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Abstract. This work introduce a new approach called Max bias analysis for the
entropy computation of structures of Free Ring Oscillator-based Physical Random
Number Generator. It employs the stochastic model based on the well-established
Wiener process, specifically adapted to only capture thermal noise contributions while
accounting for potential non-zero bias in the duty cycle. Our analysis is versatile,
applicable to combinations of multiple sampled Ring Oscillator (RO) filtering by any
function. The entropy computation takes as inputs the parameters of the thermal
stochastic model and delivers directly a proven bound for both Shannon entropy and
min-entropy to fulfill AIS31 and NIST SP 800-90 B. As an example, we apply the
new methodology on an enhanced structure of TRNG combining several free-running
Ring Oscillators filtered by a vectorial function built from a linear error correcting
code that optimizes the functional performance in terms of [entropy rate/silicium
area used] and that maintains the mathematical proof of the entropy lower bound as
simple as possible.
Keywords: Ring Oscillator · MO-TRNG · Thermal Noise · Entropy · Bias ·
Hidden Wiener Process · Vectorial Conditioning

1 Introduction
True Random Number Generators (TRNGs) are indispensable for ensuring the unpre-
dictability of cryptographic secrets such as encryption keys, nonces, and random masks
in countermeasures against side-channel attacks. TRNGs leverage physical sources of
randomness to ensure unpredictability at their core. However, the quality and reliability
of TRNGs depend critically on the entropy of the underlying physical noise sources.

Ring Oscillators (ROs) are one of the most studied and widely used physical sources of
randomness in TRNGs ([BLMT11], [KG04], [Saa21],[VD10], [HTBF14]), their randomness
is derived from noise sources such as thermal noise and flicker noise. If recent works
[BCF+24, PV24, Sko24] have shown that the impact of flicker noise could be used to
enhance the entropy bounds, its early autocorrelation leads to complicated modeling.
On the opposite, thermal noise, originating from the random motion of charge carriers,
is an uncorrelated source of randomness and can be modeled with a Wiener process as
shown in [BLMT11]. By analogy to the hidden Markov process, in which the observable
random variable {Yn}n∈N can be seen as a noisy or a partial observation of a Markov
chain {Xn}n∈N, the output sequence reveals only partial information about the underlying
phase. This leads to the concept of a Hidden Wiener Process.

Entropy of MO-TRNG. Along with their modeling, the authors of [BLMT11] provided
formulas for probability and entropy only for the special case of an unbiased duty cycle
(inherent parameter of a ring oscillator). Building upon this foundational work, subsequent
studies [LF24, Saa21] have developed methodologies to compute bounds on entropy of the

mailto:nicolas-i.david@thalesgroup.com
mailto:eric.garrido@thalesgroup.com


2 Max Bias Analysis:

single or the Multi Ring Oscillator True Random Number Generator (MO-TRNG). Both of
the developed approaches are numerical and can be interpreted as a Hidden Markov process
approximation of the Wiener process. This technique exhibits the following limitations:

• Theoretical Confidence. The Wiener to Markov approximation is a plug-in
technique, thus derived bounds that are ad-hoc in nature, lacking a formal proven
lower bound on entropy.

• Computation Cost. The entropy estimation requires numerical computations since
there is no close form for the entropy of a hidden Markov process. When analyzing
structure with multiple ring oscillators, this high computational demands results in
a high complexity in numerical applications.

• Design Efficiency. Previous works have focused their analysis on the natural
filtering function: the boolean XOR. However, restricting the output of the MO-
TRNG structure to a single bit can result in a loss of entropy. Indeed, when sampling
L independent ROs, the entropy rate prior to the filtering function might be high, in
particular greater than 1. However, the rate of entropy of the output stays smaller
than 1 for all the selected sampling periods, when employing boolean filtering. By
allowing the TRNG to generate multiple random bits per sample, we can explore
more complex filtering functions that can enhance the bitrate optimization.

Our proposed methodology, Max Bias Analysis, addresses all these deficiencies effectively
by providing a simpler approach to compute entropy bounds, hence allowing the derivation
of formulas for biased duty cycles and proven lower bounds for MO-TRNG structures with
non-trivial vectorial post-processing.

Contributions. This research contributes a novel methodology building upon prior work
by [BLMT11]. The key contributions are as follows:

• We introduce mathematical formulas to determine the probability of a sampled
sequence as well as entropy bounds that are consistent with existing methodologies
for the case of an unbiased duty cycle and remain valid in scenarios with low jitter
levels (high sampling frequency) and biased duty cycles.

• We provide a proven lower bound for the rate of entropy that can be directly computed,
even in the context of complex multi-ring oscillator configurations encompassing
multiple ring oscillators and vectorial combiners.

• We conduct a comprehensive analysis of the filtering function, aimed at optimizing
the performance of the MO-True Random Number Generator (TRNG) for both
Shannon and min-entropy purposes. The best results are obtained while considering
a linear vectorial conditioner; indeed, we obtain an increase of the output bitrate
with respect to the XOR by a factor of 4 for the case of 32 ring oscillators and almost
10 in the case of 128 ring oscillators.

Organization. This paper organizes as follows: in Section 2, we introduce some notations
and mathematical tools; Section 3 presents the Wiener stochastic modelization of [BLMT11];
then in Section 4, we introduce the max bias analysis in the case of a single ring oscillator,
deriving a formula for the probability of a sampled sequence; the associated entropy is
studied in Section 5; finally in Section 6, we study the case MO-TRNG, in particular we
present vectorial conditioners that significantly enhance the output bitrate.
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Table 1: Summary of Notations

X Random variable over {0, 1}r

p Probability density function of a random variable X p(x) = P(X = x)
e Relative bias of a random variable X e(x) = 2rP(X = x)− 1
ϵ Linear Bias ϵ(u) = E

(
(−1)u·X)

H(X) Shannon entropy of X
H∞(X) Min-entropy of X

C Moment of order 2 Theorem 1
∆ Residue function Theorem 1

h(B) Entropy of a Bernoulli of relative Bias B Proposition 4
RO Ring Oscillator
∆T Sampling period

ϕ Phase of a Ring Oscillator
ω, σ Mean and standard deviation of the Wiener Process

Q Quality factor Q = σ2∆T
S Signal function

α, a Duty cycle and relative duty cycle of a RO a = 2α− 1
(s(n))n∈N Sampled sequence

≫r Translation of r bits to the right
F Filtering function of the MO-TRNG

(f(n))n∈N Output sequence of the MO-TRNG
B(α, Q) Max Bias of a RO

τC
S Conditional Shannon entropy rate

τC
∞ Conditional min-entropy rate
F̂ Walsh transform of F

2 Mathematical tools and Notations
In this section, we will introduce some notations and mathematical tools useful to model
ring oscillators and compute entropy bounds of their sampled sequence.

2.1 Walsh Transform
First, we define the Walsh transform, a well-known tool that is a specific case of the
discrete Fourier transform.

Definition 1. Consider a function F : {0, 1}L → R, we call Walsh transform of F the
function:

F̂ : {0, 1}L → R
w 7→

∑
x∈{0,1}L(−1)w·xF (x) ,

that is reverse by the following operation:

F (x) = 1
2L

∑
w∈{0,1}L

(−1)x·wF̂ (w)

For Boolean function F : {0, 1}L → {0, 1}, it is often preferred to study the function (−1)F

rather than F . To ease notations, we will denote by F̂ the Walsh transform of (−1)F :

F̂ : {0, 1}L → R
w 7→

∑
x∈{0,1}L(−1)w·x+F (x)
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Following this approach, we will define the Walsh transform of vectorial function F :
{0, 1}L → {0, 1}r by the Walsh transforms of (−1)u·F for each nonzero u. Hence,

F̂ : {0, 1}L × {0, 1}r \ {0} → R
(u, w) 7→

∑
x∈{0,1}L(−1)x·x+u·F (x).

2.2 Discrete Random Variable
The primary focus of our study is a discrete random variable X, which takes values in
{0, 1}r for some r ≥ 1. There are two equivalent approaches to defining its probability:

• Density function. This is a straightforward approach where we consider the
function: p : x 7→ P(X = x). Alternatively, it is possible to consider the point-wise
distance to the uniform distribution. Hence, defining the relative bias:

e(x) = 2rP(X = x)− 1,

equivalently, one could write:

p(x) = 1
2r

(1 + e(x)).

• Linear Bias. Alternatively, a random variable can be defined by its linear bias.
More precisely, it consists of the following function, defined for all u ∈ {0, 1}r \ {0}:

ϵ(u) = E
(
(−1)u·X) .

Now, we will share some properties that connects relative bias, linear bias and probability
function.

Proposition 1 (link between relative and linear bias). Let p and e be the function defined
as before. The following equations are verified:

e(x) =
∑
u̸=0

(−1)u·xϵ(u), ϵ(u) =
∑

x

p(x)(−1)u·x

= 1
2r

∑
x

e(x)(−1)u·x.

The proof of these equations directly follows the definitions of the Walsh and the
reverse Walsh transforms. These equations confirm the equivalence of both approaches to
defining a random variable, and they enable us to establish certain bounds, as outlined in
Corollary 1.

Corollary 1. Let p and e be the function defined as before. If there exists a bound B such
that for all u ∈ {0, 1}r \ 0, | ϵ(u) |≤ B then

∀x ∈ {0, 1}r, | e(x) |≤ (2r − 1)B.

Similarly, if there exists a bound B such that for all x ∈ {0, 1}r, | e(x) |≤ B then

∀u ∈ {0, 1}r \ 0, | ϵ(u) |≤ B.

Remark 1. In the case where r = 1, Corollary 1 becomes degenerate since e and ϵ coincide.
More broadly, the scenario r = 1 is unique and will be analyzed separately throughout
this work.
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2.3 Some Properties
In this section, we will share some well-known properties based on the Walsh transform:
the Parseval Identity and the Pilling up Lemma. The first one connects moments of order
2 of the Walsh transform and relative bias; the latter describes the behavior of the Walsh
transform of a tensor product.

Proposition 2 (Parseval identity [Ste04]). Let p and e be the function defined as before.
The following equation is verified:∑

x ̸=0
ϵ(x)2 = 1

2r

∑
x

e(x)2

This property follows the orthogonality of the Walsh Basis.

Proposition 3 (Pilling up Lemma [Mat93]). Consider (Xi)1≤i≤n as n independent discrete
random variables such that Xi takes its values in {0, 1}ri . For each index i, we denote
by pi the probability function of Xi. If we consider the random variable X = (Xi)1≤i≤n

as a discrete random variable on {0, 1}
∑

i
ri and denote by p the probability function, the

following equations are verified:

ϵ(u) = E((−1)uX) = E((−1)
∑

i
uiXi) =

∏
i

E((−1)uiXi) =
∏

i

ϵi(ui).

2.4 Entropy of random variable on {0, 1}r

In this section, we will study another probabilistic object called entropy.

Definition 2. Let X be a random variable on {0, 1}r, we call entropy of X the following
quantity:

H(X) =
∑

x∈{0,1}r

− log2(p(x)) · p(x)

Let’s note that it is possible to rewrite the definition of entropy in function of e by
replacing p, hence we obtain :

H(X) = 1
2r

∑
x∈{0,1}r

− log2(1 + e(x)
2r

) · (1 + e(x))

To the best of our knowledge, this result presented in the next theorem is new and
provides a bond of the entropy from a bond on the relative bias.

Theorem 1. In this theorem, we consider X to be a random variable on {0, 1}r and
present bounds on its entropy based on analyzing the relative or linear bias using the
following functions:

C(X) = 1
2r

∑
x

e(x)2 =
∑
x̸=0

ϵ(x)2,

∆(B) = 1
ln(2)

[
(1−B) ln(1−B) + B −B2/2

]
.

• Relative Bias Let Be ∈ R+ be a bound on the relative bias, i.e., ∀x ∈ {0, 1}r,
| e(x) |≤ Be. If Be ≤ 1, then the following bound on the entropy is verified:

H(X) ≥ r − C(X)
2 ln 2 −∆(Be)
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Figure 1: Plot of p 7→ −p log p− (1− p) log(1− p) representing the Bernoulli of probability
p. It is increasing for p ∈ [0, 1/2] and decreasing for p ∈ [1/2, 1].

• Linear Bias. Let Bϵ ∈ R+ be a bound on the linear bias, i.e ∀x ∈ {0, 1}r,
| ϵ(x) |≤ Bϵ. If Bϵ ≤ 1

2r−1 , then the following bound on the entropy is verified:

H(X) ≥ r − C(X)
2 ln 2 −∆((2r − 1)Bϵ)

The proof of this theorem is presented in Appendix A, it consists of developing the log
function in a power series and studying the different moments of X.

As advertised earlier, the specific case r = 1 allows the derivation of a tighter lower
bound for the entropy of H(X).

Proposition 4. Let X be a random variable on {0, 1}, and B ∈ [0, 1] be a bound on the
relative or the linear bias:

∀x ∈ {0, 1}r, | ϵ(x) |≤ B.

The following bound on the entropy is verified:

H(X) ≥ h(B) = 1− (1 + B) log2 (1 + B)
2 − (1−B) log2 (1−B)

2 .

The proof of this proposition consists of studying Figure 1. We remark that when the
relative bias increases, the entropy decreases. Therefore, the entropy of X is bounded by
the entropy of the Bernoulli of relative bias B.

3 Stochastic Modelization with Hidden Wiener Process
Research on modern physical RNG entropy estimation was first conducted by Killman and
Schindler [KS08], whose stochastic model employs independent and identically distributed
transitions of time (half-periods) to represent jitter. Later [BLMT11] provided a stochastic
modelization of the free MO-TRNG using Wiener process. In this section, we recall this
modelization following the depiction done in Figure 2. This process involves different steps:
the phase, the signal, and the sampled sequence.

Phase. The phase ϕ of a ring oscillator RO can be effectively modeled using a Wiener
process, which accounts for the jitter introduced by thermal noise. Note that the thermal
noise is not the only contributor to the jitter. Indeed, recent studies have been working
on the impact of the flicker noise [BCF+24]. We will nonetheless focus on thermal noise
since there is a lot of confidence in its modelization, and any additional noise should only
increase the entropy. For the thermal modelization, there exist parameters such as a drift
ω and a deviation σ such that for any time delay ∆T , the following relationship holds:

ϕ(t + ∆T )− ϕ(t) ∼ N (ω∆T, σ2∆T ),
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Figure 2: Multi Free Ring Oscillator Physical Random Number Generator modelization.
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where N (ω∆T, σ2∆T ) stands for a Gaussian distribution of mean ω∆T (deterministic
component determined by the mean period of the RO) and variance σ2∆T (thermal jitter
component). Regarding the initial phase at time t0 denoted by ϕ0, this work focuses on
studying the process that begins with a uniform initial distribution, formally expressed as
ϕ0 mod 1 ∼ U. This choice is justified by both practical and theoretical reasons. Indeed,
the entropy rate defined as a limit hereafter is independent from the initial distribution
of the phase and corresponds to the one obtained directly starting with the stationary
distribution. Furthermore, allowing the phase to drift over an extended period leads to
sufficient accumulated jitter, which can support the assertion that ϕ0 mod 1 ∼ U. Some
specific consequences of this choice for the initial phase will be later discussed in Section 4.

Analog Signal. The signal generated by an oscillator is simplified as a clock signal that
alternates between two values. A parameter α (resp. a = 2α− 1) called duty cycle (resp.
relative duty cycle) models the difference in time spent by the signal between the two
values. Hence, a visual representation of this signal can be depicted by observing the
evolution of ϕ(t) reduced modulo 1, effectively mapping it onto a circle of length 1, divided
into two distinct regions: area 1 and area 0. More precisely, the signal function S(t) can
be defined as follows:

S : R→ {0, 1}

t 7→
{

1 if ϕ(t) mod 1 ∈ [0, α[
0 else

(Discrete) Sampled sequence. From an analogical signal S, its measurement at regular
intervals yields a binary sampled sequence. Hence, for a fixed delay ∆T , we define the
sequence (s(n))n∈N by

s(n) = S(t0 + n∆T ) ∈ {0, 1}.
From an observer’s point of view, the sampled sequence is the only element that can be
witnessed. The associated phase stays hidden, thus following what we call a hidden Wiener
process. We denote by (α, ω, σ, ∆T )−RO this whole process that results in the production
of the sequence s(n).

MO-TRNG. As illustrated in Figure 2, a MO-TRNG is build from a sequence of L
ring oscillators ((αi, ωi, σi, ∆T )−ROi)1≤i≤L. For each ring oscillator, we build sampled
sequences using a uniform time interval ∆T , resulting in a collection of sampled sequences:
(si(n))1≤i≤L,n∈N. This collection is subsequently processed through a filtering function
F : {0, 1}L → {0, 1}rproducing the output, which is the TRNG sequence:

f(n) = F (s1(n), · · · , sL(n)) ∈ {0, 1}r.

Remark 2. Besides the sampling time ∆T , all the parameters (duty cycle, standard
deviation, drift) depend on the ring oscillator. Hence, while studying ROi, we will denote
αi as its duty cycle, ωi as the drift, and σi as the standard deviation of ϕi.

4 Study of the Sampled sequence Starting with Uniform
Distribution

In this section, we will study the case of a single ring oscillator and leverage the hypothesis
regarding the initial distribution to derive results on the probability of sampled sequences.
First, we will demonstrate results that can be interpreted as temporal symmetry of the
sampled sequences, then we will define a tool useful to provide bounds throughout this
work: max bias, and finally we will put together all these ideas to derive a formula for the
density probability function of a sampled sequence.
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Figure 3: Symmetry of a RO of parameter α required for ϕ0.

4.1 Temporal Symmetries
In the following, we will present some results on the symmetry of the sampled sequence in
the case of a uniform initial phase.

Reversing Time. The main idea to highlight is that time can be considered in both
directions. In that regard, knowing the phase at time t: ϕ(t) = ϕt, we will define the
two Wiener processes W + and W− that define time jumps forwards and backwards,
respectively:

W +
t→t+∆T

: ϕ(t + ∆T ) = ϕt +N (ω∆T, σ2∆T )

W−
t→t−∆T

: ϕ(t−∆T ) = ϕt +N (−ω∆T, σ2∆T )

Following these Wiener processes, we denote by S+ and s+ (resp. S− and s−) the
signal function and the sampled sequence obtained with W + (resp. W−) starting with ϕ0
at time t0. The following lemmas will present some link between these objects.

Lemma 1. If the initial distribution ϕ0 is symmetric with respect to the angle bisector of α
(as depicted in Figure 3), then the signal functions S+ and S− share the same probability
distribution. More precisely, if we denote by Rα the reflection along the angle bisector:

[ϕ0 = Rα(ϕ0)]⇒ [S(t0 + t) ∼ S(t0 − t)]

This lemma consists of studying the action of Rα on the different parts that compose
the signal function.

• The initial distribution ϕ0 is unchanged by hypothesis.

• The time t is reversed, hence turns a W + execution into a W− execution.

• The measurement areas (corresponding to 0 and 1) are unchanged. Indeed, as
depicted in Figure 3, areas A and B (resp. C and D) are swapped.

If the symmetrical aspect of U allows for the derivation of Lemma 1, its stationary
aspect with respect to the Wiener results in Lemma 2.

Lemma 2. If the initial phase ϕ0 follows a uniform distribution, then for any time t, ϕ(t)
follows a uniform distribution. As a consequence, the signal function is unchanged by any
temporal shift:

[ϕ0 ∼ U]⇒ [S(t0 + t) ∼ S(t′0 + t)]

This is a consequence of the stationary aspect of the uniform distribution through
Wiener evolution. Hence, for any time t, ϕ(t) ∼ U. Therefore, an execution defined by
W + starting at time t0 will be indistinguishable from an execution starting at time t.
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Theorem 2 (The probability function self-reverses.). Consider an (α, ω, σ, ∆T ) − RO
and a sequence of n boolean (bi)1≤i≤n ∈ {0, 1}n, then the following equation holds:

P [∀i, s(i) = bi] = P [∀i, s(n− i) = bi]

Proof. This proof consists of gathering the ideas presented both in Lemma 1 and Lemma 2
together. Hence,

P [∀i, s(i) = bi] = P [∀i, S(t0 + i∆T ) = bi]
=

Lemma 1
P [∀i, S(t0 − i∆T ) = bi]

=
Lemma 2

P [∀i, S((t0 + n∆T )− i∆T ) = bi]

= P [∀i, S(t0 + (n− i)∆T ) = bi]
= P [∀i, s(n− i) = bi]

This theorem allows identifying sequences that share the same probability of being
sampled. Based on this fact, we are able to derive an exact formula for the probability of
a sequence (Subsection 4.3). However, the formula obtained is not practical; hence, we
introduce max bias to derive a practical approximation of the probability density function.

4.2 Max bias Analysis
While previous research [BLMT11] has yielded theoretical results concerning the probability
in the particular case where α = 1/2, this study aims to extend these findings to encompass
all values of α. However, up to a symmetric transformation that interchanges areas 0 and
1, we can reasonably assume that α ≥ 1/2. Therefore, for the remainder of this study, we
will adopt this assumption. This section aims at introducing a tool for providing efficient
bounds: the max bias function.

Definition 3 (Max bias). For a given (α, ω, σ, ∆T )−RO, we define the max bias as the
following quantity:

Bω,σ(α, ∆T ) = max
x∈[0,1]

∣∣∣E[(−1)S(t0+∆T )|ϕ(t0) = x]
∣∣∣

Remark 3. The max bias asymptotical behavior is as follows: lim∆T→0 Bω,σ(α, ∆T ) = 1
and lim∆T→∞Bω,σ(α, ∆T ) = a.

Computing Max Bias. We will now outline a method for computing the maximum
bias. First, Lemma 3 identifies the point x that maximizes

∣∣E[(−1)S(t0+∆T )|ϕ(t0) = x]
∣∣.

Building on this result, Theorem 3 will present an explicit formula for the maximum
bias. Finally, we will check the consistency of our result by confronting it with formulas
presented in [BLMT11] in the specific case where α = 1/2.

Lemma 3 (Middle point trick). For a given sampling time ∆T , the bias
∣∣E[(−1)S(t0+∆T )|ϕ(t0) = x]

∣∣
is maximized for:

x∗ = α/2− ω∆T

As a consequence, B(∆T ) =
∣∣E[(−1)S(t0+∆T )|ϕ(t0) = x∗]

∣∣
As depicted in Figure 4, the bias is maximized when the jitter Gaussian is centered in

the middle of the largest area. Since we suppose α ≥ 1/2, then the 0 area is larger. By
taking into account the mean of the Gaussian from the Wiener process, the max bias is
obtained when x∗ = α/2− ω∆T .
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Figure 4: Maximizing the bias when ϕ0 = α/2 − ω∆T . The mean of the Gaussian is
aligned with α/2, the 0 area is depicted in red, and the 1 area is depicted in blue.

Table 2: B(α, Q) in function of Q and α.

a = 2α− 1 0 0.001 0.01 0.05 0.1 0.2
Q = σ2∆T

0.01 0.9751613 0.9753361 0.977 0.983 0.9881 0.9946
0.02 0.8458005 0.8463909 0.852 0.873 0.8963 0.9322
0.03 0.7022005 0.7030126 0.71 0.741 0.7754 0.8336
0.04 0.5777546 0.5786689 0.587 0.622 0.6623 0.7337
0.05 0.4744875 0.4754483 0.484 0.521 0.5649 0.6441
0.06 0.3895303 0.3905123 0.399 0.437 0.483 0.5672
0.07 0.3197597 0.3207514 0.33 0.368 0.415 0.5026
0.08 0.2624819 0.2634779 0.272 0.311 0.3589 0.449
0.09 0.2154633 0.2164614 0.225 0.265 0.3126 0.4046
0.1 0.1768671 0.1778662 0.187 0.226 0.2746 0.3681
0.2 0.0245688 0.0255688 0.035 0.074 0.1243 0.2234
0.3 0.0034129 0.0044129 0.013 0.053 0.1034 0.2032
0.4 0.0004741 0.0014741 0.01 0.05 0.1005 0.2005
0.5 6.59 · 10−5 0.0010659 0.01 0.05 0.1001 0.2001
0.6 9.15 · 10−6 0.0010091 0.01 0.05 0.1 0.2
0.7 1.27 · 10−6 0.0010013 0.01 0.05 0.1 0.2
0.8 1.77 · 10−7 0.0010002 0.01 0.05 0.1 0.2
0.9 2.45 · 10−8 0.001 0.01 0.05 0.1 0.2
1 3.41 · 10−9 0.001 0.01 0.05 0.1 0.2

Theorem 3. Let FN denote the repartition function of N (0, 1). The max bias follows the
identity:

Bω,σ(α, ∆T ) = 1− 4
∑
j∈N

[
FN

(
j + 1− α/2

σ
√

∆T

)
− FN

(
j + α/2
σ
√

∆T

)]

The proof of Theorem 3 is described in Appendix B. It consists of a computation of
the probability through the repartition function. Therefore, it corresponds to summing
the areas depicted in red and subtracting the area depicted in blue from Figure 4.
Remark 4. The formula described in Theorem 3 highlights that the max bias B is a function
of solely Q = σ2∆T and α. As a consequence, we will write B(α, Q) to denote Bω,σ(α, ∆T ).
The behavior of B depicted in Table 2 is monotonic and follows our expectation:

1. When the volatility Q is fixed, the function a→ B(a, Q) is an increasing function
with a minimal value of B(0, Q) and a maximal value of B(1, Q) = 1.

2. When the bias a of the duty cycle is fixed, Q → B(a, Q) is a decreasing function
with a maximal value of B(a, 0) = 1, and a minimal value of B(a,∞) = a.
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Table 3: Max bias estimation B∗(Q) is computed following [BLMT11], and the exact
value B(0.5, Q) follows our approach for α = 0.5. The bias depicted in red should not be
taken into account since the variable is outside the domain of definition; the bias depicted
in green shows the points where both estimates coincide.

Q B(0.5, Q) B∗(Q) Q B(0.5, Q) B∗(Q)
0.005 0.999186096 1.153578017 0.08 0.262481857 0.262482142
0.006 0.997502338 1.131030566 0.09 0.215463331 0.215463379
0.007 0.994385123 1.10892382 0.1 0.17686714 0.176867148
0.008 0.989622785 1.087249165 0.2 0.024568816 0.024568816
0.009 0.983184011 1.065998156 0.3 0.003412882 0.003412882
0.01 0.975161339 1.04516251 0.4 0.000474087 0.000474087
0.015 0.917546335 0.946936107 0.5 6.5856 · 10−5 6.5856 · 10−5

0.03 0.702200458 0.704257101 0.7 1.27078 · 10−6 1.27078 · 10−6

0.05 0.47448746 0.474546359 0.9 2.45213 · 10−8 2.45213 · 10−8

0.06 0.389530294 0.389540261 1 3.40628 · 10−9 3.40628 · 10−9

0.07 0.319759728 0.319761415

In comparison, the bias e(x, ∆T ) = E((−1)S(t0+∆T )ϕ(t0) = x)|, for a specific initial phase
x both depends on the drift ω and is not monotonic when ∆T increases. Indeed, it
fluctuates between local maxima of B(a, Q) when (x + ω∆T ) = α/2 mod 1 and local
minima of −B(a, Q) when (x + ω∆T ) = (1 + α)/2 mod 1 therefore reaching 0 for an
intermediate value.

Comparaison with [BLMT11]. As a consequence of this theorem, we derive a process to
compute exactly the max bias. Indeed, it suffices to follow the formula and compute the
first term of the sum once the precision requirement is met (for instance, we can stop once
we have reached j > 10σ

√
∆T ).

Although the work presented in [BLMT11] did not study the maximum bias as an
analytical tool, the probability formula provided in that study (Proposition 1) still enables
us to derive an approximation for the maximum bias specifically for the case when α = 1/2.
Indeed:

B∗(Q) = 4
π

e−2π2Q

In Table 3, we confront both methods for estimating the max bias. We remark that both
functions coincide once Q is sufficiently large (Q > 0.06).

Some Properties. We now introduce several bounding applications for the maximum
bias within our context, where ϕ0 ∼ U. These applications are compiled in Theorem 4.

Theorem 4. Let’s denote by (t1, t2, · · · , tk) an ordered sequence of sampling time of a ring
oscillator whose initial phase follows a uniform distribution. The following inequalities
hold:

1. ∀ t0 ≤ t, |E[(−1)S(t)]| = a

2. ∀ t ∈]t1, t2[, |E[(−1)S(t1)+S(t2)]| ≤ B(α, t2 − t)B(α, t− t1)

3. ∀ (t1, t2, · · · , tk), |E[(−1)S(t1)+···+S(tk)]| ≤ B(α, t2 − t1)B(α, tk − tk−1)

By studying the extreme cases t→ t1 or t→ t2 in item 2, we obtain the following inequality:∣∣∣E[(−1)S(t1)+S(t2)]
∣∣∣ ≤ B(α, t2 − t1)
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The proof of Theorem 4 is given in Appendix C. The proof of the first item is a direct
consequence of the definition of α and ϕ0 ∼ U. The second and third elements are proven
by splitting time and studying the Wiener process with time evolving both in forward and
backward directions.

4.3 Probability of a Sampled Sequence
In this section, we introduce a formula along with a practical approximation for determining
the probability of a sampled sequence, utilizing the Walsh transform and bias analysis.

More precisely, we examine the probability that the sampled sequence after the n-th
measurement, denoted as (s(i))i≤n, corresponds to a specified binary sequence bi ∈ {0, 1}n.
Decomposing this probability on its Walsh basis yields the following identity:

P [∀i, s(i) = bi] = 1
2n

1 +
∑

w∈{0,1}n\{0}

(−1)w·bC(w)


where C(w) = E

(
(−1)w0s(0)+w1s(1)+···+wns(n)).

This formula can be simplified under any equivalence relation R that maintains the
value of the coefficient C(w). In fact, we can express the probability in the following
manner:

P [∀i, s(i) = bi] = 1
2n

1 +
∑

I∈{0,1}n{0}/R

θI

∑
w∈I

(−1)w·b

 ,

where θI = C(w) for any w ∈ I. Following the result presented in Subsection 4.1, it is
clear that the coefficients C(w) and C(w′) share the same value if w and w′ are connected
by some symmetry or translation. Therefore, considering R, the relation generated by the
composition of translation ∼τ and symmetry ∼S ,

w ∼τ w′ : w = w′ ≫r for r ∈ {−n + 1, · · · , n− 1},
w ∼S w′ : w = Rev(w′),

it is possible to derive the formula presented in Theorem 5.

Theorem 5 (Probability formula derived from max bias analysis). Given an (α, ω, σ, ∆T )−
RO and (bi)1≤i≤n ∈ {0, 1}n, the following identity holds:

P [∀i, s(i) = bi] = 1
2n

(
1 + θ0

n∑
i=1

(−1)bi + θ1

n−1∑
i=1

(−1)bi+bi+1 + δ(b)
)

where θ0 = E
(
(−1)s(t)) = a, |θ1| =

∣∣E ((−1)s(t)+s(t+∆T ))∣∣ ≤ B(α, Q), b = (b1, · · · , bn)
and |δ(b)| ≤ (2n − 2n)B(α, Q)2.

Proof. This proof consists of studying the equivalent classes of R.

• The first class consists of the elements of Hamming weight 1 and corresponds to the
term θ0

∑n
i=1(−1)bi . Following the first item presented in Theorem 4, we can state:

θ0 = E
(
(−1)s(t)) = a.

• The second one gathers elements of Hamming weight 2 such that the two coordinates
that are equal to 1 are consecutive; this corresponds to the term θ1

∑n−1
i=1 (−1)bi+bi+1 .

Following the last inequality of Theorem 3, we can state: |θ1| = |E
(
(−1)s(t)+s(t+∆T )) | ≤

B(α, Q).
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• We now study the remaining 2n − 2n vectors of {0, 1}n \ {0} that do not belong to
either of the classes presented above and gather them into δ(b). For any of these
w, we know that there exist two non-consecutive coordinates that are both equal
to 1. When the Hamming weight of w is equal to 2, the second item of Theorem 4
allows us to derive |C(w)| ≤ B(α, Q)2. When the Hamming weight is at least 3, the
third item of Theorem 4 also allows us to derive |C(w)| ≤ B(α, Q)2. By gathering
all terms together, we obtain |δ(b)| ≤ (2n − 2n)B(α, Q)2.

Corollary 2. Given (bi)1≤i≤n ∈ {0, 1}n, let e((bi)1≤i≤n) denote the relative bias associated
with P [∀i, s(i) = bi]. In the special case where α = 1/2, we can state:

|e((bi)1≤i≤n)| ≤ B(α, Q)

∣∣∣∣∣
n−1∑
i=1

(−1)bi+bi+1

∣∣∣∣∣+ (2n − 2n)B(α, Q)2.

Comparaison with [BLMT11]. Once again, we will compare the result derived through
this section with the work done in [BLMT11] that provided a formula for the probability
in the special case of α = 1/2 and Q large enough. More specifically, we will check
if Corollary 2 holds for the formula presented in previous work. Indeed, [BLMT11]
(Proposition 1) provides the following formula:

P [∀i, s(i) = bi] = 1
2n

(
1 + 8

π2

(
n−1∑
i=1

(−1)bi+bi+1

)
cos(2πω∆T )e−2π2Q + O

(
2ne−4π2Q

))
.

Our strategy consists of comparing B(α, Q) with 8
π2 e−2π2Q and (2n − 2n)B(α, Q)2 with

2ne−4π2Q. Let’s remind that Table 3 establishes that for Q large enough B(α, Q) ∼
4
π e−2π2Q. Since 2 < π, it yields:

8
π2 e−2π2Q ≤ B(α, Q).

By squaring this inequality, we obtain the second:

e−4π2Q ≤ B(α, Q)2.

As a conclusion, the bound provided in Corollary 2 is compatible with [BLMT11] but
Theorem 3 is applicable for other cases, mainly when α ≠ 1/2 and small Q and provides
an upper bound solely depending on α and Q (independent of the drift ω∆T ).

5 Bounding the Entropy
In this section, we will present the two entropy measures discussed in the recommendations
from BSI [KS11, PS22] and NIST [TBK+18]: Shannon entropy and min-entropy. For both
measures, we will use max bias analysis to provide efficient bounds.

5.1 Shannon Entropy
Shannon entropy is a widely recognized concept in information theory and probability,
serving as a critical measure of the quality of random number generator (RNG) sources.
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Definition 4 (Shannon Entropy). Let’s consider an (α, ω, σ, ∆T )−RO with an associated
sampled sequence (s(n))n∈N∗ ; we call the Shannon entropy of the sequence the quantity:

Hn = H (s(1), · · · , s(n)) .

We define the Shannon entropy rate τS as the limit:

τS = lim
n→∞

Hn

n
,

together with the associated conditional entropy rate:

τC
S = H (S(t + ∆T )|ϕ(t)) =

∫
x

H (S(t + ∆T )|ϕ(t) = x) dx.

The existence of τS comes from the decreasing aspect of the sequence Hn

n , note that
this property is valid for any stationary process.

5.1.1 A Generic Chain of Bounds

Theorem 6. Let’s consider an (α, ω, σ, ∆T )−RO with an associated sampled sequence
(s(n))n∈N∗ , for any n ∈ N the following inequality chain holds:

h(B(α, Q)) ≤ τC
S ≤ τS ≤

Hn

n
≤ Hn−1

n− 1 ≤ · · · ≤
H2

2 ≤ H1 = h(a).

where h(b) corresponds to the entropy of a Bernoulli of bias b, hence h(b) = 1 −
(1+b) log2(1+b)

2 − (1−b) log2(1−b)
2 .

The proof of Theorem 6 can be found in Appendix D. It first consists of using the
stationary aspect to prove that Hn

n is decreasing (a well-known property of stationary pro-
cesses also reminded in [Saa21]). Then we prove τC

S ≤ τS and finally, we use Proposition 4
to prove h(B(α, Q)) ≤ τC

S .
Remark 5. When considering Theorem 6 when Q→∞, we can remark that both bounds
h(B(α, Q)) and h(a) coincide, hence establishing the tightness of the bound in this context.
This corresponds to sampling independent bits with bias a.

5.1.2 A Bound for small n.

While the bound derived in Theorem 6 is applicable for all values of n , we can obtain a
more favorable bound when n is small, as demonstrated in the following result.

Proposition 5. Consider the sequences defined as follow:

Mn = na + (n− 1)B(α, Q) + (2n − 2n)B(α, Q)2,

Vn = na2 + (n− 1)B(α, Q)2 + (2n − 2n)B(α, Q)4,

∆n = (1−Mn) ln(1−Mn) + Mn −M2
n/2

ln 2 .

For n sufficently small such that Mn ≤ 1,

Hn ≥ n− Vn

2 ln 2 −∆n.

The proof of Proposition 5 consists of the application of Theorem 1 to the random
variable (s(1), · · · , s(n)).
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Figure 5: Comparison on both bounds on Shannon entropy: 1− Vn

2n ln 2 −∆n/n− h(B) in
function of n for B = 10−3 and a = 10−5 (resp B = 10−4 and a = 10−5). Once n ≥ 13
(resp n ≥ 18), h(B) provides a better lower bound for entropy.

5.2 Providing Proven Bounds for Min-Entropy
Min-entropy is another crucial measure used in information theory, particularly in the
context of assessing randomness and security in random number generators. This measure
preferred by the NIST is introduced in the following definition.

Definition 5 (Min-Entropy). Let X be discrete random variable over a finite set, its
min-entropy is defined by the following quantity:

H∞(X) = − log2

(
max

x
P[X = x]

)
.

For a given (α, ω, σ, ∆T )−RO, we call min-entropy rate the quantity:

H∞(s(1), · · · , s(n))
n

and the associated conditional min-entropy rate:

τC
∞ = max

x
H∞ (s(1)|ϕ(t0) = x) .

Theorem 7. Let’s consider a ring oscillator with an associated sampled sequence (s(n))n∈N∗ ,
for any n ∈ N the following inequality chain holds:

1− log2(1 + B(α, Q)) ≤ τC
∞ ≤

H∞(s(1), · · · , s(n))
n

.

6 Multi-Ring Oscillators
We now study the case of L independent ring oscillator (αi, ωi, σi, ∆T )−(ROi)1≤i≤L whose
sampled sequences are processed through a vectorial filtering function F : {0, 1}L → {0, 1}r,
thereby producing the output sequence (f(n))n∈N = (F (s1(n), · · · , sL(n)))n∈N, with
f(n) ∈ {0, 1}r.

In this section, we will establish bounds for the Shannon entropy and the min-entropy
of the output sequence (f(n))n∈N. Additionally, we will propose efficient filtering functions
that optimize the random bitrate generated while adhering to a specified entropy threshold.
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6.1 A Vectorial Max Bias
First, we aim at defining a max-bias for the output sequence based on the max bias of
each ring oscillator used in the TRNG process. For each ring oscillator, let’s denote by ϵi

as the conditional bias:
ϵi(xi) = E[(−1)si(1)|ϕi(t0) = xi],

whose norm is bounded by the associated max bias Bi. For any non-zero vector u ∈
{0, 1}r \ {0}, we define the conditional bias of the output by:

ϵF (u, x) = E[(−1)u·f(1)|Φ(t0) = x],

where Φ ∈ [0, 1[L corresponds to the phase vector for all L ring oscillators (hence ϕi is
the i-th coordinate of Φ). By decomposing on the Walsh Basis, it is possible to rewrite
(−1)u·f(1) as follows:

(−1)u·f(1) = 1
2L

∑
w∈{0,1}L

F̂ (u, w)(−1)w1·s1(1)+···+wL·sL(1),

where F̂ follows Definition 1. By considering the expected value of this expression and
then applying the piling-up lemma and the linearity of the expected value, we derive the
following equality:

ϵF (u, x) = 1
2L

∑
w∈{0,1}L

F̂ (u, w)
L∏

i=1
ϵi(xi)wi .

This last expression uses the Walsh transform of the filtering function to connect the
conditional bias of each ring oscillator with the conditional bias of the output. From this
identity, we will define a notion for the max bias of the output. Indeed, for each ring
oscillator, we can bound the norm of the conditional bias by its max bias: |ϵi| ≤ Bi. As a
consequence, the following inequality holds:

|ϵF (u, x)| ≤ 1
2L

∑
w∈{0,1}L

|F̂ (u, w)|
L∏

i=1
Bwi

i .

Therefore, we define the max bias as the maximal value of u of the right term:

BF = max
u

1
2L

∑
w∈{0,1}L

|F̂ (u, w)|
L∏

i=1
Bwi

i .

With this definition of max bias, we will provide bounds on the entropy of the output
sequence. Although the computation of BF seems costly for large L, the discussion done
in Subsection 6.3 will present some specific and interesting cases of functions F for which
this computation simplifies.

6.2 Bounds on Entropies.
We will now present bounds on the Shannon entropy rate and min-entropy rate, based on
the maximum bias illustrated in the preceding section. First let’s remark that, similarly to
the boolean case, the Shannon and the min-entropy rates are bounded by the conditional
entropies. More precisely,

H(f(1), · · · , f(n))
n

≥ H (f(1)|Φ(t0)) = τC
S ,

H∞(f(1), · · · , f(n))
n

≥ max
x∈[0,1[L

H∞ (f(1)|Φ(t0) = x) = τC
∞.

In the following, we will study and provide bounds on these conditional entropies.
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6.2.1 Min-Entropy

By utilizing Corollary 1, we can derive a bound for the maximum probability based on the
maximum bias. This derivation leads us to Theorem 8.

Theorem 8 (General Lower Bound for Min-Entropy). If BF ≤ 1
2r−1 , then

τC
∞ ≥ r − log2 (1 + (2r − 1)BF )

6.2.2 Shannon Entropy

Our approach regarding the Shannon entropy is built from Theorem 1 and formalized in
Theorem 9.

Theorem 9 (Lower Bound for Shannon Entropy of MO-TRNG). Consider a MO-TRNG
(αi, ωi, σi, ∆T ) − (ROi)1≤i≤L, we start by defining the family of functions (Ei)1≤i≤L as
follows:

Ei : k 7→
∫ 1

0
ϵi(x)k dx,

that satisfies Ei(0) = 1, Ei(1) = ai and Ei(2) ≤ B2
i . If the max bias of the MO-TRNG

satisfies BF ≤ 1
2r−1 , then one can derived the following bounds:

• General Bound.
τC

S ≥ r − C

2 ln 2 −∆((2r − 1)BF )

where

C = 1
22L

∑
u∈{0,1}r\0,v∈{0,1}L,w∈{0,1}L

F̂ (u, v)F̂ (u, w)
L∏

i=1
Ei(vi + wi).

• Practical Bounds.

τC
S ≥ r − C ′

2 ln 2 −∆((2r − 1)BF )

≥ r − C ′′

2 ln 2 −∆((2r − 1)BF )

where

C ′ = WF

22L

L∏
i=1

(1 + 2ai + Ei(2)),

C ′′ = WF

22L

L∏
i=1

(1 + 2ai + B2
i ).

with

WF = max
v∈{0,1}L

∑
u∈{0,1}r\0

F̂ (u, v)2

= max
v∈{0,1}L

2r
∑

a∈{0,1}r

 ∑
x∈F −1(a)

(−1)v·x

2

− 22Lδv=0
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The proof of this theorem consists of the proofs of both the generic and the practical
bounds. First, the proof of the general bound is done by applying Theorem 1 and develop-
ing the term C =

∫
x∈[0,1[L

∑
u̸=0 ϵF (u, x)2 to obtain the expression presented in Theorem 9.

Then the proof of the practical bounds can be done by proving C ≤ C ′ ≤ C ′′. If
C ′ ≤ C ′′ follows Ei(2) ≤ B2

i , the proof of C ≤ C ′ consists of the application of Cauchy-
Schwarz to show:∣∣∣∣∣∣

∑
u∈{0,1}r\0,

F̂ (u, v)F̂ (u, w)

∣∣∣∣∣∣ ≤ max
v∈{0,1}L

∑
u∈{0,1}r\0

F̂ (u, v)2

Remark 6. For the specific case where the output is restricted to one bit (r = 1), there is
a better bound:

τC
S ≥ h(BF ).

Corollary 3. If F is equidistributed then:

τC
S ≥ r −

∏L
i=1(1 + 2ai + Ei(2))

2 ln 2 −∆((2r − 1)BF ).

Indeed, rough estimates on WF indicate:

WF ≤ 2r
∑

a∈{0,1}r

(♯F−1(a))2.

Consequently, in the cases where F is equidistributed, WF ≤ 22L, effectively eliminates
the impact of F the second term of the bound.

6.3 Choosing the Filtering Function.
In this section, we will discuss choices that can be made for F to simplify the expressions
presented before. We will start by studying linear filtering and then bend filtering.

6.3.1 Vectorial Linear Filtering

In the case where F , is linear the following simplifications occur:

u · F (x) = F ⊺(u) · x
F̂ (u, w) = δF⊺(u)=w.

As a consequence, the expression of the following parameters is simplified:

BLinear = max
u̸=0,w=F⊺(u)

L∏
i=1

Bwi
i

CLinear =
∑

u̸=0,w=F⊺(u)

L∏
i=1

B2wi
i .

Theorem 10 (Lower Bound for Entropies with Linear Filtering). Consider a MO-TRNG
(αi, ωi, σi, ∆T )− (ROi)1≤i≤L, if BLinear ≤ 1

2r−1 , then

τC
S ≥ r − CLinear

2 ln 2 −∆((2r − 1)BLinear),

τC
∞ ≥ r − log2 (1 + (2r − 1)BLinear) .
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In the case where all ring oscillators have a similar order duty cycle α and max bias
BRO, then by defining:

d = min
u̸=0,w=F⊺(u)

L∑
i=1

wi,

the max bias of the output is BLinear = Bd
RO and CLinear ≤ (2r − 1)B2d

RO. This allows
the simplification presented in the next theorem.

Theorem 11 (Lower Bound for Entropies with Linear Filtering and Similar Ring Oscilla-
tors). Consider a MO-TRNG (αi, ωi, σi, ∆T )− (ROi)1≤i≤L, if Bd

RO ≤ 1
2r−1 , then

τC
S ≥ r − (2r − 1)B2d

RO

2 ln 2 −∆((2r − 1)Bd
RO),

τC
∞ ≥ r − log2

(
1 + (2r − 1)Bd

RO

)
.

This theorem illustrates how it is possible to achieve any target entropy by increasing
d.
Remark 7. We can remark that choosing F corresponds to the choice of a code with
minimal distance d. To achieve the optimal entropy bound, it is crucial to minimize the
associated bias. Therefore, we aim to identify the linear code with the greatest minimal
distance, which we determined using the BestKnownLinearCode function from the Magma
library.

6.3.2 Vectorial Bent Filtering

Vectorial Bent functions have the complete opposite behavior of linear functions and solely
exist when L = 2n and r ≤ n (as proven in [Nyb91]). Indeed, the Walsh spectrum of any
of its components is uniformly spread on all the 2L values instead of being reduced to one
point in the case of a linear map. A simple example of such a vectorial bent function is
the quadratic function:

F : F22n → F2n

(x1, x2) 7→ x1x2

As a consequence of the Walsh behavior, the following simplifications occur:

|F̂ (u, w)| = 2L/2.

Hence, the expression of the following parameters is simplified:

BBent = 1√
2L

L∏
i=1

(1 + Bi)

CBent = 2r − 1
2L

L∏
i=1

(1 + ai + B2
i ).

Theorem 12 (Lower Bound for Entropies with Bent Filtering). Consider a MO-TRNG
(αi, ωi, σi, ∆T )− (ROi)1≤i≤L, if BBent ≤ 1

2r−1 , then

τC
S ≥ r − CBent

2 ln 2 −∆((2r − 1)BBent),

τC
∞ ≥ r − log2 (1 + (2r − 1)BBent) .

If we can assume that all ring oscillators have a similar order duty cycle α and max bias
BRO, the max bias of the output is BBent = (1+BRO)L

√
2L

and CBent ≤ (2r− 1)
( 1+2a+BRO

2
)L.

This allows the simplification presented in the next theorem.
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Theorem 13 (Lower Bound for Entropies with Bent Filtering and Similar Ring Oscillators).
Consider a MO-TRNG (αi, ωi, σi, ∆T )− (ROi)1≤i≤L, if (1+BRO)L

√
2L

≤ 1
2r−1 , then

τC
S ≥ r − (2r − 1)

2 ln 2

(
1 + 2a + BRO

2

)L

−∆((2r − 1)(1 + BRO)L

√
2L

),

τC
∞ ≥ r − log2

(
1 + (2r − 1)(1 + BRO)L

√
2L

)
.

One can remark that this choice of filtering function may fail to meet specific Shannon
entropy targets when the relative duty cycle a is high. For example, if a > 1/3, then
1+2a+BRO

2 > 1, leading to suboptimal bounds. In the subsequent applications, we will
focus on linear filtering, as it offers the best bounds.

Remark 8. Note that the established entropy bound is unchanged if we use F ◦G rather
than F when G is invertible.

6.4 Applications
In this section, we will leverage the tools discussed in this work to present results on
bitrate optimization within the context of linear filtering, which has demonstrated the most
promising results. To simplify the proposed applications, we will consider a MO-TRNG
(αi, ωi, σi, ∆T )− (ROi)1≤i≤L where all ring oscillators have similar parameters, i.e

α ≃ α1 ≃ · · · ≃ αL

σ ≃ σ1 ≃ · · · ≃ σL.

For a given number of ring oscillators L, our objective is to evaluate all potential dimensions
for the output and exhibit the best choice, i.e. to explore the value of r. As outlined in
Subsubsection 6.3.1, for a given r (and L) we select the associated linear code to maximize
the minimum distance since they provide the best entropy bounds. The target entropy
follows the recommendation of the BSI [PS22] that stipulates that the entropy per bit
generated should either have a Shannon entropy of at least 0.998 or a min-entropy of at
least 0.98. For each choice of r, max bias analysis allows to determine a quality factor
(thus a sampling period) Qr = σ∆Tr that meets the prescribed entropy constraints. Conse-
quently, by comparing this sampling period to that of the boolean XOR operation, we can
derive the time ratio τr = ∆Tr/∆T1. The output bitrate is then calculated as the ratio r/τr.

In Figure 6, Figure 7, and Figure 8, we visualize the bitrate as a function of r and α,
with the targeted min-entropy of 0.98 represented on the left and the Shannon entropy of
0.998 on the right. Notably, it appears that α has minimal impact on the value of r that
maximizes the bitrate. Therefore, for a specified number of ring oscillators, an optimal
size for the output sequence can be associated.

7 Conclusion
Max analysis has proven to be the optimal level of abstraction for the MO-TRNG con-
struction, as it yields efficient, verified bounds and facilitates vectorial post-processing
that guarantees both the efficiency and resilience of the random output. For practical
applications, this technique is straightforward to implement, as calculating entropy can be
accomplished using basic resources such as Excel, thus facilitating the work of hardware
designers and evaluators.
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Figure 6: Output bitrate with 32 RO with targeted min-entropy equal to 0.98 (resp
Shannon entropy equal to 0.998) in function of a and r

Figure 7: Output bitrate with 64 RO with targeted min-entropy equal to 0.98 (resp
Shannon entropy equal to 0.998) in function of a and r

Figure 8: Output bitrate with 128 RO with targeted min-entropy equal to 0.98 (resp
Shannon entropy equal to 0.998) in function of a and r
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Future Work. There may be opportunities to explore the application of max bias analysis
in various other contexts. For example, we could investigate its use in models that
incorporate flicker noise or even in entirely different sources of randomness. For instance,
one could apply this analysis to derive entropy bounds for constructions with independent
sources of randomness modeled with a hidden Markov process or hidden Wiener process.

Another avenue for exploration involves studying post-processing methods with different
objectives. For instance, it would be interesting to consider the ideal vectorial post-
processing techniques that optimize bitrate in the context of potential malfunctions, as
such issues may arise in real-world applications.

Acknowledgments. We would like to express our sincere gratitude to David Lubicz for
introducing our team to Ring Oscillator-based TRNG, specifically his insights on the
Wiener modeling of thermal noise. We extend our thanks to Alexandre Stevanovic for his
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A Proof of Theorem 1
Proof. For this proof, we will introduce the moment of order k of e:

Mk(e) = 1
2r

∑
x

e(x)k.

Going back to the definition of entropy, we can state:

H(X) = 1
2r

∑
x∈{0,1}r

− log2(1 + e(x)
2r

) · (1 + e(x))

If we interpret now the log part as a power series (note that we are within the radius of
convergence since B ≤ 1), and after some elementary computations, we can rewrite the
entropy as follows :

H(X) = r + (r + 1
ln 2)M1(e)− 1

ln 2
∑
k≥2

1
(k − 1)k (−1)kMk(e).

Note that the ln 2 terms appear since the log we are considering is in base 2. Looking
at this new expression of H(X), we can simplify it by reminding that M1(e) = 0 since∑

x p(x) = 1 =⇒
∑

x e(x) = 0. Also since we suppose that |e(x)| ≤ B for all x, the
following inequalities hold:

H(X) = r − M2(e)
2 ln 2 −

1
ln 2

∑
k≥3

1
(k − 1)k (−1)kMk(e)

≥ r − M2(e)
2 ln 2 −

1
ln 2

∑
k≥3

1
(k − 1)k Bk

= r − M2(e)
2 ln 2 −∆(B)
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B Proof of Theorem 3
Proof. It is possible to write B(∆T ) as follows:

B(∆T ) =
∣∣∣E[(−1)S(t0+∆T )|ϕ(t0) = x∗]

∣∣∣
= |P[S(t0 + ∆T ) = 0|ϕ(t0) = x∗]− P[S(t0 + ∆T ) = 1|ϕ(t0) = x∗]|
= |P[ϕ(t0 + ∆T ) mod 1 ∈ [0, α[|ϕ(t0) = x∗]− P[ϕ(t0 + ∆T ) mod 1 ∈ [α, 1[|ϕ(t0) = x∗]|

Since, ϕ(t0+∆T )−ϕ(t0) ∼ N (ω∆T, σ2∆T ), we can derive an expression for the probability:

P[ϕ(t0 + ∆T ) mod 1 ∈ [0, α[|ϕ(t0) = x∗]
= P[ϕ(t0 + ∆T )− ϕ(t0) mod 1 ∈ [ω∆T − α/2, ω∆T + α/2[|ϕ(t0) = x∗]
= PX←N (0,σ2∆T ) [X mod 1 ∈ [−α/2, α/2[ ]
= PX←N (0,σ2∆T ) [X mod 1 ∈ [−α/2, 0[∪[0, α/2[ ]

=
∑
j∈Z

FN

(
α/2 + j

σ2∆T

)
− FN

(
j

σ2∆T

)
+ FN

(
1 + j

σ2∆T

)
− FN

(
1− α/2 + j

σ2∆T

)

= 2
∑
j∈N

FN

(
α/2 + j

σ2∆T

)
− FN

(
j

σ2∆T

)
+ FN

(
1 + j

σ2∆T

)
− FN

(
1− α/2 + j

σ2∆T

)
Similarly, one can prove:

P[ϕ(t0 + ∆T ) mod 1 ∈ [α, 1[|ϕ(t0) = x∗] = 2
∑
j∈N

FN

(
1− α/2 + j

σ2∆T

)
− FN

(
α/2 + j

σ2∆T

)
Hence, we obtain:

B(∆T ) = 2
∑
j∈N

FN

(
α/2 + j

σ2∆T

)
− FN

(
j

σ2∆T

)
+ FN

(
1 + j

σ2∆T

)

− FN

(
1− α/2 + j

σ2∆T

)
− FN

(
1− α/2 + j

σ2∆T

)
+ FN

(
α/2 + j

σ2∆T

)
,

that reduces to:

B(∆T ) = −4
∑
j∈N

(
FN

(
21− α/2 + j

σ2∆T

)
− FN

(
α/2 + j

σ2∆T

))
+ 2

∑
j∈N

(
FN

(
j + 1
σ2∆T

)
− FN

(
j

σ2∆T

))

= 1− 4
∑
j∈N

(
FN

(
21− α/2 + j

σ2∆T

)
− FN

(
α/2 + j

σ2∆T

))

C Proof of Theorem 4
Proof. The proof of this lemma consists in the proof of all three claims.

1. Let’s remind that at any time t ≥ t0, the phase at time t, ϕ(t) follows a uniform
distribution. Hence, we obtain:

|E[(−1)S(t)]| = |P[S(t) = 0]− P[S(t) = 1]|
= |2α− 1|
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α

phase

1

tt1 t2
time

W− W +

α

phase

1

t1 t2
time

W−

t3 tk−2 tk−1 tkt4

W +

Figure 9: Phase approach with W + and W− in the context of Theorem 4.

2. This proof consists in studying the evolution of the phase while considering the
uniform phase at time t ∈]t1, t2[ as the starting point. Therefore, we study two
independent paths produced by the Wiener process: t→ t1 and t→ t2. This idea is
depicted in the leftmost figure of Figure 9. More precisely, one can write :

∣∣∣E[(−1)S(t1)+S(t2)]
∣∣∣ =

∣∣∣∣∣
∫

x∈[0,1]
E[(−1)S(t1)+S(t2)|ϕ(t) = x] · P[ϕ(t) = x]

∣∣∣∣∣
=

∣∣∣∣∣
∫

x∈[0,1]
E[(−1)S(t1)|ϕ(t) = x] · E[(−1)S(t2)|ϕ(t) = x] · P[ϕ(t) = x]

∣∣∣∣∣
≤
∫

x∈[0,1]
B(t2 − t)B(t− t1) · P[ϕ(t) = x]

= B(t2 − t)B(t− t1)

3. Similarly to the proof of previous item, we will study the signals with two Wiener
executions. As depicted in the rightmost figure of Figure 9, the initial time is placed
at t2 and the considered paths are t2 → t1 and t2 → tk. This decomposition allows
to write:∣∣∣E[(−1)S(t1)+···+S(tk)]

∣∣∣
=

∣∣∣∣∣
∫

x∈[0,1]
E[(−1)S(t1)+···+S(tk)|ϕ(t2) = x] · P[ϕ(t2) = x]

∣∣∣∣∣
=

∣∣∣∣∣
∫

x∈[0,1]
E[(−1)S(t1)|ϕ(t2) = x] · (−1)S(t2) · E[(−1)S(t3)+···+S(tk)|ϕ(t2) = x] · P[ϕ(t2) = x]

∣∣∣∣∣
≤
∫

x∈[0,1]
B(t2 − t1) ·

∣∣∣E[(−1)S(t3)+···+S(tk)|ϕ(t2) = x]
∣∣∣ · P[ϕ(t2) = x]

The next step consist in decomposing the term
∣∣E[(−1)S(t3)+···+S(tk)|ϕ(t2) = x]

∣∣
alongside the random variable (ϕ(t3), · · · , ϕ(tk−1)|ϕ(t2) = x). Thus we can rewrite:∣∣∣E[(−1)S(t3)+···+S(tk)|ϕ(t2) = x]

∣∣∣
≤
∫ ∣∣∣∣∣∣E[(−1)S(tk)|

∧
2≤i≤k−1

ϕ(ti) = xi]P[(ϕ(t3) = x3 ∧ · · · , ϕ(tk−1) = xk−1|ϕ(t2) = x)]

∣∣∣∣∣∣
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On the other hand, the definition of the phase using the Wiener process implies
that regarding the phase ϕ(tk), the sole knowledge of the phase ϕ(tk) yields as much
information as the knowledge of all the phases ϕ(t3), · · · , ϕ(tk−1). Hence,∣∣∣E[(−1)S(t3)+···+S(tk)|ϕ(t2) = x]

∣∣∣
≤
∫ ∣∣∣∣∣∣E[(−1)S(tk)|

∧
2≤i≤k−1

ϕ(ti) = xi]P[(ϕ(t3) = x3 ∧ · · · , ϕ(tk−1) = xk−1|ϕ(t2) = x)]

∣∣∣∣∣∣
≤
∫ ∣∣∣E[(−1)S(tk)|ϕ(tk−1) = xk−1]P[(ϕ(t3) = x3 ∧ · · · , ϕ(tk−1) = xk−1|ϕ(t2) = x)]

∣∣∣
≤
∫
|B(tk − tk−1)P[(ϕ(t3) = x3 ∧ · · · , ϕ(tk−1) = xk−1|ϕ(t2) = x)]|

=B(tk − tk−1).

Thus, by incorporating this intermediate result, we arrive at the following inequality:∣∣∣E[(−1)S(t1)+···+S(tk)]
∣∣∣ ≤ ∫

x∈[0,1]
B(t2 − t1) ·

∣∣∣E[(−1)S(t3)+···+S(tk)|ϕ(t2) = x]
∣∣∣ · P[ϕ(t2) = x]

≤
∫

x∈[0,1]
B(t2 − t1)B(tk − tk−1) · P[ϕ(t2) = x]

= B(t2 − t1)B(tk − tk−1)

Remark 9. The proof presented for item 3 could be done for any starting point in [t2, tk−1],
yet it would still provide the same result in the end.

D Proof of Theorem 6
Proof. We will present the proof of this theorem in three parts. First we will prove that
Hn

n is decreasing, then τC
S ≤ τS and finally h(B(Q)) ≤ τC

S .

Hn

n
is decreasing. This statement is well known, we will present a proof for self com-

pleteness. Let’s consider n − 1 independent ring oscillators each producing a sampling
sequence (si(j))1 ≤ i ≤ n− 1, j ∈ N. Since the sequence are independent, we can state:

H [(si(1), · · · , si(n))1≤i≤n−1] = (n− 1)Hn

By considering the n-th sampled bits alone, it is possible to write:

H [(si(1), · · · , si(n))] = H [(si(1), · · · , si(n− 1))] + H [si(n)|(si(1), · · · , si(n− 1))]
= Hn−1 + H [si(n)|(si(1), · · · , si(n− 1))]

The idea now is to apply the chain rule to the term H [si(n)|(si(1), · · · , si(n− 1))] to build
Hn−1. By remarking

H [si(n)|(si(1), · · · , si(n− 1))] ≤ H [si(n)|(si(n− i), · · · , si(n− 1))]
= H [sn(i)|(sn(1), · · · , sn(i− 1))]

by summing over all i ∈ {1, · · · , n− 1}, we obtain:∑
i

H [si(n)|(si(1), · · · , si(n− 1))] ≤
∑

i

H [sn(i)|(sn(1), · · · , sn(i− 1))]

= Hn−1
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As a consequence:

(n− 1)Hn = (n− 1)Hn−1 +
∑

i

H [si(n)|(si(1), · · · , si(n− 1))]

≤ (n− 1)Hn−1 + Hn−1

= nHn−1.

τ C
S ≤ τS. Let’s follow the inequalities:

Hn = H (s(1), · · · , s(n))
= H (s(1)) + H(s(2)|s(1)) + · · ·+ H(s(n)|s(n− 1), · · · , s(1))
≥ H (s(1)|ϕ(t0)) + H(s(2)|s(1), ϕ(t0 + ∆T )) + · · ·+ H(s(n)|s(n− 1), · · · , s(1), ϕ(t0 + (n− 1)∆T )
= H (s(1)|ϕ(t0)) + H(s(2)|ϕ(t0 + ∆T )) + · · ·+ H(s(n)|ϕ(t0 + (n− 1)∆T ))
= nH (s(1)|ϕ(t0))
= nτC

S

By dividing both term by n and considering n→∞, we obtain τC
S ≤ τS .

h(B(Q)) ≤ τ C
S . This proof consists in applying Proposition 4 to the random variable

S(t + ∆T )|ϕ(t) = x for all x. Since we know

|E((−1)s(t+∆T )|ϕ(t) = x)| ≤ B(Q)

As a consequence of Proposition 4,

τC
S =

∫
x

H((s(t + ∆T )|ϕ(t) = x)dx

≥ h(B(Q)).

E Proof of Theorem 7
Proof. By definition of the max Bias:

∀s, x : P[s(1) = s|ϕ(t0) = x] ≤ 1
2(1 + B(α, Q)).

Therefore
H∞ (s(1)|ϕ(t0) = x) ≥ 1− log2(1 + B(α, Q)).

Considering this inequality for max ϕ, we obtain 1− log2(1 + B(α, Q)) ≤ τC
∞.

Were are then left to prove that

τC
∞ ≤

H∞(s(1), · · · s(n))
n

by defining D[b1, · · · bi] the distribution on the phase at time ti: ϕ(ti) that satisfies the
following:

P [s(i) = bi|s1 = b1, · · · , si−1 = bi−1] = P [s(i) = bi|ϕ(ti−1)← D[b1, · · · bi−1]] ,
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it is possible to derive the following equations:

P [s1 = b1, · · · , si = bi] =
∏

i

P [si = bi|s1 = b1 · · · , si−1 = bi−1]

=
∏

i

P [si = bi|ϕ(ti)← D[b1, · · · bi−1]]

≤ (2−τC
∞)n

thereby proving
τC
∞ ≤

H∞(s(1), · · · s(n))
n

.

F Proof of Theorem 8
Proof. Our analysis consists in invoking Corollary 1 to asses :

ϵF (u, x) ≤ BF =⇒ eF (v, x) ≤ (2r − 1)BF

Since
P(f(1) = v|Φ(t0) = x) = 1

2r
(1 + eF (v, x))

then
τC
∞ = max

x∈[0,1[L
H∞ (f(1)|Φ(t0) = x) ≥ r − log2 (1 + (2r − 1)BF ) .
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