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Abstract

Registration-based encryption (RBE) is a recently developed alternative to identity-based encryption, that miti-
gates the well-known key-escrow problem by letting each user sample its own key pair. In RBE, the key authority is
substituted by a key curator, a completely transparent entity whose only job is to reliably aggregate users’ keys. How-
ever, one limitation of all known RBE scheme is that they all rely on one-time trusted setup, that must be computed
honestly.

In this work, we ask whether this limitation is indeed inherent and we initiate the systematic study of RBE in the
plain model, without any common reference string. We present the following main results:

• (Definitions) We show that the standard security definition of RBE is unachievable without a trusted setup and
we propose a slight weakening, where one honest user is required to be registered in the system.

• (Constructions) We present constructions of RBE in the plain model, based on standard cryptographic assump-
tions. Along the way, we introduce the notions of non-interactive witness indistinguishable (NIWI) proofs
secure against chosen statements attack and re-randomizable RBE, which may be of independent interest. A
major limitation of our constructions, is that users must be updated upon every new registration.

• (Lower Bounds) We show that this limitation is in some sense inherent. We prove that any RBE in the plain
model that satisfies a certain structural requirement, which holds for all known RBE constructions, must update
all but a vanishing fraction of the users, upon each new registration. This is in contrast with the standard RBE
settings, where users receive a logarithmic amount of updates throughout the lifetime of the system.
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1 Introduction
Not long after the introduction of public-key encryption [DH76], Shamir envisioned a cryptographic primitive that
would allow one to encrypt a message by just knowing the identity of the receiver. In an identity-based encryption
(IBE), Alice can encrypt her messages to Bob knowing just Bob’s identity, along with some additional public pa-
rameters. Bob can then decrypt Alice’s ciphertexts using an identity-specific secret key that he obtains from the key
authority. The work of Boneh and Franklin [BF01], which proposed the first cryptographic construction of IBE, started
a fruitful line of investigation in cryptography that lead to new schemes [Wat05, Coc01, Gen06, GPV08, DG17] and
new cryptographic primitives generalizing IBE [SW05, GPSW06, BSW11]. However, IBE also comes with important
limitations. Most prominently, it suffers from the well-known key escrow problem: In an IBE system, the key authority
that generates the public parameters and the decryption keys can also decrypt any message ever encrypted. In many
cases, this is not an acceptable compromise, and IBE has received strong criticism [Rog15] because of this problem.

A series of recent works [GHMR18, GHM+19, GKMR23, DKL+23] proposes a new notion of encryption aimed at
solving this problem. In registration-based encryption (RBE) the trusted authority of IBE is substituted by a completely
transparent party, called the key curator (KC). The KC is responsible to aggregate the public keys of the users in a
small digest, that can be later on used to encrypt with respect to an identity, thus mimicking the functionality of IBE.
Differently from IBE however, the public keys are sampled locally by the users themselves, and the role of the KC is
limited to reliably store and aggregate the users’ keys, similarly to what a public key infrastructure would do. Thus,
RBE can be seen as combining the best-of-both-worlds between public-key encryption and IBE. RBE has recently
seen a surge of interest, with constructions getting closer and closer to practicality [GKMR23, DKL+23] and works
achieving more and more general functionalities [HLWW23, FFM+23].

Despite these promising properties, one shortcoming shared by all constructions of RBE, is that they rely on a
one-time trusted setup, needed to sample a common reference string (CRS). Granted, this is a one-time operation that
can be realized using various techniques (such as running an MPC between mutually distrustful parties), and thus it
does not detract substantial value from this notion. Nevertheless, a trusted setup goes against the transparent spirit of
RBE, and it would be desirable to avoid it, if possible. Motivated by this concern, in this work we put forward the
following question:

Is a trusted setup necessary for RBE?

Before stating the results of this work, we shall make an important distinction between existing RBE schemes. The
trusted setup of an RBE can be either structured [GKMR23] or transparent [GHMR18, GHM+19, DKL+23], where
the latter means that it can be sampled using public random coins. In practice, the latter setup is much more desirable,
since it is easy and efficient to heuristically sample it by, e.g., hashing the current date and time. While these are
important considerations, they are not the focus of this work: We are interested in understanding RBE schemes that
we can prove secure in the standard model, with no setup at all.

1.1 Our Results
In this work we initiate the systematic study of RBE in the plain model, without any trusted setup. The aim of this
work is to develop a formal study of RBE in these settings, and to characterize the efficiency/security tradeoffs of this
notion. Overall, our main contributions can be summarized as follows.

• Definitions: We extend the definition of RBE to handle the absence of a trusted setup. In contrast with previous
definitions [GHMR18], our security experiment requires the existence of at least one honest user registered in
the system, which results in slightly weaker security. We show that this limitation is necessary in the trustless
setting, by presenting a generic attack against any RBE without setup.

• Constructions: We present two constructions of RBE without setup. Our first construction is in a relaxed model
where the key registration is interactive (in fact, a two-message protocol) and it is based on the combination of re-
randomizable RBE and non-interactive witness indistinguisahble (NIWI) proofs secure against chosen statement
attacks, two primitives that we introduce in this work and that may be of independent interest. We show how to
construct the former from the computational Diffie-Hellman assumption, and the latter from a combination of
regular NIWIs and CCA-secure commitments.
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Our second construction is in the standard communication model of RBE, where the key registration consists
of a single message from the user to the KC. This construction additionally assumes the existence of indistin-
guishability obfuscation [BGI+01].

• Lower Bounds: Both of our constructions have an important limitation, namely that upon every registration
all users’ keys must be updated. Thus the constructions are qualitatively closer to the weaker notion of laconic
encryption, as proposed in [DKL+23]. We show that this is not a coincidence, by proving any RBE in the plain
model that satisfies a certain structural requirement (which holds for all known RBE construction) must update
all but a vanishing fraction of the users, upon each new registration. It can be shown that any scheme in the plain
model must have Ω(n) number of updates where n is the number of registered users. This should be contrasted
with the standard RBE in the CRS model, where each user receives at most O(log n) updates.

1.2 Technical Overview
In the following we present a high-level overview of our techniques, focusing more on clarity than precision. For more
rigorous statements, we refer the reader to the technical sections.

1.2.1 A Primer on RBE.

To establish some notation, let us first recall in somewhat more details the notion of RBE. In an RBE system, user
sample their own key locally, via the KeyGen algorithm, and they then send their public key to the KC, who is
responsible for maintaining the public parameters pp of the scheme. This is done via the Reg algorithm, that the KC
uses to determine the new public parameters. Since the public parameters must change upon each user registration, it
might be the case that a set of other users have to update their decryption key, which the KC computes using the Upd
algorithm. The relevant set of users is then notified by the KC of the update. Recall that the update information u is
necessary for decryption, but it is not a substitute of the secret key, and in fact u can be published without affecting the
security of the scheme. For efficiency reasons, it is important to keep the number of per-user updates at a minimum,
and a lot of ingenuity in RBE constructions goes into designing schemes that require as few updates as possible (more
on this later). Given the current public parameters pp and an identity id, anyone can encrypt (Enc) a message for the
user identified with id. Provided that such users have registered some keys, they can indeed decrypt (Dec) the message,
possibly after receiving some update from the KC.

Security is defined via an experiment, where the attacker is allowed to ask honest users to register keys and to
register (possibly corrupted) keys itself. At some point of the execution, the attacker submits two messages m0 and
m1 and an identity id, then the challenger flips a coin b ∈ {0, 1} and encrypts mb with respect to id using the
current public parameter. The attacker wins the experiment if it can guess the encrypted message with probability
non-negligibly better than 1/2. Furthermore, the attacker is considered to be admissible if id does not correspond to a
corrupted key, at the time of encryption.

1.2.2 Plain Model Impossibility.

At a very high-level, the reason why known constructions of RBE require a common reference string crs, is the fact
that the (deterministic) registration algorithm can be thought of as a hash function of the public keys and identities of
the n registered users. In fact, we can think of the public parameter pp as the output of this hash function. By the
compactness and efficiency requirement of RBE, the size of pp is o(n), which means there must be two different sets
of n users with the same keys that will result in the exact same hash pp. Note that even thought such a collision always
exists, it could depend on crs. But, if there is no crs, a non-uniform adversary can simply hard-wire such a collision
and register one set of the users and decrypt successfully with overwhelming probability any message encrypted to
any identity in the other set using the common public parameter pp, due to the completeness of RBE, and break the
security of RBE.

In more detail, the non-uniform adversary will get as advice a collision for an i ∈ [n]: A list of public and secret
keys (pk1, sk1), · · · , (pkn, skn), and two lists of identities id1, · · · , idn and id′1, · · · , id

′
n such that: (i) Registering

(id1, pk1), · · · (idn, pkn) and registering (id′1, pk1), · · · , (id
′
n, pkn) will generate the same public parameter pp and (ii)

4



the identity id′i is not in the first list of identities. One can show that such an advice must exist using the compactness
requirement |pp| < o(n). The adversary can ask the challenger to register (id1, pk1), · · · (idn, pkn), which should
produce pp. Now, the adversary can simply ask the challenger to encrypt to id′i using pp and decrypt successfully
with overwhelming probability, due to the completeness of the RBE scheme. Note that if an update is needed for
decryption, the adversary has all the information it needed to locally compute the correct update u′i. Since id′i is not
even registered by the challenger, this constitutes a legitimate attack against the security of RBE.

1.2.3 Weakening the Security Model.

As explained above, in normal RBE the attacker can ask the challenger to encrypt the challenge ciphertext with respect
to any non-corrupted identity id. Because the attack above particularly uses the fact that the challenge can be with
respect to non-registered party, an obvious weakening of the security requirement is to not allow encryptions to non-
registered users.

One might argue that this is a realistic security model because a user could check whether an identity is registered
before they encrypt with respect to that identity. We believe this goes against the purpose of RBE because this check
would require storing information that scales linearly with the number of registered users, which is exactly what RBE
is trying to avoid.

Therefore, our positive results are in a security model that sits in between the two. We require at least one honest
party being registered. This subsumes the notion that does not allow challenges with respect to non-registered users,
because the only non-corrupted but registered users are honest ones, so clearly an honest party has to be registered.

1.2.4 RBE in the Plain Model.

Once we have established the definition that we are aiming for, it is natural to ask whether we can actually build an
RBE without a trusted setup. Since we have seen that an RBE inherently is a collision resistant hash function one
would hope to just take a construction of an RBE and replace the implied hash function by a keyless hash function.
This, however, first require to build RBE from unstructured collision resistant hash functions, which is an interesting
open problem in itself. In this work, we propose a construction using the following cryptographic ingredients:

1. A one-way permutation f .

2. A non-interactive witness indistinguishable (NIWI) proof.

3. An RBE with re-randomizable CRS. Loosely speaking, this is an RBE where anyone can take the current CRS
and “re-randomize” it, to produce a new CRS that is indistinguishable from a freshly sampled one.

We defer the discussion on how to instantiate these cryptographic building blocks to a later point in this overview,
and for now we proceed to explain our general recipe to construct RBE in the plain model. Our starting point is the
RBE with re-randomizable CRS, which we refer to as our base RBE. Our first modification to the base scheme is
that, before registering their key, each honest user re-randomizes the current CRS and submits the new crs′ to the KC.
Additionally, it samples a random xi and submits yi = f(xi) along with the updated CRS. To ensure that each user
re-randomizes the CRS appropriately, we also ask them to include a NIWI proof for the following statement:

• (Regular branch) I updated correctly the CRS, OR

• (Trapdoor branch) I know a valid pre-image xi such that f(xi) = yi, AND for all previous CRSs sent by the
j-th party (1 ≤ j < i):

– The j-th update was performed correctly, OR

– I know the corresponding pre-image xj .

Clearly, the honest user will always compute the NIWI using the witness for the regular branch, whereas the trapdoor
branch will become useful later, during the security proof. Once the new CRS is received, the KC re-registers all
existing users against the new CRS (more discussion on this later) and sends out the corresponding updates. At this
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point, we have a well-formed RBE system, that can be used to encrypt/decrypt messages using the algorithms provided
by the base RBE scheme.

We prove security of this construction with a reduction against the base RBE. Since we know that there exists at
least one honest user, our objective will be to plant the challenge common reference string crs∗ as the CRS for such
user. However, in order to do so, the reduction cannot compute the honest branch of the NIWI, since it does not know
the witness for the correct update. Instead, the reduction will extract the witness of all previous NIWIs (this procedure
is potentially inefficient, but we will deal with this aspect later), which allows us to compute the new NIWI using the
trapdoor branch. This allows us to plant crs∗ as the CRS after the honest user registration. However, we still have to
deal with updates of the CRS that may happen after the honest user is registered. Once again, the reduction extracts
the update information from the NIWI supplied by the adversary: This allows us to translate the challenge ciphertext
computed against crs∗ into a ciphertext computed against the current (possibly updated) CRS. At this point, we can
reduce the security to that of the base RBE.

Finally, to deal with the fact that the reduction is not efficient (since it requires extracting witnesses from adver-
sarial NIWI proofs), we use a technique commonly referred to as complexity leveraging: In brief, we set the security
parameter of the base RBE to be large enough so that even an adversary that has enough power to break NIWIs, still
cannot break the security of the base RBE scheme.

We conclude this discussion by highlighting the fact that, in the construction as described above, the key generation
algorithm depends on the current CRS, which is not standard for RBE, where the key generation only takes as input the
security parameter. Concretely, this means that the key generation is a two-message protocol, instead of being com-
pletely non-interactive. We can overcome this limitation by additionally assuming the existence of indistinguishability
obfuscation: Instead of sending directly the output of the KeyGen algorithm, each user sends an obfuscated circuit
that, on input the current CRS, outputs a freshly sampled key (along with the appropriate NIWI proof). The security
of this variant can be reduced to the security of the interactive scheme, via a standard puncturing argument.

1.2.5 NIWIs Secure Against Chosen-Statement Attacks.

Next, we discuss how to instantiate the necessary cryptographic building blocks. A subtle aspect of the above security
argument is that, at some point of the proof, we have to simultaneously extract the witness from adversarial NIWI
proofs, while at the same time appeal to the witness indistinguishability of an honestly computed NIWI. We formalize
this property as security against chosen statement attacks (CSA), where we require that witness indistinguishability
holds, even in the presence of an oracle that (inefficiently) extracts a witness from any input NIWI. Importantly, the
oracle only extracts NIWIs for statements that are not equal to the challenge statement (this is akin to the standard
notion of CCA-security for encryption/commitments). To complete the picture, we show that CSA-secure NIWI can
be constructed from regular NIWIs, combined with non-interactive CCA-secure commitments, which in turn can be
built from a variety of computational assumptions [PPV08, LPS17, BL18, KK19, Khu21].

1.2.6 RBE with Re-Randomizable CRS.

Our starting point is the RBE construction of [GHMR18], where users’ keys are hashed in a Merkle tree, and the
witness needed to decrypt is the root-to-leaf path for the corresponding identity. The crucial building block is the
notion of hash encryption [DGHM18], which allows one to encrypt a message with respect to an index i and a bit
b: If the i-th bit of the hash pre-image equals b, then decryption is possible. The entire RBE construction reduces
to building hash encryption, and therefore for us it will suffice to construct hash encryption with re-randomizable
keys. We observe that the CDH chameleon encryption of [DG17] when interpreted as a hash encryption, indeed, has
a re-randomizable key. In more details, the hash key corresponds to a matrix(

g,

(
g1,0 g2,0 · · · gn,0
g1,1 g2,1 · · · gn,1

))
and to encrypt with respect to a hash h, an index i, and a bit b, one computes a ciphertext(

hρ,

(
gρ1,0 gρ2,0 · · · gρi−1,0 gρi+1,0 · · · gρn,0
gρ1,1 gρ2,1 · · · gρi−1,1 gρi+1,1 · · · gρn,1

))
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and the message is masked with m ⊕ GL(gρi,b), where GL is the Goldreich-Levin hardcore predicate. Our re-
randomization process will select uniform {βi,b} and re-randomize the CRS by computing(

g,

(
g
β1,0

1,0 g
β2,0

2,0 · · · g
βn,0

n,0

g
β1,1

1,1 g
β2,1

2,1 · · · g
βn,1

n,1

))

which is easy to see that it is identically distributed as a freshly sampled CRS. For the security proof, it will be useful
also to “update” a ciphertext according to a particular re-randomization factor, which can be easily done by computing( hρ∏

j ̸=i g
ρ
j,xj

)βi,xi

·
∏
j ̸=i

g
ρ·βj,xj

j,xj
,

(
g
ρ·β1,0

1,0 g
ρ·β2,0

2,0 · · · g
ρ·βi−1,0

i−1,0 g
ρ·βi+1,0

i+1,0 · · · g
ρ·βn,0

n,0

g
ρ·β1,1

1,1 g
ρ·β2,1

2,1 · · · g
ρ·βi−1,1

i−1,1 g
ρ·βi+1,1

i+1,1 · · · g
ρ·βn,1

n,1

)
where x = (x1, . . . , xn) is the pre-image of h. Once again, it is easy to see that such ciphertext is indeed a well-formed
ciphertext under the updated key. In the technical sections, we will actually use a slightly different strategy to prove
that security is preserved in the presence of a re-randomized keys, with a direct reduction against the CDH problem.
However, the property outlined here provides a good intuition on what enables re-randomization.

1.2.7 Lower Bounds on the Number of Updates.

The savvy reader may have noticed that in our construction each user needs to receive an update every time that a
new public key is registered. This is in contrast with the standard notion of RBE, where each user receives at most a
logarithmic number of updates throughout the lifetime of the system. We argue this disadvantage is necessary unless
we find a completely new way to build registration based encryption by showing a lower bound on the number of
updates.

All known constructions follow the same structure: the public parameters consist of one (or more) succinct com-
mitments of the public keys of the users. Then, to decrypt a ciphertext the user knows the opening for his public
key, along with the corresponding secret key. We then assume this structure and prove that any plain-model RBE that
follows this structure1 has to update a constant fraction of users.

Intuitively, the argument says if a dishonest user does not get an update when the first honest party joins, then this
means the succinct commitment where its identity and public key are did not change. Therefore, these commitments
only contain adversarially chosen identities and public keys. Just like in Section 1.2.2 these commitments define a
collision resistant hash function on the identities. Similarly, we can use non-uniform advice to make sure that the part
of the collision we don’t register contains the challenge identity but under a malicious public key.

Notice, this attack chooses the challenge ciphertext to be with respect to an honest party. Therefore, this lower
bound also applies in the weaker security notion, where the challenge can not be with respect to a non-registered user.

1.3 Open Problems
We view our work as a starting point for a promising avenue of research, and there is a number of problems that remain
open. On the theoretical side, it is interesting to understand what are the minimal assumptions needed to build RBE
in the plain model. Regular RBE can be constructed just assuming the hardness of the CDH problem, whereas our
construction in the plain model requires much stronger cryptographic tools, such as NIWI proofs and, in some of the
settings, indistinguishability obfuscation. Another interesting question is to design an RBE in the plain model with
non-interactive key generation, where there is no upper bound on the total number of registered users (our interactive
construction achieves that, but we lose this property once we apply our compiler). Finally, from a more practical
standpoint, it would be interesting to design RBE schemes with better concrete efficiency.

1This assumption is simplified for exposition purposes. In the actual prove we assume that there exist two deterministic (not necessarily efficient)
algorithms Ext1 and Ext2 such that Ext1(idi, i, pki, ui) = Ext2(pp, i) if and only if a user with the corresponding ski and ui can successfully
decrypt message encrypted with respect to idi using pp. Think of Ext1 as extracting the commitments from the update and Ext2 them from the
public parameters.
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2 Cryptographic Preliminaries
Throughout this work, we write λ to denote the security parameter. We say a function f : N → R+ is negligible if
for every c > 0 there exists nc ∈ N such that f(n) < 1

nc for n > nc. We denote by negl(λ) a negligible function
of λ. We say an algorithm is efficient if it runs in probabilistic polynomial time (PPT) in the length of its input. For
a randomized algorithm A, the notation y ← A(x) means y is sampled by running A on input x and the notation
y ← A(x; r) means y is computed by running A on input x with explicit randomness r. Furthermore, the notation
y ∈ A(x) means there is a randomness r such that y ← A(x; r).

We recall the computational Diffie-Hellman (CDH) assumption [DH76].

Definition 1 (CDH Assumption). Let (p, g,G) be a group G of prime order p ∈ O(λ) with generator g. We say that
such group is CDH-hard if there exists a negligible function negl such that for all PPT adversaries A it holds that

Pr [gx·y = Adv (g, gx, gy)] = negl(λ).

2.1 CCA-Secure Commitments
In this work we consider the notion of tag-based commitment scheme Com, where we say that the commitment is
binding if for all tags t, all messages m0 and m1, and all randomnesses r0 and r1 it holds that

Com(t,m0; r0) ̸= Com(t,m1; r1).

We additionally require that the commitment satisfies the strong notion of CCA-security [CLP10], which we recall in
the following.

Definition 2 (CCA-Security). A tag-based commitment Com is CCA-secure if there exists a negligible function negl
such that for all PPT adversaries A, all tags t, and all pairs of messages (m0,m1) it holds that∣∣∣Pr[1 = AdvO(t,Com(t,m0))

]
− Pr

[
1 = AdvO(t,Com(t,m1))

]∣∣∣ ≤ negl(λ)

where the oracle O takes as input a tag t∗ and a commitment c∗. If t∗ ̸= t, it (inefficiently) computes the message
committed in c∗ and returns it as an output. If no such message exists, the oracle returns ⊥.

CCA commitments can be constructed from adaptively secure one-way functions [PPV08], time-lock puzzles
[LPS17], obfuscation [Khu21], sub-exponentially hard injective one-way functions [BL18], or quantum-easy commit-
ments [KK19].

2.2 Indistinguishability Obfuscation
We recall the definition of indistinguishability obfuscation (iO) for circuits from [BGI+01, GGH+13].

Definition 3 (iO for Circuits). A PPT machine Obf is an indistinguishable obfuscator for circuit class {Cλ}, if the
following are satisfied:

• (Functional Equivalence) For all λ ∈ N, all C ∈ Cλ, all inputs x, we have

Pr [C ′(x) = C(x) : C ′ ← Obf(C)] = 1

• (Indistinguishability) For all λ ∈ N, all pairs of circuit (C0, C1) ∈ Cλ such that |C0| = |C1| and C0(x) = C1(x)
on all inputs x, it holds that the following distributions are computationally indistinguishable

Obf(C0) ≈ Obf(C1).
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2.3 Puncturable Pseudorandom Functions
A puncturable pseudorandom function (PRF) is an augmented PRF that has an additional puncturing algorithm. Such
an algorithm produces a punctured version of the key that can evaluate the PRF at all points except for the punc-
tured one. It is required that the PRF value at that specific point is pseudorandom even given the punctured key. A
puncturable PRF can be constructed from any one-way function [GGM84].

Definition 4 (Puncturable PRFs). A puncturable family of PRFs is a tuple of PPT algorithms (PRF,Puncture) defined
as follows.

• PRF(K, i) → y: A deterministic algorithm that takes as input a key K ∈ K and a point i ∈ X and returns a
value y ∈ Y .

• Puncture(K, i) → Ki: A deterministic algorithm that takes as input a key K ∈ K and a point i ∈ X and
returns a punctured key Ki.

We require that a puncturable PRF satisfies the following properties.

• (Correctness) For all λ ∈ N, for all keys K ← {0, 1}λ, for all i ∈ X and x ∈ X \ i, and for all Ki ←
Puncture(K, i), we have that

PRF(Ki, x) = PRF(K,x).

• (Pseudorandomness) For all λ ∈ N and for all i ∈ X the following distributions are computationally indistin-
guishable

{i,Ki,PRF(K, i)} ≈ {i,Ki, u}
where Ki ← Puncture(K, i) and u← Y is uniformly sampled.

3 NIWI Proofs Secure Against Chosen Statement Attacks
We recall the notion of non-interactive witness-indistinguishable (NIWI) proof for NP from [BOV03].

Definition 5 (NIWI Proof for NP). A NIWI proof (NIWI.Prove,NIWI.Verify) for an NP-language L with relation R
consists of the following efficient algorithms.

• NIWI.Prove(1λ, w, x) → π: On input the security parameter 1λ, a witness w, and a statement x, the proving
algorithm returns a proof π.

• NIWI.Verify(π, x) → b: On input a proof π, and a statement x, the verification algorithm returns a bit b ∈
{0, 1}.

We define the properties of interest below, including correctness, soundness and computational witness indistin-
guishability.

Definition 6 (Correctness). A NIWI proof (NIWI.Prove,NIWI.Verify) is correct if for all λ ∈ N, all x ∈ L, and all
w ∈ R(x) it holds that

Pr
[
NIWI.Verify(NIWI.Prove(1λ, w, x), x) = 1

]
= 1.

Definition 7 (Soundness). A NIWI proof (NIWI.Prove,NIWI.Verify) is sound if for all x∗ /∈ L and all proofs π∗ it
holds that

Pr [NIWI.Verify(π∗, x∗) = 1] = 0.

Definition 8 (Computational Witness Indistinguishability). A NIWI proof NIWI = (Prove, Verify) is witness indis-
tinguishable if for all x ∈ L, and all pairs of witnesses w0, w1 ∈ R(x) it holds that the following distributions are
computationally indistinguishable

NIWI.Prove(1λ, w0, x) ≈ NIWI.Prove(1λ, w1, x).

NIWI proofs are known to exist under a variety of assumptions, such as trapdoor permutations [BOV03], bilinear
pairings [GOS06], and obfuscation and one-way permutations [BP15].

9



CSA-Security. In the following we present our construction of chosen statement attack (CSA) secure NIWI. Infor-
mally, a NIWI is CSA-secure if the witness-indistinguishability property holds, even in the presence of an oracle that
extracts a witness from NIWIs for different statements. Before defining this property, we define the notion of witness
extractable NIWI.

Definition 9 (Witness Extractability). A NIWI proof (NIWI.Prove,NIWI.Verify) is witness extractable if there exists
an inefficient algorithm NIWI.Extract such that for all x ∈ L and all proofs π it holds that

NIWI.Verify(π, x) = 1 =⇒ w ∈ R(x)

where w ← NIWI.Extract(π, x).

Note that this definition does not contradict witness indistinguishability, since the extractor is not efficient. We are
now ready to define the notion of CSA-securty for NIWIs.

Definition 10 (CSA-Security). A witness extractable NIWI proof (NIWI.Prove, NIWI.Verify, NIWI.Extract) is CSA-
secure if there exists a negligible function negl such that for all PPT adversaries A, all statements x, and all pairs of
witnesses (w0, w1) ∈ R(x) it holds that∣∣∣Pr[1 = AdvO(x,NIWI.Prove(1λ, w0, x))

]
− Pr

[
1 = AdvO(x,NIWI.Prove(1λ, w1, x))

]∣∣∣
≤ negl(λ)

where the oracle O takes as input a statement x∗ and a proof π∗. If x∗ ̸= x and NIWI.Verify(π∗, x∗) = 1, it returns
w∗ ← NIWI.Extract(π∗, x∗).

Construction of CSA-Secure NIWI. We show that a simple combination of CCA-secure commitments and (stan-
dard) NIWIs with sub-exponential security already suffices to construct CSA-secure NIWI. More in details, on input
a statement x and a witness w, the prover algorithm computes

c0 ← Com(x,w) and c1 ← Com(x, 0)

and furthermore it computes a (regular) NIWI proof π for the statement:

(x, c0, c1) = {∃(w, b) : cb ∈ Com(x,w) & w ∈ R(x)} .

(Recall that cb ∈ Com(x,w) means there is a randomness r with cb ← Com(x,w; r).)
We denote by λCom the security parameter of the commitment and we set λ (the security parameter of the NIWI)

so that
λ = (λCom)

C

for some constant C > 1, and we require that witness indistinguishability holds against all attackers running in time
polynomial in 2λCom (sub-exponential security).

By the soundness of the NIWI, it is clear that the above construction is witness extractable, since an inefficient ex-
tractor can simply brute-force both commitments and recover a valid witness from at least one of them. The following
theorem shows that this NIWI is also CSA-secure.

Theorem 3.1. Let (NIWI.Prove,NIWI.Verify) be a sub-exponentially secure NIWI proof and let Com be a CCA-secure
commitment scheme. Then the construction as described above is a CSA-secure NIWI.

Proof. Let us fix the bit of the experiment to 0, in which case the view of the adversary includes the variables

Com(x,w0) and Com(x, 0) and NIWI.Prove(1λ, (0, w0), (x, c0, c1))
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along with the queries to the oracle O as defined in Definition 10. We then argue that the following distributions
ensembles are computationally indistinguishable, even in the presence of such an oracle:{

Com(x,w0),Com(x, 0),NIWI.Prove(1λ, (0, w0), (x, c0, c1))
}

≈
{
Com(x,w0),Com(x,w1),NIWI.Prove(1λ, (0, w0), (x, c0, c1))

}
≈
{
Com(x,w0),Com(x,w1),NIWI.Prove(1λ, (1, w1), (x, c0, c1))

}
≈
{
Com(x,w1),Com(x,w1),NIWI.Prove(1λ, (1, w1), (x, c0, c1))

}
≈
{
Com(x,w1),Com(x,w1),NIWI.Prove(1λ, (0, w1), (x, c0, c1))

}
≈
{
Com(x,w1),Com(x, 0),NIWI.Prove(1λ, (0, w1), (x, c0, c1))

}
which suffices to conclude the proof, since the last distribution is precisely identical to the experiment with the bit
fixed to 1. We only discuss indistinguishability for the first two hybrid distributions, and the further ones follow along
the same lines. For the first hybrid, note that the only difference is that c1 is computed as a commitment to 0 or a
commitment to w1. Note that the NIWI is computed using the random coins of c0, and therefore indistinguishability
follows by the CCA-security of the commitment: The reduction can simulate the witness extraction oracle using the
oracle provided by the security of the commitment scheme. Note that the witness extraction oracle always returns ⊥
if the statement equals x, which in particular means that the tag of the commitment must be different, in order for the
oracle to return an answer.

As for the second hybrid, the only change here is the witness that we use in the NIWI proof. We can prove in-
distinguishability by appealing to the sub-exponential witness indistinguishability of the NIWI: The reduction simply
simulates the extraction oracle by brute-forcing the commitments, thus running in time polynomial in 2λCom . By our
choice of parameters, the reduction runtime is still low enough to derive a contradiction against the witness indistin-
guishability of the NIWI proof. The indistinguishability of the remaining hybrids is argued along the same lines as the
ones above.

4 Model and Definitions
We recall the standard definitions of RBE.

4.1 Standard RBE Definitions
In more detail, a registration-based encryption has the following algorithms as defined in [GHMR18]:

Setup(1λ)→ crs : The setup algorithm takes as input the security parameter 1λ and outputs a common reference
string crs.

KeyGen(1λ)→ (pk, sk) : The key generation algorithm takes as input the security parameter and outputs a public key
pk and a secret key sk. This algorithm should be run by any party who wishes to register.

Reg[aux](crs, pp, id, pk)→ pp′ : The deterministic registration algorithm takes as input a common reference string
crs, public parameters pp, identity id, and public key pk and outputs new public parameters pp′. In this process
Reg has read-write access to aux. This algorithm should be run by the key curator.

Enc(crs, pp, id,m)→ ct : The encryption algorithm takes as input the common reference string crs, the public pa-
rameters pp, an identity id, and a message m and outputs a ciphertext ct.

Updaux(pp, id)→ u : The deterministic update algorithm Upd takes public parameters pp and identity id as input and
outputs an update u. This algorithm has read access to aux. This algorithm should also be run by the key curator.

Dec(sk, u, ct)→ m : The deterministic decryption algorithm takes as input a secret key sk, an update u, and ciphertext
ct and outputs a message m.

11



Definition 11 (Completeness, compactness, and efficiency of RBE). Consider the following game for a computa-
tionally unbounded adversary Adv which still has only polynomially many rounds of interaction with a challenger
Chal.

1. Initialization: Chal sets pp ← ⊥, aux ← ⊥, u ← ⊥, ID ← ∅, id∗ ← ⊥, t ← 0, crs ← Setup(1λ) and send crs
to Adv.

2. Every round Adv does one of these actions:

(a) Registering a new (non-target) identity: Adv sends a new identity id /∈ ID and a public key pk to Chal,
which registers and updates pp = Reg[aux](crs, pp, id, pk). The challenger Chal also updates ID ← ID ∪
{id}.

(b) Registering the target identity: If the target identity id∗ is already chosen then do nothing. Otherwise Adv
sends a target identity id∗ to Chal. If id∗ /∈ ID then Chal samples an honest public-key-secret-key pair
(pk∗, sk∗) ← KeyGen(λ) and registers and updates pp ← Reg[aux](crs, pp, id∗, pk∗), ID ← ID ∪ {id∗},
and sends pk∗ to Adv.

(c) Encrypting to the target identity: If the target identity id∗ is not yet chosen then do nothing. Otherwise, Chal
sets t← t+ 1 and receives a message mt from Adv. Chal sends a ciphertext ctt ← Enc(crs, pp, id∗,mt)
to Adv.

(d) Decrypting for target identity: The adversary Adv sends i ∈ [t] to Chal, which computes the plaintext
m′

i ← Dec(sk, u, cti). If m′
i = GetUpd, then Chal computes the update u ← Updaux(pp, id∗) and

computes the plaintext m′
i ← Dec(sk, u, cti).

The Adv wins if mi ̸= m′
i at some point in the game.

We require the following requirements to be met, where n = |ID|:

• Completeness: Adv wins with probability ≤ negl(λ).

• Compactness of public parameters and updates: |pp| and |u| are both at most poly(λ, log n).

• Efficiency of Registration and Updates: Reg and Upd run both in time at most poly(λ, log n).

• Number of Updates: The total number Upd calls for identity id∗ in step 2d is ≤ O(log n).

The security is defined similarly using an experiment.

Definition 12 (RBE Security). Consider the following game between an interactive PPT adversary Adv and a chal-
lenger Chal:

1. Initialization: Chal sets pp ← ⊥, aux ← ⊥, u ← ⊥, ID ← ∅, id∗ ← ⊥, t ← 0, crs ← Setup(1λ) and send crs
to Adv.

2. Every round Adv does one of these actions:

(a) Registering a new (non-target) identity: The adversary Adv sends a new identity id /∈ ID and a public key
pk to Chal, which registers and updates pp = Reg[aux](crs, pp, id, pk). The challenger Chal also updates
ID← ID ∪ {id}.

(b) Registering the target identity: If the target identity id∗ is already chosen then do nothing. Otherwise Adv
sends a target identity id∗ /∈ ID to Chal, which samples an honest public-key-secret-key pair (pk∗, sk∗)←
KeyGen(1λ) and registers and updates pp← Reg[aux](crs, pp, id∗, pk∗), ID← ID ∪ {id∗}, and sends pk∗

to Adv.

3. Encrypting for target identity: If no target identity id∗ is chosen Adv sends id∗ to Chal. Then, the challenger Chal
samples a random bit b ← {0, 1} and generates an encryption to the target identity ct∗ ← Enc(crs, pp, id∗, b)
and sends ct to Adv.
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4. Adv outputs a bit b′ and wins the game if b = b′.

We call an RBE secure if the adversary wins with probability 1/2 + negl(λ).

Remark 1 (Interactive RBE). In this work, we consider also a variant of the standard RBE, as an intermediate ab-
straction, where the registration process requires one round of interaction between the key curator and the clients. This
is modeled by allowing the key generation algorithm to have read-only access to the auxiliary information. Namely, an
interactive RBE is obtained from standard RBE by replacing KeyGen(1λ)→ (pk, sk) by KeyGenaux(1λ)→ (pk, sk).

4.2 Necessity of One Honest User
Now we show that without a CRS no RBE scheme can satisfy both Definition 11 and Definition 12 against non-uniform
PPT adversary. The proof is very reminiscent of proof that there can not be collision resistant hash functions without
setup.

Proposition 4.1. Let Π = (Setup,KeyGen,Gen,Enc,Upd,Dec) be an RBE scheme without CRS satisfying Definition
11. Then, there exists a non-uniform PPT adversary A that breaks the security of Π defined in Definition 12.

Proof. Fix a list of n pairs of public and secret keys (pk1, sk1), · · · , (pkn, skn) where (pki, ski) ← Π.KeyGen(1λ).
Define Hn(id1, · · · , idn) recursively by

Hi+1(id1, · · · , idi+1) := Reg[aux](Hi(id1, · · · , idi), idi+1, pki+1)

for i = 0, · · · , n− 1 and H0 = ⊥.
By definition, we know |pp| ≤ poly(λ, log n) ≤ λc1 · (log n)c2 for some constants c1, c2 > 0. Without loss of

generality, assume the length of identities is |id| = λ. There are
(
2λ

n

)
different sets of n identities. We identify each set

as a list of n identities. By the well known lower bound for binomial coefficients, we have log
(
2λ

n

)
≥ n · (λ− log n).

Take n = λc1 . One can easily check that n · (λ− log n) > λc1 · (log n)c2 for sufficiently large λ.
This implies there exist (id1, · · · , idn) and (id′1, · · · , id

′
n) where there exists i ∈ [n] such that id′i ̸= idj for every

j ∈ [n] and Hn(id1, · · · , idn) = Hn(id
′
1, · · · , id

′
n). Consider the following adversary Adv given the two lists of

identities, the list of keys and the index i as advice.

1. Send (idj , pkj) to the challenger Chal to register for j = 1, · · · , n.

2. Locally register ((id′j , pkj)) for j = 1, · · · , n.

3. Ask Chal to encrypt to id′i.

4. Locally compute update u′i for id′i.

5. Use (ski, u
′
i) to decrypt and output the bit.

The adversary Adv is clearly efficient. The attack is legitimate because id′i has not been registered by the challenger.
By construction, registering (idj , pkj) for j = 1, · · · , n and registering (id′j , pkj) for j = 1, · · · , n produces the exact
same public parameter pp. Then, decryption will succeed with overwhelming probability, due to completeness.

5 RBE in the Plain Model
In this section, we show despite the impossibility results how to construct RBE in the plain model.
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5.1 One Honest User Security
In the following, we define a variant of registration-based encryption that only has any security if one of the users is
honest. We believe this is still meaningful. We mark the difference from the previous definition in grey.

Definition 13 (One Honest User Security). Consider the following game between an interactive PPT adversary Adv
and a challenger Chal:

1. Initialization: Chal sets pp ← ⊥, aux ← ⊥, u ← ⊥, ID ← ∅, HID← ∅ , id∗ ← ⊥, t ← 0, crs ← Setup(1λ)
and send crs to Adv.

2. Every round Adv does one of these actions:

(a) Registering a new (non-target) identity: The adversary Adv sends a new identity id /∈ ID and public key pk
to Chal, which updates the public parameter pp = Reg[aux](crs, pp, id, pk) and updates ID← ID ∪ {id}.

(b) Registering an honest identity: The adversary Adv sends a new identity id /∈ ID then Chal samples an
honest public-key-secret-key pair (pk, sk) ← KeyGen(1λ). Then, the challenger Chal updates pp ←
Reg[aux](crs, pp, id, pk), ID← ID ∪ {id} and HID← HID ∪ {id} , and then sends pk to Adv.

3. Encrypting for target identity: Adv sends a target identity id∗ ∈ HID or id∗ /∈ ID to Chal, which samples a
random bit b ← {0, 1} and computes the encryption ct∗ ← Enc(crs, pp, id∗, b) with respect to id∗ and send ct
to Adv

4. Adv outputs a bit b′ and wins the game if b = b′ and HID ̸= ∅ .

We call an RBE one honest user secure if the adversary wins with probability 1/2 + negl(λ).

All that really changes is that we keep track of the honestly registered identities. We track those in HID and we
require that HID ̸= ∅ for the adversary to win. The major differences are highlighted.

Interactive Registration Based Encryption. We start by constructing an interactive RBE and showing that the
construction satisfies the above one honest user security. Please see Remark 1 for the syntax of an interactive RBE.

Construction 5.1 (Interactive Registration Based Encryption). Let NIWI = (Prove,Verify, Extract) be a CSA-secure
NIWI, RRRBE = (Setup,SampleRand,ReRand,KeyGen,Reg, Upd,Enc,Dec) be a re-randomizable RBE scheme,
and f be an one-way permutation defined on X = {0, 1}λ. We construct the algorithms of an interactive RBE. (In
the following, part of aux is identified as the auxiliary information auxRRRBE for the underlying re-randomizable RBE
RRRBE.)

• KeyGenaux(1λ)→ (pk, sk): First compute (pk′, sk′)← RRRBE.KeyGen(1λ). If aux = ⊥, which means no user
has been registered yet, compute crs0 = RRRBE.Setup(1λ, 0; r0) with fixed randomness r0 = 0. Otherwise,
read from aux a list (crs0, · · · , crsi) and a list (y1, · · · , yi). (Here the index i is the number of users already
registered. In the previous case where aux = ⊥, we let i = 0.) Then do the following.

1. Sample ri+1 ← RRRBE.SampleRand(1λ) and compute crsi+1 = RRRBE.ReRand(crsi; ri+1).

2. Sample xi+1 ← X and compute yi+1 = f(xi+1).

3. Compute π = NIWI.Prove(1λNIWI , ri+1, stm) where λNIWI = λC , for some constant C < 1, stm =
((crs0, · · · , crsi+1), (y1, · · · , yi+1)) andR(stm) is defined to be:

– r such that crsi+1 = RRRBE.ReRand(crsi; r), or
– x such that yi+1 = f(x), and for all j ∈ [i]

* rj such that crsj = RRRBE.ReRand(crsj−1; rj), or

* xj such that yj = f(xj).

4. Output (pk = (crsi+1, yi+1, π, pk
′), sk = sk′).
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• Reg[aux](1λ, pp, id, pk) → pp′: If aux = ⊥, which means no user has been registered yet, compute crs0 =
RRRBE.Setup(1λ, 0; r0) with fixed randomness r0 = 0. Add crs0 to aux. Otherwise, read from aux a list
(crs0, · · · , crsi) and a list (y1, · · · , yi), where i is the number of registered users. Parse pk = (crsi+1, yi+1, π, pk

′).
Reconstruct stm and run NIWI.Verify(π, stm). If verification fails, halt and output nothing. Otherwise, add
crsi+1, yi+1 to aux. Then, perform re-registration of previous users and the registration of new user in the
following way. Compute pp1 ← Reg[aux](crsi+1,⊥, id1, pk1). Then, for each j = 2, · · · , i + 1, compute
ppj ← Reg[aux](crsi+1, ppj−1, idj , pkj). Finally, output pp′ = ppi+1.

• Enc(pp, id,m)→ ct:

– Parse pp as (crs′, pp′).

– Compute ct′ ← RRRBE.Enc(crs′, pp′, id,m).

– Output ct = (crs′, ct′).

• Updaux(pp, id)→ u:

– Parse pp as (crs′, pp′).

– Output the update u = RRRBE.UpdauxRRRBE(pp′, id).

• Dec(sk, u, ct)→ m:

– Parse ct as (crs′, ct′).

– Output m = RRRBE.Dec(crs′, sk, u, ct′).

Correctness, compactness, and efficiency directly follow from the underlying re-randomizable RBE, one-way
permutation and NIWI. In the following, we show that the construction is secure.

Proposition 5.2. The RBE of Construction 5.1 is secure as defined in Definition 13.

Proof. The proof proceeds by defining a series of hybrid experiments, where we modify the challenger’s behaviour.
We define the following series of hybrids.

• Hyb0: This is the original experiment.

• Hyb1: Let i be the index of the first registered honest identity. Extract the witnesses from the NIWIs from all
identities previous to i. Call these witnesses w1, . . . , wi−1. This can be done because of witness extractability
of the NIWI.

• Hyb2: Introduce a condition that if the extracted witnesses w1, . . . , wi−1 do not for each j ∈ [i− 1] contain

– an rj such that crsj = RRRBE.ReRand(crsj−1; rj), or

– an xj such that yj = f(xj)

the adversary wins automatically. This condition does not happen by the soundness of the NIWI.

• Hyb3: In this hybrid, we change how the challenger proves the NIWI for the first honestly registered use πi.
It uses the extracted witnesses w1, . . . , wi−1 and input to the one-way permutation xi to switch to the second
branch. By CSA-Security this change stays unnoticed with all but negligible probability.

• Hyb4: In this hybrid, we change how the crsi is computed. Instead of re-randomizing crsi−1 we generate a
fresh crsi ← RRRBE.Setup(1λ, i). An adversary can not detect this change because a freshly generated crs is
identically distributed to a re-randomized one as it fulfills Definition 17.

• Hyb5: Extract the witnesses from the NIWIs from all identities after i. Call these witnesses wi+1, . . . , wm,
where m is the number of registered parties at the end.
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• Hyb6: In this hybrid, we introduce a condition that if the extracted witnesses wi+1, . . . , wm contain xi, the
input to the one-way permutation of the first honest user, the adversary wins automatically. This condition does
not happen with all but negligible probability by the one-wayness of f .

• Hyb7: In this hybrid, we introduce a condition that if the extracted witnesses wi+1, . . . , wm contain ri, ran-
domness with the property that if crsi matches the re-randomized crs RRRBE.ReRand(crsi−1; ri), the adversary
wins automatically. This condition does not happen with all but negligible probability by the one-wayness of
the re-randomization of the RBE.

• Hyb8: In this hybrid, we introduce a condition, that checks, whether wi+1, . . . , wm contain randomnesses
ri+1, . . . , rm such that crsj = RRRBE.ReRand(crsj−1; rj) for all j ∈ [i + 1,m]. This condition does happen
by the soundness of the NIWI.

Hyb8 reduces to re-randomizable RBE because every registered user after i can at most modify the CRS by re-
randomizing it.

5.2 From Interactive To Non-Interactive Registration
In the following we present a generic method to turn an RBE scheme with interactive registration (i.e., where the
key generation takes as input the public parameters pp instead of the common reference string crs) into a standard
RBE, with non-interactive registration. Given an RBE scheme (Setup,KeyGen,Reg,Enc,Upd,Dec) with interactive
registration, our new RBE will only modify the key generation, registration, and decryption algorithms, which we
describe below. Let PKEnc be the encryption algorithm for a semantically secure public-key encryption scheme.

KeyGen∗(1λ)→ (pk, sk) : Sample a regular public-key encryption pair (pk∗, sk∗). Sample K ← {0, 1}λ to be the
key of a puncturable PRF. Then compute C̃ ← Obf(CK,pk∗) and return C̃ as the public key and sk∗ as the secret
key. The circuit CK,pk∗ is defined to take as input some public parameters pp and it behaves as follows:

• Evaluate (r0, r1)← PRF(K, pp).

• Compute (pk, sk)← KeyGen(pp; r0).

• Return pk and c← PKEnc(pk∗, sk; r1).

Reg∗[aux](crs, pp, id, pk)→ pp′ : The new registration algorithm evaluates (pk, c) ← C̃(pp) and proceeds as the old
Reg, recording c as part of the auxiliary information.

Dec∗(sk, u, ct)→ m : We assume without loss of generality that the ciphertext c is part of the update u. Then the
decryption algorithm uses sk∗ to decrypt c and recover sk, which is then used as input to run the old Dec
algorithm.

The correctness of the new scheme follows easily from the correctness of the old RBE. The following theorem sum-
marizes the result of this section.

Theorem 5.3. Let (Setup,KeyGen,Reg,Enc,Upd,Dec) be an RBE with interactive registration. Then the construc-
tion as described above is a secure RBE.

Proof. The proof proceeds by defining a series of hybrid experiments, where we modify the way we compute the
output of the key generation algorithm KeyGen∗ for all honest parties in the experiment. For the i-th party, we define
the following series of hybrids.

• Hybi,0: This is the original experiment.

• Hybi,1: In this hybrid, we modify the way the obfuscated circuit is computed. Let pp∗ be the current version of
the public parameters of the scheme, we define K{pp∗} ← Puncture(K, pp∗) and (r∗0 , r

∗
1) ← PRF(K, pp∗).

We then obfuscate the circuit CK{pp∗},pk∗,r∗0 ,r∗1 defined as follows:

– If pp = pp∗ set (r0, r1) = (r∗0 , r
∗
1). Else evaluate (r0, r1)← PRF(K{pp∗}, pp).
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– Compute (pk, sk)← KeyGen(pp; r0).

– Return pk and c← PKEnc(pk∗, sk; r1).

It is easy to see that the two circuits are functionally equivalent, and therefore computational indistinguishability
follows from the security of Obf.

• Hybi,2: In this hybrid, we proceed as before except that we substitute (r∗0 , r
∗
1) with two uniformly random

values. Indistinguishability follows by the security of the puncturable pseudorandom function.

• Hybi,3: In this hybrid, we hardwire the outputs of key generation KeyGen(pp∗; r∗0) and encryption PKEnc(pk∗, sk; r∗1)
in the obfuscated circuit, instead of computing them on-the-fly. Indistinguishability follows once again by ap-
pealing to the security of the obfuscation scheme.

• Hybi,4: We substitute the hardwired c with an encryption of 0. Indistinguishability follows by the semantic
security of the public-key encryption scheme.

After we have switched all distributions for all calls to the honest key generation algorithm, we can see that the security
of the modified scheme follows by a simple reduction to the security of the underlying RBE. For calls to the honest key
generation algorithm, the reduction hardwires the public keys sampled by the old KeyGen algorithm in the obfuscated
circuit, as shown above. Since the key curator is acting honestly, the public parameters are always kept consistent
across the experiment. Thus, the adversarial advantage in breaking the new scheme is bounded by that against the old
scheme, up to some negligible factors lost in the above hybrid transitions.

We remark that, because of the programming argument in the proof, we have to scale up the size of the obfuscated
circuit to be able to contain the largest key. Since the size of the key potentially depends on the current number of
users, this means that we need to set an upper-bound on the total number of users, that one needs to know when
running the key generation algorithm.

6 CRS Re-Randomizable RBE
We construct a CRS re-randomizable RBE. We start by constructing a re-randomizable hash encryption and then
compile it into a re-randomizable RBE.

6.1 Key Re-Randomizable Hash Encryption
We construct a hash encryption according to the definition of [DGHM18]. The construction is heavily inspired by the
chameleon encryption from CDH by [DG17] for a p (prime)-order group G and detailed in proposition 6.4.

Construction 6.1. We construct the algorithms of the hash encryption scheme.

Gen(1λ, n)→ k : For each j ∈ [n], sample αj,0, αj,1
$← Z∗

p uniformly at random and compute gj,0 ← gαj,0 and
gj,1 ← gαj,1 .

Output k :=

(
g,

(
g1,0 g2,0 · · · gn,0
g1,1 g2,1 · · · gn,1

))
H(k, x)→ h :

• Parse k as above and x ∈ {0, 1}n.

• Output h :=
∏n

j=1 gj,xj
.

Enc(k, (h, i, b),m)→ ct :

• Parse k as above, (h, i, b) ∈ G× [n]× {0, 1}, and m ∈ {0, 1}.

• Sample ρ
$← Zp uniformly at random.
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• Let c← hρ.

• For every j ∈ [n] \ {i}, set cj,0 ← gρj,0 and cj,1 ← gρj,1.

• Let ci,0 ← ⊥ and ci,1 ← ⊥.

• Let e := m⊕ GL(gρi,b).

• Output ct :=
(
e, c,

(
c1,0 c2,0 · · · cn,0
c1,1 c2,1 · · · cn,1

))
.

Dec(k, x, ct)→ m :

• Parse k as above, x ∈ {0, 1}n, and ct as above.

• Output m = e⊕ GL
(

c∏
j∈[n]\{i} cj,xj

)
.

We show that it is a hash encryption according to the definition of [DGHM18] even with a semi-honestly re-
randomized key. Formally, we prove the following two properties:

Perfect Correctness For all i ∈ [n], x ∈ {0, 1}n, m ∈ {0, 1}, and k ∈ G×G2×n, we have

Dec(k, x,Enc(k, (H(k, x), i, xi),m)) = m.

Proof. We have H(k, x) =
∏n

j=1 gj,xj = h. Then, we have

Enc(k, (h, i, xi),m)

=

e = GL(gρi,xi
)⊕m, c =

n∏
j=1

gρj,xj
, (cj,0, cj,1) = (gρj,0, g

ρ
j,1)j∈[n]\{i}


=ct

and

Dec(k, x, ct) = e⊕ GL

( ∏n
j=1 g

ρ
j,xj∏

j∈[n]\{i} g
ρ
j,xj

)
= GL(gρi,xi

)⊕ GL(gρi,xi
)⊕m = m.

Re-Randomizable Key We add two new algorithms to the construction: SampleRand and ReRand. SampleRand
samples randomness for the re-randomization and ReRand re-randomizes the key. More specifically, the syntax of
these algorithms is as follows:

SampleRand(1λ, n)→ rand : Takes as input the security parameter λ and integer n and outputs randomness rand.

ReRand(k, rand)→ k′ : Takes as input a key k and randomness rand and outputs a new key k′.

We then want the following properties to hold:

Definition 14 (Re-Randomizable Key). For all keys k, we have that a re-randomized key k′ ← ReRand(k, SampleRand(1λ, n))
is identically distributed to Gen(1λ, n).

Definition 15 (Re-Randomizing One-Wayness). For all keys k and k′ ← Gen(1λ, n) we have that any PPT adversary
Adv(k, k′) only has a negligible probability of computing an r such that k′ = ReRand(k, r).

Definition 16 (Security with Re-Randomized Key). A hash encryption is secure with re-randomizable key if for all
PPT adversaries Adv1 and Adv2, n ∈ N, x ∈ {0, 1}n there exists a negligible function negl such that for all λ ∈ N
the adversary’s probability of winning the following experiment is 1/2 + negl(λ):
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1. Let k0 ← Gen(1λ, n).

2. Let (i,m0,m1, l, (randj)j∈[l], st)← Adv1(k0).

3. For j ∈ [l] let kj ← ReRand(kj−1, randj).

4. Sample b
$← {0, 1} uniformly at random.

5. Let ct← Enc(kl, (H(kl, x), i, 1− xi),mb).

6. Let b′ ← Adv2(st, kl, ct).

7. The adversary wins if b′ = b.

Extending DGHM For Construction 6.1 we define the algorithms SampleRand and ReRand as follows:

SampleRand(1λ, n) : For each j ∈ [n], sample βj,0, βj,1
$← Z∗

p uniformly at random.

Output rand :=

(
β1,0 β2,0 · · · βn,0

β1,1 β2,1 · · · βn,1

)
.

ReRand(k, rand) :

• Parse k as above and rand = (βi,j)i∈[n],j∈{0,1}.

• Output k′ :=

(
g,

(
g
β1,0

1,0 g
β2,0

2,0 · · · g
βn,0

n,0

g
β1,1

1,1 g
β2,1

2,1 · · · g
βn,1

n,1

))
.

Proposition 6.2 (Re-Randomizable Key). Construction 6.1 has a re-randomizable key according to Definition 14.

Proof. For all k ∈ (G \ {1})2×n, we have that

k′ ← ReRand(k, SampleRand(1λ, n))

and Gen(1λ, n) are uniform distributions over (G \ {1})2×n.

Proposition 6.3. In Construction 6.1 re-randomizion is one-way accoding to Definition 15.

Proof. The key of the hash function has 2n elements but for this argument we only need to look at a single fixed one,
say the position (1, 1). Because the adversary Adv can depend on the key k there also exists an adversary Adv′ that
has non-uniform advice of the discrete logarithm of the (1, 1)-th element of k and can break the discrete logarithm.

Adv′(h)[α]:

• Has non-uniform advise α such that gα = k1,1.

• Sample k′
$← (G \ {1})2×n uniformly at random.

• Replace k′1,1 by hα.

• Get (di,j)i∈{0,1},j∈[n] ← Advk(k
′).

• Output d1,1.

The modified k′ that Adv receives has the correct distribution as all elements are uniform over G \ {1}, so Adv behave
like it does on a real challenge with respect to k. If Adv has an output that breaks one-wayness of the re-randomization
then hα = k′1,1 = k

d1,1

1,1 = gαd1,1 . Therefore, gd1,1 = h and Adv′ wins as well.

Proposition 6.4 (Security with Re-Randomized Key). The hash encryption of Construction 6.1 is secure with re-
randomizable key according to Definition 16.
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Proof. This proof follows the security proof of the chameleon encryption of [DG17] up to the details of the re-
randomized key. We prove via reduction to CDH. Given an adversary Adv that can win the security with re-randomizable
key game with non-negligible advantage we construct an adversary Adv′ that can win the CDH game over group
(G, p, g) with non-negligible advantage.

Adv′(g, U, V ) :

• For j ∈ [n]:

– Sample αj,0, αj,1
$← Z∗

p uniformly at random.
– Let gj,0 = gαj,0 and gj,1 = gαj,1 .

• Sample x∗ $← {0, 1} and i∗
$← [n] uniformly at random.

• Replace gi∗,1−xi
by U .

• Let k :=

(
g,

(
g1,0 g2,0 · · · gn,0
g1,1 g2,1 · · · gn,1

))
.

• Let (i,m0,m1, l, (randj)j∈[l], st)← Adv1(k) where

randj =

(
β
(j)
1,0 β

(j)
2,0 · · · β

(j)
n,0

β
(j)
1,1 β

(j)
2,1 · · · β

(j)
n,1

)

• Let β :=

(
β1,0 :=

∏
i∈[l] β

(i)
1,0 β2,0 :=

∏
i∈[l] β

(i)
2,0 · · · βn,0 :=

∏
i∈[l] β

(i)
n,0

β1,1 :=
∏

i∈[l] β
(i)
1,1 β2,1 :=

∏
i∈[l] β

(i)
2,1 · · · βn,1 :=

∏
i∈[l] β

(i)
n,1

)

• Let k′ :=

(
g,

(
g
β1,0

1,0 g
β2,0

2,0 · · · g
βn,0

n,0

g
β1,1

1,1 g
β2,1

2,1 · · · g
βn,1

n,1

))
.

• If i ̸= i∗ or x∗ ̸= xi output a uniformly random bit b $← {0, 1}.
• Otherwise:

– Let V ′ := V β−1
i∗,1−x∗ .

– Let ct :=
(
e, c,

(
c1,0, c2,0, . . . , cn,0
c1,1, c2,1, . . . , cn,1

))
where

c := V ′, e $← {0, 1}, for all j ∈ [n] \ {i} we have cj,0 := V ′αj,0·βj,0 , cj,1 := V ′αj,1·βj,1

– b← Adv2(st, k
′, ct).

– Output b⊕ e.

Observe that the distribution of k is identical to that of Gen. This implies that the view of Adv1 is identical to the
one in the experiment. We call the event that i = i∗ and x = x∗ event E. The event E happens with probability
1
2n . Conditioned on E we have that the view of Adv2 is identically distributed to the view in the experiment where
ct is an encryption of e ⊕ GL(gu·v), where U = gu and V = gv . Now if Adv2 correctly predicts e ⊕ GL(gu·v) with
non-negligible probability then Adv′ predicts GL(gu·v) with non-negligible probability.

6.2 Compiling to CRS Re-Randomizable RBE
We compile a key re-randomizable hash encryption into a CRS re-randomizable RBE. A CRS re-randomizable RBE
is an RBE with two extra algorithms SampleRand that samples randomness for the re-randomization and ReRand that
re-randomizes the CRS. These algorithms have the following syntax:

SampleRand(1λ)→ rand : Takes as input the security parameter λ and outputs randomness rand.

ReRand[aux](crs, rand)→ crs′ : Takes as input a crs and rand and outputs a new crs′.

Further, we amend the syntax for Setup slightly.
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Setup(1λ, i)→ crs : Takes as input the security parameter λ an index i and outputs a common reference string crs.

In addition to previous RBE properties, we need the following three properties to hold.

Definition 17 (Re-Randomizable CRS). For all i ∈ [2λ] and crs from the range of Setup(1λ, i − 1), we have
ReRand(crs,SampleRand(1λ)) is identically distributed as Setup(1λ, i).

Definition 18 (Re-Randomizing One-Wayness). For all i ∈ [2λ] and CRS crs from the range of Setup(1λ, i− 1) and
crs′ ← Setup(1λ, i) we have that any randomized sub-exponential time adversary Adv(crs, crs′) only has a negligible
probability of computing an r such that crs′ = ReRand(crs, r).

Definition 19 (CRS Re-Randomizable RBE Security). Consider the following game between an interactive PPT
adversary Adv and a challenger Chal:

1. Initialization: Chal sets pp ← ⊥, aux ← ⊥, u ← ⊥, ID ← ∅, id∗ ← ⊥, t ← 0, crs ← Setup(1λ, 0) and sends
crs to Adv.

2. Every round Adv does one of these actions:

(a) Registering a new (non-target) identity: Adv sends a new identity id /∈ ID and its corresponding public key
pk to Chal. Chal registers the public key pk on identity id and obtains an update u = Reg[aux](crs, pp, id, pk)
and updated (non-target) list ID← ID ∪ {id}.

(b) Registering the target identity: If the target identity id∗ is already chosen then do nothing. Otherwise,
Adv sends a target identity id∗ to Chal. If id∗ /∈ ID then Chal samples an honest public key and secret
key pair (pk∗, sk∗) ← KeyGen(1λ) and update the public parameter pp ← Reg[aux](crs, pp, id∗, pk∗),
ID← ID ∪ {id∗}, and sends pk∗ to Adv.

(c) Re-randomizing the CRS: The challenger Chal receives rand from Adv and re-randomizes the CRS crs ←
ReRand(crs, rand). Then, the challenger Chal re-registers all users using the new crs in the following way.
Let n be the number of users that have already been registered and (idi, pki) be the identity and public
key pair of the i−th registered user. (This information can be read from the auxiliary information aux.)
First, clear the auxiliary information aux. Then, compute pp1 ← Reg[aux](crs,⊥, id1, pk1) and then for
each i = 2, · · · , n, compute ppi ← Reg[aux](crs, ppi−1, idi, pki). Finally, set pp ← ppn and send crs to
the adversary Adv.

3. Encrypting for target identity: If no target identity id∗ is chosen Adv sends id∗ to the challenger Chal first.
Then the challenger Chal samples a random bit b← {0, 1}, compute its encryption to the target identity ct∗ ←
Enc(crs, pp, id∗, b) and sends ct∗ to Adv.

4. Adv outputs a bit b′ and wins the game if b = b′.

We call a CRS Re-Randomizable RBE secure if the probability of any sub-exponential adversary Adv’s winning in the
above game is < 1/2 + negl(λ).

The completeness definition of registration-based encryption can be similarly adapted to CRS re-randomizable
RBE by adding a re-randomization query. Since the modification is mainly syntactic and not fundamental, we omit it
here.

We now show that with minor modifications the registration-based encryption of [GHM+19] based on hash encryp-
tion is a CRS re-randomizable RBE. The only changes we need to make are specific to re-randomizing and keeping
track of the number of re-randomizations.

Construction 6.5. Let RBE′ = (Setup, KeyGen, Reg, Upd, Enc, Dec) be the RBE of [GHM+19] and HashEnc =
(Gen, H, Enc, Dec, SampleRand, ReRand) be the key re-randomizable hash encryption used to instantiate the hash
encryption of RBE′. We define the CRS re-randomizable RBE RBE as follows:

Setup(1λ, i) :
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• Let k ← HashEnc.Gen(1λ, n) for some n as determined by the RBE construction in [GHM+19].

• Output crs← (crs′ := k, i), where crs′ is exactly the CRS of RBE′.

KeyGen(λ) : Output (pk, sk)← RBE′.KeyGen(λ).

Reg[aux]((crs′, t), pp, id, pk) :

• Split aux into aux′ and aux∗, where aux′ is the auxiliary information for RBE′.

• Store (id, pk) in aux∗.

• Output pp′ ← RBE′.Reg[aux
′](crs′, pp, id, pk).

Updaux(pp, id) :

• Split aux into aux′ and aux∗, where aux′ is the auxiliary information for RBE′.

• Output u← RBE′.Updaux
′
(pp, id).

Enc((crs′, t), pp, id, b) :

• Let ct′ ← RBE′.Enc(crs′, pp, id, b).

• Output (ct′, t).

Dec((crs′, t), sk, u, ct = (ct′, t∗)) :

• If t∗ = t then output RBE′.Dec(crs′, sk, u, ct′).

• Else output GetUpd.

We add the following two algorithms to the construction, in which we crucially use the fact that the CRS is exactly the
key of the hash encryption and that the hash encryption is re-randomizable.

SampleRand(1λ) : Output rand← HashEnc.SampleRand(1λ, n).

ReRand((crs′, t), rand) :

• Parse crs′ as k.

• Let k′ ← HashEnc.ReRand(k, rand).

• Output crs = (crs′ = k′, t+ 1).

Correctness, compactness, and efficiency directly follows from the correctness, compactness, and efficiency of the
RBE of [GHM+19].

CRS re-randomizability and one-wayness of the re-randomization follow directly from the fact that the CRS is
only a key of a re-randomizeable hash encryption with these properties and a counter.

CRS re-randomizable security follows from the property of the RBE of [GHM+19] that the CRS is only used
for hash encryptions and Proposition 6.4, which tells us that the hash encryption stays secure, even if the CRS is re-
randomized. They only make black-box use of the security property in the reduction, therefore, the re-randomizable
RBE security follows from their proof straightforwardly.

7 Lower Bound on Number of Updates
In this section, we show that Ω(n) number of updates is necessary for RBE without CRS under two mild assumptions
that are satisfied by known constructions.
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Assumptions.

The first assumption is about fixed update times, as in Definition 2.4 in [MQR22]. Conceptually, this assumption
states that the time when a registered user requires an update is fixed and known. We capture this using a DAG, where
the i−th user is represented by vertex i and an edge from i to j means that the i−th registered user needs an update
immediately after the registration of the j−th user. Since an user can receive updates only after it has already been
registered, it is clear that in such graphs edges can only go from smaller vertices to larger vertices, which we refer to
as Forward DAGs.

Definition 20 (Forward DAGs). Let G = (VG, EG) be a directed acyclic graph (DAG) with vertices VG = [n] (in case
of being finite) or VG = N (in case of being infinite). We write (i, j) ∈ G if (i, j) ∈ EG (i.e., there is an edge from i to
j in G). We call G a forward DAG, if for all (i, j) ∈ G, we have i ≤ j.

With the use of Forward DAGs, we state our first assumption. Conceptually, we say that an RBE scheme has
fixed update times according to a forward DAG G if completeness of the scheme holds when user i receives an update
at time j for every edge (i, j) ∈ G. In particular, we demand each decryption query to return a message. This is
in contrast with the original completeness of RBE where a decryption query can return the special symbol GetUpd,
upon seeing which an user can request decryption update. Since we are assuming a user only needs updates at times
specified in the forward DAG and every user is indeed given the required update at the right time, decryption query
should never output GetUpd.

Definition 21 (Completeness of RBE with fixed update times). Let G be an infinite forward DAG. For an RBE scheme
and any interactive computationally unbounded adversary Adv that still has a limited poly(λ) round complexity,
consider the game UpdTimesGAdv(λ) between Adv and a challenger Chal as follows.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, S = ∅, t = 0, and crs ← Upoly(λ), and sends the
sampled crs to Adv.

2. Till Adv continues (which is at most poly(λ) steps), proceed as follows. At every iteration, Adv chooses exactly
one of the actions below to perform.

(a) Registering identities. Adv performs exactly one out of Step 2(a)i and Step 2(a)ii below, but regardless of
this choice, Chal will continue to send the updates as described next.

i. Registering a corrupted non-target identity. Adv sends some id /∈ D and pk to Chal. Chal registers
(id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.

ii. Registering the target uncorrupted identity. This step is allowed only if id∗ = ⊥. In that case,
Adv sends some id∗ /∈ D to Chal. Chal then samples (pk∗, sk∗) ← KeyGen(1λ), runs pp :=

Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗}, and sends pk∗ to Adv.

Immediately updating the target identity, if required by G. This step is allowed only if id∗ ̸= ⊥ (otherwise
this step is skipped). Suppose id∗ was the ith registered identity, and let the identity registered in either of
Step 2(a)i Step or 2(a)ii be the jth identity. If (i, j) ∈ G (i.e., there is an edge from i to j), then we update
the decryption information u = Updaux(pp, id∗) for the target identity.

(b) Encrypting for the target identity. This step is allowed only if id∗ ̸= ⊥. In that case, Chal sets t = t+ 1.
Adv sends mt ∈ {0, 1}∗ to Chal who then sets m′

t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to Adv.

(c) Decryption for the target identity. Adv sends j ∈ [t] to Chal who lets m′
j = Dec(sk∗, u, ctj).

The adversary Adv wins above, if there is some j ∈ [t] for which m′
j ̸= mj . This particularly holds, e.g., if

m′
j = GetUpd. We say that G is an update graph for the RBE scheme, if Pr[Adv wins] = negl(λ). In this case, we

also say that the completeness holds with fixed update graph G.

The second assumption states that encryption and decryption succeed if and only if one can recover part of the
public parameters from the update witness. This is motivated by known constructions, where the update witness is the

23



opening of a succinct commitment and the decryption recomputes some public information depending on the index.
As an example, it is useful to keep in mind the example of Merkle-tree based schemes, where the witness is just a
root-to-leaf path, which in particular allows one to recompute the root of the tree.

Definition 22 (PP-recoverability). Let Π = (Setup,KeyGen,Reg,Upd,Enc,Dec) be an RBE scheme with complete-
ness probability ρ. We say Π is pp-recoverable if there exist two deterministic algorithms Ext1 and Ext2 such that for
all pp, crs, id, u, and any (pk, sk) ∈ KeyGen(1λ), there exists an index i such that

Ext1(crs, (id, pk), u) = Ext2(crs, pp, i)

if and only if
Pr[Dec(sk, u,Enc(crs, pp, id,m)) = m] ≥ ρ

for any message m.

Justification for the two assumptions. We use the construction in the first RBE paper [GHMR18] as a concrete
example to illustrate and justify the assumptions since follow-up works all follow the same paradigm of accumulating
identity and key pairs into succinct commitments and encrypting with respect to the commitments. The construction
works in the following way: KC maintains a list of Merkle trees where the leaves are the identity and key pairs and
publish roots as public parameters. An update for a user is an opening for the corresponding identity and key leaf
in the tree. Encryption is an obfuscated program which first checks that the identity and key provided by whoever
wishes to decrypt are consistent with one of the roots in the public parameter and then outputs an encryption of the
message using the provided key. To justify fixed update times assumption, note that an update is needed if and only
if two trees are merged and the times when two trees are merged only depend on the number of registered users. To
justify PP-recoverability, note that to verify an identity and key pair, one uses the pair and an opening to re-compute a
root and check it against the published roots. If there is a valid opening for some identity and key pair that results in
one of the roots, then the obfuscated program will accept the public key and use it to generate an encryption, which
can be decrypted using the corresponding secret key. Some papers use other scheme than Merkle trees, such as vector
commitment scheme [GKMR23]. However, since the underlying ideas are the same, the assumptions still hold.

Proof of Main Result.

We state our main theorem below.

Theorem 7.1 (Main Result). Let Π be an RBE scheme without CRS satisfying (1) completeness with fixed update
times in Definition 21, (2) one honest user security in Definition 13, and (3) pp-recoverability in Definition 22. Then,
the number of decryption updates cannot be o(n).

The proof takes the following main steps.

1. Define the concept of a good tuple (i, n) for an RBE scheme Π.

2. Show that if (i, n) is a good tuple then the ith identity requires a decryption update at time n+ 1.

3. Show that there are Ω(n) many good tuples of the form (i, n) for every n. Then, by a simple counting argument,
the result follows.

Definition 23 (Good Tuple). Let Π = (Setup,KeyGen,Reg,Upd,Enc,Dec) be an RBE scheme without CRS. We say
(i, n), where 1 ≤ i ≤ n, is a good tuple for Π if there exist

1. ((pk1, sk1), · · · , (pkn, skn)) where (pkj , skj)← KeyGen(1λ), and

2. (id1, · · · , idn) and (id′1, · · · , id
′
n) where id′i /∈ (id1, · · · , idn)
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satisfying Hn
n,pk1,··· ,pkn(id1, · · · , idn) = Hn

pk1,··· ,pkn(id
′
1, · · · , id

′
n), where

Hi+1
pk1,··· ,pkn

(id1, · · · , idi+1) := Reg[aux](Hi
pk1,··· ,pkn(id1, · · · , idi), idi+1, pki+1)

for i = 0, · · · , n− 1 and H0
pk1,··· ,pkn = ⊥.

Lemma 7.2. Let Π = (Setup,KeyGen,Reg,Upd,Enc,Dec) be an RBE scheme without CRS satisfying (1) complete-
ness with fixed update times, (2) one honest user security, and (3) pp-recoverability. Let G be the update graph for Π.
If (i, n) is a good tuple for Π, then (i, n+ 1) is an edge in G.

Proof. For contradiction, assume (i, n+1) is not an edge in G. We will show that there exists a non-uniform adversary
breaking the security of Π.

First of all, since (i, n) is a good tuple for Π, the following advice must exist.

Advice:

• i, n.

• (pk1, sk1), · · · , (pkn, skn)) where each (pkj , skj)← KeyGen(1λ).

• (id1, · · · , idn) and (id′1, · · · , id
′
n) satisfying id′i /∈ (id1, · · · , idn) and

Hn
pk1,··· ,pkn(id1, · · · , idn) = Hn

pk1,··· ,pkn(id
′
1, · · · , id

′
n).

Given the above advice, we construct the following non-uniform adversary.

Adversary:

1. Send each (idj , pkj) for j = 1, . . . , n to Chal to register. (After this step, Chal will update the public parameter
to ppn.)

2. Send id′i to Chal to register as the honest user. Note that this is legitimate since id′i /∈ (id1, · · · , idn). (In the
view of Chal, id′i is the identity of the (n+1)th user idn+1. After this step, Chal will update the public parameter
to ppn+1.)

3. Locally register (id′j , pkj) for j = 1, . . . , n and generate decryption update u′i for id′i.

4. Ask Chal to send ct← Enc(ppn+1, idn+1 = id′i, b).

5. Output Dec(ski, u′i, ct).

Clearly, the adversary is efficient. Also, the attack is legitimate since there is one honest user idn+1 = id′i /∈
(id1, · · · , idn). Next, we bound its advantage. Let ui be the decryption update generated for idi after registering
(idj , pkj) for j = 1, . . . , n and recall that in the attack u′i is the decryption update generated for id′i after registering
(id′j , pkj) for j = 1, . . . , n.

We first show that Ext1((idi, pki), ui) = Ext1((id
′
i, pki), u

′
i). Note that by construction, we must have Ext1((idi, pki), ui) =

Ext2(ppn, i) due to completeness and pp-recoverability. Similarly, we must have Ext1((id
′
i, pki), u

′
i) = Ext2(ppn, i).

We then show that Ext1((idi, pki), ui) = Ext2(ppn+1, i). Since (i, n+ 1) /∈ G, we have

Pr
[
Dec(ski, ui,Enc(ppn+1, idi,m)) = m

]
≥ ρ

for any message m, by completeness. By pp-recoverability, we must have that

Ext1((idi, pki), ui) = Ext2(ppn+1, i)

We thus have Ext1((id
′
i, pki), u

′
i) = Ext2(ppn+1, i). Then, by pp-recoverability, we must have

Pr
[
Dec(ski, u

′
i,Enc(ppn+1, id

′
i,m)) = m

]
≥ ρ

for any message m.
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In the following, let α be the length of the public parameter, β be the length of the identity and γ be the upper
bound for number of decryption updates.

Proposition 7.3. Let Π = (Setup,KeyGen,Reg,Upd,Enc,Dec) be an RBE scheme. Let n be a positive integer. Then
there are at least (1− logn

β ) · n− α
β good tuples of the form (i, n).

Proof. Fix n pairs of keys (pk1, sk1), · · · , (pkn, skn). There are
(
2β

n

)
distinct sets of n identities. We identify each of

them as an ordered list of identities. Note that there are 2α different public parameters.

• Suppose
(
2β

n

)
≤ 2α. Since 0 ≥ log

(
(2

β

n )
2α

)
> (β− log n) ·n−α, we know (1− logn

β ) ·n− α
β is a lower bound

for number of good tuples.

• Suppose
(
2β

n

)
> 2α. Consider a public parameter pp such that |(Hn

pk1,··· ,pkn)
−1(pp)| = maxpp′ |(Hn

pk1,··· ,pkn)
−1(pp′)|.

Since
(
2β

n

)
> 2α, we know |(Hn

pk1,··· ,pkn)
−1(pp)| ≥ 2. Take two different lists of identities from (Hn

pk1,··· ,pkn)
−1(pp).

There must exist i1 ∈ [n] where the i1th identity of one list does not belong to the other list. This means (i1, n)
is a good tuple.

– Suppose (2
β

n )
2α ≤ 2β . Since β ≥ log

(
(2

β

n )
2α

)
≥ (β − log n) · n−α, which implies 1 ≥ (1− logn

β ) · n− α
β ,

we again have (1− logn
β ) · n− α

β as a lower bound for number of good tuples.

– Suppose (2
β

n )
2α > 2β . Let m be the largest positive integer such that (2

β

n )
2α > (2β)m. Consider the i1th

identity of every list in (Hn
pk1,··· ,pkn)

−1(pp). Since there are only 2β different values for identity and

(2
β

n )
2α > 2β , there must be two different lists of identities from (Hn

pk1,··· ,pkn)
−1(pp) whose i1th identities

are the same. This means there must exist i2 ̸= i1 such that (i2, n) is a good tuple. Moreover, we know

there must exist a value idi1 such that there are at least (2
β

n )
2α·2β lists of identities in (Hn

pk1,··· ,pkn)
−1(pp)

whose i1th identities have value idi1 . One can proceed similarly again and show that there are at least

m+1 good tuples. By definition, we know 2(m+1)·β ≥ (2
β

n )
2α ≥

( 2β

n )n

2α . Equivalently, we have (m+1)·β ≥
(β − log n) · n− α. This means (1− logn

β ) · n− α
β is a lower bound for number of good tuples.

Proposition 7.4. Let Π = (Setup,KeyGen,Reg,Upd,Enc,Dec) be an RBE scheme without CRS satisfying (1) com-
pleteness with fixed update times, (2) one honest user security, and (3) pp-recoverability. Let G be the update graph
for Π. Let n be a positive integer. There exists an i ∈ [n] with at least (1− logn

β ) · n2 −
α
β out degrees in Gn, the graph

G restricted to the first n vertices.

Proof. For every i ∈ [n− 1], there are (1− log i
β ) · i− α

β good tuples of the form (j, i). This means i+ 1 has at least

(1− log i
β ) · i− α

β in degree. We thus know there are at least

n−1∑
i=1

(1− log i

β
) · i− α

β
≥

n−1∑
i=1

(1− log n

β
) · i− α

β
= (1− log n

β
) · n · (n− 1)

2
− (n− 1) · α

β

edges in Gn. Therefore, there exists an i ∈ [n− 1] with at least (1− logn
β ) · n2 −

α
β out degrees in Gn.

Proof of Theorem 7.1. It remains to find a polynomial n = poly(λ), which can depend on α, β, and show that (1 −
logn
β ) · n2 −

α
β > c · n for some c > 0 and sufficiently large λ.

Note that α ≤ poly(λ, log n) and β = poly(λ). Thus, we have α
β ≤ poly(λ, log n) ≤ λc1 · (log n)c2 for

sufficiently large λ. Take n = λ2c1 . For sufficiently large λ, we have 1− logn
β > 1

2 . We thus have (1− logn
β ) · n2 −

α
β >

n
4 −

α
β .
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It is also obvious that

1

8
· n =

1

8
· λ2c1 > λc1 · (2c1 · log λ)c2 = λc1 · (log n)c2 ≥ α

β

for sufficiently large λ. We then have 1
4 · n−

α
β > 1

8 · n.
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