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Abstract. In this paper we provide new theoretical and empirical evidences that
gradient-based deep learning profiling attacks (DL-SCA) suffer from masking schemes.
This occurs through an initial stall of the learning process: the so-called plateau effect.
To understand why, we derive an analytical expression of a DL-SCA model targeting
simulated traces which enables us to study an analytical expression of the loss. By
studying the loss landscape of this model, we show that not only do the magnitudes
of the gradients decrease as the order of masking increases, but the loss landscape
also exhibits a prominent saddle point interfering with the optimization process.
From these observations, we (1) propose the usage of a second-order optimization
algorithm mitigating the impact of low-gradient areas. In addition, we show how to
leverage the intrinsic sparsity of valuable information in SCA traces to better pose
the DL-SCA problem. To do so, we (2) propose to use the implicit regularization
properties of the sparse mirror descent. These propositions are gathered in a new
publicly available optimization algorithm, Scoop. Scoop combines second-order
derivative of the loss function in the optimization process, with a sparse stochastic
mirror descent. We experimentally show that Scoop pushes further the current
limitations of DL-SCA against simulated traces, and outperforms the state-of-the-
art on the ASCADv1 dataset in terms of number of traces required to retrieve the
key, perceived information and plateau length. Scoop also performs the first non-
worst-case attack on the ASCADv2 dataset. On simulated traces, we show that using
Scoop reduces the DL-SCA time complexity by the equivalent of one masking order.
Keywords: Side-channel Analysis · Profiling Attacks · Deep learning · Masking ·
Optimization

1 Introduction
1.1 Context
To protect against side-channel attacks (SCA), the cryptographic community has devel-
oped two families of countermeasures: the masking countermeasures and the hiding coun-
termeasures. One of them, d-th order masking, consists in splitting the sensitive values into
d+ 1 random values, called shares, which when recombined, allow to recover the original
sensitive variables. This allows to never manipulate sensitive data explicitly and hence the-
oretically protects against d-th order attack, i.e., it protects against attacks recombining at
most d time samples of the trace, such as attacks based on any statistical moment up to d.

A specific type of SCA, known as profiling attacks, consists in learning a statistical
model of the leakage on a clone of the targeted device, and then using this model to recover
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the secret key on the target. Profiling attacks can be formulated as a machine learning
problem, hence techniques such that neural-network based profiling attacks are found in
the literature [MPP16]. Thanks to the universal approximation theorem [HSW89], neural
networks, and more specifically multi-layer perceptrons, are theoretically able to break any
higher-order masking schemes. Deep neural networks (DNNs) are constrained by a specific
family of functions, the so-called architecture of the model. In some specific scenarios, such
as against desynchronization, the choice of the architecture can be crucial, relaxing the
need of pre-processing of the traces [CDP17]. However, despite many explorative works on
architectures, DNNs still struggle in presence of higher-order masking schemes.

The problem we are interested in is targeting masked implementations with no
prior knowledge on the masks on the clone device, the so-called non-worst-case set-
ting [MCLS23].1

1.2 The Issue of Profiling in a Non-Worst-Case Setting
Deep learning models are trained by minimizing the empirical risk, the average of the loss
function2 over the data measured on the clone device (or training data). Hence, training a
DNN is an instance of an optimization problem. In the general deep-learning case, this
problem is usually solved by stochastic gradient descent (SGD) or some of its variants such
as Adam [KB15], RMSprop, etc., and the user is typically interested in the generalization
properties of the model, i.e., how well the model performs on unseen data.3 Recent
advances in applied optimization for DNN trainings are more focused on diminishing
training costs, due to the large-scale problems posed by language model [LLH+23]. In
the context of profiling attacks, the datasets are comparatively small (few thousands
data samples versus billions) and appear to fall outside the scope of these advances,
SGD is thus expected to be a good choice. Yet multiple works exhibit optimization
artifacts [Tim19, PP20, CLM20, LZC+21, CLM23, MCLS23], in particular an initial stall
of the optimization process, the so-called plateau effect [MCLS23]. This effect is particularly
visible in the context of deep learning based profiling attacks against masking schemes. This
plateau effect is conjectured to increase exponentially with the masking order [MCLS23].
This observation raises questions about the efficiency of deep-learning based side-channel
attacks (DL-SCA) against higher-order masked implementations. The current DL-SCA
literature is directly inspired by the general deep learning corpus, which implicitly relies
on training routines (architecture, optimization algorithm, regularization, etc.) designed
for optimal generalization on different tasks, being computer vision or natural language
processing. Moreover, it assumes that the optimization process easily finds a local minimum.
There is no guarantee that these routines and goals are adapted for DL-SCA.

Having an inappropriate optimization algorithm to train a neural network can pose
critical issues. The plateau effect, as one can see in DL-SCA, leads to exponentially long
waiting time before the model gains theoretical information about the targeted secret.
Actually, even some second-order masking schemes datasets are still out of reach for
the current state-of-the-art deep learning models [MS23]. Surprisingly, for some popular
datasets that have been long-time considered as benchmarks such as ASCADv1 [BPS+20]
(a first-order-masked dataset with some light hiding), years-old models are still competitive
to the current state of the art. This lack of progress has led researchers to explore new
architectures aimed at alternative tasks, such as multitask learning that targets the entire
key at once [MO24], or transformer networks for their shift-invariant properties [HSAM22].
Unfortunately, none of them significantly improves the performance (i.e., profiling phase)
of DL-SCA against masked implementations.

1It is also referred to as a black-box attack in the literature.
2The loss function measures the difference between the model’s prediction and the true value.
3In SCA: traces measured on the actual target device.



Nathan Rousselot, Karine Heydemann, Loïc Masure and Vincent Migairou 3

Yet, a long plateau does not imply a high-security device. Instead, all it implies is that
the security level can only be assessed after this plateau phase is passed. Consequently, in
case it requires weeks or even months to pass this phase, a security evaluation could give a
false sense of security.

1.3 Contributions and Outline of the Paper
In this paper, we introduce Scoop, a novel optimization algorithm aimed at pushing
the boundaries of deep-learning-based profiling attacks against masking. It addresses the
aforementioned challenges by leveraging second-order optimization algorithms (Section 3)
and mirror descent methods (Section 4). Scoop (Section 5) reduces the length of the
plateau effect, and sets new state-of-the-art results on public datasets.

This algorithm is the result of a thorough theoretical and empirical analysis of the
optimization process involved in the training of deep learning models for profiling attacks
(Section 2). This analysis, based upon a visualization of the loss landscape of DL-SCA, leads
to two observations. First, as the masking order increases, the magnitudes of the gradients
decrease, slowing down the optimization process. Second, we observe the apparition of a
saddle point at the initialization region of the loss landscape, which interferes with the
optimization process.

These findings come from the theoretical study of a simplified model (Section 2.3.2). We
believe this model to be a good starting point for further fundamental research in the field.

We show on an exhaustive simulated dataset that Scoop reduces the plateau effect
(Section 6.1). Our experiments show that, despite the plateau effect still being present, its
length is reduced by a factor up to 5 for a masking order of 3 and higher when training a CNN
with Scoop, while increasing the profiling time cost by less than 5% on the same hardware.

We perform experimental evaluations on two public datasets: ASCADv1 [BPS+20]
and ASCADv2 [MS23]. On ASCADv1 (Section 6.2), we verify the relevance of both the
second-order optimization and the stochastic mirror descent, as well as the combination of
both: Scoop. We show that DNNs trained with Scoop outperform the state of the art
of ASCADv1 on the number of traces required to retrieve the key, perceived information,
training cost and plateau length. In addition, we show that the hyperpameters optimization
of a DNN trained with Scoop is computationally more efficient than with Adam. Finally,
on the ASCADv2 dataset (Section 6.3), using Scoop, we perform a successful non-worst-
case attack, which, to the best of our knowledge, has not been reached before4.

2 The Plateau Effect: the Impact of Masking on DL-SCA
In this section, we revisit some aspects of the so-called plateau effect observed by Masure
et al. [MCLS23], appearing in profiling attacks on higher-order masking. To this end, we
first set some notations and recall some background knowledge in Section 2.1. We then
recall the current knowledge on the origins of the plateau effect in DL-SCA (Section 2.2).
Then, we present an analytical model to study DL-SCA (Section 2.3). From there, we
conduct an analysis of the loss associated to this model, and find interesting geometrical
and analytical properties at the root cause of the plateau effect (Section 2.4).

2.1 Notations and Background
In this paper, calligraphic letters such as X denote sets, random variables are written in
uppercase letters, such as X, and their realizations in lowercase letters, such as x. Bold

4A gray box attack has been achieved [WPP23], although in a non-comparable setting, this is discussed
in Section 6.3.
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uppercase letters such as X denote random vectors. Matrices are noted in uppercase letters
A and aij represents an element of this matrix. The eigenvalues of A are noted λi.

A probability is noted P [·], expected value E [·], variance V [·] and H [·] is the entropy.
Deep Neural Networks (DNNs) models are noted F and are constrained by a family of

functions (the architecture) noted H a.k.a. hypothesis class. F is parametrized by θ ∈ Θ,
where Θ is a convex subset of RD,5 and the output of the model is noted F(x|θ) where x
is the input data vector, i.e. a trace in SCA. The loss function is noted L. The gradient of
the loss function is noted ∇L (θ) and the Hessian matrix is noted ∇2L (θ). Training the
model F is done by minimizing the loss function L.

In DL-SCA, the targeted sensitive value is s and has a certain entropy H [s]. A model F is
said to be correct if L (θ) < H [s] whenever L (θ) corresponds to a negative log-likelihood loss.
The quantity H [s]−L (θ) is called the Perceived Information (PI) of the model [MDP19a].
The number of traces required to nullify the Guessing Entropy (GE) is noted Na.

2.2 The Theoretical Origins of the Plateau Effect
The plateau effect is a phenomenon appearing in the beginning of the optimization
process of DL-SCA. As already mentioned, it has been observed in multiple works [Tim19,
PP20, CLM20, LZC+21, CLM23, MCLS23]. Masure et al. [MCLS23] aim at bringing an
explanation to this artifact and link the plateau effect to the following theorem:

Theorem 1 ([SSSS17, Thm. 3]). Let X be a dataset (x1, . . . ,xn), and assume each xi is

i.i.d.standard Gaussian in Rp. Let’s define the target function hu(X) =
n∏
i=1

sign
(
uTxi

)
,

for some normalized hyperplane u ∈ Rp. Let F (x|θ) be a predictor differentiable to its
parameters θ, such that EX [∥∇θF (x|θ)∥] ≤ G(θ)2 for some scalar function G(θ). And let
L (θ) be the loss function to minimize. Then,

Eu
[
∥∇θL (θ)− Eu [∇θL (θ)]∥2

]
≤ G(θ)2.O

(√
n log p
p

)n
.

This theorem, when adapted to DL-SCA context, informally tells us that for sufficiently
high value of n (analogous to the masking order), the gradient takes essentially the same
direction (or remains stuck at the same point) regardless of the actual leakage model
(modelized here by the vector u). In other words, the gradient descent cannot convey any
information about what the model is trying to learn. While this theorem gives interesting
insights, Masure et al. do not investigate it further. In particular, they do not explain
why one could observe such a phenomenon. In this section, we aim at complementing the
observations of Theorem 1 with further investigations.

2.3 Study of a Simplified Model
To reach analytical expressions of DL-SCA, we propose to study a simplified model on
synthetic traces.

2.3.1 Analytical Framework

We consider an n-th-order masked implementation of a cryptographic algorithm. The
synthetic traces are generated: x = [α0s0, . . . , αnsn], where si are the shares of a secret bit
such that s = s0⊕. . .⊕sn−1⊕sn, where⊕ is the operation6 used to mask the secret s. All the

5i.e., ∀
(

θ, θ′
)

∈ Θ2, ∀α ∈ [0, 1], αθ + (1 − α)θ′ ∈ Θ.
6In this paper, we consider boolean masking, but this is trivially reproducible with any masking scheme.
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α0s0

α1s1

αn−1sn−1

αnsn

P [s = 0|x]
P [s = 1|x]

θ0

θ2n+1

α0s0

αnsn

∗ P [s|x]

F0 (α0s0|θ0)

Fn (αnsn|θn)

F (x|θ)

Figure 2.3.1: Classic model with 2(n+ 1) parameters (left) and scheme-aware model with
n+ 1 parameters (right).

shares and the secret values are uniformly distributed in the F2 field. The αi each constitute
the leakage model such that αi follows a Rademacher distribution7. Let us assume an
arbitrary neural network model F. The negative log-likelihood loss can be written as:

L (θ) = −
∑
x∈X

log ({ϕ (F (x|θ))}s) . (2.3.1)

Where ϕ (·) is the soft-argmax function and converts the output of the model into a
probability distribution. Minimizing Equation 2.3.1 is equivalent to maximizing the
perceived information [MDP19a]. By sampling a grid over Θ, we can visualize a discretized
version of the loss landscape, i.e., a D-dimensional tensor of the loss values w.r.t. the
weights of the model. This visualization helps to understand the optimization process,
identifying potential issues like local minima or saddle points, and gaining insights into the
model’s behavior. However, to make this representation visualizable, we need to reduce
D = dim (Θ) to be lower or equal to 2. While one can use principal component analysis
to reduce dimensionality, it may not preserve the geometric properties that we try to
investigate as it projects the data onto a new basis. A natural choice for a small model
is to use a single-layer MLP model as illustrated in Figure 2.3.1 (left). However, this
model has 2(n+ 1) parameters: e.g. for a first-order masking scheme, such a model has 4
parameters, consequently the loss landscape is a 4D tensor and is not visualizable.

2.3.2 Scheme-Aware Model

To go further in the simplification of the model we propose to use a scheme-aware
model [MCLS23]. We consider a set of models {F0, . . . ,Fn}, where:

Fi (αisi|θi) = ϕ

((
θiαisi

1− θiαisi

))
.

It returns that:
F (x|θ) = F0 (α0s0|θ0) ∗ · · · ∗ Fn (αnsn|θn) . (2.3.2)

Where ∗ is the convolutional product. A graphical representation of the scheme-aware
model is depicted in Figure 2.3.1 (right). This time, for an n-share x, the model has n
parameters, hence the loss landscape is n-dimensional. An analytical expression of F can
be derived from this model, either by hand, or by using a computer algebra system such
as Sympy [MSP+17]. It has been observed that the scheme-aware models scale worse than
the classic DL-SCA models [MCLS23]. Hence, there might be a bias while transferring
our analysis to the general DL-SCA case. Nevertheless, results in Section 6 show that our
findings using this model remain relevant in broader contexts.

7A Rademacher distribution is a distribution that takes the value −1 and 1 with probability 1/2.
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2.4 The Failures of the Optimization Process
The previous section sets an analytical formulation of DL-SCA, in this section we use it to
theoretically study DL-SCA.

2.4.1 Understanding the Loss in DL-SCA

From the analytical formulation of F in Equation 2.3.2, we derive using Sympy the
analytical expression of F, of the loss and its gradient. We give hereafter the result for
n = 1, i.e., a two shares leakage:

{F (x|θ0, θ1)}0 = e2α0s0θ0+2α1s1θ1 + e2

(e2α0s0θ0 + e) (e2α1s1θ1 + e) ,

and the expression for its second component {F (x|θ0, θ1)}1 is similar. The loss func-
tion can then be derived by taking the negative logarithm of the outputs: L (θ) =
− log2 ({F (x|θ0, θ1)}s) for the secret value s. From there, we can also compute the expres-
sion of the gradient of the loss function. ∇θL (θ) belongs to R2 and its first component is
given by:

{∇θL (θ)}0 =
2 log(2)α0s0

(
e− e2α1s1θ1

)
e2α0s0θ0+1

e2α0s0θ0+2 + e4α0s0θ0+2α1s1θ1 + e2α0s0θ0+2α1s1θ1+1 + e3 .

Hence, in this case, L (θ) is an R2 7→ R2 function, and by discretizing the Θ space, we can
visualize the landscape of the loss and its gradient (Figure 2.4.1). We use a discretizing
step h = 0.04 for computational purposes. Recalling that the secret belongs to F2, areas
where the model correctly predicts the secret information are reached when L (θ) < 1.
It can be theoretically verified that the loss landscape’s global minimum is unique and
corresponds to θi = αi as shown in Appendix A. In Figure 2.4.1a, we see that the upper-
left quadrant (meaning θ0 < 0 and θ1 > 0) corresponds to the area where correct models
are reached, which is coherent with the leakage model which is α0 = −1 and α1 = 1.
Within the bounds of observation set on θi, the loss reaches values below 0.5. Figure 2.4.1b
shows the gradient of the loss landscape, blue areas are low-gradient zones, and hot-colors
correspond to high-gradient zones. The red circle corresponds to the area of initialization,
given a method that is discussed in Section 2.4.2. In addition, the white arrows illustrate
the flow of the gradients, i.e., the opposite direction of the gradient. We see that the white
arrows tend to converge uniformly toward the correct quadrant.

When adding a third share, the loss landscape significantly changes as illustrated in
Figure 2.4.1c. First, it becomes a 3D tensor, making it harder to visualize. To overcome this,
we decide to take a slice of the loss landscape by fixing θ2 = θ⋆2 where θ⋆2 is an optimal value
of θ2 that minimizes the loss within the observation frame. Hence, the resulting slice of the
loss landscape contains a global minimum. Looking at Figure 2.4.1c, we observe that the
loss does not reach values as low as in the two-share case, the paths to local minima are less
steep. In other words, we say the magnitudes of the gradients decrease. Second, we observe
an interesting geometry of the landscape of the loss in the neighborhood of the origin. To
understand it, taking a look at the gradient of the loss landscape in Figure 2.4.1d is crucial.
We see that around the origin, the gradient is very low (blue area) and that it attracts the
gradients flow. Yet, looking back at the loss landscape (Figure 2.4.1c), we see that this
region is neither a minimum nor a maximum. What we observe is then a saddle point. And
as a consequence, we see that few gradients flow directly to minimal areas, and that paths
often require a detour close to this saddle point before heading towards a local minimum.

2.4.2 Consequences on the Optimization Algorithm

To understand the consequences of both the saddle points and overall loss of gradients’
intensities on the optimization algorithm, we need to mimic the behavior of Adam [KB15]
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Figure 2.4.1: (a) and (c): Loss landscapes of the model F; (b) and (d): Their gradients for
first and second order boolean masking schemes.

and other SGD variants, as they are predominantly used in deep learning models train-
ing [Lan20], and are the only ones used in DL-SCA context [PP20]. Hence, we decide to
study the behavior of regular gradient descent applied to our analytical analysis. The
weights at iteration t are noted θ(t), and are initialized following a Kaiming uniform distri-
bution [HZRS15] (Equation 2.4.1), the implicit one used in PyTorch [PGM+19]. In Fig-
ures 2.4.1b and 2.4.1d, the red circle corresponds to the area of the weights’ initialization.
From there, θ(t+1) is computed with the gradient descent update rule (Equation 2.4.2):

θ(0) ∼ U
(
−
√

1/in_dim,
√

1/in_dim
)
, (2.4.1)

θ(t+1) = θ(t) − ηt∇L
(
θ(t)
)
. (2.4.2)

Here, ηt is the learning rate at step t, and in_dim the dimension of the traces. Section 2.4.1
shows that by increasing the masking order by one, the overall gradients’ intensities is
reduced. Noting that the step-size is directly proportional to the gradients’ norms, it
follows that the expected step size also decreases, which hinders the profiling performance
for DL-SCA and increases the plateau length.

A natural reaction to this observation is to increase ηt to compensate the gradients’
decaying. The limitation of this idea lies in analytical properties of L. The learning rate
ηt is constantly bounded by a certain constant related to the so-called Lipschitz constant
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Figure 2.4.2: Impact of the masking order on the expected norm (a) and variance of the
gradient (b) and comparison with Theorem 1.

of ∇L [N+18]. This constant is related to the local curvature of the loss landscape. As we
do not know the exact value of this constant, we need to be cautious and set ηt to a small
value to avoid loss divergence [KB15, LLH+23]. If one increases ηt to fight the plateau
effect, loss divergence is then a likely outcome.

Another solution may be to use a learning-rate scheduler as it is a common practice
in deep learning. Moreover, recent advances in optimization theory show that periodic
learning rate schedules that are much larger than the Lipschitz bound lead to a better
convergence [GSW23]. Despite schedulers have been used in DL-SCA [ZBHV19, HCM24],
no formal study has been conducted to understand how to use them in DL-SCA context,
and current attempts still exhibit the plateau effect [ZBHV19].

The second challenge posed by the loss landscape is the presence of a saddle point at
the origin. Recalling the distribution of θ(0) (Equation 2.4.1), we see that the higher the
input dimension, the closer to the saddle point we initialize. This means that regardless of
the locations of the local minima (i.e., regardless of the countermeasures or weaknesses of
the implementation), the optimization process inevitably detours around this saddle point
before heading towards a local minimum.

To mitigate the effect of the saddle point, one might think to modify the initialization
rule (Equation 2.4.1) to a larger area, diminishing the probability of falling around the
saddle point. However, if normalization on the data is done, then the expected value of the
weights should be zero, and with enough small variance to avoid learning saturation [BN06].
Hence, we are forced to use a distribution similar to Equation 2.4.1.

This finding is coherent with Masure et al. conjecture that the plateau length expo-
nentially increases with respect to the masking order [MCLS23]. To validate our observa-
tions with analytical evidences, we scaled the analysis up to six shares and tracked down
E [∥∇θL (θ)∥2] and E [Vx [∇θL (θ)]] analytically in function of the masking order. The first
quantity is related to the overall loss of gradients’ intensity, and the second to the sad-
dle point and the Shalev-Shwartz bound (Theorem 1). Figure 2.4.2 depicts the results
of this analysis. We see in Figure 2.4.2 (left) that indeed the expected norm of the gra-
dient decreases exponentially as the masking order increases. Figure 2.4.2 (right) shows
that the variance of the gradients is also decreasing exponentially at the same rate as the
Shalev-Shwartz bound.8

These two effects add up together and explain where the plateau effect is coming
from. To the best of our knowledge, only Marquet and Oswald attempt to reduce the
impact of the plateau effect through multitask learning [MO24]. While indeed showing
slight improvements, their approach increases the complexity of the attack as all bytes

8Note that in Theorem 1, G(·) is an unknown scalar function, it was chosen to easily compare the rate
of decrease of the variance of the gradient with the Shalev-Shwartz bound.
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are targeted simultaneously. Moreover, plateau reduction seems limited. We see from this
section that overcoming the plateau effect requires more thoughtful solutions.

3 Beyond Gradient Descent: Second-Order Algorithms
So far, we have only considered the gradient descent as a baseline for optimization
algorithms, and only looked into its hyperparameters (learning rate, schedulers and weights
initialization) as a solution to answer the challenges posed by DL-SCA profiling. In this
section, we propose to reconsider the choice of the optimization algorithm itself. It would be
interesting to have an adaptive descent, where all steps are made knowing the local curvature
of the loss to better navigate the particularities of the loss landscape. In this section, we
propose to use a second-order9 optimization algorithm to serve this purpose. This section
introduces the foundations of second-order optimization methods, their application to DL-
SCA, and the challenges they face. Scoop, our main contribution, is presented in Section 5.

3.1 Second-Order Optimization
Second-order optimization methods incorporate curvature information, typically repre-
sented by the Hessian matrix, in addition to the gradient. We first present the generic
second-order optimization method: Newton’s method, and then discuss its application to
the DL-SCA context. Newton’s method is based on the following update rule:

θ(t+1) = θ(t) −∇2L
(
θ(t)
)−1
∇L

(
θ(t)
)
,

where ∇2L
(
θ(t)
)

is the Hessian matrix of the loss function at step t. The inverse of
the matrix induces large steps where the curvature of the loss is low, and small steps
where the curvature is high. It is the optimal way to reach a local minimum in a convex
scenario [N+18].

The deep learning community relies on estimates of the Hessian matrix as its full
computation is not tractable. They also couple it with a learning rate [LN89], obtaining
the following update rule with ĥt = E

[
∇2L

(
θ(t)
)]

:

θ(t+1) = θ(t) − ηtĥt∇L
(
θ(t)
)
.

3.2 Second-Order Optimization on a Simplified Model
We verify the efficiency of Newton’s method for DL-SCA against masking on the simplified
model introduced in Section 2.3.2. We target second-order boolean masking as it already
impacts the optimization process. Figure 3.2.1 compares the performance of Newton’s
method with the gradient descent on the simplified model. Dashed lines correspond to
gradient descent, and solid lines to Newton’s method. We can see that Newton’s method
converges faster than the gradient descent (Figure 3.2.1 (left)). Yet, due to the low entropy
of the secret, the plateaus are not clearly visible by just looking at the loss. To estimate the
length of the plateau, a good indicator is taking a look at the gradient of the loss with respect
to the iterations δL = L

(
θ(t)
)
−L

(
θ(t+1)

)
. Looking at Figure 3.2.1 (right), we can observe

the end of the plateau at the local maxima of δL. We see then that the plateau length for
the gradient descent is 380 iterations, whereas for Newton’s method it is 50. The second-
order optimization therefore reduced the plateau length by almost one order of magnitude.

9that uses second order derivative.
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Figure 3.2.1: Loss convergence (left) and gradient of the loss w.r.t. the step (right) for
simulated optimization on the simplified model considered masking scheme at order 2.

3.3 Challenges of Second-Order Optimization for Deep Learning
While Newton’s method can be formulated simply, its application to deep learning is much
more challenging. This section discusses these challenges, how they can be addressed,
and proposes a novel Hessian estimation. This section does not tackle DL-SCA specific
challenges, but the methods introduced here are later combined with other intrinsic DL-
SCA aspects in Sections 4 and 5.

3.3.1 Ensuring Convergence

Unlike the gradient descent, Newton’s method is prone to converge to local maxima,
making its usage outside convex scenarios challenging. To prevent this, one needs to
make sure that the estimation of the Hessian is positive definite (i.e., all its eigenvalues
are strictly positive) at each step. Some algorithms have been proposed to guarantee
this properly, such as the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm [LN89], which ensures each estimate of the Hessian matrix is positive definite as
long as its first iterate also is. Usually one then picks the Identity matrix as the initializer
since it is positive definite and does not privilege any direction. However, L-BFGS is both
memory and computationally expensive, and hence not suitable for DL-SCA.

We propose another approach, giving more freedom to the computation of ĥt. Once
the Hessian matrix is computed, we can shift its eigenvalues to ensure that the smallest
eigenvalue is strictly positive. This can be done efficiently if we make sure enough structure
to ĥ (sparse, semi-separable, diagonal, etc.). Actually, this has already been applied
in Section 3.2. However, by performing this spectral shifting, we considerably increase
the condition number κ of ĥ which leads to numerical instabilities when manipulating
(e.g inversing) the Hessian. To illustrate this, let ĥ be diagonalizable, then we have:
κ(ĥ) = |max λi|/|minλi|, where λi are the eigenvalues of ĥ. Assuming there is at least
one negative eigenvalue in ĥ, then by shifting them, we put minλi = ϵ where ϵ is a small
positive number. This means that κ(ĥ) becomes very large, and hence ĥ’s manipulation is
numerically unstable. This issue can be mitigated by combining the spectral shifting with
a clipping mechanism [LLH+23].

3.3.2 Efficient Estimation of the Hessian

Estimating the Hessian matrix in deep learning is challenging due to the high dimensionality
and complexity of neural networks. The Hessian captures second-order derivatives of the
loss function with respect to model parameters, resulting in a matrix whose size grows
quadratically with the number of parameters, often being in the millions or billions for
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deep networks. Computing and storing such a large matrix is practically infeasible. This
section aims at proposing an efficient solution to this problem.

Instead of trying to estimate the full Hessian matrix, we can focus on an approximating
operator of the Hessian. This would result in an inexact Newton’s Method that has been
shown to still converge despite the bias in the Hessian estimate [DES82, BBN19]. Inexact
Newton’s Methods have already been explored in the context of deep learning, and have
shown promising results [YGS+21, LLH+23]. Among all the approximating operators, the
diagonal operator is the simplest to manipulate and to scale, and is hence the one we focus
on. Liu et al. propose a computationally efficient diagonal Hessian estimator called Gauss-
Newton-Bartlett (GNB) estimator [LLH+23]. Its name comes from the Gauss-Newton
decomposition of the Hessian:

∇2
θL (θ) = Jθ (F (x|θ)) ∂

2L (θ)
∂y2 Jθ (F (x|θ))T + Jθ (F (x|θ)) ∂L (θ)

∂y
,

where y are prediction logits. Note that the Gauss-Newton-Bartlett estimator is designed to
work with the cross-entropy loss, which is the case in DL-SCA. In order to derive an efficient
estimator, the authors assume that the second term of the Gauss-Newton decomposition
is negligible compared to the first term and do not compute it. This results in a biased
estimator (i.e., E

[
ĥ
]

≠ diag
(
∇2
θL (θ)

)
), but with intrinsic positive-definiteness. Liu et al.

argue that this bias is small, however this assumption might not hold in a side-channel
paradigm, where we have seen that well-adopted methods by the deep-learning community
do translate poorly to. Instead, we propose to use the Hutchinson diagonal estimator.
Definition 1 (Hutchinson Diagonal Estimator [Hut89]). Let z be a i.i.d. random vector
such that E [zi] = 0 and V [zi] = 1. Then the Hutchinson Hessian diagonal estimator is
defined as:

ĥ = z⊙∇2
θL (θ) z.

Interestingly, the Hutchinson estimator is unbiased. Furthermore, it relies on a simple
Hadamard product as well as a Hessian-Vector product which can be computed efficiently
(in linear time). The law of z is set freely as long as it is i.i.d., has a zero mean and a unit
variance. To have the lowest variance possible (and hence the fastest convergence), the
Rademacher distribution is often chosen as per the following theorem.
Theorem 2 (Minimal Variance Diagonal Estimator [Hut89]). Let us assume ĥt is the
Hutchinson estimator of the diagonal of the Hessian of L (θ), as per Definition 1. Then,
the minimal variance estimator of the diagonal of the Hessian is reached when z follows a
Rademacher distribution.

Proof. The proof is recalled in Appendix B.2.

Liu et al. argue that the Gauss-Newton Bartlett estimator might have a lower variance
than the Hutchinson estimator, lacking however from theoretical or empirical evidence to
back up this claim. Nevertheless, they are right to point out the issue of the variance, as
the Hutchinson estimator is quite slow to converge. To address this issue, we propose a
novel estimator (to the best of our knowledge) called the Biased Hutchinson Estimator. It
is obtained by releasing the constraint on the variance on the law of z and allocating m
iterations to the estimator. We establish the resulting optimal estimator in the following
theorem.
Theorem 3 (Low Variance Biased Hutchinson Estimator). Let z be a random vector such
that E [zi] = 0. Then, assuming m iterations of the Hutchinson estimator, then

V [zi]⋆ =
m−1
m

∥∥diag
(
∇2
θL (θ)

)∥∥2
2

1
m

∥∥∥∇2
θL (θ)

∥∥∥2

F
+ ∥diag (∇2

θL (θ))∥2
2

,
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is the optimal choice of variance to minimize the expected error at the m-th iteration. Here,
∇2
θL (θ) is the matrix ∇2

θL (θ) with its diagonal set to zero, and ∥·∥F is the Frobenius norm.

Proof. The proof is given in Appendix B.3.

Corollary 1. (Probabilistic Bound) Let ĥ be the biased estimator of the diagonal of the
Hessian of L (θ) as per Theorem 3. Then, let δ ∈ [0, 1] and let m be a fixed number of
iterations, such that ĥm is the estimator of the diagonal of the Hessian after m iterations.
Then, the following holds with probability 1− δ:

∥∥∥ĥm − diag
(
∇2
θL (θ)

)∥∥∥
2
≤
√

1
mδ

E
[
∥ϵ∥2

2

]
,

where ϵ = z⊙∇2
θL (θ) z− diag

(
∇2
θL (θ)

)
+ Bias (z).

Proof. The proof is given in Appendix B.3.

We see then that choosing the variance of z different from 1 can have a positive effect
on the convergence of the Hutchinson estimator. Probabilistic guarantees are also given
in Corollary 1, which ensures that the error of the estimator is bounded. Unfortunately,
the optimal choice of V [zi] as per Theorem 3 requires the knowledge of the exact Hessian
matrix, which we do not have access to. However, we can still use the theorem to guide
the choice of V [zi], and we propose to use a scaled Rademacher distribution with values
−0.9 and 0.9 as a heuristic choice.10 We empirically verified that the convergence of the
Hutchinson estimator is improved by using the biased estimator with the scaled Rademacher
distribution, and follows the theoretical bounds given in Corollary 1 (Appendix C).

4 Sparse Stochastic Mirror Descent for DL-SCA
The previous section explains how to effectively estimate the Hessian matrix in the context
of deep learning, and hence how to improve the optimization process regardless of the DL-
SCA context. In this new section, we propose to leverage a prior knowledge singular to
DL-SCA. Both those aspects are combined in the Scoop algorithm presented in Section 5.

We propose to use the Stochastic Mirror Descent (SMD) algorithm, which is a gener-
alization of the stochastic gradient descent that allows for a more flexible optimization
process. We first formalize a property of DL-SCA that can be exploited by SMD, and then
introduce the SMD algorithm.

4.1 Sparsity of the DL-SCA Formulation
Real traces of a device contain few samples related to the secret. This means that the
ideal model F⋆ should be a combination of a few features. This is a commonly made
assumption [MDP19b]. Hence, we assume that the weights of F⋆’s first layer should
be sparse, which has been observed by Zaid et al. [ZBHV19]. Considering the high
dimensionality of the input, we assume most of the weights of F⋆ are used for the first
layer, hence targeting weights sparsity in the entire model should be reasonable choice.

To put a specific constraint on the weights such as sparsity, deep learning is often
trained by solving the following optimization problem:

arg min
θ

L (θ) + λR(θ) (4.1.1)

10Naturally, if we could perform an infinite number of iterations, choosing a variance of 1 for z would be
ideal, since Theorem 3 dictates that lim

m→∞
V [z]⋆ = 1.
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where R is a regularization term. λ is a hyperparameter that controls the trade-off between
the loss and the regularization term. This formulation is known as explicit regularization.
However, choosing a specific optimization algorithm can converge to the same solution
without the need of a regularization term. This is called implicit regularization.

4.2 Stochastic Mirror Descent
The Stochastic Gradient descent operates in an Euclidean space. While not trivial by
looking at Equation 2.4.2, it turns out that this update equation is the solution of the
following optimization problem:

θ(t+1) = arg min
θ

ηtθ
T∇θL (θ) + 1

2

∥∥∥θ − θ(t)
∥∥∥2

2
,

where
∥∥∥θ − θ(t)

∥∥∥2

2
is the Euclidean distance. If one wants the optimization algorithm to

operate in a different space, we can modify the update rule replacing the Euclidean distance
by a Bregman divergence denoted Dψ, such that the update equation becomes:θ

(t+1) = arg min
θ

ηtθ
T∇θL (θ) +Dψ

(
θ, θ(t)

)
Dψ

(
θ, θ(t)

)
= ψ (θ)− ψ

(
θ(t)
)
−
〈
∇θψ

(
θ(t)
)
, θ − θ(t)

〉 . (4.2.1)

This formulation is called Stochastic Mirror Descent (SMD) and is, in fact, a generalized
SGD. ψ is called the potential function. The Bregman divergence shares many properties
with the Euclidean distance, such as non-negativity, convexity, etc. The choice of ψ
determines the space in which the algorithm operates in. Interestingly, it has been
shown that the Mirror Descent algorithm is an implicit ψ-regularizer [SGAA23] and this
property has been extended to the Stochastic Mirror Descent algorithm for some families
of models [ALH22].

To induce sparsity in the weights of the model, it is often considered doing ℓ1-
regularization [Goo16]. A problem however arises when choosing ψ to be the ℓ1 norm. To
understand let us look at the solution of Equation 4.2.1 in Equation 4.2.2.

∇ψ
(
θ(t+1)

)
= ∇ψ

(
θ(t)
)
− ηt∇L

(
θ(t)
)

(4.2.2)

We see that the iterative process of SMD requires the gradient of ψ. However, the ℓ1
norm is not differentiable at 0. Azizan et al. suggest using the ℓ1+ϵ norm as an alternative
with ϵ < 1 [ALH22].

Hence SMD with a potential function ψ that is the ℓ1+ϵ norm is a good candidate to
induce sparsity in the weights of the model.

5 Scoop: An Optimizer against Higher-Order Masking
In this section, we introduce a second-order optimization algorithm called Scoop: SeCond-
Order precOnditioned sParse stochastic mirror descent. In other-words, Scoop is a
Stochastic Mirror Descent algorithm, where the potential function is the ℓ1+ϵ norm, and
where the descent is preconditioned by the inverse of an estimation of the diagonal Hessian
matrix. The algorithm is presented in Algorithm 1.

In Algorithm 1, β1 and β2 are the momenta hyperparameters, ηt is the learning rate,
and ϵ is the parameter of the ℓ1+ϵ norm (set to 0.1 by default [ALH22]). The function c(·)
is a clipping function that ensures the stability of the update rule [LLH+23], as described
in Section 3.3.1.
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Algorithm 1 Scoop: SeCond-Order precOnditioned sParse stochastic mirror descent
1: for t = 1, 2, . . . , T do
2: Compute mini-batch loss L(θt)
3: Sample v from a scaled Rademacher distribution
4: H̃t ← v ⊙∇ (⟨∇L(θt), v⟩) ▷ Hutchinson estimator
5: ht+1 ← β2ht + (1− β2)H̃t ▷ EMA11of the Hessian
6: gt+1 ← β1gt + (1− β1)∇L(θt) ▷ EMA of the gradient
7: Step← (1 + ϵ) |θt|ϵ sign(θt)− ηtc

(
h−1
t+1gt+1

)
▷ Step in the dual space

8: θt+1 ← |Step/(1 + ϵ)|1/ϵ sign(Step) ▷ Projection back onto the primal space
9: end for

While more expensive than Adam, Scoop is still computationally efficient as the
computation of H̃t is done efficiently in O(n) where n is the number of parameters.

The source code and guidelines of Scoop are available at https://github.com/
nathan-rousselot/scoop.

6 Experimental Results
In this section, we evaluate the performance of DL-SCA using Scoop as an optimizer, and
show that the combination of the Hessian preconditioning with SMD brings an edge to
DL-SCA profiling. We first present the results on a simulated scenario where we study
high-order masking schemes. We then evaluate Scoop on the ASCADv1 dataset, which is
protected by a first-order boolean masking scheme. We compare Scoop to Adam, which
is the most commonly used optimizer in the side-channel community. We also compare
Scoop to the state-of-the-art attacks on ASCADv1. Finally, we evaluate Scoop on the
ASCADv2 dataset, which is protected by an affine masking scheme and loop shuffling. All
models are trained using a single Nvidia RTX 4500 Ada Generation with 24GB RAM.

6.1 Attack Against High-Order Simulated Masking Schemes
To properly assess the optimizer’s efficiency, we first consider noise-free exhaustive datasets,
i.e., datasets where all the possible combinations of values are present without temporal
noise. In other words, we reduce the DL-SCA problem to a simple optimization problem. We
consider a boolean masking scheme at order n for an 8-bit secret. The leakage model is the
Hamming weight, and we target the output of the SBox of an AES with identity labelling.

We target those simulated traces with three different architectures: MLP, CNN-
VGG [ZBHV19] and Transformer [HCM24]. The formulation of this problem follows the
exact same procedure given in Section 5.2.1 of [MCLS23]. We train each model on the
dataset for up to 105 epochs with Adam and Scoop. Then, we measure the plateau length
as the number of epochs required to reach a validation loss of H [s]− ϵ, where ϵ = 0.05 in
our setup. All experiments are averaged over 100 runs. Due to the limited GPU memory
of our hardware setup, we can not run the Transformer model on the exhaustive dataset
above order 2.

Figure 6.1.1 compares the plateau length of the training of multiple models (MLP, CNN
and Transformer) when trained with Adam and Scoop. We see that Scoop effectively
reduces the plateau length as soon as there is a masking countermeasure enabled, which
is consistent with our theoretical findings. Table 1 shows the average plateau reduction
using Scoop compared to Adam. We can see that Scoop is particularly efficient on
high-order masking schemes as the plateau length is reduced by a factor up to 5 for the

11Exponential Moving Average.

https://github.com/nathan-rousselot/scoop
https://github.com/nathan-rousselot/scoop
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Table 1: Average plateau reduction (in percentage) using Scoop compared to Adam on
an exhaustive simulated dataset with MLP and CNN.

Model n=0 n=1 n=2 n=3 n=4
MLP −50% 18.18% 42.15% 54.57% 52.89%
CNN −50% 64.22% 76.27% 81.87% 80.97%

Adam Scoop Adam (lower bound)

0 1 2 3 4
100
101
102
103

Order

Ep
oc

hs

(a) MLP

0 1 2 3 4
100
101
102
103

Order
(b) CNN

0 0.5 1 1.5 2
101102103104105

Order
(c) Transformer

Figure 6.1.1: Comparison of the plateau length with Adam (dotted lines) and Scoop (full
lines) on an exhaustive simulated dataset for three architectures. For the transformer (c),
Adam was unsuccessful in retrieving the secret within the 105 allocated epochs at order 2,
hence we plot a lower bound instead.

CNN architecture at order 3 and higher. It seems that the plateau reduction gets more
important as the order of the masking increases, and is also sensitive to the architecture of
the model. Meanwhile, we have observed a time increase of approximately 5% only using
Scoop in comparison to Adam. Furthermore, for the Transformer model, Adam is unable
to train a successful model within the 105 allocated epochs at order 2, while Scoop was
able to do it in less than 103 epochs (Figure 6.1.1c). This confirms the importance of the
optimizer in the profiling step.

Additionally, we compare the weights’ distributions of the MLP model trained with
Adam and Scoop against 4th order masking scheme. The results are shown in Figure 6.1.2.
We can see that the weights’ distribution is more concentrated around zero when using
Scoop, which is consistent with Section 4.2 since Scoop incorporates ℓ1+ϵ-SMD.

6.2 Attacking First-Order Boolean Masking Scheme: ASCADv1 Dataset
In the side-channel community, there exist different public datasets that serve as bench-
marks. The most popular one is the ASCADv1 dataset [BPS+20] which is a first-order
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Figure 6.1.2: Comparison of weights’ distributions in training an MLP against 4th order
masking scheme when using Scoop and Adam.
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Table 2: Comparison of the state of the art on ASCADv1.
Na Plateau Size Val Loss GPU Characteristics GPU Time (h)12

CNN-VGG [ZBHV19] 191 40 7.78 8*V100 (256GB) 10,000
MLP [Wei20] ≈ 250 - - - -

Transnet [HSAM22] ≈ 230 - - Google TPU -
AutoSCA CNN [WPP22] 158 - - 1080Ti (11GB) 10
AutoSCA MLP [WPP22] 129 - - 1080Ti (11GB) 10

Ensemble [LCE+23] 203 - - - -
Multi-Task [MO24] - 25/50 - - -

MLP-Scoop (this work) 110 3 7.69 RTX 4500 Ada (24GB) 0.5
CNN-Scoop (this work) 73 11 7.65 RTX 4500 Ada (24GB) 3

boolean masked AES software implementation. Within this dataset, one can use raw
traces, which are longer but easy to break since many leakage points are present, or the
most common extracted dataset which focuses on the third sub-byte calculation, which
has no first-order leakages. We focus on the later one, which is more challenging.

6.2.1 State of the Art of DL-SCA against ASCADv1

ASCADv1 has been extensively explored using both classical approaches and deep learning.
Gaussian modeling with PCA (Template Attack) can outperform DL-based methods in
certain settings [BPS+20]. Among neural architectures, MLPs have been thoroughly
studied [Wei20], with Wu et al. introducing a Bayesian hyperparameter optimization that
currently achieves the SOTA key-recovery results [WPP22]. VGG-like CNNs [SZ15] remain
popular for their desynchronization robustness, originally proposed by Zaid et al. [ZBHV19]
and further analyzed in [BS23]. Ensemble learning has also shown promise on ASCADv1
[LCE+23], while transformer-based models leverage shift-invariance [HSAM22, HCM24]
to target ASCADv1 with additional desynchronization. Finally, multitask approaches have
been studied for full key recovery and to reduce the plateau length [MO24]. In this paper,
we compare ourselves with those works (Table 2). However, some of those do not aim at
producing the most efficient attack, hence many of them did not share all the data of interest.

6.2.2 Results

Best Model Evaluation. We train and fine-tune a VGG-like CNN inspired by Zaïd et
al. [ZBHV19], using Scoop as the optimizer instead of Adam. The Hessian is estimated
using a low-variance biased Hutchinson estimator. Hyperparameter tuning is performed
over three hours using a tree-structured Parzen estimator [ASY+19]. The hyperparameters
search grid is similar to Wu et al. [WPP22], besides Scoop specific hyperparameters and
a finer grid for most of the hyperparameters. The exact hyperpameters grid is given in
Appendix D. We use 50,000 traces for the profiling dataset, and 10,000 traces for the
validation dataset.

The results of the attack are shown in Table 2, where the column labeled Na contains
the number of traces required to reduce the guessing entropy to zero. The results show
that the trained model outperforms the state of the art by reaching a successful attack in
73 traces, a plateau size of 11 epochs and a validation loss of 7.65 which are all beyond the
previous results we are aware of.

Comparison Between the Different Optimization Methods. We compare here the
difference in performance between Adam (SGD), Sophia [LLH+23] (second-order SGD
with GNB Hessian estimator), SMD and Scoop with the different Hessian methods
discussed in Sections 3 and 4. The results are shown in Table 3. We see that both second
order SGD and SMD alone outperform Adam (SGD) in all categories (besides training

12The GPU time includes the hyperparameter optimization time.
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Table 3: Comparison of the different methods on ASCADv1, with a CNN.
Na Plateau Size Val Loss Train Loss

Adam (SGD) 180 23 7.89 7.63
Sophia (2nd Order SGD) [LLH+23] 123 11 7.74 7.65

SMD 105 11 7.68 7.11
Scoop (GNB+SMD) 130 12 7.69 7.13

Scoop (biased Hutch. + SMD) 73 11 7.65 7.12

Training Loss Validation Loss GE (Adam) GE (Scoop)
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Figure 6.2.1: Profiling loss curves of a finetuned MLP trained with Scoop against ASCADv1
(left). The same model trained with Adam is shown in (center). Both models Guessing
Entropies are compared in (right).

loss for second-order SGD). Their combination, Scoop, is also a step forward. It seems
that using a biased Hutchinson estimator ends in a stronger attack Na-wise, yet stronger
evidences are needed to confirm if using a biased estimator gives a significant edge over an
unbiased one.

Multi-Layer Perceptrons. We use the same fine-tuning approach as for the CNN, and
obtained an MLP model, reported in Table 2, which is also above current state of the art
in terms of Na (110 traces), plateau length (3 epochs) and validation loss (7.69). The
exact hyperpameters grid is given in Appendix E.2.

Interestingly, we can see on its training curves (Figure 6.2.1 (left)) that the plateau is
almost non-existent for this MLP trained with Scoop. Yet, training the exact same model
using the same seed with Adam (Figure 6.2.1 (center)) shows a much more prominent
plateau of 38 epochs.

Weights’ Distributions. Similarly to Section 6.1, we compare the weights’ distributions
of the MLP model trained with Adam and Scoop against ASCADv1. The results are
shown in Figure 6.2.2. There again, Scoop’s resulting weights are more concentrated
around zero, which is consistent with Section 4.2 since Scoop incorporates ℓ1+ϵ-SMD.

6.2.3 Hyperparameter Optimization Performance

We previously discussed about hyperparameters optimization without going into details.
And for a fact, it is well studied in the literature, and available tools allow for effortless
models finetuning [ASY+19]. Furthermore, Wu et al. deeply investigated it in the context
of DL-SCA [WPP22]. The hyperparameters optimization step is often constrained by a
time budget as this phase is the most expensive step in a deep learning training pipeline.
A solution to reduce the time spent on this step is to use coarser and narrower search
grids. In addition to requiring prior knowledge on the optimal architecture, this can lead
to suboptimal models or induce a bias in the results. In this section, we evaluate the
impact of using Scoop during the hyperparameters optimization step.
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Figure 6.2.2: Comparison of weights’ distributions in training an MLP against ASCADv1.
(red): Adam, (blue): Scoop.

Table 4: Comparison of the hyperparameters optimization performance using Scoop and
Adam on ASCADv1.

MLP CNN
Adam Scoop Adam Scoop

Rate of Successful Models13 2.1% 4.1% 7.7% 15.4%
Avg Val Loss 7.93 7.83 7.87 7.86
Best Val Loss 7.92 7.69 7.81 7.76

Avg Cost Per Epoch (s) 0.31 0.91 3.17 3.74
Total Duration of finetuning (h) 0.51 0.82 4.18 2.99

Relative Finetuning Cost 1 0.82 1 0.358
Relative Attack Performance 1 3.87 1 1.26

To evaluate this, we finetune a MLP and a CNN against ASCADv1. We use the
same hyperparameters grid as before, which is wide and fine. We sample the grids
randomly, sampling more than 150 MLP architectures, and 100 CNN architectures. Using
deterministic options of PyTorch [PGM+19], we trained each model using Scoop and
Adam.

Table 4 displays the results of this study. It contains the rate of successful models (RoS),
the average validation loss, the best validation loss, the average cost per epoch and the
total duration of the finetuning (TD). The relative finetuning cost is computed as follows:

Relative Finetuning Cost = RoSAdam
RoSScoop

× TDScoop
TDAdam

.

The relative attack performance is computed as PIScoop/PIAdam. Looking at MLPs,
we see that using Adam, 2.1% of the trained models turn successful, and reach an average
validation loss of 7.93. On the other hand, 4.1% of models trained with Scoop turn
successful eventually, and reach a much better validation loss of 7.83 on average. This
means that, on average, Scoop manages to bring random architectures to working models
twice as much as Adam, and they are stronger. For the CNNs, the quality of the models is
similar between the two optimizers (with a slight edge for Scoop) but there again, Scoop
manages to bring random architectures to working models twice as much as Adam.

Interestingly, the training time cost remains similar between the two optimizers. We
estimate the total reduction of finetuning cost to be 18% for MLPs and 64% for CNNs using
Scoop, while gaining a 287% and 26% improvement in attack performance, respectively.
This allows, for example, for a faster security assessment of a new dataset, or could allow
for more explorative works on hyperpameters.

13Reached when PI ≥ 0.05 bits.
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6.3 Attacking Against Second-Order Affine Masking Scheme and Loop
Shuffling: ASCADv2 Dataset

Another well-known dataset is ASCADv2 [MS23], an affine masked software AES imple-
mentation (pseudo-second order [FMPR11]). It incorporates a loop shuffling mechanism
that consists in permuting the order in which bytes are processed in the subbytes loop. To
our knowledge, no non-worst-case attack have been successful on ASCADv2. Only one
attack has been successful so far [WPP23], the authors exploited a weakness emerging
from the affine masking scheme [FMPR11], namely that the multiplicative mask is shared
among all the elements in the AES state. Moreover, Wu et al. deactivated the loop shuf-
fling mechanism to demonstrate the effectiveness of their attack. Hereafter, we do not rely
on any of these assumptions.

6.3.1 Approach and Architecture

ASCADv2 is a challenging dataset not only by its countermeasures, but also by its dimension.
Each trace is 15,000 samples long, and models trained to fit such high dimensional data
require a lot of computational power and memory capacity. Considering our hardware
setup, we discard costly architectures such as CNNs and Transformers. Instead, we decide
to focus on MLPs. Considering the challenging nature of the dataset, we decide to split
the dataset in three parts: a profiling dataset of 200,000 traces, a validation dataset of
10,000 traces, and an attack dataset of 300,000 traces. The profiling and attack datasets
are both from the “profiling traces” and are respectively the 200,000 first and 300,000 last
traces of the set of traces. The validation dataset is the same as the one provided by the
ASCADv2 authors. This allows to mount an attack with a large number of traces, which
is necessary to break the dataset. Having separate validation and attack datasets is key
for complex problems to ensure the model is not overfitting the validation dataset during
the fine-tuning process. We employ two different approaches to define the architecture.

First Approach: Fine-tuning a deep MLP. For the first approach, similarly to
ASCADv1, we rely on the work of [Wei20], which is a hyperparameters’ optimization
approach using a tree-structured Parzen estimator [ASY+19]. We choose to fine-tune a
narrow MLP with n hidden layers of size 28. We fine-tune the model for 3 hours, and the
best model is selected based on the validation loss. The model takes about 10 minutes to
train on our hardware.

Second Approach: Single hidden layer MLP. Despite having a deep MLP might
seem as a natural choice, empirical studies have shown that it is hard to justify the need
for more than one or two hidden layers in a multi-layer perceptrons [BL07]. That is why
we propose a second, finetuning-free, approach. We train a single-hidden-layer MLP of
size nhidden = 2/3× (input size + output size). This model has a total of approximately
231 millions parameters.

6.3.2 Results

Fine-tuned MLP. The fine-tuned MLP results in a successful attack in 3 hours of
fine-tuning and 10 minutes of training. The guessing entropy is reduced to 0 after the
complete 300k attack traces in the dataset, with a plateau size of 25 epochs. Full results
are shown in Table 5.

Single Hidden Layer MLP. The single hidden layer MLP results in a successful
attack in 10 hours of training. The guessing entropy is reduced to 0 after only 150k attack
traces in the dataset, at probability 1. Sometimes, less than 50k attack traces are enough
to retrieve the key. The training has a plateau size of 12 epochs. Full results are shown in
Table 5, and the training example is shown in Figure 6.3.1.
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Table 5: Results of the two approaches.
Na Plateau Size Val Loss GPU Time (h)

MLP (fine-tuned) 300k 25 7.9998 3
MLP (single hidden layer) 150k 12 7.9996 10

Training Loss Validation Loss Guessing Entropy

0 10 20

7.9996
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Epoch
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100
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Figure 6.3.1: Training example of a successful model on ASCADv2 dataset using Scoop
with a biased Hutchinson estimator (left) and the corresponding guessing entropy (right).

What about Adam? Sophia? SMD? We try the same approaches (same architec-
tures, hyperparameters, allocated time and hardware) with Adam, Sophia and SMD, but
none of them ends in a successful attack, which is consistent with the current literature.

7 Conclusion

In this paper, we provided both theoretical and empirical evidences that deep learning-
based profiling attacks are significantly hindered by masking schemes, especially as the
masking order increases. Through a visualization of the loss landscape in this context,
we showed that higher-order masking leads to less intense gradients, and apparition of
interfering saddle points. Those two phenomena are responsible for the plateau effect
observed in the training of deep learning models for side-channel analysis.

To address these challenges, we introduced Scoop, a novel optimization algorithm
combining second-order optimization techniques with sparse stochastic mirror descent.
Despite the plateau effect still affecting Scoop, our approach effectively reduces the
plateau length by a factor up to 5 on exhaustive simulated traces, while incurring minimal
additional computational cost. Experimental results on the ASCADv1 and ASCADv2
datasets confirm that models trained with Scoop not only outperform the current state of
the art in amount of traces required for a successful key recovery and plateau length, but also
achieves the first successful non-worst-case attack on ASCADv2. Additionally, we showed
that by using Scoop, we can significantly improve the hyperparameters optimization
process, leading to better models in a shorter amount of time.

Interestingly, to achieve this attack, Scoop hyperparameters optimization converged
towards a model with a strong ℓ2 regularization, which, to the best of our knowledge,
remains at small values in the current DL-SCA literature [RB24].

These findings show the importance of considering novel optimization strategies for
DL-SCA, and not only the architecture. A potential future research direction would be to
investigate the role of ϵ which is the SMD parameter of Scoop. We believe that putting ϵ
as a hyperparameter, and maybe in a schedule, could lead to even better results.
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A Proof that F has a unique optimum for a two-share secret
Proof. We want ∀(s0, s1) ∈ {0, 1} s.t. s0 ⊕ s1 = 0(i.e.s0 = s1)⇒ {F (x|θ)}0 ≈ 1. We note
θ = (θ0, θ1).

We recall the expression of the model:

{F (x|θ)}0 = e2α0s0θ0+2α1s1θ1 + e2

(e2α0s0θ0 + e) (e2α1s1θ1 + e) (A.0.1)

Let us set θ0 = α0λ and θ1 = α1λ where λ is a constant. Then, we have:

{F (x|θ)}0 = e4λs0 + e2

(e2λs0 + e)2 (A.0.2)

E [{F (x|θ)}0] = 1
2 + e4λ+e2

2 (e2λ + e)2 −→
λ→+∞

1 (A.0.3)

Now, let us set θ0 = −α0λ and θ1 = −α1λ, then we have:

{F (x|θ)}0 = e−4λs0 + e2

(e−2λs0 + e)2 (A.0.4)

and
E [{F (x|θ)}0] = 1

2 + e2 + e−4λ

2 (e−2λ + e)2 −→
λ→+∞

c < 1 (A.0.5)

Now let us set θ0 = α0λ and θ1 = −α1λ, then we have:

{F (x|θ)}0 = e2λs0 + e2

(e2λs0 + e) (e−2λs1 + e) (A.0.6)

E [{F (x|θ)}0] = 1
2 + e2λ + e2

2 (e2λ + e) (e−2λ + e) −→
λ→+∞

c < 1 (A.0.7)

And now
{F (x| − θ)}0 = e−2λs0 + e2

(e−2λs0 + e) (e2λs1 + e) (A.0.8)

E [{F (x| − θ)}0] = 1
2 + e−2λ + e2

2 (e−2λ + e) (e2λ + e) −→
λ→+∞

1
2 (A.0.9)

Thus, {F (x|θ)}0 − {F (x| − θ)}0 ̸= 0 and the loss landscape is not symmetric.
Hence F has a unique optimum.

B Proof of Theorems
B.1 Proof that Hutchinson Diagonal Estimator is unbiased
Before proving the theorems, we recall the proof of the Hutchinson diagonal estimator
unbiasedness.

Let us first introduce Lemma 1.

Lemma 1. (Hessian Vector Product Identity) The Hessian vector product can be computed
as:

∇2
θL (θ) z = ∇θ [⟨∇L (θ) , z⟩] (B.1.1)
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Proof. By the definition of the derivative:

∇2
θL (θ) z = lim

ϵ→0

∇θL (·+ ϵz)−∇θL (θ)
ϵ

= ∇θ [⟨∇L (θ) , z⟩] (B.1.2)

Theorem 4 (Hutchinson Diagonal Estimator is unbiased [Hut89]). Let z be a i.i.d. random
vector such that E [zi] = 0 and V [zi] = 1. Then the Hutchinson diagonal estimator is an
unbiased estimator of the diagonal of the Hessian of L (θ):

E
[
z⊙∇2

θL (θ) z
]

= diag
(
∇2
θL (θ)

)
(B.1.3)

Proof. From Lemma 1, we have that:

z⊙∇θ [⟨∇L (θ) , z⟩] = z⊙∇2
θL (θ) z (B.1.4)

= z⊙


n∑
j=1

{
∇2
θL (θ)

}
ij
zj


n

i=1

(B.1.5)

=


n∑
j=1

{
∇2
θL (θ)

}
ij
E [zjzi]


n

i=1

(B.1.6)

(B.1.7)

since zi are sampled independently, E [zjzi] = E [zj ]E [zi] = 0 if i ̸= j and E [zjzi] =
E
[
z2
j

]
= V [z] + E [z]2 = 1 if i = j. It follows that

E [z⊙∇θ [⟨∇L (θ) , z⟩]] =
{{
∇2
θL (θ)

}
ii

}n
i=1 = diag

(
∇2
θL (θ)

)
(B.1.8)

B.2 Proof of Theorem 2
Proof. Let z be a random vector such that E [zi] = 0 and V [zi] = 1. And let ĥt be the
Hutchinson estimator of the diagonal of the Hessian of L (θ). Then, the variance of ĥt is:

Σij = Cov
(
{z⊙∇θ [⟨∇L (θ) , z⟩]}i , {z⊙∇θ [⟨∇L (θ) , z⟩]}j

)
(B.2.1)

For the sake of simplicity, let us denote H = z⊙∇θ [⟨∇L (θ) , z⟩]. Then,

Σij = E
[
{z⊙Hz}i {z⊙Hz}j

]
− E [{z⊙Hz}i]E

[
{z⊙Hz}j

]
= E

[
n∑
k=1

n∑
l=0

HikHjlzizkzjzl

]
−HiiHjj

=
(

n∑
k=1

n∑
l=0

HikHjlE [zizkzjzl]
)
−HiiHjj

What is important to note is that the diagonal of the covariance involve the fourth order
moment of z (since i = j = k = l). Recalling that E

[
z4
i

]
is the kurtosis of the distribution

of z. Hence, if zi ∼ Rademacher, then Tr (Σ) is minimal. Non-diagonal elements do not
depend on intrinsic properties of the distribution of z besides its expectation and variance
which are fixed.
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B.3 Proof of Theorem 3 and Corollary 1
Proof of Theorem 3. This theorem is a generalization of Lemma 4.1 from [DM23].

Let z be a random vector with i.i.d entries, such that E [zi] = 0 and V [zi] is set freely.
Let H ∈ Rn×n be the Hessian matrix of interest. Then, defining ϵ as the error of estimation
of the diagonal of the Hessian, we have that:

ϵ = z⊙Hz− diag (H) + Bias (z) (B.3.1)

Where Bias (z) is the bias of the estimator. Let us note hi = Hii − Hiiz
2
i . Then

assuming m iterations of the estimator, we have that:

E
[
∥ϵ∥2

2

]
= 1
m
E

 n∑
i=1

hi +
∑
i ̸=j

Hijzizj

2
+ E [Bias (z)]

= 1
m
E

 n∑
i=1

h2
i + 2

n∑
i=1

hi
∑
i ̸=j

Hijzizj +
n∑
i=1

∑
i̸=j

Hijzizj

2
+ E [Bias (z)]

= 1
m
E

 n∑
i=1

h2
i + 2

n∑
i=1

hi
∑
i ̸=j

Hijzizj +
n∑
i=1

∑
i ̸=j

∑
i ̸=k

HijHikzizizjzk

+ E [Bias (z)]

Let us break down each term separately.

E
[
h2
i

]
= E

[(
Hii −Hiiz

2
i

)2] = E
[
H2
ii − 2H2

iiz
2
i +H2

iiz
4
i

]
= H2

ii − 2H2
iiE
[
z2
i

]
+H2

iiE
[
z4
i

]
= H2

ii (1− 2V [zi] + Kurtosis (zi))

Thus,

E

[
n∑
i=1

h2
i

]
=

n∑
i=1

H2
ii (1− 2V [zi] + Kurtosis (zi))

= (1− 2V [zi] + Kurtosis (z))
n∑
i=1

H2
ii

= (1− 2V [zi] + Kurtosis (z)) ∥diag (H)∥2
2

The second term is pretty straightforward, by the i.i.d hypothesis, we have that
E [zizj ] = 0 if i ̸= j. Hence,

E

 n∑
i=1

Hii(1− z2
i )
∑
i ̸=j

Hijzizj

 = E

 n∑
i=1

∑
j ̸=i

HiiHijzizj −
n∑
i=1

∑
j ̸=i

HiiHijz
3
i zj


=

n∑
i=1

∑
j ̸=i

HiiHijE [zizj ]−
n∑
i=1

∑
j ̸=i

HiiHijE
[
z3
i zj
]

= 0
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And for the third term, if j ̸= k, then E [zizjzizk] = 0 which nullifies the term. If j = k,
then E [zizjzizk] = E

[
z2
i z

2
j

]
= E

[
z2
i

]
E
[
z2
j

]
= V [zi]2. Hence,

E

 n∑
i=1

∑
i ̸=j

∑
i ̸=k

HijHikzizizjzk

 =
n∑
i=1

∑
i ̸=j

HijHijV [zi]2

= V [zi]2
n∑
i=1

∑
i ̸=j

HijHij

= V [zi]2
∥∥H̄∥∥2

F

Finally, the bias term is easily computed as:

E [Bias (z)] = E

 n∑
j=1

((1− V [zj ])Hjj)2


= (1− V [zj ])2 ∥diag (H)∥2

2

Putting it all together, we have that:

E
[
∥ϵ∥2

2

]
= 1
m

[
(1− 2V [zi] + Kurtosis (zi)) ∥diag (H)∥2

2 + V [zi]2
∥∥H̄∥∥2

F

]
+ (1− V [zi])2 ∥diag (H)∥2

2

Observing that ∇2
V[zi]E

[
∥ϵ∥2

2

]
= 2

∥∥H̄∥∥2
F

+ 2 ∥diag (H)∥2
2 > 0, we know that the

expected error is convex, and we can minimize it using the first order condition. We have
that:

V [zi]⋆ =
m−1
m ∥diag (H)∥2

2
1
m

∥∥H̄∥∥2
F

+ ∥diag (H)∥2
2

We can also prove the probabilistic bound of Corollary 1, which is in fact derived from
Markov’s inequality.

Proof of Corollary 1. Recall that, from Theorem 3, the expected error of the estimator is
given by:

E
[
∥ϵ∥2

2

]
= 1
m

[
(1− 2V [zi] + Kurtosis (z)) ∥diag (H)∥2

2 + V [zi]2
∥∥H̄∥∥2

F

]
+(1− V [z])2 ∥diag (H)∥2

2

If we are given m iterations. We can formulate the Markov inequality:

P
[∥∥∥ĥm − diag (H)

∥∥∥
2
≥ δ
]
≤ 1
mδ

E
[
∥ϵ∥2

2

]
Recalling that E

[
∥ϵ∥2

2

]
> 0, we can rewrite the inequality as:

P

[∥∥∥ĥm − diag (H)
∥∥∥

2
≤
√

1
mδ

E
[
∥ϵ∥2

2

]]
≥ 1− δ
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C Empirical Convergence Analysis of the Biased Hutchin-
son Estimator

We empirically study the convergence of the different estimators. Namely, we compare
three cases, two unbiased ones: z ∼ N (0, 1) and z ∼ Rademacher and the biased one z
as per Theorem 3. We draw H ∈ Rn×n at random K times and compute the empirical
mean of the estimators. We then measure their relative errors. Figure C.0.1 shows the
convergence of the different estimators. We see that the biased one is much more accurate
in the first iterations, while the unbiased ones take much more time to converge. We see
that the Rademacher estimator converges faster than the Gaussian one, which is in line
with the theoretical results (the Kurtosis of the Rademacher distribution is lower than
the one of the Gaussian distribution). While not included in the figure, we have also
confirmed that when z ∼ L(0, 1), the estimator converges slower than any other one : it
is the worst Kurtosis distribution. Recall we want a good estimator, but as inferring is
epensive, we want to best possible estimator in few iterations. Actually, most of second-
order optimization algorithms use just one iteration of the estimator [LLH+23]. The biased
estimator is then the best choice, as it is the most accurate in the first iterations.

Rademacher Gaussian Biased Rademacher
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Figure C.0.1: Theoretical expected relative error (left) and empirical mean relative error
(center) of the different estimators of the diagonal of the Hessian : Gaussian, Rademacher
and biased Rademacher. For a fixed iteration m = 50, the impact of V [z] on the relative
error is shown (right).

D ASCADv1 CNN Hyperparameters
The hyperparameters grid for the fine-tuning of the CNN on ASCADv1 is shown in Table 6.

Table 6: Hyperparameters grid for the fine-tuning of the CNN on ASCADv1
Hyperparameter Range Step Description

η0 [1e-4, 1e-2] Continuous log Initial learning rate
β1, β2 [0.9,0.99] 0.01 Gradient and Hessian momentum
ϕ (·) [ReLU, SeLU] - Activation function

λ [0, 0.3] 0.1 ℓ2 regularization / Weight-Decay
n_linear [2, 5] 1 Number of linear layers
n_conv [1, 5] 1 Number of convolutional layers

global_pool [True, False] - Global pooling
conv_filter_type [“increasing”, “increasing_clipped”, “same”] - Convolutional filter type

kernel_size [5, 17] 2 Kernel size
conv_filter_size [10,20] 10 Convolutional filter size

pooling_size [2, 3] 1 Pooling size
input_bn [True, False] - Batch Normalization on input
conv_bn [True, False] - Batch Normalization on convolutional layers
linear_bn [True, False] - Batch Normalization on linear layers

The conv_filter_type parameter defines the behavior of the convolutional filters’ sizes
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throughout the network. The “increasing” option doubles the filter size at each layer, while
the “increasing_clipped” option also doubles the filter size at each layer, but clips it to
100. The “same” option keeps the same filter size at each layer.

E ASCADv2

E.1 Labels Construction on ASCADv2 through SNR study

ASCADv2 dataset does not explicitly contain non-worst-case labels. Hence, we need to
generate them. As we target a classic AES SBox, we can generate the labels as follows:

yi = SBox[pti ⊕ keyi] (E.1.1)

where SBox is the SBox of the AES, pti the plaintext byte at position i and keyi the
key byte at position i. To verify if our labels are correctly generated, we study the Signal-
to-Noise Ratio (SNR) which, in a SCA paradigm, is actually a variance analysis (ANOVA)
metric instead of a signal-to-noise ratio as per the classical signal processing definition. It
is a metric that we can use to identify leakage points, given that we have access to the
values manipulated during the execution. The SNR is defined as:

SNR = V [E [L (x) |x]]
E [V [L (x) |x]] . (E.1.2)

Where L (x) is the leakage model of x, being the targeted value. Since ASCADv2 is
a masked implementation, the targeted value should never be leaking in the trace, and
hence we expect the SNR not to emphasize any peak. Figure E.1.1 shows the SNR for
different label constructions. In the first setting (Figure E.1.1 (left)) we deactivate both
masking and loop shuffling, and we see that indeed the sensitive value leaks at a single
point. In the second setting (Figure E.1.1 (center)), we activate the loop shuffling, and we
see 16 leakage points, being the number of iterations of the subbyte loop. Finally, in the
last setting (Figure E.1.1 (right)), we activate the masking and loop shuffling, and we can
see that the SNR is just noise.

0 14000
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.01

Sample
0 14000

Sample
0 14000

Sample
Figure E.1.1: Signal-to-noise ratio of the ASCADv2 dataset with different countermeasures
configurations on byte 15. (left): No masking nor shuffling, (center): Shuffling, (right):
Affine masking + shuffling.

E.2 ASCADv2 MLP Hyperparameters

The hyperparameters grid for the fine-tuning of the MLP on ASCADv2 is shown in Table 7.
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Table 7: Hyperparameters grid for the fine-tuning of the MLP on ASCADv2.
Hyperparameter Range Step Description

n [3, 8] 1 Number of hidden layers
η0 [1e-4, 1e-2] Continuous log Initial learning rate

β1, β2 [0.9,0.99] 0.01 Gradient and Hessian momentum
ϕ (·) [ReLU, ELU, SeLU, Tanh] - Activation function

λ [0, 0.3] 0.1 ℓ2 regularization / Weight-Decay
InputBN [True, False] - Batch Normalization on input

HiddenBN [True, False] - Batch Normalization on hidden layers

The best found hyperparameters are: n = 6, η0 = 2.2e−4, β1 = 0.97, β2 = 0.92, ϕ (·) =
ReLU, λ = 0.2, InputBN=False, HiddenBN=True. This model takes 3 hours to finetune
and 10 minutes to fully train. To make the fine-tuning process more efficient, we employ a
pruning strategy aimed at removing the worst performing models early in the process.
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