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Abstract

A secret sharing scheme starts with a secret and then derives from it certain shares (or shadows) which are distributed to users.
The secret may be recovered only by certain predetermined groups. In case of compartmented secret sharing, the set of users is
partitioned into compartments and the secret can be recovered only if the number of participants from any compartment is greater
than or equal to a fixed compartment threshold and the total number of participants is greater than or equal to a global threshold.
In this paper we use the Chinese Remainder Theorem for Polynomial Rings in order to construct an ideal compartmented secret
sharing scheme, inspired by the work from [20].
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1 Introduction and Preliminaries

A secret sharing scheme starts with a secret and then derives from it certain shares (shadows) which are
distributed to users. The secret may be recovered only by certain predetermined groups. The initial applications
of secret sharing were safeguarding cryptographic keys and providing shared access to strategical resources.
More recently, secret sharing schemes are used as building blocks in threshold cryptographic schemes or in
some e-voting schemes. The reader is referred to [6] for excellent recent survey on secret sharing.

In the first secret sharing schemes only the number of the participants in the reconstruction phase was
important for recovering the secret. Such schemes have been referred to as threshold secret sharing schemes.
We mention Shamir’s threshold secret sharing scheme [16] based on polynomial interpolation, Blakley’s geo-
metric threshold secret sharing scheme [3], Mignotte’s threshold secret sharing scheme [12] and Asmuth-Bloom
threshold secret sharing scheme [1], both based on the Chinese remainder theorem (CRT). The popularity of
CRT-based secret sharing schemes has recently grown due to some interesting recent papers, as [20], [19], [8],
[13] (see also [17] for an excellent recent survey on modular (CRT-based) secret sharing).

In case of compartmented secret sharing, the set of users is partitioned into compartments and the secret
can be recovered only if the number of participants from any compartment is greater than or equal to a fixed
compartment threshold, and the total number of participants is greater than or equal to a global threshold.

The paper is organized as follows. The rest of this section is dedicated to the Chinese remainder theorem
over polynomial rings. In Section 2, after a brief introduction to secret sharing, we present an ideal threshold
secret sharing scheme based on the Chinese remainder theorem for polynomial rings from [13], which will be the
base of our proposed ideal compartmented secret sharing scheme from Section 3 . The last section concludes
the paper.

The Chinese remainder theorem has many applications in computer science (see [7] for a survey on this
topic). We only mention its applications to the RSA decryption algorithm as proposed by Quisquater and
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Couvreur [15], the discrete logarithm algorithm as proposed by Pohlig and Hellman [14], and the algorithm for
recovering the secret in Mignotte’s threshold secret sharing scheme [12] or in Asmuth-Bloom threshold secret
sharing scheme [1].

We include next only the standard version of the Chinese remainder theorem for polynomial rings over
finite fields:

Theorem 1.1 Let k ≥ 2, m1(x), . . . ,mk(x) pairwisely coprime polynomials over a finite field, and b1(x), . . . , bk(x)
some arbitrary polynomials over the same finite field. Then the system of equations

X(x) ≡ b1(x) mod m1(x)
...

X(x) ≡ bk(x) mod mk(x)

has a unique solution of degree less than the sum of the degrees of m1(x), . . . ,mk(x).

This solution can be obtained as

X(x) = (

k∑
i=1

ci(x) · si(x)) mod m1(x) · · ·mk(x),

where ci(x) =
m1(x)···mk(x)

mi(x)
and si(x) = (ci(x) mod mi(x))

−1 · bi(x) mod mi(x), for all 1 ≤ i ≤ k.

2 Threshold Secret Sharing Schemes Based on the Chinese Remainder Theorem

We present first some basic facts about secret sharing schemes. The reader is referred to [6] for a survey
on this topic. Suppose we have n users labeled with the numbers 1, . . . , n and consider a set of groups
A ⊆ P({1, 2, . . . , n}). Informally, an A-secret sharing scheme is a method of generating (S, (I1, . . . , In)) such
that

• for any A ∈ A, the problem of finding the element S, given the set {Ii | i ∈ A}, is ”easy”;
• for any A ∈ P({1, 2, . . . , n}) \ A, the problem of finding the element S, given the set {Ii | i ∈ A}, is
intractable.

The set A will be referred to as the authorized access structure or simply as the access structure, S will be
referred to as the secret and I1, . . . , In will be referred to as the shares (or the shadows) of S. The elements of
the set A will be referred to as the authorized groups.

In a perfect secret sharing scheme, the shares of any unauthorized group give no information (in information-
theoretical sense) about the secret. Karnin, Greene, and Hellman [11] have proved, using the concept of entropy,
that in any perfect threshold secret sharing scheme, the shares must be at least as long as the secret and, later
on, Capocelli, De Santis, Gargano, and Vaccaro [5] have extended this result to the case of any perfect secret
sharing scheme. In an ideal secret sharing scheme, the shares are as long as the secret.

A natural condition is that an access structure A is monotone ([2]), i.e.,

(∀B ∈ P({1, 2, . . . , n}))((∃A ∈ A)(A ⊆ B) ⇒ B ∈ A).

Any monotone access structure A is well specified by the set of the minimal authorized groups, i.e., the set
Amin = {A ∈ A|(∀B ∈ A\ {A})(¬B ⊆ A)}. Also, the unauthorized access structure A, A = P({1, 2, . . . , n}) \
A, is well specified by the set of the maximal unauthorized groups, i.e., the set Amax = {A ∈ A|(∀B ∈
A \ {A})(¬A ⊆ B)}.

An important particular class of secret sharing schemes is that of the threshold secret sharing schemes. In
these schemes, only the cardinality of the sets of shares is important for recovering the secret. More exactly, if
the required threshold is k, 2 ≤ k ≤ n, the minimal access structure isAmin = {A ∈ P({1, 2, . . . , n}) | |A| = k}.
In this case, an A-secret sharing scheme will be referred to as an (k, n)-threshold secret sharing scheme.

2.1 The Polynomial Variant of the Asmuth-Bloom Scheme

Next we present the scheme of Ning et al. [13], which is in fact a polynomial variant of the Asmuth-Bloom
Scheme. This variant uses sequences of pairwisely coprime polynomials p0(x) = xd0 , p1(x), . . . , pn(x) over a
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finite field, of degrees d0, d1, . . . , dn ≥ 1 such that:

d0 ≤ d1 ≤ d2 ≤ · · · ≤ dn, and

d0 +

n∑
i=n−k+2

di ≤
k∑

i=1

di.

• The secret S(x) is chosen as a random polynomial over the same finite field, of degree less than or equal to
d0 − 1 ;

• The shares Ii(x) are chosen as Ii(x) = (S(x) + γ(x) · p0(x)) mod pi(x), for all 1 ≤ i ≤ n, where γ(x) is a

random polynomial over the same finite field of degree less than or equal to (
∑k

i=1 di) − d0 − 1 (thus, the

degree of the polynomial S(x) + γ(x) · p0(x) is less than
∑k

i=1 di) ;

• Given k distinct shares Ii1(x), . . . , Iik(x), the secret S(x) can be obtained as S(x) = f(x) mod p0(x), where
f(x) is obtained, using the polynomial variant of the Chinese remainder theorem, as the unique solution
modulo pi1(x) · · · pik(x) of the system 

X(x) ≡ Ii1(x) mod pi1(x)
...

X(x) ≡ Iik(x) mod pik(x)

The authors have proven in [13] that the above threshold secret sharing scheme is perfect and, by choosing
d0 = d1 = · · · dn, the scheme also achieves idealness.

3 Ideal Compartmented Secret Sharing Based on the Polynomial Chinese Re-
mainder Theorem

In case of compartmented secret sharing, the set of users is partitioned into compartments and the secret
can be recovered only if the number of participants from any compartment is greater than or equal to a fixed
compartment threshold, and the total number of participants is greater than or equal to a global threshold. The
compartmented secret sharing has been discussed for the first time by Simmons in [18]. He has presented the
example of an official action that requires that at least two U.S. members and at least two U.S.S.R. members
be simultaneously present for its initiation.

The compartmented access structures can be introduced as follows.

Definition 3.1 Let C = {C1, C2, . . . , Cm} be a partition of C0 = {1, 2, . . . , n} and consider a sequence K =
{k0, k1, k2, . . . , km}, where kj ≤ |Cj |, for all 0 ≤ j ≤ m, and

∑m
j=1 kj ≤ k0. The (C,K)-compartmented access

structure is given by
A = {A ∈ P({1, 2, . . . , n}) |(∀j = 0,m)(|A ∩ Cj | ≥ kj)}.

In this case, an A-secret sharing scheme will be referred to as a (C,K)-compartmented secret sharing scheme.
The sets C1, C2, . . . , Cm will be referred to as the compartments of the scheme, the values k1, k2, . . . , km as the
compartment thresholds and k0 as the global threshold of the scheme.

Brickell [4] proposed an elegant solution for the case k0 =
∑m

j=1 kj by expressing the secret S as a combina-

tion of some compartment secrets s1, . . . , sm and using an (kj , |Cj |)-threshold secret sharing scheme for obtain-
ing the shares {Ii|i ∈ Cj} corresponding to the compartment secret sj , for all 1 ≤ j ≤ m. In the reconstruction
phase, if the number of participants from the jth compartment is greater than or equal to kj , for all 1 ≤ j ≤ m,
then all compartment secrets can be recovered and, thus, the secret S can be obtained (remark that in this case
the compartmented access structure can be simplified to {A ∈ P({1, 2, . . . , n}) | (∀j = 1,m)(|A ∩ Cj | ≥ kj)}).

Ghodosi, Pieprzyk, and Safavi-Naini proposed an efficient scheme for the general case in [9].
Compartmented secret sharing based on the Chinese remainder theorem on integers has been discussed in

[10] or [19], but these versions are not perfect or ideal. On our best knowledge, ideal compartmented secret
sharing based on the Chinese remainder theorem on polynomials has not been yet discussed in the literature.
In fact, Yang et al. have left this issue as an open problem in their paper on hierarchical secret sharing [20].
We combine the approach from [10] with their approach as it will be described next. We will consider only the
compartmented case

∑m
j=1 kj < k0 (the case

∑m
j=1 kj = k0 is completely covered by Brickell’s approach).
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Let us assume that, for any 0 ≤ j ≤ m, that Cj = {uj
1, . . . , u

j
|Cj |}. Let us remark that any user 1 ≤ i ≤ n

belongs to C0 (as u0
i ) and also to an another Ccomp(i), for an unique 1 ≤ comp(i) ≤ m (as u

comp(i)
pos(i) , where

1 ≤ pos(i) ≤ |Ccomp(i)| denotes the unique order number of the user i in the unique compartment Ccomp(i) to

which i belongs to). Thus, in case j ≥ 1, i = uj
l is equivalent with j = comp(i) and l = pos(i) (i.e., we have

also i = u
comp(i)
pos(i) ).

• The dealer generates the secret S(x) as a random polynomial over some finite field, of degree less than or
equal to d0 − 1 , for an arbitrary d0 ≥ 1 and sets p0(x) = xd0 ;

• For each 1 ≤ j ≤ m, the dealer generates Sj(x) as a random polynomial over the same finite field, also of
degree less than or equal to d0 − 1 , and set S0(x) = S(x)− (

∑m
j=1 Sj(x)) (let us remark that S0(x) has also

the degree less than or equal to d0 − 1);

• For each 0 ≤ j ≤ m, the dealer generates a sequence of integers dj
uj
1

, . . . dj
uj
|Cj |

such that

d0 ≤ dj
uj
1

≤ dj
uj
2

≤ · · · ≤ dj
uj
|Cj |

, and

d0 +

n∑
l=|Cj |−kj+2

dj
uj
l

≤
kj∑
l=1

dj
uj
l

;

• Then, for each 0 ≤ j ≤ m and for each uj
l ∈ Cj , the dealer generates some pairwisely coprime polynomials

pj
uj
l

(x) of degree dj
uj
l

over the same field, all with the free coefficient different than 0 (thus, they will be all

also coprime with the polynomial p0(x));

• For each 1 ≤ j ≤ m and for each uj
l ∈ Cj , the dealer generates the share Iuj

l
(x) as

Iuj
l
(x) = (Sj(x) + γj(x) · p0(x)) mod pj

uj
l

(x),

where γj(x) is a random polynomial over the same finite field of degree less than or equal to (
∑kj

l=1 d
j

uj
l

)−d0−1

(thus, the degree of the polynomial Sj(x) + γj(x) · p0(x) is less than
∑kj

l=1 d
j

uj
l

), for all 1 ≤ j ≤ m);

• The dealer also generates γ0(x), a random polynomial over the same finite field of degree less than or equal

to (
∑k0

i=1 d
0
u0
i
)− d0 − 1 (thus, the degree of the polynomial S0(x) + γ0(x) · p0(x) is less than

∑k0

i=1 d
0
u0
i
), and

computes
ti(x) = (S0(x) + γ0(x) · p0(x)) mod p0u0

i
(x),

for all 1 ≤ i ≤ n;

• For any 1 ≤ i ≤ n, the dealer publishes pubi(x) = (ti(x)− Ii(x)) mod p0
u0
i
(x);

In this point, some remarks are required for a better understanding. Each user i = u
comp(i)
pos(i) = uj

l receives

a single share, Ii(x) = I
u
comp(i)

pos(i)

(x) (or, equivalently, Ii(x) = (Scomp(i)(x) + γcomp(i)(x) · p0(x)) mod p
comp(i)
i (x))

and for each user i, an information is published, namely pubi(x) = (ti(x) − Ii(x)) mod p0i (x) (where ti(x) =
(S0(x) + γ0(x) · p0(x)) mod p0i (x)), for all 1 ≤ i ≤ n. The same approach of publishing some informations is
used in [20].

For the reconstruction of the secret in the case of a (minimal) authorized set A, the next steps are required:

• For each 1 ≤ j ≤ m, the polynomial Sj(x) is recovered, using the polynomial variant of the Chinese remainder

theorem, as fj(x) mod p0(x), where fj(x) is the unique solution modulo
∏

i∈Aj
pji (x) of the system{

X(x) ≡ Ii(x) mod pji (x), i ∈ Aj

for an arbitrary set Aj ⊆ (A ∩ Cj) such that |Aj | = kj (such an Aj certainly exists because A is an
authorized set);
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• Then, the polynomial S0(x) is recovered, using the polynomial variant of the Chinese remainder theorem, as
f0(x) mod p0(x), where f0(x) is the unique solution modulo

∏
i∈A0

p0i (x) of the system

{
X(x) ≡ (Ii(x) + pubi(x)) mod p0i (x), i ∈ A0

for an arbitrary set A0 ⊆ A such that |A0| = k0 (such an A0 certainly exists because A is an authorized
set);

• Finally, the secret S(x) is recovered as
∑m

j=0 Sj(x)

The correctness of the scheme is obvious, resulting from the correctness of each threshold secret sharing
scheme used as a building block.

The same argument can be used for proving the perfectness of the scheme. Ning et al. have proven that
the polynomial variant of Asmuth-Bloom threshold secret sharing scheme is perfect in [13]. Our scheme is, in
fact, a composition (an addition) of such perfect threshold schemes and, therefore, is perfect itself. A similar
result to Theorem 3.3 from [20] can be easily formulated and proven.

For achieving idealness, we may choose to set all members of all the sequences dj
uj
1

, . . . dj
uj
|Cj |

equal to d0.

The same idea is used in [20] to achieve idealness in their hierarchical scheme.
Example 3.2 illustrates the proposed construction.

Example 3.2 (with artificial small parameters)

Let us consider n = 6, C0 = {1, 2, 3, 4, 5, 6}, m = 2, C1 = {1, 2, 3} = {u1
1, u

1
2, u

1
3}, C2 = {4, 5, 6} =

{u2
1, u

2
2, u

2
3}, the compartment thresholds k1 = 2, k2 = 2 and the global threshold k0 = 5.

The dealer chooses to use the polynomial ring over the finite field Z7 as domain. The dealer then generates
the secret S(x) = 2x4 + 5x3 + 4x2 + 3x+ 5 ∈ Z7[X] and as a result sets d0 = 5 and p0(x) = x5. The following
secrets are randomly generated, corresponding to each compartment:

S1(x) = x4 + 5x3 + 4x2 + x+ 6

S2(x) = 2x4 + 6x3 + 2x2 + 5x+ 6

from which S0(x) is determined:

S0(x) = S(x)−
m∑
j=1

Sj(x) = 6x4 + x3 + 5x2 + 4x

The dealer then sets dj
uj
l

= d0 = 5, for each 0 ≤ j ≤ 2 and uj
l ∈ Cj .

• For each 0 ≤ j ≤ 2 and uj
l ∈ Cj , the dealer generates the following polynomials pj

uj
l

, pairwisely coprime for

the same j and all coprime with p0(x) = x5:

p1
u1
1
(x) = 4x5 + 5x4 + 4x3 + 4x+ 5

p1
u1
2
(x) = 3x5 + 5x4 + 4x3 + 6x2 + 6x+ 2

p1
u1
3
(x) = x5 + 4x4 + 3x3 + 2x2 + 6x+ 2

p2
u2
1
(x) = 3x5 + x4 + 5x2 + 4x+ 3

p2
u2
2
(x) = 2x5 + 2x4 + 5x3 + 2x2 + 3x+ 6

p2
u2
3
(x) = 5x5 + x4 + 6x3 + 5x2 + 3x+ 4

as well as randomly generating γ1(x) = 3x4 + 5x3 + 2x2 + 5x+ 3 and γ2(x) = x4 + 4x+ 3.
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Then, the dealer computes the shares and distributes Iuj
i
(x):

Iu1
1
(x) = 5x4 + x3 + 2x2 + 5x+ 5

Iu1
2
(x) = 2x4 + 4x3 + 6x2 + 4x

Iu1
3
(x) = 5x4 + 5x3 + 4x2 + 2x+ 5

Iu2
1
(x) = 3x4 + 4x3 + 6x2 + 2x+ 5

Iu2
2
(x) = x4 + 2x2 + 3

Iu2
3
(x) = 4x4 + 5x3 + 2x+ 2

• Corresponding to the global part of the secret, S0(x), the dealer also generates the coprime pairwise sequence
of polynomials, which are also coprime with p0(x):

p0
u0
1
(x) = x5 + 2x4 + 6x3 + 2x2 + 1

p0
u0
2
(x) = 2x5 + 2x4 + 5x2 + 5x+ 5

p0
u0
3
(x) = x5 + 5x4 + 5x3 + 2x2 + x+ 3

p0
u0
4
(x) = 2x5 + 2x4 + 5x3 + x+ 1

p0
u0
5
(x) = x5 + 4x4 + 4x3 + 3x2 + 5

p0
u0
6
(x) = 4x5 + 6x4 + 4x3 + 2x2 + 3

and randomly generates

γ0(x) = 4x19+x17+x16+x15+5x14+2x13+2x11+3x10+5x9+5x8+6x7+3x6+3x5+x4+5x2+3x+4.

Finally, the dealer computes

t1(x) = x4 + 5x3 + 4x2 + 2x+ 2

t2(x) = x4 + 4x3 + 3x2 + 5x+ 2

t3(x) = x4 + 3x2 + 6x+ 6

t4(x) = 4x4 + 6x3 + 5x2 + 2x

t5(x) = 4x4 + x2 + 3x+ 4

t6(x) = 6x4 + 6x2 + 5x

and publishes the following:

pub1(x) = 3x4 + 4x3 + 2x2 + 4x+ 4

pub2(x) = 6x4 + 4x2 + x+ 2

pub3(x) = 3x4 + 2x3 + 6x2 + 4x+ 1

pub4(x) = x4 + 2x3 + 6x2 + 2

pub5(x) = 3x4 + 6x2 + 3x+ 1

pub6(x) = 2x4 + 2x3 + 6x2 + 3x+ 5

Let us assume the users from the authorized set {1, 2, 3, 4, 5} want to reconstruct the secret. They put
together their shares I1(x), I2(x), I3(x), I4(x) and I5(x), and solve gradually the systems



X0(x) ≡ (5x4 + x3 + 2x2 + 5x+ 5) + (3x4 + 4x3 + 2x2 + 4x+ 4) mod x5 + 2x4 + 6x3 + 2x2 + 1

X0(x) ≡ (2x4 + 4x3 + 6x2 + 4x) + (6x4 + 4x2 + x+ 2) mod 2x5 + 2x4 + 5x2 + 5x+ 5

X0(x) ≡ (5x4 + 5x3 + 4x2 + 2x+ 5) + (3x4 + 2x3 + 6x2 + 4x+ 1) mod x5 + 5x4 + 5x3 + 2x2 + x+ 3

X0(x) ≡ (3x4 + 4x3 + 6x2 + 2x+ 5) + (x4 + 2x3 + 6x2 + 2) mod 2x5 + 2x4 + 5x3 + x+ 1

X0(x) ≡ (x4 + 2x2 + 3) + (3x4 + 6x2 + 3x+ 1) mod x5 + 4x4 + 4x3 + 3x2 + 5
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
X1(x) ≡ 5x4 + x3 + 2x2 + 5x+ 5 mod 4x5 + 5x4 + 4x3 + 4x+ 5

X1(x) ≡ 2x4 + 4x3 + 6x2 + 4x mod 3x5 + 5x4 + 4x3 + 6x2 + 6x+ 2

X1(x) ≡ 5x4 + 5x3 + 4x2 + 2x+ 5 mod x5 + 4x4 + 3x3 + 2x2 + 6x+ 2{
X2(x) ≡ 3x4 + 4x3 + 6x2 + 2x+ 5 mod 3x5 + x4 + 5x2 + 4x+ 3

X2(x) ≡ x4 + 2x2 + 3 mod 2x5 + 2x4 + 5x3 + 2x2 + 3x+ 6

They obtain the following solutions:

f0(x) = 4x24 + x23 + x21 + x20 + 5x19 + 2x18 + 2x16 + 3x15 + 5x14 + 5x13 + 6x12 + 3x11 + 3x10+

x9 + 5x7 + 3x6 + 4x5 + 6x4 + x3 + 5x2 + 4x

f1(x) = 3x9 + 5x8 + 2x7 + 5x6 + 3x5 + x4 + 5x3 + 4x2 + x+ 6

f2(x) = x9 + 4x6 + 3x5 + 2x4 + 6x3 + 2x2 + 5x+ 6

Reducing these solutions modulo x5, they obtain the secret parts, S0(x) = 6x4 + x3 + 5x2 + 4x, S1(x) =
x4 + 5x3 + 4x2 + x+ 6 and S2(x) = 2x4 + 6x3 + 2x2 + 5x+ 6. The secret is then reconstructed successfully

as S(x) =
∑2

j=0 Sj(x) = 2x4 + 5x3 + 4x2 + 3x+ 5.

We have to emphasize that this approach of publishing some information in order to achieve idealness is
quite contrived. In the solution from [20], the dealer, for each user in j-th level, publishes m− j informations.
In our case, for each user, independently of what compartment they belong to, a single information is published.
It is natural to try to minimize the amount of published information.

By careful tuning of some of the polynomials used in the schemes that act as building blocks, so that the
global components of some shares coincide with the corresponding compartment ones, i.e., ti(x) = Ii(x), for
some i ∈ {1, 2, . . . , n}, the amount of information that needs to be published can be minimized. In this case

For this, we can generate first the secret parts S1(x), . . . , Sm(x), then the sequences pj
uj
l

(x) and γj(x), for

1 ≤ j ≤ m and uj
l ∈ Cj . We can thus compute I1(x), . . . , In(x) and determine S0(x) = f0(x) mod p0(x), where

f0(x) is the solution of the system of equations
X(x) ≡ Ii1(x) mod p

comp(i1)
i1

(x)
...

X(x) ≡ Iik(x) mod p
comp(ik0

)

ik0
(x)

where {i1, . . . , ik0
} is an arbitrary authorized set of users.

However, it must be noted that in order for this system to have an unique solution modulo pi1(x) · · · pik0
(x),

the previous condition that the polynomials pj
uj
l

(x) must be pairwisely coprime for a given j now becomes that

any two such polynomials are coprime, even if they are not related to the same compartment Cj . In other

words, any pj1i1 (x) and pj2i2 (x), for i1, i2 ∈ {1, . . . n} and j1, j2 ∈ {1, . . .m}, must be coprime. This condition
does not affect the security of the scheme in any way, but such restrains on the parameters may affect the ease
of construction. We choose {1, 2, . . . , k0} as our set {i1, . . . , ik0

} from now on.

• For i ∈ {1, 2, . . . , k0} used, we can consider p0i (x) = p
comp(i)
pos(i) (x).

We will choose Ii(x) = ti(x) and not publish anything.

• For i ∈ {k0 +1, . . . , n}, we can generate the sequence p0i (x), also pairwisely coprime with polynomials of the
other sequences, and generate the random polynomial γ0(x).
We will choose ti(x) = (S0(x) + γ0(x) · p0(x)) mod p0i (x) and pubi(x) = (ti(x) − Ii(x)) mod p0i (x), for all

k0 + 1 ≤ i ≤ n.

Example 3.3 illustrates the reduction of the published information.

Example 3.3 (with artificial small parameters)

Let us reconsider Example 3.2, choosing the same secret parts:
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S1(x) = x4 + 5x3 + 4x2 + x+ 6

S2(x) = 2x4 + 6x3 + 2x2 + 5x+ 6

However, due to the new condition of coprimality enforced upon the sequences pji (x), the dealer has to
generate new polynomials:

p1
u1
1
(x) = 2x5 + 2x4 + 4x3 + 2x2 + 3x+ 5

p1
u1
2
(x) = 3x5 + 3x4 + 4x3 + x2 + 2x+ 3

p1
u1
3
(x) = 5x5 + 6x3 + 2x+ 1

p2
u2
1
(x) = x5 + 6x3 + 2x2 + 6

p2
u2
2
(x) = 4x5 + 4x4 + 4x3 + 5x2 + 2x+ 5

p2
u2
3
(x) = 3x5 + 6x4 + 5x3 + 2x2 + 4x+ 6

γ1(x) = 6x4 + 2x3 + 3x2 + 4

γ2(x) = 6x4 + 6x3 + x2 + 6x+ 5

Then, the dealer computes the shares and distributes Iuj
i
(x):

Iu1
1
(x) = 2x4 + x3 + 4x2 + 5x+ 1

Iu1
2
(x) = 4x4 + 5x3 + 5x2 + 4x+ 3

Iu1
3
(x) = 3x4 + x3 + 3x2 + 4

Iu2
1
(x) = x4 + 5x3 + 2x2 + 5x+ 6

Iu2
2
(x) = 6x4 + 5x3 + 3x2 + 5x+ 6

Iu2
3
(x) = 4x4 + 4x3 + x2 + 5x+ 3

S0(x) can be computed as S0(x) = f0(x) mod x5, where f0(x) is the solution to the following system:

X(x) ≡ 2x4 + x3 + 4x2 + 5x+ 1 mod 2x5 + 2x4 + 4x3 + 2x2 + 3x+ 5

X(x) ≡ 4x4 + 5x3 + 5x2 + 4x+ 3 mod 3x5 + 3x4 + 4x3 + x2 + 2x+ 3

X(x) ≡ 3x4 + x3 + 3x2 + 4 mod 5x5 + 6x3 + 2x+ 1

X(x) ≡ x4 + 5x3 + 2x2 + 5x+ 6 mod x5 + 6x3 + 2x2 + 6

X(x) ≡ 6x4 + 5x3 + 3x2 + 5x+ 6 mod 4x5 + 4x4 + 4x3 + 5x2 + 2x+ 5

As such, the dealer sets S0(x) = 6x4 + 5x3 + 3x2 + 5x + 6. The dealer generates the remaining necessary
polynomials to compute Iu2

3
(x) and t6(x):

p0
u0
6
(x) = 2x5 + 5x3 + 5x2 + 4

γ0(x) = 3x17 + 3x15 + 5x14 + 2x10 + 3x6 + x5 + x4 + x+ 1.

⇒ t6(x) = (S0(x) + γ0(x) · p0(x)) mod p0u0
6
(x) = 6x4 + 6x3 + 4x2 + 5x+ 6

Finally, the secret will be S(x) = S0(x) +S1(x) +S2(x) = 2x4 +2x3 +2x2 +4x+4 and the only published
information will be pub6(x) = 2x4 + 2x3 + 3x2 + 3.

This approach is equivalent to assuring that the corresponding public information pubi(x) is constant, e.g.
0, for i ∈ {1, 2, . . . , k0}, which means that no informations need to be published for these users. It would be
interesting to see if this is possible for more users, even, ideally, for all users.

4 Conclusions

In this paper, we use ideal threshold secret sharing based on the polynomial variant of the Chinese remainder
theorem in order to construct an ideal compartmented secret sharing scheme. The price of idealness is publish-
ing some information as inspired from the work in [20]. We are concerned in reducing the amount of published
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information, and we have succeeded for some cases. We shall investigate further improvements in this regard
in our future work.
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