ri = ri ·(g1+
∑
k∈[L]

mk ·hk);ui = ri ·(x+e)

(1)
This construction eliminates the single point of failure at

the credential issuance phase with light overhead for signature
aggregation, which is suitable for resource-constrained users.

In VeriSSO, we adapt the original BBS signature scheme
[31], [39] into the threshold form in a similar construct, which
we call the threshold BBS signature. Instead of thresholdizing
credential issuance, the threshold BBS signature scheme is
executed by the ASs (as the MPC server) to issue authorization
codes and identity tokens to the RPs and users. This adaptation
crucially allows RPs to use their legacy signature verification
capability while supporting the efficient delivery of disclosed
user attributes.

B. ZKP and Selective Disclosure

Zero-knowledge proofs (ZKP) are a general class of proto-
cols between two parties, the prover and the verifier. Using
a ZKP, the prover convinces the verifier of the validity of a
given statement without revealing any information beyond the
truth of the statement. The concept of zero-knowledge emerged
in the 1980s [41]. Schnorr’s identification protocol [42] is
recognized as the first ZKP protocol. In this protocol, the
prover can demonstrate knowledge of a secret x ∈ Zp (discrete
logarithm) to the verifier, corresponding to the prover’s public
key h := gx mod p. Originally, Schnorr’s protocol was a
Σ-protocol involving three rounds of interaction and assumed
an honest verifier. By applying the Fiat-Shamir heuristic [43]
under the Random Oracle Model (ROM) [44], it can be
transformed into a non-interactive zero-knowledge protocol
(NIZK) that is secure against arbitrary cheating verifiers [45].

Selective disclosure is an elegant feature of the BBS
signature proposed initially by [33]. This allows the holder
of a BBS signature to hide one or more messages while
preserving its validity. This is achieved using a signature proof
of knowledge (SPoK), a type of ZKP, that allows a prover to
disclose messages partially and at the same time randomize
multiple presentations of the original signature.

In VeriSSO system architecture, we use the BBS signature
algorithm to sign VCs and let users produce VP for authen-
tication. To realize selective disclosure for VP, a SPoK is
constructed using the protocol described below:

BBS.SPoK :

• The prover has signature σ = (A, e) ∈ G1 × Zp and can
compute B = g1

∏L
i=1 h

mi
i for a vector m⃗ of L messages.

• To selectively disclose messages attD = {mi}i∈D and
hide attH = {mi}i/∈D, select a random nonce r ← Z∗

p.
• Randomize the original signature σ as A′ = Ar, B′ =

Br, Ā = (A−e ·B)r = (A′)−e ·B′.
BBS.V erifySPoK :

• The verifier receives (attD, A′, Ā, B′, π1, π2) and verifies
the bilinear equality: eb(A

′, w)
?
= eb

(
Ā, g2

)
and the

proof Π given by:

SPoK

{
(attH , A, e, r) :

Ā

B′ = π1 ∧ g1
∏
i∈D

hmi
i = π2

}
(2)

C. Blind Signature
A blind signature is a cryptographic scheme in which the

signer is not able to see the contents of the messages that are
being signed. Like most standard digital signatures, a blind
signature is unforgeable and can be verified against the signer’s
public key. Strongly-blind signatures are protocols in which
the signer does not learn any useful information about the
message or the signature, whereas in a weakly-blind signature
it gets to know the signature. Most of the digital signature
schemes based on RSA, ECDSA, BBS, etc. can be adapted
to support blind signing by obscuring the message using a
random factor commonly known as blinding factor [46]–
[48]. In [40], the authors discuss a weakly-blind version of the
BBS signature protocol, in which the subject or the messages
are hidden from the signer. In VeriSSO, we leverage the
partially blind signing properties of BBS signature scheme
[38], [49], [50] to facilitate blind VC creation where the
signature is issued to a commitment of the messages/attributes.
The signature thus produced is never disclosed to the RPs
during the authentication phase and is known to the IdP and
user only.

V. Detailed Design
This section explains the VeriSSO protocol, with the de-

tailed workflow illustrated in Figure 3.

A. Registration Phase
1) RP Registration: VeriSSO protocol requires RPs to

register with the IdP in which they exchange important meta-
data with each other and store them in a TAL on the VDR.
The registration process is crucial for establishing a trust
relationship and ensures that legitimate RPs’ identity and
service policies can be appropriately verified. This is similar
to the standard SSO schemes such as OIDC’s Registration
Protocol [51]. In VeriSSO, RPs provide their identity (such as
public key, digital certificate, or name), service endpoints, and
policies regarding the requirement of user information. The
registration process is defined using the following functions:

• RegisterRP(idRP ,metaRP , schV P) → (rid,
metaIdP) : The RP invokes the registration with the
IdP with its identity information idRP , metadata metaRP

6

(containing its service endpoint urlRP), and VP attribute
schema schV P (i.e., the list of user attributes required
for log-in). Upon successful registration, the IdP returns
its metadata information metaIdP and a unique identifier
rid as a token of its TAL membership.

• AssignRID(idRP ,metaRP , schV P) → rid : This
function is called by the IdP as a subroutine of
RegisterRP . The IdP commits the parameters into its
TAL on the VDR and receives a rid for the RP.

2) User Registration and Credential Issuance: We assume
users have a membership with the IdP and have verified their
identity information using physical (e.g. Driver’s License or
Social Security) or institutional affiliations (e.g. university or
workplace ID).

A user (as a client of an IdP) requests a VC from the IdP.
The user selects a set of common attributes (e.g., profession,
institution, student status, zip code, etc.) and submits a creden-
tial signing request. For generality, we denote m⃗ = {m1,m2,
. . . ,mL} to denote L attributes in the request and L is
user-determined. We describe the credential request using the
following function:

• RequestVC(m⃗, u) → (cred, γ, σ) : The user selects
a vector of messages m⃗ consisting of L attributes and
submits it to the issuance endpoint of the IdP. In addition,
the user binds its attributes to its device (where the wallet
resides) using a local secret u, which is an extra attribute
aside from m⃗. Then, the user wallet blinds m⃗ and u
using a blinding factor d, i.e., m′

j = md
j ,∀j = 1, ..., L

and u′ = ud. The wallet is expected to receive a VC
cred, a blind signature σ̂ of the VC, and an IdP-assigned
unique credential identifier γ (included in cred). The cred
generation is shown right below.

The IdP is responsible for issuing VCs to users by attesting
a set of requested attributes in m⃗. It also ensures that each
VC includes a unique identifier γ that acts as a backdoor
mechanism for accountability of dishonest users. The user can
hide the identifier during the authentication phase to preserve
privacy and anonymity. We describe credential issuance using
the following functions:

• IssueVC(m⃗
′
, u

′
) → (cred) : The IdP first assigns a

unique identifier γ. Next, it produces a W3C-standardized
VC, cred, with the vector of blinded parameters m⃗

′
, u

′ ,
and γ as the subject attributes. In the final step, the IdP
produces a blind signature σ̂ of the messages (m⃗′, u′, γ)
using the BBS signing algorithm described in section
§IV-A.
Specifically, on the input of key pair (sk, pk), M⃗ =
(m⃗′, u′, γ), and a random scalar e, the IdP pro-
duces a blind signature σ̂ = (A, e), where A =(
g1

∏L+2
i=1 hMi

i

) 1
e+x . The IdP then appends some aux-

iliary metadata and composes the VC as cred =
{metadata, M⃗ , σ̂}. Upon completion of the protocol,
cred is sent back to the user.

B. Authentication Phase
The credential wallet on the user side stores the VC cred

received from IdP and uses it for authentication purposes.
Figure 3 depicts an overview of the algorithms involved in user
authentication. Next, we explain the individual steps involved
in the process.

1) RP and User Authentication by ASs: These stages rely
on the ASs to authenticate both the RP and the user in an SSO
session. It contains the following functions:

• InitAuth(urlRP , idIdP) → (rid, schV P) : The user
initializes an SSO authentication session by accessing
urlRP , the designated login web address/endpoint of an
RP. It informs the RP of its identity provider, urlIdP ,
and requests for its membership token rid and schema
definition schV P .

• VerifyRP(urlRP , rid, schV P) : To verify the autho-
rization of the RP and its membership agreement with
the IdP, the user queries the ASs to confirm the urlRP ,
rid, and schV P in the TAL of the IdP. When the user
receives a threshold number of positive responses from
the ASs, the RP is considered to be verified.

• PrepareTempId(u, γ, domainRP) → ϕ : The user
hides the permanent identifier γ and user secret u and
generates a pseudonym for each RP. In this process, γ
is the ciphertext generated with the ElGamal encryption
[52], and u is used to produce an RP-specific pseudonym
ũ. Finally, the user produces a proof ϕ, of his knowledge
of (γ, u).
Specifically, ũ is generated as follows. On the input of
user secret u and RP domain domainRP (from metaRP),
pseudonym ũ is produced as:

ũ = h̃u; h̃← H(domainRP) (3)

where H is a cryptographically secure hash function.
The user attaches a ZKP of his possession of the secret
identifiers γ and u:

ϕ = {ENCEG(h
γ) ∧ ũ = h̃u} (4)

where ENCEG(h
γ) = (gα, yαhγ) is an ElGamal en-

cryption of the permanent identifier γ. Elements g, h are
generators of G1, α is a random scalar, and y is the aggre-
gated key of a threshold number of decryption authorities
(which are chosen from the ASs in our system).

• PrepareVP(cred, schV P) → pres: The client re-
views the attribute requirement from the RP’s (as in
schema schV P) and selects the attributes to disclose
{mi}i∈D, and hides the remaining {mi}i/∈D. Next, the
user prepares a signature proof of knowledge SPoK to
prove the validity of the signature σ as follows:
On the input of VC signature σ = (A, e), disclosed
attributes {mi}i∈D and hidden attributes {mi}i/∈D, the
user computes π1 = A′−e, π2 = B

∏
i/∈D h−mi

i , where
B = g1

∏L
i=1 h

mi
i . A VP is composed as: pres =

{metaV P , {m}i/∈D, A′, B′, Ā, π1, π2, ũ, ϕ}
• VerifyVP(pres): Once an AS receives the pres, the

7

RP Registration Phase

RP IdP VDR
req := (idRP ,metaRP , schV P)

req−−→ rid← AssignRID(req)
req−−→ rid

$← {0, 1}λ
res← RegisterRP (req) res := (rid,metaIdP) CommitTAL(rid, req)

rid,metaIdP := res
res←−− return res

rid←−− return rid

User Registration Phase (Credential Issuance)

User/Wallet IdP
u, d

$← {0, 1}λ, m⃗ := {m1, . . . ,mL}
RequestV C(m⃗, u) :

u
′ ← Blind(u, d) IssueV C(m⃗

′
, u

′
) :

m⃗
′ ← Blind(m⃗, d) γ

$← {0, 1}λ
cred← IssueV C(u

′
, m⃗

′
) M⃗ := {m⃗′

, u
′
, γ}

(M⃗, σ̂) := cred
u
′
,m⃗

′

−−−−→ σ̂ := BBS.Sign(M⃗, sk)†

BBS.V erifySign(M⃗, σ̂, pk) cred := {metadata, M⃗, σ̂}
σ ← Unblind(m⃗

′
, u

′
, σ̂, d)

cred←−−− RegisterUser(cred)
V C := {metadata, m⃗, u, γ, σ} return cred

Authentication Phase (ID Token Issuance)

User/Wallet RP AS
rid, schV P ← InitAuth(urlRP , idIdP) InitAuth(urlRP , idIdP) V erifyRP (urlRP , rid, schV P) :

V erifyRP (urlRP , rid, schV P)
urlRP ,idIdP−−−−−−−−−→ res := (rid, schV P) ⊥ ← CheckV DR(rid, schV P)

res←−− return res return ⊥
PrepareTempId(u, γ, domainRP) :

rid,schV P−−−−−−−→
h̃← H(domainRP)

⊥←− V erifyV P (pres) :

ũ := h̃u ⊥ ← BBS.V erifySPoK(pres)

⟨g, h⟩ ∈ G1
pres−−−→ return ⊥

ϕ := ZKP{ENCEG(hγ) ∧ (ũ = h̃u)} ⊥←−
IssueAuthCode(rid, ũ) :

PrepareV P (cred, schV P) :
rid,ũ−−−−→ tokenac

$← {0, 1}λ

attD := {mi}i∈D, attH := {mi}i/∈D
τac←−− return SS(token||rid)

Π← BBS.SPoK(attD, attH , σ) FinishAuth(ũ, τac) :

pres := {metaV P , attD, ũ, ϕ,Π} req := (rid, ũ, τac) IssueIdToken(rid, ũ, τac) :

V erifyV P (pres)
ũ,τac−−−−→ τid ← IssueIdToken(req)

req−−→ (ũ, attD) := pres

τac ← IssueAuthCode(rid, ũ)
⊥←− ⊥ ← BBS.V erifySign(τid, pk)

‡ τid←−− τid := {rid, ũ, attD}
FinishAuth(ũ, τac) return ⊥ return BBS.Sign(τid, sk)

‡

Fig. 3: VeriSSO Protocol. ⊥-Function call result as Success/Failure. †-Blind VC signing/issuance. ‡-Threshold BBS protocol
(details omitted here, see function descriptions in §V-B). : User-AS communication. Wrapper functions: H- Secure hash
function. CommitTAL- Update TAL records in VDR. Blind- Compute a commitment to the given input. Unblind-Reveal the
commitment. RegisterUser-Update IdP’s user database records. CheckV DR-Checks the TAL records for the given data. SS-
Generate secret shares of a given input. ZKP -Zero-knowledge proof.

validity of its signature σ and undisclosed attributes can
be verified according to the steps described in the function
BBS.V erifySPoK (equation 2).

2) Threshold ID Token Issuance and Verification: After
verification of the presentation, the AS committee responds to
the user with a valid authorization code τac. The user forwards
τac to the RP as a notification of RP verification and user
authentication. Finally, the RP requests the AS committee to
release the user attributes in an identity token τid by supplying
τac. The process contains the following functions:

• IssueAuthCode(rid, ũ) → (τac) : Once pres and its
SPoK are verified, the user queries the AS committee
for an authorization code for the specific session and rid
and receives τac as secret shares. In this process, the ASs

interact and each generates and returns a secret share
of τac. The user can reconstruct the τac by collecting
a threshold number of the shares and then relays it to RP.

• IssueIdToken(rid, ũ, τac) → (τid) : Upon receipt of
the authorization code τac, the RP is convinced of a
successful RP verification and user authentication. Now,
the RP requests the AS committee to release the user
attributes disclosed in the VP by posting the authorization
code τac and its signature to AS committee. The AS
committee invoke the threshold BBS signature protocol
(as in §IV-A) to generate the shares of the BBS signature.
It works as follows. The RP initiates the signing protocol
by sending requests to t ASs who engage in an MPC
protocol to generate a token consisting of the disclosed

8

user attributes and a threshold BBS signature given by
σ = (A, e). Each AS of the J signing parties, returns
Ri and ui, where Ri = ri · (g1 +

∑
k∈[L] mk · hk) and

ui = ri · (x+ e). And x is the secret key, e is a random
scalar, ri is a secret share of a random scalar r, and L is
the number of messages to be signed.

• FinishAuth(ũ, τac) : From the signature shares
({Ri, ui}i∈J), the RP can reconstruct the BBS signature
of the identity token τid by perform the aggregation:
A :=

∑
i∈J Ri∑
i∈J ui

. Finally, the RP verifies the aggregated
signature A with the AS committee’s threshold public
key (stored on the VDR). If verified, the RP grants
access to the user and concludes the SSO session.

3) Lawful De-anonymization: A user does not reveal any
unique identifier (signature, VC permanent identifier, or user
secret) in a VP construction. During the sign-on process, the
user prepares an RP-specific pseudonym ũ to uniquely identify
itself to an RP. If an anonymous VP must be de-anonymized
for accountability, the AS committee can reveal the associ-
ated user. Certain AS members with lawful authorities (i.e.,
the decryption authorities) collectively use their private key
(corresponding to the combined encryption key y) to decrypt
the VC identifier (ENCElGamal(h

γ)) attached in pres. The
AS committee will thus recover hγ which can be traced back
to the IdP assigned permanent identifier γ and to the user’s
VC.

VI. Security Analysis and Discussion

A. Security Analysis
Theorem 1 (Correctness of Authentication): If the q-

Strong Diffie-Hellman (q-SDH) Assumption, Decisional
Diffie-Hellman (DDH) Assumption, and Strong Computational
Diffie-Hellman Inversion (SCDHI) problems, as outlined in
[27], [53] (defined in Appendix C), hold and the zero-
knowledge proof systems satisfy completeness, soundness and
zero-knowledge properties, then VeriSSO guarantees user au-
thentication, RP authentication, as well as user accountability.

Proof Sketch. The correctness of our SSO scheme essentially
builds on its composing protocols, namely the BBS signature-
based VC scheme, the threshold BBS signature for ID token
generation, as well as the public key signature scheme for
verifying RP authenticity. The BBS signature is known to
be secure under DDH and SCDHI, while the threshold BBS
scheme produces the same signature. The user accountability
is provided by the completeness and soundness of ZKP, which
proves the validity of the ElGamal encryption (which itself is
semantically secure under DDH [52]) of the user’s credential
identifier γ.

Theorem 2 (Unforgeability): In VeriSSO’s authentication
phase, the VP generation and verification algorithms (see
section V-B) are (t, Q, ϵ)-unforgeable for all probabilistic
polynomial time (PPT) adversariesA, that can make Q random
oracle queries in time t and ϵ is a negligible value.

Proof Sketch. The unforgeability property can be derived in-
tuitively from the unforgeability of the BBS signature scheme

[31] It ensures that an adversary A, cannot forge a legitimate
credential Cred or a valid proof of a valid attribute set m⃗
signed by the issuer’s signing key sk. A Pres in VeriSSO
comprises the ZKP of the issuer’s signature σ (known only to
the user and IdP), IdP assigned permanent identifier γ (known
only to the user and IdP), and user device secret u (known only
to the user). Forging a Pres would thus require full control
of the wallet or user’s device.

Theorem 3 (Unlinkability): The credential scheme in
VeriSSO satisfies unlinkability and anonymity across different
RP access sessions for all PPT adversaries A. Given the proof,
A can simulate the presentation Pres only if the complete set
of attributes m⃗ in the credential and the issuer’s signing key
sk are known.

Proof Sketch. If anonymity in an AC scheme is maintained
across multiple presentations of the credential, it is considered
to meet the criteria of multi-show unlinkability, and the
same can prove these two properties for VeriSSO. In the
authentication phase, the user hides the VC signature σ and the
permanent identifier assigned by IdP γ and the device secret
u, and presents a ZKP of their knowledge and possession.
Moreover, the user derives a new pseudonym ũ to produce a
unique identity for each RP.

Remark on collusion resistance. During the user authen-
tication phase of the VeriSSO protocol the user partially
discloses the VC attributes. While drafting the VP, it obscures
the permanent identifiers (u, γ) and derives a ZKP of their
possession. In addition, each VP is derived with an RP-specific
pseudonym as the main identifier. Together, this construction
allows the protocol to provide collision resistance.

B. Discussion on Practical Deployment
We discuss VeriSSO’s design choices and practicality.
Who will be the authentication servers? Using third-

party authentication services to facilitate client access control
has been quite popular in the commercial space, represented
Auth0 [34] (now a subsidiary of Okta) and OneLogin [35]. In
VeriSSO, we envision that these commercial authentication
services can be transitioned into the authentication commit-
tee, given that they can communicate for joint verification
tasks. New candidates for the authentication committee include
delegates of well-known IdPs and RPs. The profit model
and incentive mechanisms of authentication servers are an
important but orthogonal research effort.

What if a user’s credential wallet is exposed or stolen?
According to the design of VeriSSO, every credential is linked
to a permanent identifier assigned by the IdP. In the event of
a wallet theft or compromise, the user can instruct the IdP to
terminate the credential and publish an alert to the VDR. In
this way, the authentication committee will not approve any
VPs produced using the reported credential. However, a more
rigorous credential revocation scheme should be a direction
for future improvement.

Support for Multi-Factor Authentication. VeriSSO is an
authentication protocol leveraging the single factor of cre-
dential ownership. However, an MFA module could be easily

9

integrated to offer multiple levels of security using standard
protocols like FIDO [54]. We consider MFA support to be
an implementation design decision, and VeriSSO architecture
can accommodate such an extension while preserving its
privacy and usability properties.

Supporting Multiple IdPs. Some RPs may require users to
prove attributes from different IdPs, for instance, for showing
diploma proof issued by a university and completion certifi-
cates issued by an online course provider. The W3C standard’s
VC and VP data model, which we used intrinsically, supports
multiple issuers [36] and allows a user to compose a VP using
multiple VCs.

Potential Usage of Interactive ZKP. The VeriSSO pro-
tocol requires several interactions between the user and the
Authentication Committee for RP and VP verification. This
provides a scope for the possible use of Σ − protocol for
proof generation to improve the overall performance of the
front channel subroutines. We will explore this direction for
future extensions.

Colluding RPs and/or IdPs. The VP derived during the au-
thentication phase is attributed with an RP-specific pseudonym
instead of revealing the permanent VC identifiers (u, γ) to
prevent direct user linkage. However, it is possible that the
attributes disclosed by multiple VPs may be engineered to
track users. That would require colluding parties to remain
compromised and study user activity logs for a significant
amount of time.

VII. Implementation and Evaluation
A. Prototype Implementation

We implemented a prototype to evaluate the core func-
tionalities of VeriSSO: (1) issuance and verification of VC,
(2) proof generation and verification of VP, and (3) issuance,
aggregation, and verification of threshold identity token.

Our implementation of BBS signature uses BLS12-381 El-
liptic curve [55]. The various core subroutines of VeriSSO use
the Rust library bbs plus version 0.23.0 [56] to implement the
standard and MPC versions of the signature scheme according
to the protocol discussed in Section IV-A.

Our experimental setup includes a server for simulating IdP
functionalities for the setup and user registration phase. In the
authentication phase, the user interacts with AS nodes running
server programs for managing threshold tokens. We deploy our
experimental arrangement on a desktop PC equipped with a
12th Gen Intel Core i7 processor (12 cores, 2.10 GHz), 32
GB DDR5 RAM, and Ubuntu 22.04 LTS operating system.
For simplicity of implementation, the AS committee nodes
are logical instances running within the same environment
in multiple threads. Our experiments use a total of 8 AS
nodes with a threshold requirement of 5 nodes. For scalability
experiments, we vary the number of ASs from 2 to 10 within
the hardware capabilities of our experimental setup.

B. Evaluation Results
This section presents our findings on the experimental evalu-

ation of VeriSSO prototype. Overall, we observe an execution

time constraint in comparison to established frameworks like
OpenID, due to the involvement of advanced cryptographic
schemes. The time costs increase with the size of the credential
(number of attributes) as it requires more group operations.
However, credentials with a large number of attributes are
less common, and a moderate attribute set credential (˜15
attributes) completes a user sign-on in less than 100ms.

Next, we present the experimental results from the main
individual functionalities of VeriSSO system design.

5 10 15 20 25 30 35 40 45 50
Number of Attributes

4

5

6

7

8

Ru
nt

im
e

(m
s)

(a) Credential Issuance

5 10 15 20 25 30 35 40 45 50
Number of Attributes

22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5

Ru
nt

im
e

(m
s)

(b) Credential Verification

5 10 15 20 25 30 35 40 45 50
Number of Attributes

10

15

20

25

30

Ru
nt

im
e

(m
s)

(c) Proof Generation

5 10 15 20 25 30 35 40 45 50
Number of Attributes

25
30
35
40
45
50
55
60

Ru
nt

im
e

(m
s)

(d) Proof Verification

5 10 15 20 25 30 35 40 45 50
Number of Attributes

20
25
30
35
40
45
50
55
60

Ru
nt

im
e

(m
s)

(e) Token Generation

5 10 15 20 25 30 35 40 45 50
Number of Attributes

20
30
40
50
60
70
80
90

100

Ru
nt

im
e

(m
s)

(f) Token Verification

2 4 6 8 10
Number of AS

60
65
70
75
80
85
90
95

Ru
nt

im
e

(m
s)

(g) AS Scalability

10 20 30 40 50
Number of Attributes

10
20
30
40
50
60
70
80
90

100

Ru
nt

im
e

(m
s)

VeriSSO
ELPASSO

(h) Runtime Comparison

Fig. 4: Runtime cost for issuance (4a) and verification (4b) of
credential in the setup phase. Runtime cost for presentation
(4c, 4d) and ID token processing (4e, 4f) in the authentication
phase. Impact of AS scalability in the protocol runtime (4g).
Comparison of the overall execution time of related SSO
protocols (4h).

User Registration. In Figure 4a and 4b, we demonstrate
the execution time for user registration in the setup phase.

10

The issuance time (Figure 4a) indicates the time taken by
the IdP to produce a BBS signature for a given number
of user/subject attributes. Upon receipt of a VC signature,
a user performs a signature verification (Figure 4b) before
storing it. Together, this is a one-time setup for a user and
ranges in milliseconds from a smaller number of attributes
to higher values as attributes increase. The results indicate
a linear increasing relationship with the number of attributes
and a constant difference (˜1 ms for issuance and ˜2.5 ms for
verification) between the issuance and verification times.

User Authentication. In our experiment for the authentica-
tion phase, we capture the execution time for proof generation
(selective disclosure of half attributes and signature hiding)
on the user client and verification by at least one committee
node. This is the runtime of the front channel processes in
VeriSSO protocol and covers a significant portion of the user-
sign on delay. Figure 4c shows linearly increasing runtime
with the number of user attributes. It is also observed that
for a smaller number of attributes, the difference between
proof generation (Figure 4c) and verification time (Figure 4d)
is minimal, whereas proof verification takes ˜2× the time of
proof generation for a larger attribute set (35-50 attributes).

Threshold ID Token Issuance, Aggregation, Verification.
We present the experimental results of threshold token is-
suance in Figure 4e, aggregation, and verification in Figure 4f.
We observe an incremental pattern with attribute count, though
the difference is small. The median values range from 20ms
to 45ms for token generation (Figure 4e) and 40ms and 50ms
for token aggregation and verification (Figure 4f). In general,
the execution time of the threshold signature is significantly
shorter than the standard BBS signature (as shown in Figure 4a
and 4b) because of the workload distribution among the MPC
nodes. The threshold token is issued by the AS Committee,
then aggregated and verified by the RP.

Performance Comparison and Scalability Analysis. Fig-
ure 4g shows how runtime scales with the number of ASs
in a distributed environment. The runtime increased linearly
with the number of servers. This trend is likely attributed to
the increased communication overhead and synchronization
required between servers in a distributed setup. Nevertheless,
the experiment demonstrates the predictability of scalability,
which is crucial for environments that necessitate distributed
authentication. The comparison of VeriSSO and EL PASSO
(Figure 4h) under identical conditions reveals an increase
in runtime with the growing number of attributes for both
systems. Notably, VeriSSO underperforms compared to EL
PASSO across all configurations. This is primarily because
EL PASSO is based on the Implicit Flow that requires only
two rounds of interaction between the user and RP and does
not support RP authentication. VeriSSO follows the ACF
sequence and involves ASs to verify VP and issue ID tokens
that require five rounds.

VIII. Related Work
Various works have addressed user privacy in SSO schemes.

SPRESSO [57] is an SSO protocol that aims to improve user

privacy by making sign-in sessions on one SP indistinguish-
able from another. Lin et al. [58] propose a user-controlled
SSO mechanism where users can generate a session key to
establish a secure communication window for accessing dif-
ferent telemedicine providers. UPPRESSO [7] uses temporary
pseudo-identity to access RPs in order to facilitate a privacy-
preserving SSO experience, reducing inter-RP linkability.

Relevant to our work, [10], [59], [60] explored the possi-
bilities of incorporating self-sovereign identity (SSI) and VC
into SSO and federated identity management. Lux et al. [59]
envision using SSI and VC to give more user control over
personal data in the existing OIDC-based SSO where the
IdP is still needed for VC verification in an online fashion.
In comparison, we seek to minimize IdP’s involvement in
the authentication (i.e., not required to be always online)
to address the availability issue. PRIMA [10] also discusses
the limitations of OpenID in terms of IdP being able to
log interactions between users and RPs. The authors suggest
an identity management scheme reminiscent of standard IF
with credentials instead of JWT tokens as in OIDC. This
mechanism hides the RP’s identity but lacks RP verification
and requires IdP to be available to sign the credentials for each
authentication attempt.

EL PASSO [11] was the first SSO solution leveraging
anonymous credentials to achieve inter-RP unlinkability and
lawful de-anonymization. It further achieves intra-RP linka-
bility to reduce the Sybil risks, however, at the cost of RP-
IdP collusion attacks when the IdP is also compromised.
EL PASSO highlights the privacy issues of traditional SSO
schemes such as OpenID Connect due to a tightly coupled IdP-
centric protocol flow. As a result, IdP and RP can collude to
infer user activity and violate purpose limitations (EU GDPR
[61]) of the user agreement.

MISO [19] leverages Trusted Execution Environment (TEE)
to establish a trustworthy intermediary to facilitate an anony-
mous authentication process while preserving the original SSO
workflow. The TEE-based Mixer serves as a trusted IdP to RP
and as an anonymous RP to IdP. This design allows IdP and
RP to function without knowledge of their actual identities. In
practice, the security provided by TEE hardware may not be
available, and the mixing service itself may pose a new risk
of single-point failure.

In comparison, we introduce a distributed authentication
server committee to realize the privacy and availability features
without relying on trusted hardware.

AIF [12] addresses similar privacy issues of SSO by extend-
ing the IF using blinded tokens. The authors emphasize the
risks of identity exposure at IdP and the lack of RP authenti-
cation in standard IF design. The design of AIF leverages AC-
based anonymous authentication for RPs as well (i.e., similar
to AC-based user authentication). This approach, however, re-
quires an RP to be involved in credential issuance and revoca-
tion steps. Privacy OIDC (POIDC) [62] addresses these issues
using cryptographic commitments on RP identifier. However,
the commitment signature in this approach does not prevent
IdP from linking the user’s access to different RPs. OPPID [64]

11

Security/
Privacy

PropertiesRelated
SSO
Solutions N

o
tru

ste
d

ha
rd

w
ar

e

N
o

si
ng

le
-

po
in

tf
ai

lu
re

In
te

r-R
P

un
lin

ka
bi

lit
y

In
tra

-R
P

lin
ka

bi
lit

y

Se
le

ct
iv

e
di

sc
lo

su
re

La
w

fu
l

de
-a

no
ny

m
iz

.

M
ul

ti-
de

vi
ce

su
pp

or
t

R
P

au
th

en
tic

at
io

n

C
om

pa
tib

le
w

/O
ID

C
A

C
F

SPRESSO [57] ✓1 ✗ ✗ ✓3 ✗ ✗5 ✓6 ✗ ✗
PRIMA [10] ✓ ✗ ✓ ✓3 ✓ ✗ ✗ ✗ ✗
POIDC [62] ✓ ✗ ✗ ✓3 ✗ ✗5 ✓6 ✗7 ✗
UPRESSO [7] ✓ ✗ ✓ ✓3 ✓ ✗5 ✓6 ✗ ✓
EL PASSO [11] ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗
MISO [19] ✗ ✗2 ✗ ✓3 ✗ ✗5 ✗ ✓ ✓
AIF [12] ✓ ✗ ✗ ✓3 ✗ ✗5 ✓6 ✓7 ✗
ARPSSO [63] ✓ ✗ ✗ ✓3 ✗4 ✗5 ✗6 ✓ ✓
OPPID [64] ✓ ✗ ✓ ✓ ✗4 ✗5 ✗6 ✓7 ✗
PESTO [65] ✓ ✓ ✗ ✓3 ✗4 ✗5 ✓6 ✗7 ✗
PASTA [66] ✓ ✓ ✗ ✓3 ✗4 ✗5 ✓6 ✗7 ✗
VeriSSO (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: Comparison of Privacy-preserving SSO Solutions. 1 SPRESSO is dependent on a third-party agent/server for
delivering scripts and as an intermediary between RP and IdP. 2 MiSO eliminates single point of failure at IdPs, but relies
on another single entity with trusted hardware. 3 User identity is linked to a fixed attribute like email (not pseudonymous).
4 Attributes disclosure is controlled by IdP. 5 Solutions do not consider anonymization or AC. 6 User identity/credential not
linked to a physical device. 7 Solutions are based on SSO Implicit Flow.

extends the AIF protocol and adds user unlinkability by using
pseudonyms computed by a variant of HashDH PRF [67]. AIF,
POIDC, and OPPID primarily focus on privacy-preserving IF,
which OIDC proposed for limited resource or non-PKI entities.
Similar to our approach, ARPSSO [63] resolves these issues
for the most widely adopted ACF model using anonymous
credentials for RP authentication. In comparison, our design
uses VC to facilitate user-centric identity management while
satisfying the aforementioned properties.

PASTA [66] aims to improve the process of authorization
token issuance from a single IdP by distributing its role
among multiple servers using threshold oblivious pseudo-
random function and token generation schemes. The key idea
is to secret share the password hash and the master key
used for token issuance using a threshold protocol to mitigate
client impersonation and compromised servers. While PASTA
is a good solution for distributed SSO, it lacks proactive
security for recovering from a compromised state. PESTO [65]
addresses this limitation and incorporates a recovery scheme
that allows servers to reboot to a consistent state. Unlike
PASTA, which requires servers to obtain dedicated keys from
each client, PESTO derives key material using a proactively
secure PRF. Both schemes use a distributed version of the
RSA algorithm for token signing. However, both protocols are
limited to the SSO Implicit Flow and lack NIST-recommended
user anonymization [68] and RP hiding.

Parallel to the above schemes, the OpenID Foundation
is also working on VC-based specifications for several use
cases, including VC-based authentication and authorization,
OAuth extension using VP, and self-issued credentials. The

standardization draft [69], [70] under the OpenID Connect
Working Group acknowledges the limitations and challenges of
the existing OIDC model revolving around a central IdP and
leverages the barebone W3C VC architecture in conjunction
with OIDC sub-protocols like OAuth. OpenID describes VCs
as a paradigm shift from centralized dependency on IdPs with
privacy risks and lack of user control, and transformation to
VCs offers an opportunity for user-centric identity management
with decentralized control, enhanced privacy, and portability
[70], which also partly motivated our work.

An overview of the comparison of various security and
privacy properties of related privacy-preserving SSO solutions
is presented in Table I. Please refer to Appendix D for more
related work on general SSO security issues.

IX. Conclusion
We present VeriSSO, a new SSO protocol that leverages

threshold signatures and VC-based distributed authentication
to achieve user privacy and backward compatibility. VeriSSO
allows users to control their information disclosure in SSO
sessions while preserving user experience like traditional
methods. Unlike other related credential-based SSO schemes,
VeriSSO crucially supports RP authentication and requires
minimal architectural changes on the RP side, providing easier
compatibility and migration from existing solutions. We intro-
duce a distributed authentication committee to take over the
responsibilities of the centralized IdP. This design enables us
to handle single points of failure at IdP, malicious RP access,
RP-IdP collusion, credential verification, and threshold access
token issuance without relying on trusted hardware. Moreover,
our authentication protocol provides an identity backdoor for

12

accountability and lawful de-anonymization. The experiments
show that a complete VeriSSO authentication flow can finish
within 100ms, demonstrating feasibility in practical use.

Acknowledgments

This work was supported in part by the US National Science
Foundation under grant number 2247561.

References

[1] O. Foundation, “What are openid specifications,”
https://openid.net/developers/specs/, 2023, accessed Online: 2023-
08-17.

[2] auth0, “What is oauth 2.0?” https://auth0.com/intro-to-iam/what-is-
oauth-2, 2023, accessed Online: 2023-08-17.

[3] B. Krishnamurthy, D. Malandrino, and C. E. Wills, “Measuring privacy
loss and the impact of privacy protection in web browsing,” in Proceed-
ings of the 3rd Symposium on Usable Privacy and Security, 2007, pp.
52–63.

[4] S.-T. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey, and
K. Beznosov, “Investigating users’ perspectives of web single sign-on:
Conceptual gaps and acceptance model,” ACM Transactions on Internet
Technology (TOIT), vol. 13, no. 1, pp. 1–35, 2013.

[5] R. Gafni and D. Nissim, “To social login or not login? exploring factors
affecting the decision,” Issues in Informing Science and Information
Technology, vol. 11, no. 1, pp. 57–72, 2014.

[6] M. Urueña, A. Muñoz, and D. Larrabeiti, “Analysis of privacy vul-
nerabilities in single sign-on mechanisms for multimedia websites,”
Multimedia Tools and Applications, vol. 68, pp. 159–176, 2014.

[7] C. Guo, J. Lin, Q. Cai, W. Wang, F. Li, Q. Wang, J. Jing, and B. Zhao,
“Uppresso: Untraceable and unlinkable privacy-preserving single sign-
on services,” arXiv preprint arXiv:2110.10396, 2021.

[8] E. Maler and D. Reed, “The venn of identity: Options and issues in
federated identity management,” IEEE security & privacy, vol. 6, no. 2,
pp. 16–23, 2008.

[9] S.-T. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey, and
K. Beznosov, “What makes users refuse web single sign-on? an empir-
ical investigation of openid,” in Proceedings of the seventh symposium
on usable privacy and security, 2011, pp. 1–20.

[10] M. R. Asghar, M. Backes, and M. Simeonovski, “Prima: Privacy-
preserving identity and access management at internet-scale,” in 2018
IEEE International Conference on Communications (ICC). IEEE, 2018,
pp. 1–6.

[11] Z. Zhang, M. Król, A. Sonnino, L. Zhang, and E. Rivière, “El passo:
Efficient and lightweight privacy-preserving single sign on,” Proceedings
on Privacy Enhancing Technologies, vol. 2021, no. 2, pp. 70–87, 2021.

[12] M. Kroschewski and A. Lehmann, “Save the implicit flow? enabling
privacy-preserving rp authentication in openid connect,” Proceedings on
Privacy Enhancing Technologies, 2023.

[13] A. D. Johnson, I. Alom, and Y. Xiao, “Rethinking single sign-on: A
reliable and privacy-preserving alternative with verifiable credentials,”
in Proceedings of the 10th ACM Workshop on Moving Target Defense,
2023, pp. 25–28.

[14] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”
in Advances in Cryptology—EUROCRYPT 2001: International Con-
ference on the Theory and Application of Cryptographic Techniques
Innsbruck, Austria, May 6–10, 2001 Proceedings 20. Springer, 2001,
pp. 93–118.

[15] J. CAMENISCH, “Signature schemes and anonymous credentials from
bilinear maps,” in Advances in Cryptology-CRYPTO 2004. Springer-
Verlag, 2004, pp. 56–72.

[16] C. Garman, M. Green, and I. Miers, “Decentralized anonymous creden-
tials,” Cryptology ePrint Archive, 2013.

[17] J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous attestation
using the strong diffie hellman assumption revisited,” in Trust and
Trustworthy Computing: 9th International Conference, TRUST 2016,
Vienna, Austria, August 29-30, 2016, Proceedings 9. Springer, 2016,
pp. 1–20.

[18] C. Paquin and G. Zaverucha, “U-prove cryptographic specification v1.
1,” Technical Report, Microsoft Corporation, 2011.

[19] R. Xu, S. Yang, F. Zhang, and Z. Fang, “Miso: Legacy-compatible
privacy-preserving single sign-on using trusted execution environments,”
in 2023 IEEE 8th European Symposium on Security and Privacy
(EuroS&P). IEEE, 2023, pp. 352–372.

[20] W3C, “Verifiable credentials data model v2.0,” https://www.w3.org/TR/
vc-data-model-2.0/, 2024, accessed 9/2/2024.

[21] Auth0, “Proof key for code exchange (pkce) in web applications with
spring security,” https://auth0.com/blog/pkce-in-web-applications-with-
spring-security/, 2024.

[22] Okta, “Implement authorization by grant type,” https://developer.okta.
com/docs/guides/implement-grant-type/clientcreds/main/, 2024.

[23] OAuth, “Oauth 2.0 implicit grant,” https://oauth.net/2/grant-types/
implicit/, 2024.

[24] Okta, “The best practice around implicit in oauth 2.0 is changing,”
https://developer.okta.com/blog/2019/05/01/is-the-oauth-implicit-flow-
dead, 2024.

[25] J. Sedlmeir, R. Smethurst, A. Rieger, and G. Fridgen, “Digital identities
and verifiable credentials,” Business & Information Systems Engineer-
ing, vol. 63, no. 5, pp. 603–613, 2021.

[26] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic macs and keyed-
verification anonymous credentials,” in Proceedings of the 2014 acm
sigsac conference on computer and communications security, 2014, pp.
1205–1216.

[27] J. Camenisch, M. Drijvers, P. Dzurenda, and J. Hajny, “Fast keyed-
verification anonymous credentials on standard smart cards,” in ICT
Systems Security and Privacy Protection: 34th IFIP TC 11 International
Conference, SEC 2019, Lisbon, Portugal, June 25-27, 2019, Proceedings
34. Springer, 2019, pp. 286–298.

[28] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2001, vol. 2.

[29] J. Camenisch and E. Van Herreweghen, “Design and implementation
of the idemix anonymous credential system,” in Proceedings of the 9th
ACM Conference on Computer and Communications Security, 2002,
pp. 21–30.

[30] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials,” in Advances
in Cryptology—CRYPTO 2002: 22nd Annual International Cryptology
Conference Santa Barbara, California, USA, August 18–22, 2002 Pro-
ceedings 22. Springer, 2002, pp. 61–76.

[31] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
Advances in Cryptology–CRYPTO 2004, 2004.

[32] D. Boneh and X. Boyen, “Short signatures without random oracles,” in
International conference on the theory and applications of cryptographic
techniques. Springer, 2004, pp. 56–73.

[33] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-taa,” in
Security and Cryptography for Networks: 5th International Conference,
SCN 2006, Maiori, Italy, September 6-8, 2006. Proceedings 5. Springer,
2006, pp. 111–125.

[34] Okta, “Auth0 documentation,” https://auth0.com/docs, accessed
9/4/2024.

[35] OneLogin, “OneLogin homepage,” https://www.onelogin.com/, accessed
9/4/2024.

[36] W3C, “Verifiable credentials data model v2.0,”
https://www.w3.org/TR/vc-data-model-2.0/, 2023, accessed Online:
2023-08-22.

[37] I. Alom, R. M. Eshita, A. I. Harun, M. S. Ferdous, M. K. B. Shuhan,
M. J. M. Chowdhury, and M. S. Rahman, “Dynamic management
of identity federations using blockchain,” in 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2021,
pp. 1–9.

[38] S. Tessaro and C. Zhu, “Revisiting bbs signatures,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2023, pp. 691–721.

[39] I. E. T. F. (IETF), “The bbs signature scheme,” https://identity.
foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html, 2024.

[40] J. Doerner, Y. Kondi, E. Lee, A. Shelat, and L. Tyner, “Threshold bbs+
signatures for distributed anonymous credential issuance,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 773–789.

[41] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,”
J. Cryptology, vol. 1, pp. 77–94, 1988.

[42] C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in
Advances in Cryptology-CRYPTO’89 Proceedings 9. Springer, 1990,
pp. 239–252.

13

https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://developer.okta.com/docs/guides/implement-grant-type/clientcreds/main/
https://developer.okta.com/docs/guides/implement-grant-type/clientcreds/main/
https://oauth.net/2/grant-types/implicit/
https://oauth.net/2/grant-types/implicit/
https://auth0.com/docs
https://www.onelogin.com/
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html

[43] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Conference on the theory and
application of cryptographic techniques. Springer, 1986, pp. 186–194.

[44] Y. Seurin, “On the exact security of schnorr-type signatures in the
random oracle model,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2012,
pp. 554–571.

[45] H. Yu, C. Du, Y. Xiao, A. Keromytis, C. Wang, R. Gazda, Y. T. Hou,
and W. Lou, “Aaka: An anti-tracking cellular authentication scheme
leveraging anonymous credentials,” in Network and Distributed System
Security Symposium (NDSS), 2023.

[46] D. Chaum, “Blind signatures for untraceable payments,” in Advances in
Cryptology: Proceedings of Crypto 82. Springer, 1983, pp. 199–203.

[47] D. Schröder and D. Unruh, “Security of blind signatures revisited,”
Journal of Cryptology, vol. 30, pp. 470–494, 2017.

[48] J. Katz, J. Loss, and M. Rosenberg, “Boosting the security of blind
signature schemes,” in Advances in Cryptology–ASIACRYPT 2021:
27th International Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore, December 6–10, 2021,
Proceedings, Part IV 27. Springer, 2021, pp. 468–492.

[49] S. Faust, C. Hazay, D. Kretzler, L. Rometsch, and B. Schlosser, “Non-
interactive threshold bbs+ from pseudorandom correlations,” Cryptology
ePrint Archive, 2023.

[50] I. Foundation, https://identity.foundation/bbs-signature/
draft-blind-bbs-signatures.txt, 2024.

[51] O. C. D. C. Registration, “Openid,” https://openid.net/specs/
openid-connect-registration-1 0-errata2.html, 2024.

[52] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[53] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich, “How to win the clonewars: efficient periodic n-times
anonymous authentication,” in Proceedings of the 13th ACM conference
on Computer and communications security, 2006, pp. 201–210.

[54] Microsoft, “What is fido2?” https://www.microsoft.com/en-
us/security/business/security-101/what-is-fido2, 2024.

[55] S. Bowe, “Bls12-381: New zk-snark elliptic curve construction,”
https://electriccoin.co/blog/new-snark-curve/, 2024.

[56] L. Harchandani, “Bbs and bbs+ signatures and protocols for proof of
knowledge of signature,” https://crates.io/crates/bbs plus, 2024.

[57] D. Fett, R. Küsters, and G. Schmitz, “Spresso: A secure, privacy-
respecting single sign-on system for the web,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
2015, pp. 1358–1369.

[58] T.-W. Lin, C.-L. Hsu, T.-V. Le, C.-F. Lu, and B.-Y. Huang, “A smartcard-
based user-controlled single sign-on for privacy preservation in 5g-iot
telemedicine systems,” Sensors, vol. 21, no. 8, p. 2880, 2021.

[59] Z. A. Lux, D. Thatmann, S. Zickau, and F. Beierle, “Distributed-ledger-
based authentication with decentralized identifiers and verifiable creden-
tials,” in 2020 2nd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS). IEEE, 2020, pp.
71–78.

[60] H. Yildiz, C. Ritter, L. T. Nguyen, B. Frech, M. M. Martinez, and
A. Küpper, “Connecting self-sovereign identity with federated and user-
centric identities via saml integration,” in 2021 IEEE Symposium on
Computers and Communications (ISCC). IEEE, 2021, pp. 1–7.

[61] E. Commission, “General data protection regulation (gdpr), chapter ii,
article 5,” https://gdpr-info.eu/art-5-gdpr/, 2024.

[62] S. Hammann, R. Sasse, and D. Basin, “Privacy-preserving openid
connect,” in Proceedings of the 15th ACM Asia conference on computer
and communications security, 2020, pp. 277–289.

[63] J. He, L. Lei, Y. Wang, P. Wang, and J. Jing, “Arpsso: An oidc-
compatible privacy-preserving sso scheme based on rp anonymization,”
in European Symposium on Research in Computer Security. Springer,
2024, pp. 268–288.

[64] M. Kroschewski, A. Lehmann, and C. Özbay, “Oppid: Single sign-on
with oblivious pairwise pseudonyms,” Cryptology ePrint Archive, 2024.

[65] C. Baum, T. Frederiksen, J. Hesse, A. Lehmann, and A. Yanai, “Pesto:
proactively secure distributed single sign-on, or how to trust a hacked
server,” in 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2020, pp. 587–606.

[66] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee, “Pasta: password-
based threshold authentication,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, 2018,
pp. 2042–2059.

[67] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-optimal password-
protected secret sharing and t-pake in the password-only model,” in Ad-
vances in Cryptology–ASIACRYPT 2014: 20th International Conference
on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, ROC, December 7-11, 2014, Proceedings, Part II
20. Springer, 2014, pp. 233–253.

[68] NIST, https://pages.nist.gov/800-63-4/sp800-63c.html, 2024.
[69] O. Foundation, “What is openid for verifiable credentials,”

https://openid.net/sg/openid4vc/specifications/, 2024.
[70] K. N. Chadwick and J. Vercammen, “OpenID for verifiable

credentials,” https://openid.net/wordpress-content/uploads/2022/05/
OIDF-Whitepaper OpenID-for-Verifiable-Credentials FINAL
2022-05-12.pdf, 2022.

[71] P. S. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime
order,” in International workshop on selected areas in cryptography.
Springer, 2005, pp. 319–331.

[72] D. Boneh and X. Boyen, “Short signatures without random oracles and
the sdh assumption in bilinear groups,” Journal of cryptology, vol. 21,
no. 2, pp. 149–177, 2008.

[73] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich, “Sok: single sign-
on security—an evaluation of openid connect,” in 2017 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2017, pp. 251–
266.

[74] Y. Zhou and D. Evans, “Ssoscan: Automated testing of web applica-
tions for single {Sign-On} vulnerabilities,” in 23rd USENIX Security
Symposium (USENIX Security 14), 2014, pp. 495–510.

[75] S. G. Morkonda, S. Chiasson, and P. C. van Oorschot, “Empirical
analysis and privacy implications in oauth-based single sign-on systems,”
in Proceedings of the 20th Workshop on Workshop on Privacy in the
Electronic Society, 2021, pp. 195–208.

[76] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts
through facebook and google: A traffic-guided security study of commer-
cially deployed single-sign-on web services,” in 2012 IEEE Symposium
on Security and Privacy. IEEE, 2012, pp. 365–379.

[77] S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details:
an empirical analysis of oauth sso systems,” in Proceedings of the 2012
ACM conference on Computer and communications security, 2012, pp.
378–390.

Appendix

A. BBS Signature

1) Bilinear Maps: Let G1, G2, and GT be groups of prime
order p. A map e : G1×G2 → GT must satisfy the following
properties:

• Bilinearity: eb(g
x
1 , g

y
2) = eb(g1, g2)

xy for all g1 ∈ G1

and g2 ∈ G2, and x, y ∈ Zp.
• Non-degeneracy: For all generators g1 ∈ G1 and g2 ∈

G2, eb(g1, g2) ̸= 1, generates GT .
• Efficiency: There exists an efficient algorithm to compute

eb(a, b) for any a ∈ G1, b ∈ G2.
2) Type-3 Paring: Type-3 pairings allow for the most

efficient and secure operations in G1 using BN curves [71].
We describe our scheme in a type-3 setting, i.e., assuming
G1 ̸= G2 and no efficiently computable homomorphism
G2 → G1 exists.

B. The Signature Scheme

In a typical setup, BBS signature builds on pairing-based
cryptography. Next, we describe a non-interactive version of
the BBS signature protocol from [38], [39] that is adopted by
our system. Let G1 and G2 be bilinear groups of prime order
p, g1 and g2 be generators of G1 and G2 respectively. More

14

https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.txt
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.txt
https://openid.net/specs/openid-connect-registration-1_0-errata2.html
https://openid.net/specs/openid-connect-registration-1_0-errata2.html
https://pages.nist.gov/800-63-4/sp800-63c.html
https://openid.net/wordpress-content/uploads/2022/05/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials_FINAL_2022-05-12.pdf
https://openid.net/wordpress-content/uploads/2022/05/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials_FINAL_2022-05-12.pdf
https://openid.net/wordpress-content/uploads/2022/05/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials_FINAL_2022-05-12.pdf

details on the bilinearity and pairing assumptions are provided
in Appendix A.

BBS.KeyGen :

• Randomly sample a vector of group elements
(h1, . . . , hL)← GL

1 .
• Uniformly choose a private key x← Z∗

p.
• Compute w = gx2 , where g2 is a generator of the group

G2.
• Set Secret Key sk = x ∈ Z∗

p

• Set Public Key pk = (w, h1, . . . , hL) ∈ G2 ×GL
1 :

BBS.Sign :

• Inputs: Message (m1,m2, . . . ,mL) ∈ ZL
p , and the Secret

key x ∈ Z∗
p.

• Select a random nonce, e← Zp.
• Compute B = g1

∏L
i=1 h

mi
i and A = B

1
e+x .

• The signature σ is the tuple (A, e) ∈ G1 × Zp.
BBS.V erifySign :

• Inputs: Public key (w, h1, . . . , hL) ∈ G2×GL
1 , Message

(m1,m2, . . . ,mL) ∈ ZL
p , and signature (A, e) ∈ G1×Zp.

• Compute the following pairings and check the equality,
eb(A,wg

e
2)

?
= eb (B, g2), where eb is the bilinear pairing

function.
• Accept the signature if the equality holds, reject other-

wise.

C. Security Assumptions
1) q-Strong Diffie-Hellman (q-SDH) Assumption: The q-

SDH assumption, as introduced by Boneh and Boyen for type-
3 pairing settings [72], can be stated as follows [17]:

The q-SDH assumption states that, given the tuple

(g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2) ∈ Gq+1

1 ×G2
2,

where G1 and G2 are cyclic groups of prime order p with
generators g1 and g2, and x ∈ Zp is randomly chosen and
unknown, it is computationally infeasible for any probabilistic
polynomial-time adversary to produce a pair

(c, g
1/(x+c)
1) ∈ Zp \ {−x} ×G1.

Here, c ̸= −x ensures that 1/(x+ c) is well-defined.
2) Decisional Diffie-Hellman (DDH) Assumption: Let G be

a cyclic group of prime order p with generator g. Given the
tuple

(g, ga, gb, gz) ∈ G4,

where a, b ∈ Zp are chosen uniformly at random, the goal is
to determine whether z = ab or z ∈ Zp is chosen uniformly
at random.

The DDH assumption asserts that it is computationally
infeasible for a probabilistic polynomial-time adversary to
distinguish the tuple (g, ga, gb, gab) from a random tuple
(g, ga, gb, gz).

3) Strong Computational Diffie-Hellman Inversion
(SCDHI) Problem: The Strong Computational Diffie-
Hellman Inversion (SCDHI) problem, as defined in [27], [45],
is a variant of the classical Computational Diffie-Hellman

(CDH) problem with an additional inversion requirement.
Specifically, given gx and gy for unknown x, y ∈ Zp, where g
is the generator of a cyclic group G, the goal is to compute:

g1/(x−y),

where x ̸= y.
The SCDHI problem is considered computationally hard

because it combines the CDH challenge of dealing with
unknown exponents x and y with the additional requirement
of computing the inverse of the difference x− y.

D. More Related Work on SSO Security and Privacy Issues
SSO is a fundamental service of a typical Identity Man-

agement (IM) framework generally implemented by the IdP
and serves the users and RPs. Popular IM standards such
as OIDC and SAML (Security Assertion Markup Language)
designs require IdP to take the crucial role of managing user
identity databases and authentication servers. With so much
data and services routing from a single site, IdP becomes an
attractive target for data theft and interruption [8], [9]. Even
if IdP is assumed to follow security policies, its availability
and integrity directly affect user data privacy, its subscriber
RPs, and their businesses. Moreover, studies reveal OIDC
implementation flaws resulting in IdP confusion and malicious
endpoints [73]. Eyeing the potential exposure of SSO authenti-
cation tokens, Zhou et al. [74] propose a framework, SSOScan,
for vulnerability testing by simulating attacks and monitoring
traffic. In SPRESSO [57], the authors propose a similar tool
and use different types of attacker models to analyze security
issues.

Apart from the security and availability aspects of SSO,
user privacy and tracking is an active area of research in this
domain. Researchers have found sensitive information compro-
mised from the URL parameters and HTTP Referrer header
and SSO providers like Facebook Connect allowing websites
to log user actions [6]. The empirical analysis presented by
[75] highlights that at least one category of personal data
stored and managed by major IdP such as Google, Facebook,
Apple, and LinkedIn is privacy-intrusive. Moreover, the study
found privacy-friendly login options listed towards the end.
[76] also analyzed the major SSO and IdPs and reported
several vulnerabilities including modification of identity and
unauthorized access.

On the other hand, RPs have also been violating privacy
guidelines. Starting from implementation flaws to colluding.
[75], [77] discuss the improper implementation and design in
the architecture concerning storage, relaying, and validation
of authentication tokens can also expose user credentials and
enable unauthorized access. Moreover, RPs may combine dif-
ferent authentication tokens to generate a user profile, creating
heightened risks of linkage attack [6]–[8]. In summary, a
concerned user has very limited scope for auditing the con-
sequences of the personal information stored and exchanged
between the IdP and RPs.

15

	Introduction
	Background
	Single Sign-On Basics
	Verifiable Credentials

	System Overview
	Participant Model
	System Goals
	Threat Model
	VeriSSO Overview

	Cryptographic Building Blocks
	BBS Signatures
	ZKP and Selective Disclosure
	Blind Signature

	Detailed Design
	Registration Phase
	RP Registration
	User Registration and Credential Issuance

	Authentication Phase
	RP and User Authentication by ASs
	Threshold ID Token Issuance and Verification
	Lawful De-anonymization

	Security Analysis and Discussion
	Security Analysis
	Discussion on Practical Deployment

	Implementation and Evaluation
	Prototype Implementation
	Evaluation Results

	Related Work
	Conclusion
	References
	Appendix
	BBS Signature
	Bilinear Maps
	Type-3 Paring

	The Signature Scheme
	Security Assumptions
	 q -Strong Diffie-Hellman (q-SDH) Assumption
	Decisional Diffie-Hellman (DDH) Assumption
	Strong Computational Diffie-Hellman Inversion (SCDHI) Problem

	More Related Work on SSO Security and Privacy Issues

