
Fast Scloud+: A Fast Hardware Implementation
for the Unstructured LWE-based KEM – Scloud+

Jing Tian1∗, Yaodong Wei1∗, Dejun Xu1, Kai Wang1,
Anyu Wang2,5,6(B), Zhiyuan Qiu3, Fu Yao4 and Guang Zeng4

1 School of Integrated Circuits, Nanjing University, Suzhou, China
tianjing@nju.edu.cn,{yaodongwei,xudejun,wang_kai}@smail.nju.edu.cn
2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China

anyuwang@tsinghua.edu.cn
3 Shandong Institute of Blockchain, Jinan, China

qiuzhiyuan@sdibc.cn
4 Shield Lab, Huawei Technologies, Beijing, China

{yaofu3,zengguang13}@huawei.com
5 Zhongguancun Laboratory, Beijing, China

6 National Financial Cryptography Research Center, Beijing, China

Abstract. Scloud+ is an unstructured LWE-based key encapsulation mechanism
(KEM) with conservative quantum security, in which ternary secrets and lattice
coding are incorporated for higher computational and communication efficiency.
However, its efficiencies are still much inferior to those of the structured LWE-
based KEM, like ML-KEM (standardized by NIST). In this paper, we present a
configurable hardware architecture for Scloud+.KEM to improve the computational
efficiency. Many algorithmic and architectural co-optimizations are proposed to
reduce the complexity and increase the degree of parallelism. Specially, the matrix
multiplications are computed by a block in serial and the block is calculated in one
cycle, without using any multipliers. In addition, the random bits all are generated by
an unfolded Keccak core, well matched with the data flow required by the block matrix
multiplier. The proposed design is coded in Verilog and implemented under the SMIC
40nm LP CMOS technology. The synthesized results show that Scloud+.KEM-128
only costs 23.0 us, 24.3 us, and 24.6 us in the KeyGen, Encaps, and Decaps stages,
respectively, with an area consumption of 0.69 mm2, significantly narrowing the gap
with the state-of-the-art of Kyber hardware implementation.
Keywords: post-quantum cryptography · key encapsulation mechanism · learning
with errors · lattice code · Hardware Implementation · ASIC

1 Introduction
Shor’s quantum algorithm [Sho94] makes migrating from traditional public-key cryptogra-
phy to post-quantum cryptography (PQC) inevitable. Due to the recent development in
building quantum circuits, a large-scale quantum computer might become a reality within
the next 10 years. These recent developments have, in turn, accelerated the establishment
of PQC. In 2016, the national institute of standards and technology (NIST) [CJL+16]
initiated the evaluation and standardization of PQC algorithms. Until now, the NIST
evaluation is nearing the end and three schemes have been standardized in NIST FIPS
standards [oST24].

B Corresponding author.
* Contributed equally to this work.

mailto:tianjing@nju.edu.cn, {yaodongwei,xudejun,wang_kai}@smail.nju.edu.cn
mailto:anyuwang@tsinghua.edu.cn
mailto:qiuzhiyuan@sdibc.cn
mailto:{yaofu3,zengguang13}@huawei.com

2 Fast Scloud+: A Fast Hardware Implementation for Scloud+

Among the PQC schemes, those based on the learning with errors (LWE) problem,
called lattice-based PQC (LB-PQC), have gained particular popularity because of their
better trade-off between security, performance, and size than other candidates. Two
branches of LB-PQC have been developed. One is more efficient in performance and size
while the security is based on the variants of the LWE problem with algebraic structure
(abbreviated as structured-LWE), like the ring-LWE problem [LPR10, PRSD17] and the
module-LWE problem [LS15]. Representative schemes include CRYSTALS-Kyber [Sch22],
Saber [D’A20], and Aigis [ZYF+20]. Note that CRYSTALS-Kyber belongs to one of the
three FIPS standards, named ML-KEM.

The second branch is directly based on the hardness of the LWE problem without
any additional algebraic structure (abbreviated as unstructured-LWE), which is regarded
as more conservative in security than the variants. However, their performance and size
both are about one order of magnitude inferior to the structured-LWE-based schemes,
which largely decreases their superiority in practical applications. The most representative
scheme is FrodoKEM [Nae20]. It had been evaluated for three rounds by NIST and
was not selected for the aforementioned reason. However, with security being given
the first priority, it has still been recommended by many other standards organizations,
including the international organization for Standardization (ISO), Germany’s Bundesamt
für Sicherheit in der Informationstechnik (BSI), and Netherlands national communications
security agency (NLNCSA). In order to improve its computational and communication
efficiency, Wang et al. [WZZ+24] recently presented a more efficient unstructured-LWE-
based key encapsulation mechanism (KEM) named Scloud+.KEM, which is a variant of
FrodoKEM by incorporating ternary secrets and lattice coding to improve both of efficiency.
As summarized in Table 1, Scloud+.KEM has significantly improved the time and size
over FrodoKEM but it is still much slower and larger than ML-KEM.

In this work, we try to deal with the gap of the computational efficiency between
Scloud+.KEM and ML-KEM. As shown in Table 1, our proposed hardware implementation
consumes much fewer clock cycles than the software implementation of ML-KEM. When
considering the clock frequency, our implementation is still faster for the NIST security
levels 1 and 3. As many hardware implementations [XL21, KPM+22, ZZO+24, LLLL24]
have been proposed for Kyber, we will provide the detailed results comparison under the
same platform in the following comparison section to make it more fair.

1.1 Our Contributions
In this paper, we present, for the first time, a fast hardware architecture for Scloud+.KEM
by using the algorithmic and architectural co-optimization method to greatly improve the
computational efficiency. The main contributions are summarized as follows:

• High-Parallel and Low-Complexity Hardware Architecture: We devise a
novel configurable architecture for Scloud+.KEM with a high degree of parallelism
and low complexity. It mainly includes five modules: Matrix Multiplier, Random
Bits Generator, Message Function, Memory, and Control Unit.

– Matrix Multiplier: We present a square block matrix multiplier to iteratively
compute all the matrix multiplications, which can perfectly match the left and
right matrix multiplications. By utilizing the feature of the ternary values, the
block multiplier is designed with only tree adders after a simple preprocessing
and is fully parallelized and computed within one cycle.

– Random Bits Generator: Considering the hardware efficiency, we only use
the SHA-3 algorithm for generating all the random numbers and devise a
completely unfolded Keccak core for this module, where 4 stages of pipeline
are inserted, to well match the data flow required in the matrix multiplier. We

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 3

Table 1: Summary of the Performance of ML-KEM, FrodoKEM, and Scloud+.KEM

Scheme Problem ∗Platform
Operating Efficiency

(103 cycles) Size (Measured in Bytes)

KenGen Encaps Decaps Public
Key Ciphertext Shared

Secret
ML-KEM

-512 M-LWE software 134 158 204 800 768 32

FrodoKEM
-640 LWE software 1375 1541 1474 9616 9720 16

Scloud+.KEM
-128 LWE software 1052 1115 1109 7200 5456 16hardware 6.9 7.3 7.4

ML-KEM
-768 M-LWE software 232 258 320 1184 1088 32

FrodoKEM
-976 LWE software 2786 2993 2814 15632 15744 24

Scloud+.KEM
-192 LWE software 2034 2226 2262 11136 10832 24hardware 15.0 15.5 15.5

ML-KEM
-1024 M-LWE software 353 376 453 1568 1568 32

FrodoKEM
-1344 LWE software 4906 5183 4992 21520 21632 32

Scloud+.KEM
-256 LWE software 3564 3738 3884 18744 16916 32hardware 42.9 44.6 44.7

* Software: downloading the open-source codes and running on Fedora 33 (Workstation Edition),
equipped with an Intel Core-i9 10980XE @3.00GHz, with hyperthreading and TurboBoost disabled.
Hardware: the proposed hardware architecture implementing under the SMIC 40nm LP CMOS
technology, with a frequency of 300MHz.

also carefully regroup the input and output of the Keccak core according to
different hash functions and their data access to the memory in each cycle,
without any influence on the security. For computing the constant Hamming
distribution, we present a new hardware-friendly algorithm without any sorting.
For computing the central binomial distribution, we transform the original
formula and only use two small adder trees to obtain the right output for all
the required parameters.

– Message Function: For the message encoder, we design it iteratively for saving
area. For the message decoder, we carefully analyze the recursive calculations
and make a good trade-off between area and time. Moreover, we simplify the
Euclidean distances calculation formula and discard the square root calculations
without any accuracy loss.

– Memory: We design the memory into three categories with appropriate num-
bers of banks, widths, and depths, which can well satisfy the data flow to/from
the memory. Moreover, most of the storage resources are fully utilized in
different parameter settings.

– Control Unit: We resolve the computing steps in Scloud+ carefully to make
the data flow more smoothly so that the control logic is not so complicated.
Note that the control logic of each module is well encapsulated to simplify the
higher-level calls.

We code the proposed architecture in Verilog language and synthesize it under the
SMIC 40nm CMOS technology. The synthesis results show that the proposed hardware
implementation for Scloud+.KEM consumes an area of 0.69 mm2 and Scloud+.KEM-128
costs 23.0 us, 24.3 us, and 24.6 us in the KeyGen, Encaps, and Decaps stages, respectively.
It is almost as efficient as many hardware implementations for Kyber.

4 Fast Scloud+: A Fast Hardware Implementation for Scloud+

1.2 Outline
The rest of the paper is organized as follows. Section 2 summarizes the Scloud+.PKE and
Scloud+.KEM and presents the related notations and parameters. Section 3 details the
proposed hardware architectures for Scloud+.KEM. In Section 4, the ASIC implementation
results are provided and compared with previous works. Finally, Section 5 concludes this
paper.

2 Preliminaries
In this section, we first present the notations and parameters. Then, we review the
Scloud+.PKE and Scloud+.KEM algorithms.

2.1 Notations and Parameters
The involved notations in Scloud+.PKE and Scloud+.KEM are presented below.

• Vectors are denoted by bold lower-case letters, such as v, while matrices are repre-
sented by bold upper-case letters, such as A.

• Sampling from a distribution χ is denoted by x← χ. The uniform discrete distribu-
tion over a finite set S is denoted by U(S).

• Moduli: powers of 2 integers q > q1, q2;

• Matrix size parameters: positive integers m, n, m̄, n̄;

• Secret weight parameters: h1, h2;

• Error parameters: η1, η2;

• Message length: lm ∈ {128, 192, 256};

• Shared secret length: lss ∈ {128, 192, 256};

• Labeling and delabeling parameters: µ and τ .

The summary of parameters for Scloud+.PKE and Scloud+.KEM is shown in Table 2,
where all the three security levels are included.

Table 2: Parameters for Scloud+.PKE and Scloud+.KEM.

Parameters lss = lm (q, q1, q2) (m, n) (m̄, n̄) (h1, h2) (η1, η2) µ τ

Scloud+-128 128 (212, 29, 27) (600, 600) (8, 8) (150, 150) (7, 7) 64 3
Scloud+-192 192 (212, 212, 210) (928, 896) (8, 8) (224, 232) (2, 1) 96 4
Scloud+-256 256 (212, 210, 27) (1136, 1120) (12, 11) (280, 284) (3, 2) 64 3

2.2 Scloud+.PKE and Scloud+.KEM
The Scloud+.PKE algorithm is summarized in Alg. 1, where a tuple of algorithms (KeyGen,
Enc, Dec) are included. The key generation algorithm Scloud+.PKE.KeyGen takes the
random seed α← U({0, 1}256) as input and outputs a pair of public key and secret key
(pk, sk). The encryption algorithm Scloud+.PKE.Enc takes pk, a message m, and a random
coin r as input, and outputs a ciphertext C. The decryption algorithm Scloud+.PKE.Dec
takes sk and C as input, and outputs a message m′. The PKE scheme satisfies IND-CPA

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 5

Algorithm 1: Scloud+.PKE Algorithm
1: (pk, sk) = Scloud+.PKE.KeyGen(α)

(seedA, r1, r2) = F(α) ∈ {0, 1}128 × {0, 1}256 × {0, 1}256

A = gen(seedA) ∈ Zm×n
q

S = Ψ(r1, (n, n̄), h1) ∈ Zn×n̄, E = CenBinom(r2, (m, n̄), η1) ∈ Zm×n̄

B = A · S + E ∈ Zm×n̄
q

return pk = (B, seedA), sk = S

2: (C) = Scloud+.PKE.Enc(pk, m, r)
A = gen(seedA)
(r′

1, r′
2) = F(r) ∈ {0, 1}256×2

S′ = Φ(r′
1, (m̄, m), h2) ∈ Zm̄×m

E′ = (E1, E2) = CenBinom(r′
2, (m̄, n + n̄), η2), where E1 ∈ Zm̄×n, E2 ∈ Zm̄×n̄

M = MsgEnc(m) ∈ Zm̄×n̄
q

C1 = S′ ·A + E1, C2 = S′ ·B + E2 + M
C̄1 = ⌊ q1

q ·C1⌉, C̄2 = ⌊ q2
q ·C2⌉odd

return C = (C̄1, C̄2)

3: (m′) = Scloud+.PKE.Dec((sk, C)
C′

1 = q
q1
· C̄1, C′

2 = q
q2
· C̄2

D = C′
2 −C′

1S ∈ Zm̄×n̄
q

return m′ = MsgDec(D) ∈ {0, 1}lm

security (indistinguishability under chosen plaintext attack). In our design, considering
the hardware efficiency, the random generation functions gen, Ψ/Φ, and CenBinom all
only take the seeds output from the Keccak core instead of an AES core. The message
conversion functions MsgEnc and MsgDec are constructed using the labeling, BDD, and
delabeling algorithms. More details for these functions can be referred to as in [WZZ+24]
and the following section.

The Scloud+.KEM algorithm is summarized in Alg. 2, where a tuple of algorithms
(KeyGen, Enc, Dec) are included. The key generation algorithm Scloud+.KEM.KeyGen
takes the random seed α and a random vectorz← U({0, 1}256) as input, and outputs a pair
of public key and secret key (pk, sk). The encapsulation algorithm Scloud+.KEM.Encaps
takes pk and a message m as input, and outputs a ciphertext C and a shared secret ss.
The decapsulation algorithm Scloud+.KEM.Decaps takes sk and C as input, and outputs a
shared secret ss. The KEM satisfies IND-CCA security (indistinguishability under chosen
ciphertext attack, or IND-CCA2). The hash functions F, H, G, and K all belong to SHA-3.
More details can be referred to in Section 3.3.

3 Proposed Hardware Architecture
In this section, we present the proposed hardware architecture for Scloud+.KEM, including
the top-level architecture and its sub-modules.

3.1 Top-Level Architecture
The top-level architecture for Scloud+.KEM is shown in Fig. 1, mainly consisting of five
modules: 1) Matrix Multiplier (MatM), 2)Random Bits Generator (RBitsG), 3) Message
Function (MsgFunc), 4) Memory, and 5) Control Unit (CtrU).

6 Fast Scloud+: A Fast Hardware Implementation for Scloud+

Algorithm 2: Scloud+.KEM Algorithm
1: (pk, sk) = Scloud+.KEM.KeyGen(α, z)

(pk, sk′) = Scloud+.PKE.KeyGen(α)
hpk = H(pk) ∈ {0, 1}256

sk = (sk′, pk, hpk, z)
return (pk, sk)

2: (C, ss) = Scloud+.KEM.Encaps(pk, m)
(r, k) = G(m||H(pk)) ∈ {0, 1}256×2

C = Scloud+.PKE.Enc(pk, m, r)
ss = K(k||C) ∈ {0, 1}lss

return (C, ss)

3: (ss) = Scloud+.KEM.Decaps((sk, C)
m′ = Scloud+.PKE.Dec(sk′, C)
(r′, k′) = G(m′||hpk)
C′ = Scloud+.PKE.Enc(pk, m′, r′)
if C = C′

return ss = K(k′, C)
else

return ss = K(z, C)
end if

Message
Function

Matrix
Multiplier

Control
Unit

Random
bits

GeneratorMemory

m

'm
M

D ,B C D / S S

, / A E E
, z

C

/ S S

C
ss

Figure 1: Proposed top-level architecture for Scloud+.KEM, where five modules are
included and the main data transformed between them are also marked.

MatM is used to compute the matrix multiplications A · S, S′ ·A, S′ ·B, and C′
1 · S,

where the size of matrix A is much bigger than those of S, S′, B, and C′
1, and no multipliers

are adopted. RBitsG is to calculate the random bits including random matrices A, S,
E, and other random vectors. The basic core is the Keccak core with fully unfolded
rounds, where random bits can be output each cycle after the initialization. MsgFunc is for
calculating the MsgEnc and MsgDec functions detailed in [Scloud+]. The Memory module
is mainly to save the public and secret keys pk = (B, seedA) and sk = S, ciphertexts
C = (C1, C2), and decompressed message D. Note that A is dynamically generated by
seedA, the memory for B and C1 is shared, and the memory for C2 and D is also shared.
Finally, CtrU is used to generate control signals to combine those modules. More details
about them are shown below.

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 7

൉ ൉ ൉ ൉ ൉ ൉

൉ ൉ ൉ ൉ ൉ ൉

൉ ൉ ൉ ൉ ൉ ൉

൉ ൉ ൉ ൉ ൉ ൉

൉ ൉ ൉ ൉ ൉ ൉

൉ ൉ ൉ ൉ ൉ ൉

. .
. .

. . .

. . .

. . .

. . .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .. m

n

൉

൉

൉

൉

൉

൉

. .
 . n

൉

൉

൉

൉

൉

൉

. .
 . m

A ꞏ S #BMMPE = 1

ꞏ

S' ꞏ A #BMMPE = 1

൉ ൉ ൉ ൉ ൉ ൉. . .
m

. .
. .

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

൉
൉

. . .

. . .

. . .

. . .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .. m

n

൉ ൉ ൉ ൉ ൉ ൉. . .
n

: Iterative direction.Block of S/S': Generate in advance.

Block of A: Generate in real-time.

ꞏ

൉

Instance of using BMMPE

BMMPE

Computation direction.

൉ ൉ ൉ ൉ ൉ ൉. . .

൉ ൉ ൉ ൉ ൉ ൉. . .

(When #BMMPE = 1)

L

R1
0

0
1

(a)

T

T

Figure 2: Diagrams for matrix multiplications in block, where “ · ” denotes a block matrix
multiplier. (a) Diagram of Am×n multiplied by Sn×n̄ in block by block. (b) Control logic
for transposing block matrices to select left and right matrix multiplications. (c) Diagram
of Sm̄×m multiplied by Am×n in block by block.

3.2 Matrix Multiplier

The MatM module is designed in block to match the left and right multiplications of
matrix A ∈ Zm×n

q with matrix S ∈ Zn×n̄ and S′ ∈ Zm̄×m. Since (S′ ·A)T = AT · S
′T , we

can directly transpose the two involved block multiplication matrices in this case to match
the same control for the data flow and memory addresses as the other case. Fig. 2 shows
the diagrams of the two kinds of matrix multiplications in blocks and the corresponding
control logic. Assume the size of a block is b× b and b ≥ n̄ or b ≥ m̄. If one block is used,
then we can use m

b ×
n
b iterations to finish one matrix multiplication. If n̄/2 ≤ b < n̄ or

m̄/2 ≤ b < m̄, the number of iterations would be doubled. When b = 8, the parameters of
Scloud+-128 and Scloud+-192 belong to the former and those of Scloud+-256 belong to
the latter. When adopting more blocks, the latency would be reduced linearly while the
area would be increased sub-linearly as the Memory and MsgFunc modules would basically
be unchanged. It should be noted that only one block is considered in the current version.

Fig. 3 shows the diagrams for block matrix multiplications based on processing elements
(BMMPE). As shown in Fig. 3(a), the multiplication of two square matrices with a size of
b× b requires b2 PEs. For a PE, a b-value vector multiplication is computed. Since the
ternary values (i.e. -1, 0, and 1) are used in S and S′, we can use only adders instead of
multipliers after a simple preprocessing module, as illustrated in Fig. 3(c).

Assume the values of Ab×b in a block are ai,j with q bits and 0 ≤ i, j < b, and values
of S or S′ are sj,k or s′j,k with 2 bits and 0 ≤ j, k < b. The preprocessing module can be
designed by using a masking, an inverter, and a multiplexer for a bit as shown in Fig. 4(a).
It means that we decide âi,j,k equal to ai,j , 0, or 2’s complement of ai,j according to sj,k in
advance and then complete the accumulation using an adder tree. Interestingly, it can be
found that the computation of 2’s complement of ai,j equals 2q − ai,j = ¬ai,j + 1 ≡ −ai,j

(mod 2q). Namely, we have finished the reduction operation for the negative inputs in
the meantime. In addition, computing those 2’s complements is not immediately finished

8 Fast Scloud+: A Fast Hardware Implementation for Scloud+

BMMPE (Block Matrix Multiplication PE) #PE = b×b (b=8 in this example)

ꞏ

PE

൉

Block

.

...

...

...

...

...

b

b. .

. . .

. . .
Adder Tree
(b+1-input)

Preprocessing

(b)

Figure 3: Diagrams for block matrix multiplications. (a) Diagram of block matrix
multiplication in processing element (PE), where the number of PEs is b× b and b = 8 in
this example. (b) Diagram of a block with a size of b× b. (c) Diagram of a PE, consisting
of a preprocessing module and an adder tree with b + 1 inputs.

(c) Notations

,
[0]

i ja
,

[0]
j ks
,

[1]
i ja
,

[0]
j ks

[1
,

]
i j

qa 

..
.

..
. ..
.

,
[1]

j ks
, ,

[0]ˆ i j ka

, ,
[1]ˆ i j ka

]
,

[
,

1ˆ i k
q

ja 

1
0

1
0

1
0,

[0]
j ks

CSA

0â 1â 2â 3â 4â 5â 6â 7â
CSA CSA

CSA CSA

CSA

CSA

RCA D

0 1
[1] [1], }{s s

3 4
[1] [1], }{s s

2
[1]s

5
[1]s

6 7
[1] [1], }{s s

sum
(a) Preprocessing (b) Wallace-tree-based Adder

0,0 0, 0, 1

,0 , , 1

1,0 1, 1, 1

j b

b b i i j i b

b b j b b

a a a

A a a a

a a a



 

   

 
 
 
 
 
 
  
 

 
    
 

    
 

0,0 0, 0, 1

,0 , , 1

1,0 1, 1, 1

k b

b b j j k j b

b b k b b

s s s

S s s s

s s s



 

   

 
 
 
 
 
 
  
 

 
    
 

    
 

[1] [0
,

]
,, (, ,)i j i j

q
i j a aa  

]
,

1 0]
,

[[
, (,)j k j kj k s ss 

CSA: Carry-Save Adder
RCA: Ripple-Carry Adder

, ,ˆ ˆ for (0, 1)i j k ja a j b 
b=8 in this example.

Figure 4: Circuits of a PE. (a) Preprocessing. (b) Wallace-tree-based adder for an example
of b = 8. (c) Notations.

but computed in two steps to reduce the critical path and resource consumption. The
first step is to take the negation using inverters as shown in Fig. 4(a). The second step
is plus b ones, which are involved in the following adder tree as shown in Fig. 4(b). We
refer to the layered Wallace reduction [Wal64] that are made up of b− 1 carry-save adders
(CSAs) to compress the b + 1 inputs to two inputs and then compute the final result using
a ripple-carry adder (RCA). Note that the two outputs of a CSA are made up of carries
and sums, respectively. For the output with carries, the least-significant bit (LSB) is zero,
so we can fill in a sign bit of sj,k there without any extra cost. Hence, for the b sign bits
of a PE, b− 1 bits are inserted into the CSAs. The last one can also be integrated into the
RCA since we can use a full adder instead of a half adder for the LSB of RCA. Meanwhile,
since all the inputs are nonnegative integers, we directly omit the most-significant bit

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 9

pad

6Rnd

D

6Rnd

D

D

6Rnd

D

6Rnd

0Sd 1Sd 12Sd

outRnd

0,0 0, 1
14

2

1,0 1, 1
14

14

14

P 8()e 14 108ars

b

out
b b b

a a
Rnd iff b

a a



  

 
 

  
 
 


  



<<1

<<1

m
n

D

D

D

1

CMP

CMP

CMP

mask

11

00

01

00

,
[0]

i ja

,
[7]

i ja
,

[8]
i ja
,

[9]
i ja

,
[10]

i ja
,

[11]
i ja
,

[12]
i ja
,

[13]
i ja

,
[1]

i ja
,

[2]
i ja
,

[3]
i ja
,

[4]
i ja
,

[5]
i ja
,

[6]
i ja

{0,1, , 1},i j b 

(a) HashF (b)

(c)

(d)

{0,1, ,11}i 

{600,928,1136}m
{600,896,1120}n 11

ia

2
is

,
4

i je

...

Figure 5: The RBitsG module for generating random Matrices A, S/S′, and E/E′, and
random vectors seedA, r1, and r2. (a) Fully unfolded architecture of HashF, where 6
rounds are merged together and 4 stages of pipelines are inserted. So, continuous random
bits for those matrices and vectors can be obtained after 4 cycles of initialization. (b)
Demonstration for parsing the output Rndout into a b × b block matrix, where each
element has 14 bits. The requirement is 14b2 ≤ 1088 to ensure data for a block is ready
in every cycle. (c) Architecture for generating an element of matrix S/S′. Note that
max{m̄, n̄} = 12 of such unit are used to reduce the total latency. (d) Architecture for
generating an element of matrix E/E′. Note that b2 of such unit are used to match the
size of a block.

(MSB) of each adder (including CSA and RCA) to finish the modulo 2q operation at the
same time. Additionally, the RCA unit is also reused to compute the plus operation by
E/E′, M and C′

2, which does not affect the critical path. Therefore, for b = 8 and q = 12,
the critical path of the proposed adder tree is only 4 + 12 = 16 full adders.

3.3 Random Bits Generator
The RBitsG module mainly includes three parts: 1) hash function for all random bits
(HashF), 2) generator for the matrix S/S′ (Gen_S/S′), and 3) generator for the matrix
E/E′ (Gen_E/E′), as shown in Fig. 5. The details are provided in the following.

HashF: This part is to generate the random bits with different seeds. To increase the
overall throughput, we totally unfold the 24-round Keccak core whose implementation is
referred to as the work of the Keccak team [BDPVA13]. As shown in Fig. 5(a), six rounds
are combined together and four stages of pipelines are inserted. Note that Keccak[512]
and Keccak[1024] with rates of 1088 and 576 respectively are involved in Scloud+.KEM,
where only the G hash function adopts the rate of 576. So, we carefully checked all the
hash functions used in Scloud+.KEM and designed their valid bits of inputs and outputs
more hardware-friendly. The summary of these inputs, outputs, and the corresponding
consumed cycles is shown in Table 3, where 13 groups of inputs and outputs are included.
Note that the first 7 groups are implemented in a forward manner. Input seeds (Sd) are
sent in each cycle and continuous random bits are output after 4 cycles. So, the consumed
cycles are computed by plus 4. The last 6 groups need to be implemented iteratively
because the updated output must be XORed with the next input. So, the consumed cycles
are calculated by multiplying 4.

As shown in Fig. 5(b), to generate the random bits for matrices A, S/S′, and E/E′,
the 1088 random bits of Rndout are parsed into a form of b × b matrix with 14 bits for
each element. So, the block length b should satisfy the inequality 14b2 ≤ 1088. Therefore,
a block matrix Ab×b

q of A ∈ Zm×n
q with q = 12 is obtained by simply abandoning the two

10 Fast Scloud+: A Fast Hardware Implementation for Scloud+

Table 3: Statistics for Inputs, Outputs, and Consumed Cycles of HashF

Input Output Cycle

Variable Valid Bits
per Input Variable Valid Bits

per Output –

α 256 (seedA, r1, r2) 128 + 2 × 256 4
r 256 (r′

1, r′
2) 2 × 256 4

1{seedA|i|j} 128 + 2×
max{⌈log m

b
⌉, ⌈log n

b
⌉} A qb2 ⌈ m

b
⌉ × ⌈ n

b
⌉ + 4

2{r1|i} 256+
max{⌈log m⌉, ⌈log n⌉} Sin

max{⌈log m⌉, ⌈log n⌉}
× max{m̄, n̄}

6n + δS + 4

3{r′
1|i} 256+

max{⌈log m⌉, ⌈log n⌉} S′
in

max{⌈log m⌉, ⌈log n⌉}
× max{m̄, n̄}

6m + δS′ + 4

4{r2|i|j} 256 + 2×
max{⌈log m

b
⌉, ⌈log n

b
⌉} Ein 2 × max{η1, η2} × b2 ⌈ m

b
⌉ × ⌈ n̄

b
⌉ + 4

5{r′
2|i|j} 256 + 2×

max{⌈log m
b

⌉, ⌈log n
b

⌉} E′
in 2 × max{η1, η2} × b2 ⌈ m̄

b
⌉ × ⌈ n+n̄

b
⌉ + 4

pk qb2 + 128 hpk 256 ⌈ m
b

⌉ × ⌈ n̄
b

⌉ × 4
{m|H(pk)} max{lm} + 256 (r, k) 2 × 256 4
{m′|hpk} max{lm} + 256 (r′, k′) 2 × 256 4

{k|C} qb2 + 256 ss max{lss} ⌈ m̄
b

⌉ × ⌈ n+n̄
b

⌉ × 4
{k′|C} qb2 + 256 ss max{lss} ⌈ m̄

b
⌉ × ⌈ n+n̄

b
⌉ × 4

{z|C} qb2 + 256 ss max{lss} ⌈ m̄
b

⌉ × ⌈ n+n̄
b

⌉ × 4
1 i ∈ {0, 1, ..., ⌈ m

b
⌉ − 1} and j ∈ {0, 1, ..., ⌈ n

b
⌉ − 1}.

2 i ∈ {0, 1, ..., n − 1}.
3 i ∈ {0, 1, ..., m − 1}.
4 i ∈ {0, 1, ..., ⌈ m

b
⌉ − 1} and j ∈ {0, 1, ..., ⌈ n̄

b
⌉ − 1}.

5 i ∈ {0, 1, ..., ⌈ m̄
b

⌉ − 1} and j ∈ {0, 1, ..., ⌈ n+n̄
b

⌉ − 1}.
6 Values of δS and δS′ are uncertain due to the rejection sampling.

MSBs of every element of the parsed matrix and then directly sent to the MatM module.
The generations for matrices S/S′ and E/E′ are more complicated, which are detailed in
the following.

Gen_S/S′: As introduced in [WZZ+24], the constant Hamming distribution (CHD) is
used to generate the matrix S ∈ Zn×n̄

2 (S′ ∈ Zm̄×m
2), where each column (row) contains

exactly n
2 (m

2) zeros, n
4 (m

4) ones, and n
4 (m

4) negative ones. To speed up the hardware
implementation, we propose a boundary-based sampling method as shown in Alg. 3. We
set three decreasing counters Cnt0, Cnt1, and Cnt−1, whose initial values are l

2 , 3l
4 , and l

(l ∈ {n, m}), respectively. They are updated based on the value of the random number
fetched from the parsed matrix. Note that if the fetched number is larger than each of
those counters, no counters will be updated and no output will be added. In order to
decrease the rejection rate Rreject, the fetched number is masked according to the size of
Cnt−1, so we have Rreject < 50%. Assuming the length of Cnt−1 as B, we can compute
the average rejection rate as:

µRreject =
2B−1−1

2B + 2B−1−2
2B + ... + 2B−1−2B−1

2B

2B−1

= 2B−1 − 1
2B+1 .

(1)

When B is relatively large, µRreject is approximate 25%. When B becomes small, µRreject

is gradually less than 25%, until to 0%. The corresponding architecture for one element of
the sample vector s is shown in Fig. 5(c). In our design, one vector is generated in serial,
and twelve vectors are computed in parallel.

Gen_E/E′: As introduced in [WZZ+24], the central binomial distribution (CBD) is
used to generate the matrices E ∈ Zm×n̄ and E′ ∈ Zm̄×(n+n̄), whose elements are expressed
as ei,j =

∑η
k=1(xi,j [k]− yi,j [k]) where xi,j [k], yi,j [k] ∈ {0, 1} and η ∈ {1, 2, 3, 7}. It means

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 11

Algorithm 3: Proposed Boundary-Based Sampling Method of CHD for Gen_S/S′

Input: Length of the target vector l ∈ {n, m}
Output: The sampled vector s ∈ {0, 1,−1}l

1: i = 0
2: Cnt0 = l

2 , Cnt1 = 3l
4 , Cnt−1 = l

3: while Cnt−1 > 0 do
4: mask ← {1}⌈log2Cnt−1⌉

5: idxfull ← Parse(Rndout)
6: idxmask = idxfull & mask
7: if idxmask < Cnt0 then
8: s[i] = 0, Cnt0 = Cnt0 − 1, Cnt1 = Cnt1 − 1, Cnt−1 = Cnt−1 − 1, i = i + 1
9: else if idxmask < Cnt1 then

10: s[i] = 1, Cnt1 = Cnt1 − 1, Cnt−1 = Cnt−1 − 1, i = i + 1
11: else if idxmask < Cnt−1 then
12: s[i] = −1, Cnt−1 = Cnt−1 − 1, i = i + 1
13: else
14: Reject sampling
15: end if
16: end while
17: return s

that ei,j ranges in {−η,−η + 1, ..., η − 1, η} and consumes 2η random bits. Therefore, we
set the width of elements of the parsed random matrix to 14 = 2×max{η} to match this
requirement and take them directly for the Gen_E/E′ module. In order to make it more
hardware-friendly, we transform the original expression of ei,j as follows:

ei,j =
η∑

k=1
xi,j [k]−

η∑
k=1

yi,j [k], (2)

where two adder trees can be used and only one subtractor is required. The corresponding
architecture for an element ei,j is shown in Fig. 5(d). In our design, one b× b block matrix
is generated in parallel and blocks in matrices E, and E′ are computed in serial.

3.4 Message Function
The MsgFunc module mainly includes two parts: 1) message encoder for transferring the
vector message into a matrix (MsgEnc) and 2) message decoder for recovering the message
from the matrix (MsgDec), as shown in Fig. 6. The details are provided below.

MsgEnc: As described in [WZZ+24], the input message vector m is divided into lm

µ
groups, and each grouped vector is encoded using the labeling method. During the labeling,
a grouped vector is mapped by cutting this data into 16 pieces with different data widths
that are defined based on the Hamming weight of their location orders. Next, these
data are expressed in complex-number representation and updated by a 32-dimensional
Barnes-Wall lattice (BW32) expressed as a tensor product. In the tensor product operation,
the complex elements wj = wRe

j + wIm
j i for j ∈ {2, 4, ..., 16} are iteratively calculated.

The main computation is to calculate the formula:

wRe
j +wIm

j i+(i+1)(wRe
j+1 +wIm

j+1i) = (wRe
j +wRe

j+1−wIm
j+1)+(wIm

j +wRe
j+1 +wIm

j+1)i. (3)

Note that l is not fixed in each iteration and its maximum number is 16. So, we use 8
plus-minus units (PMUs) and 8 plus-plus units (PPUs) to compute the real parts and
imaginary parts, respectively. Five iterations are needed for a grouped vector and each

12 Fast Scloud+: A Fast Hardware Implementation for Scloud+

PMU

PMU

PMU

PMU

PMU

PMU

PMU

PMU

REG_0
()

PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU

. . .

. . .

. . .

. . .

. . .

. . .

Data
Cutting

. . . REG_1
(M_high) << 8 / 93/4

R
EG

_2

Width of REG_0 / 1 / 2: / 4 / 16
Depth of REG_0 / 1 / 2: 1 / / 32 temp[2 × + 1]: Im. of the -th number

 temp[2 × + 0]: Re. of the -th number

(a) MsgEnc

MMPU

MMPU

MMPU

MMPU

. . .

. . .

. . .

. . .

. . .

𝜇 REG_1
()

. . .

. . .

. . .

. . .

. . .

. . .

Data
Splicing

. . .>> 8 / 9 3/4

𝑚𝑀
𝑙௠

Width of REG_0 / 1 / 2: 4 / / 16
Depth of REG_0 / 1 / 2: / 1 / 32

𝑙௠
𝑚ഥ ൈ 𝑛ത

(b) MsgDec

REG_0
(M_high)

 temp[2 × + 1]: Im. of the -th number
 temp[2 × + 0]: Re. of the -th number

MMMU

MMMU

MMMU

MMMU

. . .

. . .

. . .

. . .

. . .

BDD32
BDD16
BDD8

BDD4 BDD4 BDD4 BDD4

R
ea

l P
ar

t

Im
ag

in
ar

y
Pa

rtR
ea

l P
ar

t

Im
ag

in
ar

y
Pa

rt

temp[0]

temp[1]

temp[2]

. . .

temp[29]

temp[30]

temp[31]

R
EG

_2

temp[0]

temp[1]

temp[2]

. . .

temp[29]

temp[30]

temp[31]

𝑀𝑚
𝑙௠ q q

𝑙௠
𝑚ഥ ൈ 𝑛ത

𝜇

i
i

i
i

i
i

i
i

𝑚𝑚

Figure 6: The MsgFunc module for decompressing and compressing the message m.
(b) The MsgEnc part for decompressing the message vector m ∈ {0, 1}lm to the matrix
M ∈ Zm̄×n̄

q . (c) The MsgDec part for compressing the message vector m ∈ {0, 1}lm from
the matrix M ∈ Zm̄×n̄

q . Note that the circuits in gray are implemented by reusing the
existing units.

consumes one cycle. Then, the updated vectors are left-shifted and output. The proposed
architecture is shown in Fig. 6(a). Two extra cycles are needed for pre-processing and
post-processing the data, respectively. Therefore, this module costs 7× lm

µ cycles. Note
that the computations in this module are totally independent of the others and can be
computed in advance, so these cycles are implicit for the total time.

MsgDec: This part is the reverse process of MsgEnc, as shown in Fig. 6(b). However,
before computing the delabeling, the bounded distance decoding (BDD) problem should
be solved, which is much more complicated than the other operations. The n-dimensional
BDD algorithm (BDDn) is computed recursively, where four sub-BDDs are included, and
each forward recursion contains four BW operations in each forward recursion. In the
backward recursions, the Euclidean distances are computed between the updated complex
vectors (x and x′) and the target complex vector (t) and compared for finding the minimum
radius (shorted as EdC). Hence, as for n = 32, we need to compute 256 BW2, 64 BW4, 16
BW8, 4 BW16, 64 EdC2, 16 EdC4, 4 EdC8, and 1 EdC16.

For the BDD32 computation, we have proposed two optimization techniques. The first
one is to make a good trade-off between the area and the speed for the BW and EdC
operations. The relationship of iterations and operations for different unfolded factors is
summarized in Table 4. We take the unfolded factor equal to 8 in our design where the
computation complexity is roughly reduced by 16x and only 16 iterations are needed.

The second optimization technique for BDD is to omit the square root operations for
EdCs without any accuracy loss and construct two tree adders. Note that the EdC can be
formulated as follows:

y = (∥x− t∥ < ∥x′ − t∥) ? x : x′, (4)

where ∥x − t∥ =
√

(x− t)2 and ∥x′ − t∥ =
√

(x′ − t)2. It can be found that we do not
need the absolute distance values and therefore the square root operations can be totally
discarded. Actually, we can still simplify the square operations by using the difference of
square formula. But, it would become more complex when adding those signed values
together after the difference operations. Additionally, the bit widths of those square
operations are only 4 bits. So, we adopt two tree adders similar to those in Gen_E/E′ to

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 13

B
D

D
1
6 REG

&

ALU

REG & ALU

BDD

16

REG & ALU

BDD

16

BDD32

 Comb.

Logic

BDD4

 Comb.

Logic

BDD4

 Comb.

Logic

BDD4

 Comb.

Logic

BDD4

MU/PU

Comp.Distance

Distance

PU

MU/PU PU

BDD8

MMPU

Round

BDD8

Figure 7: Proposed architecture for BDD32.

Table 4: Relationship of Iterations and Operations for Different Unfolded Factors in BDD

Unfolded factor Iteration Operation

32 1 256BW2 + 64BW4 + 16BW8 + 4BW16+
64EdC2 + 16EdC4 + 4EdC8 + 1EdC16

16 4 64BW2 + 16BW4 + 4BW8 + 1BW16+
16EdC2 + 4EdC4 + 1EdC8 + 1EdC16

8 16 16BW2 + 4BW4 + 1BW8 + 1BW16+
4EdC2 + 1EdC4 + 1EdC8 + 1EdC16

4 64 4BW2 + 1BW4 + 1BW8 + 1BW16+
1EdC2 + 1EdC4 + 1EdC8 + 1EdC16

2 256 1BW2 + 1BW4 + 1BW8 + 1BW16+
1EdC2 + 1EdC4 + 1EdC8 + 1EdC16

reduce the critical path. The details of BDD32 are shown in Fig. 7.
The rest circuits are mainly to compute the delabeling, which are almost the mirror

circuits of the labeling in MsgEnc. It should be noted that the tensor product is slightly
different and the multiplication factor (i + 1) becomes 1

(i+1) = (1−i)
2 . So the computation

of the elements can be formulated as:

(1− i)/2 · (wRe
j+1 + wIm

j+1i− (wRe
j + wIm

j i))
=(((wIm

j+1 − wIm
j) + (wRe

j+1 − wRe
j)) + ((wIm

j+1 − wIm
j)− (wRe

j+1 − wRe
j))i)/2,

(5)

where the real part contains two subtractions and one addition and the imaginary part
contains three subtractions. Note that the two subtractors in hardware can be easily shared.
As shown in Fig. 6(b), 8 minus-minus-minus units (MMMUs) and 8 minus-minus-plus units
(MMPUs) are used, where the two minus operations marked in gray in the MMPU are
realized by reusing the operations in the corresponding MMMU. Many stages of pipeline
are inserted in different layers to reduce the critical path and the total number of cycles
used by MsgDec is 153× lm

µ .

14 Fast Scloud+: A Fast Hardware Implementation for Scloud+

L5
: 1

12
0/
b

2b

D
ep

th
:1

13
6/
b

L3
: 8

96
/b

L1
: 6

00
/b

Total: #Bank = 12

L5: #Bank = 11

L1/L3: #Bank = 8

KeyGen / Dec: SRAM_S/S'

(a)

RAM_S/S'

L5
: 1

13
6/
b

D
ep

th
:1

13
6/
b

L3
: 9

28
/b

L1
: 6

00
/b

Total: #Bank = 12

L5: #Bank = 12

L1/L3: #Bank = 8

Enc: S'2b

(b)

0s

0s

b banks for a block b banks for a block

Figure 8: The RAM_S/S′ module for saving the matrices S ∈ Zn×n̄
2 and S′ ∈ Zm̄×m

2 . The
total number of bits is 2b × 1136/b × 12, where b is the length of the block matrix. (a)
Memory scheduling for the matrix S ∈ Zn×n̄

2 , where b is assumed to 8 and 2b× 1120/b× 11
are filled in, activated in the KeyGen and Dec functions. (b) Memory scheduling for the
matrix S′ ∈ Zm̄×m

2 , where b is assumed to 8 and 2b× 1136/b× 12 are filled in, activated
in the Enc function.

3.5 Memory

According to the designed processing scheduling, the Memory module mainly contains
three parts: 1) RAMs for the matrices S and S′ (RAM_S/S′), 2) RAMs for the matrices B
and C̄1 (RAM_B/C̄1), and 3) registers for the matrices C̄2 and D, and the random-seed
vectors seedA, r1, and r2 (REG_C̄2/D/Seed). Note that the registers used in pipelining
are not considered here. The details are provided in the following.

RAM_S/S′: In this part, single-port RAMs are used and the size is 2b×max{m, n}/b×
max{m̄, n̄} = 2b × 1136/b × 12, as shown in Fig. 8. Matrices S and S′ share the same
memory space in different stages. In the MatM module, b2 2-bit values of a block from
matrices S or S′ are taken out from the memory, which are generated by RBitsG in advance.
To satisfy the requirement of parallelism, we design 12 banks of RAMs, each with a width
of 2b bits and a depth of 1136/b. In every cycle, b banks are read simultaneously from the
same address and sent to MatM. Additionally, when generating those bits in RBitsG, 12
CHDs are independently worked to write those banks to reduce the total latency.

RAM_B/C̄1: In this part, dual-port RAMs are used and the size is qb×max{m, n}/b×
max{m̄, n̄} = qb × 1136/b × 12, as shown in Fig. 9. It saves the final output data from
MatM when b2 n-number (or m-number) vector multiplications are finished. Matrices B
and C̄1 share the same memory space in different stages. So, to save matrix B, as shown in
Fig. 9(a), the write signals are enabled every n

b cycles. Similarly, to fit with the degree of
parallelism, 12 banks of RAMs are used, with a width of qb and a depth of 1136/b. To save
matrix C̄1, as shown in Fig. 9(b), q1b2 bits are write in every m

b cycles, where (q−q1)b2 are
initialized to zeros. It should be noted that the different formats of ciphertexts C1 ∈ Zm̄×n

q

and C′
1 ∈ Zm̄×n

q are dynamically computed to and from C̄1 ∈ Zm̄×n
q1

, respectively.
REG_C̄2/D/Seed: This part contains q × m̄× n̄ + 128 + 256 + 256 = qm̄n̄ + 640 bits

of registers. Matrices C̄2 and D share the same memory space in different stages. The
640 random bits for SeedA, r1, and r2 are directly saved in registers when generated
by RBitsG at the beginning of the KeyGen stage and then used repeatedly. For saving
the matrix C̄2 ∈ Zm̄×n̄

q2
, the qm̄n̄ registers are enabled after m

b cycles. Similarly, the
intermediate ciphertexts C2 ∈ Zm̄×n̄

q and C′
2 ∈ Zm̄×n̄

q are dynamically calculated. For
saving the matrix D ∈ Zm̄×n̄

q , these registers are enabled after n
b cycles. If b ≥ m̄ and

b ≥ n̄, those enable signals are only valid once; otherwise, they are valid ⌈m
b ⌉ or ⌈n

b ⌉ times.

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 15

Total: #Bank = 12

L5: #Bank = 11

L1/L3: #Bank = 8

0s

RAM_B/C1

Total: #Bank = 12

L5: #Bank = 12

L1/L3: #Bank = 8

KeyGen: Bb banks for a blockqb

L5
: 1

13
6/
b

D
ep

th
:1

13
6/
b

L3
: 9

28
/b

L1
: 6

00
/b

qb

L5
: 1

12
0/
b

D
ep

th
:1

13
6/
b

L3
: 8

96
/b

L1
: 6

00
/b

(a) (b)

0s

b banks for a block
Enc / Dec: C1RAM_B/C1

Figure 9: The RAM_B/C1 module for saving the matrices B ∈ Zm×n̄
q and C̄1 ∈ Zm̄×n

q1
where q1 < q and (q−q1) MSBs are set to zeros. The total number of bits is qb×1136/b×12,
where b is the length of the block matrix. (a) Memory scheduling for the matrix B ∈ Zm×n̄

q ,
where b is assumed to 8 and qb × 1136/b × 11 are filled in, activated in the KeyGen
function. (b) Memory scheduling for the matrix C̄1 ∈ Zm̄×n

q1
, where b is assumed to 8 and

qb× 1120/b× q1 are filled in, activated in the Enc and Dec functions.

Block Matrix Multiplier Keccak Core

Matrix Multiplier Random Sampler

Scloud+.PKE

Scloud+.KEM

Figure 10: Computation breakdown for Scloud+.

3.6 Control Unit

This module is to combine the aforementioned modules together to implement different
algorithms in Scloud+.KEM. All of those computations in our design can be broken down
as shown in Fig. 10. The processing flow is from bottom to top. The basic computation
modules are the block matrix multiplier and the Keccak core. Based on them, we obtain
different sizes of matrix multipliers and random samplers, respectively. We combine these
multipliers and samplers and get the three functions in Scloud+.PKE. Finally, we use
the three Scloud+.PKE functions and three hash functions to achieve the three stages
of Scloud+.KEM. The operations in order and their required cycles in the formulas of
Scloud+.PKE and Scloud+.KEM are summarized as shown in Talbe. 5. Except for the
block parameter b, all of the other parameters are related to the security levels. When we
fix the parameter b, the computation cycles can be calculated by substituting numerical
values of the parameters for a certain security level into those formulas. Note that the
parameters δS and δS′ are determined by experiments, which are heavily related to the
average rejection rate. It means that about an extra 25% cycles would be consumed in
this step.

16 Fast Scloud+: A Fast Hardware Implementation for Scloud+

Table 5: Operations in Order and Their Required Cycles in Formula of Scloud+.PKE and
Scloud+.KEM

Scloud+.PKE.KeyGen
(seedA, r1, r2) = F(α) ∈ {0, 1}128 × {0, 1}256 × {0, 1}256 4
S = Ψ(r1, (n, n̄), h1) ∈ Zn×n̄ *n + δS + 4
B = A · S ∈ Zm×n̄

q ⌈m
b ⌉ × ⌈

n
b ⌉ × ⌈

n̄
b ⌉+ 4

B = B + E ∈ Zm×n̄
q ⌈m

b ⌉ × ⌈
n̄
b ⌉+ 4

Scloud+.PKE.Enc
(r′

1, r′
2) = F(r) ∈ {0, 1}256×2 4

S′ = Φ(r′
1, (m̄, m), h2) ∈ Zm̄×m *m + δS′ + 4

C2 = S′ ·B ∈ Zm̄×n̄
q ⌈ m̄

b ⌉ × ⌈
m
b ⌉ × ⌈

n̄
b ⌉

C1 = S′ ·A ∈ Zm̄×n ⌈m
b ⌉ × ⌈

n
b ⌉ × ⌈

m̄
b ⌉+ 4

C̄1 = ⌊ q1
q · (C1 + E1)⌉ ∈ Zm̄×n ⌈n

b ⌉ × ⌈
m̄
b ⌉+ 4

C2 = C2 + E2 ∈ Zm̄×n̄
q ⌈ m̄

b ⌉ × ⌈
n̄
b ⌉

C̄2 = ⌊ q2
q · (C2 + M)⌉odd ∈ Zm̄×n̄

q ⌈ m̄
b ⌉ × ⌈

n̄
b ⌉

Scloud+.PKE.Dec
D = (q

q1
· C̄′

1) · S ∈ Zm̄×n̄
q ⌈ m̄

b ⌉ × ⌈
n
b ⌉ × ⌈

n̄
b ⌉

D = (q
q2
· C̄2)−D ∈ Zm̄×n̄

q ⌈ m̄
b ⌉ × ⌈

n̄
b ⌉

m = MsgDec(D) ∈ {0, 1}lm 57× lm

µ

Scloud+.KEM.KeyGen

(pk, sk′) = Scloud+.PKE.KeyGen() ⌈m
b ⌉ × ⌈

n̄
b ⌉ × (⌈n

b ⌉+ 1)
+n + δS + 16

hpk = H(pk) ∈ {0, 1}256 ⌈m
b ⌉ × ⌈

n̄
b ⌉ × 4

Scloud+.KEM.Encaps
H(pk) ∈ {0, 1}256 ⌈m

b ⌉ × ⌈
n̄
b ⌉ × 4

(r, k) = G(m||H(pk)) ∈ {0, 1}256×2 4

C = Scloud+.PKE.Enc(pk, m, r)
⌈ m̄

b ⌉ × ⌈
n̄
b ⌉ × (⌈m

b ⌉+ 2)
⌈ m̄

b ⌉ × ⌈
n
b ⌉ × (⌈m

b ⌉+ 1)
+m + δS′ + 20

ss = K(k||C) ⌈ m̄
b ⌉ × (⌈n

b + ⌈ n̄
b)⌉ × 4

Scloud+.KEM.Decaps

m′ = Scloud+.PKE.Dec(sk′, C)
⌈ m̄

b ⌉ × ⌈
n̄
b ⌉ × (⌈n

b ⌉+ 1)
+57× lm

µ

(r′, k′) = G(m′||hpk) 4

C′ = Scloud+.PKE.Enc(pk, m′, r′)
⌈ m̄

b ⌉ × ⌈
n̄
b ⌉ × (⌈m

b ⌉+ 2)
⌈ m̄

b ⌉ × ⌈
n
b ⌉ × (⌈m

b ⌉+ 1)
+m + δS′ + 20

ss = K(k′||C) or ss = K(z, C) ⌈ m̄
b ⌉ × (⌈n

b + ⌈ n̄
b)⌉ × 4

* Values of δS and δS′ are uncertain due to the rejection sampling, which are heavily related to the
average rejection rate.

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 17

Table 6: Timing Performance of Scloud+.PKE and Scloud+.KEM, with a Frequency of
300MHz

Stages Scloud+.PKE Scloud+.KEM
KeyGen Enc Dec KeyGen Encaps Decaps

Scloud+-128
Latency
(CCs) 6602 6707 379 6902 7286 7370

Time
(us) 22.0 23.4 1.3 23.0 24.3 24.6

Scloud+-192
Latency
(CCs) 14468 14604 479 14932 15493 15483

Time
(us) 48.2 48.7 1.6 49.8 51.6 51.6

Scloud+-256
Latency
(CCs) 41730 42349 1176 42866 44623 44682

Time
(us) 139.1 141.2 3.9 142.9 148.7 148.9

4 Implementation Results and Comparison
In this section, the hardware implementation results of Scloud+.KEM are presented first,
mainly including area and timing. Then, the comparison with hardware implementations
of Kyber is provided.

4.1 Implementation Results
The block size is set to 8, which is optimal because all the matrix sizes are exactly divided
by 8 and the 1088 output bits of the Keccak core are basically utilized. We coded the
proposed architecture in Verilog and ran the simulation over the Xilinx Vivado 2018.3 EDA
platform. We have also tried to implement the design based on an FPGA core but found
that the most cost module was the Keccak core. Note that Keccak is mainly made up of
logic operations, which are very unfriendly to implement on FPGA. The basic unit of most
FPGAs is CLB which contains two slices, each of which mainly includes 4 LUT6s, 8 FFs,
3 MUXs, and 1 CARRY4. When implementing logic operations, the utilization of a slice
is very low and the place-and-route is very complicated. So the FPGA implementation
results are not as good as expected. However, when we implemented our design in ASIC,
we got the expected results. So, we only provide and compare the ASIC results in the
following. Our design is synthesized under the SMIC 40nm CMOS technology and the
sweet point of clock frequency is 300MHz.

Table 6 shows the timing performance of Scloud+.PKE and Scloud+.KEM, where the
latency and time of three sets of parameters all are provided. It should be noted that the
computation cycles are almost consistent with our theoretical analysis in Table 5. Several
cycles are added because of the wait for outputs of adjacent operations. Additionally, the
parameters of δS and δS′ both are equal to about half of n and m, respectively. It means
that the rejection rate is about 50%. The reason is that we make the stop sign enabled
until all of the 12 banks of RAM are finished. So, the worst case decides the time. As
the increased time is negligible to the total time, we let it alone to simplify the control
logic. Another phenomenon can be observed: the time of Scloud+-192 is about double that
of Scloud+-128, while the time of Scloud+-256 is about triple that of Scloud+-192. The
reason is that the size of block b = 8 is smaller than m̄ = 12 and n̄ = 11 in Scloud+-256 so
an extra iteration is needed in matrix multiplications with a relatively low area utilization.
How to reduce the gap and improve resource utilization could be explored in the future.

18 Fast Scloud+: A Fast Hardware Implementation for Scloud+

Table 7: Area Performance of Scloud+.KEM under 40nm LP CMOS Technology

Area (um2) Logic Gates
(103 NAND2 equiv.) Percentage

Top-Level 387268 606.6 100%
MatM 41645 65.3 10.7%
RBitsG 279799 438.3 72.3%
MsgFunc 24960 39.1 6.4%
CtrU 40864 64.0 10.6%

*RAM 302414 / /
Core area = 0.69 mm2

* Single port RAM: 3.375 + 20.25 = 23.625KB, where the 20.25KB are for
saving the received ciphertext C in Scloud+.KEM.Decaps;
Simple dual port RAM: 20.25KB.

Table 7 shows the area performance for Scloud+.KEM, where the absolute area and
logic gates both are provided. It can be seen that RBitsG occupies about 70% of the total
logic area, where the Keccak core takes the most part. The other three modules are almost
equally dividing the rest of the logic area. For the memory of RAM, they are generated
by RAM IPs and should be computed individually. Note that the received ciphertext
C in Scloud+.KEM.Decaps is also saved in an extra single-port RAM since it has to be
frequently accessed twice, which in deed nearly doubles the required RAM resources. How
to reduce this consumption could be an interesting issue in the future exploring.

4.2 Comparison

Note that Scloud+.KEM has been proposed recently and no hardware implementation
was presented before. So, we only compare our design with hardware implementations of
Kyber, which has been standardized by NIST in August, 2024. Many hardware designs for
Kyber have been presented before, including on FPGA and ASIC. As explained above,
we only focus on the implementation on ASIC. So, we pick up three representative works
on ASIC for comparison, as shown in Table 8. Since the area of the proposed design is
mainly made up of RAM IPs and logic operations, we assume the area utilization after
layout as 70% for a fair comparison. The first work in [KPM+22] proposes a configurable
energy-efficient structured-LWE-based LB-PQC processor. It can be configured with large
ranges of polynomial dimensions and modulo sizes and shows the best performance in
terms of area, speed, and energy compared to similar works in LB-PQC. Compared with
this work, our design is about 6x faster and has comparable area efficiency though the their
work adopts a more advanced CMOS technology. The second work in [ZZO+24] presents
a high-performance PQC processor under the 28nm HPC CMOS technology. It covers 7
PQC schemes, involving three mathematical problems, namely the structured-LWE, hash,
and code. This work achieves the best timing performance among existing published works
for Kyber512. Meanwhile, this design consumes the most area, about 3x more than ours
even though the adopted technology is better. If our design is merged into their processor
as the fourth mathematical problem, the added area will be not significant. The third
work in [LLLL24] proposes a specially-optimized design for Kyber and implements it under
the 40nm LP CMOS technology. It acheives the best area efficiency. Compared to this
work, our design consumes about 35.7% more time and 130% more area. Overall, the gap
is relatively small and it could be called ′comparable′ to Kyber.

J. Tian, Y. Wei, D. Xu, K. Wang, A. Wang, Z. Qiu, F. Yao, and G. Zeng 19

Table 8: Performance Comparison with ASIC Implementations of Kyber

ESSCIRC’22
[KPM+22]

JSSC’24
[ZZO+24]

CICC’24
[LLLL24] This Work

Scheme Kyber, Dilithum
Kyber, Dilithium,
Falcon, Sphincs+,

BIKE, McEliece, HQC
Kyber Scloud+.KEM

Technology 28nm LP 28nm HPC 40nm LP 40nm LP
Report Layout Layout Layout Synthesis

Frequency
(MHz) 190 500 180 300

Core Area
(mm2) 0.18 3.2 0.43 ∗0.69

Logic Gates
(NAND2 equiv.) 123k 2.1M 302k ∗607k

On-chip Memory
(kB) 31 228.5 9 43.9

Kyber512 and Scloud+.KEM-128 (KeyGen+Encaps+Decaps)
Latency
(CCs) 83148 7197 9506 21558

Time (us) 438 14 53 71.9
Area Efficiency

(Time×GE) 53.9 29.4 16.0 ∗43.6
* Assume the area utilization after layout as 70%. The equivalent core area, logic gates, and area

efficiency should be 0.99 mm2, 867k, and 62.3, respectively.

5 Conclusion
In this paper, we have presented a fast hardware implementation for Scloud+.KEM
based on the proposed high-speed and low-complexity block matrix multiplier and low-
latency unfolded Keccak core. The experimental results show that the proposed design
is almost as fast as the optimal customized Kyber design with an about doubled area
consumption. It demonstrates that we have almost removed the computational gap between
the unstructured-LWE-based KEM and the structured-LWE-based KEM. We hope that
these achievements would greatly contribute to the Scloud+.KEM’s competitiveness over
other PQC candidates.

In the future, we would like to further reduce the RAM consumption and increase the
speed of Scloud+.KEM-256 as mentioned in Section 4.1. Additionally, the side-channel
attack would also be explored.

References
[BDPVA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Kec-

cak. In Annual international conference on the theory and applications of
cryptographic techniques, pages 313–314. Springer, 2013.

[CJL+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography,
volume 12. US Department of Commerce, National Institute of Standards
and Technology, 2016.

[D’A20] Jan-Pieter D’Anvers. SABER. Technical report, National Institute of Stan-
dards and Technology, 2020.

20 Fast Scloud+: A Fast Hardware Implementation for Scloud+

[KPM+22] ByungJun Kim, Jaehan Park, Seunghyun Moon, Kiseo Kang, and Jae-Yoon
Sim. Configurable energy-efficient lattice-based post-quantum cryptography
processor for IoT devices. In ESSCIRC 2022-IEEE 48th European Solid State
Circuits Conference (ESSCIRC), pages 525–528. IEEE, 2022.

[LLLL24] Aobo Li, Jiahao Lu, Dongsheng Liu, and Xiang Li. A 40nm 1.26 µj/Op
energy-efficient CRYSTALS-KYBER post-quantum crypto-processor with
comprehensive side channel security analysis and countermeasures. In 2024
IEEE Custom Integrated Circuits Conference (CICC), pages 1–2. IEEE, 2024.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Advances in Cryptology–EUROCRYPT
2010: 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings
29, pages 1–23. Springer, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[Nae20] Michael Naehrig. FrodoKEM. Technical report, National Institute of Stan-
dards and Technology, 2020.

[oST24] National Institute of Standards and Technology. NIST FIPS Standards. In
https://csrc.nist.gov/publications/fips, 2024.

[PRSD17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandom-
ness of ring-LWE for any ring and modulus. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 461–473, 2017.

[Sch22] Peter Schwabe. CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology, 2022.

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124–134. Ieee, 1994.

[Wal64] Christopher S Wallace. A suggestion for a fast multiplier. IEEE Transactions
on electronic Computers, (1):14–17, 1964.

[WZZ+24] Anyu Wang, Zhongxiang Zheng, Chunhuan Zhao, Zhiyuan Qiu, Guang Zeng,
Ye Yuan, Changchun Mu, and Xiaoyun Wang. Scloud+: a lightweight LWE-
based KEM without Ring/Module structure. Cryptology ePrint Archive,
Paper 2024/1306, https://eprint.iacr.org/2024/1306, accepted by Security
Standardisation Research (SSR) Conference 2024.

[XL21] Yufei Xing and Shuguo Li. A compact hardware implementation of CCA-secure
key exchange mechanism CRYSTALS-KYBER on FPGA. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 328–356, 2021.

[ZYF+20] Jiang Zhang, Yu Yu, Shuqin Fan, Zhenfeng Zhang, and Kang Yang. Tweaking
the asymmetry of asymmetric-key cryptography on lattices: KEMs and
signatures of smaller sizes. pages 37–65, 2020.

[ZZO+24] Yihong Zhu, Wenping Zhu, Yi Ouyang, Junwen Sun, Qi Zhao, Min Zhu,
Jinjiang Yang, Chen Chen, Qichao Tao, Hanning Wang, et al. PQPU: A
4.4-muj/Op 69.4-kOPs agile post-quantum crypto-processor across multiple
mathematical problems. IEEE Journal of Solid-State Circuits, 2024.

	Introduction
	Our Contributions
	Outline

	Preliminaries
	Notations and Parameters
	Scloud+.PKE and Scloud+.KEM

	Proposed Hardware Architecture
	Top-Level Architecture
	Matrix Multiplier
	Random Bits Generator
	Message Function
	Memory
	Control Unit

	Implementation Results and Comparison
	Implementation Results
	Comparison

	Conclusion

