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Abstract

In this work, we study the communication complexity of constant-round secure multiparty computa-
tion (MPC) against a fully malicious adversary and consider both the honest majority setting and the
dishonest majority setting. In the (strong) honest majority setting (where t = (1/2− ϵ)n for a constant
ϵ), the best-known result without relying on FHE is given by Beck et al. (CCS 2023) based on the LPN
assumption that achieves O(|C|κ) communication, where κ is the security parameter and the achieved
communication complexity is independent of the number of participants. In the dishonest majority set-
ting, the best-known result is achieved by Goyal et al. (ASIACRYPT 2024), which requires O(|C|nκ)
bits of communication and is based on the DDH and LPN assumptions.

In this work, we achieve the following results: (1) For any constant ϵ < 1, we give the first constant-
round MPC in the dishonest majority setting for corruption threshold t < (1− ϵ)n with O(|C|κ+D(n+
κ)2κ) communication assuming random oracles and oblivious transfers, where D is the circuit depth. (2)
We give the first constant-round MPC in the standard honest majority setting (where t = (n − 1)/2)
with O(|C|κ+D(n+ κ)2κ) communication only assuming random oracles.

Unlike most of the previous constructions of constant-round MPCs that are based on multiparty
garbling, we achieve our result by letting each party garble his local computation in a non-constant-
round MPC that meets certain requirements. We first design a constant-round MPC that achieves
O(|C|κ+Dn2κ) communication assuming random oracles in the strong honest majority setting of t = n/4.
Then, we combine the party virtualization technique and the idea of MPC-in-the-head to boost the
corruption threshold to t < (1 − ϵ)n for any constant ϵ < 1 assuming oblivious transfers to achieve our
first result. Finally, our second result is obtained by instantiating oblivious transfers using a general
honest-majority MPC and the OT extension technique built on random oracles.

1



Contents
1 Introduction 4

1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Technical Overview 6
2.1 Compiling an SS-Based Protocol to a Constant-Round Protocol via Black-Box Garbling . . . 7
2.2 Towards Constant Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Party Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Preliminaries 11
3.1 Linear Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Garbling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Symmetric Key Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Constant-Round MPC from Black-Box Garbling 14
4.1 Abstract Non-Constant-Round MPC Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Towards Constant-Round MPC with Malicious Security . . . . . . . . . . . . . . . . . . . . . 16

5 Boosting the Efficiency via Concrete Garbling Schemes 17
5.1 The Choice of the Garbling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Boosting the Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Instantiation of the Abstract Protocol for SIMD Circuits 21

7 Overview of the Dishonest Majority Constant-Round MPC 24

A The Security Model 33

B Basic Algebraic Geometry 33

C Security Proof for Protocol Π1 34

D Security Proof for Protocol Π′
1 39

E Cost Analysis for Π′
1 47

F Instantiation of the Abstract Protocol 48
F.1 Handling Network Routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
F.2 Instantiation of Linear Secret Sharing Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
F.3 Instantiation of the Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

F.3.1 Functionalities for Preprocessing and Input. . . . . . . . . . . . . . . . . . . . . . . . . 52
F.3.2 Subprotocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
F.3.3 Main Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

F.4 Cost Analysis for Π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

G Proof of Theorem 6 57

H Realizing the Functionalities 63
H.1 Realizing Fprep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
H.2 Realizing Finput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2



I Analysis of Rounds for Π′
1 74

J Dishonest Majority Constant-Round MPC 74
J.1 Subprotocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
J.2 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
J.3 Security Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
J.4 Cost Analysis for Π2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

J.4.1 Analysis of Communication Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 103
J.4.2 Analysis of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

K Corollary in the Standard Honest Majority Setting 106

3



1 Introduction
Secure multiparty computation (MPC) [Yao82, GMW87] enables a set of parties to evaluate a public function
on their private inputs. By now, many improvements have been made to the efficiency of MPC protocols
from different aspects, such as computation complexity, communication complexity, and round complexity.
However, existing protocols remain inefficient when running among a large number of parties that are geo-
graphically far away from each other. To fit this situation, we need round-efficient and scalable protocols.
The two main techniques of constructing MPC protocols, garbled circuits and secret sharings, have been
used in constructing efficient protocols in round complexity and communication complexity respectively.
However, these protocols often have poor performance in the other criteria.

MPC from Secret Sharings. The communication cost of secret-sharing-based MPC protocols has achieved
good scalability in the number of parties. In particular, linear communication has been achieved for a long
time by the well-known DN protocol [DN07] for semi-honest security and [BFO12] for malicious security with
honest majority, and SPDZ protocol [DPSZ12] with dishonest majority. Moreover, recent works have even
achieved an O(|C|) total communication to compute a circuit C, which is independent of the number of par-
ties, either in the strong honest majority setting where t = (1/2− ϵ)n for any constant ϵ < 1/2 [GPS21] or in
the dishonest majority setting where t = (1− ϵ)n for any constant ϵ < 1 in the preprocessing model [GPS22],
even with information-theoretic security. However, MPC protocols based on secret sharings are usually con-
structed in a gate-by-gate fashion, and the round complexity of such protocols grows linearly in the depth of
the circuit. When the network latency between the parties is large, these protocols become quite inefficient
in computing deep circuits.

MPC from Garbled Circuits. To achieve constant-round MPCs, the most common approach is based on
garbled circuits. Protocols from garbled circuits can overcome the drawback of the large round complexity of
those protocols based on secret sharings. In particular, protocols with constant rounds have been constructed
since the famous BMR protocol [BMR90] and its followup work [DI05]. Up to now, a long line of works have
improved the efficiency of constant-round MPC protocols in the BMR framework. However, this kind of
protocols still required O(|C|n2κ) bits of communication for a long time, which is inefficient when running
among a large party set.

Recently, the O(|C|n2κ) barrier has been overcome in both the (strong) honest majority setting and the
dishonest majority setting. The significant progress by Beck et al. [BGH+23] achieves O(|C|κ) communica-
tion complexity for constant-round MPC in the strong honest majority setting of (1/2−ϵ)n corruption under
the assumption of LPN, and the best achieved communication complexity in the dishonest majority setting
is O(|C|nκ) [GLM+24] based on the DDH and LPN assumptions. However, both constructions require heavy
cryptographic primitives that incur a large computation overhead, whereas non-constant-round MPCs are
mostly based on information-theoretic tools.

Thus, a natural question is whether we can build MPC protocols that have the advantage of both
approaches. In particular, we ask the following question:

“Can we construct an MPC protocol that achieves both constant round complexity and constant commu-
nication complexity (in the number of parties) from lightweight cryptographic primitives?”

1.1 Our Contribution
In this work, we answer the above question affirmatively and obtain constant-round MPC protocols with
constant communication complexity in various settings only assuming random oracles and oblivious transfers
(OTs). Our first result targets for the strong honest majority setting against t = n/4 corrupted parties.

Theorem 1. Assuming random oracles, there exists a computationally secure 5-round MPC protocol against
a fully malicious adversary controlling up to n/4 parties with communication of O(|C|κ+Dn2κ), where |C|
is the circuit size, D is the circuit depth, and κ is the computational security parameter.

4



When relying on the party virtualization technique [Bra87] and OTs, we can further extend our first
result to the dishonest majority setting where t = (1− ϵ)n for any constant 0 < ϵ < 1.

Theorem 2. Assuming random oracles and random OTs, for any constant 0 < ϵ < 1, there exists a
computationally secure (12 + RROT)-round MPC protocol against a fully malicious adversary controlling up
to (1− ϵ)n parties with communication of O(|C|κ+D(n+κ)2κ+n3) bits plus O(|C|+D(n+κ)2) instances
of ROT of message length O(κ), where |C| is the circuit size, D is the circuit depth, RROT is the number of
rounds for an instance of ROT, and κ is the computational security parameter.

Finally, we note that in the standard honest majority setting, oblivious transfers can be instantiated
by a general honest-majority MPC protocol and the OT extension technique [IKNP03], thus obtaining the
following corollary.

Corollary 1. Assuming random oracles, there exists a computationally secure 28-round MPC protocol
against a fully malicious adversary controlling up to (n − 1)/2 parties with communication of O(|C|κ +
D(n + κ)2κ + n3) bits, where |C| is the circuit size, D is the circuit depth, and κ is the computational
security parameter.

To achieve our result, our main technique is a compiler that converts any non-constant-round MPC
protocol that meets certain requirements to a constant-round MPC protocol and the compiler can be based
on any (projective) garbling scheme in a black-box way. Our first result only achieves security against 1/4
corruption. To boost the corruption threshold, we use the party virtualization technique [Bra87], together
with the idea of MPC-in-the-head to achieve malicious security. We refer the readers to Section 2 for an
overview of our techniques.

Limitations of Our Results. Our results suffer from the following two limitations. First, the commu-
nication complexity we achieve contains a term that depends on the circuit depth, which usually appears
in non-constant-round MPC such as [GPS21, GPS22, EGP+23] but not in constant-round MPC construc-
tions [BGH+23, GLM+24]. This term comes from our instantiation of the underlying non-constant round
MPC protocol which requires O(|C|+Dn2) communication due to the use of packed secret sharings. Thus,
we only achieve O(|C|κ) communication for circuits whose depth D = O(|C|/(n+ κ)2).

Second, our results mainly target for asymptotic communication efficiency and are not ready to be used in
practice. We leave the question of removing the depth-dependent term and improving the concrete efficiency
of our construction to future work.

1.2 Related Works
Following the well-known BMR protocols [BMR90, DI05], a rich line of works have improved the concrete
efficiency of constant-round MPC protocols in the BMR framework [LPSY15, BLO16, BLO17, WRK17,
HSS17, HOSS18a, HOSS18b], [BCO+21, BGH+23, GLM+24]. We compare our results with the most recent
two works [BGH+23, GLM+24].

For the computation of a circuit C of size |C|, the communication complexity we achieve is O(|C| · κ)
(here we omit the terms that are sublinear in the circuit size) in the dishonest majority setting with a
constant gap. This result even improves the state-of-the-art non-constant round MPC protocol in this
setting [EGP+23]. On the other hand, the state-of-the-art result by Beck et al. [BGH+23] only achieves a
similar result assuming a strong honest majority. Compared with the best result in the dishonest majority
setting by Goyal et al. [GLM+24], our construction improves the communication complexity by a factor of
O(n) when there is a constant gap in the corruption threshold.

Our constructions are based on the minimal assumption (i.e., OTs in the dishonest majority setting) plus
random oracles, while the previous protocols [BGH+23, GLM+24] rely on stronger cryptographic assumptions
such as DDH and LPN.

Regarding the round complexity, [BGH+23] requires at least 31 rounds and [GLM+24] requires at least
36 rounds plus the round complexity of instantiating VOLEs and OLEs. In comparison, our construction
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requires 12 + RROT rounds in the dishonest majority setting, and 28 rounds in the honest majority setting,
which are more efficient than [BGH+23, GLM+24].

We note that a concurrent work [HKN+25] also focuses on the dishonest majority setting against t =
(1−ϵ)n corruption, assuming OT and random oracles. Their construction achieves O(|C|nκ) communication
and is more efficient for small circuits. In comparison, our result achieves O(|C|κ + D(n + κ)2κ + n3)
communication, which improves [HKN+25] by a factor of O(n). From the technique side, [HKN+25] follows
the BMR protocol [BMR90] and [WRK17], and makes use of packed secret sharings to shave a factor of
O(n) in the communication complexity. Our approach deviates from [HKN+25] by constructing a compiler
that converts any non-constant-round MPC protocol that meets certain requirements to a constant-round
MPC protocol.

Other Related Works. Another line of works including [GS18, ACGJ18], [ACGJ19, ABT19, ACGJ20]
target for the round-optimal MPC in various settings whereas our work mainly focuses on improving the
communication complexity as long as the protocol achieves constant number of rounds. Based on the
black-box use of FHE, PCP and PCPP machinery [CMOS25] achieve an 11-round, maliciously secure 2PC
protocol, with communication complexity that is independent of the circuit size and depends only on the
size of input/output times the security parameter. However, their scheme uses very strong assumptions
(circular-secure FHE with bootstrapping) and is far from being practically efficient.

We note that [GS18] and our work share a similar starting idea of using garbled circuits to do round
collapsing. But except for the starting idea, our technique is very different from that in [GS18]. The
construction in [GS18] works for any non-constant-round MPC only assuming OTs. Instead, our work
only focuses on non-constant-round MPC that meets certain requirements and assumes random oracles in
addition. On the other hand, the communication complexity of [GS18] is at least Θ(|C|n2κ) since each party
needs to maintain the state of all parties and generates a pair of wire labels for each bit in the state. Note
that this even does not count the cost of the underlying non-constant-round MPC protocol. In comparison,
our construction achieves O(|C|κ) communication.

It worth mentioning that [ACGJ20] also achieves Õ(|C|) communication in the strong honest majority
setting where the Õ notation suppresses polynomial factors in the security parameter κ and logarithmic
polylog factors in the number of parties n. Very informally, their result is achieved by choosing a random
committee at the beginning of the computation such that at least one party in the committee is honest,
and then running a constant-round dishonest majority MPC among parties in the committee only. Note
that to ensure that the random committee contains at least one honest party with overwhelming probability,
the committee size should be proportional to the security parameter κ. We estimate that the construction
in [ACGJ20] requires at least Θ(|C|κ7) communication. On the other hand, our work only requires O(|C|κ+
D(n+ κ)2κ) communication.

From the technique side, the use of a random committee in [ACGJ20] makes their construction only
secure against a static adversary. Indeed, an adaptive adversary, after learning the choice of the committee,
can just corrupt parties in the committee and easily break down the security. Although our construction
makes use of the party virtualization technique [Bra87] to boost the corruption threshold, where each virtual
party is also simulated by a random committee (of constant size), our construction can potentially achieve
the adaptive security. As we analyzed in Section 7, an adversary, even choosing corrupted parties after
learning the choice of all committees for virtual parties, cannot break the security of our construction.

2 Technical Overview
We give a high-level overview of the main techniques used in this paper. We focus on constructing constant-
round MPC protocols for a Boolean circuit C consisting of AND and XOR gates.
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2.1 Compiling an SS-Based Protocol to a Constant-Round Protocol via Black-
Box Garbling

Starting Idea and Technical Difficulty in Our Setting. At a high level, we start with a multi-round
protocol Π and attempt to collapse the number of rounds using a compiler. For simplicity, we assume the
entire protocol Π is running over a broadcast channel. Our starting point is the following idea: For each
round in the multi-round protocol Π, each party Pi would create a garbled circuit corresponding to the
next-message function of the protocol. Thus, if the number of rounds in Π is R, the total number of garbled
circuits would be n · R. All of these garbled circuits are then sent to an evaluator (say P1). The evaluator
will attempt to execute these garbled circuits non-interactively.

To be more concrete, after receiving garbled circuits from all parties, the evaluator emulates the underlying
multi-round MPC protocol as follows:

1. The evaluator first obtains from all parties the input wire labels for garbled circuits corresponding to
the next-message functions in the first round. Then he evaluates all parties’ garbled circuits for the first
round and obtains the output wire labels, which are used as the input wire labels for the next-message
functions in the second round.

2. Following the above, with input wire labels for the j-th round, the evaluator computes all parties’
garbled circuits for the j-th round and obtains the input wire labels for the (j + 1)-th round.

3. Finally, the evaluator obtains the protocol output.

However, to make the above idea work, for each bit z sent from a party Pi to a party Pj in the underlying
MPC protocol, Pi and Pj have to use the same wire labels for z when computing their garbled circuits. Only
in this way, after the evaluator computes Pi’s garbled circuit and obtains Pi’s wire label for z, he can use it
as the input wire label for z to compute Pj ’s garbled circuit in the next round. Unfortunately, this is not
secure when Pi colludes with the evaluator (or even Pi is just the evaluator) since the evaluator would learn
from Pi the wire labels corresponding to both z = 0 and z = 1. This allows the evaluator to try both z = 0
and z = 1 by using the corresponding wire label in Pj ’s garbled circuit, which breaks the security of the
underlying MPC protocol.

Therefore, for security reason, Pi and Pj cannot use the same wire labels for z. But then, it is not clear how
the evaluators could obtain the input wire labels for Pj ’s garbled circuits. In the literature, the same starting
idea has been used in various forms in prior works. In the context of one-time programs [GKR08, GIS+10],
these wire labels are made available using hardware tokens. In [GS18], this difficulty is bypassed by cleverly
combining OT protocols with garbled circuits. However, the construction in [GS18] requires every party to
keep track of the masked state of all parties. In particular, each party will generate a pair of wire labels for
every bit in the masked state of all parties. This results in at least Θ(|C|n2κ) communication for computing
a function of size |C|.

In our setting, we want the output of the garbled circuits of round j to allow the evaluator to compute
wire labels to be used in round j + 1 directly, without resorting to hardware tokens or OT protocols.

To this end, at the very beginning of the protocol, each party Pi secret-shares all the input wire labels
for all the garbled circuits prepared by Pi. Then when a party prepares the garbled circuits, the garbled
circuits would have the received wire label shares hardcoded. What we want to achieve in the following is to
let all parties’ garbled circuits of round j, in addition to computing their original outputs, compute a secret
sharing of each input wire label in round j + 1 as well. This would allow the evaluator to reconstruct the
wire labels to be used in round j + 1 directly from the output of the garbled circuits of round j.

We first consider a simple scenario: Suppose that each garbled circuit in round j, in addition to being
able to compute its own output, could also compute the output of every other garbled circuit in round j. In
that case, the solution is easy:

• Each garbled circuit in round j knows the full input of each garbled circuit in round j + 1. Thus, it
can output the shares of the relevant wire labels for round j + 1 and the computation can continue.
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Note that this idea naturally resists the attack mentioned above. This is because what a malicious evaluator
can learn from corrupted parties are just their shares, which reveal no information about the wire labels. On
the other hand, from honest parties’ shares, the evaluator can only reconstruct a single wire label for each
input wire corresponding to the actual input for garbled circuits in round j + 1.

Of course, the main difficulty with this approach is that a garbled circuit prepared by Pi for round j can
only compute the message of Pi in round j, not of other parties.

Protocols with Reconstruction Only Messages. We do not know how to fix the above problem
in general. However, we note that many protocols in the literature have a special property which we
call Reconstruction Only Messages (ROM). Very roughly, the only messages sent by the parties in the
protocol (after a constant-round preprocessing phase) are shares of a message z and the parties are trying
to reconstruct z publicly. In more details:

• Parties only need to do public reconstruction in the online phase (that is to say the online phase can
be run over the broadcast channel and there is no private message);

• And parties only use the reconstruction results, not the individual shares, as input for their next-
message functions.

For example, consider the well-known DN protocol [DN07]. The idea is to let all parties compute a
degree-t Shamir secret sharing of each wire value in the circuit. In the following, we use [x]t to denote a
degree-t Shamir secret sharing of the secret x. Then linear gates can be handled locally due to the linear
homomorphism of the Shamir secret sharing scheme. For a multiplication gate with input sharings [x]t, [y]t,
all parties first prepare a pair of random sharings in the form of ([r]t, [r]2t) in the preprocessing phase.
Then in the online phase, all parties locally compute [z]2t = [x]t · [y]t + [r]2t. To obtain [x · y]t, all parties
together reconstruct the secret z and compute [x · y]t = z − [r]t. Thus, the goal is to let all parties learn the
reconstruction result z which is used in their next-message functions.

Round Collapsing for Protocols with Reconstruction Only Messages. Now we will try to compile
a protocol satisfying ROM using our round collapsing compiler. To better explain our idea, we take the DN
protocol as an example in the following description.

Following our idea, at the very beginning of the protocol, each party Pi secret-shares all the input wire
labels for all the garbled circuits prepared by Pi. From the property of ROM, every input wire of Pi’s
garbled circuits coming from the online phase carries the secret z of a degree-2t Shamir secret sharing [z]2t
that should be reconstructed to Pi. Suppose Pi chooses (kw,0, kw,1) as the wire labels associated with the
input wire w that carries the input value z. Then Pi will shares [kw,0]t, [kw,1]t at the beginning of the
protocol.

We note that if all the garbled circuits knew what the message z being reconstructed is, the solution
would be easy as well:

• Each garbled circuit of Pj just outputs Pj ’s share of [kw,z]t (for every input wire w of garbled circuits
for the next round).

Following a similar argument, this solution also resists the attack we mentioned above: A malicious evaluator,
even colluding with up to t corrupted parties, can only learn the wire label kw,z associated with the correct
secret z. But again, the remaining challenge is that parties only have shares of z rather than z itself.

We note that from z, kw,0, kw,1, the wire label kw,z can be computed by the following equation

kw,z = kw,0 + z · (kw,1 − kw,0).

Since the Shamir secret sharing is multiplicative, from shares of [z]2t, [kw,0]t, [kw,1]t, all parties can compute
a Shamir secret sharing of kw,z from local computations. To be more concrete, we modify the way how each
party Pi shares his input wire labels: For an input wire w with chosen labels (kw,0, kw,1), Pi shares [kw,0]3t
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and [kw,1 − kw,0]t (here we assume the corruption threshold t < n/3) to all parties. Recall that in the DN
protocol, all parties would reconstruct a degree-2t Shamir sharing [z]2t to Pi, and z is used as the input
for the wire w in Pi’s next-message function. Relying on the multiplicative property of the Shamir secret
sharing scheme, all parties can locally compute

[kw,z]3t = [kw,0]3t + [z]2t · [kw,1 − kw,0]t (1)

Thus, we ask each party Pj to garble the following computation: It takes as input Pj ’s view and Pj ’s shares
of [kw,0]3t and [kw,1 − kw,0]t. Then it computes Pj ’s next-message function and obtains Pj ’s share of [z]2t.
After that it computes Pj ’s share of [kw,z]3t following Equation 1. The output is set to be Pj ’s shares of [z]2t
and [kw,z]3t.

Now by evaluating all parties’ garbled circuits, the evaluator can obtain the whole sharings [z]2t and
[kw,z]3t as output. This allows the evaluator to reconstruct z and kw,z, and use them to evaluate Pi’s
next-round garbled circuit.

As for security, we still need to show that the evaluator cannot learn the other wire label kw,1−z in the
above process. Note that the evaluator learns (1) the whole sharing of [kw,z]3t, (2) the whole sharing of [z]2t,
and (3) corrupted parties’ shares of [kw,0]3t and [kw,1 − kw,0]t. Now for any assignment of kw,1−z, which
defines kw,1 − kw,0 given [kw,z]3t and [z]2t, there is a valid degree-t Shamir sharing [kw,1 − kw,0]t given the
shares of corrupted parties, and then a valid degree-3t Shamir sharing [kw,0]3t = [kw,z]3t− [z]2t · [kw,1−kw,0]t
given the shares of corrupted parties. This implies that the evaluator does not learn any information about
the other wire label kw,1−z and the security holds.

Summary of Our Compiler for DN Protocol. We summarize our construction idea that converts the
DN protocol to a constant-round MPC protocol as follows:

1. All parties run the preprocessing phase and the input phase of the DN protocol.

2. Each party chooses the input wire labels associated with the circuits of his next-message functions.

3. For every [z]2t that should be reconstructed to a receiver R, suppose R chooses (kw,0, kw,1) as the wire
labels for this wire. R distributes [kw,0]3t and [kw,1 − kw,0]t to all parties.

4. Each party Pj locally garbles the following computation for each reconstruction of [z]2t: It takes as input
Pj ’s view and Pj ’s shares of [kw,0]3t and [kw,1 − kw,0]t. Then it computes Pj ’s next-message function
and obtains Pj ’s share of [z]2t. After that, it computes Pj ’s share of [kw,z]3t following Equation 1. The
output is set to be Pj ’s shares of [z]2t and [kw,z]3t.

5. All parties send their garbled circuits to the evaluator as well as the input wire labels associated with
their preprocessing data and input data.

6. The evaluator emulates each party’s next-message functions by evaluating his garbled circuits round
by round. For each [z]2t reconstructed towards the receiver R, the evaluator obtains the whole sharings
[z]2t and [kw,z]3t, and reconstructs the wire label kw,z for z, which allows the evaluator to compute R’s
garbled circuit in the next round. After obtaining the protocol output, the evaluator sends the output
to all parties.

Achieving Malicious Security. As we have shown above, for semi-honest security, the above construction
ensures that for each honest receiver R, a semi-honest evaluator, even colluding with up to t parties, can
only learn the wire label kw,z associated with the correct secret z, but learns no information about the other
wire label kw,1−z. This forces the evaluator to honestly emulate honest parties’ next-message functions in
the underlying non-constant-round MPC.

We note that the above construction has almost achieved malicious security. This is because a malicious
evaluator is not much stronger than a semi-honest evaluator: the only difference is that a malicious evaluator
can send an incorrect protocol output to all parties, which can be detected relying on message authentication
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codes. Thus to achieve malicious security, we only need to use maliciously secure preprocessing protocol and
input protocol in Step 1 and ensure that parties distribute valid Shamir sharings in Step 3. After that,
honest parties will just compute the garbled circuits locally and send them to the evaluator, which is not
affected by the malicious behaviors of corrupted parties. (Note that when the evaluator is honest, corrupted
parties may send incorrect garbled circuits to the evaluator. However, this case can be reduced to a malicious
evaluator who follows the protocol and uses the incorrect garbled circuits from corrupted parties.)

In general, we only need the underlying non-constant-round MPC protocol to achieve malicious security
in the preprocessing phase and the input phase, but fail-stop security in the online phase. We refer the
readers to Section 4 for more details.

2.2 Towards Constant Communication
Now, we analyze the communication cost of the MPC construction from the above idea. First note that in
the original DN protocol, the reconstruction of [z]2t is done by a single party Pking and then Pking distributes
z to all parties. Only in this way, the DN protocol achieves a linear communication complexity per gate.
Unfortunately, our above solution does not support this style of reconstruction. Even if it supports, we still
need a linear communication complexity per gate while our goal is to achieve constant communication per
gate. Besides, since we can only garble a binary circuit or otherwise, the secret of [kw,0]3t+[z]2t · [kw,1−kw,0]t
will not correspond to a valid wire label, we have to use a large enough binary extension field to be able to
use the Shamir secret sharing scheme, which leads to a factor of O(log n) overhead.

Thus, to achieve constant communication, we replace the Shamir secret sharing scheme with a general
multiplicative linear secret sharing scheme based on AG codes [CC06] and modify the communication-
efficient non-constant-round MPC protocols [GPS21, GPS22] to work with general multiplicative linear
secret sharing schemes and only require reconstructions in the online phase. The obtained non-constant-
round MPC protocol is resilient to t < n/4 corruptions.

Another factor that affects the communication of our constant-round protocol is the size of the garbled
circuits, which is determined by the complexity of all parties’ next-message functions in the non-constant-
round MPC. To obtain constant communication, we need the complexity of all parties’ next-message functions
to be constant in the circuit size. Unfortunately, our instantiation of the non-constant-round MPC protocol,
as well as the MPC protocols in [GPS21, GPS22], while achieving constant communication complexity,
requires linear computation complexity. However, we observe that most of the computations in our non-
constant-round MPC protocol are addition operations while the total number of multiplication operations
done by all parties is bounded by O(|C|). To overcome the effect of linear computations, we utilize the
freeXOR technique [KS08] in the local garbling process (see Section 5 for more details) assuming random
oracles. In this way, the garbled circuits’ size only depends on the number of multiplication operations done
by all parties, which is constant per gate.

With the above two improvements, we obtain our first construction against 1/4 corruption with constant
communication in the number of parties.

2.3 Party Virtualization
So far, the above construction only works when the corruption threshold is bounded by t = n/4. To relax
this restriction, we use the party virtualization technique [Bra87] to boost the corruption threshold. At a
high level, each time we randomly select a constant number of parties to form a committee and let parties
in this committee emulate a virtual party in our first protocol. We show that for any constant 0 < ϵ < 1,
there exists a constant c such that when the number of virtual parties N = O(n + κ), with overwhelming
probability, for any t = (1− ϵ)n corrupted parties, at least 3/4 fraction of virtual parties are simulated by a
committee that contains at least a single honest party. Then, it is sufficient to let parties in each committee
run a generic dishonest majority MPC protocol to emulate the computation of the corresponding virtual
party in our first protocol.

In our first protocol, each party locally garbles his next-message functions. Thus, after applying the party
virtualization technique, we let parties in each committee generate the garbled circuits of the corresponding
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virtual party utilizing the multiparty garbling technique [BMR90, DI05] which is secure even when c − 1
parties of the c parties in the committee are dishonest. Note that since the committee size is a constant
c, we only need the underlying multiparty garbling protocol to achieve a cost that grows linearly with the
circuit size (but can be polynomial in the number of parties).

To achieve malicious security, a direct way is to apply a maliciously secure MPC to do the multiparty
garbling. However, these protocols either require non-symmetric cryptographic assumptions such as linearly
homomorphic encryption [BDOZ11] and LPN [RS22] or lead to a non-constant multiplication overhead on
the communication complexity [LOS14, KOS16]. Our idea is to use a modified version of the “Watchlist”
technique based on MPC-in-the-head [IKOS07, IPS08, FR23].

Suppose the virtual parties are denoted by V1, . . . , VN where each virtual party Vi is simulated by a
randomly selected committee. At a high level, we still use a semi-honest dishonest majority MPC protocol
among parties in each committee to generate the garbled circuits of each virtual party. Then, each party Pi

chooses a random subset of virtual parties and checks the generation of the garbled circuits of these virtual
parties. Intuitively, if for a constant fraction of virtual parties, corrupted parties deviate from the protocol
when generating the garbled circuits, it would be caught by an honest party during the verification step with
overwhelming probability. Thus, if all honest parties are happy with the verification, it ensures that most
(≥ 3/4) of the virtual parties’ garbled circuits are correctly generated. We refer the readers to Section 7 for
a more detailed overview of our solution.

3 Preliminaries
Notation. Let κ denote the secure parameter, and let Fq denote the finite field with q elements. For a
matrix M, let M[:,i] denote its i-th column. For a list L, let L[i] denote its i-th entry. We use u ∗ v to
denote the coordinate-wise multiplication of two vectors u,v of the same length, and we use u⊗v to denote
the tensor product of two vectors, defined by

u⊗ v = (ui · vj)i∈{1,...,k},j∈{1,...,ℓ} = (u1v1, . . . , u1vℓ, . . . , ukv1, . . . , ukvℓ)

for u = (u1, . . . , nk),v = (v1, . . . , vℓ). We use r
$←− R to denote that r is sampled uniformly from R. For

random variables A and B, we use A ≡ B to denote that A and B have the same distribution. When
X = Xκ and Y = Yκ are family of distributions indexed by a security parameter κ, we say that X and Y are
computationally indistinguishable, denoted X ≡c Y , if for every polynomial t(·), maxD∈Dt(λ)

∆D(X,Y ) =
negl(λ). Here ∆D(X,Y ) is the advantage of a circuit D in distinguishing X and Y , defined by

∆D(X,Y ) = |Pr[D(X) = 1]− Pr[D(Y ) = 1]|,

and Dt is the set of all probabilistic circuits of size t.

Security Model. In this work, we use the client-server model for secure multi-party computation. We
define the security of multiparty computation in the real and ideal world paradigm [Can00]. Informally, we
consider a protocol Π to be secure if any adversary’s view in its execution in the real world can also be
simulated in the ideal world. For more details, we refer the readers to Section A.

3.1 Linear Secret Sharing Schemes
In this section, we introduce the basic definitions of linear secret sharing schemes (LSSS). Then we define
the property of multiplicative reconstruction on an LSSS.

Definition 1. (Projection Maps). Let x = (x1, . . . ,xn) ∈ (Fℓ
q)

n. Let A ⊂ {1, . . . , n} be a non-empty set.
The projection map πA : (Fℓ

q)
m → (Fℓ

q)
|A| is defined by πA(x) = (xi)i∈A.
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Definition 2. (Linear Secret Sharing Schemes) Let Fq be a finite field, and let k, ℓ, and t < n be
positive integers. an (n, t, k, ℓ)-linear secret sharing scheme (LSSS) Σ over Fq consists of two deterministic
algorithms Σ.Sh(·, ·) : Fk

q × Fnℓ
q → (Fℓ

q)
n and Σ.Rec(·) : (Fℓ

q)
n → Fk

q . For every s ∈ Fk
q and r ∈ Fnℓ

q ,
Σ.Sh(s, r) is a linear function that outputs a vector of shares (c1, . . . , cn) ∈ (Fℓ

q)
n. For any c ∈ (Fℓ

q)
n which

can be outputted by Σ.Sh(s, r) for some r ∈ Fnℓ
q , we call c a Σ-sharing of s. We require the following three

properties.

• t-privacy: For all s, s′ ∈ Fk
q , r, r′

$←− Fnℓ
q and every A ⊂ {1, . . . , n} of size t, πA(c) ≡ πA(c

′) for
Σ-sharings c, c′ of s, s′ respectively.

• Reconstruction: For every s ∈ Fk
q , it holds that for any Σ-sharing c of s, Σ.Rec(c) = s.

• Linearity: Regarding the two algorithms as Σ.Sh(·, ·) : Fk
q × Fnℓ

q → (Fℓ
q)

n and Σ.Rec(·) : Fnℓ
q → Fk

q , the
two functions are both Fq-linear.

Definition 3. We say an (n, t, k, ℓ)-LSSS Σ has d-multiplicative reconstruction if there exists (n, t, k, ℓα)-
LSSSs Σ(α) for α = 2, . . . , d such that:

• For any s(1), s(2) ∈ Fk
q and Σ-sharings c(1) = (c

(1)
1 , . . . , c

(1)
n ), c(2) = (c

(2)
1 , . . . , c

(2)
n ) of s(1), s(2) respec-

tively, (c(1)1 ⊗ c
(2)
1 , . . . , c

(1)
n ⊗ c

(2)
n ) is a Σ(2)-sharing of s(1) ∗ s(2).

• For any s(1), s(2) ∈ Fk
q , Σ(j−1)-sharing c(1) = (c

(1)
1 , . . . , c

(1)
n ) of s(1), and Σ-sharing c(2) of s(2),

(c
(1)
1 ⊗ c

(2)
1 , . . . , c

(1)
n ⊗ c

(2)
n ) is a Σ(j)-sharing of s(1) ∗ s(2) for each j = 3, . . . , d.

For convenience, for an LSSS Σ, we write

Σ.Sh(s, r) = (Σ.Sh1(s, r), . . . ,Σ.Shn(s, r)),

where Σ.Shi(·, ·) : Fk
q × Fnℓ

q → Fℓ
q for each i = 1, . . . , n.

Now we state a lemma from [ZLC+08] which shows that a LSSS Σ with 3-multiplicative reconstruction
is strong multiplicative, i.e. the secret of a Σ(2)-sharing is uniquely determined by any n− t shares.

Lemma 1. ([ZLC+08]). If an (n, t, k, ℓ)-LSSS Σ has 3-multiplicative reconstruction with Σ(2),Σ(3), then
the secret of a Σ(2)-sharing is uniquely determined by any n− t shares.

Additionally, for an LSSS Σ over Fq, a vector of m sharings ([s1], . . . , [sm]) in Σ can naturally be regarded
as an LSSS Σ×m over Fqm . Σ×m is called an m-fold interleaved secret sharing scheme of Σ [CCXY18].

Remark 1. For an (n, t, k, ℓ)-LSSS Σ, we say a set S of e shares in Fℓ
q are valid if they are from a valid

Σ-sharing. We say a set S of e shares uniquely determines the secret s if any Σ-sharing that matches the
shares in S has secret s.

Our construction requires the following algorithms. The first algorithm Alg1 takes as input a set S of e
shares and outputs s if the shares in S are valid and uniquely determine the secret s, and ⊥ otherwise. We
sketch the construction of Alg1 as follows:

1. The algorithm first turns the sharing algorithm Σ.Sh : Fk
q × Fnℓ

q → Fnℓ
q into matrix representation, i.e.

M · (s, r)T = (c1, . . . , cn)
T .

Let S = {cj1 , . . . , cje}. Let MS denote the matrix that consists of the j1, . . . , je-th rows of M. The
problem is transformed into solving the equation

MS · (s, r)T = (cj1 , . . . , cje)
T .

2. The algorithm uses the Gaussian elimination to obtain a linear space for all possible solutions within
polynomial time. If all the solutions of (s, r) share the same s, the algorithm outputs s as the recon-
struction result. Otherwise, the algorithm outputs ⊥.
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The second algorithm Alg2 takes as input a set S of e shares and outputs a Σ-sharing that matches the
shares in S if it exists, and ⊥ otherwise. This can be easily obtained by taking an arbitrary solution of (s, r)
from the solution space obtained from the process of the first algorithm and then run the sharing algorithm.

The third algorithm Alg3 takes as input a set I of at most t indices and generates random shares for
parties with indices in I. Denote the randomized algorithm of sampling the shares for a set I (|I| ≤ t) by
Σ.ShI : ⊥ → (Fℓ

q)
|I|, which is defined by running Σ.ShI() = πI(Σ.Sh(o, r)) where o ∈ Fk

q is an all-zero vector
and r ∈ Fnℓ

q is a randomly sampled vector. Note that from the property of t-privacy, the shares of parties in
I obtained from Σ.ShI distribute the same as those obtained from Σ.Sh(s, r) for any secret s and a uniformly
random vector r ∈ Fnℓ

q .
Finally, the last algorithm Alg4 takes as input a set S1 of shares of parties in I1 and a set I2 of indices

such that I1 ∩ I2 = ∅ and |I1| + |I2| ≤ t, and generates random shares for parties with indices in I2 given
shares in S1 if exists, and ⊥ otherwise. The algorithm Alg4 runs a similar process as Alg1 to find the solution
space of (s, r), and then computes the subspace (o, r0) by restricting s to be an all-zero vector. Then the
algorithm Alg4 picks a random r0 and outputs πI2(Σ.Sh(o, r0)). Note that from the t-privacy, if the solution
space of (s, r) is not empty, then the distribution of shares with indices in I2 generated from the solution
space of (s, r) is identical to that generated from the subspace (o, r0).

3.2 Garbling Scheme
In our construction of constant-round protocols, we follow the definition of garbling schemes and use it in a
black-box way. A formal definition of garbling circuits is given in [BHR12].

Definition 4. (Circuit [BHR12]). A circuit is a six-tuple f = (f.n, f.m, q, A,B,G). Here f.n ≥ 2
is the number of inputs, f.m ≥ 1 is the number of outputs, and q ≥ 1 is the number of gates. We let
r = f.n + q be the number of wires. We let Inputs = {1, . . . , f.n}, Wires = {1, . . . , f.n + q}, Outputs =
{f.n+q−f.m+1, . . . , f.n+q}, and Gates = f.n+ 1, . . . , f.n+ q. Then A : Gates→ Wires\OutputWires is
a function to identify each gate’s first incoming wire and B : Gates→ Wires \ OutputWires is a function to
identify each gate’s second incoming wire. Finally G : Gates×{0, 1}2 → {0, 1} is a function that determines
the functionality of each gate. We require A(g) ≤ B(g) < g for all g ∈ Gates.

Definition 5. (Garbling Scheme [BHR12]). A garbling scheme is a tuple of five algorithms G =
(Gb,En,De,Ev, ev). The first of these is probabilistic and the remaining algorithms are deterministic. A
string f , the original function, describes the function ev(f, ·) : {0, 1}f.n → {0, 1}f.m that we want to gar-
ble. On input f and a security parameter κ, algorithm Gb returns a triple of strings (F, e, d) ← Gb(1κ, f).
String e describes an encoding function, En(e, ·), that maps an initial input x ∈ {0, 1}f.n to a garbled input
X = En(e, x). String F describes a garbled function, Ev(F, ·), that maps each garbled input X to a garbled
output Y = Ev(F,X). String d describes a decoding function, De(d, ·), that maps a garbled output Y to a
final output y = De(d, Y ). G is required to satisfy the following condition:

• The non-degeneracy condition: If f, f ′ describe functions with the same input and output length, i.e.
f.n = f ′.n and f.m = f ′.m, and if |f | = |f ′|, it holds that Gb(1κ, f) ≡ Gb(1κ, f ′).

• The correctness condition: For any f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n, and (F, e, d) ← Gb(1κ, f),
De(d,Ev(F,En(e, x))) = ev(f, x).

If f is interpreted as a circuit, the garbling scheme is called a circuit garbling scheme.

Additionally, we give the definition of a private garbling scheme.

Definition 6. (Private Garbling Scheme [BHR12], Modified). A garbling scheme G = (Gb,En,De,Ev, ev)
is said to be private if there exists a PPT algorithm Sim such that, for any circuit f with input x ∈ {0, 1}f.n,
it holds that

Sim(1κ, f, y) ≡c (F,X, d)

for (F, e, d)← Gb(1κ, f) and En(e, x) = X with ev(f, x) = y.
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In this work, we require the garbling schemes we used to be projective, which is the common approach
of the existing garbling schemes.

Definition 7. (Projective Scheme [BHR12], Modified). A garbling scheme G = (Gb,En,De,Ev, ev) is
said to be projective if for all f with x = (x1, . . . , xf.n) ∈ {0, 1}f.n, κ ∈ N and i ∈ {1, . . . , f.n}, whenever
(F, e, d)← Gb(1κ, f), e is of form ((X1,0, X1,1), . . . , (Xf.n,0, Xf.n,1)) with each |Xi,0| = |Xi,1| and En(e, x) =
(X1,x1 , . . . , Xf.n,xf.n

).

Note that for a projective garbling scheme G = (Gb,En,De,Ev, ev), the encoding algorithm En can be
expressed as En1, . . . ,Enf.n such that

En(e, (x1, . . . , xf.n)) = (En1(e, x1), . . . ,Enf.n(e, xf.n)).

3.3 Symmetric Key Encryption Scheme
Now we introduce the general notion of a symmetric key encryption scheme.

Definition 8. A symmetric key encryption scheme consists of three algorithms (Gen,Enc,Dec) defined below:

• k ← Gen(1κ). The PPT key generation algorithm Gen takes as input a security parameter κ and
generates a secret key k.

• c ← Enc(k,m). The PPT encryption algorithm Enc takes as input a key k and a message m, and
outputs a ciphertext c.

• m ← Dec(k, c). The deterministic polynomial time decryption algorithm Dec takes as input a key k
and a ciphertext c, and outputs a plaintext message m.

Additionally, symmetric key encryption must satisfy the following properties:

• Correctness: For all security parameters κ and all messages m it hold that:

Pr[m = Dec(k, c) : k ← Gen(1κ), c← Enc(k,m)] = 1.

• Security: For all security parameters κ and every choice of vectors (m(1)
0 , . . . ,m

(q)
0 ) and (m

(1)
1 , . . . ,m

(q)
1 ),

where q = poly(κ), it holds that:

{{Enc(k,m(i)
0 )}qi=1 : k ← Gen(1κ)} ≡c {{Enc(k,m(i)

1 )}qi=1 : k ← Gen(1κ)}.

3.4 Chernoff Bound
Let E(X) denote the expectation of a random variable X, below is a well-known lemma in the probability
theory.

Lemma 2. (Chernoff Bound). Suppose X1, . . . , Xm are independent random variables taking values in
{0, 1}, and let X = X1 + · · ·+Xm be their sum, and E(X) = µ. Then for any δ > 0 it holds that:

P (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ .

Also for any 0 < δ < 1 it holds that:

P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 .

4 Constant-Round MPC from Black-Box Garbling
In this section, we provide a compiler from an abstract MPC protocol to a constant-round MPC protocol
with a black-box use of garbling schemes.
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4.1 Abstract Non-Constant-Round MPC Protocol
We consider an abstract non-constant-round protocol Π0 that is built upon an (n, t, k, ℓ)-LSSS Σ over F2

with 3-multiplicative reconstruction. Let the associated LSSSs be Σ(2),Σ(3). We use [·], [·](2), [·](3) to denote
Σ-sharings, Σ(2)-sharings, and Σ(3)-sharings respectively.

We first list the properties we need Π0. Later in Section F, we give a concrete instantiation of the desired
abstract MPC protocol.

• Π0 runs among m clients and n servers. Only clients have inputs or receive outputs.

• Π0 is constructed in the {Fprep,Finput}-hybrid model. The clients and servers first invoke Fprep, then
invoke Finput with their input, and then run an Evaluation Phase.

• The evaluation phase only involves local computation and reconstructions of Σ(2)-sharings (by letting
each server send his share to the receiver), the receiver runs the algorithm Alg1 of Remark 1 to
reconstruct the secret of each Σ(2)-sharing after receiving the shares from n − t parties (the secret is
unique from Lemma 1). If the algorithm returns ⊥, the party aborts the protocol. We further require
that each honest party’s (including both clients and servers) local computation only depends on his
output from Fprep,Finput, and the secrets of Σ(2)-sharings reconstructed to him in the evaluation phase.

• Let the Σ(2)-sharings to be reconstructed be [s1]
(2), . . . , [srec]

(2). We assume Π0 satisfies the following
variant of the malicious security:

– In the real world, an adversary A may corrupt a subset C of clients and servers. The adversary
has control of the behaviors of parties in C during Fprep and Finput and then fail-stop before the
evaluation phase. Since the secret of each Σ(2)-sharing is uniquely determined by the n− t honest
servers’ shares by Lemma 1, the evaluation phase can be performed without the t corrupted
servers. In particular, we require that all the honest parties (including both honest clients and
honest servers) either abort the protocol during the invocation of Fprep,Finput or never abort. The
output in the real-world execution is defined by

REALΠ0,A,C(x) = (ViewC(x), ([s1]
(2), . . . , [srec]

(2))H, outputΠH(x)),

where ([s1]
(2), . . . , [srec]

(2))H means the honest servers’ shares of [s1](2), . . . , [srec](2).

– In the ideal world, an ideal adversary Sim0 controls the same subset C of clients and servers
and has one-time access to the ideal functionality F . The output in the ideal-world execution is
defined by the output of Sim0 and the output of honest clients, denoted by IDEALF,Sim0,C(x).

We require that for all PPT adversary A and set C that may contain any number of clients and at
most t servers, there exists a PPT adversary Sim0 such that

REALΠ0,A,C(x) ≡c IDEALF,Sim0,C(x).

Remark 2. The last property deviates from the standard malicious security from the following two aspects.
First, the adversary can only control the behaviors of corrupted parties during Fprep and Finput but not

the evaluation phase. This means that the adversary is still allowed to change corrupted parties’ inputs (in
Finput), send malicious instructions to Fprep and Finput, or receive backdoor information from Fprep and Finput.

Second, we require that honest parties’ shares of all Σ(2)-sharings in the evaluation phase can be made
public. We note that this property can be assumed without loss of generality: For each reconstruction of [s](2)
that should be reconstructed to a receiver R, Fprep samples and distributes a random Σ(2)-sharing [r](2) to
all parties and send the whole sharing to R. Then in the evaluation phase, the servers compute and send
[s+ r](2) to R for reconstruction. After reconstructing the secret s+ r, R locally compute s with s+ r and
r. In this way, the reconstructed Σ(2)-sharing [s+ r](2) can be made public.
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4.2 Towards Constant-Round MPC with Malicious Security
In this section, we provide a compiler that compiles an abstract non-constant-round MPC protocol Π0 to a
constant-round protocol Π1 via

• A projective and private garbling scheme G = (Gb,En,De,Ev, ev) with

En(e, (x1, . . . , xα)) = (En1(e, x1), . . . ,Enα(e, xα)),

• And a symmetric key encryption scheme (Gen,Enc,Dec) whose key generation algorithm Gen(1κ) out-
puts a κ-bit string as the secret key.

Like Π0, Π1 runs among m clients and n servers.

Summary. Suppose that the reconstruction process needs to be done rec times. Then each server Sj ’s
local circuit can be divided into rec circuits CircSj

1 , . . . , Circ
Sj
rec. Each circuit is a boolean circuit containing

input gates, AND gates, XOR gates, and output gates. For i = 1, . . . , rec, each Circ
Sj

i only outputs Sj ’s
share of the Σ(2)-sharing for the i-th reconstruction. Each server Sj ’s local computation can be done by
computing Circ

Sj

1 , . . . , Circ
Sj
rec successively. Each client Ci’s local computation in the evaluation phase of Π0

can be regarded as a local circuit CircCi that computes Ci’s output of Π0. We give the protocol Π1 below.

1. Preprocessing. The clients and servers invoke Fprep and obtain the preprocessing data.

2. Input. The clients and servers invoke Finput and obtain the input data.

3. Garbling Local Circuits. For i = 1, . . . , rec, let the receiver of the i-th reconstruction be Ri, and let the
sharing to be reconstructed be [si]

(2). The servers do the following:

(a) Ri runs Gen(1κ) 2k (recall that k is the number of secrets stored in one Σ-sharing) times to get keys
rb,β = (r

(1)
b,β , . . . , r

(κ)
b,β ) for b = 0, 1 and β = 1, . . . , k. Ri then associate (r0,β , r1,β) with the β-th bit of si.

Let r
(α)
b = (r

(α)
b,1 , . . . , r

(α)
b,k ) for each b = 0, 1 and α = 1, . . . , κ.

(b) For α = 1, . . . , κ, Ri randomly samples a Σ(3)-sharing [r
(α)
0 ](3) and a Σ-sharing [r

(α)
1 − r

(α)
0 ] based on

r
(α)
0 , r

(α)
1 . Then Ri distributes [r

(α)
0 ](3), [r

(α)
1 − r

(α)
0 ] to all the servers.

(c) Let Rec
Sj

i be the circuit that takes Sj ’s shares of [si]
(2), {[r(α)

0 ](3), [r
(α)
1 − r

(α)
0 ]}κα=1 as inputs and

outputs Sj ’s shares of

[r(α)
si ](3) := [r

(α)
0 ](3) + [si]

(2) ⊗ [r
(α)
1 − r

(α)
0 ], α = 1, . . . , κ

and [si]
(2). Then, let C

Sj

i be the circuit which computes Circ
Sj

i first and then computes Rec
Sj

i (with
input wires from preprocessing/input phase or previously reconstructed values, and outputting Sj ’s
shares of [si]

(2) and {[r(α)
si ](3)}κα=1).

(d) Each server Sj computes Gb(1κ, C
Sj

i ) = (GC
Sj

i , e
Sj

i , d
Sj

i ) and sends GC
Sj

i , d
Sj

i to Pking.

4. Encrypting Input Labels. For each i = 1, . . . , rec, if the receiver Ri is a server and the β-th bit of si is
used as an input wire with index jβ in Ri’s circuit CircRi

γ (γ ∈ {i+ 1, . . . , rec}), Ri computes

ct
(i,γ)
jβ ,0 = Enc(r0,β ,Enjβ (e

Ri
γ , 0))

and
ct

(i,γ)
jβ ,1 = Enc(r1,β ,Enjβ (e

Ri
γ , 1)),

where r0,β , r1,β are the output of Gen that are associated with si. Then, Ri sends {ct(i,γ)jβ ,0 , ct
(i,γ)
jβ ,1 } to Pking.

5. Sending Input Labels. Each server Sj computes Enγ(e
Sj

i , xγ) for each i = 1, . . . , rec and each input wire
value xγ for the γ-th input wire of CSj

i where xγ does not come from reconstructions (i.e. xγ may come

Protocol Π1
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from Fprep,Finput, or xγ may be a bit of Sj ’s share of [r(α)
0 ](3) or [r

(α)
1 − r

(α)
0 ] from a receiver of

reconstruction). Then Sj sends them to Pking.

6. Evaluating the Circuit. The evaluator Pking evaluates the circuit by doing the following:

(a) For j = 1, . . . , n, since no input to C
Sj

1 comes from reconstruction, Pking already gets the garbled input
X

Sj

1 = En(e
Sj

1 , x
Sj

1 ) for input x
Sj

1 of circuit CSj

1 . Then, Pking obtains Sj ’s shares of [s1]
(2) and

{[r(α)
s1 ](3)}κα=1 by computing De(d

Sj

1 ,Ev(GC
Sj

1 , X
Sj

1 )). After computing all the servers’ shares, Pking

checks whether the sharings [s1]
(2), {[r(α)

s1 ](3)}κα=1 are valid Σ(2),Σ(3) sharings respectively. If not, Pking

aborts the protocol. Otherwise, Pking reconstructs s1 and {r(α)
s1 }κα=1.

(b) The garbled input of each input wire of CS1
2 , . . . , CSn

2 associated with values from s1 can be decrypted by
using s1, rs1 and the corresponding ciphertexts. Thus, Pking can evaluate C

S1
2 , . . . , CSn

2 in the same way
as Step (a). Repeating the above steps, Pking eventually obtains all the secrets of the Σ(2)-sharings
[si]

(2) and their corresponding Σ(3)-sharings {[r(α)
s1 ](3)}κα=1 whose receiver Ri is a client.

7. Sending Outputs.

(a) For each client receiver Ri, Pking sends si, {r(α)
s1 }κα=1 to Ri.

(b) Each client receiver Ri checks whether r
(α)
si = r

(α)
0 + si ∗ (r(α)

1 − r
(α)
0 ) holds for each pair of (r(α)

0 , r
(α)
1 )

generated in Step 3.(a). If not, Ri aborts the protocol. Otherwise, Ri computes CircRi to get his
output locally.

Figure 1: The protocol Π1.

Theorem 3. Let Σ be an (n, t, k, ℓ)-LSSS over F2 with 3-multiplicative reconstruction and Π0 be a protocol
that has the properties listed in Section 4.1. Protocol Π1 securely realizes F in the {Fprep,Finput}-hybrid model
against a fully malicious adversary that corrupts any number of clients and at most t servers.

We give the proof of this theorem in Section C.

5 Boosting the Efficiency via Concrete Garbling Schemes
In this section, we analyze the effect of the garbling scheme G on the communication complexity of the
protocol Π1 and give a concrete instantiation for the garbling scheme G. Based on a concrete garbling
scheme, we modify Π1 to boost its efficiency.

5.1 The Choice of the Garbling Scheme
We first analyze how the choice of the garbling scheme G affects the communication efficiency. In Π1,

• Each server Sj needs to send to Pking his garbled circuits with decoding data (GC
Sj

i , d
Sj

i ), i = 1, . . . , rec
(Step 3(d));

• For each input of Sj ’s circuits, if this input is from reconstruction, Sj needs to send a pair of ciphertexts
to Pking (Step 4); Otherwise, Sj needs to send the corresponding garbled input to Pking (Step 5).

Therefore, a smaller size of garbled circuits and garbled inputs leads to a smaller communication cost.
The existing projective garbling schemes [BMR90, NPS99, KS08, PSSW09], [KMR14, ZRE15] are mostly

based on Yao’s garbled circuit [Yao86]. The idea of Yao’s scheme is to garble the circuit gate by gate by
choosing wire labels for each wire of the circuit and encrypting the output wire label of each gate with the
input wire labels, and the size of the garbled circuit F grows linearly in the number of gates. To make our
protocol Π1 efficient, we utilize the FreeXOR technique in garbling schemes [KS08]. In this way, the size of
the garbled circuit only grows linearly with the number of input and multiplication gates.

The FreeXOR technique enables the garbler not to garble the XOR gates. The idea is to let the XOR
kw,0 ⊕ kw,1 = ∆ of the two labels kw,0, kw,1 be the same for each wire w. Then, for each XOR gate with
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input wire a, b and output wire c, by setting kc,0 = ka,0 ⊕ kb,0, there is no need to compute any ciphertexts
for XOR gates and the evaluator can compute the desired output wire label locally. Using garbling schemes
with the FreeXOR property, the communication cost of Π1 won’t be affected by the number of XOR gates in
each server’s circuits for local computation. For convenience, we just choose the garbling scheme in [KS08] to
instantiate our protocol. The more advanced optimizations on the FreeXOR garbling scheme [ZRE15, RR21]
can also be applied in our construction.

Remark 3. All the existing optimizations on the FreeXOR garbling scheme are on the constant factor, the
size of the garbled circuit F outputted by Gb(1κ, f) is still O((GI +GA) ·κ), where GI is the number of input
wires and GA is the number of AND gates in the boolean circuit f .

5.2 Boosting the Efficiency
Relying on the properties of the garbled circuits proposed above, we can further improve the concrete
efficiency of Π1 from the following two points.

Reducing the Size of Garbled Circuits. Recall that in Step 2.(c) of Π1, each server Sj needs to garble
the circuit CircSj

i ◦ Rec
Sj

i which computes his shares of

[r(α)si
](3) := [r

(α)
0 ](3) + [si]

(2) ⊗ [r
(α)
1 − r

(α)
0 ], α = 1, . . . , κ

and [si]
(2). Compared with Circ

Sj

i , RecSj

i ◦ Circ
Sj

i also takes Sj ’s shares of {[r(α)0 ](3), [r
(α)
1 − r

(α)
0 ]}κα=1 as

input and adds ℓ3 · κ multiplication gates, where recall that ℓ3 is the share size of a Σ(3)-sharing. This in
total brings additional O(ℓ3 · κ2) overhead in each garbled circuit.

Our first optimization is to only garble Circ
Sj

i but not Rec
Sj

i so that we can avoid the above over-
head. To better explain our idea, we abuse the notation and use x,y, z,u to denote Sj ’s shares of
{[r(α)0 ](3)}κα=1, [si]

(2), {[r(α)1 − r
(α)
0 ]}κα=1, {[r

(α)
si ](3)}κα=1 respectively. Then x,u ∈ Fℓ3·κ

2 , y ∈ Fℓ2

2 , z ∈ Fℓ·κ
2 ,

and u = x + y ⊗ z. We further split x,u into ℓ2 sub-vectors, each of ℓ bits, denoted by x = (x1, . . . ,xℓ2)
and u = (u1, . . . ,uℓ2). Let yi denote the i-th bit of y. Then for all i ∈ {1, . . . , ℓ2}, we have

ui = xi + yi · z.

Then we may view ui as the wire label for yi where ui = xi if yi = 0 and ui = xi + z otherwise. Note that
y is the output of CircSj

i . Thus, our idea is to use a garbling scheme where we can choose the labels for the
output wires so that at the end of the evaluation, the evaluator can learn not only the output wire values but
also the corresponding wire labels. This property can be easily achieved from the garbling scheme [KS08] by
adding an output gate to each output wire of the circuit, and then we can use the input wire labels (which
are the output wire labels of the original garbled circuit) of each output gate to encrypt the output labels
we select.

By using such a garbling scheme with selective output labels, we only need to garble Circ
Sj

i and thus
reduce the overhead from O(ℓ3 · κ2) to O(ℓ3 · κ). Now we formally present the garbling algorithm and the
evaluation algorithm of the garbled circuit as follows. To overcome the issue of circular encryption, we give
the garbling scheme under the assumption of random oracles.

Public Parameter: We assume a random oracle O1 with output length κ and a random oracle O2 with
output length ℓκ.

Input: The security parameter 1κ, a circuit f which describes a function: ev(f, ·) : {0, 1}f.n → {0, 1}f.m to be
garbled, and a vector L = ((Y1,0, Y1,1), . . . , (Yf.m,0, Yf.m,1)) of output labels, where each label Ya,b is of length
ℓκ.

The algorithm Gb(1κ, f, L) runs the following:

1. Sample a random (κ− 1)-bit string ∆.

Algorithm Gb(·, ·, ·)
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2. For each wire w in f that is not an output wire of an XOR gate or an output gate, sample a random
masking bit λw ∈ {0, 1} and a random (κ− 1)-bit string kw,0.

3. For each XOR gate in f with input wires a, b and output wire o, compute ko,0 = ka,0 ⊕ kb,0 and
λo = λa ⊕ λb gate by gate from the first layer.

4. For each wire w in f that is not an output wire of an output gate, compute kw,1 = kw,0 ⊕∆.

5. For each AND gate g in f with input wire a, b and output wire o and for each
(i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, let χ = (i⊕ λa) ∧ (j ⊕ λb)⊕ λc. Query the random oracle O1 with
ka,i∥i∥kb,j∥j∥g and then compute the following ciphertext:

ct
(g)
i,j = O1(ka,i∥i∥kb,j∥j∥g)⊕ ko,χ∥χ.

6. For each output gate in f indexed k = 1, . . . , f.m with input wire w (we can regard that an output gate
has two input wires that are the same to match the definition of a circuit) and for each i = 0, 1, query the
random oracle O2 with kw,i∥i∥w and then compute the following ciphertext:

ctw,i = O2(kw,i∥i∥w)⊕ Yk,i⊕λw .

7. Let the F be the set of all the ciphertexts. Let Xi,0 = kwi,λwi
∥λwi , Xi,1 = kwi,1⊕λwi

∥(1⊕ λwi) for each
i = 1, . . . , f.n and e = (X1,0, X1,1, . . . , Xn,0, Xn,1), where wi is the i-th input wire of f . Let d be the set of
λw for each input wire w of output gates in f .

8. Output (F, e, d).

Figure 2: The garbling algorithm.

Input: A garbled circuit F , a garbled input X with X = En(e, x), and d for (F, e, d)← Gb(1κ, f, L)1.

The algorithm Ev(F,X, d) runs the following:

1. Evaluate the garbled circuit gate by gate from the first layer. While evaluating the gates in one layer, the
input wire labels kw,vw⊕λw∥vw ⊕ λw for each input wire w with value vw of these gates have been
computed. More concretely, for each gate g in the circuit:

– If g is an XOR gate with input wire a, b and output wire o, compute
ko,vo⊕λo∥vo ⊕ λo = (ka,va⊕λa∥(va ⊕ λa))⊕ (kb,vb⊕λb∥(vb ⊕ λb)).

– If g is an AND gate with input wire a, b and output wire o, query the random oracle O1 with
ka,va⊕λa∥(va ⊕ λa)∥kb,vb⊕λb∥(vb ⊕ λb)∥g and then compute

ko,vo⊕λo∥vo ⊕ λo

=O1(ka,va⊕λa∥(va ⊕ λa)∥kb,vb⊕λb∥(vb ⊕ λb)∥g)⊕ ct
(g)
va⊕λa,vb⊕λb

.

– If g is an output gate with input wire w, query the random oracle O2 with kw,vw⊕λw∥(vw ⊕ λw)∥w and
compute

Yk,vw = O2(kw,vw⊕λw∥(vw ⊕ λw)∥w)⊕ ctw,vw⊕λwa.

2. For each input wire w of output gates in f , compute vw = (vw ⊕ λw)⊕ λw. Let y be the set of vw and let Y
be the set of Yk,vw for all output wires w of all output gates (with indices k = 1, . . . , f.m).

3. Output (y, Y ).

1Here the input F for Ev may also be a garbled sub-circuit of f , where the input x may also be a partial input to f which
determines the output of the sub-circuit.

Algorithm Ev(·, ·, ·)

Figure 3: The evaluation algorithm.
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Reusing Wire Labels for the Same Wires. With the first optimization, each server Sj only needs
to garble {CircSj

i }reci=1, where rec is the total number of reconstructions in the abstract protocol Π0. By
assumption, the inputs of each Circ

Sj

i are from Sj ’s output in the preprocessing phase and the input phase,
and the secrets of Σ(2)-sharings reconstructed to him in the evaluation phase of Π0.

We note that the same wire may appear in different circuits while their wire labels may be different when
we perform the garbling algorithm on different circuits. For example, assuming that a single wire w serves
as the i1, i2-th input wires for Circ

Sj

1 , Circ
Sj

2 , the encoding functions Eni1(e
Sj

1 , ·),Eni2(e
Sj

2 , ·) for this wire
value may be different. However, for most garbling schemes including the one from [KS08], the labels of
a single wire can be reused in evaluating different circuits. That is to say, we can view a server Sj ’s local
circuits CircSj

1 , . . . , Circ
Sj
rec as an entire circuit CircSj . This circuit may not receive all the input wire values

at the beginning. Instead, it can evaluate a gate in it as long as the input wire values of this gate are known.
Besides, even if a partial input has not been provided to the circuit, it can generate the output for an output
wire with those input values that affect the computation of this output provided. In this way, the wires
of all the circuits are indexed together and a single wire only has one label. Although the garbled circuit
outputted by the garbling algorithm can also be regarded as rec different garbled circuits, the sum of their
size only depends on the total number of distinct wires in Circ

Sj

1 , . . . , Circ
Sj
rec.

Summary. The modified protocol Π′
1 is constructed via the garbling algorithm Gb shown in Figure 2 and

the evaluation algorithm Ev shown in Figure 3.
See Figure 4 for the construction.

1. Preprocessing. The clients and servers invoke Fprep and obtain the preprocessing data.

2. Input. The clients and servers invoke Finput and obtain the input data.

3. Generating Output Labels. For i = 1, . . . , rec, let the receiver of the i-th reconstruction be Ri, and let
the sharing to be reconstructed be [si]

(2). The servers do the following:

(a) Ri samples 2k (recall that k is the number of secrets stored in one Σ-sharing) random κ-bit string as
rb,β = (r

(1)
b,β , . . . , r

(κ)
b,β ) for b = 0, 1 and β = 1, . . . , k. Ri then associate (r0,β , r1,β) with the β-th bit of si.

Let r
(α)
b = (r

(α)
b,1 , . . . , r

(α)
b,k ) for each b = 0, 1 and α = 1, . . . , κ.

(b) For α = 1, . . . , κ, Ri randomly samples a Σ(3)-sharing [r
(α)
0 ](3) and a Σ-sharing [r

(α)
1 − r

(α)
0 ] based on

r
(α)
0 , r

(α)
1 . Then Ri distributes [r

(α)
0 ](3), [r

(α)
1 − r

(α)
0 ] to all the servers.

(c) For each server Sj , Sj computes

Y
Sj

(i−1)ℓ2+a,0
=

(
([r

(1)
0 ](3))

Sj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
0 ](3))

Sj

[aℓ+1,(a+1)ℓ]

)
and

Y
Sj

(i−1)ℓ2+a,1
=
(
([r

(1)
0 ](3))

Sj

[aℓ+1,(a+1)ℓ] + ([r
(1)
1 − r

(1)
0 ])Sj ,

. . . , ([r
(κ)
0 ](3))

Sj

[aℓ+1,(a+1)ℓ] + ([r
(κ)
1 − r

(κ)
0 ])Sj

)
,

where ([s])Sj denotes Sj ’s share of [s] and ([s](3))
Sj

[c1,c2]
denotes the vector of the c1, c1 +1, . . . , c2-th bits

of Sj ’s share of [s](3).

4. Garbling Local Circuits. For each server Sj , we view the local circuits Circ
Sj

1 , . . . , Circ
Sj
rec as an entire

circuit CircSj . Each server Sj computes

Gb(1κ, CircSj , ((Y
Sj

1,0 , Y
Sj

1,1 ), . . . , (Y
Sj

ℓ2rec,0
, Y

Sj

ℓ2rec,1
))) = (GCSj , eSj , dSj )

and sends GCSj , dSj to Pking. Pking obtains (GC
Sj

1 , . . . , GC
Sj
rec) from GCSj , where each GC

Sj

i is the garbled circuit
for Circ

Sj

i .

Protocol Π′
1
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5. Encrypting Input Labels. For i = 1, . . . , rec, if Ri is a server and the β-th bit of si is used as an input
wire with index jβ in Ri’s circuit CircRi , Ri computes

ct
(i)
jβ ,0 = O1(r0,β∥0∥i∥β∥jβ)⊕ Enjβ (e

Ri , 0)

and
ct

(i)
jβ ,1 = O1(r1,β∥1∥i∥β∥jβ)⊕ Enjβ (e

Ri , 1).

where r0,β , r1,β are the output of Gen that are associated with si. Then, Ri sends {ctβ,0, ctβ,1} to Pking.

6. Sending Input Labels. Each server Sj computes Enγ(e
Sj , xγ) for each input wire value xγ for the input

wire indexed γ of Sj ’s local circuits where xγ comes from Fprep,Finput. Then Sj sends them to Pking.

7. Evaluating the Circuit. The evaluator Pking evaluates the circuit by doing the following:

(a) For j = 1, . . . , n, since no input to Circ
Sj

1 comes from reconstruction, Pking already gets the garbled
input X

Sj

1 for input x
Sj

1 of circuit CircSj

1 . Then, Pking runs Ev(GC
Sj

1 , X
Sj

1 , dSj ) to obtain Sj ’s share of
[s1]

(2) and {Y Sj

a,s
Sj
1,a

}ℓ
2

a=1, where s
Sj

1,a is the a-th bit of Sj ’s share of [s1]
(2). Then Pking reconstructs Sj ’s

shares of {[r(α)
s1 ](3)}κα=1 with {Y Sj

a,s
Sj
i,a

}ℓ
2

a=1. After computing all the servers’ shares, Pking checks whether

the sharings [s1]
(2), {[r(α)

s1 ](3)}κα=1 are valid Σ(2),Σ(3) sharings respectively. If not, Pking aborts the
protocol. Otherwise, Pking reconstructs s1 and {r(α)

s1 }κα=1.
(b) The garbled input of each input wire of CircS1

2 , . . . , CircSn
2 associated with values from s1 can be

decrypted by using s1, {rs1}κα=1 and the corresponding ciphertexts. Thus, Pking can evaluate
Circ

S1
2 , . . . , CircSn

2 in the same way as Step (a). Repeating the above steps, Pking eventually obtains all
the secrets of the Σ(2)-sharings [si]

(2) and their corresponding Σ(3)-sharings {[r(α)
s1 ](3)}κα=1 whose

receiver Ri is a client.

8. Sending Outputs.

(a) For each client receiver Ri, Pking sends si, {r(α)
s1 }κα=1 to Ri.

(b) Each client receiver Ri checks whether each r
(α)
si matches si and (r

(α)
0 , r

(α)
1 ) generated in Step 3.(a). If

not, Ri aborts the protocol. Otherwise, Ri computes CircRi to get his output locally.

Figure 4: The modified protocol Π′
1.

Theorem 4. Let Σ be an (n, t, k, ℓ)-LSSS over F2 with 3-multiplicative reconstruction and Π0 be a protocol
that has the properties listed in Section 4.1. Protocol Π′

1 securely realizes F in the {Fprep,Finput}-hybrid model
against a fully malicious adversary that corrupts any number of clients and at most t servers.

We give the proof of this theorem in Section D.
Apart from the communication cost of realizing Fprep and Finput, the communication cost of Π′

1 is O((DS+

GA) · κ+ ℓκ · CCΠ0

eval), where DS is the output size of Fprep,Finput, GA is the number of AND gates in all the
servers’ local circuits, and CCΠ0

eval is the communication cost of the evaluation phase of Π0. We provide a
detailed cost analysis in Section E.

6 Instantiation of the Abstract Protocol for SIMD Circuits
To instantiate the abstract protocol, we follow [GPS21, GPS22] which provides an unconditionally secure
MPC protocol with constant communication in the number of servers based on packed Shamir secret sharing.
Our idea is to replace the packed Shamir secret sharing with Σ-sharing. Like the packed Shamir secret sharing
scheme used in their approach, each secret in Σ is also a vector over a finite field F = F2 with length k = Θ(n),
where recall that n is the number of servers. At a high level, the idea is to batch the gates of the same type
in each layer into groups of k, and each group of gates will be evaluated at the same time. Then the task of
evaluating a general circuit is reduced to the following two steps:
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• For each group of addition/multiplication gates, given the two input sharings [x], [y], compute the
output sharing [z], where z = x+ y for addition gates and z = x ∗ y for multiplication gates.

• Given output sharings from all previous layers, prepare the input sharings for the current layer.

For simplicity, we focus on computing SIMD (Single Instruction Multiple Data) circuits in this section and
refer the readers to Section F for the treatment of a general circuit. We assume the SIMD circuit repeats
a single circuit a multiple of k2 times. Since a group of output wires from a former layer of such a SIMD
circuit naturally serves as a group of input wires to a group of gates in a latter layer, we only need to focus
on evaluating groups of addition and multiplication gates.

Overview. Since Σ is F2-linear, addition gates can be evaluated via local computation: Each party simply
adds up his two local shares. For multiplication gates, we first utilize the multiplicative property of Σ to
compute [z](2) = [x]∗[y]. Now it is sufficient to transform [z](2) to [z] which is similar to the degree-reduction
step when using packed Shamir sharings. However, we cannot use the DN-style approach. This is because
the DN-style approach requires all servers to send a Σ(2)-sharing to a king to reconstruct and reshare the
secrets while our abstract protocol only allows reconstruction of Σ(2)-sharings.

To solve this problem, our idea is to transform a batch of k Σ(2)-sharings each time. Suppose the input
sharings are denoted by [z1]

(2), . . . , [zk]
(2). We may view the secrets as a matrix Z of size k × k and the

i-th row of Z is Zi = zi. We use Z⋆,j to denote the j-th column of Z. Our idea is to first let all servers
obtain [Z⋆,1], . . . , [Z⋆,n] only using reconstruction of Σ(2)-sharings. The main observation is that the sharing
algorithm of Σ is F2-linear. Thus, the high-level idea is to view Σ.Sh as a linear circuit and securely compute
this circuit over the input [z1](2), . . . , [zk](2). In this way, all servers can obtain Σ(2)-sharing of the shares of
each party. Then all servers reconstruct the shares to each party. To be more concrete,

1. All servers first prepare random Σ(2)-sharings [r1](2), . . . , [rnℓ](2). We will compute Σ.Sh(Z⋆,j , (r1,j , . . . , rnℓ,j))
for all j.

2. All servers view Σ.Sh as a linear circuit. Let y⋆,j = Σ.Sh(Z⋆,j , (r1,j , . . . , rnℓ,j)) which is of size nℓ.
Then all servers can locally compute [yi]

(2), where yi = (yi,1, . . . , yi,k). All parties reconstruct yi to
the ⌈i/ℓ⌉-th party. As a result, all parties obtain [Z⋆,1], . . . , [Z⋆,k].

The above procedure is modeled as ΠTranspose. To obtain [z1], . . . , [zk], we simply apply ΠTranspose on
[Z⋆,1], . . . , [Z⋆,k].

The Transpose Protocol. We present the formal description of ΠTranspose. ΠTranspose takes sharings
[x1]

(2), . . . , [xk]
(2) as input. Let xi = (xi,1, . . . , xi,k) and x∗

i = (x1,i, . . . , xk,i), ΠTranspose outputs ([x∗
1], . . . , [x

∗
k]).

Recall that for an LSSS, the sharing algorithm Sh is linear on each field element of its input, so
Σ.Sh1, . . . ,Σ.Shn : Fk+nℓ

2 → Fℓ
2 are all F2-linear functions. Suppose that for each i = 1, . . . , n,

Σ.Shi((s1, . . . , sk), (a1, . . . , anℓ))

=

( k∑
j=1

c
(i)
1,jsj +

nℓ∑
j=1

c
(i)
1,k+jaj , . . . ,

k∑
j=1

c
(i)
ℓ,jsj +

nℓ∑
j=1

c
(i)
ℓ,k+jaj

)
.

Correspondingly, we define F2-linear functions F1, . . . , Fn : (Fk
2)

k+nℓ → (Fk
2)

ℓ by

Fi(v1, . . . ,vk+nℓ) =

( k+nℓ∑
j=1

c
(i)
1,jvj , . . . ,

k+nℓ∑
j=1

c
(i)
ℓ,jvj

)
for each i = 1, . . . , n and give ΠTranspose as follows.
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Input: Each server’s shares of input sharings [x1]
(2), . . . , [xk]

(2). Let each xi = (xi,1, . . . , xi,k) and set
x∗

i = (x1,i, . . . , xk,i).

1. The servers take a group of Σ(2) sharings [r1]
(2), . . . , [rn]

(2) (where each server Sj holds the secret rj) and
nℓ random Σ(2)-sharings [u1]

(2), . . . , [unℓ]
(2) from the output of Fprep and associate them with the

execution of ΠTranspose.

2. The servers locally compute [yi]
(2) = [Fi(x1, . . . ,xk,u1, . . . ,unℓ) + ri]

(2) for i = 1, . . . , n.

3. For each i = 1, . . . , n, each server sends his share of [yi]
(2) to server Si for reconstruction.

4. Each server Sj reconstructs yj using the algorithm Alg1 of Remark 1 with the first n− t received shares of
[yi]

(2) and computes the vector of his shares of ([x∗
1], . . . , [x

∗
k]) by yi − ri.

Protocol ΠTranspose

Figure 5: Protocol to turn row Σ(2)-sharings to column Σ-sharings.

Evaluating Multiplication Gates. Now, we show how to utilize ΠTranspose to compute groups of mul-
tiplication gates. Each k groups of k multiplication gates (k2 multiplication gates in total) are computed
together. This can be done with O(n2)-bit communication by the following protocol ΠMulti.

Input: The servers input their shares of Σ-sharings [x1], . . . , [xk] and [y1], . . . , [yk]. Let
z1 = x1 ∗ y1, . . . , zk = xk ∗ yk.

1. The servers locally computes their shares of [zj ]
(2) = [xj ]⊗ [yj ] for each j = 1, . . . , k.

2. The servers run ΠTranspose with input sharings [z1]
(2), . . . , [zk]

(2) and get output sharings [z∗
1 ], . . . , [z

∗
k].

3. The servers locally computes [z∗
j ]

(2) = [1]⊗ [z∗
j ] for each j = 1, . . . , k, where [1] is a public Σ-sharing of an

all-1 vector.

4. The servers run ΠTranspose with input sharings [z∗
1 ]

(2), . . . , [z∗
k]

(2) and get output sharings [z1], . . . , [zk].

Protocol ΠMulti

Figure 6: Protocol to compute batched multiplication gates.

Outline of the Protocol for SIMD Circuits. Now we give an outline of the protocol for SIMD circuits.

1. First, the parties invoke Fprep to get the preprocessing data, including:

• Preprocessing for the transpose protocol, i.e. each server Sj generates a random Σ(2)-sharing
[rj ]

(2), and all the servers jointly prepare random Σ(2)-sharings [u1]
(2), . . . , [uNℓ]

(2).

• The mask sharing for output sharings, i.e. each client Ci generates a random Σ(2)-sharing [r](2)

for each batch of output wires attached to him. This is used to mask the sharing for the group
of output wire values. After being masked, the sharings for output wires can be made public to
satisfy the requirements of the abstract protocol listed in Section 4.1.

2. The clients run Finput to generate input Σ-sharings for each group of input wires.

3. The parties evaluate the circuit gate by gate:

• Addition Gates: For each batch of k addition gates with input sharings [x], [y], all the servers
locally compute [x+ y] = [x] + [y].

• Multiplication Gates: For each k groups of multiplication gates with input sharings ([x1], [y1]),
. . . , ([xk], [yk]), all the servers run ΠMulti with input sharings [x1], . . . , [xk] and [y1], . . . , [yk].
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4. After evaluating all the layers of the circuit, the servers get the output sharing [y] for each group of
output wires attached to each client Ci. The servers locally compute [y+ r](2) = [1]⊗ [y] + [r](2) with
the corresponding [r](2) and send it to Ci (where [1] is a public Σ-sharing with an all-1 secret vector).
Then Ci reconstructs y + r and computes y = y + r − r to get his output.

We give more details about Π0 for general circuits in Section F. Here we just state the parameters
Π0 achieves. For the protocol Π0 (Figure 14) that satisfies all the requirements in Section 4.1, we have
DS = GA = CCΠ0

eval = O(|C|+Dn2 +mn), where m is the number of clients. Then the communication cost
of Π′

1 with Π0 instantiated will be CCΠ′
1 = CCprep + CCinput + O((|C| +Dn2 +mn) · κ) without adding the

cost of realizing Fprep and Finput, where D is the circuit depth of C.
In Section F.3.1, we give the detail of functionalities, and we give the instantiation of the functionalities

in Section H. The achieved total communication cost of realizing Fprep and Finput is O(|C|+Dn2+mn+n2κ).
Thus, the total communication of Π′

1 is O((|C|+Dn2 +mn) · κ). In addition, we give a detailed analysis of
rounds for Π′

1 in the plain model in Section I. Let m = n and let each party serve as a client and a server at
the same time, we give the following theorem in the standard MPC model.

Theorem 1. Assuming random oracles, there exists a computationally secure 5-round MPC protocol against
a fully malicious adversary controlling up to n/4 parties with communication of O(|C|κ+Dn2κ), where |C|
is the circuit size, D is the circuit depth, and κ is the computational security parameter.

7 Overview of the Dishonest Majority Constant-Round MPC
Supporting Dishonest Majority via Virtual Servers. To support the dishonest majority setting, we
use the party-virtualization technique [Bra87] to take c random servers as a group to emulate a virtual server
in Π′

1. Let N be the number of virtual parties which will be determined below. Let Π0,Π
′
1 be N -server

protocols we constructed in Section F and Section 5 which can tolerate up to N/4 corrupted servers. A
virtual server is regarded as an honest virtual server if it contains at least one honest real server, and vice
versa. We will determine N and c to ensure that at most N/4 virtual servers are corrupted.

For a fixed set of ts = (1− ϵ)n corrupted servers, the probability that at least one honest server is picked
is 1− (1− ϵ)c > 1− exp(−cϵ). Thus, we only need c = Θ(1/ϵ) to be a constant to ensure 1− (1− ϵ)c > c0 for
any constant c0 < 1. We take N groups of this form, and we let Xi = 1 if all the servers in the i-th group
are corrupted, and Xi = 0 otherwise. Since these N groups of servers are chosen independently, X1, . . . , XN

are independent random variables. For each Xi, the probability that Xi = 0 is 1 − (1 − ϵ)c > c0. Let
X = X1 + · · ·+XN , we have µ = E(X) < 2(1− c0)N . By Chernoff bound it holds that:

P (X ≥ 2(1− c0)N) ≤ P (X ≥ 2µ) ≤ e−
µ
3 ≤ e−

2(1−c0)N
3 = e−Ω(N)

for any constant c0 < 1.
Considering that the adversary may choose the set of corrupted parties after the groups are determined,

we take the union bound of all
(
n
t

)
< 2n possible choices, then the probability that there are more than

2(1 − c0)N groups of the N groups containing no honest server is no more than 2n · e−Ω(N). Taking
7/8 < c0 < 1 and N = Θ(n + κ), with overwhelming probability, at least 3/4 groups of servers contains an
honest server.

Then, each group of c servers will emulate a virtual server Vi to participate in Π′
1, and they jointly

compute the local computation of Vi and communicate with other virtual servers (where Pking is still acted
by a single real-world server, which is not required to be honest).

Now we explain how can the virtual servers perform Π′
1. To ensure that the data of each honest virtual

server won’t be revealed to the adversary, we let the data of each virtual server be additively shared among all
the servers emulating it. More concretely, for the preprocessing and input data generated in Π′

1, the parties
run preprocessing and input protocols with each message to a server Sj in Π′

1 additively shared among the
servers emulating the virtual server Vj . In addition, the receivers of Σ(2)-sharings also generate the sharings
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for output labels in such an additively shared way. To perform the local computation of Vi, the servers
emulating Vi can simply utilize a dishonest majority MPC protocol such as the SPDZ protocol [DPSZ12] to
do the computation and compute an additive sharing (denoted by ⟨·⟩) for each value in the internal state
of Vi. To send a message a to another virtual server Vj , the servers that act as Vi only need to additively
share their shares of ⟨a⟩ and distribute them to the servers that act as Vj . Then, the servers that act as
Vj can locally compute an additive sharing ⟨a⟩. In this way, we can transform Π′

1 to support the dishonest
majority.

Multiparty Garbling. Now the remaining problem is the efficiency. Simply applying a dishonest majority
MPC protocol on each virtual server’s local computation may be very inefficient (or even not work since we
assume a random oracle in Π′

1), especially for the computation of Gb and Enc. To let the real-world servers
jointly garble a circuit, we utilize the multiparty garbling technique. Since the number of parties in each
group is constant, we do not need the multiparty garbling scheme to be scalable. So we simply generalize
the multiparty garbling technique in the BMR framework [BMR90, DI05] to support freeXOR under the
assumption of random oracles.

Note that the multiparty garbling process requires secure multiplications of additive sharings. Since the
additive sharings are distributed among a constant number of parties, we do not require a multiplication
protocol with linear communication which requires stronger assumptions such as somewhat homomorphic
encryptions [DKL+13] or LPN [RS22]. We follow [GMW87] to let the servers invoke random OTs (ROTs)
first and use the results to compute pair-wise products of their shares and add them up.

Towards Malicious Security. To achieve malicious security, a direct way is to apply a maliciously secure
MPC to do the multiparty garbling. However, these protocols either require non-symmetric cryptographic
assumptions such as linearly homomorphic encryption [BDOZ11] and LPN [RS22] or lead to a non-constant
multiplication overhead on the communication complexity [LOS14, KOS16]. Our idea is to use a modified
version of the “Watchlist” technique based on MPC-in-the-head [IKOS07, IPS08, FR23] to do the check on
the local computation of virtual servers.

More concretely, we choose c0 = 31/32 to decide the size of each set of servers that emulate a virtual server.
In this way, with overwhelming probability, no more than N/16 virtual servers are completely emulated by
corrupted servers. Before doing the local computation of each virtual server, the servers commit their inputs
and local randomness. Then the computation of each virtual server is deterministic on these committed
inputs. After the local computation of the virtual servers is completed, each server S checks a random set of
N/16n virtual servers. This is done by asking all servers to open their commitments of inputs and randomness
for the local computation of the chosen virtual servers and send all the transcripts while emulating the virtual
servers to S for verification. Since the computation is deterministic on the committed inputs, S can check
whether the computation of these chosen virtual servers is correctly performed.

In this way, if the corrupted parties do not follow the protocol to do the multiparty garbling for over
N/16 virtual servers that are emulated by at least one honest server, the protocol will proceed only when
these virtual servers are not chosen by the ϵn honest servers. The probability that each honest server does
not choose these virtual servers is

15N
16

N
·

15N
16 − 1

N − 1
· · · · ·

15N
16 −

N
16n + 1

N − N
16n + 1

<

(
1− 1

16

) N
16n

.

Thus, the probability that the N/16 virtual servers that are not chosen by all the honest servers is (15/16)(ϵN/16).
Recall that N = Θ(n+ κ), the probability is negligible.

However, one issue we omitted so far is that corrupted servers may not commit their inputs correctly.
In our construction, the input of each virtual party either comes from a real server/client or is generated
by the functionality of ROT. For the former case, when S verifies the computation of a virtual party Vi, S
also receives the input of Vi from the real server/client to cross-check the correctness of the input. For the
latter case, however, an adversary may launch the selective failure attack as noted in [IPS08]. For example,
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say two parties (P1, P2) invoke an instance of ROT where P1 is corrupted and P2 is honest. P1 receives
r0, r1 ∈ {0, 1}κ and P2 receives b ∈ {0, 1}, rb from the ROT. Then, if b = 0, P1 may commit r0, r′1 ̸= r1 as his
output from the ROT, and the multiplication performed with this instance of ROT can still be computed
correctly. In this case, S would not be able to detect the malicious behavior and the adversary would learn
that b = 0, which breaks the security of the multiplication protocol. However, the adversary has at most
1/2 probability to carry out such an attack on each ROT without being caught. If the adversary performs
such an attack on over N/16 virtual servers’ ROTs, the probability of catching the adversary when checking
a single virtual server is at least (1/16) · (1/2). Thus, the probability that the attack is caught by any honest
server (which checks ϵN/16 virtual servers in total) is bounded by (31/32)(ϵN/16), which is negligible.

In this way, we can ensure that with overwhelming probability at least 13/16 fraction of virtual servers
honestly follow the protocol to do the computation. Among them, the (1 − ϵ)n corrupted server may view
the input and computation of (1− ϵ)N/16 < N/16 virtual servers. Thus, there are no less than 3/4 virtual
servers that follow the protocol to perform computation, and the honest servers’ inputs of these virtual
servers are private to the corrupted servers. Then, we can view that these virtual servers are the honest
servers in Π′

1, which guarantees the security.

Protocol Outline. Finally, we give an outline of the protocol:

1. First, the parties emulate Fprep and Finput to generate preprocessing and input data to the virtual
servers. Each data to Vj is shared among the servers Sj,1, . . . , Sj,c emulating Vj .

2. The servers prepare for the garbling of the virtual servers’ local circuits:

• Each pair of servers (Sj,α, Sj,β) emulating the same virtual server Vj prepares random OT instances
that are needed in performing multiplication of the additively shared data of Vj .

• The receivers of Σ(2)-sharings generate sharings for the chosen output labels. Each label r(α)0 for a
virtual server receiver Vj is jointly chosen by all the servers emulating it, i.e. r(α)b = (r

(α)
b,1 , . . . , r

(α)
b,c )

for each b = 0, 1 and α = 1, . . . , κ, where each r
(α)
b,β is chosen and shared by Sj,β .

• The local randomness of each server to the multiparty garbling process of the virtual servers.

3. The servers commit their inputs to the multiparty garbling process of the virtual servers’ local circuits.

4. The parties emulating each virtual server Vj run a multiparty garbling process to garble the local
circuits of Vj in Π0.

5. The servers run a verification on the preprocessing and input data to check their validity. Then, each
server chooses his own watchlist of virtual servers and lets the servers emulating each virtual server
on the watchlist open all the committed inputs and generated transcripts during the computation of
the virtual server. The server then verifies whether the virtual servers on his watchlist all perform
computation correctly.

6. The parties reconstruct the garbled circuits together with the input labels of each virtual server to the
evaluator Pking, Pking then evaluates the circuit and sends the outputs as in Π′

1.

For more details, we refer the readers to Section J. Let m = n and let each party serve as a client and a
server at the same time, we give the following theorem in the standard MPC model.

Theorem 2. Assuming random oracles and random OTs, for any constant 0 < ϵ < 1, there exists a
computationally secure (12 + RROT)-round MPC protocol against a fully malicious adversary controlling up
to (1− ϵ)n parties with communication of O(|C|κ+D(n+κ)2κ+n3) bits plus O(|C|+D(n+κ)2) instances
of ROT of message length O(κ), where |C| is the circuit size, D is the circuit depth, RROT is the number of
rounds for an instance of ROT, and κ is the computational security parameter.
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A The Security Model
In the client-server model, clients provide inputs to the functionality and receive outputs, and servers can
participate in the computation but do not have inputs or get outputs. Each party may have different roles
in the computation. Note that, if every party plays a single client and a single server, this corresponds to
a protocol in the standard MPC model. Let m denote the number of clients and n denote the number of
servers. For all clients and servers, we assume that every two of them are connected via a secure (private and
authentic) synchronous channel so that they can directly send messages to each other. The communication
complexity is measured by the number of bits via private channels.

We consider an adversary that may corrupt tc clients and ts servers. In this work, we consider both
semi-honest adversaries and fully malicious adversaries.

• If A is semi-honest, then corrupted clients and servers honestly follow the protocol.

• If A is fully malicious, then corrupted clients and servers can deviate from the protocol arbitrarily.

Real-World Execution. In the real world, the adversary A controlling corrupted clients and servers
interacts with honest clients and servers. At the end of the protocol, the output of the real-world execution
includes the inputs and outputs of honest clients and servers and the view of the adversary.

Ideal-World Execution. In the ideal world, a simulator Sim simulates honest clients and servers and
interacts with the adversary A. Furthermore, Sim has one-time access to F , which includes providing inputs
of corrupted clients and servers to F , receiving the outputs of corrupted clients and servers, and sending
instructions specified in F . The output of the ideal-world execution includes the inputs and outputs of
honest clients and servers and the view of the adversary.

We say that a protocol securely realizes F if there exists a PPT simulator Sim, such that for all adversary
A, the distribution of the output of the real-world execution is computationally indistinguishable from the
distribution of the output of the ideal-world execution.

Benefit of the Client-Server Model A benefit of the client-server model is that we only need to consider
the maximal corruption of servers. At a high level, for an adversary A which controls t′s < ts servers, we
may construct another adversary A′ which controls additional ts − t′s servers and behaves as follows:

• For a server corrupted by A, A′ follows the instructions of A. This is achieved by passing messages
between this server and other n− t honest servers.

• For a server which is not corrupted by A, but controlled by A′, A′ honestly follows the protocol.

Note that, if a protocol is secure against A′, then this protocol is also secure against A since the additional
ts − t′s parties controlled by A′ honestly follow the protocol in both cases. Thus, we only need to focus on
A′ instead of A.

B Basic Algebraic Geometry
In this part, we introduce some basic algebraic geometry used in the construction of a secret sharing scheme
in [CC06].

Let C be a smooth, projective, absolutely irreducible curve defined over Fq, and let g denote the genus
of C. Let Fq denote the algebraic closure of Fq. A plane such curve can be represented by some polynomial
F (X,Y ) ∈ Fq[X,Y ] that is irreducible in Fq[X,Y ]. The affine part of the curve is defined as the set of
points P ∈ Fq

2
such that F (P ) = 0. By taking its projective closure, which amounts to introducing an extra

variable, homogenizing the polynomial, and considering the zeroes in the two-dimensional projective space
P2(Fq), one obtains the entire curve. More generally, curves defined over Fq is the “set of zeroes” in Pm(Fq)
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of a homogeneous ideal I ⊂ Fq[X0, . . . , Xm], where I is such that its function field has transcendence degree
1 over the ground field, i.e., it is a one-dimensional variety. For a projective curve V ⊂ Pm(Fq) defined by
m − 1 irreducible functions f1, . . . , fm−1, if the at every point P ∈ Fq

m
in the affine part of V (such that

f1(P ) = · · · = fm−1(P ) = 1) is nonsingular, i.e. the (m− 1)×m matrix containing the m partial derivatives
of f1, . . . , fm−1 has rank m− 1, V is said to be smooth.

Fq(C) denotes the function field of the curve. Very briefly, it consists of all fractions of polynomials
a, b ∈ Fq[X0, . . . , Xm], b /∈ I, such that both are homogeneous of the same degree, under the equivalence
relation that a/b ∼ a′/b′ if ab′ ≡ a′b mod I. The elements can be viewed as maps from the curve to Fq, and
they have at most a finite number of poles and zeroes unless it is the zero function. Their “multiplicities add
up to zero.”

Since C is smooth at each point P ∈ C by assumption, the local ring OP (C) of functions f ∈ Fq(C) that
are well-defined at P (equivalently, the ones that do not have a pole at P ) is a discrete valuation ring. Thus,
at each P ∈ C, there exists t ∈ Fq(C) (a uniformizing parameter) such that t(P ) = 0 and each f ∈ OP (C)
can be uniquely written as f = u · tνp(f). Here, u ∈ OP (C) is a unit (i.e. u(P ) ̸= 0), and νP (f) is a
non-negative integer. This valuation νP extends to all of Fq(C), by defining νP (f) = −νP (1/f) if f has a
pole at P .

A divisor is a formal sum
∑

P∈C mp · (P ) with integer coefficients mp taken over all points P of the curve
C. Divisors are required to have finite support, i.e., they are zero except possibly at finitely many points.
The divisor of f ∈ Fq(C) is defined as div(f) =

∑
P∈C νP (f) · (P ). It holds that deg(div(f)) = 0. The degree

deg(D) of a divisor D is the sum
∑

P∈C mP ∈ Z of its coefficients mP .
The Riemann-Roch space associated with a divisor D is defined as L(D) = {f ∈ Fq(C)|div(f) + D ≥

0} ∪ {0}. This is an Fq-vector space. The (partial) ordering “≥” refers to the comparison of integer vectors
and declaring one larger than the other if this holds coordinate-wise. Its dimension is denoted ℓ(D). This
dimension is equal to 0 if deg(D) < 0. The Riemann-Roch Theorem is concerned with the dimensions of
those spaces. It says that ℓ(D)− ℓ(K −D) = deg(D) + 1− g. Here K is a canonical divisor. These are the
divisors K of degree 2g − 2 and ℓ(K) = g. It follows immediately that ℓ(D) = deg(D) + 1 − g if deg(D) is
at least 2g − 1.

An Fq-rational point on C is one whose projective coordinates can be chosen in Fq. The set of Fq-rational
point on C is denoted by C(Fq). Below is a basic lemma in algebraic geometry.

C Security Proof for Protocol Π1

We prove Theorem 3 as follows.

Proof. We prove the security of Π1 by constructing an ideal adversary Sim1. Then we will show that the
output in the ideal world is computationally indistinguishable from that in the real world using hybrid
arguments. Our simulation is in the client-server model where the adversary corrupts any number of clients
and exactly t servers.

From the requirements of Π0, there exists a PPT simulator Sim0 that can generate the view of cor-
rupted parties (where each party may be either a client or a server) together with honest parties’ shares of
[s1]

(2), . . . , [srec]
(2) in Π0 from corrupted clients’ inputs and outputs.

Without loss of generality, we suppose that Pking is corrupted. We give the ideal adversary Sim1 below.

Let A′ be the adversary in Π0 that behaves the same as A while interacting with Fprep,Finput in the
preprocessing step and the input step, and fail-stops corrupted parties before the evaluation phase. Sim1

invokes Sim0 with adversary A′. When Sim0 invokes F , Sim1 sends the same message to F . Then, Sim1 gets
the output of Sim0.

1. Preprocessing. Sim1 simulates the preprocessing step of Π1 as Π0 with the output of Sim0.

2. Input. Sim1 simulates the input step of Π1 as Π0 with the output of Sim0.

Simulator Sim1
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3. Garbling Local Circuits. For i = 1, . . . , rec, Sim1 gets honest servers’ shares of the sharing [si]
(2) from

the output of Sim0. Sim1 then runs the algorithm Alg2 in Remark 1 to find a Σ(2)-sharing as [si]
(2) for each

i = 1, . . . , rec such that the honest servers’ shares match the output of Sim0. Then, if the receiver Ri of the
i-th reconstruction is honest:

(a) Sim1 runs Gen(1κ) k times to get keys rsi,β = (r
(1)
si,β

, . . . , r
(κ)
si,β

) for β = 1, . . . , k. Let
r
(α)
si = (r

(α)
si,1

, . . . , r
(α)
si,k

) for each α = 1, . . . , κ.

(b) For α = 1, . . . , κ, Sim1 randomly samples corrupted servers’ shares of [r(α)
0 ](3), [r

(α)
1 − r

(α)
0 ] (using the

algorithm Alg3 in Remark 1, same below) and sends them to the corrupted servers on behalf of Ri.

(c) For α = 1, . . . , κ, Sim1 randomly samples the whole sharing [r
(α)
si ](3) based on the corrupted servers’

shares of [r(α)
si ](3) = [r

(α)
0 ](3) + [si]

(2) ⊗ [r
(α)
1 − r

(α)
0 ] and the secret r

(α)
si .

(d) For each honest server Sj , suppose that Sj ’s shares of [si]
(2) and [r

(α)
si ](3) are si,Sj and r

(α)
si,Sj

respectively, Sim1 runs SimGC(1
κ, C

Sj

i , (si,Sj , r
(1)
si,Sj

, . . . , r
(κ)
si,Sj

)) to obtain (GC
Sj

i , X
Sj

i , d
Sj

i ). Then Sim1

sends GCSj

i , d
Sj

i to Pking on behalf of Sj . Here SimGC is the PPT algorithm in definition 6 for the garbling
scheme G.

If Ri is corrupted:

(a) Sim1 receives honest servers’ shares of [r(α)
0 ](3), [r

(α)
1 − r

(α)
0 ] from Ri for each α = 1, . . . , κ.

(b) For each honest server Sj , suppose that Sj ’s shares of [si]
(2) and [r

(α)
si ](3) (computed with the shares of

[r
(α)
0 ](3), [r

(α)
1 − r

(α)
0 ] received from Ri) are si,Sj and r

(α)
si,Sj

respectively, Sim1 runs

SimGC(1
κ, C

Sj

i , (si,Sj , r
(1)
si,Sj

, . . . , r
(κ)
si,Sj

)) to obtain (GC
Sj

i , X
Sj

i , d
Sj

i ). Then Sim1 sends GC
Sj

i , d
Sj

i to Pking on
behalf of Sj .

4. Encrypting Input Labels. For each i = 1, . . . , rec, if the receiver Ri is a server and the β-th bit of si is
used as an input wire with index jβ in Ri’s circuit CircRi

γ (γ ∈ {i+ 1, . . . , rec}), Sim1 gets XRi
γ,jβ

from XRi
γ

and computes
ct

(i,γ)
jβ ,si,β

= Enc(rsi,β , X
Ri
γ,jβ

).

Then, Sim1 runs Gen(1κ) to get a random key rk and encrypts an all-0 message m in the image space of
Enjβ (e

Ri
γ , ·) by

ct
(i,γ)
jβ ,1⊕si,β

= Enc(rk,m).

Then, Sim1 sends {ct(i,γ)jβ ,0 , ct
(i,γ)
jβ ,1 } to Pking on behalf of Ri.

5. Sending Input Labels. For each honest server Sj and each i = 1, . . . , rec, Sim1 gets the garbled input
X

Sj

i,γ from X
Sj

i for each input wire value for the γ-th input wire of CSj

i that does not come from
reconstruction. Then Sim1 sends X

Sj

i,γ to Pking on behalf of Sj .

6. Sending Outputs.

(a) For each receiver Ri that is an honest client, Sim1 receives si, {r(α)
si }

κ
α=1 from Pking.

(b) For each receiver Ri that is an honest client, Sim1 checks whether si, {r(α)
si }

κ
α=1 from Pking are all

correctly sent. If not, Sim1 aborts the protocol on behalf of Ri.

7. Sim1 outputs the adversary’s view.

Figure 7: The simulator for Π1 when Pking is corrupted.

We construct the following hybrids:
Hyb0: In this hybrid, Sim1 gets honest clients’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, for each i = 1, . . . , rec with honest Ri and α = 1, . . . , κ, while generating the

sharings [r(α)0 ](3), [r
(α)
1 − r

(α)
0 ], Sim1 first samples corrupted servers’ shares of [r(α)0 ](3), [r

(α)
1 − r

(α)
0 ] and then

randomly samples honest servers’ shares based on the corrupted servers’ shares and the secret. Since Σ is an
(n, t, k, ℓ)-LSSS that has 3-multiplicative reconstruction, each t shares of a Σ or Σ(3)-sharing are uniformly
random in (Fℓ

2)
t or (Fℓ3

2 )t respectively, so we only change the order of generating the honest servers’ and the

35



corrupted servers’ shares. Thus, Hyb1 and Hyb0 have the same output distribution.
Hyb2: In this hybrid, for each i = 1, . . . , rec with an honest receiver Ri, Sim1 additionally compute

each honest server’s share of [si]
(2) following Π0. Then, Sim1 runs the algorithm Alg2 in Remark 1 with

the honest servers’ shares of [si](2) to decide the whole sharing [si]
(2) and uses them to compute corrupted

servers’ shares of [r(α)si ](3) = [r
(α)
0 ](3) + [si]

(2) ⊗ [r
(α)
1 − r

(α)
0 ] for each α = 1, . . . , κ. This doesn’t affect the

output distribution. Thus, Hyb2 and Hyb1 have the same output distribution.
Hyb3: In this hybrid, for each i = 1, . . . , rec with receiver Ri. If Ri is honest, Sim1 doesn’t generate

the honest servers’ shares of [r(α)0 ](3) first and then computes each honest server’s share of each [r
(α)
si ](3) by

himself. Instead, Sim1 follows the protocol to generate rsi
first and then samples the whole sharing [r

(α)
si ](3)

based on the corrupted servers’ shares of [r
(α)
si ](3) and the secret r

(α)
si . Then, Sim1 computes the honest

servers’ shares of [r
(α)
0 ](3) based on their shares of [r

(α)
si ](3), [si]

(2), [r
(α)
1 − r

(α)
0 ]. If Ri is corrupted, Sim1

computes each honest server’s shares of [si](2) and [r
(α)
si ](3) based on his shares of [r(α)0 ](3), [r

(α)
1 − r

(α)
0 ].

Moreover, Sim1 doesn’t follow the protocol to compute the garbled circuit by Gb(1κ, C
Sj

i ) = (GC
Sj

i , e
Sj

i , d
Sj

i )

and then sends GCSj

i , d
Sj

i to Pking on behalf of each honest server Sj . Instead, Sim1 obtains (GC
Sj

i , X
Sj

i , d
Sj

i )

by running SimGC(1
κ, C

Sj

i , (si,Sj
, r

(1)
si,Sj

, . . . , r
(κ)
si,Sj

)) and sends GCSj

i , d
Sj

i to Pking. Besides, while sending input

labels to Pking, Sim1 doesn’t follow the protocol to compute Enγ(e
Sj

i , xγ) for each input wire value xγ of
the γ-th input wire of CSj

i . Instead, Sim1 gets each input label XSj

i,γ directly from X
Sj

i . In addition, for
each β = 1, . . . , k and each Ri that is an honest server, if the β-th bit of si is used as an input wire with
index jβ in Ri’s circuit CircRi

γ , the ciphertext ct(i,γ)jβ ,1⊕si,β
is not computed by following the protocol. Instead,

Sim1 generates a random key with Gen and encrypts an all-0 message m in the image space of Enjβ (eRi
γ , ·).

To prove that the distributions of Hyb3 and Hyb2 are computationally indistinguishable, we additionally
construct the following hybrids between Hyb2 and Hyb3.

Hyb3.1.1: In this hybrid, Sim1 additionally computes each honest server Sj ’s share of [s1]
(2) by using

the input labels associated with the input of Sj to evaluate the garbled circuit GC
Sj

1 with Ev. We denote
the result of the computation be [s1](2). Since the input of CircSj

1 completely comes from the output of
Fprep and Finput, and the computation process of Sj ’s share of [s1](2) in Π0 is identical to Circ

Sj

1 , from the
correctness condition of the garbling scheme, the result [s1](2) is the same as [s1]

(2) from the execution of
Π0. If R1 is honest, Sim1 doesn’t generate the honest servers’ shares of [r

(α)
0 ](3) based on the corrupted

servers’ shares first and then compute each honest server’s share of each [r
(α)
s1 ](3) by himself. Instead, Sim1

generates rs1
first and then samples the whole sharing [r

(α)
s1 ](3) based on the corrupted servers’ shares of

[r
(α)
s1 ](3) and the secret. Then, Sim1 computes the honest servers’ shares of [r(α)0 ](3) based on their shares

of [r(α)s1 ](3), [s1]
(2), [r

(α)
1 − r

(α)
0 ]. If R1 is corrupted, Sim1 still computes each honest server’s shares of [s1](2)

and [r
(α)
s1 ](3) based on his shares of [r(α)0 ](3), [r

(α)
1 − r

(α)
0 ]. Since the honest servers’ shares of each [r

(α)
0 ](3)

are sampled randomly based on corrupted servers’ shares and the secret in the last hybrid, their shares of
[r

(α)
si ](3) = [r

(α)
0 ](3)+[s1]

(2)⊗ [r
(α)
1 −r

(α)
0 ] are also random based on corrupted servers’ shares and the secret.

Therefore, we only change the order of generating honest servers’ shares of each [r
(α)
0 ](3) and [r

(α)
s1 ](3) without

changing their distributions. Thus, Hyb3.1.1 and Hyb2 have the same distribution.
Hyb3.1.2: In this hybrid, Sim1 doesn’t follow the protocol to compute the garbled circuit by Gb(1κ, C

Sj

1 ) =

(GC
Sj

1 , e
Sj

1 , d
Sj

1 ) and then sends GC
Sj

1 , d
Sj

1 to Pking on behalf of each honest server Sj . Instead, Sim1 runs
SimGC(1

κ, C
Sj

1 , (s1,Sj
, r

(1)
s1,Sj

, . . . , r
(κ)
s1,Sj

)) to obtain (GC
Sj

1 , X
Sj

1 , d
Sj

1 ) and sends GCSj

1 , d
Sj

1 to Pking. Besides, while

sending input labels to Pking, Sim1 doesn’t follow the protocol to compute Enγ(e
Sj

1 , xγ) for each input wire
value xγ of the γ-th input wire of CSj

1 . Instead, Sim1 gets each input label Enγ(e
Sj

1 , xγ) directly from X
Sj

1 .
From the definition of the private garbling scheme (definition 6), the distributions of the tuple (GC

Sj

1 , d
Sj

1 )

computed in the two different ways are computationally indistinguishable if s1,Sj , r
(1)
s1,Sj

, . . . , r
(κ)
s1,Sj

are just

the output of CSj

1 . Since the output of Sj ’s share of [s1](2) by C
Sj

1 is the same as the output of Sj ’s share of
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[si]
(2) by Circ

Sj

1 , which is the same as s1 in Π0. Besides, the output of Sj ’s shares (r
(1)
s1,Sj

, . . . , r
(κ)
s1,Sj

) from

C
Sj

1 are computed by

[r(α)s1
](3) = [r

(α)
0 ](3) + [s1]

(2) ⊗ [r
(α)
1 − r

(α)
0 ], α = 1, . . . , κ,

which has the same distribution as the shares of [r(α)s1 ](3) we generated in the last hybrid. Therefore, the dis-
tributions of Enγ(eR1

1 , xγ) and the corresponding garbled input obtained from XR1
1 are also computationally

indistinguishable. Thus, the distributions of Hyb3.1.2 and Hyb3.1.1 are computationally indistinguishable.
Note that for each β = 1, . . . , k, if the β-th bit of s1 is 0, then we don’t need the key r1,β associated with

the β-th bit of s1 since it is not used to generate any transcript sent to A in Step 3.(a)-(d), Sim1 delays the
generation of r1,β when it is needed in the encryption in Step 4 in future hybrids. Similarly, if the β-th bit
of s1 is 1, Sim1 delays the generation of r0,β when it is needed in the encryption in Step 4 in future hybrids.

Hyb3.2.1: In this hybrid, for each β = 1, . . . , k and η = 2, . . . , rec, if R1 is an honest server and CR1
η takes

the β-th bit of s1 as an input for the a-th input wires, the ciphertext ct(1,η)a,1⊕s1,β
is not computed by following

the protocol. Instead, Sim1 generates a random key with Gen and encrypts an all-0 message m in the image
space of Ena(e

Sj
η , ·). From the definition of a symmetric key scheme, for all security parameters κ and every

choice of vectors (m
(1)
0 , . . . ,m

(q)
0 ) and (m

(1)
1 , . . . ,m

(q)
1 ), where q = poly(κ), it holds that:

{{Enc(k,m(i)
0 )}qi=1 : k ← Gen(1κ)} ≡c {{Enc(k,m(i)

1 )}qi=1 : k ← Gen(1κ)}.

If the β-th bit of s1, si,β is equal to 0, we take (m
(1)
0 , . . . ,m

(q)
0 ) to be the vector of Ena(e

Sj
η , 1) for all

the circuit CR1
η takes the β-th bit of s1 as an input, and (m

(1)
0 , . . . ,m

(q)
0 ) to be the all-0 vector of the

same length. Since Sim generates r1,β by Gen(1κ) while doing the encryption, we know that the joint
distribution of Enc(r1,β ,Ena(e

Sj
η , 1)) for all these circuits CR1

η (that takes the β-th bit of s1 as input) is
computationally indistinguishable from the joint distribution of ct(1,η)a,1⊕si,β

= Enc(rk,m) for all these circuits.

Similarly, Enc(r0,β ,Ena(e
Sj
η , 0)) is computationally indistinguishable from ct

(1,η)
a,1⊕s1,β

= Enc(rk,m) when s1,β =
1. Thus, the distributions of Hyb3.2.1 and Hyb3.1.2 are computationally indistinguishable.

Hyb3.2.2: In this hybrid, Sim1 additionally computes each honest server Sj ’s share of [s2]
(2) by using

the input labels associated with the input of Sj to evaluate the garbled circuit GC
Sj

2 with Ev. We denote
the result of the computation be [s2](2). Since the input of CircSj

2 completely comes from the output of
Fprep,Finput and the reconstruction of [s1](2), and since [s1](2) = [s1]

(2) and the computation process of Sj ’s
share of [s2](2) is the same in Π0 with Circ

Sj

2 , from the correctness condition of the garbling scheme, the
result [s2](2) is the same as [s2](2) from the execution of Π0. If R2 is honest, Sim1 doesn’t generate the honest
servers’ shares of [r

(α)
0 ](3) first and then computes each honest server’s share of each [r

(α)
s2 ](3) by himself.

Instead, Sim1 generates rs2
first and then samples the whole sharing [r

(α)
s2 ](3) based on the corrupted servers’

shares of [r(α)s2 ](3) and the secret. Then, Sim1 computes the honest servers’ shares of [r(α)0 ](3) based on their
shares of [r(α)s2 ](3), [s2]

(2), [r
(α)
1 − r

(α)
0 ]. For the same reason as in Hyb3.1.1, Hyb3.2.2 and Hyb3.2.1 have the

same distribution.
Hyb3.2.3: In this hybrid, Sim1 doesn’t follow the protocol to compute the garbled circuit by Gb(1κ, C

Sj

2 ) =

(GC
Sj

2 , e
Sj

2 , d
Sj

2 ) and then sends GC
Sj

2 , d
Sj

2 to Pking on behalf of each honest server Sj . Instead, Sim1 runs
SimGC(1

κ, C
Sj

2 , (s2,Sj
, r

(1)
s2,Sj

, . . . , r
(κ)
s2,Sj

)) to obtain (GC
Sj

2 , X
Sj

2 , d
Sj

2 ) and sends GCSj

2 , d
Sj

2 to Pking. Besides, while

sending input labels to Pking, Sim1 doesn’t follow the protocol to compute Enγ(e
Sj

2 , xγ) for each input wire
value xγ of the γ-th input wire of CSj

2 that does not come from reconstructions. Instead, Sim1 gets each input
label Enγ(e

Sj

2 , xγ) directly from X
Sj

2 . For the same reason as in Hyb3.1.2, the distributions of Hyb3.2.3 and
Hyb3.2.2 are computationally indistinguishable.

Note that for each β = 1, . . . , k, if the β-th bit of s2 is 0, then we don’t need the key r1,β associated with
this bit of s2 is not used to generate any transcript sent to A in Step 3.(a)-(d), Sim1 delays the generation
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of r1,β when it is needed in the encryption in Step 4 in future hybrids. Similarly, if the β-th bit of s2 is 1,
Sim1 delays the generation of r0,β when it is needed in the encryption in Step 4 in future hybrids.

Similarly, for each γ = 3, . . . , rec we can define Hyb3.γ.1,Hyb3.γ.2,Hyb3.γ.3.
In Hyb3.γ.1, for each β = 1, . . . , k and η = γ, . . . , rec, if Rγ−1 is an honest server, CRi

η takes the β-th
bit of si as an input for the a-th input wires, the ciphertext ct

(i,η)
a,1⊕si,β

is not computed by following the
protocol. Instead, Sim1 generates a random key with Gen and encrypts an all-0 message m in the image
space of Ena(e

Sj
γ , ·).

In Hyb3.γ.2, Sim1 additionally computes each honest server Sj ’s share of [sγ ](2) by following the evaluation
process of Pking to evaluate GCSj

γ with Ev. We denote the result of the computation be [sγ ](2). If Rγ is honest,
Sim1 doesn’t generate the honest servers’ shares of [r(α)0 ](3) first and then computes each honest server’s share
of each [r

(α)
sγ ](3) by himself. Instead, Sim1 generates rs1

first and then samples the whole sharing [r
(α)
sγ ](3)

based on the corrupted servers’ shares of [r(α)sγ ](3) and the secret. Then, Sim1 computes the honest servers’
shares of [r(α)0 ](3) based on their shares of [r(α)sγ ](3), [sγ ]

(2), [r
(α)
1 −r

(α)
0 ]. If Rγ is corrupted, Sim1 still computes

each honest server’s shares of [sγ ](2) and [r
(α)
sγ ](3) based on his shares of [r(α)0 ](3), [r

(α)
1 − r

(α)
0 ].

In Hyb3.γ.3, Sim1 doesn’t follow the protocol to compute the garbled circuit by Gb(1κ, C
Sj
γ ) = (GC

Sj
γ , e

Sj
γ , d

Sj
γ )

and then sends GCSj
γ , d

Sj
γ to Pking on behalf of each honest server Sj . Instead, Sim1 obtains (GC

Sj
γ , X

Sj
γ , d

Sj
γ )

by running SimGC(1
κ, C

Sj
γ , (sγ,Sj

, r
(1)
sγ ,Sj

, . . . , r
(κ)
sγ ,Sj

)) and sends GC
Sj
γ , d

Sj
γ to Pking. Besides, while sending in-

put labels to Pking, Sim1 doesn’t follow the protocol to compute Enη(e
Sj
γ , xη) for each input wire value xη

of the η-th input wire of CSj
γ that does not come from reconstructions. Instead, Sim1 gets each input label

Enη(e
Sj
γ , xη) directly from X

Sj
γ .

For the same reason as in Hyb3.2.1,Hyb3.2.2,Hyb3.2.3, for each γ = 3, . . . , rec, the distributions of
Hyb3.γ.1 and Hyb3.(γ−1).3 are computationally indistinguishable, the distributions of Hyb3.γ.2 and Hyb3.γ.1

are computationally indistinguishable, and the distributions of Hyb3.γ.3 and Hyb3.γ.2 are also computation-
ally indistinguishable.

Note that Hyb3.rec.3 is just Hyb3, we conclude that Hyb3 and Hyb2 have the same distribution.
Note that if Ri is an honest client, the outputs of k executions of Gen that are used to compute {r(α)1⊕si

}κα=1

are not used until Ri receives si, {r(α)si }κα=1 and does the verification on them. Sim1 delays the generation of
{r(α)1⊕si

}κα=1 after Ri receives si, {r(α)si }κα=1 in future hybrids.
Hyb4: In this hybrid, for each i = 1, . . . , rec with honest receiver Ri who is a client, Sim1 doesn’t follow

the protocol to check the values si, {r(α)si }κα=1 received from Pking. Instead, Sim1 checks whether they are
correctly sent. Note that when they are correctly sent, then r

(α)
si = r

(α)
0 + si ∗ (r(α)1 − r

(α)
0 ) must hold for

each α = 1, . . . , κ. Thus, the output only changes when si, {r(α)si }κα=1 are not correctly sent but for each
α = 1, . . . , κ it still holds that r(α)si = r

(α)
0 + si ∗ (r(α)1 − r

(α)
0 ) (by the values received from Pking). Since when

si is correctly sent, {r(α)si }κα=1 is determined by the equation r
(α)
si = r

(α)
0 + si ∗ (r(α)1 − r

(α)
0 ), the output

only changes when a bit of si is not correctly sent. Assume that it’s the β-th bit. Note that if the β-th
bit of si is 0, then the β-th bit of r(α)si received from Pking should be the β-th bit of r(α)1 . These bits form
the vector r1,β , which is generated by Gen(1κ) after r

(α)
0 , r

(α)
1 are received from Pking. Similarly, if the β-th

bit of si is 1, then the β-th bit of r
(α)
si received from Pking should be the β-th bit of r

(α)
0 , and these bits

form the vector r1,β which is generated by Gen(1κ) after r(α)0 , r
(α)
1 are received from Pking. Thus, the output

changes only when an output of Gen(1κ) is guessed correctly by A, and the probability is negligible (or it
breaks the security of the symmetric key encryption scheme). Thus, the distributions of Hyb4 and Hyb3

are statistically close.
Note that if Ri is an honest client, we only need r

(α)
si and we don’t need r

(α)
1⊕si

for the simulation, and we
also don’t need honest servers’ shares of {[r(α)0 ](3), [r

(α)
1 −r

(α)
0 ]}κα=1 in the simulation. Sim1 doesn’t generate

them in future hybrids.
Hyb5: In this hybrid, since all the transcripts between honest and corrupted parties generated by Sim1
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can be generated from the transcripts between honest and corrupted parties obtained in the execution of
Π0, Sim1 just runs Π0 first to obtain all the transcripts and then uses them to generate the output of Sim1.
In addition, honest clients don’t follow the protocol Π1 to compute their output. Instead, they follow Π0 to
get their output. Since the value si sent from Pking to each honest client in Π1 is the same as the value si
in Π0, and the preprocessing and input data of Π0,Π1 is also the same, the computation of honest clients’
output is in the two protocols is completely the same. Therefore, we only change the way of generating the
output of Sim1 without changing their distributions. Thus, Hyb5 and Hyb4 have the same distribution.

Hyb6: In this hybrid, Sim1 doesn’t run Π0 to get the transcripts between honest and corrupted parties in
Π0 and use them to generate all the transcripts between honest and corrupted parties in Π1. Instead, Sim1

invokes Sim0 with A′ to get the transcripts between honest and corrupted parties in Π0. In addition, honest
clients get their outputs from F instead of following Π0 to compute them. From the requirements of Π0, the
joint distribution of transcripts between honest and corrupted parties in Π0 and the honest clients’ output in
Π0 is computationally indistinguishable from the joint distribution of the output of Sim0 and honest clients’
output from F . Thus, the distributions of Hyb6 and Hyb5 are computationally indistinguishable.

Note that Hyb6 is the ideal-world scenario, Π1 computes F with computational security.

D Security Proof for Protocol Π′1
We prove Theorem 4 as follows.

Proof. We prove the security of Π′
1 by constructing an ideal adversary Sim′

1. Then we will show that the
output in the ideal world is computationally indistinguishable from that in the real world using hybrid
arguments. Our simulation is in the client-server model where the adversary corrupts any number of clients
and exactly t servers.

From the requirements of Π0, there exists a PPT simulator Sim0 that can generate all the transcripts
between honest parties and corrupted parties in Π0 from corrupted clients’ inputs and outputs together with
honest servers’ shares of the sharings [s1]

(2), . . . , [srec]
(2).

Without loss of generality, we suppose that Pking is corrupted. We give the ideal adversary Sim′
1 below.

Let A′ be the adversary in Π0 that behaves the same as A while interacting with Fprep,Finput in the
preprocessing step and the input step, and fail-stops all corrupted parties before the evaluation phase. Sim′

1

invokes Sim0 with adversary A′. When Sim0 invokes F , Sim′
1 sends the same message to F . Then, Sim′

1 gets
the output of Sim0.

1. Preprocessing. Sim′
1 simulates the preprocessing step of Π′

1 as Π0 with the output of Sim0.

2. Input. Sim′
1 simulates the input step of Π′

1 as Π0 with the output of Sim0.

3. Generating Output Labels. For i = 1, . . . , rec, Sim′
1 gets honest servers’ shares of the sharing [si]

(2)

from the view of the adversary in Π0. Sim′
1 then runs the algorithm Alg2 in Remark 1 to find a Σ(2)-sharing

as [si]
(2) for each i = 1, . . . , rec such that the honest servers’ shares match the output of Sim0. Then:

– If the receiver Ri of the i-th reconstruction is honest:
(a) Sim′

1 samples k random κ-bit string as rsi,β ,β = (r
(1)
si,β ,β , . . . , r

(κ)
si,β ,β) for β = 1, . . . , k. Let

r
(α)
si = (r

(α)
si,1,1

, . . . , r
(α)
si,k,k

) for each α = 1, . . . , κ.

(b) For α = 1, . . . , κ, Sim′
1 randomly samples corrupted servers’ shares of [r(α)

0 ](3), [r
(α)
1 − r

(α)
0 ] (using the

algorithm Alg3 in Remark 1, same below) and sends them to the corrupted servers on behalf of Ri.

(c) For α = 1, . . . , κ, Sim′
1 randomly samples the whole sharing [r

(α)
si ](3) based on the corrupted servers’

shares of [r(α)
si ](3) = [r

(α)
0 ](3) + [si]

(2) ⊗ [r
(α)
1 − r

(α)
0 ] and the secret r

(α)
si .

Simulator Sim′
1
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(d) For each honest server Sj and each a = 1, . . . , ℓ2, let s
Sj

i,a be the a-th bit of Sj ’s share of [si] and

Y
Sj

(i−1)ℓ2+a,s
Sj
i,a

=
(
([r(1)

si ](3))
Sj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
si ](3))

Sj

[aℓ+1,(a+1)ℓ]

)
.

– If Ri is corrupted:
(a) Sim′

1 receives honest servers’ shares of [r(α)
0 ](3), [r

(α)
1 − r

(α)
0 ] from Ri for each α = 1, . . . , κ.

(b) For each honest server Sj and each a = 1, . . . , ℓ2, let s
Sj

i,a be the a-th bit of Sj ’s share of [si], Sim′
1

follows the protocol to compute Y
Sj

(i−1)ℓ2+a,s
Sj
i,a

based on Sj ’s shares of {[r(α)
0 ](3), [r

(α)
1 − r

(α)
0 ]}κα=1

received from Ri.

4. Garbling Local Circuits. For each honest server Sj :

(a) For each wire w in CircSj that is not an output wire of an XOR gate or an output gate, Sim′
1 samples a

random bit as vw ⊕ λw and a random (κ− 1)-bit string kw,vw⊕λw .
(b) For each XOR gate in CircSj with input wires a, b and output wire o, Sim′

1 computes
ko,vo⊕λo = ka,va⊕λa ⊕ kb,vb⊕λb and vo ⊕ λo = (va ⊕ λa)⊕ (vb ⊕ λb) gate by gate from the first layer.

(c) For each AND gate g in CircSj with input wire a, b and output wire o, Sim′
1 computes

ct
(g)
va⊕λa,vb⊕λb

=O1(ka,va⊕λa∥(va ⊕ λa)∥kb,vb⊕λb∥(vb ⊕ λb)∥g)⊕ ko,vo⊕λo∥(vo ⊕ λo).

Then Sim′
1 samples 3 random κ-bit strings as the other 3 ciphertexts for this gate g.

(d) For each input wire w of an output gate in CircSj , the output gate outputs a bit of Sj ’s share of a
Σ(2)-sharing that needs reconstruction in Π0, which can be obtained from the output of Sim0. Sim′

1 sets
the output wire value vw to be the corresponding bit from the output of Sim0. Then, Sim′

1 computes
λw = (vw ⊕ λw)⊕ λw.

(e) For each output gate in CircSj indexed 1, . . . , ℓ2rec with input wire w, Sim′
1 computes

ctw,vw⊕λw = O2(kw,vw⊕λw∥(vw ⊕ λw)∥w)⊕ Yk,vw .

Then Sim′
1 samples a random ℓκ-bit string as the other ciphertext for this wire w.

(f) Let the GCSj be the set of all the ciphertexts. Let dSj be the set of λw for each input wire w of output
gates in CircSj . Sim′

1 sends GCSj , dSj to Pking on behalf of Sj .

5. Encrypting Input Labels. For i = 1, . . . , rec, if Ri is an honest server and the β-th bit of si is used as
an input wire wjβ with index jβ in Ri’s circuits CircRi , Sim′

1 computes

ct
(i)
jβ ,si,β

= O1(rsi,β ,β∥si,β∥i∥β∥jβ)⊕
(
kwjβ

,vwjβ
⊕λwjβ

∥(vwjβ
⊕ λwjβ

)
)
.

Then, Sim′
1 samples a random κ-bit string as ct

(i)
jβ ,1⊕si,β

. Then, Sim′
1 sends {ctβ,0, ctβ,1} to Pking on behalf

of Ri.

6. Sending Input Labels. For each honest server Sj , Sim′
1 gets the garbled input

X
Sj
γ = kwγ ,vwγ⊕λwγ

∥(vwγ ⊕ λwγ ) for each input wire (with index γ) wγ of Sj ’s local circuits that does not

come from reconstruction. Then Sim′
1 sends X

Sj
γ to Pking on behalf of Sj .

7. Sending Outputs.

(a) For each receiver Ri that is an honest client, Sim′
1 receives si, {r(α)

si }
κ
α=1 from Pking.

(b) For each receiver Ri that is an honest client, Sim′
1 checks whether si, {r(α)

si }
κ
α=1 from Pking are all

correctly sent. If not, Sim′
1 aborts the protocol on behalf of Ri.

8. Sim′
1 outputs the adversary’s view.

Figure 8: The simulator for Π′
1 when Pking is corrupted.

We construct the following hybrids:
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Hyb0: In this hybrid, Sim′
1 gets honest clients’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, for each i = 1, . . . , rec with honest Ri and α = 1, . . . , κ, while generating the

sharings [r(α)0 ](3), [r
(α)
1 − r

(α)
0 ], Sim′

1 first samples corrupted servers’ shares of [r(α)0 ](3), [r
(α)
1 − r

(α)
0 ] and then

randomly samples honest servers’ shares based on the corrupted servers’ shares and the secret. Since Σ is an
(n, t, k, ℓ)-LSSS that has 3-multiplicative reconstruction, each t shares of a Σ or Σ(3)-sharing are uniformly
random in (Fℓ

2)
t or (Fℓ3

2 )t respectively, so we only change the order of generating the honest servers’ and the
corrupted servers’ shares. Thus, Hyb1 and Hyb0 have the same output distribution.

Hyb2: In this hybrid, for each wire w in each honest server Sj ’s local circuit CircSj , Sim′
1 additionally

follows the execution of Π0 to compute the value vw of w. Then, Sim′
1 runs the algorithm Alg2 in Remark 1

with the honest servers’ shares of [si](2) for each i = 1, . . . , rec with an honest receiver Ri to decide the whole
sharing [si]

(2) and uses them to compute corrupted servers’ shares of [r(α)si ](3) = [r
(α)
0 ](3)+[si]

(2)⊗[r(α)1 −r
(α)
0 ]

for each α = 1, . . . , κ. This doesn’t affect the output distribution. Thus, Hyb2 and Hyb1 have the same
output distribution.

Hyb3: In this hybrid, for each honest server Sj , Sim′
1 doesn’t follow the protocol to garble Sj ’s local

circuit CircSj . Instead:

1. For i = 1, . . . , rec, if Ri is honest, Sim′
1 doesn’t generate the honest servers’ shares of [r

(α)
0 ](3) first

and then computes each honest server’s share of each [r
(α)
si ](3) by himself. Instead, Sim′

1 follows the
protocol to generate r

(α)
si first and then samples the whole sharing [r

(α)
si ](3) based on the corrupted

servers’ shares of [r
(α)
si ](3) and the secret r

(α)
si . Then, Sim′

1 computes the honest servers’ shares of
[r

(α)
0 ](3) based on their shares of [r(α)si ](3), [si]

(2), [r
(α)
1 − r

(α)
0 ]. Then Sim′

1 computes each Y
Sj

(i−1)ℓ2+a,s
Sj
i,a

by
Y

Sj

(i−1)ℓ2+a,s
Sj
i,a

=
(
([r(1)si

](3))
Sj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
si

](3))
Sj

[aℓ+1,(a+1)ℓ]

)
.

For the other label Y Sj

(i−1)ℓ2+a,1⊕s
Sj
i,a

, Sim′
1 still follows the protocol to compute it. If Ri is corrupted,

Sim′
1 still follows the protocol to compute the labels Y(i−1)ℓ2+a,0, Y(i−1)ℓ2+a,1 based on Sj ’s shares of

{[r(α)0 ](3), [r
(α)
1 − r

(α)
0 ]}κα=1 received from Ri.

2. For each wire w in each CircSj that is not an output wire of an XOR gate or an AND gate, Sim′
1

samples a random bit as vw ⊕ λw and a random (κ− 1)-bit string as kw,vw⊕λw
. Then Sim′

1 computes
λw = (vw⊕λw)⊕vw for these wires. For each wire w in CircSj that is not an output wire of an output
gate, Sim′

1 computes kw,1⊕vw⊕λw = kw,vw⊕λw ⊕∆Sj at the end of the garbling process, where ∆Sj is
generated after all the ciphertexts are generated.

3. Sim′
1 maintains a set Q1. For each AND gate g in CircSj with input wire a, b, and for all i0, i1 ∈ {0, 1}

such that (i0, i1) ̸= (va⊕λa, vb⊕λb), when the honest server Sj computes ct(g)i0,i1
, Sim′

1 checks whether
the query to the random oracle O1 has been queried before. If true, Sim′

1 aborts the simulation.
Otherwise, Sim′

1 adds the query to Q1.

4. Sim′
1 maintains a set Q2. For each input wire w of an output gate in CircSj , and for all i2 ∈ {0, 1}

such that i2 ̸= vw ⊕ λw, when the honest server Sj computes ctw,i2 , Sim
′
1 checks whether the query to

the random oracle O2 has been queried before. If true, Sim′
1 aborts the simulation. Otherwise, Sim′

1

adds the query to Q2.

5. For each AND gate g in CircSj with input wire a, b and output wire o, Sim′
1 doesn’t follow the protocol

to compute the ciphertexts except ct(g)va⊕λa,vb⊕λb
. Instead, Sim′

1 samples 3 random κ-bit strings as them.
Sim′

1 computes the output of O1 to the queries that are used to generate these ciphertexts based on
the random strings and the wire labels of wire o.

41



6. For each output gate in CircSj indexed 1, . . . , f.m with input wire w, Sim′
1 doesn’t follow the protocol

to compute the ciphertext ctw,1⊕vw⊕λw . Instead, Sim′
1 samples a random ℓκ-bit string as it. Sim′

1

computes the output of O2 to the queries that are used to generate these ciphertexts based on the
random strings and the output labels.

7. For i = 1, . . . , rec, Sim′
1 doesn’t honestly compute Enjβ (e

Sj , si,β) for each input wire (with index γ)
wγ of CircSj that does not come from reconstruction. Instead, Sim′

1 sets the garbled input X
Sj
γ to be

kwγ ,vwγ⊕λwγ
∥(vwγ

⊕ λwγ
) for each wγ .

8. For i = 1, . . . , rec, if Sj is the receiver of [si](2) in Π0 and the β-th bit of si is used as an input wire
with index jβ in CircSj , Sim′

1 doesn’t follow the protocol computing ct
(i)
jβ ,1⊕si,β

. Instead, Sim′
1 samples

a random κ-bit string as ct
(i)
jβ ,1⊕si,β

.

To prove that the distributions of Hyb3 and Hyb2 are computationally indistinguishable, we additionally
construct the following hybrids between Hyb2 and Hyb3.

Hyb3.0: In this hybrid, for each honest server Sj , while garbling the circuit CircSj , Sim′
1 garbles the

sub-circuits Circ
Sj

1 , . . . , Circ
Sj
rec in order. This doesn’t affect the output distribution. Thus, Hyb3.0 and

Hyb2 have the same distribution.
Hyb3.1.1: In this hybrid, Sim′

1 additionally computes each honest server Sj ’s share of [s1]
(2) by using

the input labels associated with the input of Sj to evaluate the circuit GC
Sj

1 with Ev. We denote the result
of the computation be [s1](2). Since the input of CircSj

1 completely comes from the output of Fprep and
Finput, and the computation process of Sj ’s share of [s1](2) in Π0 is identical to Circ

Sj

1 , from the correctness
condition of the garbling scheme, the result [s1](2) is the same as [s1]

(2) from the execution of Π0. If R1

is honest, Sim′
1 doesn’t generate the honest servers’ shares of [r(α)0 ](3) first and then computes each honest

server’s share of each [r
(α)
s1 ](3) by himself. Instead, Sim′

1 generates [s1]
(2) first and then samples the whole

sharing [r
(α)
s1 ](3) based on the corrupted servers’ shares of [r(α)s1 ](3) and the secret r(α)s1 . Then, Sim′

1 computes
the honest servers’ shares of [r(α)0 ](3) based on their shares of [r(α)s1 ](3), [s1]

(2), [r
(α)
1 − r

(α)
0 ]. Then for each

honest server Sj , Sim′
1 computes each Y

Sj

a,s
Sj
1,a

by

Y
Sj

a,s
Sj
1,a

=
(
([r(1)s1

](3))
Sj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
s1

](3))
Sj

[aℓ+1,(a+1)ℓ]

)
.

The other output labels are still computed by following the protocol. Since the honest servers’ shares of each
[r

(α)
0 ](3) are sampled randomly based on corrupted servers’ shares and the secret in the last hybrid, their

shares of [r(α)si ](3) = [r
(α)
0 ](3) + [s1]

(2) ⊗ [r
(α)
1 − r

(α)
0 ] are also random based on corrupted servers’ shares and

the secret. In addition, note that the original computation process of each Y
Sj

a,s
Sj
1,a

is just the computation of

(
([r(1)s1

](3))
Sj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
s1

](3))
Sj

[aℓ+1,(a+1)ℓ]

)
,

we don’t change the computation process of Y
Sj

(a,s
Sj
1,a

. Therefore, we only change the order of generating

each [r
(α)
s1 ](3) and [r

(α)
0 ](3) without changing their distributions. Thus, Hyb3.1.1 and Hyb3.0 have the same

distribution.
Hyb3.1.2: In this hybrid, for each honest server Sj , Sim′

1 doesn’t follow the protocol to garble Circ
Sj

1 .
Instead, for each wire w in Circ

Sj

1 that is not an output wire of an XOR gate or an AND gate, Sim′
1 samples a

random bit as vw⊕λw and a random (κ−1)-bit string as kw,vw⊕λw
. Then Sim′

1 computes λw = (vw⊕λw)⊕vw
for these wires. For each wire w in CircSj that is not an output wire of an output gate, Sim′

1 computes
kw,1⊕vw⊕λw = kw,vw⊕λw ⊕ ∆Sj . Since λw is a uniformly sampled bit, vw ⊕ λw is also a uniformly random
bit. Therefore, we only change the order of generating vw⊕λw and λw without changing their distributions.
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Similarly, if vw ⊕ λw = 1, we only change the order of generating kw,0 and kw,1 without changing their
distributions. If vw ⊕ λw = 0, we doesn’t change anything on kw,0 and kw,1. Thus, Hyb3.1.2 and Hyb3.1.1

have the same output distribution.
Hyb3.1.3: In this hybrid, Sim′

1 maintains a set Q1. For each honest server Sj , for each AND gate g in
Circ

Sj

1 with input wire a, b, and for all i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb), when the honest
server Sj computes ct

(g)
i0,i1

, Sim′
1 checks whether the query to the random oracle O1 has been queried before.

If true, Sim′
1 aborts the simulation. Otherwise, Sim′

1 adds the query to Q1. Note that all the queries to the
random oracle by the honest servers are distinct, and the adversary’s queries to the random oracle before the
encryption are fixed when the wire labels and the value ∆ are chosen in the simulation of Gb(1κ, CircSj , L)
(denoted by ∆Sj ). Since each query made to the random oracle contains either of the (κ − 1)-bit strings
ka,1⊕va⊕λa or kb,1⊕vb⊕λb

with ka,1⊕va⊕λa − ka,va⊕λa = kb,1⊕vb⊕λb
− kb,vb⊕λb

= ∆Sj which is uniformly
random, for each query made by the adversary, there is only a negligible probability that the query contains
ka,1⊕va⊕λa

or kb,1⊕vb⊕λb
. Taking the union bound of all the poly(κ) queries made by the adversary, the

probability that some query has been queried (either by the honest server or by the adversary) is negligible.
Thus, the distributions of Hyb3.1.3 and Hyb3.1.2 are computationally indistinguishable.

Hyb3.1.4: In this hybrid, for each honest server Sj , for each AND gate g in Circ
Sj

1 with input wire a, b
and output wire o, and for all i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb), Sim′

1 samples a random
κ-bit string as the ciphertext ct

(g)
i0,i1

. While emulating O1, Sim′
1 computes the output based on the random

strings and the wire labels of wire o. Note that the only difference between Hyb3.1.4 and Hyb3.1.3 is the
way we decide the output for queries in Q1. Since ct

(g)
i0,i1

is randomly sampled, ct(g)i0,i1
⊕m is also uniformly

random for any κ-bit string m. In particular, when Sim′
1 does not abort the simulation, queries in Q1 have

not been queried before. Thus, Hyb3.1.4 and Hyb3.1.3 have the same output distribution.
Hyb3.1.5: In this hybrid, for each honest server Sj , Sim′

1 change the order of sampling random κ-bit
strings as the ciphertext ct

(g)
i0,i1

for each AND gate g in Circ
Sj

1 with input wire a, b and output wire o and
all i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb) and sampling ∆Sj to decide the queries to O1. Since
these two steps are both local computations, this doesn’t affect the output distribution. Thus, Hyb3.1.5 and
Hyb3.1.4 have the same output distribution.

Hyb3.1.6: In this hybrid, Sim′
1 maintains a set Q2. For each honest server Sj , for each input wire w of an

output gate in Circ
Sj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, when the honest server Sj computes
ctw,i2 , Sim

′
1 checks whether the query to the random oracle O2 has been queried before. If true, Sim′

1 aborts
the simulation. Otherwise, Sim′

1 adds the query to Q2. Note that each query made to the random oracle
contains a (κ − 1)-bit string kw,1⊕vw⊕λw with kw,1⊕vw⊕λw − kw,vw⊕λw = ∆Sj , for the same reason as in
Hyb3.1.3, the probability that some query has been queried (either by the honest server or by the adversary)
is negligible. Thus, the distributions of Hyb3.1.6 and Hyb3.1.5 are computationally indistinguishable.

Hyb3.1.7: In this hybrid, for each honest server Sj , for each input wire w of an output gate in Circ
Sj

1 ,
and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, Sim′

1 samples a random ℓκ-bit string as the ciphertext ctw,i2 .
While emulating O2, Sim′

1 computes the output based on the random strings and the output labels. Note
that the only difference between Hyb3.1.7 and Hyb3.1.6 is the way we decide the output for queries in Q2.
Since ctw,i2 is randomly sampled, ctw,i2 ⊕m is also uniformly random for any ℓκ-bit string m. In particular,
when Sim2 does not abort the simulation, queries in Q2 have not been queried before. Thus, Hyb3.1.7 and
Hyb3.1.6 have the same output distribution.

Note that for each β = 1, . . . , k, if the β-th bit of s1 is 0, then we don’t need the key r1,β associated
with the β-th bit of s1 since it is not used to generate any transcript sent to A in Step 3-4, Sim′

1 delays the
generation of r1,β when it is needed in the encryption in Step 5 in the next hybrid. Similarly, if the β-th bit
of s1 is 1, Sim′

1 delays the generation of r0,β when it is needed in the encryption in Step 5 in the next hybrid.
Then we don’t need each sharing [r

(α)
1 − r

(α)
0 ] in Step 3-4, we also delay the generation of each [r

(α)
1 − r

(α)
0 ]

when it is needed in Step 5.
Hyb3.1.8: In this hybrid, if the receiver R1 of [s1]

(2) is an honest server Sj and the β-th bit of s1 is
used as an input wire with index jβ in CircSj , Sim′

1 doesn’t honestly compute Enjβ (e
Sj , s1,β). Instead, Sim′

1
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sets the garbled input XSj

jβ
to be kwjβ

,vwjβ
⊕λwjβ

∥(vwjβ
⊕ λwjβ

). In addition, Sim′
1 doesn’t honestly compute

Enγ(e
Sj , xγ) for each input wire (with index γ) wγ of CircSj that does not come from reconstruction.

Instead, Sim′
1 sets the garbled input XSj

γ to be kwγ ,vwγ⊕λwγ
∥(vwγ

⊕λwγ
) for each wγ . Since the computation

of Enjβ (eSj , s1,β) is just taking kwjβ
,vwjβ

⊕λwjβ
∥(vwjβ

⊕ λwjβ
), and similar for Enγ(e

Sj , xγ), so this doesn’t
change the output distribution. Thus, Hyb3.1.8 and Hyb3.1.7 have the same output distribution.

Hyb3.1.9: In this hybrid, if the receiver R1 of [s1]
(2) is an honest server Sj and the β-th bit of s1 is

used as an input wire with index jβ in CircSj , when the honest server Sj computes ct
(1)
jβ ,1⊕s1,β

, Sim′
1 checks

whether the query to the random oracle O1 has been queried before. If true, Sim′
1 aborts the simulation.

Otherwise, Sim′
1 adds the query to Q1. Since r1⊕s1,β ,β is generated randomly in {0, 1}κ, the probability

that some query has been queried (either by the honest server or by the adversary) is negligible. Thus, the
distributions of Hyb3.1.9 and Hyb3.1.8 are computationally indistinguishable.

Hyb3.1.10: In this hybrid, if the receiver R1 of [s1](2) is an honest server Sj and the β-th bit of s1 is
used as an input wire with index jβ in CircSj , Sim′

1 doesn’t follow the protocol to compute ct
(1)
jβ ,1⊕s1,β

.

Instead, Sim′
1 samples a random κ-bit string as ct

(1)
jβ ,1⊕s1,β

. While emulating O1, Sim′
1 computes the output

of O1(r1⊕s1,β ,β∥s1,β∥1∥β∥jβ) based on ct
(1)
jβ ,1⊕s1,β

and kwjβ
,1⊕vwjβ

⊕λwjβ
∥(1 ⊕ vwjβ

⊕ λwjβ
). Note that the

only difference between Hyb3.1.10 and Hyb3.1.9 is the way we decide the output for queries in Q1. Since
ct

(1)
jβ ,1⊕s1,β

is randomly sampled, ct(1)jβ ,1⊕s1,β
⊕m is also uniformly random for any κ-bit string m. In particular,

when Sim′
1 does not abort the simulation, queries in Q1 have not been queried before. Thus, Hyb3.1.10 and

Hyb3.1.9 have the same output distribution.
Hyb3.1.11: In this hybrid, for each honest server Sj , Sim′

1 change the order of sampling random κ-bit
strings as the ciphertext ct(1)jβ ,1⊕s1,β

and sampling r1⊕s1,β ,β to decide the queries to O1. Since these two steps
are both local computations, this doesn’t affect the output distribution. Thus, Hyb3.1.11 and Hyb3.1.12 have
the same output distribution.

Hyb3.1.12: In this hybrid, the generation of each sharing [r
(α)
1 − r

(α)
0 ] is no longer delayed to be done in

Step 5. Instead, it is generated at the beginning of the garbling scheme. For each honest server Sj , Sim′
1

change the order of sampling random ℓκ-bit strings as the ciphertext ctw,i2 for each input wire w of an
output gate in Circ

Sj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw⊕λw and sampling ∆Sj to decide the queries
to O2. Since these two steps are both local computations, this doesn’t affect the output distribution. Thus,
Hyb3.1.12 and Hyb3.1.11 have the same output distribution.

Note that for each honest server Sj , ∆Sj is not used before GCSj

1 is generated. Sim′
1 delays the generating

of ∆Sj after GCSj

1 is generated.
Similarly, for each γ = 2, . . . , rec we can define Hyb3.γ.1, . . . ,Hyb3.γ.12.
Hyb3.γ.1: In this hybrid, Sim′

1 additionally computes each honest server Sj ’s share of [sγ ](2) by using
the input labels associated with the input of Sj to evaluate the circuit GC

Sj
γ with Ev. We denote the result

of the computation be [sγ ](2). Since the input of CircSj

2 completely comes from the output of Fprep,Finput

and the reconstructions of [s1](2), . . . , [sγ−1](2), and since [si](2) = [si]
(2) for each i = 1, . . . , γ − 1 and the

computation process of Sj ’s share of [sγ ](2) is the same in Π0 with Circ
Sj
γ , from the correctness condition of

the garbling scheme, the result [sγ ](2) is the same as [sγ ]
(2) from the execution of Π0. If R1 is honest, Sim′

1

doesn’t generate the honest servers’ shares of [r(α)0 ](3) first and then computes each honest server’s shares of
each [r

(α)
sγ ](3) by himself. Instead, Sim′

1 generates [sγ ]
(2) first and then samples the whole sharing [r

(α)
sγ ](3)

based on the corrupted servers’ shares of [r(α)sγ ](3) and the secret. Then, Sim′
1 computes the honest servers’

shares of [r(α)0 ](3) based on their shares of [r(α)sγ ](3), [sγ ]
(2), [r

(α)
1 −r

(α)
0 ]. Then for each honest server Sj , Sim′

1

computes each Y
Sj

(γ−1)ℓ2+a,s
Sj
γ,a

by

Y
Sj

(γ−1)ℓ2+a,s
Sj
γ,a

=
(
([r(1)sγ

](3))
Sj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
sγ

](3))
Sj

[aℓ+1,(a+1)ℓ]

)
.
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The other output labels are still computed by following the protocol. For the same reason as in Hyb3.1.1,
we conclude that Hyb3.γ.1 and Hyb3.(γ−1).8 have the same output distribution.

Hyb3.γ.2: In this hybrid, for each honest server Sj , Sim′
1 doesn’t follow the protocol to garble Circ

Sj
γ .

Instead, for each wire w in Circ
Sj
γ that is not an output wire of an XOR gate or an AND gate, Sim′

1 samples a
random bit as vw⊕λw and a random (κ−1)-bit string as kw,vw⊕λw

. Then Sim′
1 computes λw = (vw⊕λw)⊕vw

for these wires. For each wire w in CircSj that is not an output wire of an output gate, Sim′
1 computes

kw,1⊕vw⊕λw = kw,vw⊕λw ⊕ ∆Sj . For the same reason in Hyb3.1.2, Hyb3.γ.2 and Hyb3.γ.1 have the same
output distribution.

Hyb3.γ.3: In this hybrid, for each honest server Sj , for each AND gate g in Circ
Sj
γ with input wire a, b,

and for all i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb), when the honest server Sj computes ct
(g)
i0,i1

,
Sim′

1 checks whether the query to the random oracle O1 has been queried before. If true, Sim′
1 aborts the

simulation. Otherwise, Sim′
1 adds the query to Q1. For the same reason in Hyb3.1.3, the distributions of

Hyb3.γ.3 and Hyb3.γ.2 are computationally indistinguishable.
Hyb3.γ.4: In this hybrid, for each honest server Sj , for each AND gate g in Circ

Sj
γ with input wire a, b

and output wire o, and for all i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb), Sim′
1 samples a random

κ-bit string as the ciphertext ct
(g)
i0,i1

. While emulating O1, Sim′
1 computes the output based on the random

strings and the wire labels of wire o. For the same reason in Hyb3.1.4, Hyb3.γ.4 and Hyb3.γ.3 have the same
output distribution.

Hyb3.γ.5: In this hybrid, for each honest server Sj , Sim′
1 change the order of sampling random κ-bit

strings as the ciphertext ct
(g)
i0,i1

for each AND gate g in Circ
Sj
γ with input wire a, b and output wire o and

all i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb) and sampling ∆Sj to decide the queries to O1. For
the same reason in Hyb3.1.5, Hyb3.γ.5 and Hyb3.γ.4 have the same output distribution.

Hyb3.γ.6: In this hybrid, for each honest server Sj , for each input wire w of an output gate in Circ
Sj
γ ,

and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, when the honest server Sj computes ctw,i2 , Sim′
1 checks

whether the query to the random oracle O2 has been queried before. If true, Sim′
1 aborts the simulation.

Otherwise, Sim′
1 adds the query to Q2. For the same reason in Hyb3.1.6, the distributions of Hyb3.γ.6 and

Hyb3.γ.5 are computationally indistinguishable.
Hyb3.γ.7: In this hybrid, for each honest server Sj , for each input wire w of an output gate in Circ

Sj
γ ,

and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, Sim′
1 samples a random ℓκ-bit string as the ciphertext ctw,i2 .

While emulating O2, Sim′
1 computes the output based on the random strings and the output labels. For the

same reason in Hyb3.1.7, Hyb3.γ.7 and Hyb3.γ.6 have the same output distribution.
Hyb3.γ.8: In this hybrid, if the receiver Rγ of [sγ ]

(2) is an honest server Sj and the β-th bit of sγ is
used as an input wire with index jβ in CircSj , Sim′

1 doesn’t honestly compute Enjβ (e
Sj , sγ,β). Instead, Sim′

1

sets the garbled input XSj

jβ
to be kwjβ

,vwjβ
⊕λwjβ

∥(vwjβ
⊕ λwjβ

). In addition, Sim′
1 doesn’t honestly compute

Enη(e
Sj , xη) for each input wire (with index η) wη of CircSj that does not come from reconstruction. Instead,

Sim′
1 sets the garbled input XSj

η to be kwη,vwη⊕λwη
∥(vwη

⊕λwη
) for each wη. For the same reason in Hyb3.1.8,

Hyb3.γ.8 and Hyb3.γ.7 have the same output distribution.
Hyb3.γ.9: In this hybrid, if the receiver Rγ of [sγ ]

(2) is an honest server Sj and the β-th bit of sγ is
used as an input wire with index jβ in CircSj , when the honest server Sj computes ct

(1)
jβ ,1⊕sγ,β

, Sim′
1 checks

whether the query to the random oracle O1 has been queried before. If true, Sim′
1 aborts the simulation.

Otherwise, Sim′
1 adds the query to Q1. For the same reason in Hyb3.1.9, the distributions of Hyb3.γ.9 and

Hyb3.γ.8 are computationally indistinguishable.
Hyb3.γ.10: In this hybrid, if the receiver Rγ of [sγ ]

(2) is an honest server Sj and the β-th bit of sγ
is used as an input wire with index jβ in CircSj , Sim′

1 doesn’t follow the protocol to compute ctjβ ,1⊕s1,β .
Instead, Sim′

1 samples a random κ-bit string as ct(γ)jβ ,1⊕sγ,β
. While emulating O1, Sim′

1 computes the output of
O1(r1⊕sγ,β ,β) based on ctjβ ,1⊕sγ,β

and kwjβ
,1⊕vwjβ

⊕λwjβ
∥(1⊕vwjβ

⊕λwjβ
). For the same reason in Hyb3.1.10,
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Hyb3.γ.10 and Hyb3.γ.9 have the same output distribution.
Hyb3.γ.11: In this hybrid, for each honest server Sj , Sim′

1 change the order of sampling random κ-bit
strings as the ciphertext ct(γ)jβ ,1⊕sγ,β

and sampling r1⊕sγ,β ,β to decide the queries to O1. For the same reason
in Hyb3.1.11, Hyb3.γ.11 and Hyb3.γ.12 have the same output distribution.

Hyb3.γ.12: In this hybrid, the generation of each sharing [r
(α)
1 − r

(α)
0 ] is no longer delayed to be done in

Step 5. Instead, it is generated at the beginning of the garbling scheme. For each honest server Sj , Sim′
1

change the order of sampling random ℓκ-bit strings as the ciphertext ctw,i2 for each input wire w of an
output gate in Circ

Sj
γ , and for all i2 ∈ {0, 1} such that i2 ̸= vw⊕λw and sampling ∆Sj to decide the queries

to O2. Since these two steps are both local computations, this doesn’t affect the output distribution. Thus,
Hyb3.γ.12 and Hyb3.γ.11 have the same output distribution.

Note that for each honest server Sj , ∆Sj is not used before GCSj
γ is generated. Sim′

1 delays the generating
of ∆Sj after GCSj

γ is generated.
Note that Hyb3.rec.12 is just Hyb3, we conclude that Hyb3 and Hyb2 have the same distribution.

For each honest server Sj , Sim′
1 has delayed the generating of ∆Sj after the whole garbled circuit GCSj is

generated.
Also note that if Ri is an honest client, r(α)1⊕si

for α = 1, . . . , κ are not used until the whole garbled circuit
GCSj is generated. Sim′

1 generates them after the whole garbled circuit is generated in future hybrids to
decide the set Q1.

Hyb4: In this hybrid, for each AND gate g in each honest server Sj ’s local circuit CircSj with input
wire a, b and output wire o, Sim′

1 doesn’t compute the output of O1 to the queries that are used to generate
these ciphertexts based on the random strings and the wire labels of wire o. For each output gate in CircSj

indexed 1, . . . , f.m with input wire w, Sim′
1 doesn’t compute the output of O2 to the queries that are used

to generate these ciphertexts based on the random strings and the output labels. Instead, Sim honestly
emulates the random oracles. In particular, Sim no longer checks whether the query to the random oracle
when Sj is computing the cipher-texts has been queried before. We prove that the distributions of Hyb4

and Hyb3 are computationally indistinguishable.
For the sake of contradiction, assume that there exists an adversary A1 such that Hyb4 and Hyb3 are

computationally distinguishable. Let Q1, Q2 be the set of queries to the random oracles O1,O2 respectively
when Sj computes his ciphertexts that are randomly generated in the last hybrid. Now we argue that, with
non-negligible probability, at least one query in Q1 or Q2 has been queried. Suppose this is not the case.
Note that all queries in Q1 are distinct. Then, by assumption, with overwhelming probability, no query in
Q1 has been queried and all queries in Q1 are distinct. Similar for Q2. In this case, the only difference
between Hyb3 and Hyb4 is that we do not explicitly compute the output to each query in Q1, Q2. Since no
query in Q1, Q2 has been queried, this makes no difference in the output distribution. Then it shows that
Hyb4 and Hyb3 are computationally indistinguishable, which leads to a contradiction.

Thus, with non-negligible probability, at least one query in Q1 or Q2 has been queried in Hyb4. However,
each query in Q1, Q2 either contains kw,1⊕vw⊕λw

for a wire w in some honest server’s circuit or contains
r1⊕si,β ,β for some β ∈ {1, . . . , k}. Suppose there is one query that contains kw,1⊕vw⊕λw

for a wire w
in an honest server Sj ’s circuit CircSj . Since ∆Sj is generated after the garbled circuit is generated,
and it is not used to compute any transcript sent to A, the queries are independent of ∆Sj . Therefore,
kw,1⊕vw⊕λw = kw,vw⊕λw ⊕∆Sj only has 2−κ+1 · poly(κ) probability to be queried by A, which is negligible.
Similarly, if one query contains r1⊕si,β ,β , since r1⊕si,β ,β is not used in computing any message before all
the ciphertexts are generated, we can generate it after the garbled circuit is generated, and the probability
that it is contained in a query is negligible. Thus, the distributions of Hyb4 and Hyb3 are computationally
indistinguishable.

Note that for honest server Sj , ∆Sj is not used in the simulation, Sim′
1 doesn’t generate it in future

hybrids.
Also note that if Ri is an honest client, r(α)1⊕si

for α = 1, . . . , κ are not used until Ri receives si, {r(α)si }κα=1

and does the verification on them. Sim′
1 delays the generation of {r(α)1⊕si

}κα=1 after Ri receives si, {r(α)si }κα=1
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in future hybrids.
Hyb5: In this hybrid, for each i = 1, . . . , rec with honest receiver Ri who is a client, Sim′

1 doesn’t follow
the protocol to check the values si, {r(α)si }κα=1 received from Pking. Instead, Sim′

1 checks whether they are
correctly sent. Note that when they are correctly sent, then r

(α)
si = r

(α)
0 + si ∗ (r(α)1 − r

(α)
0 ) must hold for

each α = 1, . . . , κ. Thus, the output only changes when si, {r(α)si }κα=1 are not correctly sent but for each
α = 1, . . . , κ it still holds that r(α)si = r

(α)
0 + si ∗ (r(α)1 − r

(α)
0 ) (by the values received from Pking). Since when

si is correctly sent, {r(α)si }κα=1 is determined by the equation r
(α)
si = r

(α)
0 + si ∗ (r(α)1 − r

(α)
0 ), the output

only changes when a bit of si is not correctly sent. Assume that it’s the β-th bit. Note that if the β-th bit
of si is 0, then the β-th bit of r(α)si is the β-th bit of r(α)1 , which is sampled randomly after r

(α)
0 , r

(α)
1 are

received from Pking. Similarly, if the β-th bit of si is 1, then the β-th bit of r(α)si is the β-th bit of r(α)0 , which
is also sampled randomly. Thus, the output changes only when κ randomly sampled bits are all guessed
correctly by A. The probability is 2−κ, which is negligible. Thus, the distributions of Hyb5 and Hyb4 are
statistically close.

Note that if Ri is an honest client, we only need r
(α)
si and we don’t need r

(α)
0 , r

(α)
1 for the simulation,

and we also don’t need honest servers’ shares of {[r(α)0 ](3), [r
(α)
1 − r

(α)
0 ]}κα=1 in the simulation. Sim′

1 doesn’t
generate them in future hybrids.

Hyb6: In this hybrid, since all the transcripts between honest and corrupted parties generated by Sim′
1

can be generated from the transcripts between honest and corrupted parties obtained in the execution of
Π0, Sim′

1 just runs Π0 first to obtain all the transcripts and then uses them to generate the output of Sim′
1.

In addition, honest clients don’t follow the protocol Π′
1 to compute their output. Instead, they follow Π0 to

get their output. Since the value si sent from Pking to each honest client in Π′
1 is the same as the value si

in Π0, and the preprocessing and input data of Π0,Π
′
1 is also the same, the computation of honest clients’

output is in the two protocols is completely the same. Therefore, we only change the way of generating the
output of Sim′

1 without changing their distributions. Thus, Hyb6 and Hyb5 have the same distribution.
Hyb7: In this hybrid, Sim′

1 doesn’t run Π0 to get the transcripts between honest and corrupted parties
in Π0 and use them to all the transcripts between honest and corrupted parties in Π′

1. Instead, Sim′
1 invokes

Sim0 with A′ to get the transcripts between honest and corrupted parties in Π0. In addition, honest clients
get their outputs from F instead of following Π0 to compute them. From the requirements of Π0, the joint
distribution of transcripts between honest and corrupted parties in Π0 and the honest clients’ output in Π0

is computationally indistinguishable from the joint distribution of the output of Sim0 and honest clients’
output from F . Thus, the distributions of Hyb7 and Hyb6 are computationally indistinguishable.

Note that Hyb7 is the ideal-world scenario, Π′
1 computes F with computational security.

E Cost Analysis for Π′1

In this section, we give a detailed cost analysis for protocol Π′
1 step by step as follows:

1. Preprocessing. This step only contains an invocation of Fprep. Suppose that Fprep is realized with
communication cost CCprep, then the communication cost of this step is CCprep.

2. Input. This step only contains an invocation of Finput. Suppose that Finput is realized with communi-
cation cost CCinput, then the communication cost of this step is CCinput.

3. Generating Output Labels. In this step, for each i = 1, . . . , rec, Ri needs to distribute κ Σ(3)-
sharings and κ Σ-sharings to all the parties. Note that the communication of the evaluation phase of
Π0 comes from rec reconstructions of Σ(2)-sharings, each of size nℓ2, while the size of κ Σ(3)-sharings
and κ Σ-sharings is O(nℓ3κ). Thus, the communication cost of this step is O(ℓκ ·CCΠ0

eval), where CCΠ0

eval

is the communication cost of the evaluation phase of Π0.
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4. Garbling Local Circuits. In this step, the communication comes from sending each Sj ’s (GC
Sj

1 , . . . , GC
Sj
rec, dSj )

to Pking. Let
LSj = ((Y

Sj

1,0 , Y
Sj

1,1), . . . , (Y
Sj

ℓ2rec,0, Y
Sj

ℓ2rec,1)),

the size of each server Sj ’s garbled circuits is O((G
Sj

I +G
Sj

A )·κ+|LSj |), where GSj

I , G
Sj

A are the number of
distinct input wires and AND gates of Sj ’s circuits respectively. Note that the sum of the number of all
the servers’ distinct input wires of their local circuits is exactly the size of the preprocessing and input
data, i.e. the output size of Fprep and Finput, we denote the total output size of the two functionalities by
DS. In addition, LS1 , . . . , LSn contains two labels of size ℓκ for each bit communicated in the evaluation
phase of Π0. Thus, the size of (LS1 , . . . , LSn) is

∑n
j=1 |LSj | = O(ℓκ · CCΠ0

eval). In addition, dSj contains
a masking bit for each output wire of Sj ’s local circuit which corresponds to a bit communicated in
the evaluation phase of Π0, so the sum of dSj for all the server is just CCΠ0

eval. To sum up, the total
communication cost of this step is O((DS+GA) ·κ+ ℓκ ·CCΠ0

eval), where GA is the total number of AND
gates in the servers’ local circuits.

5. Encrypting Input Labels. In this step, the servers need to send two ciphertexts of size O(κ) for
each bit communicated from one server to another in the evaluation phase of Π0, so the communication
cost of this step is O(κ · CCΠ0

eval).

6. Sending Input Labels. In this step, each server sends the labels of the preprocessing and input data
received from Fprep and Finput to Pking, where each label is of size κ. Thus, the total cost is bounded
by O(DS · κ).

7. Evaluating the Circuit. This step only contains local computation.

8. Sending Outputs. In this step, the communication comes from κ secrets of Σ(3)-sharings and a
secret of a Σ(2)-sharing for each reconstruction of a Σ(2)-sharing with client receiver in the evaluation
phase of Π0. The size of κ secrets of Σ(3)-sharings and a secret of a Σ(2)-sharing is O(kκ) while the
size of a Σ(2)-sharing is O(nℓ2). Thus, the communication cost of this step is O(kκCCΠ0

eval/nℓ
2). Since

the secret size of an LSSS can’t be larger than the size of the whole sharing, we have k ≤ nℓ, so the
communication cost of this step is O(κCCΠ0

eval/ℓ).

As analyzed above, the total communication cost of Π′
1 is

CCΠ′
1 = CCprep + CCinput +O((DS+GA) · κ+ ℓκ · CCΠ0

eval).

F Instantiation of the Abstract Protocol
In Section 6, we have given an outline of instantiating the abstract protocol for SIMD circuits. In this
section, we show how to instantiate the abstract protocol for general circuits.

F.1 Handling Network Routing.
Recall in Section 6, we have reduced the task of evaluating a general circuit to the following two steps:

• For each group of addition/multiplication gates, given the two input sharings [x], [y], compute the
output sharing [z], where z = x+ y for addition gates and z = x ∗ y for multiplication gates.

• Given output sharings from all previous layers, prepare the input sharings for the current layer.

The second step is to prepare the input sharings of each layer by using the output sharings from previous
layers. While this holds automatically for SIMD circuits, for general circuits, the input sharings do not come
for free due to the following issues:
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• The secrets needed to be in a single sharing may be scattered in different output sharings of previous
layers.

• Even if we have all the secrets in a single sharing, we need the secrets to be in the correct order so that
the i-th secret is the input of the i-th gate.

This problem is referred to as network routing [GPS21, GPS22].
In [GPS21, GPS22], the authors reduce the problem of network routing to the sharing transformation

problem. A sharing transformation problem is to transform an (n, t, k, ℓ)-LSSS sharing [s] to [L(s)], where
L : Fk

2 → Fk
2 is an F-linear map. With a sharing transformation scheme, after we obtain output Σ-sharings

for each group of gates in the current layer, the authors in [GPS21] show that the input Σ-sharings in the
next layer can be obtained as follows:

• For each Σ-sharing in the current layer, we perform the fan-out operation to copy each secret enough
number of times. For example, if a Σ-sharing [x1, x2, x3] satisfies that x1, x2, x3 will be used by 2, 3, 1
times in future layers respectively, then all parties compute [x1, x1, x2] and [x2, x2, x3]. Note that all
the secrets of desired sharings can be obtained by applying linear transformations on the secret of the
original sharing. Thus, the desired sharings can be obtained via sharing transformation.

• After doing the fan-out operations, for each obtained Σ-sharing, we perform a proper permutation on
the secrets, which is also a linear transformation. This can also be done by sharing transformation.

• After completing the above two steps, we move to prepare the input Σ-Sharings we need in the next
layer. The main property that is achieved in [GPS21] is that, for every Σ-sharing [x] we want to prepare,
the previous steps have generated k Σ-sharings [x(1)], . . . , [x(k)] such that there exists a permutation
p : {1, . . . , k} → {1, . . . , k} and xi = x

(i)
p(i), where xi and x

(i)
p(i) denotes the the i-th bit of x and the

p(i)-th bit of x(i) respectively. In other words, we only need to deal with a much simpler task of
collecting secrets from different positions. The obtained sharings is of form [x′] with the p(i)-th bit of
x′ is equal to x

(i)
p(i) = xi. For this secret collection task, we will discuss it in Section F.3.2.

• Finally, to obtain [x], we permute the secrets in [x′], which again is a linear transformation. Thus,
this can also be done via sharing transformation.

Our instantiation uses [GPS21] in a black-box way to find the above linear maps, and we refer the readers
to [GPS21] for more details about how to find the linear maps.

More concretely, the clients and servers should first perform a circuit transformation to turn a general
circuit into a circuit whose gates of each layer can be batched into groups of k gates in the same type. A
difference between our instantiation and the protocol [GPS21] is that ours additionally requires that the
servers can only do reconstructions of Σ(2)-sharings in the circuit evaluation phase of our protocol apart
from local computations. To achieve this requirement, we provide a protocol ΠTranspose and use it to evaluate
each k groups of k multiplication gates together (k2 gates in total) and perform k sharing transformations
together. (As a result, we need each layer to have at least k2 gates.)

Then, for each group of gates, we add fan-out gates that copy the output wires enough times to make
sure that each output wire of the input layer and all intermediate layers is used exactly once as an input wire
of a later layer. Then the input and output wires in each layer can be written as two N × k matrices I,O
with N = O(|C|/n). The only thing we need to do is to permute the entries of O to the entries of I to let
the output Σ-sharings of former layers be used as input sharings for later layers. To this end, the following
lemma has been shown by Hall’s Marriage Theorem:

Lemma 3. ([GPS21]) Let ℓ ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension ℓ×k in {1, 2, . . . , ℓ}ℓ×k

such that for all i ∈ {1, . . . , ℓ}, the number of entries of N which are equal to i is k. Then, there exists ℓ
permutations p1, . . . , pℓ over {1, 2, . . . , k} such that after performing the permutation pi on the i-th row of
N , the new matrix N ′ satisfies that each column of N ′ is a permutation over {1, 2, . . . , ℓ} the permutations
p1, . . . , pℓ can be found within polynomial time.
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As a result of the above lemma, the Σ-sharing of each batch of input wire in a layer can be obtained by
performing sharing transformations [GPS22] and secret collections from different positions on the Σ-sharings
of output wires from former layers. As a result, we only need to handle batched addition/multiplication
gates, sharing transformations, and secret collections from different positions to evaluate the whole circuit.
We have shown how to handle batched addition/multiplication gates in Section 6, and we will show how to
deal with the remaining tasks in Section F.3.2.

F.2 Instantiation of Linear Secret Sharing Scheme.
We now begin to present the formal description of our protocol Π0. We first instantiate the LSSSs Σ together
with Σ(2),Σ(3). Our secret sharing scheme Σ is based on the secret sharing scheme Σ′ given in [CC06] based
on algebraic geometry. For additional preliminaries about algebraic geometry, we refer the readers to Section
B. In short, n parties agree on a smooth projective absolutely irreducible curve C with genus g defined over
Fq and distinct Fq-rational points

Q,P−1, . . . , P−k, P1, . . . , Pn ∈ C(Fq).

For a divisor D defined by D = (2g + t) · (Q), the sharing algorithm randomly selects f ∈ L(D) subject to

(f(P−1), . . . , f(P−k)) = s.

Then the Σ′ secret sharing is defined by

[s]′ = Σ′.Sh(s, r) = (f(P1), . . . , f(Pn)) ∈ Fn
q .

Now we present a lemma proved in [CC06].

Lemma 4. ([CC06]). Let E be a divisor on a smooth, projective, absolutely irreducible curve C that is
defined over Fq, and suppose that ℓ(E) > 0. Then each f ∈ L(E) is uniquely determined by evaluations of
f on any deg(E) + 1 Fq-rational points on C outside the support of E.

Lemma 4 implies that the secret s of [s] can be reconstructed from any deg(D)+1 parties’ shares, which
implies the reconstruction algorithm Σ′.Rec. In [CC06], the authors have shown that Σ′ is an (n, t, k, 1)-LSSS
over Fq.

Defining Σ. If q = 2ℓ (ℓ will be specified later), we can restrict the secret on Fk
2 where each entry of the

secret is stored in a subspace of Fq that is isomorphic to F2. Besides, each party’s share in Fq = F2ℓ can be
written as a vector in over Fℓ

2. In this way, we obtain an (n, t, k, ℓ)-LSSS over F2. We take such a sharing to
be Σ.

Formally, there exists a bijective F2-linear map Conv : Fℓ
2 → Fq, and both Conv,Conv−1 can be efficiently

computed. In the following, for x = (x1, . . . ,xn) ∈ (Fℓ
2)

n, we use Conv(x) to denote (Conv(x1), . . . ,Conv(xn)).
And for y = (y1, . . . , yn) ∈ Fn

q , we use Conv−1(y) to denote (Conv−1(y1), . . . ,Conv
−1(yn)). We define Σ as

follows:

• For a vector of secrets s ∈ Fk
2 ,

Σ.Sh(s, r) = (Conv−1(Σ′.Sh1(s,Conv(r))), . . . ,Conv
−1(Σ′.Shn(s,Conv(r)))).

• For a Σ-sharing (c1, . . . , cn),

Σ.Rec(c1, . . . , cn) = Σ′.Rec(Conv(c1), . . . ,Conv(cn)).
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Defining Σ(2). Now we begin to define Σ(2). We first define an LSSS Σ(2)′ over Fq, denoted by [·](2)′ . Σ(2)′

is the same as Σ′ except that the divisor D is replaced by 2D (i.e. f is selected from L(2D)). Note that for
any f1, f2 ∈ L(D), it holds that:

(div(f1) +D) + (div(f2) +D) = div(f1 · f2) + 2D,

which implies that f1 · f2 ∈ L(2D). Thus, the multiplication of two sharings [s1]
′ · [s2]′ is a Σ(2)′ -

sharing [s1 ∗ s2](2)
′
. Note that for any x(1), x(2) ∈ Fq with Conv−1(x(1)) = (x

(1)
1 , . . . , x

(1)
ℓ ),Conv−1(x(2)) =

(x
(2)
1 , . . . , x

(2)
ℓ ) ∈ Fℓ

2, their product x(1) ·x(2) is uniquely determined by (x
(1)
1 , . . . , x

(1)
ℓ )⊗(x(2)

1 , . . . , x
(2)
ℓ ) ∈ Fℓ2

2 .
Let Conv2 : Fℓ2

2 → Fq be a F2-linear function that maps Conv−1(x(1))⊗Conv−1(x(2)) to x(1) ·x(2). Let Conv−1
2

be a randomized F2-linear function such that for all x ∈ Fq, Conv−1
2 (x) outputs a random vector y ∈ Fℓ2

2

such that Conv2(y) = x.
We define Σ(2) as follows:

• For a vector of secrets s ∈ Fk
2 ,

Σ(2).Sh(s, r∥r1∥ . . . ∥rn)

=(Conv−1
2 (Σ(2)′ .Sh1(s,Conv(r)), r1), . . . ,Conv

−1
2 (Σ(2)′ .Shn(s,Conv(r)), rn)).

• For a Σ(2)-sharing (c1, . . . , cn),

Σ(2).Rec(c1, . . . , cn) = Σ(2)′ .Rec(Conv2(c1), . . . ,Conv2(cn)).

Defining Σ(3). Similarly, we may define Σ(3)′ over Fq by replacing D by 3D in Σ′. For any x(1), x(2), x(3) ∈
Fq with Conv−1(x(1)) = (x

(1)
1 , . . . , x

(1)
ℓ ),Conv−1(x(2)) = (x

(2)
1 , . . . , x

(2)
ℓ ) ∈ Fℓ

2,Conv
−1(x(3)) = (x

(3)
1 , . . . , x

(3)
ℓ ) ∈

Fℓ
2, their product x(1) ·x(2) ·x(3) is uniquely determined by (x

(1)
1 , . . . , x

(1)
ℓ )⊗(x

(2)
1 , . . . , x

(2)
ℓ )⊗(x

(3)
1 , . . . , x

(3)
ℓ ) ∈

Fℓ3

2 . Let Conv3 : Fℓ3

2 → Fq be a F2-linear function that maps Conv−1(x(1))⊗Conv−1(x(2))⊗Conv−1(x(3)) to
x(1) · x(2) · x(3). Let Conv−1

3 be a randomized F2-linear function such that for all x ∈ Fq, Conv−1
3 (x) outputs

a random vector y ∈ Fℓ3

2 such that Conv3(y) = x.
We define Σ(3) as follows:

• For a vector of secrets s ∈ Fk
2 ,

Σ(3).Sh(s, r∥r1∥ . . . ∥rn)

=(Conv−1
3 (Σ(3)′ .Sh1(s,Conv(r)), r1), . . . ,Conv

−1
3 (Σ(3)′ .Shn(s,Conv(r)), rn)).

• For a Σ(3)-sharing (c1, . . . , cn),

Σ(3).Rec(c1, . . . , cn) = Σ(3)′ .Rec(Conv3(c1), . . . ,Conv3(cn)).

Parameter Choices. Let q be a square, there exists a family of curves [GS96] {C(j)}∞j=1 such that

#C(j)(Fq) ≥ (q −√q) · √qj−1
and g(C(j)) ≤ √qj .

Lemma 4 implies that the secret s of [s] can be reconstructed from any deg(D)+ 1 parties’ shares. Since for
any f1, f2 ∈ L(D), it holds that:

(div(f1) +D) + (div(f2) +D) = div(f1 · f2) + 2D.

Hence f1 · f2 ∈ L(2D), so we need 3t + 6g < n − k to let Σ have 3-multiplicative reconstruction. Thus, we
only need

3t+ k + 6
√
q
j
< (q −√q) · √qj−1
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for some k = ϵn (ϵ is a constant), i.e.

t <

(
1

3
− 3

2(
√
q − 1)

)
· (1− ϵ)n.

Take t = n/4, q = 210, ϵ = 1/10, we get an (n, n/4, n/10, 10)-LSSS Σ.

Theorem 5. ([CC06]). There exists an (n, n/4, k, 10)-LSSS Σ over F2 with k = n/10 = Θ(n) that has
3-multiplicative reconstruction.

F.3 Instantiation of the Protocol
F.3.1 Functionalities for Preprocessing and Input.

In this section, we present the preprocessing functionality Fprep and the input functionality Finput.
The preprocessing functionality Fprep prepares the random sharings required for the executions of ΠTranspose

together with the mask sharings of the Σ(2)-sharings that need to be sent to clients for reconstructions.

On receiving (prep, C) from all the honest parties:

1. The trusted party generates an arithmetic circuit C′ with the following properties:

– For all input x, C(x) = C′(x).
– C′ consists of an input layer, an output layer, D intermediate layers of addition/multiplication gates,

where D is the depth of C. For each input wire of the circuit and output wire of an
addition/multiplication gate, there is a fan-out gate taking this wire as input and copying it the number
of times this wire will be used in future layers so that every output wire of the input layer and the
intermediate layers is only used once as input wire in the later layers.

– In the input layer and the output layer, the number of input wires attached to each client and the
number of output wires attached to each client are multiples of k. In each intermediate layer, the
number of addition gates and the number of multiplication gates are multiples of k2. The number of
input wires of the output layer is a multiple of k2. The number of output wires of the fan-out gates in
the input layer and each intermediate layer is also a multiple of k2.

– In each layer, k gates of the same type are grouped together (for input/output layers, k input/output
wires attached to the same client are grouped together). Each group of output wires from the input
layer and each intermediate layer serves as the input wires to a group of fan-out gates in this layer. The
number of output wires of each group of fan-out gates is a multiple of k.

– Circuit size: |C′| = O(|C|+Dk2 +mk), where m is the number of clients that provide inputs and D is
the depth of C.

Then the trusted party sends C′ to all the parties.

2. For each honest client Ci and each batch of k output wires attached to client Ci in circuit C′, the trusted
party receives a set of corrupted servers’ shares of a Σ(2)-sharing from Sim.

3. For each honest client Ci and each batch of k output wires attached to client Ci in circuit C′, the trusted
party generates a random Σ(2)-sharing [r](2) associated with this batch of output wires based on the
corrupted servers’ shares and distributes it to all the servers. Then the trusted party sends the secrets of
these sharings to Ci.

4. For each corrupted client Ci and each batch of k output wires attached to client Ci in circuit C′, the
trusted party receives the secret r and a set of corrupted servers’ shares of a Σ(2)-sharing from Sim.

5. For each corrupted client Ci and each batch of k output wires attached to client Ci in circuit C′, the
trusted party generates a random Σ(2)-sharing [r](2) associated with this batch of output wires based on
the corrupted servers’ shares and the secret r. Then the trusted party distributes it to all the servers.
Then the trusted party sends the secrets of these sharings to Ci.

6. Let W be the number of wires in C′, do the following 10W/k2 times:

Functionality Fprep
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(a) For each honest server Sj , the trusted party receives a set of corrupted servers’ shares of a Σ(2)-sharing
[rj ]

(2) from Sim.
(b) For each honest server Sj , the trusted party generates a random Σ(2)-sharing [rj ]

(2) based on the
corrupted servers’ shares and distributes it to all the servers. Then the trusted party sends the secrets
of this sharing to Sj .

(c) For each corrupted server Sj , the trusted party receives the secret rj and a set of corrupted servers’
shares of a Σ(2)-sharing [rj ]

(2) from Sim.
(d) For each corrupted server Sj , the trusted party generates a random Σ(2)-sharing [rj ]

(2) based on the
corrupted servers’ shares and the secret rj . Then the trusted party distributes it to all the servers.
Then the trusted party sends the secrets of this sharing to Sj .

(e) The trusted party receives a set of corrupted servers’ shares of nℓ Σ(2)-sharings [u1]
(2), . . . , [unℓ]

(2) from
Sim.

(f) The trusted party generates nℓ random Σ(2)-sharings [u1]
(2), . . . , [unℓ]

(2) based on the corrupted
servers’ shares and distributes it to all the servers.

If abort is received from Sim, the trusted party sends abort to all the parties and aborts the functionality.

Figure 9: The preprocessing functionality.

The input functionality Finput helps the clients to generate random Σ-sharings for their input.

On receiving (input, C′, xi) from each client Ci:

1. For each batch of k input wires attached to client Ci in circuit C′, the trusted parties receive a set of
corrupted servers’ shares of a Σ-sharing from Sim.

2. For each batch of k input wires attached to client Ci in circuit C′ with input values s1, . . . , sk ∈ F2

(obtained from xi), the trusted party randomly generates [s] based on corrupted servers’ shares and the
secret, and then the trusted party distributes [s] to all the servers, where s = (s1, . . . , sk).

If abort is received from Sim, the trusted party sends abort to all the parties and aborts the functionality.

Functionality Finput

Figure 10: The input functionality.

We refer the readers to Section H for the instantiations of these two functionalities.

F.3.2 Subprotocols.

Now, we present the remaining subprotocols that are used in our construction of Π0. Recall that the
subprotocols ΠTranspose and ΠMulti have been presented in Section 6.

Sharing Transformations. A sharing transformation transforms a Σ-sharing [x] to a Σ-sharing of a
linear map L of s, i.e. [L(x)]. We also do k sharing transformations together with respect to k linear maps
L1, . . . , Lk. This can be done with O(n2)-bit communication by the following protocol ΠTran.

Input: The servers input public linear maps L1, . . . , Lk : Fk → Fk and their shares of Σ-sharings [x1], . . . , [xk],

1. The servers locally computes [xj ]
(2) = [1]⊗ [xj ] for each j = 1, . . . , k, where [1] is a public Σ-sharing of an

all-1 vector.

2. The servers run ΠTranspose with input sharings [x1]
(2), . . . , [xk]

(2) and get output sharings [x∗
1], . . . , [x

∗
k].

Protocol ΠTran
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3. LetM be a k × k matrix defined by

M =


L1(x1)
L2(x2)

...
Lk(xk)

 .

Since L1, . . . , Lk are linear, there exist constant vectors c
(j)
1 , . . . , c

(j)
k ∈ Fk such that

M[:,j] =

k∑
i=1

c
(j)
i ∗ x

∗
i

for j = 1, . . . , k. The servers agree on public Σ-sharings {[c(j)i ]}1≤i,j≤k. Then the servers locally compute

[M[:,j]]
(2) =

k∑
i=1

[c
(j)
i ]⊗ [x∗

i ]

for j = 1, . . . , k.

4. The servers run ΠTranspose with input sharings [M[:,1]]
(2), . . . , [M[:,k]]

(2) and get output sharings
[L1(x1)], . . . , [Lk(xk)].

Figure 11: Protocol for sharing transformations.

Secret Collections from Different Positions. Secret collection is used to generate a Σ-sharing whose
secret is collected from different Σ-sharings. With the help of the sharing transformation technique, we only
need to handle a simple condition of secret collection where the secret is collected from k different positions
of k sharings. If the input sharings are [x1], . . . , [xk], we will generate Σ-sharing whose secret consists of the
first entry of x1, the second entry of x2, . . . , and the k-th entry of xk. Similar to multiplication gates and
sharing transformations, we do k such collections together. This can be done with O(n2)-bit communication
by the following protocol ΠCollect.

Input: The servers input their shares of [x1,i], . . . , [xk,i] for i = 1, . . . , k where each xj,i = (x
(1)
j,i , . . . , x

(k)
j,i ). Let

yi = (x
(1)
1,i , . . . , x

(k)
k,i ) for each i = 1, . . . , k.

1. For i = 1, . . . , k, the servers locally compute

[yi]
(2) = [(x

(1)
1,i , . . . , x

(k)
k,i )]

(2) =

k∑
j=1

[ej ]⊗ [xj,i],

where each [ej ] is a public Σ-sharing of a unit vector with the j-th bit equal to 1.

2. The servers run ΠTranspose with input sharings [y1]
(2), . . . , [yk]

(2) and get output sharings [y∗
1 ], . . . , [y

∗
k].

3. The servers locally compute [y∗
j ]

(2) = [1]⊗ [y∗
j ] for each j = 1, . . . , k.

4. The servers run ΠTranspose with input sharings [y∗
1 ]

(2), . . . , [y∗
k]

(2) and get output sharings [y1], . . . , [yk].

Protocol ΠCollect

Figure 12: Protocol to do secret collections from different positions.

Circuit Preprocessing. Then, we provide the circuit preprocessing protocol ΠCircprep as follows.
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1. Recall that in C′, gates that have the same type in each layer are divided into groups of size k. During the
later computation, a batch of k wire values is stored in a single Σ-sharing. All parties determine how the
wire values should be packed as follows:

– For the input layer, for each group of k input gates belonging to the same client, the values of the
output wires will be stored in a single Σ-sharing.

– For each group of fan-out gates in the input layer, suppose it takes the wires (w1, . . . , wk) and vector
(n1, . . . , nk) as input. Recall that in C′, (w1, . . . , wk) are the output wires of a group of gates, ni is the
number of times we need to make copies of wi, and n1 + · · ·+ nk is a multiple of k. All parties
determine how the output wires should be packed:

(a) Each party initiates an empty list L. From i = 1 to k, each party inserts ni times of wi into L.
(b) Let h = (n1 + · · ·+ nk)/k. From i = 1 to h, the i-th output Σ-sharing will contain the values of wires
L[(i− 1) · k + 1], . . . ,L[i · k].

– For all computation layers, for each group of k multiplication gates or addition gates:
∗ The values of the first input wires of these gates will be stored in a single Σ-sharing.
∗ The values of the second input wires of these gates will be stored in a single Σ-sharing.
∗ The values of the output wires of these gates will be stored in a single Σ-sharing.

– For each group of fan-out gates in the intermediate layers, the wire values are packed in the same way
as those for each fan-out gate in the input layer.

– For the output layer, for each group of k output gates belonging to the same client, the values of the
input wires will be stored in a single Σ-sharing.

2. Let N denote the number of output sharings of the input layer and all intermediate layers. Then the
number of input sharings of the output layer and all intermediate layers is also N . The output sharings are
labeled by 1, . . . , N , and the input sharings are also labeled by 1, . . . , N . The servers follow [GPS21] to
attach a permutation pi on the i-th output sharings.

Protocol ΠCircprep

Figure 13: Protocol for the circuit preprocessing.

F.3.3 Main Protocol.

Then, we provide our main protocol Π0 as follows.

1. Let C be the circuit to compute. The clients and servers sends (prep, C) to Fprep and the receives:

– A circuit C′.
– A random Σ(2)-sharing [r](2) associated with each batch of output gates in C′, and the receiver of the

output of each group of gates get the secrets of this sharing.
– 10W/k2 groups of:

∗ Random Σ(2)-sharings [r1]
(2), . . . , [rn]

(2), where each server Sj holds rj .
∗ Random Σ(2)-sharings [u1]

(2), . . . , [unℓ]
(2).

Each group of sharings is associated with an execution of ΠTranspose, where ΠTranspose will be executed for
no more than 10W/k2 times in Π0.

2. Each client Ci sends (input, C′, xi) to Finput, where xi is the input of Ci.

3. The parties run the evaluation phase as follows.

Evaluation Phase

(a) The servers agree on a public Σ-sharing [1] where 1 = (1, 1, . . . , 1). Then each Σ-sharing [s] can be
locally converted to a Σ(2)-sharing [s](2) = [1]⊗ [s]. For e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . ,
ek = (0, 0, . . . , 0, 1), all the servers agree on public Σ-sharings [e1], . . . , [ek].

(b) The clients and servers run ΠCircprep.

Protocol Π0
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(c) All parties evaluate the circuit layer by layer as follows:
i. Handling Fan-out Gates: For each output sharings [x] of a group of gates (or input wires) in the

previous layer, let ni denote the number of times that the i-th secret of x is used in later layers.
Then, the fan-out gates for x computes (n1 + · · ·+ nk)/k linear transformations on x. For each k
group of k linear transformations L1, . . . , Lk on x1, . . . ,xk, the servers can run ΠTran to compute the
output [L1(x1)], . . . , [Lk(xk)] (as we discussed in Section 6). Note that the number of output wires
of all the fan-out gates in each layer is a multiple of k2, which matches that each ΠTran can compute
sharings on k2 output wires of fan-out gates.

ii. Permuting the Secrets: For each k output sharings [y1], . . . , [yk] of the previous layer, let
p1, . . . , pk denote the permutations (expressed as linear maps from Fk

2 to Fk
2) associated with them.

All the servers run ΠTran with input [y1], . . . , [yk] and p1, . . . , pk. Then the secrets of the input
sharings in the next layer come from different positions in the output sharings of previous layers.

iii. Collecting Secrets from Previous Layers: For each k input sharings [x1], . . . , [xk], let [x
(i)
j ]

denote the output sharing from previous layers whose i-th secret is the i-th secret of qj(xj) where qj
is a permutation. Since each of x1, . . . ,xk comes from different positions in the output sharings of
the previous layers, there exists output sharings [x

(1)
j ], . . . , [x

(k)
j ] from the output sharings of

previous layers for each j = 1, . . . , k. Then, all servers run ΠCollect with input sharings
[x

(1)
j ], . . . , [x

(k)
j ] for j = 1, . . . , k.

iv. Permuting the Secrets: For each k sharings [q1(x1)], . . . , [qk(xk)] collected by ΠCollect, all the
servers run ΠTran with input [q1(x1)], . . . , [qk(xk)] and q−1

1 , . . . , q−1
k . Then the servers obtain the

input sharings [x1], . . . , [xk] of this layer.
v. Evaluating Multiplication Gates and Addition Gates: For each k group of multiplication

gates with input sharings ([x1], [y1]), . . . , ([xk], [yk]), all parties run ΠMulti with input sharings
[x1], . . . , [xk] and [y1], . . . , [yk]. For each group of addition gates with input sharings [x], [y], all
parties locally compute [x+ y] = [x] + [y]. This step doesn’t need to be done for the output layer.

(d) After evaluating all the layers of the circuit and collecting the input sharings for the output layer, for
each input sharing [y] for an output gate attached to each client Ci, the servers locally compute
[y + r](2) = [1]⊗ [y] + [r](2) with the corresponding [r](2) and send it to Ci. Then Ci reconstructs y + r
and computes y = y + r − r to get his output.

Figure 14: The instantiation of protocol Π0.

Theorem 6. Protocol Π0 satisfies the requirements listed in Section 4.1.

We provide a proof of this theorem in Section G.

F.4 Cost Analysis for Π0

We first analyze the communication cost of the evaluation phase of Π0.

1. The step of running ΠCircprep only contains local computation and requires no communication.

2. While Handling Fan-out Gates, the communication cost comes from executions of ΠTran. The sum
of input wires of all the layers is bounded by O(|C ′|), so the number of sharing transformations we
need to apply on the output sharings of all the layers is bounded by O(|C ′|/k) = O(|C ′|/n), which
requires O(|C ′|/n2) executions of ΠTran. Since the communication cost of ΠTran is O(n2) bits, the
communication cost of Handling Fan-out Gates is O(|C ′|) bits.

3. While Permuting the Secrets for the first time for each layer, the communication cost also comes
from executions of ΠTran. The sum of input wires of all the layers is bounded by O(|C ′|), so the number
of permutations we need to apply on the output wires of all the layers is bounded by O(|C ′|/k) =
O(|C ′|/n), which requires O(|C ′|/n2) executions of ΠTran. Since the communication cost of ΠTran is
O(n2) bits, the communication cost of these executions of Permuting the Secrets is O(|C ′|) bits.
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4. While Collecting Secrets from Previous Layers, the communication cost comes from executions of
ΠCollect. The sum of input wires of all the layers is bounded by O(|C ′|), so we need to collect secrets from
at most O(|C ′|) sharings, which requires O(|C ′|/n2) executions of ΠCollect. Since the communication
cost of ΠCollect is O(n2) bits, the communication cost of Collecting Secrets from Previous Layers
is O(|C ′|) bits.

5. While Permuting the Secrets for the second time for each layer, the communication cost comes from
executions of ΠTran. The sum of input wires of all the layers is bounded by O(|C ′|), so the number
of permutations we need to apply on the output wires of all the layers is bounded by O(|C ′|/k) =
O(|C ′|/n), which requires O(|C ′|/n2) executions of ΠTran. Since the communication cost of ΠTran is
O(n2) bits, the communication cost of these executions of Permuting the Secrets is also O(|C ′|)
bits.

6. While Evaluating Multiplication Gates and Addition Gates, the communication cost comes
from executions of ΠMulti. There are O(|C ′|/n) groups of multiplication gates to be computed, which
requires O(|C ′|/n2) executions of ΠMulti. Since the communication cost of ΠMulti is O(n2) bits, the
communication cost of Evaluating Multiplication Gates and Addition Gates is O(|C ′|) bits.

7. While sending output sharings to the clients, the servers send a Σ(2)-sharing of size O(n) for each group
of O(n) output wires in C ′. Thus, the communication cost is also bounded by O(|C ′|) bits.

To sum up, the total communication cost of the evaluation phase of Π0 is CCΠ0

eval = O(|C ′|) = O(|C| +
Dn2 +mn).

Note that the output size DS of Fprep,Finput and the number GA of AND gates in the servers’ local circuit
also affect the communication cost of Π′

1, we also need to figure out how large DS and GA are.

• Data Size: Fprep outputs O(|C ′|/n) random Σ(2)-sharings (of size O(n)). The total size of these
sharings is O(|C ′|). Finput outputs the input Σ-sharing (of size O(n)) for each batch of input wires
(O(|C ′|/n) batches of input wires in toal). The total size of these sharings is O(|C ′|). Thus, the data
size is DS = O(|C ′|).

• AND Gates: During each server’s local computation in the evaluation phase, only executions of ΠMulti

contain non-linear operations. Since k2 = O(n2) multiplication gates in C ′ are computed together in
a single execution of ΠMulti, the servers need to run ΠMulti O(|C ′|/n2) times. During each execution of
ΠMulti, each party locally computes k tensor products on his shares of two Σ-sharings, which requires
kℓ2 = O(n) computation of AND gates. For all the n servers, the number of AND gates computed
during each execution of ΠMulti is O(n2). Thus, the total number of AND gates in the servers’ local
circuits is GA = O(|C ′|).

Therefore, as analyzed in Section E, if Π0 is instantiated by the protocol in Figure 14, the communication
cost of Π′

1 will be

CCΠ′
1 = CCprep + CCinput +O(|C ′|κ) = CCprep + CCinput +O((|C|+Dn2 +mn) · κ).

G Proof of Theorem 6
Proof. It’s easy to see that Π0 meets the first three requirements listed in Section 4.1, so it remains to
construct an ideal adversary Sim0 that meets our requirement. We will show that the output in the ideal world
is computationally indistinguishable from that in the real world using hybrid arguments. Our simulation is
in the client-server model where the adversary corrupts any number of clients and exactly t servers.

We give the ideal adversary Sim0 below.
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1. Sim0 emulates Fprep to receive (prep, C) and the output shares and sharings to corrupted parties from A. If
abort is received from A, Sim0 aborts the protocol. After completing the simulation, Sim0 outputs the
adversary’s view. Otherwise, Sim0 faithfully emulates Fprep to send C′ and the output shares and sharings
to the corrupted parties.

2. Sim0 emulates Finput to receive (input, C′, xi) for each corrupted client Ci and the output to corrupted
parties from A. If abort is received from A, Sim0 aborts the protocol. After completing the simulation,
Sim0 outputs the adversary’s view. Otherwise, Sim0 faithfully emulates Finput to send C′ and the output to
the corrupted parties.

3. Sim0 obtains the corrupted clients’ input in the last step. Then, Sim0 sends the corrupted clients’ input to
F and receives the corrupted clients’ output.

4. Sim0 simulates the evaluation phase of Π0 as follows:

Evaluation Phase

(a) Sim0 follows the protocol to get public sharings [1] and [e1], . . . , [ek] and run Πprepcirc.
(b) Sim0 simulates the evaluation process layer by layer as follows:

i. Handling Fan-out Gates: For each execution of ΠTran:
A. Sim0 follows the protocol to compute corrupted servers’ shares of [xj ]

(2) for each j = 1, . . . , k
using the received output from A while emulating Fprep,Finput.

B. For the first execution of ΠTranspose:
1) For each i = 1, . . . , n, Sim0 follows the protocol to compute corrupted servers’ shares of [yi]

(2)

(in ΠTranspose) based on the received output from A while emulating Fprep,Finput and the secrets
of Σ(2)-sharings reconstructed for them.

2) Sim0 randomly samples the whole sharing [yi]
(2) based on the corrupted servers’ shares.

3) For each corrupted server Si, Sim0 sends the honest servers’ shares of [yi]
(2) to Si on behalf of

the honest servers and reconstructs yi for Si.
4) Sim0 follows the protocol to compute the corrupted servers’ shares of ([x∗

1], . . . , [x
∗
k]) based on

the received output from A while emulating Fprep,Finput and secrets of Σ(2)-sharings
reconstructed for them.

C. Sim0 follows the protocol to compute corrupted servers’ shares of [M[:,j]]
(2) for j = 1, . . . , k based

on the received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings
reconstructed for them.

D. Sim0 simulates the second execution of ΠTranspose as in Step B. to generate the Σ(2)-sharing to be
reconstructed and obtain the corrupted servers’ shares of ([L1(x1)], . . . , [Lk(xk)]).

ii. Permuting the Secrets: Sim0 simulates each execution of ΠTran in this step as in Handling
Fan-out Gates.

iii. Collecting Secrets from Previous Layers: For each execution of ΠCollect:
A. Sim0 follows the protocol to compute corrupted servers’ shares of [yi]

(2) for each j = 1, . . . , k
based on the received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings
reconstructed for them.

B. For the first execution of ΠTranspose:
1) For each i = 1, . . . , n, Sim0 follows the protocol to compute corrupted servers’ shares of [yi]

(2)

(in ΠTranspose) based on the received output from A while emulating Fprep,Finput and the secrets
of Σ(2)-sharings reconstructed for them.

2) Sim0 randomly samples the whole sharing [yi]
(2) based on the corrupted servers’ shares.

3) For each corrupted server Si, Sim0 Sim0 sends the honest servers’ shares of [yi]
(2) (in ΠTranspose)

to Si on behalf of the honest servers and reconstructs yi for Si.
4) Sim0 follows the protocol to compute the corrupted servers’ shares of ([y∗

1 ], . . . , [y
∗
k]) (in ΠCollect)

based on the received output from A while emulating Fprep,Finput and the secrets of
Σ(2)-sharings reconstructed for them.

Simulator Sim0
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C. Sim0 follows the protocol to compute corrupted servers’ shares of [y∗
j ]

(2) for j = 1, . . . , k based on
the received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings
reconstructed for them.

D. Sim0 simulates the second execution of ΠTranspose as in Step B. to generate the Σ(2)-sharing to be
reconstructed and obtain the corrupted servers’ shares of ([y1], . . . , [yk]).

iv. Permuting the Secrets: Sim0 simulates each execution of ΠTran in this step as in Handling
Fan-out Gates.

v. Evaluating Multiplication Gates and Addition Gates: For each group of addition gates, Sim0

follows the protocol to compute the corrupted servers’ shares of the Σ-sharings for output wires. For
each execution of ΠMulti:
A. Sim0 follows the protocol to compute corrupted servers’ shares of [zj ]

(2) for each j = 1, . . . , k
based on the received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings
reconstructed for them.

B. For the first execution of ΠTranspose:
1) For each i = 1, . . . , n, Sim0 follows the protocol to compute corrupted servers’ shares of [yi]

(2)

(in ΠTranspose) based on the received output from A while emulating Fprep,Finput and the secrets
of Σ(2)-sharings reconstructed for them.

2) Sim0 randomly samples the whole sharing [yi]
(2) based on the corrupted servers’ shares.

3) For each corrupted server Si, Sim0 sends the honest servers’ shares of [yi]
(2) (in ΠTranspose) to Si

on behalf of the honest servers and reconstructs yi for Si.
4) Sim0 follows the protocol to compute the corrupted servers’ shares of ([z∗

1 ], . . . , [z
∗
k]) based on

the received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings
reconstructed for them.

C. Sim0 follows the protocol to compute corrupted servers’ shares of [z∗
j ]

(2) for j = 1, . . . , k based on
the received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings
reconstructed for them.

D. Sim0 simulates the second execution of ΠTranspose as in Step B. to generate the Σ(2)-sharing to be
reconstructed and obtain the corrupted servers’ shares of ([z1], . . . , [zk]).

(c) After simulating the evaluation of all the layers of the circuit and the collection of the input sharings of
the output gates, for each input sharing [y] for an output gate attached to each client Ci:
– If Ci is honest, Sim0 follows the protocol to compute the corrupted servers’ shares of [y + r](2) based

on the received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings
reconstructed for them. Then, Sim0 randomly samples the whole sharing [y + r](2) based on the
corrupted servers’ shares.

– If Ci is corrupted, Sim0 follows the protocol to compute the corrupted servers’ shares of [y]. Then
Sim0 randomly samples the whole sharing [y] based on the secret and corrupted servers’ shares.
Then Sim0 follows the protocol to computes the whole sharing [y + r](2) based on the received
output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings reconstructed for them.

5. Sim0 outputs the view of the adversary as well as the honest servers’ shares of all the Σ(2)-sharings that are
sent for reconstructions in the evaluation phase.

Figure 15: The simulator for Π0.

We construct the following hybrids:
Hyb0: In this hybrid, Sim0 gets honest clients’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, after emulating Fprep,Finput, Sim0 regards that the corrupted parties output from

the two functionalities are just the received outputs of them from A. Then Sim0 follows the protocol of the
evaluation phase to run the corrupted parties. For each Σ(2)-sharing whose receiver is a corrupted server
Si, Sim0 reconstructs the secret for Si. This doesn’t affect the output distribution. Thus, Hyb1 and Hyb0

have the same output distribution.
Hyb2: In this hybrid, while Handling Fan-out Gates during the evaluation phase, for the first exe-

cution of ΠTranspose in each execution of ΠTran, Sim0 doesn’t follow the protocol to compute honest servers’
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shares of [yi]
(2) for each honest server Si. Instead, Sim0 first computes corrupted servers’ shares based on the

received output from A while emulating Fprep,Finput and the secrets of Σ(2)-sharings reconstructed for them
and then randomly samples the whole sharing based on the corrupted servers’ shares. Then Sim0 computes
the whole sharing [ri]

(2) by [yi]
(2)− [Fi(x1, . . . ,xk,u1, . . . ,unℓ)]

(2) for each honest server Si. Similarly, Sim0

doesn’t follow the protocol to compute honest servers’ shares of [yi]
(2) for each corrupted server Si. Instead,

Sim0 computes the secret of this sharing first and then randomly samples the whole sharing based on the
corrupted servers’ shares (still based on the received output from A while emulating Fprep,Finput and the
secrets of Σ(2)-sharings reconstructed for them) and the secret. Then Sim0 computes the whole sharing [ri]

(2)

by [yi]
(2) − [Fi(x1, . . . ,xk,u1, . . . ,unℓ)]

(2) for each corrupted server Si.
Since for each honest server Si, [ri](2) is generated randomly by Fprep based on the corrupted servers’

shares received from A, [yi]
(2) is also completely random when corrupted servers’ shares are fixed. Similarly,

for each corrupted server Si, [ri](2) is generated randomly by Fprep based on the corrupted servers’ shares,
[yi]

(2) is also completely random when corrupted servers’ shares and the secret are fixed. Therefore, we only
change the order of generating the honest servers’ shares of each pair of [ri](2) and [yi]

(2) without changing
their distributions. Thus, Hyb2 and Hyb1 have the same output distribution.

Note that for each server Si, the honest servers’ shares of [ri](2) in these executions of ΠTranspose are not
used in the later simulation, Sim0 doesn’t generate them in future hybrids.

Hyb3: In this hybrid, while Handling Fan-out Gates during the evaluation phase, for the first exe-
cution of ΠTranspose in each execution of ΠTran, Sim0 doesn’t follow the protocol to compute each server Si’s
shares of ([x∗

1], . . . , [x
∗
k]) by yi−ri. Instead, Sim0 computes them by Fi(x1, . . . ,xk,u1, . . . ,unℓ). Since [ri]

(2)

is computed by [yi]
(2) − [Fi(x1, . . . ,xk,u1, . . . ,unℓ)]

(2), yi − ri = Fi(x1, . . . ,xk,u1, . . . ,unℓ) always holds.
Therefore, we only change the way of generating each server Si’s shares of ([x∗

1], . . . , [x
∗
k]) without changing

their distributions. Thus, Hyb3 and Hyb2 have the same output distribution.
Note that for each honest server Si, the secrets ri in these executions of ΠTranspose are not used in the

later simulation, Sim0 doesn’t generate them in future hybrids.
Hyb4: In this hybrid, while Handling Fan-out Gates during the evaluation phase, for the first execu-

tion of ΠTranspose in each execution of ΠTran, Sim0 doesn’t compute each server Si’s shares of ([x∗
1], . . . , [x

∗
k]) by

Fi(x1, . . . ,xk,u1, . . . ,unℓ). Instead, Sim0 randomly generates the value of yi = Fi(x1, . . . ,xk,u1, . . . ,unℓ)+
ri for each corrupted server Si and then use it to compute Si’s shares of ([x∗

1], . . . , [x
∗
k]) by yi − ri. Then,

Sim0 samples the honest servers’ shares of ([x∗
1], . . . , [x

∗
k]) based on the secrets and the corrupted parties’

shares. Note that for each honest server Si, the honest servers’ shares and the secrets of the random sharings
[u1]

(2), . . . , [unℓ]
(2) associated with this execution of ΠTranspose are not used in the later simulation, Sim0

doesn’t generate them in future hybrids.
Since u1, . . . ,unℓ are all sampled randomly, the computation of Fi(x1, . . . ,xk,u1, . . . ,unℓ) for each cor-

rupted server Si is just the generation process of S−i’s shares of some random Σ-sharings based on the secrets.
Thus the corrupted servers’ Fi(x1, . . . ,xk,u1, . . . ,unℓ) are uniformly random, so Fi(x1, . . . ,xk,u1, . . . ,unℓ)+
ri for each corrupted Si is also uniformly random. Therefore, we only change the order of generating each cor-
rupted server Si’s Fi(x1, . . . ,xk,u1, . . . ,unℓ)+ri and Fi(x1, . . . ,xk,u1, . . . ,unℓ) without changing their dis-
tributions. Besides, since u1, . . . ,unℓ are all sampled randomly, the honest servers’ shares of ([x∗

1], . . . , [x
∗
k])

are randomly sampled based on corrupted servers’ shares and the secrets in both hybrids. Thus, Hyb4 and
Hyb3 have the same output distribution.

Hyb5: In this hybrid, while Handling Fan-out Gates during the evaluation phase, for the second
execution of ΠTranspose in each execution of ΠTran, Sim0 doesn’t follow the protocol to compute honest servers’
shares of [yi]

(2) for each server Si. Instead, Sim0 randomly samples the whole sharing based on the cor-
rupted servers’ shares. In addition, Sim0 doesn’t follow the protocol to compute the servers’ shares of
([L1(x1)], . . . , [Lk(xk)]). Instead, Sim0 computes each corrupted server Si’s shares by yi − ri and samples
the honest servers’ shares based on the secrets and the corrupted servers’ shares. Note that the secrets
and the honest servers’ shares of [ri](2) for each Si and the random sharings [u1]

(2), . . . , [unℓ]
(2) associated

with each execution of ΠTranspose are not used in the later simulation, Sim0 doesn’t generate them in future
hybrids. For the same reason in Hyb2, Hyb3, and Hyb4, we conclude that Hyb5 and Hyb4 have the same
output distribution.
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Hyb6: In this hybrid, while Permuting the Secrets for the first time during the evaluation phase for
each layer, for the first execution of ΠTranspose in each execution of ΠTran, Sim0 doesn’t follow the protocol
to compute honest servers’ shares of [yi]

(2) for each server Si. Instead, Sim0 randomly samples the whole
sharing based on the corrupted servers’ shares. In addition, Sim0 doesn’t follow the protocol to compute the
servers’ shares of ([x∗

1], . . . , [x
∗
k]). Instead, Sim0 computes each corrupted server Si’s shares by yi − ri and

randomly samples the honest servers’ shares based on the secrets and the corrupted servers’ shares. Note that
the secrets and the honest servers’ shares of [ri](2) for each Si and the random sharings [u1]

(2), . . . , [unℓ]
(2)

associated with each execution of ΠTranspose are not used in the later simulation, Sim0 doesn’t generate them
in future hybrids. For the same reason in Hyb2, Hyb3, and Hyb4, we conclude that Hyb6 and Hyb5 have
the same output distribution.

Hyb7: In this hybrid, while Permuting the Secrets for the first time during the evaluation phase
for each layer, for the second execution of ΠTranspose in each execution of ΠTran, Sim0 doesn’t follow the
protocol to compute honest servers’ shares of [yi]

(2) for each server Si. Instead, Sim0 randomly samples
the whole sharing based on the corrupted servers’ shares. In addition, Sim0 doesn’t follow the protocol to
compute servers’ shares of ([L1(x1)], . . . , [Lk(xk)]). Instead, Sim0 computes each corrupted server Si’s shares
by yi − ri and randomly samples the honest servers’ shares based on the secrets and the corrupted servers’
shares. Note that the secrets and the honest servers’ shares of [ri](2) for each Si and the random sharings
[u1]

(2), . . . , [unℓ]
(2) associated with each execution of ΠTranspose are not used in the later simulation, Sim0

doesn’t generate them in future hybrids. For the same reason in Hyb2, Hyb3, and Hyb4, we conclude that
Hyb7 and Hyb6 have the same output distribution.

Note that the honest parties’ shares of [s] for each input Σ-sharing generated by an honest client are not
used in the later simulation, Sim0 doesn’t generate them in future hybrids.

Hyb8: In this hybrid, while Collecting Secrets from Previous Layers during the evaluation phase,
for the first execution of ΠTranspose in each execution of ΠCollect while collecting secrets from previous layers
in each layer, Sim0 doesn’t follow the protocol to compute honest servers’ shares of [yi]

(2) (in ΠTranspose) for
each server Si. Instead, Sim0 randomly samples the whole sharing based on the corrupted servers’ shares. In
addition, Sim0 doesn’t follow the protocol to compute honest servers’ shares of ([y∗

1 ], . . . , [y
∗
k]) (in ΠCollect).

Instead, Sim0 computes each corrupted server Si’s shares by yi−ri and randomly samples the servers’ shares
based on the secrets and the corrupted servers’ shares. Note that the secrets and the honest servers’ shares
of [ri](2) for each Si and the random sharings [u1]

(2), . . . , [unℓ]
(2) associated with each execution of ΠTranspose

are not used in the later simulation, Sim0 doesn’t generate them in future hybrids. For the same reason in
Hyb2, Hyb3, and Hyb4, we conclude that Hyb8 and Hyb7 have the same output distribution.

Hyb9: In this hybrid, while Collecting Secrets from Previous Layers during the evaluation phase,
for the second execution of ΠTranspose in each execution of ΠCollect while collecting secrets from previous layers
in each layer, Sim0 doesn’t follow the protocol to compute honest servers’ shares of [yi]

(2) (in ΠTranspose) for
each server Si. Instead, Sim0 randomly samples the whole sharing based on the corrupted servers’ shares.
In addition, Sim0 doesn’t follow the protocol to compute the servers’ shares of ([y1], . . . , [yk]) (in ΠCollect).
Instead, Sim0 computes each corrupted server Si’s shares by yi−ri and randomly samples the honest servers’
shares based on the secrets and the corrupted servers’ shares. Note that the secrets and the honest servers’
shares of [ri](2) for each Si and the random sharings [u1]

(2), . . . , [unℓ]
(2) associated with each execution of

ΠTranspose are not used in the later simulation, Sim0 doesn’t generate them in future hybrids. For the same
reason in Hyb2, Hyb3, and Hyb4, we conclude that Hyb9 and Hyb8 have the same output distribution.

Note that the honest servers’ shares of the sharings ([y∗
1 ], . . . , [y

∗
k]), ([y

∗
1 ]

(2), . . . , [y∗
k]

(2)), and ([y1]
(2), . . . , [yk]

(2))
in each execution of ΠCollect while collecting secrets from previous layers are not used in the later simulation,
Sim0 doesn’t generate them in future hybrids.

Hyb10: In this hybrid, while Permuting the Secrets for the second time during the evaluation phase
for each layer, for the first execution of ΠTranspose in each execution of ΠTran, Sim0 doesn’t follow the protocol
to compute honest servers’ shares of [yi]

(2) for each server Si. Instead, Sim0 randomly samples the whole
sharing based on the corrupted servers’ shares. In addition, Sim0 doesn’t follow the protocol to compute the
servers’ shares of ([x∗

1], . . . , [x
∗
k]). Instead, Sim0 computes each corrupted server Si’s shares by yi − ri and

randomly samples the honest servers’ shares based on the secrets and the corrupted servers’ shares. Note that
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the secrets and the honest servers’ shares of [ri](2) for each Si and the random sharings [u1]
(2), . . . , [unℓ]

(2)

associated with each execution of ΠTranspose are not used in the later simulation, Sim0 doesn’t generate them
in future hybrids. For the same reason in Hyb2, Hyb3, and Hyb4, we conclude that Hyb10 and Hyb9

have the same output distribution.
Hyb11: In this hybrid, while Permuting the Secrets for the second time during the evaluation phase

for each layer, for the second execution of ΠTranspose in each execution of ΠTran, Sim0 doesn’t follow the
protocol to compute honest servers’ shares of [yi]

(2) for each server Si. Instead, Sim0 randomly samples
the whole sharing based on the corrupted servers’ shares. In addition, Sim0 doesn’t follow the protocol to
compute servers’ shares of ([L1(x1)], . . . , [Lk(xk)]). Instead, Sim0 computes each corrupted server Si’s shares
by yi − ri and randomly samples the honest servers’ shares based on the secrets and the corrupted servers’
shares. Note that the secrets and the honest servers’ shares of [ri](2) for each Si and the random sharings
[u1]

(2), . . . , [unℓ]
(2) associated with each execution of ΠTranspose are not used in the later simulation, Sim0

doesn’t generate them in future hybrids. For the same reason in Hyb2, Hyb3, and Hyb4, we conclude that
Hyb11 and Hyb10 have the same output distribution.

Hyb12: In this hybrid, while Evaluating Multiplication Gates and Addition Gates during the
evaluation phase, for the first execution of ΠTranspose in each execution of ΠMulti while evaluating the mul-
tiplication gates in each layer, Sim0 doesn’t follow the protocol to compute honest servers’ shares of [yi]

(2)

(in ΠCollect) for each server Si. Instead, Sim0 randomly samples the whole sharing based on the corrupted
servers’ shares. In addition, Sim0 doesn’t follow the protocol to compute the servers’ shares of ([z∗

1 ], . . . , [z
∗
k]).

Instead, each corrupted server Sj ’s shares by yi − ri Note that the secrets and the honest servers’ shares of
[ri]

(2) for each Si and the random sharings [u1]
(2), . . . , [unℓ]

(2) associated with each execution of ΠTranspose

are not used in the later simulation, Sim0 doesn’t generate them in future hybrids. For the same reason in
Hyb2, Hyb3, and Hyb4, we conclude that Hyb12 and Hyb11 have the same output distribution.

Hyb13: In this hybrid, while Evaluating Multiplication Gates and Addition Gates during the
evaluation phase, for the second execution of ΠTranspose in each execution of ΠMulti while evaluating the
multiplication gates in each layer, Sim0 doesn’t follow the protocol to compute honest servers’ shares of [yi]

(2)

(in ΠTranspose) for each server Si. Instead, Sim0 randomly samples the whole sharing based on the corrupted
servers’ shares. In addition, Sim0 doesn’t follow the protocol to compute the servers’ shares of ([z1], . . . , [zk]).
Instead, each corrupted server Sj ’s shares by yi − ri Note that the secrets and the honest servers’ shares of
[ri]

(2) for each Si and the random sharings [u1]
(2), . . . , [unℓ]

(2) associated with each execution of ΠTranspose

are not used in the later simulation, Sim0 doesn’t generate them in future hybrids. For the same reason in
Hyb2, Hyb3, and Hyb4, we conclude that Hyb13 and Hyb12 have the same output distribution.

Note that the honest servers’ shares of the sharings ([z∗
1 ], . . . , [z

∗
k]), ([z

∗
1 ]

(2), . . . , [z∗
k]

(2)), and ([z1]
(2), . . . , [zk]

(2))
in each execution of ΠMulti while evaluating the multiplication gates are not used in the later simulation,
Sim0 doesn’t generate them in future hybrids.

Hyb14: In this hybrid, during the evaluation phase, for each k input wires of output gates attached to
an honest client Ci, Sim0 doesn’t follow the protocol to compute the honest servers’ shares of [y + r](2).
Instead, Sim0 samples the whole sharing [y + r](2) based on corrupted servers’ shares. Then Sim0 computes
the sharing [r](2) by [y+ r](2)− [1]⊗ [y]. Since [r](2) is generated randomly by Fprep based on the corrupted
servers’ shares, [y + r](2) is also completely random when corrupted servers’ shares are fixed. Therefore, we
only change the order of generating the honest servers’ shares of each pair of [r](2) and [y + r](2) without
changing their distributions. Thus, Hyb14 and Hyb13 have the same output distribution.

Hyb15: In this hybrid, during the evaluation phase, for each k input wires of output gates attached to
a corrupted client Ci, Sim0 doesn’t follow the protocol to compute the honest servers’ shares of [y + r](2).
Instead, Sim0 samples a random Σ(2) sharing as [y+r](2) based on corrupted parties’ shares and the secrets.
Then, Sim0 computes the honest servers’ shares of [r](2) by [y + r](2) − [1] ⊗ [y]. Since [r](2) is generated
randomly by Fprep based on the corrupted servers’ shares and the secret, [y+r](2) is also completely random
when corrupted servers’ shares are fixed. Therefore, we only change the order of generating the honest
servers’ shares of each pair of [r](2) and [y + r](2) without changing their distributions. In addition, honest
clients don’t compute their output by themselves. Instead, honest clients get their output from F . Since the
computation process of F of y of each client (either honest or corrupted) is the computation of circuit C,
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which has the same output as C ′, and the computation process of [y] by the servers is just the computation
of C ′ in an additively-shared form. Thus, we only change the way to generate y without changing its
distribution. Thus, Hyb15 and Hyb14 have the same output distribution.

Hyb16: In this hybrid, during the evaluation phase, Sim0 doesn’t generate the honest servers’ shares
of the Σ-sharings for intermediate wire values. Note that these shares are not used in the simulation, this
doesn’t affect the output distribution. Thus, Hyb16 and Hyb15 have the same output distribution.

Note that Hyb16 is the ideal-world scenario, Π0 satisfies the requirements listed in Section 4.1.

H Realizing the Functionalities

H.1 Realizing Fprep

Circuit Transformation. The transformation from C to C ′ can be done locally. We sketch the transfor-
mation process (slightly modified from [GPS21]) below:

1. We insert a virtual client C0, who provides constant default inputs and collects the wires whose value
will not be output to any clients. Each input wire value of C0 is used once in the circuit.

2. For each intermediate layer, we insert at most k2 − 1 multiplication gates and k2 − 1 addition gates to
make the numbers of multiplication gates and addition gates multiples of k2. Each gate being added
takes 2 inputs from C0 and outputs to C0 as well. The inputs are set to be 0. This step increases the
circuit size by O(Dk2).

3. For each intermediate layer, we divide the multiplication gates and addition gates into groups of k
respectively. For the output wires of each group of gates, suppose that the k output wires are used
n1, . . . , nk times in later layers. We increase n′

k ≤ k − 1 output wires to C0 that take the wire value
of the k-th output wire of the group of gates such that n1 + · · · + nk is a multiple of k. The fan-out
gates for them will copy the k output wires n1, . . . , nk times respectively. After increasing these output
wires, suppose that all the output wires of the multiplication gates and addition gates in this layer are
used α times, then we further increase α′ ≤ k2 − 1 output wires to C0 that take the value of the last
output wire of the gates in this layer such that α+α′ is a multiple of k2. This step increases the circuit
size by O(|C|+Dk2).

4. For each client Ci (i ∈ {1, . . . ,m}), we insert at most k − 1 input wires attached to him with input
wire value 0 such that the total number of input wires attached to Ci is a multiple of k. We also insert
the same number of output wires attached to C0 that collect these input wires. Similarly, we insert at
most k− 1 output wires attached to him such that the total number of output wires attached to Ci is
a multiple of k. We also insert the same number of input wires with input wire value 0 attached to C0

that directly output to Ci. This step increases the circuit size by O(mk).

5. For the input layer, we divide the input wires attached to each client Ci (i ∈ {1, . . . ,m}) into groups
of k. For each group of input wires, we follow step 3 to make the total number that these k wires are
used in later layers a multiple of k. This step increases the circuit size by O(|C|+mk).

6. Finally, we insert input wires attached to C0 to make the total number that input wires of all clients
are used in later layers a multiple of k2. Note that after this step, the number of output wires in the
input layer and each intermediate layer is a multiple of k2, and the number of input wires in each
intermediate layer is also a multiple of k2. This implies that the number of input wires in the output
layer is a multiple of k2 as well. Since each client Ci (i ∈ {1, . . . ,m}) takes output of size a multiple of
k, this implies that the output size of C0 is also a multiple of k. This step increases the circuit size by
O(k2).

Following the above process, we obtain a circuit C ′ as we desire. We state the theorem below.
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Theorem 7. ([GPS21], modified). Given an arithmetic circuit C with input coming from m clients, there
exists an efficient algorithm that takes C as input and outputs an arithmetic circuit C ′ with the following
properties:

• For all input x, C(x) = C ′(x).

• C ′ consists of an input layer, an output layer, D intermediate layers of addition/multiplication gates,
where D is the depth of C. For each input wire of the circuit and output wire of an addition/multiplication
gate, there is a fan-out gate taking this wire as input and copying it the number of times this wire will
be used in future layers so that every output wire of the input layer and the intermediate layers is only
used once as input wire in the later layers.

• In the input layer and the output layer, the number of input wires attached to each client and the
number of output wires attached to each client are multiples of k. In each intermediate layer, the
number of addition gates and the number of multiplication gates are multiples of k2. The number of
input wires of the output layer is a multiple of k2. The number of output wires of the fan-out gates in
the input layer and each intermediate layer is also a multiple of k2.

• In each layer, k gates of the same type are grouped together (for input/output layers, k input/output
wires attached to the same client are grouped together). Each group of output wires from the input
layer and each intermediate layer serves as the input wires to a group of fan-out gates in this layer.
The number of output wires of each group of fan-out gates is a multiple of k.

• Circuit size: |C ′| = O(|C| +Dk2 +mk), where m is the number of clients that provide inputs and D
is the depth of C.

Preparing Random Sharings. To prepare random Σ(2)-sharings, we follow the approach from [PS21].
Take a = ⌊log n⌋ + 1, and let Σ×a,Σ

(2)
×a be the a-fold interleaved secret sharing of Σ,Σ(2) respectively. Let

[·]a, [·](2)a denote sharings in Σ×a,Σ
(2)
×a. The servers run the following protocol ΠRandShare.

1. Each server Si samples a random Σ
(2)
×a-sharing [si]

(2)
a and distributes it to all the servers.

2. Let t = n/4, N be the matrix

N =


1 1 · · · 1
1 b1 · · · bn−1

...
...

. . .
...

1 bn−t−1
1 · · · bn−t−1

n−1

 ,

where 1, b1, . . . , bn−1 are n different elements in F2a . The servers locally compute
[r1]

(2)
a

[r2]
(2)
a

...
[rn−t]

(2)
a

 = N ·


[s1]

(2)
a

[s2]
(2)
a

...
[sn]

(2)
a

 .

3. Each Σ
(2)
×a-sharing

[ri]
(2)
a = ([r

(1)
i ](2), . . . , [r

(a)
i ](2)).

Thus the parties obtain a · (n− t) random Σ(2)-sharings [r
(j)
i ](2) for i = 1, . . . , n− t, j = 1, . . . , a.

Protocol ΠRandShare

Figure 16: Preparing random Σ(2)-sharings.

In this way, each random Σ(2)-sharing can be prepared with amortized cost O(n).
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Preparing Zero Sharings. To mask the sharings generated by corrupted servers, we also need to prepare
some random Σ(2)-sharings whose secrets are all-zero vectors. This process is similar to generating random
sharings except that we need an extra check to verify that their secrets are all zero.

1. Each server Si samples a random Σ
(2)
×a-sharing [si]

(2)
a where si is an all-zero vector and distributes it to all

the servers.

2. Let t = n/4, N be the matrix

N =


1 1 · · · 1
1 b1 · · · bn−1

...
...

. . .
...

1 bn−t−1
1 · · · bn−t−1

n−1

 ,

where 1, b1, . . . , bn−1 are n different elements in F2a . The servers locally compute
[o1]

(2)
a

[o2]
(2)
a

...
[on−t]

(2)
a

 = N ·


[s1]

(2)
a

[s2]
(2)
a

...
[sn]

(2)
a

 .

3. Each Σ
(2)
×a-sharing

[oi]
(2)
a = ([o

(1)
i ](2), . . . , [o

(a)
i ](2)).

Thus the parties obtain a · (n− t) random Σ(2)-sharings [o
(j)
i ](2) for i = 1, . . . , n− t, j = 1, . . . , a.

Protocol ΠZero

Figure 17: Preparing random Σ(2)-sharings for all-zero secrets.

In this way, each random Σ(2)-sharing with an all-zero secret can be prepared with amortized cost O(n).

Verification. After receiving the shares for the sharings, the servers need to do a verification on them
to ensure that all these sharings are valid Σ and Σ(2)-sharings. We do the verification in the standard
functionality FCoin-hybrid model to verify a random linear combination of them.

1. On receiving RandCoin from all the parties, the trusted party samples s ∈ F2κ .

2. The trusted party sends s to Sim. If abort is received from Sim, the trusted party sends abort to all the
parties and aborts the functionality. Otherwise, the trusted party sends s to all the parties.

Functionality FCoin

Figure 18: Functionality for generating a common coin.

The functionality FCoin can be instantiated by letting each party Pj share a degree-t Shamir sharing over
F2κ of a randomly chosen secret to all the parties and let each party reconstruct the secret of the sum of
them. Finally, the parties locally check whether the received sharing is valid. Thus, FCoin can be realized in
2 rounds with communication of O(n2κ) bits.

Then we give the description of Πver in Figure 19.

For Σ-sharings [x1], . . . , [xk1 ], Σ
(2)-sharings (excluding the sharings prepared by ΠZero) [x′

1]
(2), . . . , [x′

k2
](2),

and Σ(2)-sharings [o1]
(2), . . . , [ok3 ]

(2) prepared by ΠZero that need to be verified, the parties embed each
Σ-sharings into a Σ×κ-sharing and embed each Σ(2)-sharings into a Σ

(2)
×κ-sharing. Then the parties get

[x1]κ, . . . , [xk1 ]κ, [x′
1]

(2)
κ , . . . , [x′

k2
]
(2)
κ , and [o1]

(2)
κ , . . . , [ok3 ]

(2)
κ :

Protocol Πver
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1. Each server Si generates a random Σ×κ-sharing [r(i)]κ, a random Σ
(2)
×κ-sharing [r(i)′ ]

(2)
κ , and a random

Σ
(2)
×κ-sharing [o(i)]

(2)
κ with an all-zero secret. Then Si distributes them to all the servers.

2. The servers invoke FCoin to get s ∈ F2κ . If abort is received, abort the protocol. Then the servers expand s
to a vector (s1, . . . , sk1 , s

′
1, . . . , s

′
k2
, s(1), . . . , s(k3)) ∈ Fk1+k2+k3

2κ via a public pseudorandom generator.

3. All the servers locally computes [τ ]κ =
∑k1

j=1 sj · [xj ]κ +
∑n

i=1[r
(i)]κ,

[τ ′]
(2)
κ =

∑k2
j=1 s

′
j · [x′

j ]
(2)
κ +

∑n
i=1[r

(i)′ ]
(2)
κ , and [τ0]

(2)
κ =

∑k3
j=1 s

(j) · [oj ]κ +
∑n

i=1[o
(i)]

(2)
κ .

4. Each server sends his shares of [τ ]κ, [τ ′]
(2)
κ , [τ0]

(2)
κ to all the servers.

5. Each server checks whether [τ ]κ is a valid Σ×κ-sharing, whether [τ ′]
(2)
κ is a valid Σ

(2)
×κ-sharing, and whether

[τ0]
(2)
κ is a valid Σ

(2)
×κ-sharing with an all-zero secret. If not, abort the protocol.

Figure 19: Verification of the sharings.

Summary. We provide the preprocessing protocol in Figure 20.

Input: A public circuit C.

1. All servers transform C to C′.

2. Let W be the number of wires in C′, the servers run ΠRandShare to generate 10Wnℓ/k2 random Σ(2)-sharings.

3. The servers run ΠZero to prepare 10Wn/k2 +WO/k random Σ(2)-sharings with all-zero secrets, where WO

is the number of output wires in C′.

4. For each batch of k output wires attached to client Ci in circuit C′, Ci generates a random Σ(2)-sharing
[r′](2) and distributes it to all the servers. Then the servers add a random Σ(2)-sharing with an all-zero
secret prepared by ΠZero to this sharing and set the result to be [r](2).

5. The servers do the following 10W/k2 times in parallel:

(a) Each server Sj generates a random Σ(2)-sharing [r′
j ]

(2) and distributes it to all the servers. Then the
servers add a random Σ(2)-sharings with an all-zero secret prepared by ΠZero to this sharing and set the
result to be [rj ]

(2).
(b) The servers group each nℓ random Σ(2)-sharings obtained from ΠRandShare together as [u1]

(2), . . . , [unℓ]
(2).

6. The servers run Πver to verify all the Σ(2)-sharings (including those from ΠZero) generated in the
preprocessing protocol, where each Σ

(2)
×a-sharing is regarded as a Σ(2)-sharings.

Protocol Πprep

Figure 20: Realizing Fprep.

Theorem 8. Let Σ be an (n, t, k, ℓ)-LSSS over F2 with 3-multiplicative reconstruction. Protocol Πprep securely
realizes Fprep in the FCoin-hybrid model against a fully malicious adversary that corrupts any number of clients
and at most t servers.

Proof. We prove the security of Πprep by constructing an ideal adversary Sim. Then we will show that
the output in the ideal world is computationally indistinguishable from that in the real world using hybrid
arguments. Our simulation is in the client-server model where the adversary corrupts any number of clients
and exactly t servers.

Before we give the construction of the ideal adversary, we recall that from Lemma 1, the honest servers’
shares of any Σ,Σ(2)-sharing (or a Σ

(2)
×a-sharing which could be regarded as a group of a Σ(2)-sharings) can

uniquely determine the secret of the sharing.
We give the ideal adversary Sim below.
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1. Sim sets Check = 0.

2. Sim follows the protocol to transform C to C′.

3. For each execution of ΠRandShare:

(a) For each honest server Si, Sim randomly generates corrupted servers’ shares of [si]
(2)
a (using the first

algorithm in Remark 1, same below) and sends them to the corrupted servers on behalf of Si.

(b) For each corrupted server Si, Sim receives the honest servers’ shares of the Σ
(2)
×a-sharing [si]

(2)
a . If the

honest servers’ shares are not from any valid Σ
(2)
×a-sharing, Sim sets Check = 1. Otherwise, Sim

reconstructs the secret of this sharing and sets this sharing to be [si]
(2)
×a. From Lemma 1, the secret r

unique.
(c) Sim follows the protocol to compute corrupted servers’ shares of [r(j)

i ](2) for i = 1, . . . , n− t, j = 1, . . . , a.

4. For each execution of ΠZero:

(a) For each honest server Si, Sim randomly generates corrupted servers’ shares of [si]
(2)
a and sends them to

the corrupted servers on behalf of Si.
(b) For each corrupted server Si, Sim receives the honest servers’ shares of the Σ

(2)
×a-sharing [si]

(2)
a . If the

honest servers’ shares are not from any valid Σ
(2)
×a-sharing, Sim sets Check = 1. Otherwise, Sim

reconstructs the secret of this sharing and sets this sharing to be [si]
(2)
×a. If the secret is not an all-zero

vector, Sim sets Check = 1.
(c) Sim follows the protocol to compute corrupted servers’ shares of [o(j)

i ](2) for i = 1, . . . , n− t, j = 1, . . . , a.

5. For each batch of k output wires attached to an honest client Ci in circuit C′, Sim randomly generates
corrupted servers’ shares of the Σ(2)-sharing [r′](2) attached to this batch of wires and sends them to the
corrupted servers on behalf of Si. Then Sim follows the protocol to compute corrupted servers’ shares of
[r](2).

6. For each batch of k output wires attached to a corrupted client Ci in circuit C′, Sim receives the honest
servers’ shares of the Σ(2)-sharing [r′](2) attached to this batch of wires. If the honest servers’ shares are
not from any valid Σ(2)-sharing, Sim sets Check = 1. Otherwise, Sim reconstructs the secret r of this
sharing and sets this sharing to be [r′](2). Then, Sim follows the protocol to compute corrupted servers’
shares of [r](2).

7. Sim do the following 10W/k2 times in parallel:

(a) For each honest server Sj , Sim randomly generates corrupted servers’ shares of [r′
j ]

(2) and distributes it
to the corrupted servers on behalf of Sj . Then Sim follows the protocol to compute corrupted servers’
shares of [r′

j ]
(2).

(b) For each corrupted server Sj , Sim receives the honest servers’ shares of the Σ(2)-sharing [r′
j ]

(2) attached
to this batch of wires. If the honest servers’ shares are not from any valid Σ(2)-sharing, Sim sets
Check = 1. Otherwise, Sim reconstructs the secret r′

j of this sharing and sets this sharing to be [r′
j ]

(2).
Then, Sim follows the protocol to compute corrupted servers’ shares of [rj ]

(2).
(c) Sim follows the protocol group each nℓ random Σ(2)-sharings obtained from ΠRandShare together as

[u1]
(2), . . . , [unℓ]

(2).

8. Sim simulate the execution of Πver as follows:

(a) For each honest server Si, Sim randomly generates corrupted servers’ shares of [r(i)′ ]
(2)
κ , [o(i)]

(2)
κ and

sends them to the corrupted servers on behalf of Si.
(b) For each corrupted server Si, Sim receives the honest servers’ shares of the Σ

(2)
×κ-sharing

[r(i)′ ]
(2)
κ , [o(i)]

(2)
κ . If honest servers’ shares of the sharing

∑
i∈C [r

(i)′ ]
(2)
κ or

∑
i∈C [o

(i)]
(2)
κ (C is the set of

indices of corrupted servers) are not from any valid Σ
(2)
×κ-sharing, Sim sets Check = 1. Otherwise, Sim

reconstructs the secrets of the sharings and sets the sharings to be
∑

i∈C [r
(i)′ ]

(2)
κ ,

∑
i∈C [o

(i)]
(2)
κ . If the

secret of the second sharing
∑

i∈C [o
(i)]

(2)
κ is not an all-zero vector, Sim sets Check = 1.

(c) Sim emulates FCoin to receive RandCoin from all the corrupted servers and follows the protocol to sample
s ∈ F2κ randomly.

Simulator Sim
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(d) Sim emulates FCoin to send s to A. If abort is received from A, Sim emulates FCoin to send abort to all
the corrupted servers and aborts the protocol. Let the pseudorandom coefficients for the Σ(2)-sharings
expanded from s be s′1, . . . , s

′
k2
∈ F2κ . Let the pseudorandom coefficients for the Σ(2)-sharings with

all-zero secrets expanded from s be s(1), . . . , s(k3) ∈ F2κ .
(e) – If Check = 0:

i. Sim follows the protocol to compute the corrupted servers’ shares of [τ ′]
(2)
κ , [τ0]

(2)
κ .

ii. Sim generates honest servers’ shares of [τ ′]
(2)
κ randomly based on corrupted servers’ shares. Then

Sim generates honest servers’ shares of [τ0](2)κ randomly based on corrupted servers’ shares and
the all-zero secret.

iii. Sim sends each honest server’s share of [τ ′]
(2)
κ , [τ0]

(2)
κ to all the corrupted servers on behalf of this

honest server.
iv. Sim receives corrupted servers’ shares of [τ ′]

(2)
κ , [τ0]

(2)
κ on behalf of each honest server and follows

the protocol to check whether [τ ′]
(2)
κ , [τ0]

(2)
κ is valid Σ

(2)
×κ-sharings and whether the secret of [τ0](2)κ

is an all-zero vector. If not, Sim sends abort to Fprep and aborts the protocol on behalf of the
honest server. Sim outputs the adversary’s view after completing the simulation.

– If Check = 1:
i. For each Σ(2),Σ

(2)
×a,Σ

(2)
×κ generated by an honest party, Sim generates the honest servers’ shares

randomly based on the corrupted servers’ shares (and the all-zero secrets for those sharings
generated in ΠZero) and follows the protocol to compute honest servers’ shares of [τ ′]

(2)
κ , [τ0]

(2)
κ .

ii. Sim follows the protocol to send each honest server’s share of [τ ](2)κ , [τ0]
(2)
κ to all the corrupted

servers.
iii. Sim receives corrupted servers’ shares of [τ ′]

(2)
κ , [τ0]

(2)
κ on behalf of each honest server and

honestly check whether [τ ′]
(2)
κ , [τ0]

(2)
κ are valid Σ

(2)
×κ-sharings and whether the secret of [τ0](2)κ is an

all-zero vector. If not, Sim sends abort to Fprep and aborts the protocol on behalf of the honest
server. Sim outputs the adversary’s view after completing the simulation.

iv. If the protocol is not aborted, Sim aborts the simulation.

9. Sim sends the corrupted servers’ shares of all the output sharings of Fprep to Fprep. For each batch of k
output wires attached to a corrupted client Ci in circuit C′, Sim sends the secret r of the sharing [r](2)

attached to this batch of wires to Fprep.

10. Sim outputs the adversary’s view.

Figure 21: The simulator for Πprep.

We construct the following hybrids:
Hyb0: In this hybrid, Sim runs the protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, whenever Sim generates a Σ(2),Σ

(2)
×a,Σ

(2)
×κ-sharing on behalf of an honest party, he

first generates the corrupted servers’ shares randomly and then generates the honest servers’ shares based
on the corrupted servers’ shares and the secret. Since Σ is an (n, t, k, ℓ)-LSSS that has 3-multiplicative
reconstruction, each t shares of a Σ(2),Σ

(2)
×a, or a Σ

(2)
×κ-sharing are uniformly random, so we only change the

order of generating the honest servers’ and the corrupted servers’ shares. Thus, Hyb1 and Hyb0 have the
same output distribution.

Hyb2: In this hybrid, Sim additionally sets Check = 0 at the beginning of the simulation. This doesn’t
affect the output distribution. Thus, Hyb2 and Hyb1 have the same output distribution.

Hyb3: In this hybrid, during each execution of ΠRandShare, for each corrupted server Si, on receiving the
honest servers’ shares of each Σ

(2)
×a-sharing [si]

(2)
a , Sim additionally checks whether the honest servers’ shares

are from a valid Σ
(2)
×a-sharing. If not, Sim sets Check = 1. Otherwise, Sim reconstructs the secret of this

sharing and sets this sharing to be [si]
(2)
a . This doesn’t affect the output distribution. Thus, Hyb3 and

Hyb2 have the same output distribution.
Hyb4: In this hybrid, during each execution of ΠZero, for each corrupted server Si, on receiving the

honest servers’ shares of each Σ
(2)
×a-sharing [si]

(2)
a , Sim additionally checks whether the honest servers’ shares
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are from a valid Σ
(2)
×a-sharing with an all-zero secret. If not, Sim sets Check = 1. Otherwise, Sim sets this

sharing to be [si]
(2)
a . This doesn’t affect the output distribution. Thus, Hyb4 and Hyb3 have the same

output distribution.
Hyb5: In this hybrid, for each batch of k output wires attached to a corrupted client Ci in circuit C ′, on

receiving the honest servers’ shares of the Σ(2)-sharing [r′](2) attached to this batch of wires, Sim additionally
checks whether the honest servers’ shares are from a valid Σ(2)-sharing. If not, Sim sets Check = 1. Otherwise,
Sim reconstructs the secret of this sharing and sets this sharing to be [r′](2). This doesn’t affect the output
distribution. Thus, Hyb5 and Hyb4 have the same output distribution.

Hyb6: In this hybrid, for each corrupted server Sj , on receiving the honest servers’ shares of each Σ(2)-
sharing [r′j ]

(2), Sim additionally checks whether the honest servers’ shares are from a valid Σ(2)-sharing.
If not, Sim sets Check = 1. Otherwise, Sim reconstructs the secret of this sharing and sets this sharing
to be [r′j ]

(2). This doesn’t affect the output distribution. Thus, Hyb6 and Hyb5 have the same output
distribution.

Hyb7: In this hybrid, while doing verification, for each corrupted server Si, on receiving the honest
servers’ shares of each Σ

(2)
×κ-sharing [r(i)

′
]
(2)
κ , [o(i)′ ]

(2)
κ , Sim additionally checks whether the honest servers’

shares of
∑

i∈C [r
(i)′ ]

(2)
κ are from a valid Σ

(2)
×κ-sharing and whether the honest servers’ shares of

∑
i∈C [o

(i)]
(2)
κ

are from a valid Σ
(2)
×κ-sharing with an all-zero secret. If not, Sim sets Check = 1. Otherwise, Sim reconstructs

the secrets of these sharings and sets this sharing to be
∑

i∈C [r
(i)′ ]

(2)
κ ,

∑
i∈C [o

(i)]
(2)
κ . This doesn’t affect the

output distribution. Thus, Hyb7 and Hyb6 have the same output distribution.
Hyb8: In this hybrid, while doing verification, if Check = 0, Sim doesn’t follow the protocol to compute

each honest server’s share of [τ ′]
(2)
κ , [τ0]

(2)
κ . Instead, he randomly samples honest servers’ shares of [τ ′]

(2)
κ

based on the corrupted servers’ shares and randomly samples honest servers’ shares of [τ0]
(2)
κ based on the

corrupted servers’ shares and the all-zero secret. Then, the honest servers’ shares of [r(j)
′
]
(2)
κ , [o(j)]

(2)
κ for

an honest server Sj are sampled based on [τ ′]
(2)
κ , [τ0]

(2)
κ , the coefficients s′1, . . . , s′k2

, s(1), . . . , s(k3), and all the
Σ(2)-sharings generated in the preprocessing protocol except each [r(j)

′
]
(2)
κ , [o(j)]

(2)
κ . Since Check = 0, we can

regard that corrupted parties follow the protocol to distribute all the Σ(2)-sharings. Then, the sharing [τ ′]
(2)
κ

must also be a valid Σ
(2)
×κ-sharing. Since the honest servers’ shares of [r(j)

′
]
(2)
κ , [o(j)]

(2)
κ are sampled randomly

based on the corrupted servers’ shares, the honest servers’ shares of [τ ′]
(2)
κ , [τ0]

(2)
κ are also random in the

case that the corrupted servers’ shares are fixed. Thus, we only change the order of generating the honest
servers’ shares of [r(j)

′
]
(2)
κ , [o(j)]

(2)
κ and [τ ′]

(2)
κ , [τ0]

(2)
κ without changing their distributions. Thus, Hyb8 and

Hyb7 have the same output distribution.
Hyb9: In this hybrid, while doing verification, if Check = 1, Sim delays the generation of the honest

servers’ shares of each Σ(2)-sharings (including Σ
(2)
×a,Σ

(2)
×κ-sharings). Sim generates them while computing the

honest servers’ shares of [τ ′](2)κ , [τ0]
(2)
κ . Since these sharings are not used in the simulation before computing

the honest servers’ shares of [τ ′]
(2)
κ , this doesn’t change the output distribution. Thus, Hyb9 and Hyb8

have the same output distribution.
Hyb10: In this hybrid, while doing verification, after following the protocol to check the Σ(2)-sharings,

Sim aborts the simulation if Check = 1. This only changes the output distribution if Check = 1 but the
verification passes.

Since Check = 1, suppose that not all of the sharings used to compute [τ ′]
(κ)
κ are sent correctly, i.e.

there exists a Σ(2)-sharing to be verified that is not distributed correctly or
∑

i∈C [r
(i)′ ]

(2)
κ is not a valid

Σ
(2)
×κ-sharing. If all the Σ(2)-sharings to be verified are valid, but

∑
i∈C [r

(i)′ ]
(2)
κ is not a valid Σ

(2)
×κ-sharing,

then
∑k2

j=1 s
′
j · [x′

j ]
(2)
κ must be a valid Σ

(2)
×κ-sharing, so [τ ′]

(2)
κ =

∑k2

j=1 s
′
j · [x′

j ]
(2)
κ +

∑n
i=1[r

(i)′ ]
(2)
κ must not be

a valid Σ
(2)
×κ-sharing. Then, the verification can’t pass.

Now we consider the case that a Σ(2)-sharing to be verified that is not distributed correctly. Assume
that the shares for virtual servers in Hvir of a Σ-sharing are not valid. Assume that the random coefficient
on this sharing in [τ ]κ =

∑k1

j=1 sj · [xj ]κ +
∑n

i=1[r
(i)]κ is s ∈ F2κ . If s1, . . . , sk1 ∈ F2κ are all truly random,
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we can sample s after the invalid sharing is fixed. If there exists s0 ̸= s′0 ∈ F2κ such that s = s0 and s = s′0
both lead to a valid [τ ]κ, then the invalid sharing (which has been embedded in a Σ×κ-sharing) is (s0−s′0)

−1

times a valid Σ×κ-sharing, which must be a valid Σ×κ-sharing, and this leads to a contradiction. Thus, there
is only one element s0 ∈ F2κ that can make [τ ]κ pass the check. The probability is 2−κ, which is negligible.
Thus, if there is a non-negligible probability that [τ ]κ is valid, then the truly random field elements and
the pseudo-random values s1, . . . , sk1

∈ F2κ can be distinguished by computing [τ ]κ with a non-negligible
probability, which contradicts the definition of a PRG, so the probability that [τ ]κ is valid is negligible.

Similarly, the probability that not all of the sharings used to compute [τ0]
(2)
κ are sent correctly but the

verification passes is also negligible. Therefore, the distribution only changes with a negligible probability.
Thus, the distributions of Hyb10 and Hyb9 are computationally indistinguishable.

Hyb11: In this hybrid, Sim doesn’t generate the honest servers’ shares of those sharings generated by
honest parties when Check = 0, and honest parties don’t compute their output by themselves. Instead, Sim
sends the corrupted parties’ output to Fprep, and honest parties directly get their output from Fprep. Since
when Check = 0, the honest servers’ shares of those sharings generated by honest parties are not used in the
simulation if the honest parties directly get their output from Fprep, we only need to argue that the outputs
of honest parties obtained in the two hybrids are of the same distribution.

For the Σ(2)-sharings associated with output wires and each group of ([r1], . . . , [rn]), the only difference
on the computation process of the honest parties’ output is that ([r1], . . . , [rn]) is computed by adding a
random sharing with an all-zero secret on the sharings ([r′1], . . . , [r′n]) with the same secrets as ([r1], . . . , [rn]).
Thus, we only need to verify that the random sharings prepared in ΠRandShare are of the same distribution
in both hybrids and verify that the random sharings with all-zero secrets are indeed random with corrupted
servers’ shares fixed. In this way, we can generate the honest servers’ shares of ([r1], . . . , [rn]) randomly first
based on the secrets and the corrupted parties’ shares and then use them to compute the honest servers’
shares of the sharings with all-zero secrets, and this won’t change the output distribution.

Since each group of Σ(2)-sharings ([r
(1)
i ](2), . . . , [r

(a)
i ](2)) can be regard as a Σ

(2)
×a-sharing [ri]

(2)
a , we can

regard that Sim samples the sharing of [ri]
(2)
a based on corrupted servers’ shares. Let C be the set of

corrupted servers’ indices and H be the set of honest servers’ indices. Then let NC denote the sub-matrix of
N containing columns with indices in C, and NH denote the sub-matrix containing columns with indices in
H. We have 

[r1]
(2)
a

[r2]
(2)
a

...
[rn−t]

(2)
a

 = N ·


[s1]

(2)
a

[s2]
(2)
a

...
[sn]

(2)
a

 = NC ·
(
[sj ]

(2)
a

)
j∈C +NH ·

(
[sj ]

(2)
a

)
j∈H.

Recall that N T is a Vandermonde matrix of size n× (n− t). Therefore N T
H is a Vandermonde matrix of size

(n− t)× (n− t), which is invertible. Thus, there is a bijective map from
(
[sj ]

(2)
a

)
j∈H and

(
[ri]

(2)
a

)n−t

i=1
. Recall

that
(
[sj ]

(2)
a

)
j∈H are sampled randomly based on corrupted servers’ shares and the secrets, so

(
[ri]

(2)
a

)n−t

i=1
is

also completely random when corrupted servers’ shares are fixed. Therefore, the output distributions of the
random sharings are the same in both hybrids.

Similarly, the random sharings with all-zero secrets are also completely random when corrupted servers’
shares and the secrets are fixed. Thus, Hyb11 and Hyb10 have the same output distribution.

Note that Hyb11 is the ideal-world scenario, Πprep computes Fprep with computational security.

Cost Analysis. We analyze the communication cost of Πprep step by step as follows (where we regard each
Σ

(2)
×a-sharing as a Σ(2)-sharings):

1. Step 1 only contains local computation and requires no communication.

70



2. In Step 2, the servers generate 10Wnℓ/k2 = O(|C ′|/n) random Σ(2)-sharings, where the random Σ(2)-
sharings are prepared with amortized cost O(n). Thus, the communication cost of this step is O(|C ′|).

3. In Step 3, the servers generate 10Wn/k2 + WO/k = O(|C ′|/n) random Σ(2)-sharings with all-zero
secrets, where the random Σ(2)-sharings are prepared with amortized cost O(n). Thus, the communi-
cation cost of this step is O(|C ′|).

4. In Step 4, the clients need to send a Σ-sharing of size O(n) for each batch of k = O(n) input wires.
The communication is linear to the number WI of input wires of C ′, i.e. O(|WI |) < O(|C ′|) bits.

5. In Step 5, the servers distributes 10Wn/k2 = O(|C ′|/n) Σ(2)-sharings of size O(n). Thus, the commu-
nication cost of this step is O(|C ′|).

6. In Step 6, the instantiation of FCoin requires communication of O(n2κ) bits. The servers distributes 2n
Σ

(2)
×κ-sharings of size O(nκ) in this step. Thus, the communication cost of this step is O(n2κ).

As analyzed above, the total communication of Πprep is CCprep = O(|C ′|+n2κ) = O(|C|+Dn2+mn+n2κ).

H.2 Realizing Finput

To realize Finput, we let each client share their input values via Σ-sharings. Then the servers jointly check
that the Σ-sharings are all valid.

1. For each batch of k input wires attached to client Ci in circuit C′ with input values s1, . . . , sk ∈ F2, Ci

randomly generates [s] and distributes it to all the servers, where s = (s1, . . . , sk).

2. The servers run Πver to verify all the input Σ-sharings generated by the clients.

Protocol Πinput

Figure 22: Realizing Finput.

Theorem 9. Let Σ be an (n, t, k, ℓ)-LSSS over F2 with 3-multiplicative reconstruction. Protocol Πinput

securely realizes Finput in the FCoin-hybrid model against a fully malicious adversary that corrupts any number
of clients and at most t servers.

Proof. We prove the security of Πinput by constructing an ideal adversary Sim. Then we will show that
the output in the ideal world is computationally indistinguishable from that in the real world using hybrid
arguments. Our simulation is in the client-server model where the adversary corrupts any number of clients
and exactly t servers.

We give the ideal adversary Sim below.

1. Sim sets Check = 0.

2. For each batch of k input wires attached to an honest client Ci in circuit C′, Sim randomly generates
corrupted servers’ shares of the input sharing [s] for this batch of wires and sends them to the corrupted
servers on behalf of Si.

3. For each batch of k input wires attached to a corrupted client Ci in circuit C′, Sim receives the honest
servers’ shares of the input sharing [s] for this batch of wires. If the honest servers’ shares are not from any
valid Σ-sharing, Sim sets Check = 1. Otherwise, Sim reconstructs the secret of this sharing and sets this
sharing to be [s].

4. Sim simulate the execution of Πver as follows:

(a) For each honest server Si, Sim randomly generates corrupted servers’ shares of [r(i)]κ (using the first
algorithm in Remark 1, same below) and sends them to the corrupted servers on behalf of Si.

(b) For each corrupted server Si, Sim receives the honest servers’ shares of the Σ×κ-sharing [r(i)]κ. If

Simulator Sim
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honest servers’ shares of the sharing
∑

i∈C [r
(i)]κ (C is the set of indices of corrupted servers) are not

from any valid Σ×κ-sharing, Sim sets Check = 1. Otherwise, Sim reconstructs the secret of this sharing
and sets this sharing to be

∑
i∈C [r

(i)]κ.
(c) Sim emulates FCoin to receive RandCoin from all the corrupted servers and follows the protocol to

samples s ∈ F2κ randomly.
(d) Sim emulates FCoin to send s to A. If abort is received from A, Sim emulates FCoin to send abort to all

the corrupted servers and aborts the protocol. Let the pseudorandom coefficients for the Σ-sharings
expanded from s be s1, . . . , sk1 ∈ F2κ .

(e) – If Check = 0:
i. Sim follows the protocol to compute the corrupted servers’ shares of [τ ]κ.
ii. Sim generates honest servers’ shares of [τ ]κ randomly based on corrupted servers’ shares.
iii. Sim sends each honest server’s share of [τ ]κ to all the corrupted servers on behalf of this honest

server.
iv. Sim receives corrupted servers’ shares of [τ ]κ on behalf of each honest server and follows the

protocol to check whether [τ ]κ is a valid Σ×κ-sharing. If not, Sim sends abort to Fprep and aborts
the protocol on behalf of the honest server. Sim outputs the adversary’s view after completing
the simulation.

– If Check = 1:
i. For each Σ,Σ×κ generated by an honest party, Sim generates the honest servers’ shares randomly

based on the corrupted servers’ shares and follows the protocol to compute honest servers’ shares
of [τ ]κ.

ii. Sim follows the protocol to send each honest server’s share of [τ ]κ to all the corrupted servers.
iii. Sim receives corrupted servers’ shares of [τ ]κ on behalf of each honest server and honestly check

whether [τ ]κ is a valid Σ×κ-sharing. If not, Sim sends abort to Fprep and aborts the protocol on
behalf of the honest server. Sim outputs the adversary’s view after completing the simulation.

iv. If the protocol is not aborted, Sim aborts the simulation.

5. Sim sends the corrupted servers’ shares of all the output sharings of Finput to Finput. For each batch of k
input wires attached to a corrupted client Ci in circuit C′, Sim sends [s] for this batch of wires to Finput.

6. Sim outputs the adversary’s view.

Figure 23: The simulator for Πinput.

We construct the following hybrids:
Hyb0: In this hybrid, Sim gets the honest clients’ input and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, whenever Sim generates a Σ,Σ×κ-sharing on behalf of an honest party, he first

generates the corrupted servers’ shares randomly and then generates the honest servers’ shares based on
the corrupted servers’ shares and the secret. Since Σ is an (n, t, k, ℓ)-LSSS that has 3-multiplicative recon-
struction, each t shares of a Σ-sharing or a Σ×κ-sharing are uniformly random, so we only change the order
of generating the honest servers’ and the corrupted servers’ shares. Thus, Hyb1 and Hyb0 have the same
output distribution.

Hyb2: In this hybrid, Sim additionally sets Check = 0 at the beginning of the simulation. This doesn’t
affect the output distribution. Thus, Hyb2 and Hyb1 have the same output distribution.

Hyb3: In this hybrid, for each batch of k input wires attached to a corrupted client Ci in circuit C ′, on
receiving the honest servers’ shares of the input sharing [s] for this batch of wires, Sim additionally checks
whether the honest servers’ shares are from a valid Σ-sharing. If not, Sim sets Check = 1. Otherwise,
Sim reconstructs the secret of this sharing and sets this sharing to be [s]. This doesn’t affect the output
distribution. Thus, Hyb3 and Hyb2 have the same output distribution.

Hyb4: In this hybrid, while doing verification, for each corrupted server Si, on receiving the honest
servers’ shares of each Σ×κ-sharing [r(i)]κ, Sim additionally checks whether the honest servers’ shares of∑

i∈C [r
(i)]κ are from a valid Σ×κ-sharing. If not, Sim sets Check = 1. Otherwise, Sim reconstructs the secret

of this sharing and sets this sharing to be
∑

i∈C [r
(i)]κ. This doesn’t affect the output distribution. Thus,
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Hyb4 and Hyb3 have the same output distribution.
Hyb5: In this hybrid, while doing verification, if Check = 0, Sim doesn’t follow the protocol to compute

each honest server’s share of [τ ]κ. Instead, he randomly samples honest servers’ shares of [τ ]κ based on the
corrupted servers’ shares. Then, the honest servers’ shares of [r(j)]κ for an honest server Sj are sampled
based on [τ ]κ, the coefficients s1, . . . , sk1

, and all the Σ-sharings generated in the input protocol except
[r(j)]κ. Since Check = 0, we can regard that corrupted parties follow the protocol to distribute all the
Σ-sharings. Then, the sharing [τ ]κ must also be a valid Σ×κ-sharing. Since the honest servers’ shares of
[r(j)]κ are sampled randomly based on the corrupted servers’ shares, the honest servers’ shares of [τ ]κ are
also random in the case that the corrupted servers’ shares are fixed. Thus, we only change the order of
generating the honest servers’ shares of [r(j)]κ and [τ ]κ without changing their distributions. Thus, Hyb5

and Hyb4 have the same output distribution.
Hyb6: In this hybrid, while doing verification, if Check = 1, Sim delays the generation of the honest

servers’ shares of each Σ-sharings (including Σ×a,Σ×κ-sharings) by an honest party. Sim generates them
while computing the honest servers’ shares of [τ ]κ. Since these sharings are not used in the simulation before
computing the honest servers’ shares of [τ ]κ, this doesn’t change the output distribution. Thus, Hyb6 and
Hyb5 have the same output distribution.

Hyb7: In this hybrid, while doing verification, after following the protocol to check the Σ-sharings,
Sim aborts the simulation if Check = 1. This only changes the output distribution if Check = 1 but the
verification passes.

Since Check = 1, there must be a Σ-sharing to be verified that is not distributed correctly or
∑

i∈C [r
(i)]κ

is not a valid Σ×κ-sharing. If all the Σ-sharings to be verified are valid, but
∑

i∈C [r
(i)]κ is not a valid

Σ×κ-sharing, then
∑k1

j=1 sj · [xj ]κ must be a valid Σ×κ-sharing, so [τ ]κ =
∑k1

j=1 sj · [xj ]κ +
∑n

i=1[r
(i)]κ must

not be a valid Σ×κ-sharing. Then, the verification can’t pass.
Now we consider the case that a Σ-sharing to be verified that is not distributed correctly. Assume that

the shares for virtual servers in Hvir of a Σ-sharing are not valid. Assume that the random coefficient on this
sharing in [τ ]κ =

∑k1

j=1 sj · [xj ]κ +
∑n

i=1[r
(i)]κ is s ∈ F2κ . If s1, . . . , sk1

∈ F2κ are all truly random, we can
sample s after the invalid sharing is fixed. If there exists s0 ̸= s′0 ∈ F2κ such that s = s0 and s = s′0 both lead
to a valid [τ ]κ, then the invalid sharing (which has been embedded in a Σ×κ-sharing) is (s0 − s′0)

−1 times
a valid Σ×κ-sharing, which must be a valid Σ×κ-sharing, and this leads to a contradiction. Thus, there is
only one element s0 ∈ F2κ that can make [τ ]κ pass the check. The probability is 2−κ, which is negligible.
Thus, if there is a non-negligible probability that [τ ]κ is valid, then the truly random field elements and
the pseudo-random values s1, . . . , sk1

∈ F2κ can be distinguished by computing [τ ]κ with a non-negligible
probability, which contradicts the definition of a PRG, so the probability that [τ ]κ is valid is negligible.

Therefore, the distribution only changes with a negligible probability. Thus, the distributions of Hyb7

and Hyb6 are computationally indistinguishable.
Hyb8: In this hybrid, Sim doesn’t generate the honest servers’ shares of those sharings generated by

honest parties when Check = 0, and honest parties don’t compute their output by themselves. Instead, Sim
sends the corrupted parties’ output to Finput, and honest parties directly get their output from Finput. Since
when Check = 0, the honest servers’ shares of those sharings generated by honest parties are not used in the
simulation if the honest parties directly get their output from Finput, we only need to argue that the outputs
of honest parties obtained in the two hybrids are of the same distribution. Since the computation process
of the honest parties’ output is the same in both hybrids, the outputs of honest parties obtained in the two
hybrids are of the same distribution. Thus, Hyb8 and Hyb7 have the same output distribution.

Note that Hyb8 is the ideal-world scenario, Πinput computes Finput with computational security.

Cost Analysis. In Πinput, for each group of k = O(n) input wires of C ′, a client needs to distribute a
Σ-sharing of O(n) bits. Besides, each server needs to distribute a Σ×κ-sharing of size nκ for the verification.
Thus, the communication cost is CCinput = O(WI + n2κ), where wI is number of input wires in C ′.
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I Analysis of Rounds for Π′1

We analyze the number of rounds we need in Π′
1 as follows:

1. Preprocessing. All the sharings need to be generated in Πprep can be sent in parallel in one round.
The instantiation of FCoin requires 2 rounds, where the first round of sending random Shamir sharings
can be performed in parallel with the first round of the protocol. Then, the verification of the sharings
can be done in one round of sending shares of [τ ]κ, [τ ′]

(2)
κ , [τ0]

(2)
κ . Then, the preprocessing step requires

3 rounds.

2. Input. Similar as Πprep, the protocol Πinput, the input step also requires 3 rounds. Note that the input
step and the preprocessing step can be performed in parallel, this step does not require extra rounds
of communication.

3. Generating Output Labels. The generation of output labels only requires one round of sharing the
Σ and Σ(3)-sharings, which can also be performed in parallel with the preprocessing. Thus, this step
does not require extra rounds of communication.

4. Garbling Local Circuits. This step requires one extra round of sending garbled circuits to Pking.

5. Encrypting Input Labels. This step requires one round of sending ciphertexts of input labels to
Pking, which can be sent in parallel with the garbled circuit. Thus, this step does not require extra
rounds of communication.

6. Sending Input Labels. This step requires one round of sending input labels of output from Fprep

and Finput to Pking, which can also be sent in parallel with the garbled circuit. Thus, this step does not
require extra rounds of communication.

7. Evaluating the Circuit. This step only contains local computation.

8. Sending Outputs. This step contains one extra round of sending outputs to the clients.

As analyzed above, protocol Π′
1 requires 5 total rounds of communication.

J Dishonest Majority Constant-Round MPC
In this section, we transform the MPC protocol Π′

1 (instantiated by Π0) from our constant-round MPC
compiler to support the dishonest majority setting, where up to ts = (1 − ϵ)n (ϵ > 0 is a constant) of n
servers may be corrupted.

J.1 Subprotocols
Let N = Θ(n + κ) be the number of virtual servers, Π0 be the non-constant round MPC that is secure
against N/4 corruptions of N (virtual) servers constructed in Section F. Let Σ be the (N,N/4, k, ℓ)-LSSS
over F2 with 3-multiplicative reconstruction used in Π0. We will construct a protocol Π2 that runs among
m clients and n servers with any number of corrupted clients and at most (1− ϵ)n corrupted servers. At the
beginning of Π2, all parties will together generate a random coin and use it to select N random committees,
each of size c = log 32

ϵ , to emulate N virtual servers. From the analysis in Section 7, with an overwhelming
probability that 15N/16 virtual servers contain an honest real-world server.

Let V1, . . . , VN be all the virtual servers. For each i ∈ {1, . . . , N}, the c real-world servers who emulate
Vi are denoted by Si,1, . . . , Si,c. Let ⟨a⟩ be the additive sharing of a among c servers. Our construction Π2

is under the assumption of random OTs with message length κ− 1, a random oracle (RO) O1 with output
length κ, and another RO O2 with output length cℓκ.

First, we provide the standard functionalities of a random OT and a commitment scheme.
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The trusted party interacts with two parties P1, P2.

1. The trusted party randomly samples two messages r0, r1 ∈ {0, 1}κ−1 and a bit b ∈ {0, 1}. If P1 is
corrupted, r0, r1 are chosen by P1. If P2 is corrupted, b, rb are chosen by P2.

2. The trusted party sends (r0, r1) to P1 and sends (b, rb) to P2.

Functionality FROT

Figure 24: Functionality for random oblivious transfer.

Commit: On input (commit, Pi, x, τx) from Pi, where τx is a previously unused identifier, the trusted party
stores (Pi, x, τx) and sends (Pi, τx) to all parties.

Open: On input (open, Pi, τx, Pj) from Pi, the trusted party retrieves x and sends (x, Pi, τx) to Pj .

Functionality FCommit

Figure 25: Functionality for commitment [DKL+13].

In the random oracle model, the functionality FCommit can be instantiated by letting Pi send the output
O(i∥x∥τx∥rx) of a random oracle O to all the parties as the commitment of x (where rx is a random value
chosen by Pi). The size of each commitment is O(κ). Then all the parties check whether Pi distributes
the same commitment to all parties by exchanging the commitment with each other, which requires com-
munication of O(n2κ) bits. If FCommit is invoked many times in parallel, the check can be done together by
putting all the commitments together as input to the random oracle and cross-checking the result. In this
way, the amortized communication cost of realizing FCommit can be reduced to O(nκ) if it is invoked by all
the n parties in parallel. To open the value x to Pj , Pi only needs to send x, rx to Pj .

With such a commitment scheme, the functionality FCoin (Figure 18) can be instantiated in the dishonest
majority setting by letting each party first send the commitment of a randomly sampled field element in F2κ

to all the parties and then open it to all the parties. Then the the output of FCoin can be computed by adding
all these values together. Note that the check of whether each party distributes the same commitment to all
parties can be done in parallel with the opening of the commitments. Thus, the number of rounds required
for FCoin is 2, and the communication cost of each invocation of FCoin is O(n2κ) (for FCoin invoked by n
parties over F2κ).

When an additive sharing ⟨x⟩ is distributed among c parties, they can run the following protocol ΠOpen

to open the secret.

The protocol runs between c parties P1, . . . , Pc. To open the secret x of ⟨x⟩:

1. Each party Pi sends his share of ⟨x⟩ to each other party.

2. Each party reconstructs x with all the parties’ shares of ⟨x⟩.

Protocol ΠOpen(⟨x⟩)}

Figure 26: Protocol for opening the secret of an additive sharing.

To compute a multiplication for a virtual server, the c servers that emulate the virtual server run the
following protocol ΠMult.

The protocol runs between c parties P1, . . . , Pc. To compute ⟨z⟩ = ⟨x · y⟩ (x ∈ Fκ−1
2 , y ∈ F2) with each pair of

parties (Pi, Pj) holding the result from an invocation of FROT, i.e. Pi holds a pair of random strings r
(i,j)
0 , r

(i,j)
1

and Pj holds b(i,j), r
(i,j)

b(i,j)
:

1. Let each party Pi’s shares of ⟨x⟩, ⟨y⟩ be x(i), y(i) respectively. For each pair of parties (Pi, Pj):

(a) Pi sends r
(i,j)
1 ⊕ r

(i,j)
0 ⊕ x(i) to Pj . Pj sends y(j) ⊕ b(i,j) to Pi.

Protocol ΠMult(⟨x⟩, ⟨y⟩, {(r(i,j)0 , r
(i,j)
1 )Pi , (b

(i,j), r
(i,j)

b(i,j)
)Pj}i ̸=j∈{1,...,c}})
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(b) Pi locally computes z
(i,j)
i = r

(i,j)

y(j)⊕b(i,j)
. Pj locally computes z

(i,j)
j = (r

(i,j)
1 ⊕ r

(i,j)
0 ⊕ x(i)) · y(j) ⊕ r

(i,j)

b(i,j)
.

Then we have
z
(i,j)
i ⊕ z

(i,j)
j = x(i) · y(j).

2. Each party Pi computes
z(i) = x(i) · y(i) ⊕

∑
j ̸=i

(z
(i,j)
i ⊕ z

(j,i)
i )

as his share of ⟨z⟩.

Figure 27: Protocol for multiplication.

J.2 Protocol Description
Now we are ready to introduce our construction of Π2, which runs the Sharing Phase Π2-Share, the Local
Computation Phase Π2-Local, the Garbling Phase Π2-Garble, the Verification Phase Π2-Ver, and the Evaluation
Phase Π2-Eval in order.

Sharing Phase. In the sharing phase, the parties distribute all the sharings that need to be generated in
Steps 1-3 in Π′

1 to the virtual servers. Besides, the servers invoke FROT to get the additional preprocessing
data for the local computation of virtual servers. By sampling the local randomness of each server in garbling
the virtual servers’ local circuits, the local computation of each virtual server is deterministic on all the data
prepared in the sharing phase. At the end of the sharing phase, the servers commit their inputs and local
randomness for the local computation of each virtual server.

Sharing Phase
Determining the Virtual Servers: All the parties call FCoin and get a random coin r in F2κ . Based on the
random coin r, the parties run a public PRG to agree on random c-server sets {Sj,1, . . . , Sj,c} for j = 1, . . . , N ,
and the servers Sj,1, . . . , Sj,c will emulate a virtual server Vj in Π0.

Let the local circuit of each virtual server Vj in Π0 be CircVj . The parties do the following:

Emulating Fprep:

1. Transforming the Circuit. All the parties locally transform the circuit C to C′ as in Π0 (followed by
Theorem 7 in Section H.1).

2. Preparing Masks for Output Sharings. For each batch of k output wires attached to client Ci in
circuit C′, Ci generates a random Σ(2)-sharing [r′](2) and distributes them to the virtual servers, i.e.
additively distributes each share rVj of virtual server Vj to Sj,1, . . . , Sj,c.

3. Preparing Random Sharings. Let a = ⌊logn⌋+ 1. Each server S samples 10WNℓ/(ank2ϵ) random
Σ

(2)
×a-sharings (of the form [s]

(2)
a ) and distributes them to the virtual servers.

4. Preparing Zero Sharings. Let a = ⌊logn⌋+ 1. Each server S samples 10WN/(ank2ϵ) +WO/(ankϵ)

random Σ
(2)
×a-sharings (of the form [s]

(2)
a where s is an all-zero vector) with all-zero secrets and distributes

them to the virtual servers.

5. Preparing Masks for Transpose Protocols. For each virtual server Vi and j = 1, . . . , c, each server Si,j

samples 10W/k2 random Σ(2)-sharings (of the form [ri,j ]
(2)) and distributes them to the virtual servers.

6. Preprocessing for the Verification of Sharings. Let κ′ = N + κ. Each real-word server Si generates a
random Σ×κ′ -sharing [r(i)]κ′ , a random Σ

(2)

×κ′ -sharing [r(i)′ ]
(2)

κ′ , and a random Σ
(2)

×κ′ -sharing [o(i)]
(2)

κ′ with an
all-zero secret. Then Si distributes them to the virtual servers.

Emulating Finput: For each batch of k input wires attached to client Ci in circuit C′ with input values
s1, . . . , sk ∈ F2, Ci randomly generates [s], where s = (s1, . . . , sk). Then Ci distributes the sharing to the
virtual servers.

Protocol Π2-Share
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Preparing for the Garbling of Local Circuits:

1. Calling FROT. For each virtual server Vj , each pair of servers (Sj,α, Sj,β), Sj,β call FROT

4(c+ 1) ·GVj

A + 2cℓ3rec times, where G
Vj

A is the number of AND gates in CircVj (recall that rec is the
number of reconstructions of Σ(2)-sharings in Π0). Each time Sj,α receives r

(α,β)
0 , r

(α,β)
1 and Sj,β receives

b(α,β), r
(α,β)

b(α,β) .

2. Preparing for the Output Labels. For i = 1, . . . , rec, if the receiver Ri of the i-th reconstruction of Π0

is a server, let the corresponding virtual server be Vj . For α = 1, . . . , κ and β = 1, . . . , c, each Sj,β

generates a random Σ(3)-sharing as [r
(α)
0,β ]

(3) and a random Σ-sharing as [r
(α)
1,β − r

(α)
0,β ]. Then Sj,β distributes

each pair of [r(α)
0,β ]

(3), [r
(α)
1,β − r

(α)
0,β ] to the virtual servers. If Ri is a client Cj , he plays as c servers of a

virtual server to generate and distribute the sharings.

3. Generating Local Randomness. For each virtual server Vj with local circuit CircVj , the servers
Sj,1, . . . , Sj,c do the following:

(a) Each server Sj,i samples a random (κ− 1)-bit string as ∆Sj,i .
(b) For each wire w that is not an output wire of an XOR gate or an output gate, each server Sj,i samples a

random bit λ
Sj,i
w as his share of ⟨λw⟩ and a random (κ− 1)-bit string as k

Sj,i

w,0 .

Committing Local Inputs: For each Σ,Σ(2),Σ(3)-sharing generated by a party P in the sharing phase, for
each share s for a virtual server Vj , the servers Sj,1, . . . , Sj,c holds ⟨s⟩. Let the set of all these shares, all the
output from FROT, and all the local randomness generated in the last step of a server Sj,i be ISSj,i . Sj,i sends
(commit, Sj,i, IS

Sj,i , τ
IS

Sj,i ) to FCommit. For the remaining steps of the protocol, ISSj,i is regarded as Sj,i’s
committed input to the local computation of Vj .

Figure 28: The sharing phase of the dishonest majority protocol Π2.

Local Computation Phase. In the local computation phase, the real-world servers emulate the virtual
servers to do the local linear computation to generate preprocessing data for the garbling (i.e. computing
the output of Fprep in Π0). Concretely, for the computation of a ⊕ b of a virtual server Vj , the servers
Sj,1, . . . , Sj,c computes ⟨a⊕ b⟩ = ⟨a⟩ ⊕ ⟨b⟩. The local computation phase only contains local computation of
real-world servers.

Local Computation Phase
For each virtual server Vj with local circuit CircVj in Π0, the servers Sj,1, . . . , Sj,c do the following:

1. Computing Random Sharings. We group the random sharings in Step 3 of the Sharing Phase (while
emulating Fprep) into 10WNℓ/(ank2ϵ) groups, where the servers receive ⟨sVj

i ⟩ for i = 1, . . . , n in each group
(each ⟨sVj

i ⟩ is generated by server Si). Then:

(a) Let N be the matrix

N =


1 1 · · · 1
1 b1 · · · bn−1

...
...

. . .
...

1 bϵn−1
1 · · · bϵn−1

n−1

 ,

where 1, b1, . . . , bn−1 are n different elements in F2a . The servers locally compute
⟨rVj

1 ⟩
⟨rVj

2 ⟩
...
⟨rVj

ϵn ⟩

 = N ·


⟨sVj

1 ⟩
⟨sVj

2 ⟩
...
⟨sVj

n ⟩

 ,

Protocol Π2-Local
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where {rVj

i }
N
j=1 form a Σ

(2)
×a-sharing [ri]

(2)
a for i = 1, . . . , ϵn.

(b) The servers locally compute the additive sharing of Vj ’s shares of [r(1)
i ](2), . . . , [r

(a)
i ](2) from ⟨rVj

i ⟩ for
each i = 1, . . . , ϵn.

2. Computing Zero Sharings. We group the random sharings with all-zero secrets in Step 4 of the Sharing
Phase (while emulating Fprep) into 10WN/(ank2ϵ) +WO/(ankϵ) groups, where the servers receive ⟨sVj

i ⟩ for
i = 1, . . . , n in each group (each ⟨sVj

i ⟩ is generated by server Si). Then:

(a) The servers locally compute 
⟨oVj

1 ⟩
⟨oVj

2 ⟩
...

⟨oVj
ϵn⟩

 = N ·


⟨sVj

1 ⟩
⟨sVj

2 ⟩
...
⟨sVj

n ⟩

 ,

where {oVj

i }
n
j=1 form a Σ

(2)
×a-sharing [oi]

(2)
a for i = 1, . . . , ϵn.

(b) The servers locally compute the additive sharing of Vj ’s shares of [o(1)
i ](2), . . . , [o

(a)
i ](2) from ⟨oVj

i ⟩ for
each i = 1, . . . , ϵn.

3. Computing Masks for Output Sharings. For each batch of k output wires attached to client Ci in
circuit C′, the servers add their shares of the additive sharing (of the form ⟨oVj ⟩) of a random Σ(2)-sharing
with an all-zero secret computed in the last step to this sharing [r′](2) and set the result to be [r](2).

4. Preprocessing for Transpose Protocols. The servers do the following 10W/k2 times in parallel:

(a) For each server Si,α, take one sharing generated by Si,α in Step 5 of the Sharing Phase (while emulating
Fprep, the same for the remaining in this step) where Vj ’s share is r

Vj

i,α. The servers compute their shares
of ⟨rVj

i ⟩ =
∑c

α=1⟨r
Vj

i,α⟩ for i = 1, . . . , N . Then, {rVα
i }

N
α=1 form a Σ(2)-sharing [r′

i]
(2). Then the servers

add their shares of the additive sharing (of the form ⟨oVα⟩) of a random Σ(2)-sharing with an all-zero
secret prepared in Step 4 of the Sharing Phase to this sharing [r′

i]
(2) and set the result to be [ri]

(2).
(b) The servers group Nℓ random Σ(2)-sharings [u1]

(2), . . . , [uNℓ]
(2) prepared in Step 3 of the sharing phase

together and associate them with an execution of ΠTranspose. Here the shares of [u1]
(2), . . . , [uNℓ]

(2) for
each virtual server Vi are shared among Si,1, . . . , Si,c by additive sharings ⟨uVi

1 ⟩, . . . , ⟨u
Vi
Nℓ⟩.

Figure 29: The local computation phase of the dishonest majority protocol Π2.

Garbling Phase. In the garbling phase, the real-world servers emulate the virtual servers to garble their
local circuits by using the multiparty garbling technique. This phase only contains the local computation of
each virtual server, which corresponds to Step 4 in Π′

1. Communication is only required between the servers
that participate in the emulation of the same virtual server in this phase.

Garbling Phase
Let O1 be a random oracle with output length κ and O2 be a random oracle with output length cℓκ. For each
virtual server Vj with local circuit CircVj in Π0, the servers Sj,1, . . . , Sj,c do the following:

1. Computing Output Labels.

(a) For each i = 1, . . . , rec, let the associated sharings for the i-th reconstruction be [r
(α)
0,β ]

(3), [r
(α)
1,β − r

(α)
0,β ]

for α = 1, . . . , κ and β = 1, . . . , c. For a = 1, . . . , ℓ2 and β = 1, . . . , c, the servers locally compute the
additive sharings

⟨Y Vj

(i−1)ℓ2+a,0,β
⟩ = ⟨([r(1)

0,β ]
(3))

Vj

[aℓ+1,(a+1)ℓ], . . . , ([r
(κ)
0,β ]

(3))
Vj

[aℓ+1,(a+1)ℓ]⟩
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⟨Y Vj

(i−1)ℓ2+a,1,β
⟩ =⟨([r(1)

0,β ]
(3))

Vj

[aℓ+1,(a+1)ℓ] + ([r
(1)
1,β − r

(1)
0,β ])

Vj ,

. . . , ([r
(κ)
0,β ]

(3))
Vj

[aℓ+1,(a+1)ℓ] + ([r
(κ)
1,β − r

(κ)
0,β ])

Vj ⟩,

where ([s])Vj denotes Vj ’s share of [s] and ([s](3))
Vj

[c1,c2]
denotes the vector of the c1, c1 + 1, . . . , c2-th bits

of Vj ’s share of [s](3) (correspond to the i-th reconstruction).

(b) Each server Sj,β sets Y
Sj,β

k,b = (⟨Y Vj

k,b,1⟩
Sj,β , . . . , ⟨Y Vj

k,b,c⟩
Sj,β ) for each k = 1, . . . , ℓ2rec and b = 0, 1, where

⟨s⟩Sj,β denotes Sj,β ’s share of ⟨s⟩.
2. Garbling Local Circuits.

(a) For each XOR gate in CircVj with input wire a, b and output wire o, each server Sj,i computes

k
Sj,i

o,0 ∥λ
Sj,i
o = (k

Sj,i

a,0 ∥λ
Sj,i
a )⊕ (k

Sj,i

b,0 ∥λ
Sj,i

b ).

This computation is performed gate by gate.
(b) For each wire w in CircVj that is not an output wire of an output gate. Each server Sj,i computes

k
Sj,i

w,1 = k
Sj,i

w,0 ⊕∆Sj,i .

(c) For each AND gate g in CircVj with input wire a, b and output wire o, the servers hold ⟨kSj,α

a,0 ⟩ where
Sj,α’s share is k

Sj,α

o,0 and all other servers have all-0 shares. Similarly, they hold ⟨kSj,α

o,1 ⟩, and they also
hold ⟨λa⟩, ⟨λb⟩, ⟨λo⟩. Then:
i. Each pair of servers takes 4 results from FROT generated in the Sharing Phase. Then the servers run

ΠMult to compute ⟨λa · λb⟩, ⟨λo · λb⟩, ⟨λa · λo⟩, ⟨λa · λb · λo⟩. Then the servers locally compute
⟨χ1⟩, ⟨χ2⟩, ⟨χ3⟩, ⟨χ4⟩, where

χ1 = ((0⊕ λa) ∧ (0⊕ λb))⊕ λo, χ2 = ((0⊕ λa) ∧ (1⊕ λb))⊕ λo,

χ3 = ((1⊕ λa) ∧ (0⊕ λb))⊕ λo, χ4 = ((1⊕ λa) ∧ (1⊕ λb))⊕ λo.

ii. Each pair of servers takes 4c results from FROT generated in the Sharing Phase. Then the servers run
ΠMult to compute ⟨χi · (k

Sj,α

o,1 − k
Sj,α

o,0 )⟩ for i = 1, 2, 3, 4 and α = 1, . . . , c. Then the servers locally
compute ⟨ko,χi⟩Sj,α = ⟨kSj,α

o,0 ⊕ χi · (k
Sj,α

o,1 − k
Sj,α

o,0 )⟩ for i = 1, 2, 3, 4 and α = 1, . . . , c.

iii. Each server Sj,i calls the random oracle O1 with input k
Sj,i

a,i0
∥i0∥k

Sj,i

b,i1
∥i1∥i∥j∥α∥g for each

(i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and α = 1, . . . , c and then receives the output. The output can be
regarded as additively shared among Sj,1, . . . , Sj,c, where all the servers except Sj,i have all-0 shares.

iv. The servers locally compute ⟨ASj,α

g,2i0+i1
⟩ for each (i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and α = 1, . . . , c,

where

A
Sj,α

g,2i0+i1
=

( c⊕
i=1

(
O1(k

Sj,i

a,i0
∥i0∥k

Sj,i

b,i1
∥i1∥i∥j∥α∥g)

))
⊕(kSj,α

o,χ2i0+i1
∥χ2i0+i1).

Let A
Vj

g,1 = (A
Sj,1

g,1 , . . . , A
Sj,c

g,1 ) and similar for A
Vj

g,2,A
Vj

g,3,A
Vj

g,4. The servers then get
⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩.
(d) For each output gate (with index k = (i− 1)ℓ+ a that outputs the a-th bit of si) of CircVj with input

wire w, the servers hold ⟨Y Sj,α

k,0 ⟩ where Sj,α’s share is Y
Sj,α

k,0 and all other servers have all-0 shares.

Similarly, they hold ⟨Y Sj,α

k,1 ⟩, and they also hold ⟨λw⟩. Then:
i. Each pair of servers takes 2cℓ results from FROT generated in the Sharing Phase. Then the servers

run ΠMult to compute ⟨(i2 ⊕ λw) · (Y
Sj,α

k,1 − Y
Sj,α

k,0 )⟩ for i2 = 0, 1 and α = 1, . . . , c. Then the servers

locally compute ⟨Y Sj,α

k,i2⊕λw
⟩ = ⟨Y Sj,α

k,0 ⊕ (i2 ⊕ λw) · (Y
Sj,α

k,1 − Y
Sj,α

k,0 )⟩ for i2 = 0, 1 and α = 1, . . . , c.

ii. Each server Sj,i call the random oracle O2 with input k
Sj,α

w,i2
∥i2∥i∥j∥α∥w for each i2 = 0, 1 and

α = 1, . . . , c and then receives the output. The output can be regarded as additively shared among
Sj,1, . . . , Sj,c, where all the servers except Sj,i have all-0 shares.
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iii. The servers locally compute ⟨ctSj,α

w,i2
⟩ for each i2 = 0, 1 and α = 1, . . . , c, where

ct
Sj,α

w,i2
=

( c⊕
i=1

(
O2(k

Sj,i

w,i2
∥i2∥i∥j∥α∥w)

))
⊕ Y

Sj,α

k,i2⊕λw
,

Let ct
Vj

w,i2
= (ct

Sj,1

w,i2
, . . . , ct

Sj,c

w,i2
) for each i2 = 0, 1. The servers then get ⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩.

3. Masking Input Wire Values. For each input wire w of CircVi , if the wire value xw doesn’t come from a
reconstruction of a Σ(2)-sharing, the servers (holding ⟨xw⟩) compute ⟨xw ⊕ λw⟩ and then run
ΠOpen(⟨xw ⊕ λw⟩).

Figure 30: The garbling phase of the dishonest majority protocol Π2.

Verification Phase. In the verification phase, the servers emulate the virtual servers to do the verification
process Πver in Πprep of Π0. Besides, each server chooses his watchlist and asks the servers that emulate each
virtual server on his watchlist to open their commitments of the input and local randomness to the local
computation of this virtual server. Then, each server checks whether the local computation of all the virtual
servers on his watchlist is correctly performed.

Verification Phase
1. Verification of the Sharings. The virtual servers run the verification process below to verify the

Σ(2)-sharings generated in Step 3 and Step 4 of the Sharing Phase, the random mask Σ(2)-sharings for
output sharings generated by the clients in Step 2 of the Sharing Phase, the random Σ(2)-sharings
generated by the servers in Step 5 of the Sharing Phase, and the input Σ-sharings. We denote the
Σ-sharings to be checked by [x1], . . . , [xk1 ], the Σ(2)-sharings (excluding the sharings prepared by ΠZero) by
[x′

1]
(2), . . . , [x′

k2
](2), and the Σ(2)-sharings prepared by ΠZero by [o1]

(2), . . . , [ok3 ]
(2), where each virtual

server Vj ’s share is shared by an additive sharing among Sj,1, . . . , Sj,c. Like in Πver, the servers view the
sharings to be checked as Σ×κ′ -sharings and Σ

(2)

×κ′ -sharings.

(a) The servers invoke FCoin to get s ∈ F2κ
′ . If abort is received, abort the protocol. Then the servers

expand s to a vector (s1, . . . , sk1 , s
′
1, . . . , s

′
k2
, s(1), . . . , s(k3)) ∈ Fk1+k2+k3

2κ
′ via a pseudorandom generator.

(b) The servers Sα,1, . . . , Sα,c of each virtual server Vα locally computes an additive sharing of Vα’s share of
[τ ]κ′ =

∑k1
j=1 sj · [xj ]κ′ +

∑n
i=1[r

(i)]κ′ by computing

k1∑
j=1

sj · ⟨xVα
j ⟩+

n∑
i=1

⟨r(i,Vα)⟩,

where xVα
j , r(i,Vα) are Vα’s shares of [xj ]κ′ , [r(i)]κ′ respectively. Similarly, Sα,1, . . . , Sα,c computes an

additive sharing of Vα’s share of [τ ′]
(2)

κ′ =
∑k2

j=1 s
′
j · [x′

j ]
(2)

κ′ +
∑n

i=1[r
(i)′ ]

(2)

κ′ by computing

k2∑
j=1

s′j · ⟨x
V ′
α

j ⟩+
n∑

i=1

⟨r(i,Vα)′⟩

where x
V ′
α

j , r(i,Vα)′ are Vα’s shares of [x′
j ]

(2)

κ′ , [r
(i)′ ]

(2)

κ′ respectively, and computes an additive sharing of
Vα’s share of [τ0](2)κ′ =

∑k3
j=1 s

(j) · [oj ]
(2)

κ′ +
∑n

i=1[o
(i)]

(2)

κ′ by computing

k3∑
j=1

s(j) · ⟨oVα
j ⟩+

n∑
i=1

⟨o(i,Vα)⟩

where oVα
j ,o(i,Vα) are Vα’s shares of [oj ]

(2)

κ′ , [o
(i)]

(2)

κ′ respectively.
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(c) The servers Sα,1, . . . , Sα,c sends the additive sharings of Vα’s shares of [τ ]κ′ , [τ ′]
(2)

κ′ , [τ0]
(2)

κ′ to all the
servers.

(d) Each server reconstructs [τ ]κ′ , [τ ′]
(2)

κ′ , [τ0]
(2)

κ′ and sends O1([τ ]κ′ , [τ ′]
(2)

κ′ , [τ0]
(2)

κ′ ) to all the other servers.
Then, all the servers check whether the results received from all the servers are the same. If not, abort
the protocol.

(e) Each server checks whether [τ ]κ′ is a valid Σ×κ′ -sharing, whether [τ ′]
(2)

κ′ is a valid Σ
(2)

×κ′ -sharing, and
whether [τ0]

(2)

κ′ is a valid Σ
(2)

×κ′ -sharing with an all-zero secret. If not, abort the protocol.

2. Verification of Local Computation.

(a) Each server S sends a set VerS ⊂ {V1, . . . , VN} of size N/16n to all the servers. Then all the servers
send this set to each other to check that all the servers receive the same set. Then for each virtual
server Vj ∈ VerS , each Sj,α sends (open, Sj,α, τISSj,α , S) to FCommit and sends all the messages he sends
and receives in the garbling phase and Step 1 of the verification phase to S. Then, each party P sends
all the shares he generates for Sj,1, . . . , Sj,c in the sharing phase to S for each virtual server Vj ∈ VerS .

(b) Each server S checks whether Sj,1, . . . , Sj,c perform the computation of Vj correctly for each Vj ∈ VerS ,
whether the additive sharings of Vj ’s shares opened by the generator match the values committed by
the servers, and whether for each pair of servers (Sj,α, Sj,β), the committed output from FROT is valid,
i.e. r

(α,β)

b(α,β) committed by Sj,β is among r
(α,β)
0 , r

(α,β)
1 committed by Sj,α.

Figure 31: The verification phase of the dishonest majority protocol Π2.

Evaluation Phase. In the evaluation phase, the servers send their shares of the output masks, the input
labels, and the garbled circuits to Pking to let Pking evaluate each virtual server’s garbled circuit and send the
output to each client. This corresponds to Steps 5-8 of Π′

1.

Evaluation Phase
1. Sending Output Masks. For each input wire w of an output gate in local circuit CircVj , the servers

Sj,1, . . . , Sj,c send their shares of ⟨λw⟩ to Pking. Pking then reconstructs λw.

2. Encrypting Input Labels. For each i = 1, . . . , rec, if Ri is the virtual server Vj and the η-th bit of si is
used as an input wire with index jη in CircVj :

(a) Each server Sj,β queries the random oracle O1 with inputs r0,η,β∥0∥i∥β∥η∥jη and r1,η,β∥1∥i∥β∥η∥jη,
where rb,η,β = (r

(1)
b,η,β , . . . , r

(κ)
b,η,β) for each b = 0, 1 with each r

(α)
b,β = (r

(α)
b,1,β , . . . , r

(α)
b,k,β). Then Sj,β receives

O1(r0,η,β∥0∥i∥β∥η∥jη) and O1(r1,η,β∥1∥i∥β∥η∥jη).
(b) Each server Sj,β locally computes

ct
(i,β)
jη,0 = O1(r0,η,β∥0∥i∥β∥η∥jη)⊕

(
k
Sj,β

wjη ,λwjη
∥λwjη

)
and

ct
(i,β)
jη,1 = O1(r1,η,β∥1∥i∥β∥η∥jη)⊕

(
k
Sj,β

wjη ,1⊕λwjη
∥(1⊕ λwjη

)
)
.

Then Sj,β sends the ciphertexts ct
(i,β)
jη,0 , ct

(i,β)
jη,1 to Pking.

3. Sending Input Labels. For each input wire w of each virtual server Vj ’s local circuit CircVj , if the wire
value xw doesn’t come from a reconstruction of a Σ(2)-sharing:

(a) The servers Sj,1, . . . , Sj,c send xw ⊕ λw to Pking. Pking checks whether the servers among Sj,1, . . . , Sj,c

send the same value. If not, Pking aborts the protocol.

(b) Each server Sj,i sends k
Sj,i

w,xw⊕λw
to Pking.

4. Sending Garbled Circuits. For each j = 1, . . . , N , each server Sj,β sends his shares of
⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩ for each AND gate and ⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩ for each output wire w of the circuits
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to Pking. Pking then reconstructs the secrets. For each β = 1, . . . , c, Pking obtains A
Sj,β

g,1 , A
Sj,β

g,2 , A
Sj,β

g,3 , A
Sj,β

g,4 for
each AND gate and ct

Sj,β

w,0 , ct
Sj,β

w,1 for each output wire w.

5. Evaluating the Circuit. The evaluator Pking evaluates the circuit by doing the following:

(a) For j = 1, . . . , N , since no input to Circ
Vj

1 comes from reconstruction, Pking already gets the input labels
k
Sj,1

w,xw⊕λw
, . . . , k

Sj,c

w,xw⊕λw
and xw ⊕ λw. Then for each gate g (excluding input gates) in Circ

Vj

1 :
– If g is an XOR gate with input wires a, b and output wire o, Pking computes

k
Sj,β

o,xo⊕λo
= k

Sj,β

a,xa⊕λa
⊕ k

Sj,β

b,xb⊕λb
for each β = 1, . . . , c and xo ⊕ λo = (xa ⊕ λa)⊕ (xb ⊕ λb).

– If g is an AND gate with input wires a, b and output wire o, Pking computes

k
Sj,β

o,xo⊕λo
∥(xo ⊕ λo) =

A
Sj,β

g,2(xa⊕λa)+xb⊕λb

⊕
( c⊕

i=1

(
O1(k

Sj,i

a,xa⊕λa
∥(xa ⊕ λa)∥k

Sj,i

b,xb⊕λb
∥(xb ⊕ λb)∥i∥j∥β∥g)

))
for each β = 1, . . . , c.

– If g is an output gate (indexed k) with output wire w, Pking computes

Y
Sj,β

k,xw
= ct

Sj,β

w,xw⊕λw
⊕

( c⊕
i=1

O2(k
Sj,i

w,xw⊕λw
∥(xw ⊕ λw)∥i∥j∥β∥w)

)
for each β = 1, . . . , c.

(b) After evaluating all the gate of CircVj

1 for j = 1, . . . , N , Pking obtains the sharings [s1]
(2) and

{Y Sj,β

a,s
Vj
1,a

}ℓ
2

a=1 for each β = 1, . . . , c, where s
Vj

1,a is the a-th bit of Vj ’s share of [s1]
(2). Then Pking checks

whether the sharings [s1]
(2) and {[r(α)

s1,β
](3)}κα=1 for each β = 1, . . . , c are all valid. If not, Pking aborts

the protocol. Otherwise, Pking reconstructs s1 and {r(α)
s1,β
}κα=1 for each β = 1, . . . , c.

(c) For each i = 1, . . . , rec, if R1 is a virtual server Vj and the η-th bit s1,η of s1 is used as an input wire
with index jη in R1’s circuit CircVj , with s1 and {r(α)

s1,β
}κα=1, Pking decrypts k

Sj,β

wjη ,s1,η⊕λwjη
∥(s1,η ⊕ λwjη

)

from the ciphertexts ct
(i,β)
jη,s1,η

for each β = 1, . . . , c by

k
Sj,β

wjη ,s1,η⊕λwjη
∥(s1,η ⊕ λwjη

) = ct
(1,β)
jη,s1,η

⊕O1

(
rs1,η,η,β∥s1,η∥1∥β∥η∥jη

)
.

(d) For each j = 1, . . . , N , now Pking has the input labels k
Sj,1

w,xw⊕λw
, . . . , k

Sj,c

w,xw⊕λw
and xw ⊕ λw for each

input wire w of CircVj

2 . Thus, Pking can evaluate Circ
V1
2 , . . . , CircVN

2 in the same way as Steps (a)-(c).
Repeating the above steps, Pking eventually obtains all the Σ(2)-sharings [si]

(2) whose receiver Ri is a
client together with {r(α)

si,β
}κα=1 for each β = 1, . . . , c if the protocol is not aborted. Then, Pking

reconstructs the secrets of these sharings.

6. Sending Outputs.

(a) For each client receiver Ri, Pking sends si and {r(α)
si,β
}κα=1 for each β = 1, . . . , c to Ri.

(b) Each client receiver Ri checks whether {r(α)
si,β
}κα=1 matches si and (r

(α)
0,β , r

(α)
1,β) for each β = 1, . . . , c

generated in the garbling phase. If not, Ri aborts the protocol. Otherwise, Ri computes CircRi to get
his output locally. Then each client computes CircRi to get his output locally.

Figure 32: The evaluation phase of the dishonest majority protocol Π2.

Theorem 10. Let Σ be an (N, t, k, ℓ)-LSSS over F2 with 3-multiplicative reconstruction and Π0 be a protocol
that has the properties listed in Section 4.1. Protocol Π2 securely realizes F in the {FCoin,FCommit,FROT}-
hybrid model against a fully malicious adversary that corrupts any number of clients and at most (1 − ϵ)n
servers.
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J.3 Security Proof
Proof. We prove the security of Π2 by constructing an ideal adversary Sim2. Then we will show that the
output in the ideal world is computationally indistinguishable from that in the real world using hybrid
arguments. Our simulation is in the client-server model where the adversary corrupts any number of clients
and exactly (1− ϵ)n servers.

Without loss of generality, we suppose that Pking is corrupted. We give the ideal adversary Sim2 below.

Sharing Phase
Determining the Virtual Servers:

1. Sim2 emulates FCoin to receive RandCoin from all the corrupted parties and follows the protocol to sample
r ∈ F2κ

′ randomly. Then Sim2 emulates FCoin to send r to A. If abort is received from A, Sim2 emulates
FCoin to send abort to all the corrupted parties and aborts the protocol. Then, Sim2 follows the protocol to
determine the virtual servers and receive the result of {Sj,1, . . . , Sj,c} for each j = 1, . . . , N . If there are
more than N/16 corrupted virtual servers, Sim2 aborts the simulation. Without loss of generality, for each
honest virtual server Vj , we assume that only Sj,1 is honest. In the case that Sj,i for some i > 1 is also
honest, Sim2 honestly follows the protocol for Sj,i.

2. Sim2 sets CompCheck = CorrCheck = OTCheck = 0.

3. For each honest virtual server Vj , Sim2 sets Corrj = Compj = Checkj = ROTj = 0.

Emulating Fprep:

1. Transforming the Circuit. Sim2 follows the protocol to transform the circuit C to C′.

2. Preparing Masks for Output Sharings. For each batch of k output wires attached to an honest client
Ci in circuit C′, Sim2 randomly samples corrupted servers’ shares of the additive sharing ⟨rVj ⟩ of each
virtual server Vj ’s share rVj of [r′](2) (where corrupted virtual servers’ shares are sampled using the
algorithm Alg3 in Remark 1, same below) and sends them to the corrupted servers. For each batch of k
input wires attached to a corrupted client Ci in circuit C′, Sim2 receives the honest server Sj,1’s share of
the additive sharing of each honest virtual server Vj ’s shares of [r′](2) from Ci.

3. Preparing Random Sharings. For each Σ
(2)
×a-sharing [s]

(2)
a shared by an honest server S, Sim2 randomly

samples corrupted servers’ shares of ⟨sVj ⟩ and sends them to the corrupted servers. For each Σ
(2)
×a-sharing

[s]
(2)
a shared by a corrupted server S, Sim2 receives the honest server Sj,1’s share of the additive sharing of

each honest virtual server Vj ’s share of [s](2)a from S.

4. Preparing Zero Sharings. For each Σ
(2)
×a-sharing [s]

(2)
a with an all-zero secret shared by an honest server

S, Sim2 randomly samples corrupted servers’ shares of ⟨sVj ⟩ and sends them to the corrupted servers. For
each Σ

(2)
×a-sharing [s]

(2)
a shared by a corrupted server S, Sim2 receives the honest server Sj,1’s share of the

additive sharing of each honest virtual server Vj ’s share of [s](2)a from S.

5. Preparing Masks for Transpose Protocols. For each Σ(2)-sharing [ri,1]
(2)
a shared by an honest server

Si,1, Sim2 randomly samples corrupted servers’ shares of ⟨rVα
i,j ⟩ and sends them to the corrupted servers.

For each Σ(2)-sharing [ri,j ]
(2)
a shared by a corrupted server Si,j , Sim2 receives the honest server Sα,1’s share

of the additive sharing of each honest virtual server Vα’s share of [ri,j ]
(2)
a from S.

6. Preprocessing for the Verification of Sharings. For each honest real-world server Si, Sim2 randomly
samples corrupted servers’ shares of the additive sharing of each virtual server’s shares of
[r(i)]κ′ , [r(i)′ ]

(2)

κ′ , [o
(i)]

(2)

κ′ and sends them to the corrupted servers. For each corrupted real-world server Si,
Sim2 receives the honest server Sα,1’s share of the additive sharing of each honest virtual server Vα’s shares
of [r(i)]κ′ , [r(i)′ ]

(2)

κ′ , [o
(i)]

(2)

κ′ from Si.

Emulating Finput: For each batch of k input wires attached to an honest client Ci in circuit C′, Sim2

randomly samples corrupted servers’ shares of the additive sharing of each virtual server’s shares of [s] and
sends them to the corrupted servers. For each batch of k input wires attached to a corrupted client Ci in

Simulator Sim2-Share
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circuit C′, Sim2 receives the honest server Sj,1’s share of the additive sharing of each honest virtual server Vj ’s
shares of [s] from Ci.

Preparing for the Garbling of Local Circuits:

1. Calling Random OT. For each honest virtual server Vj , for each invocation of FROT of each pair of
servers (Sj,1, Sj,β), Sim2 receives (b(1,β), r

(1,β)

b(1,β)) from Sj,β and emulates FROT to sends (b(1,β), r
(1,β)

b(1,β)) to

Sj,β . Similarly, for each invocation of FROT of each pair of servers (Sj,α, Sj,1), Sim2 receives (r
(α,1)
0 , r

(α,1)
1 )

from Sj,α and emulates FROT to sends (r
(α,1)
0 , r

(α,1)
1 ) to Sj,α.

2. Preparing for the Output Labels. For each i = 1, . . . , rec:

– If the receiver Ri of the i-th reconstruction of Π0 is a corrupted virtual server or a corrupted client, for
each honest virtual server Vj , Sim2 receives Sj,1’s shares of the additive sharings of Vj ’s shares of
[r

(α)
0,β ]

(3), [r
(α)
1,β − r

(α)
0,β ] for each β = 1, . . . , c.

– If the receiver Ri of the i-th reconstruction of Π0 is an honest client, Sim2 randomly samples corrupted
servers’ shares of each virtual server’s shares of [r(α)

0,β ]
(3), [r

(α)
1,β − r

(α)
0,β ] for β = 1, . . . , c and sends them to

the corrupted servers on behalf of Ri.
– If the receiver Ri of the i-th reconstruction of Π0 is an honest virtual server Vj , Sim2 randomly samples

corrupted servers’ shares of each virtual server’s shares of [r(α)
0,1 ]

(3), [r
(α)
1,1 − r

(α)
0,1 ] and sends them to the

corrupted servers on behalf of Sj,1. Then, for each honest virtual server Vη, Sim2 receives Sη,1’s shares
of the additive sharings of Vη’s shares of [r(α)

0,β ]
(3), [r

(α)
1,β − r

(α)
0,β ] for each β = 2, . . . , c.

Committing Local Input: Sim2 emulates FCommit to receive (commit, Sj,i, IS
Sj,i , τ

IS
Sj,i ) from each corrupted

server Sj,i and emulates FCommit to send (Sj,i, τISSj,i ) to each corrupted server. Then:

1. For each Σ,Σ(2)-sharing generated in this phase, Sim2 receives all the shares of corrupted servers (of the
additive sharings of virtual parties’ shares) from the sets they committed.

2. For each sharing generated by an honest party, for each honest virtual server Vj , let the generated share of
Vj be s, and then Sim2 checks whether the committed inputs of Sj,2, . . . , Sj,c’s shares of ⟨s⟩ matches what
Sim2 sends to them. If not, Sim2 sets Corrj = 1.

3. For the results of FROT, Sim2 checks whether for each honest virtual server Vj , the corrupted server
Sj,2, . . . , Sj,c all committed their outputs correctly. For each honest virtual server Vj that fails in the check,
Sim2 sets ROTj = 1.

4. For each corrupted server Sj,i, Sim2 retrieves λ
Sj,i
w , k

Sj,i

w,0 for each wire w that is not an output wire of an
XOR gate of CircVj and ∆Sj,i from the commitment sent by Sj,i.

5. If for at least N/32 honest virtual server Vj it holds that ROTj = 1, Sim2 sets OTCheck = 1 and takes the
first N/32 of them, and for each Vj of these taken virtual servers, Sim2 randomly samples Sj,1’s share of
each sharing generated by an honest party based on the corrupted servers’ shares (using the algorithm Alg4
in Remark 1, same below), samples the outputs of FROT to Sj,1 based on the output to corrupted servers,
and follows the protocol to sample λ

Sj,1
w , k

Sj,1

w,0 for each wire w that is not an output wire of an XOR gate or
output gate in CircVj and ∆Sj,1 . For each of the other honest virtual servers Vj with ROTj = 1, Sim2 sets
ROTj = 0.

6. If there are over N/32 honest virtual servers Vj with Corrj = 1, Sim2 sets CorrCheck = 1.

Figure 33: The simulator for the sharing phase of Π2 when Pking is corrupted.

Local Computation Phase
For each corrupted server Sj,i, Sim2 follows the protocol to do all the local computation of Sj,i with their
committed inputs.

Simulator Sim2-Local

Figure 34: The simulator for the local computing phase of Π2 when Pking is corrupted.
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Garbling Phase
For each honest virtual server Vj with ROTj = 0:

1. Computing Output Labels. For each i = 2, . . . , c, Sim2 follows the protocol to compute Y
Sj,i

a,b for each
a = 1, . . . , ℓ2rec and b = 0, 1 with their committed inputs.

2. Garbling Local Circuits.

(a) For each XOR gate in CircVj with input wires a, b and output wire o, Sim2 follows the protocol to
compute

k
Sj,i

o,0 ∥λ
Sj,i
o = (k

Sj,i

a,0 ∥λ
Sj,i
a )⊕ (k

Sj,i

b,0 ∥λ
Sj,i

b )

gate by gate for each i = 2, . . . , c.
(b) For each wire w in CircVj that is not an output wire of an output gate. Sim2 follows the protocol to

compute k
Sj,i

w,1 = k
Sj,i

w,0 ⊕∆Sj,i for each i = 2, . . . , c.

(c) For each AND gate g in CircVj with input wire a, b and output wire o:
i. For each execution of ΠMult in this step, for each server Sj,i where i = 2, . . . , c, Sim2 samples a

random κ-bit string as r
(1,i)
1 ⊕ r

(1,i)
0 ⊕ x(1), samples a random bit as y(1) ⊕ b(i,1), and sends them to

Sj,i on behalf of Sj,1. Then Sim2 receives r
(i,1)
1 ⊕ r

(i,1)
0 ⊕ x(i) and y(i) ⊕ b(1,i) from Sj,i for each

i = 2, . . . , c and checks whether they are correctly computed with their committed inputs. If not,
Sim2 sets Compj = 1.

ii. Sim2 honestly emulates the random oracle O1 and compute Sj,2, . . . , Sj,c’s shares of
⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩ based on their committed inputs, the randomly sampled messages sent
from Sj,1, and the outputs of O1.

(d) For each output gate (with index k = (i− 1)ℓ+ a that outputs the a-th bit of si) of CircVj with input
wire w:
i. For each execution of ΠMult in this step, for each server Sj,i where i = 2, . . . , c, Sim2 samples a

random (κ− 1)-bit string as r
(1,i)
1 ⊕ r

(1,i)
0 ⊕ x(1), samples a random bit as y(1) ⊕ b(i,1), and sends

them to Sj,i on behalf of Sj,1. Then Sim2 receives r
(i,1)
1 ⊕ r

(i,1)
0 ⊕ x(i) and y(i) ⊕ b(1,i) from Sj,i for

each i = 2, . . . , c and checks whether they are correctly computed with their committed inputs. If
not, Sim2 sets Compj = 1.

ii. Sim2 honestly emulates the random oracle O2 and computes Sj,2, . . . , Sj,c’s shares of ⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩
based on their committed inputs, the randomly sampled messages sent from Sj,1, and the outputs of
O2.

3. Masking Input Wire Values. For each input wire w of CircVj :

(a) Sim2 samples a random bit as Sj,1’s share of ⟨xw ⊕ λw⟩ and sends it to Sj,2, . . . , Sj,c on behalf of Sj,1.
(b) Sim2 receives Sj,2, . . . , Sj,c’s shares of ⟨xw ⊕ λw⟩ and checks whether they match the inputs they

committed. If not, Sim2 sets Compj = 1. Otherwise, Sim2 reconstructs xw ⊕ λw.

For each honest virtual server Vj with ROTj = 1, Sim2 honestly emulates Sj,1 and the random oracles to
communicate with Sj,2, . . . , Sj,c and follows the protocol to compute Sj,1’s shares of
⟨AVj

g,1⟩, ⟨A
Vj

g,2⟩, ⟨A
Vj

g,3⟩, ⟨A
Vj

g,4⟩ and ⟨ctVj

w,0⟩, ⟨ct
Vj

w,1⟩ based on the messages received from the corrupted servers.
In addition, Sim2 follows the protocol to compute all the messages that should be sent from a corrupted server
with their committed inputs.

For each corrupted virtual server Vj , Sim2 honestly emulate the random oracles to send outputs to
Sj,1, . . . , Sj,c.

Simulator Sim2-Garble

Figure 35: The simulator for the garbling phase of Π2 when Pking is corrupted.

Verification Phase
1. Verification of the Sharings.

Simulator Sim2-Ver
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(a) Sim2 emulates FCoin to receive RandCoin from all the corrupted servers and follows the protocol to
sample s ∈ F2κ

′ randomly.
(b) Sim2 emulates FCoin to send s to A. If abort is received from A, Sim2 emulates FCoin to send abort to all

the corrupted servers and aborts the protocol. Let the pseudorandom coefficients for the Σ(2)-sharings
expanded from s be (s1, . . . , sk1 , s

′
1, . . . , s

′
k2
, s(1), . . . , s(k3)) ∈ Fk1+k2+k3

2κ
′ .

(c) Let the set of the indices of Σ-sharings, random Σ(2)-sharings, and random Σ(2)-sharings with all-zero
secrets (to be checked in this step) generated by corrupted parties be C1, C2, and C3 respectively.
Correspondingly, let the index set of sharings generated by honest parties be H1, H2, and H3. For these
sharings generated by corrupted parties, Sim2 computes the share s of each honest virtual server Vα

based on Sα,1’s share of ⟨s⟩ and the committed shares of ⟨s⟩ by Sα,2, . . . , Sα,c. Then, Sim2 computes
Sα,1, . . . , Sα,c’s shares of ∑

j∈C1

sj · ⟨xVα
j ⟩+

∑
i∈C

⟨r(i,Vα)⟩,

∑
j∈C2

s′j · ⟨x
V ′
α

j ⟩+
∑
i∈C

⟨r(i,Vα)′⟩,

and ∑
j∈C3

s(j) · ⟨oVα
j ⟩+

∑
i∈C

⟨o(i,Vα)⟩.

(d) For each corrupted virtual server Vα and each honest virtual server Vα with ROTα = 1, Sim2 follows the
protocol to compute Sα,1, . . . , Sα,c’s shares of∑

j∈H1

sj · ⟨xVα
j ⟩+

∑
i∈H

⟨r(i,Vα)⟩,

∑
j∈H2

s′j · ⟨x
V ′
α

j ⟩+
∑
i∈H

⟨r(i,Vα)′⟩,

and ∑
j∈H3

s(j) · ⟨oVα
j ⟩+

∑
i∈H

⟨o(i,Vα)⟩.

Also for each honest virtual server Vα with ROTα = 0, Sim2 follows the protocol to compute
Sα,2, . . . , Sα,c’s shares (with the shares Sim2 sends to them on behalf of honest parties in the sharing
phase). Then, Sim2 randomly samples the secret of the sharing for each honest virtual server Vα based
on the fact that all the virtual servers’ secrets form a Σκ′ -sharing, a Σ

(2)

κ′ -sharing, and a Σ
(2)

κ′ -sharing
with an all-zero secret. Then, for each honest virtual server Vα, Sim2 computes Sα,1’s shares based on
the secrets and Sα,2, . . . , Sα,c’s shares.

(e) For each honest virtual server Vα, Sim2 computes Sα,1, . . . , Sα,c’s shares of

k1∑
j=1

sj · ⟨xVα
j ⟩+

n∑
i=1

⟨r(i,Vα)⟩ =
∑
j∈C1

sj · ⟨xVα
j ⟩+

∑
i∈C

⟨r(i,Vα)⟩

+
∑
j∈H1

sj · ⟨xVα
j ⟩+

∑
i∈H

⟨r(i,Vα)⟩,

k2∑
j=1

s′j · ⟨x
V ′
α

j ⟩+
n∑

i=1

⟨r(i,Vα)′⟩ =
∑
j∈C2

s′j · ⟨x
V ′
α

j ⟩+
∑
i∈C

⟨r(i,Vα)′⟩

+
∑
j∈H2

s′j · ⟨x
V ′
α

j ⟩+
∑
i∈H

⟨r(i,Vα)′⟩,
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and

k3∑
j=1

s(j) · ⟨oVα
j ⟩+

n∑
i=1

⟨o(i,Vα)⟩ =
∑
j∈C3

s(j) · ⟨oVα
j ⟩+

∑
i∈C

⟨o(i,Vα)⟩

+
∑
j∈H3

s(j) · ⟨oVα
j ⟩+

∑
i∈H

⟨o(i,Vα)⟩.

For each honest virtual server Vα, Sim2 then sends Sα,1’s shares of the above sharings to all the servers
on behalf of Sα,1.

(f) Sim2 receives all the corrupted servers’ shares of additive sharings of each virtual server’s shares of
[τ ]κ′ , [τ ′]

(2)

κ′ , [τ0]
(2)

κ′ . For each honest virtual server Vα with ROTα = 0, Sim2 checks whether the received
corrupted servers’ shares of the additive sharing of Vα’s shares of [τ ]κ′ , [τ ′]

(2)

κ′ , [τ0]
(2)

κ′ match their shares
computed from their committed inputs. If not, Sim2 sets Compα = 1.

(g) For each honest server S, Sim2 emulates each honest server to compute [τ ]κ′ , [τ ′]
(2)

κ′ , [τ0]
(2)

κ′ from what S

receives in the last step and honestly emulates O1 to compute O1([τ ]κ′ , [τ ′]
(2)

κ′ , [τ0]
(2)

κ′ ) and send it to all
the corrupted servers. Sim2 honestly emulates O1 to interact with corrupted parties. Then, Sim2

emulates each honest server S to receive O1([τ ]κ′ , [τ ′]
(2)

κ′ , [τ0]
(2)

κ′ ) from each corrupted server and check
whether the sharings received from the corrupted servers are all the same as results
O1([τ ]κ′ , [τ ′]

(2)

κ′ , [τ0]
(2)

κ′ ) generated by himself on behalf of the honest servers. If not, Sim2 aborts the
protocol on behalf of S. After completing the simulation, Sim2 outputs what A outputs. If for two
different honest servers, the sharings [τ ]κ′ , [τ ′]

(2)

κ′ , [τ0]
(2)

κ′ computed on behalf of them are different but
O1([τ ]κ′ , [τ ′]

(2)

κ′ , [τ0]
(2)

κ′ ) are the same, Sim2 aborts the simulation.

(h) Sim2 follows the protocol to check whether [τ ]κ′ is a valid Σ×κ′ -sharing, whether [τ ′]
(2)

κ′ is a valid
Σ

(2)

×κ′ -sharing, and whether [τ0]
(2)

κ′ is a valid Σ
(2)

×κ′ -sharing with an all-zero secret on behalf of each honest
server. If not, Sim2 aborts the protocol on behalf of the honest server. After completing the simulation,
Sim2 outputs what A outputs.

(i) If there are over N/16 honest virtual servers Vj with Compj = 1, Sim2 sets CompCheck = 1.

2. Verification of Local Computation.

(a) For each honest server S, Sim2 follows the protocol to sample a set of N/16n virtual servers as VerS and
sends it to all the corrupted servers. For each corrupted server S, Sim2 emulates each honest server to
receive VerS and sends it to all the corrupted servers. Then, Sim2 checks whether for each corrupted
server S, the set VerS received by each honest server is the same. If not, Sim2 aborts the protocol on
behalf of each honest server. After completing the simulation, Sim2 outputs what A outputs.

(b) For each server S and honest virtual server Vj ∈ VerS with ROTj = 0:
i. Sim2 randomly samples Sj,1’s shares of all the sharings generated by an honest party in the sharing

phase based on corrupted servers’ shares except the additive sharings for Vj ’s shares of
[r(i′)]κ′ , [r(i′)′ ]

(2)

κ′ , [o
(i′)]

(2)

κ′ generated by the last honest server Si′ , i
′ ∈ H. For Sj,1’s shares for the

remaining 3 sharings, Sim2 computes them based on his shares of∑
j∈H1

sj ·⟨xVα
j ⟩+

∑
i∈H⟨r

(i,Vα)⟩,
∑

j∈H2
s′j ·⟨x

V ′
α

j ⟩+
∑

i∈H⟨r
(i,Vα)′⟩,

∑
j∈H3

s(j) ·⟨oV ′
α

j ⟩+
∑

i∈H⟨o
(i,Vα)⟩

and
∑

j∈H1
sj · ⟨xVα

j ⟩+
∑

i∈H\{i′}⟨r
(i,Vα)⟩,

∑
j∈H2

s′j · ⟨x
V ′
α

j ⟩+
∑

i∈H\{i′}⟨r
(i,Vα)′⟩,

∑
j∈H3

s(j) ·

⟨oV ′
α

j ⟩+
∑

i∈H\{i′}⟨o
(i,Vα)⟩.

ii. Sim2 randomly samples a (κ− 1)-bit string as ∆Sj,1 .
iii. For each w that is not an output wire of an XOR gate or output gate in CircVj nor an input wire of

CircVj , Sim2 randomly samples λ
Sj,1
w , k

Sj,1

w,0 .

iv. For each input wire w of CircVj , Sim2 computes Sj,1’s share λ
Sj,1
w of ⟨λw⟩ based on his shares of

⟨xw ⊕ λw⟩ (which has been generated in the garbling phase) and ⟨xw⟩ (which has been generated in
Step 2.(b).i.).

v. For each XOR gate in CircVj with input wires a, b and output wire o, Sim2 computes

k
Sj,1

o,0 ∥λ
Sj,1
o = (k

Sj,1

a,0 ∥λ
Sj,1
a )⊕ (k

Sj,1

b,0 ∥λ
Sj,1

b ).
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This computation is performed gate by gate.
vi. For each wire w in CircVj that is not an output wire of an output gate, Sim2 computes

k
Sj,1

w,1 = k
Sj,1

w,0 ⊕∆Sj,1 .
vii. For each execution of ΠMult in the garbling phase, for each i = 2, . . . , c, Sim2 already has

r
(1,i)
1 ⊕ r

(1,i)
0 ⊕ x(1), (b(1,i), r(1,i)

b(1,i)
), y(1) ⊕ r

(i,1)

b(i,1)
, and x(1), y(1). With these values, Sim2 computes

Sj,1’s output from FROT.
viii. For each AND gate in CircVj with input wire a, b and output wire o, Sim2 computes Sj,1’s share of

⟨ASj,α

g,2i0+i1
⟩ for each (i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and α = 1, . . . , c by following the computation

process in the garbling phase.

ix. For each output gate in CircVj with input wire w, Sim2 computes Sj,1’s share of ⟨ctSj,α

w,i2
⟩ for each

i2 = 0, 1 and α = 1, . . . , c by following the computation process in the garbling phase. Sim2 knows all
the elements in ISSj,1 after completing the above steps.

x. Sim2 sets Checkj = 1.
(c) For each corrupted server S and honest virtual server Vj ∈ VerS :

i. Then, Sim2 emulates FCommit to send (ISSj,1 , Sj,1, τISSj,1 ) to S and sends all the messages he emulates
Sj,1 to send and receive in the garbling phase and Step 1 of the verification phase to S on behalf of
Sj,1.

ii. For each honest party P , Sim2 sends all the shares of sharings generated by P for Sj,1, . . . , Sj,c in the
sharing phase to S on behalf of P .

(d) For each honest server S, Sim2 emulates FCommit to receive (open, Sj,i, τISSj,i , S) from each corrupted
server Sj,i for Vj ∈ VerS . Then Sim2 receives all the messages Sj,i sends and receives in the garbling
phase and Step 1 of the verification phase. For each corrupted party P , Sim2 also receives all the shares
generated by P for Sj,1, . . . , Sj,c in the sharing phase from P .

(e) For honest server S and each virtual server Vj ∈ VerS , Sim2 follows the protocol to check whether the
local computation of Vj is performed correctly and whether the committed outputs from FROT are valid.
If not, Sim2 aborts the protocol on behalf of S. After completing the simulation, Sim2 outputs what A
outputs.

(f) If OTCheck = 1, Sim2 aborts the simulation.
(g) If CompCheck = 1, Sim2 aborts the simulation.
(h) If CorrCheck = 1, Sim2 aborts the simulation.
(i) Sim2 chooses a set Hvir of 3N/4 honest virtual servers, where each Vj ∈ Hvir satisfies

Corrj = Compj = Checkj = ROTj = 0. Then, Sim2 checks whether the shares of the virtual servers in
Hvir of each Σ-sharing, Σ(2)-sharing, and each Σ(2)-sharing with an all-zero secret generated by a
corrupted party except [r(i)]κ′ , [r(i)′ ]

(2)

κ′ , [o
(i)]

(2)

κ′ generated by corrupted server Si is valid (i.e. there is a
valid sharing that has the same shares for these virtual servers). If not, Sim2 aborts the simulation.
Otherwise, Sim2 chooses a valid sharing as the sharing shared by the corrupted party and reconstructs
the secret.

(j) For each honest virtual server Vj with ROTj = Checkj = 0 out of Hvir:
i. Sim2 randomly samples Sj,1’s shares of all the sharings generated by an honest party in the sharing

phase based on the corrupted servers’ shares except the additive sharings for Vj ’s shares of
[r(i′)]κ′ , [r(i′)′ ]

(2)

κ′ , [o
(i′)]

(2)

κ′ generated by the last honest server Si′ , i
′ ∈ H. For Sj,1’s shares for the

remaining 3 sharings, Sim2 computes them based on his shares of∑
j∈H1

sj ·⟨xVα
j ⟩+

∑
i∈H⟨r

(i,Vα)⟩,
∑

j∈H2
s′j ·⟨x

V ′
α

j ⟩+
∑

i∈H⟨r
(i,Vα)′⟩,

∑
j∈H3

s(j) ·⟨oV ′
α

j ⟩+
∑

i∈H⟨o
(i,Vα)⟩

and
∑

j∈H1
sj · ⟨xVα

j ⟩+
∑

i∈H\{i′}⟨r
(i,Vα)⟩,

∑
j∈H2

s′j · ⟨x
V ′
α

j ⟩+
∑

i∈H\{i′}⟨r
(i,Vα)′⟩,

∑
j∈H3

s(j) ·

⟨oV ′
α

j ⟩+
∑

i∈H\{i′}⟨o
(i,Vα)⟩.

ii. Sim2 randomly samples a (κ− 1)-bit string as ∆Sj,1 .
iii. For each w that is not an output wire of an XOR gate or output gate in CircVj nor an input wire of

CircVj , Sim2 randomly samples λ
Sj,1
w , k

Sj,1

w,0 .
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iv. For each input wire w of CircVj , Sim2 computes Sj,1’s share λ
Sj,1
w of ⟨λ⟩ based on his shares of

⟨xw ⊕ λw⟩ (which has been generated in the garbling phase) and ⟨xw⟩ (which has been generated in
Step 2.(j).i.).

v. For each XOR gate in CircVj with input wire a, b and output wire o, Sim2 computes

k
Sj,1

o,0 ∥λ
Sj,1
o = (k

Sj,1

a,0 ∥λ
Sj,1
a )⊕ (k

Sj,1

b,0 ∥λ
Sj,1

b ).

This computation is performed gate by gate.
vi. For each wire w in CircVj that is not an output wire of an output gate, Sim2 computes

k
Sj,1

w,1 = k
Sj,1

w,0 ⊕∆Sj,1 .
vii. For each execution of ΠMult in the garbling phase, for each i = 2, . . . , c, Sim2 already has

r
(1,i)
1 ⊕ r

(1,i)
0 ⊕ x(1), (b(1,i), r(1,i)

b(1,i)
), y(1) ⊕ r

(i,1)

b(i,1)
, and x(1), y(1). With these values, Sim2 computes

Sj,1’s output from FROT.
viii. For each AND gate in CircVj with input wire a, b and output wire o, Sim2 computes Sj,1’s share of

⟨ASj,α

g,2i0+i1
⟩ for each (i0, i1) = (0, 0), (0, 1), (1, 0), (1, 1) and α = 1, . . . , c by following the computation

process in the garbling phase.

ix. For each output gate in CircVj with input wire w, Sim2 computes Sj,1’s share of ⟨ctSj,α

w,i2
⟩ for each

i2 = 0, 1 and α = 1, . . . , c by following the computation process in the garbling phase.

3. Note that each output of Fprep and Finput to a server receiver in Π0 (which is a virtual server, say Vj) is
shared by an additive sharing among Sj,1, . . . , Sj,c, and all the secrets of these sharings have been
computed by Sim2 when Vj /∈ Hvir. We can regard the secrets as the chosen output of corrupted servers
from Fprep and Finput (i.e. we regard that Vj /∈ Hvir are the corrupted servers of Π0). In this way, Sim2

constructs an adversary A′ in Π0 that interacts with honest parties in Π0 with the secrets of these additive
sharings while interacting with Fprep,Finput and then fail-stops before the evaluation phase. Sim2 then
invokes Sim0 with adversary A′. When Sim0 invokes F , Sim2 sends the same message to F . Then, Sim2

gets the output of Sim0.

Figure 36: The simulator for the verification phase of Π2 when Pking is corrupted.

Evaluation Phase
1. For each i = 1, . . . , rec, Sim2 learns the shares for each Vj ∈ Hvir of [si]

(2) from the output of Sim0. Sim2

then runs the algorithm Alg2 in Remark 1 to find a Σ(2)-sharing as [si]
(2) for each i = 1, . . . , rec such that

the shares for ciortual servers in Hvir matches the output from Sim0. Then, Sim2 does the following:

(a) If the receiver Ri of the i-th reconstruction is an honest client, Sim2 samples a random k-bit string as
r
(α)
si,β

for each β = 1, . . . , c and α = 1, . . . , κ. Then, for α = 1, . . . , κ, Sim2 randomly samples the whole
sharings [r

(α)
si,1

](3), . . . , [r
(α)
si,c]

(3) based on the shares of the virtual servers not in Hvir of
[r

(α)
si,β

](3) = [r
(α)
0,β ]

(3) + [si]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β ] and the secret r

(α)
si,β

for each β = 1, . . . , c.
(b) If the receiver Ri of the i-th reconstruction is a virtual server in Hvir, Sim2 samples a random κ-bit

string as rsi,η,η,1 = (r
(1)
si,η,η,1, . . . , r

(κ)
si,η,η,1) for each η = 1, . . . , k, where si,η is the η-th bit of si. Then,

for α = 1, . . . , κ, let r
(α)
si,1

= (r
(α)
si,1,1,1

, r
(α)
si,2,2,1

, . . . , r
(α)
si,k,k,1

), Sim2 randomly samples the whole sharings

[r
(α)
si,1

](3) based on the shares of the virtual servers not in Hvir of
[r

(α)
si,1

](3) = [r
(α)
0,1 ]

(3) + [si]
(2) ⊗ [r

(α)
1,1 − r

(α)
0,1 ] and the secret r

(α)
si,1

.

(c) For each virtual server Vj ∈ Hvir and each a = 1, . . . , ℓ2, let s
Vj

i,a be the a-th bit of Vj ’s share of [si]. Sim2

computes Y
Sj,β

(i−1)ℓ2+a,s
Vj
i,a

for each β = 1, . . . , c with the shares of servers in Hvir of [r(α)
si,1

](3) generated by

the honest clients and the first servers emulating virtual servers in Hvir and each pair of
[r

(α)
0,β ]

(3), [r
(α)
1,β − r

(α)
0,β ] generated by other parties, where the computational process of each Y

Sj,β

(i−1)ℓ2+a,s
Vj
i,a

is the same as in the protocol with each [r
(α)
si,β

](3) generated by an honest client or a server Sj,1 for

Simulator Sim2-Eval
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Vj ∈ Hvir being regarded as [r
(α)
0,β ]

(3) + [si]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β ].

For each virtual server Vj ∈ Hvir:

(a) For each wire w in CircVj that is not an input wire of the circuit and is not an output wire of an XOR
gate or an output gate, Sim2 samples a random bit as vw ⊕ λw and a random (κ− 1)-bit string
k
Sj,1

w,vw⊕λw
. For each input wire of CircVj , Sim2 samples a random (κ− 1)-bit string k

Sj,1

w,vw⊕λw
.

(b) For each XOR gate in CircVj with input wires a, b and output wire o, Sim2 computes
k
Sj,1

o,vo⊕λo
= k

Sj,1

a,va⊕λa
⊕ k

Sj,1

b,vb⊕λb
and vo ⊕ λo = (va ⊕ λa)⊕ (vb ⊕ λb) gate by gate from the first layer.

(c) For each AND gate g in CircVj with input wire a, b and output wire o, Sim2 computes the ciphertext
encrypted by {kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1 by:( c⊕

i=1

(
O1(k

Sj,i

a,va⊕λa
∥(va ⊕ λa)∥k

Sj,i

b,vb⊕λb
∥(vb ⊕ λb)∥i∥j∥β∥g)

))
⊕kSj,β

o,vo⊕λo
∥(vo ⊕ λo).

Then Sim2 samples 3 random κ-bit strings as the other 3 ciphertexts for this gate g and each
β = 1, . . . , c.

(d) For each input wire w of an output gate in CircVj , the output gate outputs a bit of Vj ’s share of a
Σ(2)-sharing that needs reconstruction in Π0, which can be obtained from the output of Sim0. Sim2 sets
the output wire value vw to be the corresponding bit from the output of Sim0. Then, Sim2 computes
λw = (vw ⊕ λw)⊕ vw.

(e) For each output gate in CircVj indexed k = 1, . . . , ℓ2rec with input wire w, Sim2 computes

ct
Sj,β

w,vw⊕λw
=

( c⊕
i=1

O2(k
Sj,i

w,vw⊕λw
∥(vw ⊕ λw)∥i∥j∥β∥w)

)
⊕ Y

Sj,β

k,λw
.

Then Sim2 samples a random cℓκ-bit string as the other ciphertext for this wire w and each β = 1, . . . , c.

2. Sending Output Masks. For each input wire w of an output gate in CircVj for each virtual server
Vj ∈ Hvir, Sim2 computes Sj,1’s share of ⟨λw⟩ based on the secret and Sj,2, . . . , Sj,c’s shares. Then Sim2

sends it to Pking on behalf of Sj,1.

3. Encrypting Input Labels. For each i = 1, . . . , rec, if Ri is a virtual server Vj in Hvir and the η-th bit of
si is used as an input wire with index jη in Ri’s circuit CircVj , Sim2 computes

ct
(i,1)
jη,si,η

= O1(rsi,η,η,1∥si,η∥i∥1∥η∥jη)⊕
(
k
Sj,1

wjη ,vwjη
⊕λwjη

∥(vwjη
⊕ λwjη

)
)
.

Then, Sim2 samples a random κ-bit string as ct
(i,1)
jη,1⊕si,η

and sends {ct(i,1)jη,0 , ct
(i,1)
jη,1 } to Pking on behalf of Sj,1.

4. Sending Input Labels. For each input wire w of each honest virtual server Vj ’s local circuit CircVj , if
the wire value xw doesn’t come from a reconstruction of a Σ(2)-sharing Sim2 sends xw ⊕ λw (which has
been computed in the garbling phase) and k

Sj,1

w,xw⊕λw
to Pking on behalf of Sj,1.

5. Sending Garbled Circuits. For each virtual server Vj ∈ Hvir, Sim2 computes Sj,1’s shares of
⟨Ag⟩, ⟨Bg⟩, ⟨Cg⟩, ⟨Dg⟩ for each AND gate in CircVj and ⟨ctw,0⟩, ⟨ctw,1⟩ for each output wire w of CircVj

based on the secrets and corrupted servers’ shares. Then for each honest virtual server Vj , Sim2 sends these
shares to Pking on behalf of Sj,1.

6. Sending Outputs. For each receiver Ri that is an honest client:

(a) Sim2 receives si and {r(α)
si,β
}κα=1 for each β = 1, . . . , c from Pking.

(b) Sim2 checks whether si and {r(α)
si,β
}κα=1 for each β = 1, . . . , c from Pking are all correctly sent. If not,

Sim2 aborts the protocol on behalf of Ri.

7. Sim2 outputs what A outputs.

Figure 37: The simulator for the evaluation phase of Π2 when Pking is corrupted.
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We construct the following hybrids:
Hyb0: In this hybrid, Sim2 gets honest clients’ inputs and runs the protocol honestly. This corresponds

to the real-world scenario.
Hyb1: In this hybrid, while determining the virtual servers, Sim2 aborts the simulation if over N/16

virtual servers are corrupted. By Chernoff bound, if the virtual servers are truly randomly determined, the
probability that over N/16 virtual servers are corrupted is negligible. From the definition of a PRG, the
probability that pseudorandom sets of servers emulating the virtual servers also satisfy that over N/16 virtual
servers are corrupted is also negligible, or the result of the PRG can be distinguished from truly random
party sets with a non-negligible probability by checking whether over N/16 virtual servers are corrupted.
Thus, the distributions of Hyb1 and Hyb0 are computationally indistinguishable.

Hyb2: In this hybrid, whenever an honest party (either a client or a server) generates a random
Σ,Σ(2),Σ(3)-sharing (including the interleaved secret sharings of them) for the virtual servers, Sim2 first
generates the corrupted virtual servers’ shares, and then randomly samples the honest virtual servers’ shares
based on corrupted virtual servers’ shares and the secret. Since for all these sharings, the set of corrupted
virtual servers’ shares is independent of the secret, we only change the order of generating the honest and
corrupted virtual servers’ shares of the sharings. This doesn’t change the output distribution. Thus, Hyb2

and Hyb1 have the same output distribution.
Hyb3: In this hybrid, whenever an honest party generates an additive sharing for the servers who act as

a virtual server, Sim2 first generates the corrupted servers’ shares, and then randomly samples the honest
servers’ shares based on corrupted servers’ shares and the secret. Since for all these sharings, the set of
corrupted servers’ shares is independent of the secret, we only change the order of generating the honest and
corrupted servers’ shares of the sharings. This doesn’t change the output distribution. Thus, Hyb3 and
Hyb2 have the same output distribution.

Hyb4: In this hybrid, Sim2 additionally sets CompCheck = CorrCheck = OTCheck = 0 at the beginning
of the simulation. Then, for each honest virtual server Vj , Sim2 sets Corrj = Compj = ROTj = Checkj = 0.
This doesn’t affect the output distribution. Thus, Hyb4 and Hyb3 have the same output distribution.

Hyb5: In this hybrid, during the sharing phase, after the corrupted servers commit their local inputs,
Sim2 additionally performs the following checks:

1. For each sharing generated by an honest party, for each honest virtual server Vj , let the generated
share of Vj be s. Sim2 checks whether the committed inputs of Sj,2, . . . , Sj,c’s shares of ⟨s⟩ matches
what Sim2 sends to them. If the check of Vj fails, Sim2 sets Corrj = 1.

2. For the result of FROT, Sim2 checks whether for each honest server Vj , the corrupted server Sj,2, . . . , Sj,c

all committed their outputs correctly. For each honest virtual server Vj that fails in the check, Sim2

sets ROTj = 1.

3. If for at least N/32 honest virtual server Vj it holds that ROTj = 1, Sim2 sets OTCheck = 1 and takes
the first N/32 of them. For each of the other honest virtual servers Vj with ROTj = 1, Sim2 sets
ROTj = 0.

4. If there are over N/16 honest virtual servers Vj with Corrj = 1, Sim2 sets CorrCheck = 1.

This doesn’t affect the output distribution. Thus, Hyb5 and Hyb4 have the same output distribution.
Hyb6: In this hybrid, for each sharing generated by a corrupted party in the sharing phase, Sim2 regarded

that all the corrupted servers correctly commit the shares they get, and then Sim2 can reconstruct the shares
of honest virtual servers for each Σ,Σ(2)-sharing generated by a corrupted party. Since the messages between
corrupted parties can be regarded as anything, we don’t change the output distribution. Thus, Hyb6 and
Hyb5 have the same output distribution.

Hyb7: In this hybrid, during the garbling phase, for each honest virtual server Vj with ROTj = 0, for
each execution of ΠMult, Sim2 doesn’t follow the protocol to compute r

(1,i)
1 ⊕ r

(1,i)
0 ⊕ x(1) and y(1) ⊕ b(i,1)

for each i = 2, . . . , c. Instead, Sim2 randomly samples a (κ − 1)-bit string as r
(1,i)
1 ⊕ r

(1,i)
0 ⊕ x(1) and a

random bit as y(1)⊕ b(i,1). Then, Sim2 computes r(1,i)1 ⊕ r
(1,i)
0 based on r

(1,i)
1 ⊕ r

(1,i)
0 ⊕x(1) and x(1) and then
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determines (r(1,i)0 , r
(1,i)
1 ) based on (b(1,i), r

(1,i)

b(1,i)
). Similarly, Sim2 computes b(i,1) based on y(1)⊕ b(i,1) and y(1)

to determine r
(i,1)

b(i,1)
. Since (r

(1,i)
0 , r

(1,i)
1 ) are sampled randomly based on (b(1,i), r

(1,i)

b(1,i)
), r(1,i)1 ⊕ r

(1,i)
0 ⊕x(1) is a

random (κ− 1)-bit string. Since b(i,1) is a random bit, so is y(1) ⊕ b(i,1). Thus, we only change the order of
generating r

(1,i)
1 ⊕ r

(1,i)
0 ⊕ x(1) and (r

(1,i)
0 , r

(1,i)
1 ), y(1) ⊕ b(i,1) and b(i,1) without changing their distributions.

Thus, Hyb7 and Hyb6 have the same output distribution.
Hyb8: In this hybrid, during the garbling phase, for each execution of ΠMult executed by servers emulating

an honest virtual server Vj with ROTj = 0. Sim2 additionally checks whether r
(i,1)
1 ⊕ r

(i,1)
0 ⊕ x(i) and

y(i) ⊕ b(1,i) from Sj,i for each i = 2, . . . , c are correctly computed with their committed inputs. If not, Sim2

sets Compj = 1. This doesn’t affect the output distribution. Thus, Hyb8 and Hyb7 have the same output
distribution.

Hyb9: In this hybrid, during the garbling phase, for each honest virtual server Vj with ROTj = 0 and
each input wire w of CircVj , Sim2 doesn’t follow the protocol to compute Sj,1’s share of ⟨xw⊕λw⟩. Instead,
Sim2 samples a random bit as Sj,1’s share of ⟨xw ⊕ λw⟩ and computes his share of ⟨λw⟩ based on his shares
of ⟨xw ⊕λw⟩ and ⟨xw⟩. After receiving Sj,2, . . . , Sj,c’s shares of ⟨xw ⊕λw⟩, Sim2 additionally checks whether
they match the inputs they committed. If not, Sim2 sets Compj = 1. Since Sj,1’s share of ⟨λw⟩ is sampled
randomly, his share of ⟨xw ⊕ λw⟩ is also uniformly random. Thus, we only change the order of generating
them without changing their distributions. Besides, setting Compj = 1 doesn’t affect the output distribution.
Thus, Hyb9 and Hyb8 have the same output distribution.

Hyb10: In this hybrid, during the verification phase, Sim2 doesn’t follow the protocol to compute Sα,1’s
shares of ⟨

∑k1

j=1 sj ·x
Vα
j +

∑n
i=1 r

(i,Vα)⟩, ⟨
∑k2

j=1 s
′
j ·x

V ′
α

j +
∑n

i=1 r
(i,Vα)′⟩, and ⟨

∑k3

j=1 s
(j) ·oVα

j +
∑n

i=1 o
(i,Vα)⟩

for each honest virtual server Vα. For the last honest server Si′ ∈ H, Sim2 doesn’t compute Sα,1’s shares
of ⟨r(i′,Vα)⟩, ⟨r(i′,Vα)′⟩, and ⟨o(i′,Vα)⟩. Sim2 computes

∑
j∈C1

sj · ⟨xVα
j ⟩ +

∑
i∈C⟨r(i,Vα)⟩,

∑
j∈C2

s′j · ⟨x
V ′
α

j ⟩ +∑
i∈C⟨r(i,Vα)′⟩,

∑
j∈C3

s(j) ·⟨oVα
j ⟩+

∑
i∈C⟨o(i,Vα)⟩ and

∑
j∈H1

sj ·⟨xVα
j ⟩+

∑
i∈H\{i′}⟨r(i,Vα)⟩,

∑
j∈H2

s′j ·⟨x
V ′
α

j ⟩+∑
i∈H\{i′}⟨r(i,Vα)′⟩,

∑
j∈H3

s(j) · ⟨oVα
j ⟩+

∑
i∈H\{i′}⟨o(i,Vα)⟩ first (corrupted servers’ shares are computed with

the shares they receive in the sharing phase). Then, for
∑

j∈H1
sj · ⟨xVα

j ⟩ +
∑

i∈H⟨r(i,Vα)⟩,
∑

j∈H2
s′j ·

⟨xV ′
α

j ⟩ +
∑

i∈H⟨r(i,Vα)′⟩,
∑

j∈H3
s(j) · ⟨oV ′

α
j ⟩ +

∑
i∈H⟨o(i,Vα)⟩, Sim2 randomly samples the secrets for each

honest virtual server Vα based on the fact that all the virtual servers’ secrets of the three sharings form a
Σκ′ -sharing, a Σ

(2)
κ′ -sharing, and a Σ

(2)
κ′ -sharing with an all-zero secret respectively. Then, Sim2 computes

Sα,1’s shares of
∑

j∈H1
sj · ⟨xVα

j ⟩ +
∑

i∈H⟨r(i,Vα)⟩,
∑

j∈H2
s′j · ⟨x

V ′
α

j ⟩ +
∑

i∈H⟨r(i,Vα)′⟩,
∑

j∈H3
s(j) · ⟨oVα

j ⟩ +∑
i∈H⟨o(i,Vα)⟩ based on the secret and Sα,2, . . . , Sα,c’s shares (which are computed with their shares generated

by Sim2 in the sharing phase). For the last honest server Si′ , i
′ ∈ H, Sim2 computes each Sα,1’s shares of

⟨r(i′,Vα)⟩, ⟨r(i′,Vα)′⟩, and ⟨o(i′,Vα)⟩ based on his shares of
∑

j∈H1
sj ·⟨xVα

j ⟩+
∑

i∈H⟨r(i,Vα)⟩,
∑

j∈H2
s′j ·⟨x

V ′
α

j ⟩+∑
i∈H⟨r(i,Vα)′⟩,

∑
j∈H3

s(j) · ⟨oV ′
α

j ⟩ +
∑

i∈H⟨o(i,Vα)⟩ and
∑

j∈H1
sj · ⟨xVα

j ⟩ +
∑

i∈H\{i′}⟨r(i,Vα)⟩,
∑

j∈H2
s′j ·

⟨xV ′
α

j ⟩ +
∑

i∈H\{i′}⟨r(i,Vα)′⟩,
∑

j∈H3
s(j) · ⟨oVα

j ⟩ +
∑

i∈H\{i′}⟨o(i,Vα)⟩. Finally, Sim2 computes Sα,1’s share of

⟨
∑k1

j=1 sj · x
Vα
j +

∑n
i=1 r

(i,Vα)⟩, ⟨
∑k2

j=1 s
′
j · x

V ′
α

j +
∑n

i=1 r
(i,Vα)′⟩, and ⟨

∑k3

j=1 s
(j) · oVα

j +
∑n

i=1 o
(i,Vα)⟩ by

k1∑
j=1

sj · ⟨xVα
j ⟩+

n∑
i=1

⟨r(i,Vα)⟩ =
∑
j∈C1

sj · ⟨xVα
j ⟩+

∑
i∈C
⟨r(i,Vα)⟩+

∑
j∈H1

sj · ⟨xVα
j ⟩+

∑
i∈H
⟨r(i,Vα)⟩,

k2∑
j=1

s′j · ⟨x
V ′
α

j ⟩+
n∑

i=1

⟨r(i,Vα)′⟩ =
∑
j∈C2

s′j · ⟨x
V ′
α

j ⟩+
∑
i∈C
⟨r(i,Vα)′⟩+

∑
j∈H2

s′j · ⟨x
V ′
α

j ⟩+
∑
i∈H
⟨r(i,Vα)′⟩,

and

k3∑
j=1

s(j) · ⟨oVα
j ⟩+

n∑
i=1

⟨o(i,Vα)⟩ =
∑
j∈C3

s(j) · ⟨oVα
j ⟩+

∑
i∈C
⟨o(i,Vα)⟩+

∑
j∈H3

s(j) · ⟨oVα
j ⟩+

∑
i∈H
⟨o(i,Vα)⟩.
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Since the sharings [r(i
′)]κ′ , [r(i

′)′ ]
(2)
κ′ , [o(i′)]

(2)
κ′ are randomly generated based on the corrupted virtual

servers’ shares, we can regard that Sim2 emulates Si′ to generate the secrets for each corrupted virtual server
Vα first and then generate the shares for each honest virtual server Vα. Thus, the secrets of

∑
j∈H1

sj ·
⟨xVα

j ⟩ +
∑

i∈H⟨r(i,Vα)⟩ (resp. ⟨
∑k2

j=1 s
′
j · x

V ′
α

j +
∑n

i=1 r
(i,Vα)′⟩ and ⟨

∑k3

j=1 s
(j) · oVα

j +
∑n

i=1 o
(i,Vα)⟩), which

is computed by adding honest virtual server Vα’s share of [r(i
′)]κ′ (resp. [r(i

′)′ ]
(2)
κ′ and [o(i′)]

(2)
κ′ ) is also

random when those secrets for corrupted virtual servers are fixed. Thus, we only change the order of
generating Sα,1’s shares of ⟨r(i′,Vα)⟩, ⟨r(i′,Vα)′⟩, ⟨o(i′,Vα)⟩ and

∑
j∈H1

sj · ⟨xVα
j ⟩ +

∑
i∈H⟨r(i,Vα)⟩,

∑
j∈H2

s′j ·
⟨xV ′

α
j ⟩+

∑
i∈H⟨r(i,Vα)′⟩,

∑
j∈H3

s(j) ·⟨oVα
j ⟩+

∑
i∈H⟨o(i,Vα)⟩ for each honest virtual server Vα without changing

their distributions. Thus, Hyb10 and Hyb9 have the same output distribution.
Hyb11: In this hybrid, during the verification phase, Sim2 additionally sets Compα = 1 if Vα is an

honest virtual server with ROTα = 0 but the corrupted servers Sα,2, . . . , Sα,c’s shares of
∑k1

j=1 sj · ⟨x
Vα
j ⟩ +∑n

i=1⟨r(i,Vα)⟩,
∑k2

j=1 s
′
j · ⟨x

V ′
α

j ⟩+
∑n

i=1⟨r(i,Vα)′⟩, or
∑k3

j=1 s
(j) · ⟨oVα

j ⟩+
∑n

i=1⟨o(i,Vα)⟩ received by some honest
server don’t match the values they commit. This doesn’t affect the output distribution. Thus, Hyb11 and
Hyb10 have the same output distribution.

Hyb12: In this hybrid, during the verification phase, at the end of the verification of the sharings, Sim2

sets CompCheck = 1 if there are over N/16 honest virtual servers Vj with Compj = 1. This doesn’t affect the
output distribution. In addition, If for two different honest servers, the sharings [τ ]κ′ , [τ ′]

(2)
κ′ , [τ0]

(2)
κ′ computed

on behalf of them are different but O1([τ ]κ′ , [τ ′]
(2)
κ′ , [τ0]

(2)
κ′ ) are the same, Sim2 aborts the simulation. Since

Sim2 emulates the random oracle honestly, this only happens when there exists two queries q1, q2 among
poly(κ) queries to O1 (either by the adversary or by honest parties) such that O1(q1) = O1(q2). This only
happens with a negligible probability. Thus, Hyb12 and Hyb11 are computationally indistinguishable.

Hyb13: In this hybrid, during the verification phase, for each honest server, Sim2 doesn’t follow the pro-
tocol to check each honest virtual server Vj ’s local computation. Instead, Sim2 checks whether Sj,2, . . . , Sj,c

perform their computation and send the messages in the garbling phase and Step 1 of the verification phase
honestly with their committed inputs. Sim2 also checks whether Vj ’s shares of [r(i)

′
]κ′ , [r(i)

′
]
(2)
κ′ , [o(i)]

(2)
κ′ for

each corrupted server Si are correctly sent. In addition, Sim2 checks whether the committed outputs from
FROT are valid. If any of the checks fail, Sim2 aborts the protocol on behalf of S. Note that the only
difference between the two hybrids is that Sim2 doesn’t check the computation of honest servers. Since hon-
est servers always follow the protocol to perform computation, this doesn’t change the output distribution.
Thus, Hyb13 and Hyb12 have the same output distribution.

Hyb14: In this hybrid, during the verification phase, after doing the checks, if OTCheck = 1, Sim2 aborts
the simulation. This only changes the distribution when some corrupted server among Sj,2, . . . , Sj,c doesn’t
correctly commit his output from FROT for over N/32 honest virtual parties Vj after simulating the sharing
phase but the verification passes. Then, there must be N/32 honest virtual servers Vj with ROTj = 1. The
probable ways that there is a Vj ∈ VerS of ROTj = 1 that passes the check are

1. For the execution of FROT between (Sj,1, Sj,i), Sj,i sends b(1,i), r(1,i)
b(1,i)

to FROT but he correctly commits
(1⊕ b(1,i), r

(1,i)

1⊕b(1,i)
) as his output from FROT.

2. For the execution of FROT between (Sj,i, Sj,1), Sj,i sends r
(1,i)
0 , r

(1,i)
1 to FROT but he correctly guesses

b(1,i) and commits r
(1,i)

b(1,i)
and another value which is not equal to r

(1,i)

1⊕b(1,i)
as his output from FROT.

For the first way, the adversary should commit r(1,i)
1⊕b(1,i)

, which is a random (κ−1)-bit string that is not used

in any computation of messages before Sj,i commits it, and Sim2 can sample r
(1,i)

1⊕b(1,i)
after the adversary

does the commitment. Thus, the adversary correctly commits r
(1,i)

1⊕b(1,i)
with a negligible probability 2κ−1.

For the second way, the adversary should guess the random bit b(1,i) correctly. Since this bit is not used
in any computation of messages before Sj,i sends the commitments, Sim2 can sample it after the adversary
does the commitment. Thus, the adversary correctly commits r(1,i)

b(1,i)
and another value which is not equal to
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r
(1,i)

1⊕b(1,i)
with a probability 1/2. Then, for each honest virtual server Vj ∈ VerS of ROTj = 1, the probability

that the behavior of the adversary is among the above two ways is no more than 1/2.
Recall that there are N/32 honest virtual servers Vj with ROTj = 1, the expectation of the number of

virtual servers Vj with ROTj = 1 that can pass the check is no more than N/64. By Chernoff bound, the
probability that less than N/128 virtual servers Vj with ROTj = 1 fail to pass the check is no more than
e−N/512. When there are at least N/128 virtual servers Vj with ROTj = 1 that fail to pass the check, the
probability that each honest server doesn’t choose these virtual servers is

127N
128

N
·

127N
128 − 1

N − 1
· · · · ·

127N
128 −

N
16n + 1

N − N
16n + 1

>

(
1− 1

128

) N
16n

.

Thus, the probability that these virtual servers are not chosen by all the honest servers is (127/128)(ϵN/16).
Recall that N = Θ(n + κ), the probability is also negligible. Taking the union bound of no more than 2n

possible sets of corrupted servers, the probability is still negligible.
Thus, the distributions of Hyb14 and Hyb13 are statistically close.
Hyb15: In this hybrid, during the verification phase, after doing the checks, if CompCheck = 1, Sim2

aborts the simulation. This only changes the distribution when Compj = 1 for over N/16 indices j ∈
{1, . . . , N} but the verification passes with CompCheck = 0. Note that Compj = 1 only happens when Vj

is an honest virtual server and some message sent by Sj,2, . . . , Sj,c doesn’t match their committed inputs.
Thus, if Vj ∈ VerS for some honest server S, the check won’t pass, so the distribution only changes when
there are over N/16 indices j ∈ {1, . . . , N} with Compj = 1 but each Vj of them is not in any Vj ∈ VerS for
some honest server S. The probability that each honest server doesn’t choose these virtual servers is

15N
16

N
·

15N
16 − 1

N − 1
· · · · ·

15N
16 −

N
16n + 1

N − N
16n + 1

>

(
1− 1

16

) N
16n

.

Thus, the probability that the N/16 virtual servers are not chosen by all the honest servers is (15/16)(ϵN/16).
Recall that N = Θ(n+κ), the probability is negligible. Taking the union bound of no more than 2n possible
sets of corrupted servers, the probability is still negligible. Thus, the distributions of Hyb15 and Hyb14 are
statistically close.

Hyb16: In this hybrid, during the verification phase, after doing the checks, if CorrCheck = 1, Sim2

aborts the simulation. This only changes the distribution when Corrj = 1 for over N/32 indices j ∈ H after
simulating the sharing phase but the verification passes with CorrCheck = 0. Note that the only possibility
to cause Corrj = 1 after simulating the sharing phase is that the committed inputs of Sj,2, . . . , Sj,c of ⟨sVα⟩
doesn’t match the shares of ⟨sVα⟩ sent to them for Vj ’s share sVα of a Σ or Σ(2) generated by an honest
party.

If over N/32 honest virtual servers Vj have Corrj = 1 because of this reason, then if Vj ∈ VerS for some
honest server S, the check won’t pass. Thus, the distribution only changes when there are over N/32 indices
j ∈ {1, . . . , N} with Corrj = 1 but each Vj of them is not in any Vj ∈ VerS for some honest server S. The
probability that each honest server doesn’t choose these virtual servers is

31N
32

N
·

31N
32 − 1

N − 1
· · · · ·

31N
32 −

N
16n + 1

N − N
16n + 1

>

(
1− 1

32

) N
16n

.

Thus, the probability that the N/32 virtual servers that are not chosen by all the honest servers is (31/32)(ϵN/16).
Recall that N = Θ(n+κ), the probability is negligible. Taking the union bound of no more than 2n possible
sets of corrupted servers, the probability is still negligible.

Thus, the distributions of Hyb16 and Hyb15 are statistically close.
Hyb17: In this hybrid, during the verification phase, after doing the checks, Sim2 chooses a set Hvir of

3N/4 honest virtual servers, where each Vj ∈ Hvir satisfies Corrj = Compj = ROTj = Checkj = 0. Then,
Sim2 checks whether the shares of the virtual servers in Hvir of each Σ-sharing, Σ(2)-sharing, and each Σ(2)-
sharing with an all-zero secret generated by a corrupted party except [r(i)]κ′ , [r(i)

′
]
(2)
κ′ , [o(i)]

(2)
κ′ generated by
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corrupted server Si is valid. If not, Sim2 aborts the simulation. Otherwise, Sim2 chooses a valid sharing as
the sharing shared by the corrupted party and reconstructs the secret.

Assume that the shares for virtual servers in Hvir of a Σ-sharing are not valid. Assume that the random
coefficient on this sharing in [τ ]κ′ =

∑k1

j=1 sj · [xj ]κ′ +
∑n

i=1[r
(i)]κ′ is s ∈ F2κ′ . If s1, . . . , sk1

∈ F2κ′ are
all truly random, we can sample s after the invalid sharing is fixed. If there exists s0 ̸= s′0 ∈ F2κ′ such
that s = s0 and s = s′0 both lead to a valid [τ ]κ′ , then the invalid sharing (which has been embedded in
a Σ×κ′ -sharing) is (s0 − s′0)

−1 times a valid Σ×κ′ -sharing, which must be a valid Σ×κ′ -sharing, and this
leads to a contradiction. Thus, there is only one element s0 ∈ F2κ′ that can make [τ ]κ′ pass the check. The
probability is 2−κ′

. Considering the union bound for no more than
(

N
3N/4

)
< 2N possible choices of Hvir, the

probability is still no more than 2N−κ′
= 2−κ if s1, . . . , sk1

∈ F2κ′ are all truly random, which is negligible.
Thus, if there is a non-negligible probability that [τ ]κ′ is valid, then the truly random field elements and
the pseudo-random values s1, . . . , sk1

∈ F2κ′ can be distinguished by computing [τ ]κ′ with a non-negligible
probability, which contradicts the definition of a PRG, so the probability that [τ ]κ′ is valid is negligible.

Similarly, when the shares for virtual servers in Hvir of a Σ(2)-sharing or a Σ(2)-sharing with an all-zero
secret is not valid, the verification only passes with a negligible probability. Therefore, the distribution only
changes with a negligible probability. Thus, the distributions of Hyb17 and Hyb16 are computationally
indistinguishable.

Hyb18: In this hybrid, for each random Σ,Σ(2),Σ(3)-sharing (including the interleaved secret sharings
of them) generated by an honest party, Sim2 does not generate them at the beginning of the sharing phase.
Instead, for those honest virtual servers Vj with ROTj = 1, Sim2 generates the shares for them at the end of
the sharing phase. For other honest virtual servers Vj that are in VerS for some server S, Vj ’s shares of these
sharings are generated based on the corrupted servers’ shares after VerS is verified. For other honest virtual
servers out of Hvir, Sim2 generates Vj ’s shares of these sharings based on the checked honest virtual servers’
shares and the corrupted virtual servers’ shares. For the honest virtual servers in Hvir, Sim2 generates their
shares based on other virtual servers’ shares after the verification phase (at the beginning of the evaluation
phase). Finally, Sim2 computes the shares of Sj,1’s shares of the additive sharings of these shares based on
Sj,2, . . . , Sj,c’s shares and the secrets. Besides, Sim2 samples the local randomness of Sj,1 in emulating each
Vj ∈ Hvir after the verification phase instead of in the sharing phase, and the computation of Sj,1 is delayed
to be performed in the evaluation phase instead of in the garbling phase. Note that for all these sharings,
the set of corrupted servers’ shares and the shares of honest virtual servers out of Hvir are independent of the
secret, first sampling the shares of honest virtual servers out of Hvir and then sampling the shares for virtual
servers in Hvir based on corrupted servers’ shares and the secret won’t affect the output distribution. Besides,
the shares and randomness for Sj,1 emulating each virtual server Vj in Hvir are not used in the simulation
before the evaluation phase. Therefore, delaying the generation won’t affect the output distribution. Thus,
Hyb18 and Hyb17 have the same output distribution.

Hyb19: In this hybrid, for each wire w in each honest virtual server Vj ∈ HVir’s local circuit CircVj , Sim2

additionally follows the execution of Π0 (where each reconstruction of Σ(2)-sharing is done from the shares
of virtual servers in HVir) to compute the value vw of w. Then, Sim2 runs the algorithm Alg2 in Remark 1
with the shares for virtual servers in HVir of [si](2) for each i = 1, . . . , rec with an honest receiver (either an
honest client or a virtual server in HVir) to decide the whole sharing [si]

(2). If the receiver is an honest client,
Sim2 uses them to compute shares for virtual servers out of HVir of [r(α)si,β

](3) = [r
(α)
0,β ]

(3)+[si]
(2)⊗ [r

(α)
1,β−r

(α)
0,β ]

for each α = 1, . . . , κ and β = 1, 2, 3. If the receiver is a virtual server in HVir, Sim2 uses them to compute
shares for virtual servers out of HVir of [r(α)si,1

](3) = [r
(α)
0,1 ]

(3)+[si]
(2)⊗ [r

(α)
1,1 −r

(α)
0,1 ] for each α = 1, . . . , κ. This

doesn’t affect the output distribution. Thus, Hyb19 and Hyb18 have the same output distribution.
Hyb20: In this hybrid, for each virtual server Vj ∈ Hvir:

1. For i = 1, . . . , rec:

• If Ri is an honest client, Sim2 doesn’t generate the shares for virtual servers in Hvir of each [r
(α)
0,β ]

(3)

first and then computes each share for each virtual server Vj ∈ Hvir of each [r
(α)
si,β

](3) by himself.

Instead, Sim2 follows the protocol to generate each r
(α)
si,β

first and then samples the whole sharing
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[r
(α)
si,β

](3) based on the shares for virtual servers out of Hvir of [r(α)si,β
](3) and the secret r(α)si,β

. Then,

Sim2 computes the shares for virtual servers in Hvir of each [r
(α)
0,β ]

(3) based on their shares of

[r
(α)
si,β

](3), [si]
(2), [r

(α)
1,β − r

(α)
0,β ] for each β = 1, . . . , c.

• If Ri is a virtual server in Hvir, Sim2 doesn’t generate the shares for virtual servers in Hvir of
each [r

(α)
0,1 ]

(3) first and then computes their shares of each [r
(α)
si,1

](3) by himself. Instead, Sim2

follows the protocol to generate each r
(α)
si,1

first and then samples the whole sharing [r
(α)
si,1

](3)

based on the shares for virtual servers out of Hvir of [r(α)si,1
](3) and the secret r

(α)
si,1

. Then, Sim2

computes the shares for virtual servers out of Hvir of each [r
(α)
0,1 ]

(3) based on their shares of
[r

(α)
si,1

](3), [si]
(2), [r

(α)
1,1 − r

(α)
0,1 ].

• If Ri is a virtual server out of Hvir, Sim2 just follows the protocol to receive honest servers’ shares
from corrupted parties.

Then Sim2 follows the computation process of each Y
Sj,β

(i−1)ℓ2+a,s
Vj
i,a

in the protocol to compute each

Y
Sj,β

(i−1)ℓ2+a,s
Vj
i,a

with each [r
(α)
si,β

](3) generated by the honest clients and the first servers emulating virtual

servers in Hvir being regarded as [r
(α)
0,β ]

(3) + [si]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β ]. For the other label Y Sj,β

(i−1)ℓ2+a,1⊕s
Vj
i,a

,

Sim2 still follows the protocol to compute it.

2. For each wire w in each CircVj that is not an input wire of the circuit and is not an output wire of an
XOR gate or an output gate, Sim2 samples a random bit as vw⊕λw and a random (κ−1)-bit string as
k
Sj,1

w,vw⊕λw
. For each input wire of CircVj , Sim2 samples a random (κ− 1)-bit string as kSj,1

w,vw⊕λw
. Then

Sim2 computes λw = (vw ⊕ λw)⊕ vw for all these wires. After all the ciphertexts are generated, Sim2

samples a random (κ − 1)-bit string as ∆Sj,1 . Then, for each wire w in CircVj that is not an output
wire of an output gate, Sim2 computes k

Sj,1

w,1⊕vw⊕λw
= k

Sj,1

w,vw⊕λw
⊕∆Sj,1 .

3. Sim2 maintains a set Q1. For each AND gate g in CircVj with input wire a, b, when the server Sj,1

computes his shares of the additive sharings of the ciphertexts of each gate except those computed
with {kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1, Sim2 checks whether the query to the random oracle O1 has been queried

before. If true, Sim2 aborts the simulation. Otherwise, Sim2 adds the query to Q1.

4. Sim2 maintains a set Q2. For each input wire w of an output gate in CircVj , and for all i2 ∈ {0, 1}
such that i2 ̸= vw⊕λw, when server Sj,1 computes his shares of the additive sharings of ctSj,β

w,i2
for each

β = 1, . . . , c, Sim2 checks whether the query to the random oracle O2 has been queried before. If true,
Sim2 aborts the simulation. Otherwise, Sim2 adds the query to Q2.

5. For each AND gate g in CircVj with input wire a, b and output wire o, Sim2 doesn’t follow the
protocol to compute Sj,1’s shares of the additive sharings of the ciphertexts except ASj,β

g,2(va⊕λa)+(vb⊕λb)

for β = 1, . . . , c. Instead, Sim2 samples 3 random κ-bit strings as the ciphertexts and computes Sj,1’s
shares of the additive sharings of all the ciphertexts based on the secrets and Sj,2, . . . , Sj,c’s shares.
Sim2 computes the output of O1 to the queries that are used to generate these ciphertexts based on
the random strings and the wire labels of wire o.

6. For each output gate in CircVj indexed 1, . . . , ℓ2rec with input wire w, Sim2 doesn’t follow the protocol
to compute Sj,1’s shares of the additive sharings of the ciphertexts ct

Sj,β

w,1⊕vw⊕λw
for β = 1, . . . , c.

Instead, Sim2 samples a random cℓκ-bit string as the ciphertexts and computes Sj,1’s shares of the
additive sharings of all the ciphertexts based on the secrets and Sj,2, . . . , Sj,c’s shares. Sim2 computes
the output of O2 to the queries that are used to generate these ciphertexts based on the random strings
and the output labels.
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7. For each input wire w of an output gate in CircVj , Sim2 doesn’t follow the protocol to compute Sj,1’s
share of ⟨λw⟩. Instead, Sim2 computes it based on λw and the corrupted servers’ shares of ⟨λw⟩.

8. If Vj is the receiver of [si](2) in Π0 and the β-th bit of si is used as an input wire with index jβ in
CircVj , Sim2 doesn’t follow the protocol to compute ct

(i,1)
jβ ,1⊕si,1

. Instead, Sim2 samples a random κ-bit

string as ct
(i,1)
jβ ,1⊕si,1

.

To prove that the distributions of Hyb20 and Hyb19 are computationally indistinguishable, we additionally
construct the following hybrids between Hyb19 and Hyb20.

Hyb20.0: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 computes Sj,1’s shares of the garbled
circuit of CircVj by computing the garbled sub-circuits CircVj

1 , . . . , Circ
Vj
rec in order. This doesn’t affect the

output distribution. Thus, Hyb20.0 and Hyb19 have the same distribution.
Hyb20.1.1: In this hybrid, Sim2 additionally computes the share for each virtual server Vj ∈ Hvir of [s1](2)

by using the input labels associated with the input of Vj to evaluate the garbled gates of CircVj

1 following
Steps 5.(a) and 5.(b) of the evaluation phase. Here the input of Vj , i.e. the output of Fprep and Finput to
the receiver is shared by an additive sharing among Sj,1, . . . , Sj,c, and all the secrets of these sharings have
been computed by Sim2. We use these secrets as the input and preprocessing data to compute the input
labels. We denote the result of the computation be [s1](2). Note that the input of CircVj

1 completely comes
from the output of Fprep and Finput, and the computation process of Sj ’s share of [s1](2) in Π0 is identical to
Circ

Vj

1 . To show that [s1]
(2) = [s1](2), we only need to show that the secrets of the additive sharings of the

output values of Fprep and FCoin computed by Sim2 is the same as the output of Fprep and FCoin in Π0. Since
Vj ∈ Hvir, the corrupted parties just follow the protocol to distribute the sharings for the servers emulating
Vj . From the correctness of the multiparty garbling process, the result [s1](2) is the same as [s1]

(2) from the
execution of Π0.

In addition, if R1 is an honest client, Sim2 doesn’t generate the shares for virtual servers in Hvir of each
[r

(α)
0,β ]

(3) first and then computes the shares for virtual servers in Hvir of each [r
(α)
s1,β

](3) by himself. Instead,

Sim2 generates [s1]
(2) first and then samples the whole sharing [r

(α)
s1,β

](3) based on the shares for virtual

servers out of Hvir of [r(α)s1,β
](3) and the secret r

(α)
s1,β

for each β = 1, . . . , c. Then, Sim2 computes the shares

for virtual servers in Hvir of [r
(α)
0,β ]

(3) based on their shares of [r
(α)
s1,β

](3), [s1]
(2), [r

(α)
1,β − r

(α)
0,β ]. Similarly, if

R1 is a virtual server in Hvir, Sim2 doesn’t generate the shares for virtual servers in Hvir of each [r
(α)
0,1 ]

(3)

first and then computes the shares for virtual servers in Hvir of each [r
(α)
s1,1

](3) by himself. Instead, Sim2

generates [s1]
(2) first and then samples the whole sharing [r

(α)
s1,1

](3) based on the shares for virtual servers
out of Hvir of [r(α)s1,1

](3) and the secret r
(α)
s1,1

. Then, Sim2 computes the shares for virtual servers in Hvir of
[r

(α)
0,1 ]

(3) based on their shares of [r(α)s1,1
](3), [s1]

(2), [r
(α)
1,1 − r

(α)
0,1 ]. Then for each virtual server Vj ∈ Hvir, Sim2

follows the computational process to compute each Y
Sj,β

a,s
Vj
1,a

in the protocol to compute each Y
Sj,β

a,s
Vj
1,a

with each

[r
(α)
s1,β

](3) generated by the honest clients and the first servers emulating virtual servers in Hvir being regarded

as [r
(α)
0,β ]

(3) + [s1]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β ]. For the other label Y Sj,β

a,1⊕s
Vj
1,a

, Sim2 still follows the protocol to compute

it.
Since the shares for virtual servers in Hvir of each [r

(α)
0,β ]

(3), [r
(α)
1,β − r

(α)
0,β ] generated by the honest clients

and the first servers emulating virtual servers in Hvir are sampled randomly based on the shares for virtual
servers out of Hvir and the secret in the last hybrid, their shares of [r(α)1,β ]

(3) = [r
(α)
0,β ]

(3)+[s1]
(2)⊗ [r

(α)
1,β−r

(α)
0,β ]

are also random based on the shares for virtual servers out of Hvir and the secret. Therefore, we only change
the order of generating the shares for virtual servers in Hvir of each [r

(α)
s1,β

](3) and [r
(α)
0,β ]

(3) generated by an
honest party without changing their distributions. Thus, Hyb20.1.1 and Hyb20.0 have the same distribution.

Hyb20.1.2: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 doesn’t follow the protocol to compute
the Sj,1’s shares of the garbled circuit for Circ

Vj

1 . Instead, for each wire w in Circ
Vj

1 that is not an input
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wire of the circuit and is not an output wire of an XOR gate or an output gate, Sim2 samples a random bit as
vw⊕λw and a random (κ−1)-bit string as kSj,1

w,vw⊕λw
. For each input wire of CircVj , Sim2 samples a random

(κ − 1)-bit string as k
Sj,1

w,vw⊕λw
. Then Sim2 computes λw = (vw ⊕ λw) ⊕ vw for these wires. For each wire

w in Circ
Vj

1 that is not an output wire of an output gate, Sim2 computes k
Sj,1

w,1⊕vw⊕λw
= k

Sj,1

w,vw⊕λw
⊕∆Sj,1 .

Since λw is a uniformly sampled bit, vw ⊕ λw is also a uniformly random bit. Therefore, we only change the
order of generating vw ⊕ λw and λw without changing their distributions. Similarly, if vw ⊕ λw = 1, we only
change the order of generating kw,0 and kw,1 without changing their distributions. If vw⊕λw = 0, we doesn’t
change anything on kw,0 and kw,1. Thus, Hyb20.1.2 and Hyb20.1.1 have the same output distribution.

Hyb20.1.3: In this hybrid, Sim2 maintains a set Q1. For each virtual server Vj ∈ Hvir, for each AND
gate g in Circ

Vj

1 with input wire a, b, and for the ciphertexts of this gate except those computed with
{kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1, Sim2 checks whether each query of the honest server Sj,1 to the random oracle O1

has been queried before. If true, Sim2 aborts the simulation. Otherwise, Sim2 adds the query to Q1. Note
that all the queries to the random oracle by the honest servers are distinct, and the adversary’s queries to the
random oracle before the encryption are fixed when the wire labels and the value ∆Sj,1 are generated. Since
each query made to the random oracle by Sj,1 contains either of the (κ−1)-bit strings kSj,1

a,1⊕va⊕λa
or kSj,1

b,1⊕vb⊕λb

with k
Sj,1

a,1⊕va⊕λa
− k

Sj,1

a,va⊕λa
= k

Sj,1

b,1⊕vb⊕λb
− k

Sj,1

b,vb⊕λb
= ∆Sj,1 which is uniformly random, the probability that

each query made by the adversary is one of the queries made by the honest server is negligible. Taking the
union bound of all the poly(κ) queries made by the adversary, the probability that some query has been
queried (either by the honest server or by the adversary) is negligible. Thus, the distributions of Hyb20.1.3

and Hyb20.1.2 are computationally indistinguishable.
Hyb20.1.4: In this hybrid, for each virtual server Vj ∈ Hvir, for each AND gate g in Circ

Vj

1 with input wire
a, b and output wire o, and for the ciphertexts of this gate except those computed with {kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1,

Sim2 samples random κ-bit strings as the ciphertexts and computes Sj,1’s shares of the additive sharings of
the ciphertexts based on the secrets and Sj,2, . . . , Sj,c’s shares. While emulating O1, for each i0, i1 ∈ {0, 1}
such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb), Sim2 computes the output of O1(k

Sj,1

a,i0
∥i0∥k

Sj,1

b,i1
∥i1∥1∥j∥i∥g) for each

i = 1, . . . , c based on the random strings and the wire labels of wire o. Note that the only difference between
Hyb20.1.4 and Hyb20.1.3 is the way we decide the output for queries in Q1. Since the ciphertext is randomly
sampled, the XOR of the ciphertext and the message m is also uniformly random for any κ-bit string m.
In particular, when Sim2 does not abort the simulation, queries in Q1 have not been queried before. Thus,
Hyb20.1.4 and Hyb20.1.3 have the same output distribution.

Hyb20.1.5: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 changes the order of sampling random
κ-bit strings as the ciphertexts of this gate except those computed with {kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1 and sampling

∆Sj,1 to decide the queries to O1. Since these two steps are both local computations, this doesn’t affect the
output distribution. Thus, Hyb20.1.5 and Hyb20.1.4 have the same output distribution.

Hyb20.1.6: In this hybrid, Sim2 maintains a set Q2. For each virtual server Vj ∈ Hvir, for each input
wire w of an output gate in Circ

Vj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, while computing
Sj,1’s share of ⟨ctSj,β

w,i2
⟩ for each β = 1, . . . , c, Sim2 checks whether the query made by Sj,1 to the random

oracle O2 has been queried before. If true, Sim2 aborts the simulation. Otherwise, Sim2 adds the query
to Q2. Note that each query made to the random oracle contains a (κ − 1)-bit string k

Sj,1

w,1⊕vw⊕λw
with

k
Sj,1

w,1⊕vw⊕λw
−k

Sj,1

w,vw⊕λw
= ∆Sj,1 , for the same reason in Hyb20.1.3, the probability that some query has been

queried (either by the honest server or by the adversary) is negligible. Thus, the distributions of Hyb20.1.6

and Hyb20.1.5 are computationally indistinguishable.
Hyb20.1.7: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate

in Circ
Vj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, Sim2 samples a random cℓκ-bit string as the
ciphertext ct

Sj,β

w,i2
and computes Sj,1’s shares of the additive sharing of the ciphertext based on the secret

and Sj,2, . . . , Sj,c’s shares. While emulating O2, Sim2 computes the output based on the random strings
and the output labels. Note that the only difference between Hyb20.1.7 and Hyb20.1.6 is the way we decide
the output for queries in Q2. Since ct

Sj,β

w,i2
is randomly sampled, ct

Sj,β

w,i2
⊕ m is also uniformly random for
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any cℓκ-bit string m. In particular, when Sim2 does not abort the simulation, queries in Q2 have not been
queried before. Thus, Hyb20.1.7 and Hyb20.1.6 have the same output distribution.

Hyb20.1.8: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj

1 , Sim2 doesn’t follow the protocol to compute Sj,1’s share of ⟨λw⟩. Instead, Sim2 computes it based
on λw and the corrupted servers’ shares of ⟨λw⟩. Since Sj,1’s share of ⟨λw⟩ are computed by his shares of
those wires that are not an output wire of an XOR gate or an output gate, where Sj,1’s share of ⟨λw⟩ is
generated based on λw and the corrupted servers’ shares of ⟨λw⟩. Therefore, for each input wire w of an
output gate, we just change the order of generating for each input wire w of an output gate and Sj,1’s share
of ⟨λw⟩. Thus, Hyb20.1.8 and Hyb20.1.7 have the same output distribution.

Hyb20.1.9: In this hybrid, if the receiver R1 of [s1](2) is a virtual server Vj ∈ Hvir and the β-th bit of s1 is
used as an input wire with index jβ in CircVj , when the honest server Sj,1 computes ct(1,1)jβ ,1⊕s1,β

, Sim2 checks
whether the query to the random oracle O1 has been queried before. If true, Sim2 aborts the simulation.
Otherwise, Sim2 adds the query to Q1. Since r1⊕s1,β ,β,1 is generated randomly in {0, 1}κ, the probability
that some query has been queried (either by the honest server or by the adversary) is negligible. Thus, the
distributions of Hyb20.1.9 and Hyb20.1.8 are computationally indistinguishable.

Hyb20.1.10: In this hybrid, if the receiver R1 of [s1](2) is a virtual server Vj ∈ Hvir and the β-th bit of
s1 is used as an input wire with index jβ in CircVj , Sim2 doesn’t follow the protocol to compute ct

(1,1)
jβ ,1⊕s1,β

.

Instead, Sim2 samples a random κ-bit string as ct
(1,1)
jβ ,1⊕s1,β

. While emulating O1, Sim2 computes the output

of O1(r1⊕s1,β ,β∥s1,β∥1∥1∥β∥jβ) based on ct
(1,1)
jβ ,1⊕s1,β

and k
wjβ

,1⊕v
Sj,1
wjβ

⊕λwjβ

∥(1⊕ vwjβ
⊕ λwjβ

). Note that the

only difference between Hyb20.1.10 and Hyb20.1.9 is the way we decide the output for queries in Q1. Since
ct

(1,1)
jβ ,1⊕s1,β

is randomly sampled, ct(1,1)jβ ,1⊕s1,β
⊕m is also uniformly random for any κ-bit string m. In particular,

when Sim2 does not abort the simulation, queries in Q1 have not been queried before. Thus, Hyb20.1.10 and
Hyb20.1.9 have the same output distribution.

Hyb20.1.11: In this hybrid, for virtual server Vj ∈ Hvir, Sim2 changes the order of sampling a random
κ-bit string as the ciphertext ct

(1,1)
jβ ,1⊕s1,β

and sampling r1⊕s1,β ,β,1 to decide the queries to O1. Since these
two steps are both local computations, this doesn’t affect the output distribution. Thus, Hyb20.1.11 and
Hyb20.1.10 have the same output distribution.

Hyb20.1.12: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 changes the order of sampling random
cℓκ-bit strings as the ciphertexts ct

Sj,β

w,i2
for each β = 1, . . . , c and each input wire w of an output gate in

Circ
Vj

1 , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw and sampling ∆Sj,1 to decide the queries to O2. Since
these two steps are both local computations, this doesn’t affect the output distribution. Thus, Hyb20.1.12

and Hyb20.1.11 have the same output distribution.
Note that for each virtual server Vj ∈ Hvir, ∆Sj,1 is not used before all the ciphertexts of the gates in

Circ
Vj

1 are generated. Sim2 delays the generating of ∆Sj,1 after the garbling of CircVj

1 is completed.
Similarly, for each γ = 2, . . . , rec we can define Hyb20.γ.1, . . . ,Hyb20.γ.12.
Hyb20.γ.1: In this hybrid, Sim2 additionally computes the share for each virtual server Vj ∈ Hvir of [sγ ](2)

by using the input labels associated with the input of Vj to evaluate the garbled gates of CircVj
γ following

Steps 5.(a) and 5.(b) of the evaluation phase. Here the input of Vj , i.e. the output of Fprep and Finput to the
receiver is shared by an additive sharing among Sj,1, . . . , Sj,c, and all the secrets of these sharings have been
computed by Sim2. We use these secrets as the input and preprocessing data to compute the input labels.
We denote the result of the computation be [sγ ](2). Note that the input of CircVj

γ completely comes from
the output of Fprep,Finput and the reconstructions of [s1](2), . . . , [sγ−1](2), and since [si](2) = [si]

(2) for each
i = 1, . . . , γ − 1 and the computation process of Sj ’s share of [sγ ](2) is the same in Π0 with Circ

Sj
γ , for the

same reason in Hyb20.1.1, the result [sγ ](2) is the same as [sγ ]
(2) from the execution of Π0.

In addition, if Rγ is an honest client, Sim2 doesn’t generate the honest virtual servers’ shares of each
[r

(α)
0,β ]

(3) first and then computes the shares for virtual servers in Hvir of each [r
(α)
sγ ,β

](3) by himself. Instead,

Sim2 generates [sγ ]
(2) first and then samples the whole sharing [r

(α)
sγ ,β

](3) based on the shares for virtual
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servers out of Hvir of [r(α)sγ ,β
](3) and the secret r

(α)
sγ ,β

for each β = 1, . . . , c. Then, Sim2 computes the shares

for virtual servers in Hvir of [r
(α)
0,β ]

(3) based on their shares of [r
(α)
sγ ,β

](3), [sγ ]
(2), [r

(α)
1,β − r

(α)
0,β ]. Similarly, if

Rγ is a virtual server in Hvir, Sim2 doesn’t generate the shares for virtual servers in Hvir of each [r
(α)
0,1 ]

(3)

first and then computes the shares for virtual servers in Hvir of each [r
(α)
sγ ,1

](3) by himself. Instead, Sim2

generates [sγ ]
(2) first and then samples the whole sharing [r

(α)
sγ ,1

](3) based on the shares for virtual servers

out of Hvir of [r(α)sγ ,1
](3) and the secret r

(α)
sγ ,1

. Then, Sim2 computes the shares for virtual servers in Hvir of

[r
(α)
0,1 ]

(3) based on their shares of [r(α)sγ ,1
](3), [sγ ]

(2), [r
(α)
1,1 − r

(α)
0,1 ]. Then for each virtual server Vj ∈ Hvir, Sim2

follows the computational process to compute each Y
Sj,β

a,s
Vj
1,a

in the protocol to compute each Y
Sj,β

a,s
Vj
1,a

with each

[r
(α)
sγ ,β

](3) generated by the honest clients and the first servers emulating virtual servers in Hvir regarded as

[r
(α)
0,β ]

(3) + [sγ ]
(2) ⊗ [r

(α)
1,β − r

(α)
0,β ]. For the other label Y Sj,β

a,1⊕s
Vj
γ,a

, Sim2 still follows the protocol to compute it.

For the same reason in Hyb20.1.1, Hyb20.γ.1 and Hyb20.(γ−1).12 have the same distribution.
Hyb20.γ.2: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 doesn’t follow the protocol to compute

the Sj,1’s shares of the garbled circuit for Circ
Vj
γ . Instead, for each wire w in Circ

Vj
γ that is not an input

wire of the circuit and is not an output wire of an XOR gate or an output gate, Sim2 samples a random
bit as vw ⊕ λw and a random (κ − 1)-bit string as k

Sj,1

w,vw⊕λw
. Then Sim2 computes λw = (vw ⊕ λw) ⊕ vw

for these wires. For each wire w in Circ
Vj
γ that is not an output wire of an output gate, Sim2 computes

k
Sj,1

w,1⊕vw⊕λw
= k

Sj,1

w,vw⊕λw
⊕∆Sj,1 . For the same reason in Hyb20.1.2, Hyb20.γ.2 and Hyb20.γ.1 have the same

output distribution.
Hyb20.γ.3: In this hybrid, for each virtual server Vj ∈ Hvir, for each AND gate g in Circ

Vj
γ with input wire

a, b, and for the ciphertexts of this gate except those computed with {kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1, Sim2 checks

whether each query of the honest server Sj,1 to the random oracle O1 has been queried before. If true,
Sim2 aborts the simulation. Otherwise, Sim2 adds the query to Q1. For the same reason in Hyb20.1.3, the
distributions of Hyb20.γ.3 and Hyb20.γ.2 are computationally indistinguishable.

Hyb20.γ.4: In this hybrid, for each virtual server Vj ∈ Hvir, for each AND gate g in Circ
Vj
γ with input wire

a, b and output wire o, and for the ciphertexts of this gate except those computed with {kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1,

Sim2 samples random κ-bit strings as the ciphertexts and computes Sj,1’s shares of the additive sharings of
the ciphertexts based on the secret and Sj,2, . . . , Sj,c’s shares. While emulating O1, for each i0, i1 ∈ {0, 1}
such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb), Sim2 computes the output of O1(k

Sj,1

a,i0
∥i0∥k

Sj,1

b,i1
∥i1∥1∥j∥i∥g) for each

i = 1, . . . , c based on the random strings and the wire labels of wire o. For the same reason in Hyb20.1.4,
Hyb20.γ.4 and Hyb20.γ.3 have the same output distribution.

Hyb20.γ.5: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 changes the order of sampling random
κ-bit strings as the ciphertexts of this gate except those computed with {kSj,i

a,va⊕λa
, k

Sj,i

b,vb⊕λb
}ci=1 and sampling

∆Sj,1 to decide the queries to O1. For the same reason in Hyb20.1.5, Hyb20.γ.5 and Hyb20.γ.4 have the same
output distribution.

Hyb20.γ.6: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj
γ , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, while computing Sj,1’s share of ⟨ctSj,β

w,i2
⟩ for each

β = 1, . . . , c, Sim2 checks whether the query made by Sj,1 to the random oracle O2 has been queried before.
If true, Sim2 aborts the simulation. Otherwise, Sim2 adds the query to Q2. For the same reason in Hyb20.1.6,
the distributions of Hyb20.γ.6 and Hyb20.γ.5 are computationally indistinguishable.

Hyb20.γ.7: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate
in Circ

Vj
γ , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw, Sim2 samples a random cℓκ-bit string as the

ciphertext ct
Sj,β

w,i2
and computes Sj,1’s shares of the additive sharing of the ciphertext based on the secret

and Sj,2, . . . , Sj,c’s shares. While emulating O2, Sim2 computes the output based on the random strings
and the output labels. For the same reason in Hyb20.1.7, Hyb20.γ.7 and Hyb20.γ.6 have the same output
distribution.
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Hyb20.γ.8: In this hybrid, for each virtual server Vj ∈ Hvir, for each input wire w of an output gate in
Circ

Vj
γ , Sim2 doesn’t follow the protocol to compute Sj,1’s share of ⟨λw⟩. Instead, Sim2 computes it based

on λw and the corrupted servers’ shares of ⟨λw⟩. For the same reason in Hyb20.1.8, Hyb20.γ.8 and Hyb20.γ.7

have the same output distribution.
Hyb20.γ.9: In this hybrid, if the receiver Rγ of [sγ ](2) is a virtual server Vj ∈ Hvir and the β-th bit of sγ is

used as an input wire with index jβ in CircVj , when the honest server Sj,1 computes ct(γ,1)jβ ,1⊕sγ,β
, Sim2 checks

whether the query to the random oracle O1 has been queried before. If true, Sim2 aborts the simulation.
Otherwise, Sim2 adds the query to Q1. For the same reason in Hyb20.1.9, the distributions of Hyb20.γ.9 and
Hyb20.γ.8 are computationally indistinguishable.

Hyb20.γ.10: In this hybrid, if the receiver Rγ of [sγ ](2) is a virtual server Vj ∈ Hvir and the β-th bit of
sγ is used as an input wire with index jβ in CircVj , Sim2 doesn’t follow the protocol to compute ct

(γ,1)
jβ ,1⊕sγ,β

.

Instead, Sim2 samples a random κ-bit string as ct
(γ,1)
jβ ,1⊕sγ,β

. While emulating O1, Sim2 computes the output

of O1(r1⊕sγ,β ,β∥sγ,β∥γ∥1∥β∥jβ) based on ct
(γ,1)
jβ ,1⊕sγ,β

and k
wjβ

,1⊕v
Sj,1
wjβ

⊕λwjβ

∥(1⊕ vwjβ
⊕ λwjβ

). For the same

reason in Hyb20.1.10, Hyb20.γ.10 and Hyb20.γ.9 have the same output distribution.
Hyb20.γ.11: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 changes the order of sampling a random

κ-bit string as the ciphertext ct
(γ,1)
jβ ,1⊕sγ,β

and sampling r1⊕sγ,β ,β,1 to decide the queries to O1. Since these
two steps are both local computations, this doesn’t affect the output distribution. Thus, Hyb20.γ.11 and
Hyb20.γ.10 have the same output distribution.

Hyb20.γ.12: In this hybrid, for each virtual server Vj ∈ Hvir, Sim2 changes the order of sampling random
cℓκ-bit strings as the ciphertexts ct

Sj,β

w,i2
for each β = 1, . . . , c and each input wire w of an output gate in

Circ
Vj
γ , and for all i2 ∈ {0, 1} such that i2 ̸= vw ⊕ λw and sampling ∆Sj,1 to decide the queries to O2. Since

these two steps are both local computations, this doesn’t affect the output distribution. Thus, Hyb20.γ.12

and Hyb20.γ.11 have the same output distribution.
Note that Hyb20.rec.12 is just Hyb20, we conclude that the distributions of Hyb20 and Hyb19 are

computationally indistinguishable.
Note that for each honest virtual server Vj ∈ HVir, ∆Sj,1 is not used before all the ciphertexts of the gates

in Circ
Vj
γ are generated. Sim2 delays the generating of ∆Sj,1 after the garbling of CircVj

γ is completed.
Also note that if Ri is an honest client, r(α)1⊕si,β

for α = 1, . . . , κ and β = 1, . . . , c are not used until the
whole garbled circuit of Vj is generated. Sim2 generates them after the whole garbled circuit is generated in
future hybrids to decide the set Q1.

Hyb21: In this hybrid, for each AND gate g in each virtual server Vj ∈ Hvir’s local circuit CircVj with
input wire a, b and output wire o, Sim2 doesn’t compute the output of O1 to the queries that are used to
generate these ciphertexts based on the random strings and the wire labels of wire o. For each output gate in
CircVj indexed 1, . . . , f.m with input wire w, Sim2 doesn’t compute the output of O2 to the queries that are
used to generate these ciphertexts based on the random strings and the output labels. Instead, Sim2 honestly
emulates the random oracles. In particular, Sim2 no longer checks whether the queries to the random oracles
to compute the ciphertexts for Vj have been queried before. We prove that the distributions of Hyb21 and
Hyb20 are computationally indistinguishable.

For the sake of contradiction, assume that there exists an adversary A1 such that Hyb21 and Hyb20 are
computationally distinguishable. Let Q1, Q2 be the set of queries to the random oracles O1,O2 respectively
when Sim2 is computing the cipher-texts for Vj that are randomly generated in the last hybrid. Now we
argue that, with non-negligible probability, at least one query in Q1 or Q2 has been queried. Suppose this is
not the case. Note that all queries in Q1 are distinct. Then, by assumption, with overwhelming probability,
no query in Q1 has been queried and all queries in Q1 are distinct. Similar for Q2. In this case, the only
difference between Hyb20 and Hyb21 is that we do not explicitly compute the output to each query in
Q1, Q2. Since no query in Q1, Q2 has been queried, this makes no difference in the output distribution.
Then it shows that Hyb21 and Hyb20 are computationally indistinguishable, which leads to a contradiction.

Thus, with non-negligible probability, at least one query in Q1 or Q2 has been queried in Hyb21. However,
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each query in Q1, Q2 either contains kw,1⊕vw⊕λw for a wire w in CircVj for some Vj ∈ Hvir or contains
r1⊕si,η,η,1 for some honest virtual server receiver Ri ∈ Hvir. Suppose a query contains kSj,1

w,1⊕vw⊕λw
for a wire

w in an honest server Sj ’s circuit CircVj . Since ∆Sj,1 is generated after the garbled circuit is generated,
and it is not used to compute any transcript sent to A, the queries are independent of ∆Sj,1 . Therefore,
k
Sj,1

w,1⊕vw⊕λw
= k

Sj,1

w,vw⊕λw
⊕∆Sj,1 only has 2−κ+1 · poly(κ) probability to be queried by A, which is negligible.

Similarly, if a query contains r1⊕si,η,η,1 for some honest virtual server receiver Ri ∈ Hvir, since r1⊕si,η,η,1 is
not used to compute any transcript sent to A before all the ciphertexts are generated, it can be generated
after the garbled circuit is generated, and thus the probability that it is queried by A is also negligible. Thus,
the distributions of Hyb21 and Hyb20 are computationally indistinguishable.

Note that for virtual server Vj ∈ Hvir, ∆Sj,1 is not used in the simulation, Sim2 doesn’t generate it in
future hybrids.

Also note that if Ri is an honest client, r(α)1⊕si,β
for α = 1, . . . , κ and β = 1, . . . , c are not used until Ri

receives si, {r(α)si,β
}κα=1 for each β = 1, . . . , c and does the verification on them. Sim2 delays the generation

of {r(α)1⊕si,β
}κα=1 for each β = 1, . . . , c after Ri receives si, {r(α)si,β

}κα=1 for each β = 1, . . . , c in future hybrids.

If Ri is a virtual server in Hvir, Sim2 doesn’t need {r(α)1⊕si,1
}κα=1 in the simulation, so Sim2 does not generate

them in future hybrids. Now all the shares for Sj,1 with Vj ∈ Hvir generated by an honest party in the
sharing phase are not used in the simulation, Sim2 doesn’t generate them in future hybrids.

Hyb22: In this hybrid, for each i = 1, . . . , rec with honest receiver Ri who is a client, Sim2 doesn’t follow
the protocol to check the values si and {r(α)si,β

}κα=1 for β = 1, . . . , c received from Pking. Instead, Sim2 checks

whether they are correctly sent. Note that when they are correctly sent, then r
(α)
si,β

= r
(α)
0,β +si ∗ (r(α)1,β−r

(α)
0,β)

must hold for each α = 1, . . . , κ and β = 1, . . . , c. Thus, the output only changes when si, {r(α)si,β
}κα=1

are not correctly sent but for each α = 1, . . . , κ it still holds that r
(α)
si = r

(α)
0,β + si ∗ (r(α)1,β − r

(α)
0,β) (by

the values received from Pking). Since when si is correctly sent, {r(α)si,β
}κα=1 is determined by the equation

r
(α)
si = r

(α)
0,β + si ∗ (r(α)1,β − r

(α)
0,β), the output only changes when a bit of si is not correctly sent. Assume that

it’s the η-th bit. Note that if the η-th bit of si is 0, then the η-th bit of r(α)si,β
is the η-th bit of r(α)1,β , which is

sampled randomly after r
(α)
0,β , r

(α)
1,β are received from Pking. Similarly, if the η-th bit of si is 1, then the η-th

bit of r(α)si,β
is the η-th bit of r(α)0,β , which is also sampled randomly. Thus, the output changes only when κ

randomly sampled bits are all guessed correctly by A. The probability is 2−κ, which is negligible. Thus, the
distributions of Hyb22 and Hyb21 are statistically close.

Note that if Ri is an honest client, we only need each r
(α)
si,β

and we don’t need r
(α)
0,β , r

(α)
1,β for β = 1, . . . , c for

the simulation, and we also don’t need honest servers’ shares of {[r(α)0,β ]
(3), [r

(α)
1,β − r

(α)
0,β ]}κα=1 for β = 1, . . . , c

in the simulation. Sim2 doesn’t generate them in future hybrids.
Hyb23: In this hybrid, since all the transcripts between honest and corrupted parties generated by Sim2

can be generated from the transcripts between honest and corrupted parties obtained in the execution of
Π0, Sim2 just runs Π0 first to obtain all the transcripts and then uses them to generate the output of Sim2.
In addition, honest clients don’t follow the protocol Π2 to compute their output. Instead, they follow Π0 to
get their output. Since the value si sent from Pking to each honest client in Π2 is the same as the value si
in Π0, and the preprocessing and input data of Π0,Π2 is also the same, the computation of honest clients’
outputs in the two protocols is completely the same. Therefore, we only change the way of generating the
output of Sim2 without changing their distributions. Thus, Hyb23 and Hyb22 have the same distribution.

Hyb24: In this hybrid, Sim2 doesn’t run Π0 to get the transcripts between honest and corrupted parties
in Π0 and use them to all the transcripts between honest and corrupted parties in Π2. Instead, note that each
output of Fprep and FCoin to the receiver (which is a virtual server, say Vj) is shared by an additive sharing
among Sj,1, . . . , Sj,c, and all the secrets of these sharings have been computed by Sim2. We can regard the
secrets as the messages sent between honest and corrupted parties in Π0. In this way, Sim2 constructs an
adversary A′ in Π0 that interacts with honest parties in Π0 with the secrets of these additive sharings while
interacting with Fprep,FCoin and then follows the protocol in the evaluation phase of Π0. Sim2 invokes Sim0
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with A′ to get the transcripts between honest and corrupted parties in Π0. In addition, honest clients get
their outputs from F instead of following Π0 to compute them. From the requirements of Π0, the joint
distribution of transcripts between honest and corrupted parties in Π0 and the honest clients’ output in Π0

is computationally indistinguishable from the joint distribution of the output of Sim0 and honest clients’
output from F . Thus, the distributions of Hyb24 and Hyb23 are computationally indistinguishable.

Note that Hyb24 is the ideal-world scenario, Π2 computes F with computational security.

J.4 Cost Analysis for Π2

J.4.1 Analysis of Communication Complexity

Sharing Phase. We analyze the communication cost of the sharing phase step by step as follows:

Determining the Virtual Servers: This step only contains interaction with FCoin. The instantiation
of FCoin requires communication of O((m+ n)2κ) bits.

Emulating Fprep:

1. Transforming the Circuit. This step only contains local computation and requires no communica-
tion.

2. Preparing Random Sharings. In this step, each server generates 10WNℓ/(ank2ϵ) = O(|C ′|/(nN log n))

random Σ
(2)
×a-sharings, where each share is additively distributed to c servers. The size of each sharing

is caNℓ2 = O(N log n). Thus, the total cost is O(|C ′|).

3. Preparing Zero Sharings. In this step, each server generates 10WN/(ank2ϵ) + WO/(ankϵ) =

O(|C ′|/(nN log n)) random Σ
(2)
×a-sharings with all-zero secrets, where each share is additively dis-

tributed to c servers. The size of each sharing is O(N log n). Thus, the total cost is O(|C ′|).

4. Preparing Masks for Output Sharings. In this step, the clients need to send a Σ-sharing of size
O(N) for each batch of k = O(N) output wires, where each share is additively distributed to c servers.
The communication is linear to the number WI of input wires of C ′, i.e. O(|WI |) < O(|C ′|) bits.

5. Preparing Masks for Transpose Protocols. In this step, the servers distributes 10cWN/k2 =
O(|C ′|/N) Σ(2)-sharings of size O(N), where each share is additively distributed to c servers. Thus,
the communication cost of this step is O(|C ′|).

6. Preprocessing for the Verification of Sharings. In this step, the servers distributes n Σ×κ′ -
sharings and 2n Σ

(2)
×κ′ -sharings of size O(Nκ′), where each share is additively distributed to c servers.

Thus, the communication cost of this step is O(nNκ′).

Emulating Finput:

• In this step, for each group of k = O(N) input wires of C ′, a client needs to distribute a Σ-sharing of
O(N) bits, where each share is additively distributed to c servers. Thus, the communication cost of
this step is O(|WI |) < O(|C ′|) bits.

Preparing for the Garbling of Local Circuits:

1. Calling FROT. This step only contains interaction with FROT. The total number of instances of ROTs
is c2 · (4(c+ 1)GA + 2Ncℓ2rec) = O(|C ′|).

2. Preparing for the Output Labels. In this step, for each i = 1, . . . , rec, each receiver of a Σ(2)-
sharing in Π0 needs to distribute cκ Σ(3)-sharings and cκ Σ-sharings, where each share is additively
distributed to c servers. Thus, the communication cost of this step is O(cℓκ ·CCΠ0

eval) = O(CCΠ0

eval), where
CCΠ0

eval is the communication cost of the evaluation phase of Π0 running by m clients and N servers.
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3. Generating Local Randomness. This step only contains local computation and requires no com-
munication.

Committing Local Inputs:

• This step only contains interaction with FCommit. Each commitment is of length O(κ). The total
number of invocations to FCommit is cN , and they can be done in parallel. Thus, sending them to all
the servers and letting them cross-check on them leads to O(nNκ) bits of communication.

Local Computation Phase. This phase only contains local computation of real-world servers and requires
no communication.

Garbing Phase. We analyze the communication cost of the garbling phase step by step as follows:

1. Computing Output Labels. This step only contains local computation and requires no communi-
cation.

2. Garbling Local Circuits. In this step, communication only happens during the executions of ΠMult.
The communication cost of each execution of ΠMult is O(κ), and the servers need to run ΠMult O(|C ′|)
times, resulting in a total communication of O(|C ′|κ) bits.

3. Masking Input Wire Values. In this step, the servers needs to open DS bits of values (recall that
DS is the size of outputs from Fprep and Finput in Π0). Opening each bit requires c2 = O(1) bits of
communication. Thus, the total communication of this step is O(DS).

Verification Phase. We analyze the communication cost of the verification phase step by step as follows:

1. Verification of the Sharings. In this step, the servers first need to call FCoin, which requires O(n2κ′)-
bit communication. Then the servers need to send an additive sharing of each virtual server Vα’s share
of a Σ×κ′ -sharing and two Σ

(2)
×κ′-sharings to all the servers, which needs n(ℓ+ 2ℓ2) ·Ncκ′ = O(nNκ′)

for all the servers. In addition, each server needs to send a result from O1 to all the servers, which
requires O(n2κ) bits of communication. Thus, the total communication cost of this step is O(nNκ′).

2. Verification of Local Computation. In this step, each server needs to send a set of N/16n virtual
servers to all the servers and let them do a cross-check on the set, which requires O(n2·(N/16n)·logN) =
O(nN logN) bits of communication. Besides, for each server S, the communication messages during
the local computation of virtual servers in VerS need to be sent to S, which requires communication
of O(|C ′|κ/n) bits. The committed input of Sj,1, . . . , Sj,c to the local computation of each Vj ∈ VerS

should also be opened to S, which requires O(DS/n) bits. To sum up, the total communication cost
of this step is O(|C ′|κ+ DS+ nN logN).

Evaluation Phase. We analyze the communication cost of the evaluation phase step by step as follows:

1. Sending Output Masks. In this step, for each output wire of a virtual server’s local circuit, the
servers emulating the virtual server need to send a bit to Pking. The total number of output wires is
O(CCΠ0

eval). Thus, the communication of this step is O(CCΠ0

eval).

2. Encrypting Input Labels. In this step, for each reconstruction of Σ(2)-sharings to a virtual server
receiver, the virtual server needs to send 2ck = O(N) ciphertexts of O(κ) bits to Pking, resulting in
communication of O(κ · CCΠ0

eval) bits.

3. Sending Input Labels. In this step, for each input wire of a virtual server’s local circuit whose value
does not come from reconstructions, the servers emulating the virtual server need to send κ bits to
Pking. The total number of such input wires is DS. Thus, the total communication cost of this step is
O(DS · κ).
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4. Sending Garbled Circuits. In this step, the virtual servers send their garbled circuits to Pking.
Similar as in Π′

1, the total garbled circuit size is O((DS + GA) · κ + κ · CCΠ0

eval). Each element of the
garbled circuits is shared among c servers, which leads to a c = O(1) multiplication overheads. Thus,
the communication of this step is still O((DS+GA) · κ+ κ · CCΠ0

eval).

5. Evaluating the Circuit. This step only contains local computation and requires no communication.

6. Sending Outputs. In this step, the communication comes from cκ secrets of Σ(3)-sharings and a
secret of a Σ(2)-sharing for each reconstruction of a Σ(2)-sharing with client receiver in the evaluation
phase of Π0. The size of cκ secrets of Σ(3)-sharings and a secret of a Σ(2)-sharing is O(kκ) = O(Nκ)
while the size of a Σ(2)-sharing is O(Nℓ2). Thus, the communication cost of this step is O(κCCΠ0

eval).

Taking CCΠ0

eval = O(|C ′|) = O(|C|+DN2+mN) and DS = O(|C ′|) from the analyze of Π0, and taking N =

O(n+κ), κ′ = N+κ, the total communication cost CCΠ2 of Π2 is O(|C|κ+D(n+κ)2κ+m(n+κ)κ+n3+m2κ)
plus O(|C|+D(n+ κ)2 +m(n+ κ)) instances of ROT of message length O(κ).

J.4.2 Analysis of Rounds

We analyze the number of rounds we need in Π2 as follows:

Sharing Phase. All the parties first need 2 rounds to agree on the random coin to determine the virtual
servers. Then, all the sharings can be generated in parallel, and the servers can also call FROT after the
virtual servers are determined. After getting all the shares and all outputs from FROT, the servers need
another 2 rounds to send their commitments and cross-check on them. Thus, the sharing phase requires
RROT + 4 rounds, where RROT is the number of rounds needed for an instance of random OT with message
length κ− 1.

Local Computation Phase. This phase only contains local computation of real-world servers and requires
no communication rounds.

Garbling Phase. In the garbling phase, the servers emulating each virtual server need to jointly compute
two layers of multiplications of additive sharings for each AND gate and one layer of multiplications for
each output gate. The servers also need to open λw ⊕ vw for each input wire w of the local circuit. The
multiplications for all the gates and the opening of input wire values can be performed in parallel. Each
multiplication only requires one round, and the opening of an additive sharing also requires one round, so
the garbling phase requires 2 rounds.

Verification Phase. In the verification phase, the servers first need to agree on a random coin, which
requires 2 rounds of communication, where the first round can be performed in parallel with the sharing
phase. Then, the servers emulating each virtual server should send the secrets of three additive sharings to all
the servers, which needs one round. After that, the servers use one round to cross-check the sharings. Thus,
the verification of sharings requires 3 rounds in total. Note this step can be performed in parallel with the
garbling phase, we only need 1 additional round. Then, the servers need to verify the local computations of
the virtual servers. Each server should first send a set and then let the servers cross-check on it, which needs
two rounds. Then, the opening of commitments, the messages during the local computation of local servers,
and the shares generated in the sharing phase can be sent together in one round. Thus, the verification
phase requires 4 additional rounds in total.

Evaluation Phase. In the evaluation phase, the output masks, the ciphertexts, the input labels, and the
garbled circuits can be sent in parallel (i.e. Steps 1-4 can be done in one round). Then, another round is
required to let the evaluator send outputs to the clients. Thus, the evaluation phase requires 2 rounds.
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To sum up, the total number of rounds we need in Π2 is 12+RROT, where RROT is the number of rounds
needed for an instance of random OT with message length κ− 1.

K Corollary in the Standard Honest Majority Setting
Note that we may view the standard honest majority setting as a special case of the dishonest majority
setting. Then, to remove the assumption of oblivious transfers in Theorem 2, we utilize the technique
of [SY25] that makes use of a generic honest majority MPC protocol to help each pair of parties prepare a
small number of OTs so that these two parties may use the OT extension technique [IKNP03, KOS15] to
generate a sufficient number of ROTs.

We first give the functionality FOT of the OTs.

The trusted party interacts with two parties P1, P2.

1. For each i = 1, . . . , ℓ, the trusted party receives two messages v0,i, v1,i ∈ {0, 1}κ from P1 and κ bits
xi ∈ {0, 1} from P2.

2. For each i = 1, . . . , ℓ, the trusted party sends vxi,i to P2.

Functionality FOT(κ, ℓ)

Figure 38: Functionality for ℓ oblivious transfers.

We can instantiate FOT(κ, κ) by using the DN protocol with malicious security in the honest majority
setting [CGH+18] with information-theoretic security. We sketch the protocol as follows.

1. For each i = 1, . . . , κ, P2 shares its choice bit xi by a degree-t Shamir secret sharing as [xi]t to all
parties.

2. For each i = 1, . . . , κ, all parties invoke DN protocol to compute their shares of [xi · (xi − 1)]t and
reconstruct the output to P1 who checks whether the reconstructed result equals 0. If not, P1 aborts
the protocol.

3. For each i = 1, . . . , κ, P1 secret shares its two messages v0,i, v1,i as [v0,i]t, [v1,i]t to all parties.

4. For each i = 1, . . . , κ, all the parties invoke DN protocol to compute their shares of [zi]t with zi =
v0,i · (1− xi) + v1,i · xi.

5. For each i = 1, . . . , κ, all the parties sends their shares of [zi]t to P2 for reconstruction.

The communication complexity of this part is O(nκ2+n2κ) bits and the number of rounds is 13 for every
pair of two parties assuming we use DN protocol with malicious security in [CGH+18].

With FOT(κ, κ) as base-OTs at hand, we take advantage of the result in [KOS15] which extends κ OT
correlations to any number of OT correlations with the same message length between two parties with
malicious security. The communication complexity of realizing FOT(κ, ℓ) between two parties is O(ℓκ) bits
plus one invocation of FOT(κ, κ) and the number of rounds required is 3 plus the number rounds needed for
realizing FOT(κ, κ).

Note that for ℓ instances of FROT between P1 and P2, we only need to ask P1 to send random vectors
and ask P2 to send random bits to FOT(κ, ℓ). In the above way, to realize the O(|C|+D(n+ κ)2) instances
of FROT with message length O(κ) required in Π2, we need communication of O(|C|κ+D(n+κ)2κ) bits and
the number of rounds is RROT = 16. As a result, we obtain the following corollary.

Corollary 1. Assuming random oracles, there exists a computationally secure 28-round MPC protocol
against a fully malicious adversary controlling up to (n − 1)/2 parties with communication of O(|C|κ +
D(n + κ)2κ + n3) bits, where |C| is the circuit size, D is the circuit depth, and κ is the computational
security parameter.
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Remark 4. The protocol in [BGH+23] requires a round complexity of 31 plus a constant parameter that
defines the error distribution of LPN in the strong honest majority setting. Compared to them, we achieve a
better round complexity.
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