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Abstract. Recently, Differential Fault Attacks (DFAs) have proven highly effective against stream ciphers
designed for Hybrid Homomorphic Encryption (HHE). In this work, we present a table-based DFA
framework called the shortcut attack, which generalizes the attack proposed by Wang and Tang on the
cipher Elisabeth. The framework applies to a broad sub-family of ciphers following the Group Filter
Permutator (GFP) paradigm and enhances previous DFAs by improving both the fault identification
and path generation steps. Notably, the shortcut attack circumvents the issue of function representation,
allowing successful attacks even when the cipher’s filter function cannot be represented over the ring it is
defined on.
Additionally, we provide complexity estimates for the framework and apply the shortcut attack to
Elisabeth-4 and its patches. As a result, we optimize the DFA on Elisabeth-4, requiring fewer keystreams
and running faster than previous methods. Specifically, we achieve a DFA that requires only 3000
keystreams, which is one-fifth of the previous best result. We also successfully mount a practical DFA on
Gabriel-4 and provide a theoretical DFA for Elisabeth-b4.
For the latest patch, Margrethe-18-4, which follows the more general Mixed Filter Permutator (MFP)
paradigm, we present a DFA in a stronger model. To the best of our knowledge, these are the first DFA
results on the patches of Elisabeth-4. Finally, we derive security margins to prevent shortcut attacks on a
broad sub-family of MFP ciphers, which can serve as parameter recommendations for designers.
Keywords: Differential Fault Attack · Hybrid Homomorphic Encryption · Elisabeth-4 · Elisabeth-b4 ·
Gabriel-4 · Margrethe-18-4

1 Introduction
Differential Fault Attacks (DFAs) are a powerful class of side-channel attacks in which an attacker intentionally
injects faults into a cryptographic process and exploits the resulting discrepancies between the correct
and faulty outputs to extract sensitive information, such as secret keys. First introduced by Boneh et
al. in 1997 [BDL97], DFAs have since been applied to a wide range of cryptographic algorithms, from
public-key cryptosystems to symmetric-key ciphers. The efficacy of DFAs lies in their ability to bypass
traditional cryptographic assumptions, such as the black-box model, by exploiting vulnerabilities in physical
implementations.

Symmetric encryption schemes including block ciphers and stream ciphers, are particularly vulnerable to
fault attacks due to their reliance on repeated operations over key-dependent transformations. A single fault
in a carefully selected stage of these transformations can drastically reduce the complexity of recovering
the secret key. For instance, DFAs have been successfully applied to block ciphers like AES [PQ03], where
minor perturbations in the internal state lead to significant leakage of key material. Similarly, stream
ciphers, which are widely used in real-time applications due to their low latency and high efficiency, are also
susceptible to DFAs. When faults are introduced into their keystream generation process, the differences
between the correct and faulty keystreams can reveal critical information about the internal state, thus
compromising the cipher’s security.

Despite their effectiveness, DFA techniques are often tailored to specific cryptographic primitives,
requiring intricate knowledge of their structure and state propagation. Stream ciphers, in particular, have
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been relatively less explored in DFA research compared to block ciphers. The DFA on a stream cipher was
introduced by Hoch and Shamir in 2004 [HS04]. Since then, several notable DFAs have been developed, such
as the attacks on Trivium [HR08] and Plantlet [MSS17], where fault attacks have successfully compromised
the internal state of these ciphers. The DFA on Plantlet in particular highlighted the vulnerability of modern
stream ciphers to fault injections that allow attackers to recover the key with minimal computational effort.

Recently, the landscape of DFA research has expanded to include attacks on symmetric ciphers specifically
designed for Hybrid Homomorphic Encryption (HHE). This type of privacy-preserving protocol which
merges the efficiency of symmetric encryption with the privacy-preserving capabilities of Fully Homomorphic
Encryption (FHE), has become increasingly relevant in the last years. Roy et al. [RBM21] presented the
first DFA on Kreyvium and FLIP, followed by Radheshwar et al. [RKMR23] on RASTA and FiLIP-DSM.
Subsequent work has included attacks on RAIN and HERA [JLHG24], FLIP and FiLIP [MR24], and most
recently on Masta, Pasta, and Elisabeth [WT24].

HHE, originally introduced by Naehrig et al. [NLV11], combines a symmetric encryption scheme with
an FHE scheme, allowing privacy-preserving computations on encrypted data without expanding ciphertext
size on the client side. Since 2015, several symmetric ciphers have been explicitly designed to support
efficient homomorphic evaluation, as this compatibility significantly enhances the overall performance of
HHE systems. These HHE-friendly ciphers are engineered to ensure that their structures are compatible
with homomorphic evaluation, a key factor in maintaining the efficiency of HHE protocols. However, the
aggressive design choices made to optimize these ciphers for homomorphic evaluation have introduced
security trade-offs. Specifically, many of these ciphers exhibit a reduced security margin when subjected
to algebraic attacks in the traditional black-box model. This vulnerability extends even further when
considering DFAs. Given that these ciphers are relatively recent constructions, the full extent of their
vulnerability to DFAs is still being explored, but initial research indicates a clear need for heightened
protection against such attacks. In this context, the recent work of Aikata et al. [ADSR24] illustrates
a scenario where fault resistance in HHE protocols could be of critical importance. They highlight that
mounting a fault attack on HHE-friendly ciphers may be easier compared to traditional stream cipher
applications, due to the independent evaluation of the symmetric scheme on the client and server sides. This
underscores the urgency of investigating DFA resistance in the design of future HHE-compatible symmetric
ciphers, as fault attacks may pose a greater threat than initially anticipated.

1.1 Contributions and Organization
In this work, we focus on stream ciphers that follow the Group Filter Permutator (GFP) paradigm, such
as Elisabeth [CHMS22] and its patches [HMS23] 1, and explore the technique of table-based DFA recently
introduced in [WT24]. Unlike previous approaches, the table-based DFA does not depend on the algebraic
properties of the system of equations derived from the keystream. This method bypasses the issue of function
representation discussed in [CHMS22,HMS23,CCH+24] and challenges the security assumption based on
the absence of such representations, as suggested in [GAH+23]. Our main contributions are summarized as
follows:

• First, we generalize the attack presented in [WT24] and introduce a table-based DFA framework,
referred to as the shortcut attack. The shortcut attack targets a sub-family of ciphers following the
GFP paradigm, which we term DS-GFP. This category includes ciphers where the filter function is
the direct sum of several smaller functions, each acting on a relatively low number of variables, as is
the case with Elisabeth-4, Elisabeth-b4 and Gabriel-4.
The shortcut attack assumes that one of the N key elements has been randomly faulted, and the
adversary uses the normal and faulted keystreams to mount the attack. The primary components
of the attack include identifying the fault position and value, generating an optimal path to select
the keystream elements in an order that allows the candidate key to be reconstructed element by
element, and finally, performing key recovery by combining information from the generated path with
the input-output table of a derivative of the filter function.

1At ASIACRYPT 2023, a vulnerability in the Elisabeth cipher was found [GBJR23]. The "patch" aims to mitigate this
weakness and enhance the cipher’s security.
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The shortcut attack enhances the DFA described in [WT24] for Elisabeth-4 by improving the fault
identification and path generation steps. Additionally, we provide complexity estimates for the shortcut
attack, relating them to the parameters of any DS-GFP cipher.

• Second, we apply the shortcut attack to Elisabeth-4 and its patches, Elisabeth-b4 and Gabriel-4. The
results are summarized in Table 1, and the corresponding code is available at https://github.com/
SJTUwwz/DFA_Elisabeth_family. For Elisabeth-4, our DFAs achieves better performance, requiring
fewer keystreams and running faster than the attack in [WT24]. Specifically, we perform a DFA
that requires only 3000 keystreams, which is one-fifth of the best result presented in [WT24]. The
DFAs on Gabriel-4 remain practical, completing in under one day. Additionally, we provide theoretical
estimations for the DFA on Elisabeth-b4. To the best of our knowledge, these are the first DFA results
on the patches of Elisabeth-4.

• Then, for the last patch presented in [HMS23], Margrethe-18-4, which follows the more general Mixed
Filter Permutator (MFP) paradigm using different groups, we were unable to directly apply the
shortcut DFA. Instead, we consider a DFA in a stronger model, where the adversary can inject random
faults and re-initiate the attack multiple times. In this model, we propose two attacks: one that
recovers the key after injecting 2048 faults (equal to the size of the key), and an improved version that
injects only 699 faults and then recovers the remaining key using the shortcut attack.

• Finally, motivated by the practical limitations of the shortcut attack on Elisabeth-b4 and the theoretical
challenges on Margrethe-18-4, we explore the feasibility limits of the attack on DS-MFP ciphers. We
derive security margins to prevent shortcut attacks based on the parameters of these ciphers and
provide the evaluation results for Elisabeth-4 and its patches in Table 2.

Table 1: Our shortcut attacks on Elisabeth and its patches

Cipher paradigm #fault #keystream Time a Reference

Elisabeth-4

GFP 1

15000 150s [WT24]
3000 17215s

Section 4.1
10000 38s

Gabriel-4
40000 35757s

Section 4.2
100000 202s

Elisabeth-b4
500000 299.58

Section 4.3
2000000 275.58

Margrethe-18-4 b MFP
700 230000 29437s

Section 5
2048 99865 <1s

a We only record the time for filtering the candidate key set, because it is the dominant factor of our
DFAs

b The DFA on Margrethe-18-4 need a strong attacker with the ability to avoid injecting fault at the
same position.

The structure of the article is as follows. In Section 2, we introduce the notations and provide extended
background information on Elisabeth and its patches, DFA techniques, methods for state recovery, and the
DFA approach from [WT24]. In Section 3, we present the shortcut attack framework, starting with an
explanation of the sub-family of GFP ciphers it targets, followed by a detailed description of the various
components of the attack and the corresponding time complexity estimates. Under this framework, we
successfully implement single-fault DFAs on Elisabeth-4 and its patches in Section 4. The DFA with multiple
faults on Margrethe is discussed in Section 5. In Section 6, we investigate the security margins of DS-MFP
ciphers against shortcut attacks. Finally, we conclude the paper in Section 7.

https://github.com/SJTUwwz/DFA_Elisabeth_family
https://github.com/SJTUwwz/DFA_Elisabeth_family
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Table 2: Secure limits of the number of keystreams for different ciphers

Cipher (N, t, m) log|G1| |G2| SL 1-fault DFA

Elisabeth-4 (256, 12, 4)
1

28.32 !

Gabriel-4 (512, 8, 4) 210.91 !

Elisabeth-b4 (512, 14, 6) 215.98 !

Margrethe-18-4 (2048, 14, 18) 4 247.01 %

2 Preliminaries

2.1 Notations

We denote a group as G, an integer ring with q elements as Zq, and a finite field with q elements Fq. For
a set X, we use |X| to represent the number of elements or, in other words, the cardinal of X. We use
bold italic letters to represent vectors, e.g. a ∈ Gt denotes the vector a = (a1, . . . , at), where ai ∈ G. The
Hamming weight of a vector is wH(a) = |{i : ai ̸= 0}|. Given an integer k, we write [k] to denote the set
{1, . . . , k}.

2.2 Elisabeth and Its Patching Landscape

Elisabeth [CHMS22] is an HHE-friendly stream cipher proposed at ASIACRYPT 2022. The design of
Elisabeth extends FLIP and FiLIP families of stream ciphers [MJSC16, MCJS19] and follows the Group
Filter Permutator (GFP) paradigm. The GFP is illustrated in Figure 1 and defined by a group G with
operation noted +, a forward secure Pseudo Random Number Generator (PRNG), a key size N , a subset
size n, and a filter function f from Gn to G. To encrypt m elements of G under a secret key k ∈ GN , the
public parameters of the PRNG are chosen and then the following process is executed for each keystream
s(i) (for i ∈ [m]):

• The PRNG is updated, its output determines pseudorandom elements: a subset, a permutation, and a
length-n whitening vector of G.

• S(i) is the n-out-of-N subset from the N key elements,

• P (i) is the n-to-n (wire-cross) permutation,

• w(i) is the whitening vector, belonging to Gn,

• the keystream element s(i) is computed as s(i) = f(P (i)(S(i)(k)) + w(i)), where + denotes the element-
wise addition of G.

Elisabeth-4 is the GFP paradigm instantiated with

• G = Z16, N = 256, n = 60,

• the filter function f(x1, . . . , x60) is the direct sum of 12 times the 5-to-1 function g, which can be
expressed as:

f(x1, . . . , x60) =
11∑

i=0
g(x5i+1, x5i+2, . . . , x5i+5),

• the 5-to-1 function g is the sum of a nonlinear 4-to-1 function h and the remaining variable, i.e.

g(x1, x2, x3, x4, x5) = h(x1, x2, x3, x4) + x5.
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𝑓

𝑠(𝑖)

𝝅(𝑖)

plaintext

ciphertext

Figure 1: The Group Filter Permutator design.

The construction of function h is given in Appendix B.1. In the GFP paradigm, the filter function is
typically a direct sum of several identical inner functions g. We use t to denote the number of g and r to
represent the number of input variables for the function g. For example, t = 12 and r = 5 in Elisabeth-4.
Additionally, the inner function g is generally obtained by summing a smaller nonlinear function h and the
remaining variables.

In [GBJR23], Gilbert et al. proposed an algebraic attack on the full Elisabeth-4 based on the lower
than expected number of monomials in the F2-representation, and broke the 128-bit security claim. As
a remedial measure, Hoffmann et al. [HMS23] proposed three patched ciphers: Elisabeth-b, Gabriel, and
Margrethe, that restore the security of such designs while maintaining their good properties for HHE. They
first updated the design by mixing more chunks in order to prevent a too-low number of monomials in
one of the Boolean functions obtained when the keystream is written as equations over F2. As a result,
Elisabeth-b was introduced and the specification is given in Appendix A.

Although the 7-to-1 nonlinear function enhances Elisabeth security, it also reduces the cipher’s computa-
tional efficiency in HHE. By making a trade-off between security and efficiency, the designers introduced
the Gabriel cipher. The design approach for Gabriel consists of having two different branches for the filter
function, which are called as the left and right parts. Gabriel-4 is the GFP paradigm instantiated with

• G = Z16, N = 512, n = 110,

• the filter function f(x1, . . . , x110) is the direct sum of 8 times the 5-to-1 function gL and 10 times the
7-to-1 function gR, where gL is the same as the inner function of Elisabeth-4 and gR is the same as the
inner function of Elisabeth-b4.

The Gabriel-4 is able to tackle both the attacks studied in [CHMS22] and [GBJR23] and has better
performances than Elisabeth-b4.

Regarding the weakness presented in [GBJR23], the designers also considered a different setting with
two changes, the look-up tables do not need to be negacyclic and the function can operate at the bit level.
Specifically, they proposed the idea of MFP, which is the generalization of GFP. The MFP is defined by
two groups G1 and G2 and its encryption process is similar to that of GFP. The only difference is that the
stream ciphers following the MFP paradigm will take a secret key over G1 and output the keystreams over
G2. Margrethe-18-4 is the MFP paradigm instantiated with:

• G1 = F2,G2 = Z16, N = 2048, n = 308,

• the filter function is the direct sum of 14 times the inner function g, which can be expressed as:

f(x1, . . . , x308) =
13∑

i=0
g(x22i+1, . . . , x22i+22),
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• the inner function g : F22
2 7→ Z16 is defined as:

g(x1, . . . , x22) = h(x1, . . . , x18) + Z16(
3∑

k=0
2kx19+k),

where the symbols ∑ and + denote the addition modulo 16 and Z16(x1, x2, x3, x4) denotes the element
of Z16 with binary representation (x1, x2, x3, x4).

The function h : F18
2 7→ Z16 is given by a look-up table and the generation of the look-up table is given

in [HMS23].

2.3 Differential Fault Attacks

Real-world cryptosystems, implemented in software or hardware, are vulnerable to attacks targeting their
implementation rather than their theoretical specifications. In extreme cases, adversaries might directly
extract secret keys from the execution environment. While careful key concealment mitigates this, a more
prevalent threat is the fault injection attack. This involves introducing faults into the device and analyzing
the resulting behavior to recover keys. This technique has proven effective against smart cards, commercial
security processors [AK96], cryptographic LSI [FT09] and even, recently, neural networks [BHJ+18]. Among
fault injection attacks, DFA is the most effective and common one. The DFA was first proposed by Boneh et al.
[BDL97] in 1997. The first DFA on stream ciphers was introduced by Hoch and Shamir [HS04] at CHES 2004.
Recently, DFAs have been applied to HHE-friendly stream ciphers [RBM21,RKMR23,JLHG24,MR24,WT24]
and all achieved good results. The attacker of DFA is more powerful than that of classical attacks. In DFA,
the attacker can inject faults into the state of ciphers and collect the normal and faulty outputs to recover
the secret key. The faults can be injected by some specific tools, such as laser shots, electromagnetic waves,
unsupported voltage, etc. Formally, the underlying assumptions of the DFA model are outlined as follows:

1) The attacker can repeatedly restart the cipher using the same key and other public parameters (e.g.,
nonce and IV).

2) The attacker can inject faults at specific timings during the keystream generation phase and monitor
both the normal and faulty keystreams.

3) The attacker has the required tools (such as laser shots, electromagnetic waves, etc.) for injecting
faults.

4) The number of injected faults must be kept minimal to prevent potential damage to the device.

The difficulty of an attack method is highly related to the type of faults injected and the number of
fault-injected ciphertexts required. The commonly used fault injection models include bit flip model and
random word error model. In the case of bit flip model, a bit-based fault is injected and the value of faulty
state bit will flip. For the random word error model, a word-based fault is injected and the value of faulty
state word will turn into an unknown random value. After the fault injection, the attacker proceeds with
the following steps to recover the secret key:

1) Identify the location and value of the injected fault. If identifying the location or value of the fault is
infeasible, then make a guess.

2) Recover the state using information from both the normal and faulty keystreams. This process often
involves constructing and solving equations.

3) Derive the secret key from the obtained state.

The nonce-based encryption was formalized by Rogaway [Rog04] and it was shown to provide better
resistance against DFA. There are several methods to mount DFA targeting nonce-based encryption, e.g.
nonce-misuse [SKC14], nonce-bypass [SC16b], internal DFA [SC16a]. The stream ciphers used in HHE
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are also nonce-based and previous DFAs [RBM21,RKMR23,JLHG24,MR24,WT24] on these ciphers all
used nonce repetition. Recently, in [ADSR24], Aikata et al. proposed a novel framework for DFA called
SASTA dedicated to the HHE use-case. In this framework, the attacker obtains the faulted keystream from
the client side and the non-faulted one by the homomorphic evaluation of the (symmetric encryption’s)
decryption from the server side. While this framework has some drawbacks, such as relying on a strong
attacker on the client side (involving fault injection, access to the faulted keystream, and the result of
homomorphic decryption), and requiring homomorphic encryption of data already owned by the client, it
offers the significant advantage of not needing nonce repetition, unlike other attacks. The procedure of
generating differential in the SASTA framework is shown in Figure 2.

Client Server

𝐸𝜋

𝑛𝑖

𝐹𝐻𝐸𝐸𝜋(𝑛𝑖 , 𝐾𝐹𝐻𝐸)

𝐾 𝐹𝐻𝐸𝐸𝑛𝑐𝑟𝑦𝑝𝑡

𝐸𝜋
′ (𝐾, 𝑛𝑖)

𝑚𝑖 𝑚𝑖 + 𝐸𝜋
′ (𝐾, 𝑛𝑖) 𝐹𝐻𝐸𝐸𝑛𝑐𝑜𝑑𝑒+ −

𝐸𝜋 𝐾, 𝑛𝑖 𝐹𝐻𝐸

𝑚𝑖 + Δ𝐸𝜋 𝐾, 𝑛𝑖 𝐹𝐻𝐸

𝐹𝐻𝐸𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑚𝑖 + Δ𝐸𝜋 𝐾, 𝑛𝑖

SE

Figure 2: Utilizing SASTA for HHE.

2.3.1 Threat Model

We consider a typical DFA setup where an adversary can inject a fault into the client’s device, resulting in a
modification of the key. The attack is then mounted solely using two keystreams: one obtained with the
original key and the other with the faulted key. Inducing faults on the key is considered more practical
than gaining full access or control of the client’s key. Since the theoretical basis of the attack relies only on
the difference between normal and faulty keystreams, we specify two contexts that enable the adversary to
acquire these related keystreams:

• Using Nonce Repetition: As in previous attacks in this domain (see [RBM21,RKMR23,MR24,
WT24]), we assume that the client first uses the symmetric encryption scheme with a nonce and the
correct key. A fault is then injected into the client’s device, and the client is coerced into re-encrypting
with the same nonce and the faulted key. This coercion can be achieved, for example, by faking non-
reception of the encrypted data. The nonce-repetition attack targets only the symmetric encryption
scheme and is not specific to HHE.

• Within the SASTA Framework: This DFA framework, introduced in [ADSR24], is specific to
HHE. Here, the adversary injects a fault into the key of the symmetric encryption scheme on the
client’s device and gains access to the results of homomorphic decryption, which also occur on the
client side. This allows the adversary to obtain equations that are functions of the plaintext plus
the difference of the keystreams. The functions derived are those evaluated homomorphically by the
server. For instance, if the evaluated function is the identity (as in data storage scenarios), and the
plaintext is known, the adversary can directly compute the difference between the keystreams. In this
context, nonce repetition is not required.
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2.4 Methods for Recovering the State

In DFA, the most important step is to recover the state using information from both the normal and
faulty keystreams. This step usually involves formulating multivariate polynomial equations that connect
the secrets of a cryptographic primitive (such as its key) with the information available to the attacker
(including IV, keystreams, plaintext, ciphertext, etc.). The goal is to solve this system of algebraic equations
to recover the secret key. In principle, this can always be accomplished by expressing the relationships
derived from the specifications of the cryptographic primitive in equation form. However, in practice, the
resulting equations can be challenging to write and store, and may require the introduction of intermediate
variables. Even when it is feasible to create these equations, solving a large nonlinear multivariate system
with many variables is often impractical due to its complexity.

Although it is hard to solve a system of polynomial equations in general, there still exist some methods.
Linearization is an elementary method that considers every monomial appearing in the system as an
independent variable and solves the resulting linear system of equations via Gaussian elimination. The time
complexity and memory complexity of linearization can be computed as O(

(n+d
d

)w) and O(
(n+d

d

)2), where n
is the number of variables, d is the upper bound of the equation degree, and 2 ≤ w ≤ 3 is the constant of
linear algebra. It is a commonly used technique in algebraic attacks e.g. [CM03,Cou03,GBJR23,LKSM24].
However, the drawback of linearization is that it will introduce a large amount of variables, which necessitates
a substantial number of equations to solve, especially when the system of equations is of high degree and
has a dense number of terms.

Gröbner basis is another common method for solving multivariate nonlinear equations. In a Gröbner basis
attack, there are three main steps: First, compute a Gröbner basis using Buchberger’s algorithm [Buc65],
F4 [Fau99], or F5 [Fau02]. Next, perform a change of term ordering for the computed Gröbner basis using
FGLM [FGLM93]. Finally, solve the univariate equation for the last variable using a polynomial factoring
algorithm and substitute it to obtain the complete solution. The Gröbner basis attack is a powerful tool for
Arithmetization-Oriented (AO) ciphers [ACG+19,BBLP22,BBL+24]. Although, the Gröbner basis attack
has a wide range of applicability, it also has drawbacks such as high memory consumption.

In addition to the two common solving methods of linearization and Gröbner basis, there are also some
specialized solving techniques. For example, it is a good choice to transform Boolean equation system
into Boolean satisfiability problems (SAT) and the using solvers like CryptoMiniSAT [SNC09] to find
solutions [MBB11,RBM21,RKMR23]. Resultant is also a useful structure for solving multivariate equations
and has been used to evaluate the security of some AO ciphers accurately [YZY+24].

In certain cases, the multivariate polynomial equations involving the key cannot be formulated easily,
as the function may not have a polynomial representation over the input domain, such as in Elisabeth-4.
One approach to address this is to bypass the step of constructing polynomial equations and instead store
the mapping relationships in a table. The attacker can then iteratively filter the candidate key set using
this table. We refer to this approach as the table-based filtering method, which is essentially equivalent
to equation solving but does not rely on expressing the mapping relationships through polynomials. This
method proves to be more efficient than equation solving when the polynomial expression is complex, but
the input space is small. As a result, it has several applications in cryptography. For example, in DFA
on block ciphers [PQ03,NDE22,JP22], attackers can filter and determine the value of the state using the
Differential Distribution Table (DDT) of the S-box. The table-based filtering method is straightforward and
easy to implement, requiring only repeated set intersection operations for filtering. We note that this method
circumvents the issue of function representation discussed in [CHMS22,HMS23,CCH+24] and challenges
the assumption of security based on the absence of such representation, as advocated in [GAH+23].

2.5 Previous DFAs on Elisabeth-4

In [WT24], Wang and Tang proposed DFAs on three HHE-friendly stream ciphers: Masta, Pasta, and
Elisabeth. For Elisabeth-4, the only instance of the Elisabeth family, they presented two different DFAs with
both bit-based faults and word-based faults.

In their DFA on Elisabeth-4, the attacker first determines the position of faulty key word with the
following lemma.
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Lemma 1. For the DFA on Elisabeth family ciphers, if the difference between normal and faulty keystreams
∆s(i) is non-zero, then the faulty keyword must be included in the subset S(i) generated by the PRNG.

Proof. We prove the contrapositive: if the faulty keyword is not included in the subset S(i) generated by
the PRNG, then the difference between normal and faulty keystreams ∆s(i) is zero.

Suppose the normal state is (x(i)
1 , . . . , x

(i)
60 ) and the faulty state is (x(i)′

1 , . . . , x
(i)′

60 ), since the faulty keyword
is not included in the subset S(i), we have

x
(i)
j = x

(i)′

j ,∀i ∈ [60].

Therefore, f(x(i)
1 , . . . , x

(i)
60 ) = f(x(i)′

1 , . . . , x
(i)′

60 ), i.e. ∆s(i) = 0.

By intersecting multiple n-out-of-N subset S(i) with ∆s(i) ≠ 0, the faulty key position can be identified
using very few equations. For key recovery, the attack described in [WT24] abandons the traditional strategy
of equation construction and solving, opting instead for a table-based filtering method combined with a
path-based key recovery strategy. By analyzing the difference between the normal and faulty keystreams,
an attacker can derive the output difference of the function h for the faulty state block. Given the output
difference ∆h, the possible values of the faulty state block can be filtered. Thanks to the simple and public
linear layer of Elisabeth, the attacker can reverse the linear layer to recover the corresponding key values. By
iteratively merging and intersecting the candidate key set using multiple output keystream differences, the
correct key can eventually be determined. Additionally, the authors of [WT24] proposed a greedy algorithm
to generate the order of filtering, or the merging path, and successfully implemented DFAs on Elisabeth-4
in practice. This also marks the first DFA attack on the Elisabeth family of ciphers. We show in the next
sections how the table-based filtering method can be used and improved to perform a DFA on Elisabeth and
its patches, and more generally on a subfamily of ciphers following the GFP and MFP paradigms.

3 The Shortcut Attack for Elisabeth and Its Patches
In this section, we generalize the attack from [WT24] and propose a table-based DFA framework, referred
to as the shortcut attack, as it bypasses the traditional cryptographic criteria typically dependent on the
representation of the filter function. Furthermore, we enhance the original attack by improving fault
identification and path generation. Using the shortcut attack, we can optimize the DFA on Elisabeth-4 and
successfully mount DFAs on its patched versions.

3.1 The DS-GFP Ciphers and Its Properties

In this part we specify a subfamily of ciphers following the GFP paradigm and explain why the shortcut
DFA is strong for this subfamily.

Elisabeth and two of its patches: Elisabeth-b and Gabriel, follow the GFP paradigm. Moreover, their
filter functions are the direct sum (DS) of functions in a small number of variables. We refer to a subclass
of ciphers following the GFP as DS-GFP ciphers, the ciphers following the GFP paradigm as defined in
Section 2.2 with the following restrictions on f :

• f is the direct sum (over G) of d distinct functions fi for i ∈ [d],

• each fi is the direct sum of ti times the function gi,

• gi is the direct sum of a nonlinear function hi and a variable xri .

Equivalently:

f(x1, . . . , xn) =
d−1∑
i=0

fi(xϕi+1, . . . , xϕi+1) =
d−1∑
i=0

ti−1∑
j=0

gi(xϕi+jri+1, . . . , xϕi+(j+1)ri
),
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where ϕi = ∑i−1
ℓ=0 nℓ, ni = riti, n = ∑d−1

i=0 ni, and

gi(x1, . . . , xri) = hi(x1, . . . , xmi) + xri ,

where mi = ri − 1.
Following the vocabulary of [CHMS22,HMS23], the gi functions are called inner functions, Elisabeth-4

and Elisabeth-b4 are DS-GFP ciphers with one inner function, that is d = 1 and m1 = 4 and m1 = 6
respectively. Gabriel-4 is a DS-GFP cipher using two different inner functions, with m1 = 4 and m2 = 6.
We also remark that most instances of the GFP such as the considered filters for FLIP [MJSC16] and
FiLIP [MCJS19,GGM24] are in the DS-GFP family.

The structure of DS-GFP ciphers differs significantly from that of traditional stream ciphers. While
the GFP paradigm’s offers superior performance in HHE (e.g. transciphering with latency in millisec-
onds [CDPP22, MPP24]), it also introduces certain security vulnerabilities, making the ciphers more
susceptible to algebraic attacks [DLR16,GBJR23] and DFAs [WT24]. At each iteration of the DS-GFP
cipher, the public PRNG generates an ordered arrangement π(i) = (π(i)

1 , . . . , π
(i)
n ) and an n-length whitening

vector w(i) = (w(i)
1 , . . . , w

(i)
n ). The state is computed as (k

π
(i)
1

+ w
(i)
1 , . . . , k

π
(i)
n

+ w
(i)
n ), and the output of this

iteration is obtained by applying the filter function to the state. Due to the absence of feedback functions,
the key register remains unchanged throughout the entire encryption process. Consequently, the relationship
between the output keystreams and the secret key does not increase in complexity with each iteration. This
is a key difference between DS-GFP ciphers and feedback-based ciphers. When attacking DS-GFP ciphers,
attackers do not need to contend with increasingly complex relationships as more keystreams are collected.

The linear layer (or lack thereof) in the DS-GFP cipher exhibits extremely poor diffusion properties. As
mentioned earlier, the linear layer is generated by the PRNG and consists of an ordered arrangement and a
whitening vector. The ordered arrangement π(i) can be viewed as a combination of selecting an n-subset
of {1, . . . , N} and a permutation of its elements. As a result, each state element depends on only one key
element, which has two main consequences in the context of DFA we consider. First, an attacker can directly
compute the values of key elements based on the corresponding state elements. For instance, given the value
of a state element k

π
(i)
1

+ w
(i)
1 and the whitening value w

(i)
1 , the value of k

π
(i)
1

can be computed directly.
Second, a fault injected into the key register will affect at most one state element per iteration. Specifically,
when the faulted key position is included in the subset S(i), one state element will be impacted. We refer to
the resulting keystream as valid keystream. Conversely, when the faulted key position is not part of the
subset S(i), no state element will be affected.

The filter function of the DS-GFP cipher is particularly vulnerable to DFAs. Since the filter function is
the direct sum of several small inner functions, when a fault occurs in the state, only one inner function gi is
affected. As a result, by calculating the difference between the normal keystream and the faulty keystream,
only the output of one inner function is preserved, while the others are eliminated. This allows us to obtain
the output difference of a specific inner function from the difference in the filter function, ∆s(i). This
property weakens the security of the DS-GFP cipher, reducing it from the filter function f to an inner
function gi, or even to a smaller nonlinear function hi.

Without loss of generality, suppose the attacker inject a G-based fault in the first key word k1, then we
have:

k′
1 = k1 + ∆k, k′

i = ki, i = 2, . . . N,

where k = (k1, . . . , kN ) and k′ = (k′
1, . . . , k′

N ) are the normal and faulty keys. For a valid keystream at
iteration J , the faulty key position is included in the ordered arrangement π(J) and the difference of the
state can be computed as

∆x
(J)
i = ∆(k

π
(J)
i

+ w
(J)
i ) =

{
∆k, π

(J)
i = 1

0, otherwise
. (1)

The difference of output keystream ∆s(J) can be expressed as:

∆s(J) = ∆f(x(J)
1 , . . . , x(J)

n ) =
d−1∑
i=0

ti−1∑
j=0

∆gi(x(J)
ϕi+jri+1, . . . , x

(J)
ϕi+(j+1)ri

). (2)
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According to Equation (1), we know that only one element of the state will be affected by the fault. Therefore,
we can get the output difference of an inner function gi with the Equation (2). Because the inner function
gi is also a direct sum, we can further decompose the difference. When the fault lies in the first mi variables
of gi, we have

∆s(J) = ∆hi(x(J)
ϕi+jri+1, . . . , x

(J)
ϕi+jri+mi

). (3)

When the fault lies at the ri-th variable of gi, we have

∆s(J) = ∆x
(J)
ϕi+(j+1)ri

. (4)

With Equation (3) and Equation (4), the attacker is able to mount an efficient DFA on the DS-GFP cipher
as it leverages the properties of a function with only mi variables.

3.2 The Shortcut Attack Framework
By injecting a G-based fault into the key register of the DS-GFP cipher, the attacker can derive Equation (3)
and Equation (4) from each valid keystream. Though Equation (4) cannot be used to recover the secret key,
we can obtain the value of the fault with it. With Equation (3), the value ∆hi can be obtained from ∆s(J).
It should be noted that, ∆hi only relates to mi state elements, instead of the N -length state, which can be
of great help for key recovery (for example N = 256 whereas m1 = 4 for Elisabeth-4). The crucial point is
how to recover the secret key efficiently with multiple valid keystreams.

A natural approach is to find the polynomial representation of hi and form a system of multivariate
equations related to the secret key using multiple ∆hi, similar to the method used in [MR24] for FLIP
and FiLIP ciphers. However, this method becomes infeasible for DS-GFP ciphers that use groups larger
than F2. In the latest DS-GFP ciphers, the inner functions are specifically designed without polynomial
representations over G. For example, it has been proven that the inner functions of both Elisabeth-4 and
Elisabeth-b4 are not polyfunctions [CHMS22, HMM+23]. While it is theoretically possible to map the
input-output relationships to other algebraic structures and build corresponding equations for solving (for
example over F2 for Elisabeth-4 and its patches), this approach is impractical due to the complexity of
solving such equations.

Another approach is to compute and store the DDT of the function hi as the filter table Ti. It is
important to note that there is no need to compute and store the table for all |G|mi input differences. Due
to Equation (1), there are only mi · (|G| − 1) possible input differences in the DFA on DS-GFP ciphers
under consideration. As a result, the size of the filter table |Ti| is mi · (|G| − 1) · |G|mi ≈ mi|G|mi+1. Using
the filter table Ti and ∆hi, we can derive a solution set for the input state. Then, by inverting the linear
layer of the DS-GFP cipher, we obtain a candidate key set. Multiple candidate key sets can be derived
from multiple valid keystreams, and the correct secret key can be retrieved by intersecting all the candidate
key sets. This approach is efficient for DS-GFP ciphers, and we formalize the above DFA method as the
shortcut attack. The framework for the shortcut attack is presented in Algorithm 1.

Algorithm 1 The shortcut attack framework
1: Compute and store the filter table T = {(x1, . . . , xm, δ, j, ∆h)} for all (x1, . . . , xm) ∈ Gm

1 , δ ∈ G∗
1 and j ∈

{1, . . . , m}, where δ is the value of input difference and j is the position of the faulty word.
2: Inject a G-based fault into the key and collect a number of normal and faulty keystreams.
3: Identify the position of the fault and determine the value of the fault.
4: Generate the merging path.
5: Recover the secret key by filtering the candidate key set according to the merging path as illustrated in

Figure 3.

For the DS-GFP cipher with multiple nonlinear function hi, we only utilize its Achilles’ heel, the one
with fewest input variables. In the following sections, for the sake of clarity, we denote the nonlinear function
hi with fewest input variables as h, its filter table as T , its number of input variable as m and the number
of times it appears in the filter function f as t, unless otherwise stated. Our shortcut attack generalizes the
one on Elisabeth-4 presented in [WT24]. Besides, we present improvements in both fault identification and
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Figure 3: filtering the candidate key set with the merging path P = S1 → S2 → · · · → SL until the right
key is found.

path generation, which greatly enhance the DFA. The description and complexity estimation for each step
of Algorithm 1 is given in the following subsections.

3.3 Identifying and Determining the Fault

In DFA, the attacker generally does not know the exact location of the injected fault. In [BMS12], Banik
et al. proposed the signature-based fault identification technique, which pinpoint the fault location by
statistical testing. In situations where linear layers are pseudorandom, the signature will look random and
therefore the statistical method is ineffective. In [MR24], Méaux and Roy introduced an additional approach
for identifying the fault location with inference sets and applied it to FLIP and FiLIP. With an efficient fault
identification, the attacker can avoid guessing the location and it greatly improves the time complexity of
the DFA.

In [WT24], Wang and Tang used multiple subsets S(i) with ∆s(i) ̸= 0 and Lemma 1 to quickly identify
the fault position in the DFA on Elisabeth-4. Lemma 1 can be applied to other DS-GFP ciphers. Besides
Lemma 1, we use an additional lemma to identify the position in our shortcut attack.

Lemma 2. For the DFA on DS-GFP ciphers, if the difference between normal and faulty keystreams ∆s(i)

is zero, then the faulty keyword does not appear at the linear part of the inner function.

Proof. Similar to the proof of Lemma 1, we prove the contrapositive version of this lemma, i.e. if the faulty
keyword appears in the linear part of the inner function, then the difference between normal and faulty
keystream ∆s(i) is non-zero.

The difference of output keystream ∆s(i) can be expressed as

∆s(i) = ∆f(x(i)
1 , . . . , x(i)

n ) =
d−1∑
j=0

tj−1∑
l=0

∆gj(x(i)
ϕj+lrj+1, . . . , x

(i)
ϕj+(l+1)rj

).

Since the inner function gj(x1, . . . , xrj ) = hj(x1, . . . , xrj−1) + xrj , when the fault lies at the linear part
of inner function gj , i.e. the rj-th variable of gj , we have

∆s(i) = ∆x
(i)
ϕj+(l+1)rj

.

Hence, the output difference s(i) equals to the value of the fault, which is non-zero.

Lemma 1 and Lemma 2 use direct generalizations to G-variable the concept of full and null inference set
defined in [MR24] for binary variables. The new identification method is described in Algorithm 2.

With the additional part using Lemma 2, the identification is completed with less keystreams than
in [WT24]. For each iteration, we need O(nN) operations to filter out the wrong candidate fault positions.
Assuming only one wrong position is removed each time, the time complexity of Algorithm 2 is O(nN2).
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Algorithm 2 Identify the faulty key positions with Lemma 1 and Lemma 2.
Input: The difference of keystreams ∆s, initial vector IV , PRNG.
Output: The unique fault position PosCan.

1: PosCan← {1, . . . , N}
2: i = 0
3: while |PosCan| > 1 do
4: Generate the ordered arrangement π(i) ← PRNG(IV, i)
5: if ∆s(i) ̸= 0 then ▷ Lemma 1 case
6: PosCan← PosCan ∩ π(i)

7: end if
8: if ∆s(i) == 0 then ▷ Lemma 2 case
9: for j ∈ {1, . . . , n} do

10: if xj is the linear part of the inner function and π
(i)
j ∈ PosCan then

11: Remove π
(i)
j from PosCan

12: end if
13: end for
14: end if
15: i← i + 1
16: end while
17: return PosCan

In the random word error model, the value of the fault is random and unknown to the attacker. Therefore,
the attacker must determine the fault value before proceeding with secret key recovery. In [WT24], the
approach consisted in testing all possible fault values, which means the key recovery process needed to be
repeated an average of 8 times for Elisabeth-4 (since G = Z16). In the shortcut attack, however, we can
directly determine the fault value by analyzing the difference between the normal and faulty keystreams
using Equation (4). This improvement significantly reduces the time complexity of the DFA. Once the fault
position is known, the fault value can be determined with O(1) operations. Therefore, the time complexity
of identifying and determining the fault is O(nN2).

3.4 Generating the Merging Path

After determining the fault, the attacker needs to recover the secret key with multiple ∆h. Given the filter
table T and the output difference ∆h, a solution set for the input state can be derived. The attacker can
then obtain a candidate key set by inverting the linear layer of the DS-GFP cipher. Due to the properties of
the function h and the linear layer, each candidate key set derived from one element of the valid keystream
only corresponds to m key elements.

To represent the candidate key set, we use an indexed set S(I) = V where I is the related key positions and
V is the set of possible values. This representation is considerably more compact compared to directly record-
ing all possible solutions. For example, we represent the set {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)} ⊂ F4

2
as S({1, 2}) = {(1, 0)}. An indexed set S(I) = V can also be viewed as a constraint, where I is the variables
related to the constraint and V is the specific constraint. This allows us to derive multiple candidate sub-key
sets from the valid keystreams: S1(I1) = V1, S2(I2) = V2, . . . , SL(IL) = VL, |Ii| = m, 1 ≤ i ≤ L. The key
recovery process is actually solving a constraint problem with L constraints, and each constraint relates to
only m key variables. Given two constraints S1(I1) = V1, S2(I2) = V2, we can merge them and obtain a
new constraint S(I) = V , where I = I1 ∪ I2, V = {w|ui = vi, i ∈ I1 ∩ I2, u ∈ V1, v ∈ V2}, w is the vector of
length len(I1) + len(I2)−|I1∩ I2| and made from the elements of u and the ones of v minus the intersection.
This process can also be viewed as the intersection of two indexed sets.

It is crucial to determine the optimal order in which to use these keystreams elements to filter the
candidate keys. We keep the number of key elements that are not fully determined small during the process,
in order to always keep the size of the candidate keys set small. We refer to this sequence as the merging
path. While different merging paths may ultimately yield the same filtering result, the number of intersection
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operations required—and consequently, the time complexity—can vary significantly. In Appendix C, we
provide a small example to illustrate the impact of different merging paths on time complexity.

We denote the maximum size of the candidate set during the filtering process as |Smax|. To minimize
the cost of filtering, |Smax| should be kept as small as possible. Therefore, when determining the merging
path, |Smax| is estimated, and the optimal merging path is the one that minimizes this value. The filtering
process involves multiple intersections, and regarding the sizes of the sets after the intersections we give a
proposition and estimate |Smax| based on an assumption.

Proposition 1. Let S1(I1) = V1, S2(I2) = V2 be two indexed sets, |I1| = m, |I1| = n, The elements of V1, V2
are chosen uniformly at random from Gm,Gn respectively and independently, and |V1| = M, |V2| = N . If
the number of common indexes |I1 ∩ I2| is ℓ, then the size of the set after taking the intersection is MN

|G|ℓ .

Proof. On the ℓ indexes in common I1∩I2 for any x ∈ Gℓ an element of V1 takes the value x with probability
p1,x = 1

|G|ℓ since its element are chosen uniformly at random from Gm. Similarly, for any x ∈ Gℓ an element
of V2 takes the value x with probability p2,x = 1

|G|ℓ . Since the distributions of V1 and V2 are independent,
the average size after intersection is given by:

{u ∪ v |ui = vi,∀i ∈ I1 ∩ I2, u ∈ V1, v ∈ V2}| =
∑

x∈Gℓ

p1,x|V1| · p2,x|V2|

= |G|ℓ M

|G|ℓ
N

|G|ℓ
= MN

|G|ℓ
.

Definition 1 (Preimage ratio). Let m ∈ N and G be a finite group. Let f be a function from Gm to G and
a ∈ Gm, we denote by Mf,a = maxu∈G | {x ∈ Gm such that ∆a(f) = u}| and by mf,a = minu∈G | {x ∈
Gm such that ∆a(f) = u}|.

We denote by cf,a the value Mf,a/mf,a and cf = maxwH(a)=1 cf,a, where wH(a) denotes the Hamming
weight of a (i.e. the number of non null coefficients of a).

We note that if the derivative of f at a is balanced, then cf,a = 1. For instances of Elisabeth-4 and
its patches, we observe that cf,a < 22, meaning that no preimage has significantly more occurrences than
another. Therefore, for simplicity in the analysis, we assume cf,a = 1. When ch = 1, we can assume that the
candidate key sets derived from each keystream differential equation are of equal size, and each candidate
key has the same probability. This allows us to estimate the sizes of the sets used in the merging path based
on Proposition 1. We proceed under the following working assumption:

Assumption 1. Let h be a function from Gm to G, if ch is small, e.g. ch < 5, the result of Proposition 1
can be used to estimate the average size of the candidate key sets.

Assuming Assumption 1, we can estimate |Smax| for a specific merging path. According to Assumption 1,
and using Proposition 1 when the size of the input sets remains unchanged, the more common positions two
input sets have, the smaller the resulting intersection set is. Therefore, to keep |Smax| as small as possible,
we need to generate a path such that the related key positions I increase as slow as possible. The most
straightforward approach to finding the optimal path is to enumerate all possible paths and select the one
with the smallest |Smax| as the merging path. However, this approach leads to a factorial growth in time
complexity as the number of keystreams increases, making it impractical for an attack.

The Greedy Algorithm (GA) is an alternative method for efficiently generating an appropriate merging
path. An intuitive approach to keeping |Smax| small is to select, at each step, the keystream that shares the
most common key positions with the current candidate key set, which naturally leads to a greedy algorithm.
The pseudo-code for the greedy algorithm is provided in Algorithm 3. A straightforward implementation of
the greedy algorithm starts by selecting the first valid keystream as the initial point and then iteratively
choosing the closest keystream. While the greedy algorithm is both efficient and easy to implement, it is
sub-optimal, and the choice of the initial point can significantly impact the quality of the result.

2The table for the different functions h can be found in https://github.com/SJTUwwz/DFA_Elisabeth_family, they have
the following preimage ratio: ch = 1.35, 1.46 and 1.04 for Elisabeth-4, Elisabeth-4b and Margrethe-18-4, respectively.

https://github.com/SJTUwwz/DFA_Elisabeth_family
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Algorithm 3 Generate the merging path by greedy algorithm
Input: The set of m-length key positions of valid keystreams KP , the group size |G|, the number of

variables m, the initial pair of indexes (p1, p2).
Output: The merging path P , estimated |Smax|.

1: TI ← {1, . . . , len(KP )}
2: tS ← KP [p1] ∪KP [p2] ▷ The initialization phase
3: P ← [p1, p2]
4: M ← the number of common key positions between KP [p1] and KP [p2].
5: |Smax| ← |G|2(m−1)−M ▷ Using Proposition 1
6: NewS ← |Smax|
7: Remove p1, p2 from TI
8: Remove KP [p1], KP [p2] from KP
9: while |tS| < N and KP ̸= ∅ do

10: j ← 0
11: com← 0
12: for i ∈ 1 to len(I) do
13: if |tS ∩KP [i]| ≥ com then
14: j ← i
15: com← |tS ∩KP [i]|
16: end if
17: end for
18: NewS ← NewS · |G|m−1−com ▷ Using Proposition 1
19: if NewS > |Smax| then
20: |Smax| ← NewS
21: end if
22: tS ← tS ∪KP [j]
23: P.add(j)
24: Remove KP [j] from KP
25: Remove j from TI
26: end while
27: if I ̸= ∅ then
28: P ← P + T ▷ |tS| = N , and we add the remaining points to the end directly
29: end if
30: return P , |Smax|

Instead of selecting the first valid keystream as the initial point, the attack in [WT24] enumerates all
pairs of valid keystreams and selects the pair with the most common key positions as the initial point. Using
this improved starting point, they generate a more effective merging path and successfully mount a DFA on
Elisabeth-4 with 15000 keystreams in 150 seconds. The paper also demonstrates the theoretical benefits of
using a better initial point.

While searching for a better initial point can lead to a more optimal merging path, it also increases the
cost of generating the path. However, since the main overhead of the table-based DFA lies in the filtering
process, spending more time to generate a better merging path that reduces the time spent filtering the
candidate key set is worthwhile. This approach can significantly lower the overall time complexity of the
attack. Building on this idea, we further improve the greedy algorithm used in table-based DFA. In the
improved version, we introduce an initial point pool that stores all keystream pairs with the maximum
number of common positions. For each initial point in the pool, we generate a merging path using the greedy
algorithm and then select the best one as the final result, rather than generating the path based on only
the first initial point. We refer to this enhanced method as the Multiple Initial Points Greedy Algorithm
(MIP-GA), and we refer to the algorithm in [WT24] as original GA. The pseudo-code for MIP-GA is
provided in Algorithm 4. Figure 4 illustrates the differences between MIP-GA and original GA. Specifically,
Algorithm 3 considers only one path, while Algorithm 4 considers multiple paths (including the path
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considered by Algorithm 3) and compares them before selecting the best one. This indicates that the
merging path found by Algorithm 4 is at least as good as, if not better than, that of Algorithm 3. The
results in Table 3 also demonstrate that Algorithm 4 indeed performs better.

Algorithm 4 Generate the merging path by MIP-GA
Input: The set of m-length key positions of valid keystreams KP , the group size |G|, the number of

variables m.
Output: The optimal merging path.

1: ip← []
2: ℓ← len(KP )
3: num← 0
4: for i = 0, . . . , ℓ− 1 do
5: for j = i + 1, . . . ℓ− 1 do
6: if |KP [i] ∩KP [j]| > num then
7: ip← [(i, j)]
8: num = |KP [i] ∩KP [j]|
9: end if

10: if |KP [i] ∩KP [j]| = num then
11: ip.add((i, j))
12: end if
13: end for
14: end for
15: RP ← []
16: |Smax| ← +∞
17: for pair ∈ ip do
18: P, |S| ← Algorithm 3(KP, |G|, m, pair)
19: if |S| < |Smax| then
20: RP ← P
21: |Smax| ← |S|
22: end if
23: end for
24: return RP

Compared to the original GA, MIP-GA calls the greedy algorithm multiple times to generate paths for
all initial points. When the number of keystreams is large, resulting in many initial points with the same
number of common positions, we can impose a limit on the number of initial points in the pool to balance
efficiency and performance. Although MIP-GA takes more time than the original GA to generate and select
merging paths, it consistently finds better paths with the same set of keystreams. By using MIP-GA, we
can achieve DFAs with fewer keystreams and reduced running time.

In Algorithm 3, the number of iterations in the while loop is O(mtL
N ), where L is the number of keystreams

and mtL
N represents the average number of valid keystreams (since in each iteration, one element is removed

from KP , and the loop stops when KP is empty). In each iteration of the while loop, the for loop iterates a
maximum of L times, which we bound again by mtL

N . In each iteration of the for loop, computing the number
of common key positions between the current index and the candidate m-length index set requires O(mN)
operations. Thus, the time complexity of a single greedy algorithm is O((mtL

N )2 ·mN), or O(m3t2L2

N ).

Algorithm 4 involves selecting the initial points, applying the greedy algorithm to each initial point,
and then choosing the best path. The time complexity of MIP-GA is therefore O((mtL

N )2 ·m2 + |ip|m3t2L2

N ),
where |ip| denotes the size of the initial point pool. The attacker can set an proper upper bound M for |ip|
to balance the quality of the paths with the runtime. Since m < N and M is a constant decided by the
attacker, the asymptotic complexity of MIP-GA is O(Mm3t2L2

N ).
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The set of related key positions 

𝑆 = {𝐾𝑃𝑖 = (𝑘𝑖1 , … , 𝑘𝑖𝑚)}
The set of related key positions 

𝑆 = {𝐾𝑃𝑖 = (𝑘𝑖1 , … , 𝑘𝑖𝑚)}

𝑃

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5

𝑃 = 𝑃𝑖 with minimal |𝑆𝑚𝑎𝑥|

Original GA MIP-GA

Enumerate all 

pairs (𝐾𝑃𝑖 , 𝐾𝑃𝑗)

Greedy algorithm

Initial point

The result path

Figure 4: Illustration of MIP-GA and original GA.

3.5 Recovering the Secret Key

During the key recovery step, the correct key must be included in all candidate key sets derived from valid
keystreams. Therefore, the secret key can be determined through a step-by-step intersection process. Given
a merging path, the attacker merges and intersects the candidate key sets, as shown in Figure 3. The
pseudo-code for this process is provided in Algorithm 5. Throughout the process, the number of totally
determined key elements gradually increases to N , and merging continues until the uniquely correct key is
found, i.e. , when |I| = N and |V | = 1. If |V | = 0, it indicates that the assumed information is incorrect.

Let S denote the candidate set during the filtering process. For each intersection, it requires |S| · |Si|
comparisons, with each comparison taking O(mN) operations, where Si is the candidate key set derived
from ∆s(i). This process is repeated multiple times until the correct secret key is found. The size of S
is upper bounded by |Smax|, which we estimate using Proposition 1. According to Assumption 1, the
average size of Si is |S̄| = |G|m

|G| = |G|m−1. Therefore, the time complexity for the key recovery step is
O(mN · |Smax| · |G|m−1).

The total time complexity of the shortcut attack can be expressed as:

Time complexity = O(m|G|m+1 + nN2 + Mm3t2L2

N
+ mN |Smax||G|m−1), (5)

which corresponds to Steps 1, 3, 4, and 5 in Algorithm 1. In most cases, the time complexity of the key
recovery step dominates the attack. This part can be reduced by finding a better merging path with more
keystreams. However, as the number of keystreams L increases, the overhead of generating paths may
surpass that of key recovery. To perform an efficient shortcut attack on DS-GFP ciphers, the attacker must
balance the costs of Step 4 and Step 5, aiming to minimize the overall time complexity as expressed in
Equation (5).
Remark 1. In this work, we primarily consider single-fault scenarios. If an attacker is able to inject multiple
faults, the complexity of DFA may be further reduced. For example, when an attacker has the capability
to inject multiple different faults at the same position (this requires injecting numerous faults randomly
or stronger assumptions on the injection model), key recovery can be completed more rapidly. Injecting
multiple faults at the same position reduces the size of the candidate set. For different faults, the linear
layer remains unchanged, which means that the m-out-of-N subsets generated by PRNG are the same. This
allows attackers to refine their search by intersecting the candidate key sets derived from the filter table T,
resulting in a smaller |S̄| and, consequently, a smaller candidate set during the merging phase.
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Algorithm 5 Key recovery: merge and intersect the candidate key sets
Input: The set of m-length key positions of valid keystreams KP , The difference of valid keystreams DS,

the value of fault δ, the filter table T , the merging path P , PRNG, IV
Output: The correct secret key

1: Calculate the exact fault positions in input of function h IND and the value of the corresponding
whitening value W , from IV and PRNG.

2: t← P [0]
3: S ← {x−W [t] | (x, δ, IND[t], DS[t]) ∈ T} ▷ S is the candidate key set derived from T with the fault (δ,

IND[t]) and the output difference DS[t].
4: tS ← KP [t]
5: for i = 1, . . . , len(P )− 1 do
6: tmpS ← ∅
7: t← P [i]
8: H ← {x−W [t] | (x, δ, IND[t], DS[t]) ∈ T}
9: for u ∈ S do ▷ Merge and intersect two sets

10: for v ∈ H do
11: if u, v have the same value on tS ∩KP [t] then
12: w ← u||v ▷ u||v denotes the vector of length len(u) + len(v)− |tS ∩KP [t]| made from

u and from v minus the intersection.
13: tmpS.add(w)
14: end if
15: end for
16: end for
17: tS ← tS ∪KP [t]
18: S ← tmpS
19: end for
20: for sol ∈ S do ▷ Generally, |S| ≤ 2
21: Use sol as the key and simulate the cipher to generate keystreams with IV
22: if The generated keystreams equals the normal keystreams then
23: return sol
24: end if
25: end for

4 DFAs on Elisabeth-4, Gabriel-4, and Elisabeth-b4 with a Single Fault
To validate the effectiveness of the shortcut DFA, we apply it to several versions and patches of the Elisabeth
cipher family, including Elisabeth-4, Gabriel-4, and Elisabeth-b4. As a result, we successfully improve the
DFA on Elisabeth-4, perform practical DFAs on Gabriel-4, and provide theoretical DFAs for Elisabeth-b4.
In the following parts, we introduce the specific attacks in detail, and give the practical results obtained
from the attacks described in Section 3. We simulate the DFA using Python 3.9, and all experiments are
conducted on our workstation (2× Intel(R) Xeon(R) 5220R CPUs with 24 cores, running Ubuntu 20.04).

4.1 Application to Elisabeth-4

Elisabeth-4 cipher is the first instance of Elisabeth family of ciphers, introduced in [CHMS22], we refer to
Section 2.2 for its full description. For the shortcut attack, we consider Elisabeth-4 as any DS-GFP cipher
and focus on its nonlinear function h defined from G4 to G where G = Z16.

For the shortcut attack, the first step is to compute the filter table T for the nonlinear function
h(x1, . . . , x4). The whole filter table T has 216 · 15 · 4 ≈ 222 rows. In the implementation, we decompose
the whole large table T into 15 · 4 = 60 subtables of size 216, denoted as Tδ,j . For each subtable Tδ,j , we
calculate and stored output difference

∆h = h(x1, ..., x4)− h(x′
1, . . . , x′

4),
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where x′
j − xj = δ and x′

i = xi, i ̸= j, for all (x1, . . . , x4) ∈ Z4
16.

Next, we inject the Z16-based fault into the key register and collect L normal and faulty keystreams.
With 100000 random IVs and faults, the average number of keystreams required to determine the fault
position is 18.82, indicating a low cost for identifying the faulty key position. When the fault occurs in a
linearly represented variable, we determine the fault value using the output difference from Equation (4),
bypassing the need for a guess-and-check strategy, as described in [WT24]. This approach significantly
reduces the time complexity of the DFA.

In the process of generating merging paths, we conducted comparative experiments using both the
original GA and MIP-GA. The results indicate that MIP-GA performs significantly better than the original
GA. The specific experimental results are listed in Table 3. When the number of keystreams is 3000, the
merging path generated by the original GA are unable to recover the correct key within a reasonable time,
whereas the path generated by MIP-GA can still achieve successful key recovery. With MIP-GA and our new
table-based framework, we can mount a DFA with 10000 keystreams and 38 seconds3, which outperforms
than the DFA proposed in [WT24] both in the number of keystreams and runtime. Additionally, a practical
DFA with only 3000 keystreams, which is one-fifth of that in [WT24], is also provided.

4.2 Application to Gabriel-4
As detailed in Section 2.2, the filter function of Gabriel is

f(x1, . . . , x110) =
8∑

i=0
gL(x5i+1, . . . , x5i+5) +

9∑
i=0

gR(x7i+41, . . . , x7i+47).

It corresponds to a DS-GFP cipher with d = 2, and the shortcut attack uses only the 5-to-1 function gL as
function h, which is the one already studied for Elisabeth-4 in Section 4.1.

∆f(x1, . . . , x110) =
8∑

i=0
∆gL(x5i+1, . . . , x5i+5).

The difference between the two shortcut attacks lies in the fact that the key space of Gabriel is larger,
and the proportion of valid keystreams is lower. Specifically, the key space increase from 21024 to 22048,
and the average proportion of valid keystreams decreased from 4·12

256 = 3
16 to 4·8

512 = 1
16 . Therefore, when

implementing the DFA on Gabriel-4, it requires a greater amount of keystreams.
Similar to the DFA on Elisabeth-4, we use both the original GA and MIP-GA to generate merging

paths and perform key recovery. The results is displayed in Table 3. As predicted, we observe the number
of keystreams required to attack Gabriel-4 is significantly higher than for Elisabeth-4. Additionally, when
the estimated |Smax| is the same as for Elisabeth-4, the time needed to attack Gabriel-4 is also longer.
These results indicate that Gabriel-4 has stronger resistance to the shortcut DFA compared to Elisabeth-4.
Nonetheless, we successfully implemented the DFA on Gabriel-4.

4.3 Application to Elisabeth-b4
The parameters of Elisabeth-b are summarized in Section 2.2. Compared to the original Elisabeth, this
patch uses an inner function h with 6 variables from Z16 instead of 4. The increase in the number of input
variables m directly affects the size of the filter table T . In the previous two attacks, the table size was
4 · 24·5 = 222, whereas for the attack on Elisabeth-b4, the size of T grows to 6 · 24·7 = 230.38. Additionally,
the size of the candidate key set derived from T for a given output difference increases from 212 to 220.
The most significant impact of increasing m is the need for more common positions during merging to
ensure the candidate key set remains manageable. According to Proposition 1, when the sizes of two input
sets are |Stmp| and 220, and the number of common positions is ℓ, the size of the intersection set will be
|Stmp| · 220−4ℓ. Thus, to maintain the size of the output set close to |Stmp|, at least 5 common positions
are needed, compared to 3 for Elisabeth-4. As a result, more keystreams are required to execute a feasible

3Although only the time for key filtering is provided here, the actual runtime for the entire attack (including fault
determination and path generation) does not exceed 45 seconds.
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Table 3: Shortcut attacks on Elisabeth-4, Gabriel-4, and Elisabeth-b4 with different GA

Cipher #keystream Method |Smax|a Timeb

Elisabeth-4

10000
Original GA 216 651s

MIP-GA 212 38s

7500
Original GA 216 706s

MIP-GA 212 63s

4000
Original GA 220 15403s

MIP-GA 216 1303s

3000
Original GA 236 -

MIP-GA 220 17215s

Gabriel-4

100000
Original GA 216 2027s

MIP-GA 212 202s

80000
Original GA 220 18672s

MIP-GA 212 336s

60000
Original GA 228 -

MIP-GA 212 406s

40000
Original GA 228 -

MIP-GA 220 35757s

Elisabeth-b4c

500000
Original GA 272 2103.58

MIP-GA 268 299.58

1000000
Original GA 260 291.58

MIP-GA 256 287.58

1500000
Original GA 256 287.58

MIP-GA 248 279.58

2000000
Original GA 248 279.58

MIP-GA 244 275.58

a The maximum size is estimated by Proposition 1
b The time is for filtering the candidate key set, and “-” means that we cannot obtain a result with

a reasonable time in practice
c The DFA on Elisabeth-b4 is theoretical and the time complexity is computed by

O(mN |Smax||G|m−1)
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shortcut attack on Elisabeth-b4. If the number of keystreams is insufficient, the size of the candidate key set
will grow rapidly during the filtering process, leading to an unacceptably large |Smax|.

We attempt to apply the shortcut attack to Elisabeth-b4 with different numbers of keystreams and
estimate the time complexity based on the merging path and Proposition 1. The results are shown in
Table 3. When using 500000 keystreams, we successfully obtain a theoretical DFA with a time complexity
of O(299.58). As the number of keystreams increases, we can derive a more efficient merging path, reducing
the time required for filtering keys. For instance, with 2000000 keystreams, we generate a merging path
where the estimated |Smax| is 244, resulting in an attack with a time complexity of O(275.58). It is important
to note that, as the number of keystreams increases, the filtering time decreases, but the time required to
generate the merging path increases. For example, when the number of keystreams reaches 221, a single
execution of the greedy algorithm requires tens of thousands of seconds. Therefore, when the number of
keystreams surpasses a certain threshold, the cost of generating the merging paths may exceed the cost of
filtering and become the primary overhead of the attack.

5 DFAs on Margrethe-18-4 with Multiple Faults

The MFP paradigm differs from the GFP by the use of two different groups. Mixing operation from two
different structures to get a secure cryptographic primitive is a principle that has been widely used [BIP+18,
DR20,DMMS21,DGH+21,HMM+23]. Margrethe-18-4 is the MFP paradigm instantiated with parameters
G1 = F2,G2 = Z16, N = 2048, n = 308, t = 14, r = 22, m = 18 and the filter function

f(x1, . . . , x308) =
13∑

i=0
h(x22i+1, . . . , x22i+18) + Z16(

3∑
k=0

2kx22i+19+k).

The large values of N and m prevent us from directly applying the shortcut attack described in Section 3 to
Margrethe-18-4. However, with a stronger attacker, we can mount a DFA on Margrethe-18-4 using multiple
faults. In this section, we assume that the attacker is capable of injecting faults multiple times at different
positions4. This assumption is crucial for the presented DFA.

Since the key of Margrethe-18-4 is over F2, the injected fault is bit-based, with the fault value always
being 1 (i.e. a bit-flip). When the fault occurs at the input of h, we can compute and store a filter table
T containing 18 · 218 = 222.17 elements. However, when attempting to use the filter table T for a shortcut
attack, the large number of inputs creates a significant challenge in generating an effective merging path.
The insufficient number of common key positions during each merge leads to a rapid expansion of the
candidate key set. As a result, a direct single-fault shortcut attack cannot be applied to Margrethe.

Unlike previous target ciphers following the GFP paradigm, Margrethe-18-4 adopts the MFP paradigm,
where the input and output groups of filter function are different. Consequently, the Z16 transformation is
also nonlinear over F2, which means that we can extract key information through the differences in the Z16
transformation. When the fault lies at the input of the Z16 transformation, we have:

∆Z16 = Z16(x′
1, x′

2, x′
3, x′

4)− Z16(x1, x2, x3, x4) =
4∑

i=1
(x′

i − xi)2i−1 mod 16, (6)

where (x′
1, x′

2, x′
3, x′

4) is the faulty input. Based on Equation (6) and the fact that the fault affects only one
bit of the state—where a bit-flip on the variable xi changes it to 1− xi—we can derive the following six
relationships:

∆Z16 = 15⇒ x1 = 1, ∆Z16 = 1⇒ x1 = 0,

∆Z16 = 14⇒ x2 = 1, ∆Z16 = 2⇒ x2 = 0,

∆Z16 = 12⇒ x3 = 1, ∆Z16 = 4⇒ x3 = 0.

4In practice we assume the adversary can flip one bit of the key state, collect the corresponding keystreams, and then reapply
the same attack on an unfaulty state. That is, the number of faults in the state is always one.
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Furthermore, when the fault occurs at x4, regardless of the value of (x1, x2, x3, x4), the output difference of
the Z16 transformation is always 8, which means this difference cannot be used to recover the faulted key
element. In the other three cases, a single fault is sufficient to determine the value of the faulted variable. If
the attacker can precisely inject each fault, by injecting N = 2048 faults, they can recover the values of all
key bits. Since the probability of a fault occurring on x1, x2, or x3 in the Z16 transformation is 3·14

2048 , the
total number of keystreams required for the attack is, on average, 2048·2048

3·14 ≈ 99865.
While the aforementioned attack can quickly recover the key, it requires a highly precise fault inject

method and a large number of faults. To reduce the number of faults, we combine this approach with the
shortcut attack. First, we use the output difference of the Z16 transformation to determine partial key
information by injecting multiple faults. Then, we inject an additional fault and use the output difference of
h to recover the remaining part of the key. Through experiments, we found that with 700 faults—determining
the values of 699 key bits— we can use the shortcut attack to recover the remaining 1349 key bits. As a
result, we successfully implemented a DFA with 700 faults, 230000 normal and faulty keystreams, and a
runtime of approximately 30000 seconds.

6 Towards Security Margins to Avoid Shortcut Attacks
In this section, we examine the security margins of DS-MFP ciphers, a generalization of DS-GFP ciphers
that follow the MFP paradigm, to mitigate the risk of shortcut attacks. As analyzed in previous sections,
shortcut attacks become infeasible if the number of keystreams is insufficient to generate a path that keeps
the size of the candidate key set within a manageable range. For any path, the first intersection involves
combining two solution sets derived from valid keystreams. If the candidate key set grows after the first
intersection, it will continue to expand rapidly, making key recovery impractical. Therefore, we estimate
the number of keystreams required to find two valid keystreams such that the candidate key set remains
unchanged after the first intersection. We expect this estimate to provide valuable insights for DS-MFP
cipher designers in selecting appropriate parameters to prevent shortcut attacks.

Margrethe follows the MFP paradigm and its filter function is the direct sum of functions in small number
of variables. We refer to a subclass of ciphers following MFP as DS-MFP ciphers, the ciphers following the
MFP paradigm as defined in Section 2.2 with the following restrictions on f :

• f is the direct sum (over G2) of d distinct functions fi for i ∈ [d],

• each fi is the direct sum of ti times the function gi,

• gi is the direct sum of a nonlinear function hi and a direct G2-transformation.

Equivalently:

f(x1, . . . , xn) =
d−1∑
i=0

fi(xϕi+1, . . . , xϕi+1) =
d−1∑
i=0

ti−1∑
j=0

gi(xϕi+jri+1, . . . , xϕi+(j+1)ri
),

where ϕi = ∑i−1
ℓ=0 nℓ, ni = riti, n = ∑d−1

i=0 ni and

gi(x1, . . . , xri) = hi(x1, . . . , xmi) + G2(xmi+1, . . . , xri),

where hi : Gmi
1 7→ G2. G2(x1, . . . , xri−mi) = G2(∑ri−mi−1

k=0 xk|G1|k) denotes the element of G2 with |G1|-ary
representation (x1, . . . , xri−mi) and its output can be viewed as adding a linear variable over G2. DS-GFP
ciphers are a special case of DS-MFP ciphers where G1 = G2 = G. Due to the similar structure between
DS-GFP ciphers and DS-MFP ciphers, shortcut attacks can be applied to DS-MFP ciphers in the same
manner.

From the analysis of Section 3, the complexity of a shortcut attack depends on the maximum size of
the candidate key set, |Smax|, which is influenced by the merging paths. In the following, we examine the
impact of different parameters on this resistance. In a shortcut attack, the attacker uses the inner function
with the fewest input variables to compute the filter table T . Let g denote the inner function with the
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fewest input variables, and let its nonlinear component be represented by h. Additionally, let m represent
the number of input variables for h, and let t denote the number of times h appears in the filter function
f of the DS-MFP cipher. Given this, generalizing Assumption 1 we can estimate the average size of the
candidate key sets derived from the filter table T as |S̄| = |G1|m

|G2| .
To start the merging path step, the attacker needs to identify a pair of valid keystreams to merge

and intersect. The related key positions for a valid keystream form an m-out-of-N subset, denoted as
{x1, x2, . . . , xm} ∈ [N ]m. Given two valid keystreams, if their related key positions have ℓ common elements
in their m-out-of-N subsets, the size of the output set after intersection can be calculated as:

|S| = |S̄|2

|G1|ℓ
= |G1|2m−ℓ

|G2|2
, (7)

following Proposition 1.
The more common key positions they share, the smaller the resulting output set will be. This problem

is analogous to the birthday paradox: we want to determine how many people (m-out-of-N subsets) need to
be randomly chosen to have a significant probability (e.g., 0.5) of finding two that share a birthday (i.e.,
have ℓ common key positions).

Property 1 (Birthday paradox). Given q integers taken uniformly at random in the range [n], if q = O(
√

n),
then at least two integers are the same with non-negligible probability.

Based on the birthday paradox, we can derive the following proposition.

Proposition 2. Given q m-out-of-N subsets drawn uniformly at random from a collection of N objects, if

q = O

√
(N

ℓ )
(m

ℓ )

, then at least two subsets share a minimum of ℓ objects with non-negligible probability.

Proof. If two m-out-of-N subsets have a collision of ℓ elements, then there must be an ℓ-out-of-N subset
common to both m-out-of-N subsets.

The total number of possible ℓ-out-of-N subsets is
(N

ℓ

)
. According to Property 1, having O

(√(N
ℓ

))
ℓ-out-of-N subsets taken uniformly at random is sufficient to have at least two identical with non-negligible
probability.

Given an m-out-of-N subset, there are
(m

ℓ

)
distinct ℓ-out-of-N subsets. Therefore, with O

(√(N
ℓ

)(m
ℓ

)−1
)

random m-out-of-N subsets, we can expect to find at least two ℓ-out-of-N subsets that are identical, i.e., at
least two subsets with a collision of ℓ elements, with a non-negligible probability.

Using Proposition 2, we can estimate the number of keystreams required for an attacker to find two
valid keystreams with ℓ common related key positions in their m-out-of-N subsets. Since the faulty key
position must be included in each valid m-out-of-N subset, these subsets consist of the faulty key position
along with m− 1 distinct key positions selected from the remaining N − 1 possible elements. Therefore, the
total number of possible m-out-of-N subsets containing the fault position is

(N−1
m−1

)
. To achieve ℓ common

key positions, ℓ − 1 common key positions must be found among the m − 1 non-faulty positions in the
m-out-of-N subsets.

Given that the PRNG output is pseudorandom and the fault is injected randomly, according to

Proposition 2 we expect to find a pair of subsets with a collision of ℓ elements in a collection of O

√
(N−1

ℓ−1 )
(m−1

ℓ−1 )


m-out-of-N subsets containing the faulted position. Since the proportion of valid keystreams is mt

N , the
estimated number of keystreams required, q can be expressed as:

q = O

N
√(N−1

ℓ−1
)

mt
(m−1

ℓ−1
)

 . (8)
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Based on the previous analysis and Equation (7), if the attacker aims to keep the size of the candidate
key set |S| after the first intersection less than or equal to the size of the initial set |S̄|, it requires
ℓ ≥ m− log|G1| |G2|. When ℓ = m− log|G1| |G2|, we have:

|S| = |G1|2m−ℓ

|G2|2
= |G1|m

|G2|
= |S̄|.

Substituting ℓ = m− log|G1| |G2| into Equation (8), we derive the estimated security limit SL as:

SL = O

N
√( N−1

m−log|G1| |G2|−1
)

mt
( m−1

m−log|G1| |G2|−1
)

 . (9)

If the available number of keystreams is less than SL, the maximum size |Smax| during the shortcut
attack will be at least |G1|m+1

|G2|3 . Additionally, the size of the candidate set |S| will keep increasing after the
first intersection, as more keystreams will be required to find an m-out-of-N subset with ℓ common positions
with the candidate key positions in subsequent intersections. This makes the shortcut attack we presented
infeasible. Therefore, we propose using SL as a security limit for DS-MFP ciphers in scenarios where fault
attacks are a concern. We encourage designers to choose DS-MFP parameters that ensure SL exceeds the
target security level, thereby enhancing protection against shortcut attacks.

The concrete values of SL for several DS-MFP ciphers are shown in Table 2. The results demonstrate
that Elisabeth-4 and Gabriel-4 have relatively low SL values, making them vulnerable to practical shortcut
attacks. In contrast, Elisabeth-b4 shows a slightly higher SL, which prevents practical shortcut attacks.
However, theoretical shortcut attacks that exceed its 128-bit security claim under the black-box model remain
feasible. For Margrethe-18-4, the SL is significantly higher than the other ciphers, making a single-fault
shortcut attack infeasible. Additionally, all the DFAs involving a single fault, as shown in Table 1, require
more keystreams than the corresponding SL, confirming the effectiveness of our proposed security limit.
Finally, from Table 2 and Equation (9), we observe that increasing m provides a greater security boost
against shortcut DFA for DS-MFP ciphers than increasing N or decreasing t.

Varying countermeasures result in different costs for the performance of HHE. The choice of t and N is
always a trade-off between security and efficiency, with efficiency being highly dependent on advancements
in TFHE or other FHE schemes. Increasing N is considered a low-cost countermeasure countermeasure,
since it will impact only the initialization phase of the HHE protocol, and this cost becomes negligible
if the client sends a large amount of data (the baseline for using FHE). On the other hand, decreasing t
while maintaining security requires one to use a function acting on more inputs, which has a greater impact
since programmable boostrapping (PBS) for larger input size takes more times (with current techniques).
Alternatively, using x layers of the same size of PBS instead of y results in HHE being approximately x

y
times slower.

7 Conclusion
In this work, we presented a table-based DFA framework, called the shortcut attack, which extends the attack
in [WT24] from Elisabeth-4 to any DS-GFP cipher. Our new framework improves both fault identification
and path generation. For fault identification, we propose using the linear part of the inner function to
determine the fault’s value. This method eliminates the need for a guess-and-check approach, directly
reducing the attack complexity to 2

|G| of the original, unimproved attack.
For path generation, we introduced the MIP-GA to replace the original greedy algorithm. This

enhancement allows us to find better merging paths using the same number of keystreams, significantly
reducing the complexity of key recovery. Additionally, we provided a theoretical complexity analysis for
each step in the framework, enabling attackers to make more informed trade-offs when mounting the attack.

We also implemented shortcut attacks on Elisabeth-4 and its patched versions, achieving state-of-the-art
DFA results for these ciphers. For Elisabeth-4, we improved upon previous attacks, reducing both runtime
and the required number of keystreams. For Gabriel-4, we successfully mounted practical DFAs.
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For Elisabeth-b4, we provided various theoretical DFAs with time complexities significantly lower than
the security claim under the black-box model. All the aforementioned DFAs were single-fault attacks. While
such a single-fault DFA is not feasible for Margrethe-18-4, we presented a multi-fault DFA under a more
powerful assumption.

Lastly, we analyzed the security margins of more general DS-MFP ciphers to mitigate shortcut attacks and
proposed a secure limit on the number of keystreams. These findings can serve as parameter recommendations
for DS-MFP cipher designers, helping them create ciphers that are resistant to shortcut attacks.

Finally, we mention three open questions:

• As analyzed in Section 3, the efficiency of the shortcut attack relies on the direct sum of functions with
a small number of variables. Can the shortcut attack be adapted to apply to MFP ciphers outside the
DS-MFP family?

• While the table-based approach circumvents the problem of non-representation, it incurs a high
memory cost when the input space of the target function is large. Given a large function composed
of several smaller functions or S-boxes (like the 6-to-1 function h of Elisabeth-b4 is constructed with
several 1-to-1 functions), is it possible to obtain information about the larger function by storing
multiple tables for the smaller functions or S-boxes?

• Unlike previous DFAs on stream ciphers used in HHE frameworks, the SASTA framework [ADSR24]
leverages the specificities of the full protocol to execute the attack. This raises an intriguing question:
Are there other ways to exploit higher-level protocols to enhance existing attack vectors or develop
new ones?
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A The Specification of Elisabeth-b4

Elisabeth-b4 is the GFP paradigm instantiated with:

• G = Z16, N = 512, n = 98,

• the filter function f(x1, . . . , x98) is the direct sum of 14 times the 7-to-1 function g, which can be
expressed as:

f(x1, . . . , x98) =
13∑

i=0
g(x7i+1, x7i+2, . . . , x7i+6, x7i+7),

• the 7-to-1 function g is the sum of a nonlinear 6-to-1 function h and the remaining variable, i.e.

g(x1, . . . , x7) = h(x1, . . . , x6, 0) + x7.

The detailed construction of function h can be found in Appendix B.2.

B The Concrete Constructions of Nonlinear Functions

B.1 Function h in Elisabeth-4

The construction of function h in Elisabeth-4 is described in Figure 5.
All the look-up tables S1, . . . , S8 over Z16 were selected at random, their descriptions can be found

in [CHMS22][Appendix B].

B.2 Function h in Elisabeth-b4

The detailed construction of the nonlinear function h for Elisabeth-b4 is given in Algorithm 6. The generation
of the Sboxes can be found in [HMS23].
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Figure 5: The construction of function h for Elisabeth-4.

C An Example for Different Merging Paths

Suppose the secret key (k1, k2, k3, k4) ∈ Z4
4 and we have the following 4 relations:

R1 : k1 + k2 = 1,

R2 : k2 + k3 = 3,

R3 : k3 + k4 = 1,

R4 : k1 + k3 = 2.

Then the corresponding solution spaces are:

S1(k1, k2) = {(0, 1), (1, 0), (2, 3), (3, 2)},
S2(k2, k3) = {(1, 2), (2, 1), (0, 3), (3, 0)},
S3(k3, k4) = {(0, 1), (1, 0), (2, 3), (3, 2)},
S4(k1, k3) = {(0, 2), (2, 0), (1, 1), (3, 3)},

If we follow the merging path P1 = R1→ R2→ R4→ R3, then the candidate key set will be:

C(k1, k2) = {(0, 1), (1, 0), (2, 3), (3, 2)}
→C(k1, k2, k3) = {(0, 1, 2), (1, 0, 3), (2, 3, 0), (3, 2, 1)}
→C(k1, k2, k3) = {(0, 1, 2), (2, 3, 0)}
→C(k1, k2, k3, k4) = {(0, 1, 2, 3), (2, 3, 0, 1)}.



W. Wang, P. Méaux, and D. Tang 31

Algorithm 6 Elisabeth-b4 nonlinear function h

Input: (x1, x2, x3, x4, x5, x6, x7) ∈ Z7
16

Output: z ∈ Z16
1: for i = 1, 2, 3 do
2: x2i = x2i + x2i−1
3: end for
4: for i = 1, 2, 3, 4, 5, 6 do
5: yi = Si(xi)
6: end for
7: for i = 0, 1, 2 do
8: z2i+1 = y2i mod 6 + y2i+1
9: z2i+2 = y2i+5 mod 6 + y2i+2

10: end for
11: for i = 1, 2, 3, 4, 5, 6 do
12: zi = zi + xi+2 mod 6
13: zi = Si+6(zi)
14: end for
15: for i = 0, 1 do
16: t3i+1 = z3i+1 + z3i+2 + z3i+3
17: t3i+2 = z3i+2 + z3i+4 mod 6
18: t3i+3 = z3i+3 + z3i+4 mod 6 + y3i+1
19: end for
20: t1 = t1 + x6
21: t2 = t2 + x5
22: t3 = t3 + x4
23: t4 = t4 + x2
24: t5 = t5 + x1
25: t6 = t6 + x3
26: for i = 1, 2, 3, 4, 5, 6 do
27: ui = Si+12(ti)
28: z = z + ui

29: end for
30: return z

The maximum size of candidate key set C is 4 and the total number of intersection is 40. We can also follow
another merging path P2 = R1→ R3→ R4→ R2. then the candidate key set will be:

C ′(k1, k2) = {(0, 1), (1, 0), (2, 3), (3, 2)}
→C ′(k1, k2, k3, k4) = {(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 2, 3), (0, 1, 3, 2), (1, 0, 0, 1),

(1, 0, 1, 0), (1, 0, 2, 3), (1, 0, 3, 2), (2, 3, 0, 1), (2, 3, 1, 0), (2, 3, 2, 3),
(2, 3, 3, 2), (3, 2, 0, 1), (3, 2, 1, 0), (3, 2, 2, 3), (3, 2, 3, 2)}
→C ′(k1, k2, k3, k4) = {(0, 1, 2, 3), (1, 0, 1, 0), (2, 3, 0, 1), (3, 2, 3, 2)}
→C ′(k1, k2, k3, k4) = {(0, 1, 2, 3), (2, 3, 0, 1)}.

Though the final set of C ′ is the same as C, the maximum size of candidate key set C ′ is 16 and the total
number of intersection is 96. Therefore, filtering the candidate key set with P2 takes more than twice the
time compared to filtering with P1.
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