
A Security-Enhanced Pairing-Free Certificateless Aggregate

Signature for Vehicular Ad-Hoc Networks, Revisited

Zhengjun Cao, Lihua Liu

Abstract. We show that the aggregate signature scheme [IEEE Syst. J., 2023,
17(3), 3822-3833] is insecure against forgery attack. This flaw is due to that the
ephemeral key or ephemeral value chosen in the signing phase is not indeed bound
to the final signature. An adversary can sign any message while the verifier cannot
find the fraud. We also suggest a revising method to frustrate this attack.
Keywords: Certificateless public key, aggregate signature, forgery attack, vehicular
ad-hoc network, ephemeral key.

1 Introduction

Vehicular ad-hoc network (VANET) has become a hot research topic owing to the demand for
road safety and management, in which there are two kinds of communication: vehicle to vehicle,
and vehicle to infrastructure. To identify entities in VANETs, many authentication schemes are
presented by using different techniques. Among these, Rasheed et al [7] proposed a group-based
zero knowledge proof-authentication protocol. Wu et al [10] investigated a secure authentication
and key exchange protocol. Kumar and Om [3] proposed a cache-based authentication scheme.
Pulagara et al [6] presented a group-key management scheme. Cahyadi and Hwang [2] stud-
ied the batch verification techniques in authentication scheme. Shawky et al [9] presented a
cross-layer authentication scheme for VANETs. Limbasiya et al [4] presented some lightweight
communication protocols for smart parking management.

The certificate management in traditional public-key infrastructure (PKI) has become a
major bottleneck. Identity-based cryptosystem (IBC) is barely satisfactory due to its key escrow
problem. So, the certificateless public key cryptography [1] could be an ideal solution to many
applications, in which the authority (KGC) only computes a partial private key of any user, who
then combines this partial private key with some secret values (only known to him) to obtain
an extra public key (uncertificated). Recently, Zheng et al. [11] have presented a certificateless
aggregate signature scheme in order to meet many security requirements, including mutual
authentication, message integrity, resistance to impersonation attack, signature forgery attack,
etc.

In this note, we show that the Zheng et al’s scheme is insecure against signature forgery
attack. We also fix this flaw by inputting the unique ephemeral value to one hash function so
as to construct a true intractable challenge.

Z. Cao, Department of Mathematics, Shanghai University, Shanghai, 200444, China.
L. Liu, Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China.
Email: liulh@shmtu.edu.cn

1



2 Review of the Zheng et al.’s scheme

In the considered scenario, there are five entities: TA, KGC, OBU, RSU, and AB. The notations
and descriptions are listed below (Table 1).

Table 1: Notations and descriptions
TA trusted authority
KGC key generation center
OBU on-board unit
RSU road-side unit
AB application backend
a,Kpub KDC’s master private key, public key
b, Tpub TA’s master private key, public key
IDi, P IDi ith vehicle Vi’s real identity, pseudonym identity
PKi, SKi Vi’s public key, private key
di, xi Vi’s partial private key, secret value
Mi, σi Vi’s message, signature
4Ti validity period of Vi’s pseudonym identity

TA is responsible for generating pseudo identities and registration service, who can reveal
the true identity using the master key. KGC is responsible for system parameters generation
and partial private key extraction. OBU, a resource-constrained device, can communicate with
other nodes. Each vehicle has its real identity, some pseudo-identities, and its public/private key
pairs. RSU is a base station with more computation or storage resources. AB supplies vehicles
with various kinds of data services.

For the certificateless signature scheme, two adversary models are considered [4, 11]. An
external user can replace the public key of any entity, but cannot access the master key. A
malicious KGC has the master key, but cannot replace the public key of a certain party.

The scheme can be reviewed as follows (Table 2).

3 Insecure against forgery attack

3.1 Partially bound ephemeral key

Notice that in the verification equation

siP = Ui + (Ri + h1iKpub)h2i +Xih3i (1)

both P and Kpub are two system public parameters, and authentic. Ri, Xi are not authentic.
Since the ephemeral key ui ∈ Z∗q , is only bound to

h3i = h3(PIDi‖Mi‖PKi‖Ui‖Ti),
si = ui + dih2i + xih3i,

2



Table 2: The Zheng et al.’s aggregate signature scheme
Initialization. KGC chooses a group G over the elliptic curve E, with a generator P ∈ G of a
prime order q. Set a ∈ Z∗q ,Kpub = aP as its master key and public key, respectively. TA sets
b ∈ Z∗q , Tpub = bP as its master key and public key, respectively. Let h1, h2, h3 : {0, 1}∗ → Z∗q
be three hash functions. Publish the system parameters {P, q, E, h1, h2, h3,Kpub, Tpub}.
Pseudo-identity Generation. Vi picks yi ∈ Z∗q to compute PIDi,1 = yiP, Yi = yiTpub ⊕RIDi.
TA computes RIDi = Yi ⊕ bPIDi,1 to verify the real identity and generates the
pseudo-identity PIDi = {PIDi,1, P IDi,2,4Ti}, where PIDi,2 = RIDi ⊕ h1(bPIDi,1‖4Ti).
Partial Private Key Extraction. KGC picks ri ∈ Z∗q to compute Ri = riP ,
h1i = h1(PIDi‖Ri‖Kpub), di = ri + ah1i. Send {PIDi, di, Ri} to Vi via a secure channel.

Vehicle Key Generation. Vi picks xi ∈ Z∗q to compute Xi = xiP . Set SKi = {xi, di} as its
private key, PKi = {Xi, Ri} as its public key.

Signing. Given a message Mi, Vi picks a nonce ui ∈ Z∗q to compute Ui = uiP ,
h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti), h3i = h3(PIDi‖Mi‖PKi‖Ui‖Ti), si = ui + dih2i + xih3i,
σi = (Ui, si), where Ti is the timestamp. Output {PIDi, PKi,Mi, Ti, σi}.
Verification. The verifier checks the timestamp Ti. Then compute h1i = h1(PIDi‖Ri‖Kpub),
h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti), h3i = h3(PIDi‖Mi‖PKi‖Ui‖Ti). Check if

siP
?
= Ui + (Ri + h1iKpub)h2i +Xih3i.

Aggregate. RSU collects the signatures {PIDi, PKi,Mi, Ti, σi}ni=1, and forwards them to the
verifier.

Aggregate Verification. Compute U =
∑n

i=1 Ui, s =
∑n

i=1 si, h1i = h1(PIDi‖Ri‖Kpub),
h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti), h3i = h3(PIDi‖Mi‖PKi‖Ui‖Ti), i = 1, · · · , n. Check if

sP
?
= U +

∑n
i=1(Ri + h1iKpub)h2i +

∑n
i=1Xih3i.

not bound to the hash values h1i, h2i, we find an adversary can make use of this flaw to launch
signature forgery attack.

3.2 Unrecognizable pseudo-identities

Notice that only the trusted authority TA can recognize a faked pseudo-identity by checking
whether there exists RIDi ∈ ID such that PIDi,2 = RIDi ⊕ h1(bPIDi,1‖4Ti), where b is the
TA’s master key, and ID is the set of all registered users’s IDs. Other entities, especially the
verifier, cannot detect the faked pseudo-identity PIDi, because both the master key b and the
set ID are inaccessible to him.

By the way, in the subsequent computations, the three components PIDi,1, P IDi,2,4Ti are
concatenated and input into the three hash functions h1, h2, h3 as

h1i = h1(PIDi‖Ri‖Kpub),

h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti),
h3i = h3(PIDi‖Mi‖PKi‖Ui‖Ti).

The dependency
PIDi,2 = RIDi ⊕ h1(bPIDi,1‖4Ti)

3



is never used in the later Verification phase, Aggregate phase, and Aggregate Verification phase.

3.3 Signature forgery attack

First, the adversary randomly picks PIDi,1, P IDi,2 ∈ G, chooses a validity period 4Ti, and sets
PIDi = {PIDi,1, P IDi,2,4Ti} as his pseudo-identity.

Second, for a message Mi, the adversary can pick xi, ri, ui ∈ Z∗q and a timestamp Ti to
compute

Xi = xiP, Ri = riP, PKi = (Xi, Ri),

h1i = h1(PIDi‖Ri‖Kpub),

h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti),
Ui = uiP − (Ri + h1iKpub)h2i,

h′3i = h3(PIDi‖Mi‖PKi‖Ui‖Ti),
si = ui + xih3i

The forged signature is σi = (Ui, si).
Third, the adversary outputs the message and signature as {PIDi, PKi,Mi, Ti, σi}.
Correctness. The forged signature can pass the verification process. In fact, we have

Ui + (Ri + h1iKpub)h2i +Xih3i

=uiP − (Ri + h1iKpub)h2i + (Ri + h1iKpub)h2i +Xih3i

=uiP +Xih3i = (ui + xih3i)P = siP

That means the signature will be accepted by the verifier.

4 A revision

The above flaw is due to that an adversary can freely choose the ephemeral key ui ∈ Z∗q to
generate a proper term

Ui = uiP − (Ri + h1iKpub)h2i (2)

after the hash value h2i is computed. In order to restrict the adversary’s capability to create
such a term, one needs to use the ephemeral key and the hash function h2 to construct a true
intractable challenge. To do so, it can specify that

h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti‖Ui) (3)

in the replacement of
h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti) (3′)

i.e., binding the ephemeral value Ui both to the hash values h2i, h3i. In this case, the related
computation becomes

Ui = uiP − (Ri + h1(PIDi‖Ri‖Kpub)Kpub) · h2(PIDi‖Xi‖Kpub‖Ri‖Ti‖Ui)

4



which is an intractable problem due to the unpredictability of hash function [5]. As a result,
the generation order between Ui and h2i is exactly restricted to

Ui = uiP, h2i = h2(PIDi‖Xi‖Kpub‖Ri‖Ti‖Ui).

An adversary cannot first generate h2i, then generate a proper ephemeral value Ui. Therefore,
the above forgery attack is frustrated. Now, the new verification equation becomes

siP =Ui + (Ri + h1(PIDi‖Ri‖Kpub)Kpub) · h2(PIDi‖Xi‖Kpub‖Ri‖Ti‖Ui)

+Xih3(PIDi‖Mi‖PKi‖Ui‖Ti)

In the right side, all three operands are bound to the ephemeral key ui. Only the singer who
knows the trapdoor between the point Ri + h1(PIDi‖Ri‖Kpub)Kpub and the base point P ,
i.e., ri + h1ia, can generate the proper pair (si, Ui) satisfying the above verification equation.
Its security is directly based on the hybrid intractability of elliptic curve discrete logarithm
problem, one-way and collision-free features of hash functions, just like that of the famous
Schnorr signature [8].

Notice that the three hash functions h1, h2, h3 have the same domain and codomain. In
this case, it suffices to specify a unique hash function h : {0, 1}∗ → Z∗q . Thus, the scheme’s
description can be further simplified.

5 The security argument revisited

The original security argument did consider three events, but not checked the dependency be-
tween the ephemeral value Ui and the hash value h2i. It argues that (page 3829, Zheng23):

Based on forking lemma, CI has the capability to replay multiple times of game with

identical random type but different hash values h
∗(j)
2i and h

∗(j)
3i . Thus, AI is able to

produce four valid signatures (U∗i , s
∗(j)
i ), j ∈ (1, 2, 3, 4). Without loss of generality the

following equation is true:

s
∗(j)
i = u∗i + (ri + ah1i)h

∗(j)
2i + xih

∗(j)
3i .

It also argues that (page 3830, Zheng23):

In the same way, CII replays the game multiple times with identical random type but

different hash values h
∗(j)
2i and h

∗(j)
3i and produces three valid signatures (U∗i , s

∗(j)
i ), j ∈

(1, 2, 3) hold that

s
∗(j)
i = u∗i + (ri + ah1i)h

∗(j)
2i + xih

∗(j)
3i .

We find that both the challenger CI and CII are subjectively assumed to produce such s
∗(j)
i

concurrently involving the three hash values h1i, h
∗(j)
2i , h

∗(j)
3i , and the KGC’s master key a. But

it failed to construct a true challenge based on the dependency between the signature and
verification equation. So, the original proof should be revised as below.

Theorem 1. Suppose there is a PPT (probabilistic polynomial time) adversary AI can forge
a valid signature with a non-negligible probability through the interaction with challenger CI .

5



Then CI can make use of AI ’s capability to solve an ECDLP instance with a non-negligible
probability.

Proof. The adversary AI can replace the public key of any entity, but cannot access the
master key a as well as the other master key b. CI initializes the system’s parameters params =
{P, q, E,G, h,Kpub} and sends params to AI . CI simulates h as a hash oracle, with the query
record lists L1, L2, L3. Besides, AI ’s queries, user public key and partial private key are kept in
the lists Lsv, Lpk, Lppk.

HashQurey1: Let L1 := {(PIDi, Ri,Kpub, h1i)}. For an AI ’s query, CI checks its freshness.
If so, h1i = h(PIDi‖Ri‖Kpub) is returned to AI . Otherwise, CI submits a query to CreateUser
with PIDi, returns to AI with such h1i obtained from the oracle, and inserts the new entry
(PIDi, Ri,Kpub, h1i) to the target list.

HashQurey2: L2 := {(PIDi, Xi,Kpub, Ri, Ti, Ui, h2i)}, where Ui ∈ G is randomly picked by
the challenger. For anAI ’s query, CI checks its freshness. If so, h2i = h(PIDi‖Xi‖Kpub‖Ri‖Ti‖Ui)
is returned to AI . Otherwise, CI randomly picks h2i ∈ Z∗q , and returns it to AI . Then insert
the new entry (PIDi, Xi,Kpub, Ri, Ti, Ui, h2i) to the list.

HashQurey3: L3 := {(PIDi,Mi, PKi, Ui, Ti, h3i)}. For an AI ’s query, CI checks its freshness.
If so, h3i = h(PIDi‖Mi‖PKi‖Ui‖Ti) is returned to AI . Otherwise, CI randomly picks h3i ∈ Z∗q ,
and returns it to AI . Then insert the new entry (PIDi,Mi, PKi, Ui, Ti, h3i) to the list.

We refer to the original descriptions [page 3828, Zheng23] for the other three phases, Pub-
licKeyReplace, PartialPrivateKeyExtract, SecretValueExtract, because they have no relation to
the additional input item Ui.

Sign: Upon receiving a query (PIDi,Mi) from AI , CI checks its freshness. If so, CI checks
if PIDi 6= PID∗i where PID∗i be the target identity, and the public key hasn’t been replaced.
Then execute Sign’ algorithm and add h2i, h3i to L2, L3. Return (Ui, si) to AI . Otherwise,
randomly pick Ui ∈ G, si ∈ Z∗q and return (Ui, si) to AI .

Forge: AI outputs a valid signature (U∗i , s
∗
i ) for (PID∗i ,M

∗
i ) without querying PartialPri-

vateKeyExtract and Sign by PID∗i .
Suppose that CI can replay games with identical random type but different hash value. Thus,

AI can produce four valid signatures (U∗i , s
∗(j)
i ), j ∈ (1, 2, 3, 4), satisfying

h
∗(j)
2i = h(PID∗i ‖X∗i ‖Kpub‖R∗i ‖T ∗i ‖U∗i ),

(the original argument forgot to check this dependency.)

h
∗(j)
3i = h(PID∗i ‖M∗i ‖PK∗i ‖U∗i ‖T ∗i ),

(the original forgot to check this dependency, either.)

s
∗(j)
i = u∗i + (ri + ah1i)h

∗(j)
2i + xih

∗(j)
3i .

So, CI can figure out a. Let SuccCI be the probability of this event. It only needs to consider
the below three events:

E1. CI doesn’t abort the game for all queries.

E2. AI successfully forges a valid tuple (PIDi,Mi, Ui, si).

E3. PIDi = PID∗i .

Let QH and Qppk be the times of accessing HashQurey1 and PartialPrivateKeyExtract, respec-
tively. Notice that QH � Qppk, because the number of registered users in the system is limited.

6



If AI can forge a signature with a non-negligible probability SuccAI , then

SuccCI = (1− 1

QH
)QppkSuccAI > (1−

Qppk

QH
)SuccAI ,

which is also non-negligible.
Theorem 2. Suppose there is a PPT adversary AII can forge a valid signature with a non-

negligible probability through the interaction with challenger CII . Then CII can make use of
AII ’s capability to solve an ECDLP instance with a non-negligible probability.

Proof. The adversary AII can access the secret master private key, but cannot replace
the legal public key of a target entity. CII initializes the system’s parameters params =
{P, q, E,G, h,Kpub}, where Kpub = aP , and sends a, params to AII . CII simulates h as a
hash oracle, with the query record lists L1, L2, L3. Besides, AII ’s queries, user public key and
partial private key are kept in the lists Lsv, Lpk, Lppk.

HashQurey1: Let L1 := {(PIDi, Ri,Kpub, h1i)}. For an AII ’s query, CII checks its freshness.
If true, h1i = h(PIDi‖Ri‖Kpub) is returned to AI . Otherwise, CII submits a query to CreateUser
with PIDi, returns to AII with such h1i obtained from the oracle, and inserts the new entry
(PIDi, Ri,Kpub, h1i) to the list L1.

HashQurey2: L2 := {(PIDi, Xi,Kpub, Ri, Ti, Ui, h2i)}, where Ui ∈ G is randomly picked by
the challenger. For anAII ’s query, CII checks its freshness. If true, h2i = h(PIDi‖Xi‖Kpub‖Ri‖Ti‖Ui)
is returned to AII . Otherwise, CII randomly picks h2i ∈ Z∗q , and returns it to AII . Then insert
the new entry (PIDi, Xi,Kpub, Ri, Ti, Ui, h2i) to the list L2.

HashQurey3: Let L3 := {(PIDi,Mi, PKi, Ui, Ti, h3i)}. For an AII ’s query, CII checks its
freshness. If true, h3i = h(PIDi‖Mi‖PKi‖Ui‖Ti) is returned to AI . Otherwise, CII randomly
picks h3i ∈ Z∗q , and returns it to AII . Then insert the new entry (PIDi,Mi, PKi, Ui, Ti, h3i) to
the list L3.

We refer to the original descriptions [page 3829, Zheng23] for the other four phases, User-
Create, PublicKeyReplace, PartialPrivateKeyExtract, SecretValueExtract, because they have
no relation to the additional input item Ui.

Sign: Upon receiving a query (PIDi,Mi) from AII , CII checks its freshness. Then CII checks
if PIDi 6= PID∗i , where PID∗i is the target identity. If true, execute Sign’ algorithm and add
h2i, h3i to L2, L3. Return (Ui, si) to AII . Otherwise, randomly pick Ui ∈ G, si ∈ Z∗q and return
(Ui, si) to AII .

Forge: AII outputs a valid signature (U∗i , s
∗
i ) for (PID∗i ,M

∗
i ) without querying SecretVal-

ueExtract and Sign by PID∗i .
Suppose that CII can replay games with identical random type but different hash value.

Thus, AII can produce three valid signatures (U∗i , s
∗(j)
i ), j ∈ (1, 2, 3), satisfying

h
∗(j)
2i = h(PID∗i ‖X∗i ‖Kpub‖R∗i ‖T ∗i ‖U∗i ),

h
∗(j)
3i = h(PID∗i ‖M∗i ‖PK∗i ‖U∗i ‖T ∗i ),

s
∗(j)
i = u∗i + (ri + ah1i)h

∗(j)
2i + xih

∗(j)
3i .

So, CII can figure out a. Let SuccCII be the probability of this event. It only needs to consider
the below three events:

E1. CII doesn’t abort the game for all queries.

7



E2. AII successfully forges a valid tuple (PIDi,Mi, Ui, si).

E3. PIDi = PID∗i .

Let QH and Qsv be the times of accessing HashQurey1 and SecretV alueExtract, respectively.
Notice that QH � Qsv, because the number of registered users in the system is limited. If AII

can forge a signature with a non-negligible probability SuccAII , then

SuccCII = (1− 1

QH
)QsvSuccAII > (1− Qsv

QH
)SuccAII ,

which is non-negligible, too.

6 Conclusion

We show that the Zheng et al.’s certificateless aggregate signature scheme should be revised due
to its insecurity against signature forgery attack. We also suggest a revising method to resist
this attack. The findings in this note could be helpful for the future work on designing such
schemes.

References

[1] S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In Advances
in Cryptology - ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science,
pages 452–473. Springer, 2003.

[2] E. F. Cahyadi and M. S. Hwang. An improved efficient authentication scheme for vehic-
ular ad hoc networks with batch verification using bilinear pairings. Int. J. Embed. Syst.,
15(2):139–148, 2022.

[3] P. Kumar and H. Om. Secure and efficient cache-based authentication scheme for vehicular
ad-hoc networks. Wirel. Networks, 28(7):2821–2836, 2022.

[4] T. Limbasiya, S. K. Sahay, and D. Das. SAMPARK: secure and lightweight communication
protocols for smart parking management. J. Inf. Secur. Appl., 71:103381, 2022.

[5] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[6] S. B. Pulagara and P. J. A. Alphonse. An intelligent and robust conditional privacy pre-
serving authentication and group-key management scheme for vehicular ad hoc networks
using elliptic curve cryptosystem. Concurr. Comput. Pract. Exp., 33(3), 2021.

[7] A. A. Rasheed, R. N. Mahapatra, and F. G. Hamza-Lup. Adaptive group-based zero
knowledge proof-authentication protocol in vehicular ad hoc networks. IEEE Trans. Intell.
Transp. Syst., 21(2):867–881, 2020.

[8] C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174,
1991.

[9] M. A. Shawky, M. Bottarelli, G. Epiphaniou, and P. Karadimas. An efficient cross-layer

8



authentication scheme for secure communication in vehicular ad-hoc networks. IEEE Trans.
Veh. Technol., 72(7):8738–8754, 2023.

[10] T. Y. Wu, Z. Lee, L. Yang, and C. M. Chen. A provably secure authentication and key ex-
change protocol in vehicular ad hoc networks. Secur. Commun. Networks, 2021:9944460:1–
17, 2021.

[11] H. Zheng, M. Luo, Y. Zhang, C. Peng, and Q. Feng. A security-enhanced pairing-free
certificateless aggregate signature for vehicular ad-hoc networks. IEEE Syst. J., 17(3):3822–
3833, 2023.

9


	Introduction
	Review of the Zheng et al.'s scheme
	Insecure against forgery attack
	Partially bound ephemeral key
	Unrecognizable pseudo-identities
	Signature forgery attack

	A revision
	The security argument revisited
	Conclusion

