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Abstract—Side-channel analysis (SCA) is a growing field in
hardware security where adversaries extract secret information
from embedded devices by measuring physical observables like
power consumption and electromagnetic emanation. SCA is a
security assessment method used by governmental labs, stan-
dardization bodies, and researchers, where testing is not just
limited to standardized cryptographic circuits, but it is expanded
to AI accelerators, Post Quantum circuits, systems, etc. Despite
its importance, SCA is performed on an ad hoc basis in the
sense that its flow is not systematically optimized and unified
among labs. As a result, the current solutions do not account
for fair comparisons between analyses. Furthermore, neglecting
the need for interoperability between datasets and SCA metric
computation increases students’ barriers to entry. To address
this, we introduce SCAPEgoat, a Python-based SCA library1

with three key modules devoted to defining file format, capturing
interfaces, and metric calculation. The custom file framework
organizes side-channel traces using JSON for metadata, offering
a hierarchical structure similar to HDF5 commonly applied in
SCA, but more flexible and human-readable. The metadata can
be queried with regular expressions, a feature unavailable in
HDF5. Secondly, we incorporate memory-efficient SCA metric
computations, which allow using our functions on resource-
restricted machines. This is accomplished by partitioning datasets
and leveraging statistics-based optimizations on the metrics. In
doing so, SCAPEgoat makes the SCA more accessible to newcom-
ers so that they can learn techniques and conduct experiments
faster and with the possibility to expand on in the future.

Index Terms—Side-channel Analysis, DPA, TVLA, JSON.

I. Introduction
Side-channel analysis (SCA) is a technique to reveal sen-

sitive information in a device’s computing on a secret by
measuring observables during computation [1]. In this sense,
observables, so-called side-channel leakage, include power
consumption, timing, or electromagnetic emanation (EM),
which can reveal secret data being processed [2]–[5]. SCA
involves collecting, storing, and analyzing traces using various
software and hardware tools. SCA can be applied to reverse
engineer chips [6], launch attacks against edge devices [7],
[8], break the security of smart cards [9], hack cars [10],
etc. This is why it is important for nations to study these
techniques and develop ways to counter them for national
security. To develop effective countermeasures, a comprehen-
sive understanding of the techniques in SCA is essential,
where a common methodology helps researchers to develop

1The library is available here:https://github.com/vernamlab/SCApeGoat.
This is the author version of the paper accepted for the presentation at the
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better countermeasures. This requires datasets and evaluation
frameworks, which provide consistent benchmarks for security
assessment, comparing metric computations, and improving
the effectiveness and efficiency of SCA. As a prime example,
the U.S. and Canadian standard FIPS 140-3 [11] includes
non-invasive physical security in validating implementations.
Besides such initiatives by standardization bodies, independent
researchers have taken various steps to support the develop-
ment of datasets and tools [11]–[14].

However, a challenge with existing datasets is the lack of
consistency: they are formatted differently, using various file
formats and structures, which complicate knowledge sharing
between research groups. The ASCAD dataset [13] is a dataset
collected from a software implementation of masked AES,
where EM traces are stored using HDF [15] with its specific
file structure [13]. Secbench [16], a versatile Python toolkit
for side-channel and fault analysis, also employs HDF5-based
trace format for managing side-channel data. HDF stores data
in a hierarchical structure that does not support metadata, and
the structure is not human-readable. The SMAeSH dataset
contains power traces collected from a masked FPGA imple-
mentation of the AES, stored using Numpy format and specific
file structure [14]. The SMAeSH dataset uses a JSON file to
categorize the dataset and file list, but it is not consolidated for
the whole project. These examples indicate the inconsistency,
often stemming from dependencies on particular tools and
setups each contributor uses. This highlights the second key
area needing systematization, i.e., the tools used to compute
the metrics. Challenges with such tools include incomplete and
inefficient functionality. Based on the purpose of the tools, they
might not have all the steps in SCA covered, or they may use
a specific way of computing certain metrics. In an extreme
but real scenario, existing tools do not share the same way of
reading the trace set/storing the results. This kind of mismatch
leads to the need for conversions between dataset formats that
are time-consuming and computation-hungry, although they
might seem trivial to resolve. In fact, such differences also
affect the reproducibility of the results.

Lastly, standards like FIPS 140 aim to keep the evaluation
cost to an absolute minimum in terms of time, memory,
and computational complexity cf. [17]. However, SCA has
evolved from typical cryptographic implementation like AES
to other sensitive intellectual properties like neural networks
(NNs) [18]–[20]. Usually, the secret for a traditional cryp-
tographic algorithm is the key, whereas for NNs, it is the
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weights and the architecture of the NN. The NN circuits
are more complex and have more clock cycles, making the
individual traces much longer and increasing the number
of traces required for attack compared to an AES engine.
This leads to larger data files (in order of terabytes), which
requires optimization in the metric computations. Most im-
plementations of SCA metric computation and attacks such as
TVLA [21], CPA [22], signal-to-noise ratio (SNR), etc. are not
optimized for SCA in general. Consequently, users/evaluators
with resource-constrained machines cannot efficiently process
terabytes of data and evaluate the security as required for
certifying vulnerability.
Contributions. Our tool, SCAPEgoat, addresses the issues
mentioned above in the entire SCA chain through simple
file structures, support for standard capture hardware, and a
post-processing software suite. The idea behind the design of
SCAPEgoat is to create modules corresponding to (virtually
all) steps taken in SCA. The modular nature of SCAPEgoat
enables the user to enjoy each module separately or as a com-
plete framework. Moreover, SCAPEgoat introduces memory
efficiency, especially regarding RAM usage for large datasets,
making our tool ideal for newcomers. In short,
1) We have created a customized, user-friendly file structure

using JavaScript Object Notation (JSON), especially for
SCA. It enables easy navigation through experiments,
storage of metadata, and better organization of datasets
concerning an experiment, enabling reproducibility. We
also integrate functions to query experiments and datasets
based on the metadata.

2) Along with the file format definition, SCAPEgoat of-
fers (usual) capturing interfaces, enabling more efficient
analysis. The capturing interfaces currently supported by
SCAPEgoat contain high-end Lecroy oscilloscope and
Chipwhisperer (CW) capture boards. At one end of the
spectrum, high-end devices are used by professional SCA
practitioners, while CW boards are affordable to learners
and students.

3) To detect the leakage, SCAPEgoat encompasses the test
vector leakage assessment (TVLA) methodology that is
optimized for lower memory usage and partitioned datasets.
This technique also makes live computation of TVLA
possible. Regarding the last stage of SCA, i.e., leakage
exploitation, a memory-optimized column-wise differential
power analysis (DPA) is integrated. Moreover, native sup-
port for 2nd order DPA is provided.

II. Implementation
SCAPEgoat is a Python library for SCA. It leverages and

is built upon open-source application programming interface
(APIs) for capturing traces with a unique touch to the fully
custom file structure to enable a smoother learning curve
and easier experimentation for researchers. The flow of the
SCAPEgoat library is shown in Figure 2. It includes all
the steps of an SCA, starting with configuring the capturing
equipment and the target board, collecting traces, storing them,
and running metrics computation/attacks on them. Now, we

Fig. 1: The folder structure for the SCAPEgoat.

will discuss the library implementation and unique features of
the file framework and metric computations.

A. Library Implementation

Module 1: File Framework. First, we look at the library’s
backbone, the file framework. SCAPEgoat uses a custom file
framework explicitly designed for SCA. Moreover, long-term
projects with multiple experiments require logging experimen-
tal variables, which is enabled by metadata stored in a JSON
file with the hierarchy. Moreover, we support querying the
metadata and functions to store and organize the experiments
with metadata in mind. It is noteworthy that thanks to the
modular design of SCAPEgoat, if the traces are available in
other formats, one can easily transform them to a SCAPEgoat-
friendly format for higher efficiency. Afterward, the first steps
to understand if there is a leakage (see Module 2). There is,
of course, feedback from observing the leakage to Module 1
if more traces need to be collected (one usually starts with a
few thousand and increases the size of the trace set if needed).
As one still needs to store the traces for further analysis,
the file format module is essential to make it more efficient
when deciding on an attack. Next, we explain how the file
structure makes it easier to organize experiments starting with
the heirarchy.
Hierarchical Structure. The structure implemented for the
file framework closely follows the structure presented in Fig-
ure 1. We chose to model the framework using a hierarchical
structure similar to what is implemented using HDF5 [15].
Still, we have used JSON to manage the structure and keep
the data in separate Numpy files. Compared to Zarr adopted
in [23], JSON serves data storage needs while offering human
readability.

The file parent directory is at the top level of SCAPE-
goat’s JSON hierarchy, represented in the Python API as the
FileParentclass. All paths of the experiments and datasets
are relative to the parent directory. The advantage of this is
that the user needs only to remember one path for all of the
content stored in the parent directory. As seen in Figure 1,
the second level in the hierarchy is experiments, each having
its own list of datasets. Each of these has its class with
specific functions to update them. For each experiment, there
is also a visualization folder where the graphs for the metric
computations can be stored. The parent directory also contains
the JSON file, which is used to maintain the hierarchical



structure and metadata of a project. As shown in Figure 1, the
hierarchy is presented for the project with experiments and
datasets. This hierarchy is maintained using a nested structure
in the JSON file. The JSON file starts with a main structure
for the file parent and creates the default fields, like the path of
the folder and data created when using the constructor. Next,
there are methods in the Fileparentclass for creating and
managing the experiments. When adding a new experiment,
JSON creates a structure nested into the parent structure as
an array. Similar structures exist between the datasets and
experiments. The visualization folder has no JSON field and is
updated only by specific functions. Not only the file structure
but also the variable-value pairs in the JSON file have been
used to store metadata for the parent and each experiment.
Integration of Metadata. A defining feature of our library
is the ability for users to add arbitrary metadata at the file,
experiment, or dataset level. As explained before, this feature
is enabled using the metadata list in the JSON file. Users
often want to associate parameters with the experiments when
conducting their research. For example, for users working
with the effects of environmental parameters on the experi-
ments, temperature is a prominent piece of information that
the authors want to associate with the collected data. The
library allows users to specify variable-value pairs such as
(temperature,30C) for each dataset. If some parameters are
typical for an experiment, the metadata could also be added at
the experiment level. We also implement functions to query
experiments and datasets based on the metadata. This ability
provides ease of sharing the project and reproducibility.
Module 2: Capturing Process. The capturing process
has also been integrated for commercially available de-
vices. We support two oscilloscope series: CW [24] and
Lecroy [25]. SCAPEgoat supports all CW and Lecroy oscil-
loscopes (PyVISA). Lecroy is configured using the PyVISA
protocol [26]. Theoretically, any other oscilloscope that sup-
ports PyVISA could be configured using the function. CW
capture boards were selected as they are widely-used starter
kits for SCA, while Lecroy oscilloscopes are available in
research labs and are also used in the Riscure ecosystem [27].
For target devices, SCAPEgoat supports CW targets natively;
nevertheless, capturing can be performed from any target
connected to the oscilloscopes and can generate a trigger.
We have also developed a comprehensive function, defined as
standard_capture_procedure, that implements fast capturing
of power traces while providing flexibility for the programmer.
The standard capturing procedure returns a tuple containing
the power traces, the encryption keys, the plaintexts, and
the ciphertexts. The performance of the standard capturing
procedure varies depending on the CW device, the encryption
algorithm being used, and the specification of the computer
running the Python script [24]. In addition to the standard
capturing function, SCAPEgoat includes a function that col-
lects both fixed and random traces for use in a TVLA metric
evaluation. While the standard capturing function returns the
captured traces as a tuple, which must be stored as datasets
manually, the TVLA function automates the process of stor-

Fig. 2: An example of SCAPEgoat flows. First, the user creates
the necessary Paranet directory, experiments, and file hierarchy
for datasets. Then, plaintexts (fixed and random) and key
datasets are initialized for a required number of traces. To
capture the traces using SCAPEgoat, the APIs use the datasets
directly from the experiment and save the two trace sets (fixed
and random) back under the experiment. The functions in the
metric calculation module are part of the experiment class
and can now be applied by providing only dataset names as
input. If TVLA indicates the leakage, the SNR function is
called to examine the exploitation potential. Lastly, DPA can
be performed to extract the secret.

ing fixed and random datasets; see Figure 2. This allows the
user to do TVLA by running a single line of code.
Module 3: Metric Computation. The file framework in-
tegrates the computation of the leakage detection metrics,
namely TVLA and SNR; see Figure 2. Leakage exploitation
is also possible by conducting DPA with Pearson correlation
as its distinguisher. These are selected as representative of
fundamental tests for leakage detection and leakage exploita-
tion [17], [28]. Specifically, DPA is chosen due to its un-
matched power in extracting sensitive information from subtle
variations in power consumption.

Rather than manually parsing and organizing the data, once
the traces, keys, and plaintexts are stored in the datasets, the
integration allows the user to only pass the dataset-specific
variables to perform the full computation of the metrics,
i.e., detect the leakage and launch DPA with the correlation
distinguisher. In addition, the user has the option to save
the metric result as a dataset and save a plot of the metric
visualization to the experiment’s visualization folder. The
library also has stand-alone implementations for these three
metrics and other metrics like score and rank. These provide
the user with a wider range of metrics. In the next section, we
examine the optimizations made to the metrics, particularly
the file structure.

B. Memory-efficient Computation of Metrics

The memory efficiency becomes more critical when con-
sidering implementations with more clock cycles, i.e., longer



traces. Unique challenges have to be dealt with when ana-
lyzing such unconventional schemes rather than usual encryp-
tion engines, e.g., AES. Recently, AI accelerators and post-
quantum-cryptographic implementations have been targeted by
SCA [18], [20], [29]. The trace set collected from these targets
can be huge, in the range of 100s of GBs. To address this,
SCAPEgoat’s memory-efficient metrics computation relies pri-
marily on performing the relevant operations on partitions of
the trace set depending on the memory size and then accumu-
lating the results for each set. This allows the user to perform
analysis on computationally weaker devices with less RAM
available to maintain efficiency and even potentially allows
for simultaneous calculations as traces are being collected.
Running TVLA. We used running statistics to implement
the metrics to achieve memory efficiency. Running statistics
is a statistical method that can implement ongoing statistical
computations, i.e., the statistic can be updated with each new
value. This means one does not need to compute the complete
statistics again with each new value. This has multiple benefits
in terms of memory and time-saving. This technique can be
applied to the TVLA, defined as follows:

t = (µ1 − µ2)/
√
(s21/n

2
1) + (s22/n

2
2),

where µ1 and µ2 are the means, s1 and s2 are the standard
deviations, and n1 and n2 are the total number of the captured
traces for the first and second population, respectively. In the
context of SCA, these two populations correspond to two trace
sets collected by feeding fixed/random plaintexts (see [28]
for details on TVLA). To calculate the mean and standard
deviation, the matrix composed of all traces must be loaded
in memory ; hence, this becomes a bottleneck as the dataset
size increases. We solve this by using the running mean and
standard deviation.

µ[n+1] = µ[n] + (t[n+1] − µ[n])/n+ 1 (1)
var[n+1] = var[n] + (t[n+1] − µ[n]).(t[n+1] − µ[n+1])

std[n+1] =
√
var[n+1]/n,

where µ is the mean, t is the trace, var is the variance, and
std is the standard deviation. These equations indicate that the
mean and standard deviation depends on the previous mean
and standard deviation calculated for n traces and the new
trace t[n+1]. This allows a trace-by-trace computation for the
TVLA test instead of matrix-wise. An evaluator can leverage
this only to compute enough traces to get a desired t-value
and stop the trace capture automatically.

This method, in coordination with the file framework’s par-
titioning of datasets, allows for memory-efficient computation
of the TVLA even after storing the datasets. This is because
the running statistics could be calculated for the first part, and
then the traces could be flushed out, and only the intermediate
variables needed to be kept in the memory. This makes it
possible to run larger datasets on smaller memory budgets,
allowing users to employ low-powered machines. Moreover,
this approach also helps to share the datasets as uploading and

Fig. 3: Improvement in the DPA process, where the computa-
tion is done per column to reduce memory usage.
downloading can happen in parts, which enables the user to
decide how many traces are needed for the analysis.
Column-wise DPA. DPA [3] is a side-channel attack that ex-
ploits the power consumption of cryptographic devices during
operations to extract sensitive information, such as secret keys.
By observing and correlating power traces collected during
encryption or decryption processes, DPA reveals patterns that
correspond to internal data processing. This attack can lever-
age statistical distinguishers, such as correlation, to compare
the observed power consumption with ones corresponding to
different key guesses. The comparison ultimately identifies the
correct key when a strong correlation is found.

DPA can be classified into different orders based on the
complexity of the analysis [30]. First-order DPA, as the
simplest form, focuses on observable variations in power
consumption that correspond to individual bits or operations.
This makes it relatively straightforward to perform when no
countermeasures are in place. Second-order DPA is more
complex and involves analyzing the interaction between mul-
tiple points in the power trace. In second-order DPA [30],
attackers combine power consumption values at different times
to amplify the correlation between power traces and internal
operations. Second-order DPA focuses on scenarios where
simple first-order attacks are insufficient due to countermea-
sures that resist more straightforward first-order attacks. For
example, when considering Hamming weight as the leakage
model, Sakic et al. [31] implemented second-order DPA as:

C(k) =
1

n

n∑
i=1

(P
(2)
i (t1, t2)− P̄ (2)(t1, t2))· (2)

· (HW (vi(k, p))− ¯HW (v(k, p))

Here, P
(2)
i (t1, t2) is the product of power consumption at

two-time points, t1 and t2, in the ith trace. P̄ (2)(t1, t2) is



TABLE I: Memory complexity of TVLA while capturing the
traces and after collecting traces (standard).

Standard Methodology Running Methodology
Memory Usage Time [s] Memory Usage Time [s]

Single file 2.4GB 987.92 960 KB 986.66s
Partitions 47382MB 1225 15893MB 1440

the average of P
(2)
i (t1, t2) across all traces. p represents the

plaintext or input data, and k denotes the correct key/secret
utilized in the algorithm. HW indicates the Hamming weight,
v is the intermediate value where vi is the intermediate value
for the ith trace. ¯HW is the average hamming weight of the
intermediate value v across all traces. C(·) is the correlation
coefficient and n is the total number of traces.

In second-order DPA, the matrix composed of P (2) entries
can often be too large to store in a typical computer’s RAM, as
the number of columns is quadratic in the number of samples
per trace. To address this overhead, SCAPEgoat introduces
column-wise DPA processing. Instead of calculating the entire
P (2) before computing on the matrix, SCAPEgoat calculates
segments of the P (2), performs calculations on the subset, and
then repeats this process many times. A column-wise approach
is allowed because the results of DPA are independent of
one another column-wise. The number of samples per trace
depends on the window of interest, where the evaluator expects
the leakage according to leakage detection metrics, e.g., TVLA
or SNR. The evaluator can select the window, allowing for a
flexible approach tailored to the user’s requirements.

III. Results on Metric Optimization
An example of use-cases: side-channel protected neural
networks. The dataset used for benchmarking our metric
computation modules is a recent one [32]. Besides being
collected from an interesting target, i.e., first-order masked
neural networks, this dataset is selected because the traces are
long (10,400 time samples per trace and 2M traces), making
scalability assessment feasible. The size of this dataset is
153GB, which we stored in 20 partitions of 7.63GB each.
The analyses presented in this section were performed on a
single core of an Intel E5-2695 v4 CPU using 64GB of RAM.

First, we discuss the results of the metric computation for
our TVLA algorithm. As shown in Figure 4(a), the algorithm’s
speed is determined by the number of traces and samples per
trace. However, as reflected by the linearity in Figure 4(b),
the change in time to calculate appears proportional to the
file size. This implies that this algorithm can scale up with
the length of traces; having a large number of time samples
does not increase the time complexity exponentially. The same
holds for analyzing a large number of traces.

However, the primary goal for optimizing the TVLA is to
reduce memory usage. Table I lists the peak memory usage of
two implementations; one utilizes live metric solving without
saving the trace data to a file (running), and the other collects
trace data and then performs the TVLA test (standard). The
memory and time for this experiment were computed using
the memit and time it magic commands, respectively, with 30

runs for each method. As seen in Table I, when collecting
10,000 traces at 60,000 samples per trace (float 32), the
times to solve are similar, while the second methodology
exhibits dramatically lower RAM usage. In this test, four
traces are collected parallel to the computation of TVLA, and
the required memory to store them is solely 960KB. For the
partitioned dataset, the standard method takes 3 times more
memory than the running method, as noted in Table I. The
peak memory usage for the running method is about 16GB.
This usage corresponds to 2 parts of the dataset –random
and fixed– that have been loaded into memory and some
overhead for intermediate values and Python variables. Note
that this is the peak memory usage in Windows, and we do
not account for the committed/paged memory usage at the
time. As for the time complexity, there is a difference in the
methods compared to the single file results. This difference
is attributed to the overhead of managing partitions in both
methods. For the running method, the computation is done
per trace, requiring more computations than the matrix-based
computation in the standard method. This is why the timing
differs for the methods when dealing with larger datasets.

Figure 4(c) depicts the memory improvement achieved by
the column-wise second-order DPA approach. As can be seen,
the inefficient method can only compute DPA up to 36 traces
as it has reached the computer’s memory limit. Meanwhile,
with the memory-efficient version, column-wise computation
allows us to overcome that limitation. Also, as seen in our
results, memory usage is constant, so there is no limit to the
number of traces. Thus, the optimization we provided enables
the computation of complex metrics on resource-constrained
machines. To validate the correctness of column-wise DPA, we
experimented on 500K traces to reproduce the results in [20].
We observed identical results as in that paper when employing
our column-wise DPA. This confirms that our optimization
techniques do not adversely impact the DPA’s precision.

IV. SCAPEgoat vs. Existing Libraries
This section compares our library with other open-source

libraries. SCAlib was developed by Cassiers et al. [33], where
the capturing process is implemented in Python. On the other
hand, the metrics are implemented in Rust language to make
them more efficient with support for processing the data in
chunks. CW has a library that uses its wide range of hardware
to capture traces and compute metrics [24]. SCARR is devel-
oped by Bosland et al. as a library to compute metrics faster
with a particular focus on high-performance machines [23].
They have achieved this using high-performance computing
like GPU acceleration and multi-core computation. One of
their main ideas is faster computations on compressed datasets
to save storage space. SCARED is a framework developed by
eShard, a for-profit organisation [34]. It is a basic framework
mainly used for AES and DES-based security evaluation. It
has pre-processing capabilities for different file formats but
does not support capturing capabilities. LASCAR is another
tool made by a for-profit company for their side channel
project [35]. They have a complete pipeline from captur-
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Fig. 4: (a) The time complexity of TVLA for various sample sizes for different numbers of traces; (b) the relation of time and
file size when performing TVLA; (c) memory complexity for efficient vs. conventional second-order DPA.

TABLE II: The table illustrates the differences between the various libraries available for side-channel analysis.

Metadata Handling Integrated Metric Solving Integrated File Format Integrated Trace Capturing Easily Expandable DPA
SCAPEgoat Yes Yes Yes Yes Yes 1st/2nd order
SCALib No Yes No No Yes None
CW No Somewhat Yes Yes Somewhat 1st order
SCARR No Yes Yes Yes Yes 1st order
SCARED No Yes Yes No No 1st order
LASCAR No Yes Yes Yes Somewhat 1st order
Sedpack/SCAAML Yes Somewhat Yes No No None

ing to computing the TVLA test. It also supports machine
learning-based analysis in SCA. Lastly, Sedpack/SCAAML
are Google-made side channel libraries mainly focused on
machine learning-based attacks in the domain [36]. Sedpack is
an upgrade to the SCAAML with added custom metadata [37].

SCAPEgoat offers unique advantages compared to other
libraries, as seen in Table II. One of the main ones is
the metadata-based functionality. Out of all the libraries,
only the Sedpack file format offers the ability to store and
read metadata. In contrast, SCAPEgoat additionally allows
sorting through experiments based on metadata parameters.
SCAPEgoat also has direct support for trace capturing, which
metric-based frameworks like SCARR do not support. Fi-
nally, SCAPEgoat is easily expandable because of function
handles, and its open-source nature allows for direct source
code modification. SCAPEgoat also includes integrated metric
solving, which is also available in frameworks like SCARR
and SCARED and, to some extent, in CW [24]. SCAPEgoat
supports first- and second-order DPA to exploit the leakage,
optimized for efficiency on typical machines.

V. Conclusion and Future Work
SCAPEgoat is a library that aims to make SCA techniques

more accessible to newcomers, such as students, and more
efficient for security evaluators. It also helps reproduce the
results by introducing a better file structure. Besides, the
custom metadata field per experiment and dataset helps create
a verbose description for the whole project in one place.
Furthermore, SCAPEgoat improves the memory complexity
of metric computation (TVLA and DPA) and support live
and partitioned TVLA. Lastly, SCAPEgoat natively supports
memory-efficient first- and second-order DPA. SCAPEgoat is

an ever-evolving and improving framework. Here, we highlight
some improvements to be considered in the future.
Integration of SCA Hardware. Based on applications,
oscilloscopes and target devices can be upgraded/added to the
library. In this regard, APIs for other oscilloscope that supports
PyVISA could be considered.
Generic Metrics. Chipwhisperer [24] and Riscure [27]
already have a robust metric set. However, the examples and
the main engines they are geared towards are mainly AES
and other standard cryptographic engines. While this provides
ease for testing conventional cryptographic implementations,
changing to other designs is not straightforward for the user.
In addition to the metrics introduced in this paper, we plan
to add more metrics with optimizations that can verify the
security of designs.
GPU acceleration. Regarding computation time complexity,
reading and writing trace data to and from the file cause a
bottleneck on metric and attack calculations. GPU acceleration
excels in situations where a large amount of computation
is needed in parallel, like matrix mathematics, and struggles
when there are large I/O requirements in sequential algorithms.
We should stress that reduced attack cost is one of the primary

metrics for the severity of an attack [17]. If an SCA metric can
be analyzed efficiently using a CPU with its limited memory,
then the attack cost is much reduced. This is why SCAPEgoat
focuses on the implementation that does not rely on GPUs.
Nonetheless, supporting GPU acceleration can be thought of
as a future direction.

Acknowledgment
This work has been supported partially by NSF under award

numbers 2138420 and DMS-1337943.



References
[1] J. Van Woudenberg and C. O’Flynn, The Hardware Hacking Handbook:

Breaking Embedded Security with Hardware Attacks. No Starch Press,
2021.

[2] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Annual International Cryptology
Conference, pp. 104–113, Springer, 1996.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
international cryptology conference, pp. 388–397, Springer, 1999.

[4] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Cryptographic Hardware and Embedded Sys-
tems—CHES 2001, pp. 251–261, Springer, 2001.

[5] J. J. Quisquater and D. Samyde, “Electromagnetic analysis (ema):
Measures and counter-measures for smart cards,” in Smart Card Pro-
gramming and Security: International Conference on Research in Smart
Cards, E-smart 2001 Cannes, France.

[6] S. S. Ensan, K. Nagarajan, M. N. I. Khan, and S. Ghosh, “Scare: Side
channel attack on in-memory computing for reverse engineering,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29,
no. 12, pp. 2040–2051, 2021.

[7] P. Bhade, J. Paturel, O. Sentieys, and S. Sinha, “Lightweight hardware-
based cache side-channel attack detection for edge devices (edge-
cascade),” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 4, pp. 1–27, 2024.

[8] S. Dey, A. K. Singh, and K. McDonald-Maier, “Thermalattacknet: Are
cnns making it easy to perform temperature side-channel attack in
mobile edge devices?,” Future Internet, vol. 13, no. 6, p. 146, 2021.

[9] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards, vol. 31. Springer Science & Business Media,
2008.

[10] H. Wang, S. Salehi, H. Sayadi, A. Sasan, T. Mohsenin, P. S. Manoj,
S. Rafatirad, and H. Homayoun, “Evaluation of machine learning-based
detection against side-channel attacks on autonomous vehicle,” in 2021
IEEE 3rd International Conference on Artificial Intelligence Circuits
and Systems (AICAS), pp. 1–4, IEEE, 2021.

[11] NIST, “Security requirements for cryptographic modules.” Federal In-
formation Processing Standards Publication FIPS 140-3 https://doi.org/
10.6028/NIST.FIPS.140-3, 2019. Accessed: 2024-12-1.

[12] L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, S. D.
Leigh, M. Levenson, M. Vangel, N. A. Heckert, and D. L. Banks, “A
statistical test suite for random and pseudorandom number generators
for cryptographic applications,” 2010.

[13] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep
learning for side-channel analysis and introduction to ascad database,”
Journal of Cryptographic Engineering, vol. 10, no. 2, pp. 163–188,
2020.

[14] G. Cassiers and C. Momin, “The smaesh dataset,” Cryptology ePrint
Archive, 2024.

[15] H. Group, “Hd5.” [Online]https://www.hdfgroup.org/solutions/hdf5/
[Accessed: Sept.26, 2024], 2002.

[16] CEA-Leti Cybersecurity Teams, “The secbench framework.” [Online]
https://github.com/CEA-Leti/secbench [Accessed: Mar.2, 2025], 2025.

[17] M. Azouaoui, D. Bellizia, I. Buhan, N. Debande, S. Duval, C. Giraud,
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