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Abstract

The Chou-Orlandi batch oblivious transfer (OT) protocol is a particularly attractive OT
protocol that bridges the gap between practical efficiency and strong security guarantees and
is especially notable due to its simplicity. The security analysis provided by Chou and Orlandi
bases the security of their protocol on the hardness of the computational Diffie-Hellman (CDH)
problem in prime-order groups. Concretely, in groups in which no better-than-generic algorithms
are known for the CDH problem, their security analysis yields that an attacker running in time t
and issuing q random-oracle queries breaks the security of their protocol with probability at most
ϵ ≤ q2 · t/2κ/2, where κ is the bit-length of the group’s order. This concrete bound, however,
is somewhat insufficient for 256-bit groups (e.g., for κ = 256, it does not provide any guarantee
already for t = 248 and q = 240).

In this work, we establish a tighter concrete security bound for the Chou-Orlandi protocol.
First, we introduce the list square Diffie-Hellman (ℓ-sqDH) problem and present a tight reduction
from the security of the protocol to the hardness of solving ℓ-sqDH. That is, we completely
shift the task of analyzing the concrete security of the protocol to that of analyzing the concrete
hardness of the ℓ-sqDH problem. Second, we reduce the hardness of the ℓ-sqDH problem to that
of the decisional Diffie-Hellman (DDH) problem without incurring a multiplicative loss. Our key
observation is that although CDH and DDH have the same assumed concrete hardness, relying
on the hardness of DDH enables our reduction to efficiently test the correctness of the solutions
it produces.

Concretely, in groups in which no better-than-generic algorithms are known for the DDH
problem, our analysis yields that an attacker running in time t and issuing q ≤ t random-oracle
queries breaks the security of the Chou-Orlandi protocol with probability at most ϵ ≤ t/2κ/2 (i.e.,
we eliminate the above multiplicative q2 term). We prove our results within the standard real-vs-
ideal framework considering static corruptions by malicious adversaries, and provide a concrete
security treatment by accounting for the statistical distance between a real-model execution and
an ideal-model execution.
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1 Introduction

The pursuit of oblivious transfer (OT) protocols [Rab81, EGL85] that provide both practical effi-
ciency and strong security guarantees is a driving force in cryptographic research. Whereas early
approaches to constructing OT protocols resulted in somewhat unsatisfying trade-offs between their
efficiency and security, over the past three decades the cryptography community has made significant
progress towards bridging the gap between practical efficiency and strong security guarantees (see,
for example, [BM90, NP01, AIR01, Lin08, PVW08] and the many references therein).

The Chou-Orlandi batch OT protocol. A particularly attractive OT protocol bridging this
gap was presented by Chou and Orlandi [CO15a, CO15b], and is especially notable due to its
simplicity. Specifically, Chou and Orlandi constructed an exceedingly simple and practical batch OT
protocol by cleverly manipulating the Diffie-Hellman key-exchange protocol. Although indications
were provided for the protocol’s lack of UC security (see [CO15b, Sec. 1.1]), the protocol is UC-secure
when augmented with a non-interactive proof of knowledge for each party (as we discuss in Section
1.1, our results in this work provide along the way a formal proof of this standard observation).
Specifically, for the sender, it suffices to provide a proof of knowledge for the discrete logarithm of
a single group element, while for the receiver, it suffices to provide a proof of knowledge for the
openings of Pedersen commitments.

Although the required proofs of knowledge can be derived from practical Σ-protocols which can
be made non-interactive using the Fiat-Shamir transform [FS87], augmenting the protocol with
these proofs may degrade its practical performance to some extent. However, it does not affect the
simplicity of the protocol, especially when modeling the proofs of knowledge via ideal functionalities,
as elegantly enabled by the modularity of the UC framework [Can01].

The concrete security of the Chou-Orlandi protocol. The security analysis provided by Chou
and Orlandi bases the security of their protocol on the hardness of the computational Diffie-Hellman
(CDH) problem. Therefore, in prime-order groups in which no better-than-generic algorithms are
known for the CDH problem (e.g., in widely used 256-bit elliptic-curve groups such as Secp256k1
and P-256), the assumed concrete hardness of the CDH problem enables to derive a concrete security
bound that depends on the running time of the attacker, the number of random-oracle queries issued
by the attacker, and the order of the group.

Concretely, the analysis of Chou and Orlandi shows that any attacker A that runs in time tA,
issues qA random-oracle queries, and breaks the security of their batch OT protocol with probability
ϵA, can be transformed into an algorithm B that runs in time tB ≈ tA and solves the square Diffie-
Hellman (sqDH) problem with probability ϵB = ϵA/q

2
A.1 The sqDH problem considers the task of

receiving two group elements, G and a · G, where G is a generator of a cyclic group of a κ-bit
prime order q and a ∈ Zq is uniformly sampled, and outputting the group element a2 ·G. Bresson,
Chevassut, and Checkpoint [BCP04] showed that solving the sqDH problem reduces to solving the
CDH problem on two independent instances. Therefore, the algorithm B can be transformed into
an algorithm C that runs in time tC ≈ tB and solves the CDH problem with probability ϵC = ϵ2B.
Shoup’s concrete hardness result for CDH problem [Sho97] provides us with the bound ϵC ≤ t2C/2

κ,
which leads to the bound

ϵA ≤
q2A · tA
2κ/2

(1.1)

1Chou and Orlandi proved that if an attacker A breaks the security of their protocol with probability ϵA, then A
must have issued two random-oracle queries that can be used to solve the sqDH problem. Thus, guessing the indices
of these two queries leads to the q2A factor.
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on the concrete security of the Chou-Orlandi protocol. For various realistic ranges of the attacker’s
running time tA and number of random-oracle queries qA, the bound stated in Eq. (1.1) is somewhat
insufficient for 256-bit groups (e.g., for κ = 256, it does not provide any guarantee already for
tA = 248 and qA = 240).

1.1 Our Contributions

In this work, we establish a tighter concrete security bound for the Chou-Orlandi protocol (when
augmented with proofs of knowledge, as noted above). Our tighter analysis consists of the following
two steps:

• First, we introduce the list square Diffie-Hellman (ℓ-sqDH) problem and present a tight reduc-
tion from the security of the protocol to the hardness of solving ℓ-sqDH. The ℓ-sqDH problem
is a generalization of the sqDH problem, which considers the task of receiving two group ele-
ments, G and a ·G (as in the sqDH problem), and outputting a list of at most ℓ group elements
that must contain the group element a2 · G. The length ℓ of the list in our reduction is ex-
actly the number of random-oracle queries qA issued by the attacker of the protocol, and this
already improves upon the reduction of Chou and Orlandi (i.e., even without our second step)
by reducing the dependence on the number of such queries from q2A to qA. The fact that our
reduction to the hardness of the ℓ-sqDH problem is tight enables us to completely shift the task
of analyzing the concrete security of the protocol to that of analyzing the concrete hardness of
the ℓ-sqDH problem.

• Second, we prove that the hardness of the ℓ-sqDH problem reduces to that of the decisional
Diffie-Hellman (DDH) problem without incurring a multiplicative loss that depends on ℓ in
either the success probability or the running time. By relying on the hardness of the DDH
problem instead of the CDH problem, we only incur an additive loss of ℓ2/2κ in the success
probability. Here, our key observation is that although the CDH and DDH problems have
the exact same assumed concrete hardness [Sho97], relying on the DDH problem enables our
reduction to test various candidates that it produces (using the idea underlying the above-
mentioned reduction of Bresson, Chevassut, and Checkpoint [BCP04]) for the group element
a2 ·G. Equipped with this observation, we show that any algorithm B that runs in time tB and
solves the ℓ-sqDH problem with probability ϵB can be transformed into an algorithm C that
runs in time tC ≈ tB and solves the DDH problem with probability ϵC ≥ ϵ2B − ℓ2/2κ.

Putting together our two steps and relying on the assumed concrete hardness of the DDH problem
[Sho97], we obtain the following bound on the security of the Chou-Orlandi protocol (which, for
simplicity, we state here in an informal manner):

Theorem 1.1 (Informal). Let A be an attacker that runs in time tA, issues qA random-oracle queries,
and breaks the security of the Chou-Orlandi protocol with probability ϵA in a κ-bit prime-order group.
Then,

ϵA ≤

√
t2A + q2A

2κ
(1.2)

Note that although we have included the additive q2A/2
κ term in the bound stated in Eq. (1.2)

(to explicitly account for the minor security loss in reducing ℓ-sqDH to DDH), the number qA of
random-oracle queries issued by an attacker is clearly upper bounded by the attacker’s running time
tA. Therefore, up to a multiplicative factor of

√
2, our bound implies the bound tA/2

κ/2, which
should be compared to the bound q2A · tA/2κ/2 provided by the analysis of Chou and Orlandi.
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We provide our analysis within the standard real-vs-ideal framework considering static corrup-
tions by malicious adversaries. Within this framework, we provide a concrete security treatment by
accounting for the statistical distance between a real-model execution with a given adversary and
an ideal-model execution with a corresponding simulator (the simulator we construct is black-box
and non-rewinding, which implies UC security [KLR10]). More specifically, we bound the statistical
distance between an ideal-model execution and an execution in a hybrid model in which the un-
derlying zero-knowledge functionalities are modeled via ideal functionalities. This guarantees that
our concrete analysis focuses on the security of the protocol in a modular manner that distinguishes
between any security loss that may result from the protocol itself and any such loss that may result
from any particular choice for implementing the zero-knowledge functionalities.

1.2 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2, we present some standard
notation and basic cryptographic assumptions, as well as briefly provide the required background on
the real-vs-ideal framework for two-party computation. In Section 3, we introduce the List Square
Diffie-Hellman problem and analyze its concrete hardness. In Section 4, we present the augmented
Chou-Orlandi protocol and analyze its concrete security.

2 Preliminaries

For any distribution X, we denote by x← X the process of sampling a value x from the distribution
X. Similarly, for any set X , we denote by x ← X the process of sampling a value x from the
uniform distribution over X . For any two distributions, X and Y , we denote by SD(X,Y ) their
statistical distance. A function ν : N → R+ is negligible if for any polynomial p(·) there exists an
integer N such that for all κ > N it holds that ν(κ) ≤ 1/p(κ). For any two distribution ensembles,
X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we let X ≡s Y denote the existence of a negligible function ν such
that SD(Xκ, Yκ) ≤ ν(κ) for all κ ∈ N.

2.1 Groups and Hardness Assumptions

We rely on cryptographic hardness assumptions in prime-order groups, and model such groups as
generated via a group-generation algorithm GGen. On input 1κ, where κ ∈ N is the security param-
eter, such a group-generation algorithm outputs the description G = (G, G, q) of a cyclic group G of
order q that is generated by G ∈ G, where q is a κ-bit prime.

Relative to groups G = (G, G, q) that are produced by such a group-generation algorithm, our
starting point for computational hardness is based on the computational Diffie-Hellman (CDH),
decisional Diffie-Hellman (DDH), and square Diffie-Hellman (sqDH) problems, defined as follows:

Definition 2.1. Let GGen be a group-generation algorithm. For κ ∈ N and algorithm A, let

AdvCDH
GGen,A(κ)

def
= Pr

(a,b)←Z2
q

[A (G, a ·G, b ·G) = ab ·G]

AdvDDH
GGen,A(κ)

def
=

∣∣∣∣∣ Pr
(a,b)←Z2

q

[A (G, a ·G, b ·G, ab ·G) = 1]

− Pr
(a,b,c)←Z3

q

[A (G, a ·G, b ·G, c ·G) = 1]

∣∣∣∣∣
AdvsqDH

GGen,A(κ)
def
= Pr

a←Zq

[
A (G, a ·G) = a2 ·G

]
3



where the probability is additionally taken over the choice of G = (G, G, q) ← GGen(1κ) and over
A’s internal randomness.

Definition 2.2. For X ∈ {CDH,DDH, sqDH}, we say that the X problem is hard with respect to GGen
if for any probabilistic polynomial-time non-uniform algorithm A there exists a negligible function ν
such that for all κ ∈ N it holds that

AdvX
GGen,A(κ) ≤ ν(κ) .

In addition, for any functions t = t(κ) and ϵ = ϵ(κ), we say that the X problem is (t, ϵ)-hard with
respect to GGen if for any non-uniform algorithm A that runs in time t and for all κ ∈ N it holds that

AdvX
GGen,A(κ) ≤ ϵ(κ) .

Concrete security baseline: Generic-group CDH and DDH hardness. As our baseline for
analyzing the concrete security guarantees of our protocol, we rely on the classic generic-group
hardness of the CDH and DDH problems (which is identical to that of the discrete logarithm problem)
[Sho97, Mau05]. Specifically, following standard practice in groups where no better-than-generic
algorithms are currently known for these problems, we rely on the following assumption with respect
to some underlying group-generation algorithm:

Assumption 2.3 (Concrete hardness of CDH and DDH). For each X ∈ {CDH,DDH} and for any
t = t(κ), the X-problem is (t, ϵ)-hard with respect to an underlying GGen, where ϵ(κ) = t2(κ)/2κ.

Although an analogous assumption can be made for the concrete hardness of the sqDH problem,
the sqDH problem is somewhat less studied compared to the extensively explored CDH and DDH
problems. To minimize the extent to which its concrete hardness is dependent on idealized models,
Bresson, Chevassut, and Checkpoint [BCP04] proved the following lemma, which reduces the task
of solving the sqDH problem to that of solving the CDH problem on two independent instances:

Lemma 2.4 ([BCP04]). Let GGen be a group-generation algorithm. For any sqDH-algorithm A that
runs in time tA = tA(κ) there exists a CDH-algorithm B that runs in time tB(κ) ≤ 2tA(κ)+5τmult(κ)+
2τadd(κ) + 3τinv(κ) such that

AdvsqDH
GGen,A(κ) ≤

√
AdvCDH

GGen,B(κ),

for all κ ∈ N, where τmult(κ), τadd(κ) and τinv(κ) denote upper bounds on the running times required
for computing the group multiplication, addition and inversion operations, respectively, in groups
produced by GGen(1κ).

2.2 Secure Two-Party Computation

We consider the standard real-vs-ideal framework for static corruptions by malicious adversaries. In
what follows, for any function g(x1, x2) we denote by Fg the functionality that computes g(x1, x2)
when given inputs x1 and x2 from P1 and P2, respectively. We now formally define executions in the
real model, the ideal model, and the hybrid model for a protocol Π and functionality Fg.
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Execution in the real model. When executing a two-party protocol Π in the real model, the
real-model adversary A first receives the input of the corrupted party and an arbitrary auxiliary input
aux. Then, the adversary takes the role of the corrupted party by sending all messages on their behalf
using an arbitrary polynomial-time strategy, whereas the honest party follows the instructions of the
protocol using their prescribed input. We denote by REALΠ,A(aux)(x1, x2, κ) the joint distribution of
the random variables corresponding to the output of the adversary A and the output of the honest
party in an execution of Π in the real model, where P1 holds input (1κ, x1) and P2 holds input
(1κ, x2).

Execution in the ideal model. When computing a functionality Fg in the ideal model, the
ideal-model adversary Sim first receives the input of the corrupted party and an arbitrary auxiliary
input aux. Then, both parties send inputs to a trusted party, where the honest party sends their
prescribed input, and the corrupted party controlled by Sim may send any value of their choice. We
denote by (x1, x2) the prescribed inputs of the two parties, and by (x′1, x

′
2) the inputs sent to the

trusted party (we assume that if one of these inputs is invalid then the trusted party substitutes it
with some default input).

In turn, the trusted party computes (y1, y2) = g(x′1, x
′
2), and sends ideal-model adversary Sim the

output yi of the corrupted party Pi. If the adversary responds with continue, then the trusted party
sends y3−i to the honest party P3−i who outputs y3−i. Otherwise, if the adversary responds with
abort, then the trusted party sends abort to the honest party P3−i who outputs abort. We denote
by IDEALFg ,Sim(aux)(x1, x2, κ) the joint distribution of the random variables corresponding to the
output of the adversary Sim and the output of the honest party in an ideal-model computation of
Fg, where P1 holds input (1κ, x1) and P2 holds input (1κ, x2).

Execution in the F-hybrid model. The above formulation of executing a protocol Π in the real
model extends to that of executing a protocol Π in the F-hybrid model, where both parties may
access a trusted party that computes F with abort as in the ideal model. That is, whenever either
one of the parties or both parties send inputs to the trusted party computing F , the trusted party
first sends the output of the corrupted party to the adversary. Then, the adversary responds with
either continue or abort, instructing the trusted party to send the honest party either their output
or abort, respectively. We denote by HYBRIDFΠ,A(aux)(x1, x2, κ) the joint distribution of the random
variables corresponding to the output of the adversary A and the output of the honest party in an
execution of Π in the F-hybrid model, where P1 holds input (1κ, x1) and P2 holds input (1κ, x2).

Definition 2.5. Let Π, F and g be as above. Then, Π is said to securely compute Fg with abort
if for any i ∈ {1, 2} and for every probabilistic polynomial-time adversary A in the F-hybrid model
corrupting the party Pi, there exists a probabilistic polynomial-time adversary Sim in the ideal model
corrupting the same party Pi such that for any x1, x2, aux ∈ {0, 1}∗ it holds that{

HYBRIDFΠ,A(aux)(x1, x2, κ)
}
≡s

{
IDEALFg ,Sim(aux)(x1, x2, κ)

}
UC security. The proof security we present in Section 4 provides an ideal-model adversary S that
simulates the view of any adversary A in the hybrid model without rewinding it. Therefore, if the
ideal functionalities in the hybrid model are instantiated with UC-secure protocols [Can01], then the
entire protocol is UC-secure as proven by Kushilevitz, Lindell and Rabin [KLR10].2

2For computationally-secure protocols, Kushilevitz, Lindell and Rabin [KLR10] require input availability (or start
synchronization), which is satisfied in our setting since we consider static corruptions in a two-party setting.
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2.3 Ideal Functionalities

We now present the (batch) oblivious transfer functionality that we prove to be realized by the
augmented Chou-Orlandi protocol, as well as the ideal functionalities on which the protocol relies
within the hybrid model:

• FOT. The OT functionality with batch parameter n ∈ N is defined as follows:

– Upon receiving (sender, {(mj,0,mj,1)}j∈[n]) from party Pi and (receiver, c) from party P3−i,
where i ∈ {1, 2} and c = (c1, . . . , cn) ∈ {0, 1}n, send (receive, {mj,cj}j∈[n]) to party P3−i.

• FGGen. The group-generation functionality is defined as follows:

– Upon receiving (generate, 1κ) from both parties, produce a description G = (G, G, q) of a
cyclic group G of order q that is generated by G ∈ G, where q is a κ-bit prime, and send
(group,G) to both parties.

• FRO. The random-oracle functionality with output-length parameter n ∈ N is defined as
follows:

– Upon receiving (evaluate, x) from party Pi, where i ∈ {1, 2}, if a pair (x, y) has been
previously stored then send (output, x, y) to Pi. If a tuple (x, y) has not been previously
stored, uniformly sample y ← {0, 1}n, store the pair (x, y), and send (output, x, y) to Pi.

• FZK-DL and FZK-PED. The ZK-DL and (batched) ZK-PED functionalities over a group G =
(G, G, q) are defined as the following standard zero-knowledge functionality for the relations
RDL = {((G,A), a) ∈ G2 × Zq | A = a · G} and RPED = {((G,A, {Ci}i∈[n]), {(ci, ri)}i∈[n]) ∈
Gn+2 × Z2n

q | Ci = ci ·A+ ri ·G ∀i ∈ [n]}, respectively:

– Upon receiving (proof, x, w) from party Pi, where i ∈ {1, 2}, if (x,w) /∈ R then send
(reject, x) to party P3−i, and otherwise send (verified, x) to party P3−i.

3 The List-sqDH Problem and its Concrete Hardness

The concrete security guarantees we provide in this work rely on the following assumption, which is
parameterized by a function ℓ = ℓ(κ) of the security parameter κ ∈ N. In what follows, recall that
GGen is a group-generation algorithm that on input 1κ produces a description G = (G, G, q) of a
cyclic group G of order q that is generated by G ∈ G, where q is a κ-bit prime.

Definition 3.1 (List-square Diffie-Hellman (ℓ-sqDH)). For any κ ∈ N, function ℓ = ℓ(κ), and
algorithm A, let

Advℓ-sqDH
GGen,A(κ)

def
= Pr

[
A (G, a ·G) = (G1, . . . , Gℓ) ∧ ∃i ∈ [ℓ] s.t. Gi = a2 ·G

]
,

where the probability is taken over the choices of G = (G, G, q) ← GGen(1κ) and a ← Zq, and over
A’s internal randomness.

Definition 3.2. We say that the ℓ-sqDH problem is hard with respect to GGen if for any probabilistic
polynomial-time non-uniform algorithm A there exists a negligible function ν such that for all κ ∈ N
it holds that

Advℓ-sqDH
GGen,A(κ) ≤ ν(κ) .
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In addition, for any functions t = t(κ) and ϵ = ϵ(κ), we say that the ℓ-sqDH problem is (t, ϵ)-hard
with respect to GGen if for any non-uniform algorithm A that runs in time t and for all κ ∈ N it holds
that

Advℓ-sqDH
GGen,A(κ) ≤ ϵ(κ) .

Note that, for ℓ = 1, the 1-sqDH problem is identical to the sqDH problem, and as ℓ increases,
then algorithms for solving the ℓ-sqDH problem are allowed to output more potential candidates
for a2 · G. Nevertheless, for any ℓ ∈ N, any algorithm A for solving the ℓ-sqDH problem can be
transformed into an algorithm B for solving the sqDH problem by choosing uniformly one the ℓ
outputs produced by A and outputting it. The running time tB of the algorithm B is essentially
identical to the running time tA of the algorithm A, and for any κ ∈ N it holds that

Advℓ-sqDH
GGen,A(κ) ≤ ℓ ·AdvsqDH

GGen,B(κ) .

For large values of ℓ, such as the number qA of random-oracle queries issued by the algorithm A (as
obtained by our security proof in Section 4), this leads to a rather loose concrete security guarantee.
Specifically, when relying on the assumed generic hardness of the CDH problem as our baseline (see
Assumption 2.3), Lemma 2.4 of Bresson, Chevassut and Pointcheval [BCP04] yields the bound

Advℓ-sqDH
GGen,A(κ) ≤ ℓ ·

√
(tA)2

2κ
=

ℓ · tA
2κ/2

.

In the following lemma, we present a more direct approach for establishing concrete security guar-
antees for the ℓ-sqDH problem by reducing its security directly to that of the DDH problem (instead
of reducing its security to the CDH problem via the sqDH problem). This enables us to obtain a
concrete security bound that is essentially identical to that of the sqDH problem by relying on the
assumed generic hardness of the DDH problem as our baseline. This direct approach provides a much
stronger concrete security guarantee for the ℓ-sqDH problem already for 256-bit groups.

As a technical ingredient, our proof relies on the ability to decide, as fast as possible, whether
two sets have a non-empty intersection. Each set consists of ℓ strings of length κ bits (representing
group elements), and the running time required for this task affects the tightness of our statement.
For stating our lemma without restricting ourselves to a particular implementation, we denote by
tSI(ℓ, κ) an upper bound on the time required for deciding whether such two sets have a non-empty
intersection.

Lemma 3.3. Let ℓ = ℓ(κ) be a function of the security parameter κ ∈ N. For any ℓ-sqDH algorithm
A that runs in time tA = tA(κ) there exists a DDH algorithm D that runs in time tD ≤ 2tA+tSI(ℓ, κ)+
(ℓ+ 4) · τadd(κ) + τinv(κ) such that

Advℓ-sqDH
GGen,A(κ) ≤

√
AdvDDH

GGen,D(κ) +
ℓ2

2κ

for every κ ∈ N, where τadd(κ) and τinv(κ) denote the running times required for computing the group
addition and inversion operations, respectively, in groups produced by GGen(1κ).

We note that it is quite simple to avoid a quadratic overhead of tSI = ℓ2 (which will not yield any
concrete security improvement) by sorting the two lists in time O(ℓ log ℓ). More subtle approaches
may be used to reduce this overhead to O(ℓ). For example, given a dictionary data structure
that supports (with high probability) a linear time initialization and constant-time lookups in the
unit-cost RAM model (see, for example, [Pag00, PR04, ANS10] and the many references therein),
one can initialize the dictionary to hold the ℓ strings of the first set, then perform a lookup for
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each string of the second set (for simplicity, we ignore the polynomially-small error probability that
such a dictionary may introduce). Accounting for group addition at unit cost, we then obtain
tD ≤ 2tA + O(ℓ), and therefore the concrete security bound provided by Lemma 3.3 for the ℓ-sqDH
problem is equivalent to the bound tA/2

κ/2 provided by Lemma 2.4 for the sqDH problem.

Proof of Lemma 3.3. Let ℓ = ℓ(κ) be a function of the security parameter κ ∈ N, and let A be an
algorithm for the ℓ-sqDH problem. Let D be the following DDH algorithm:

1. On input (G, Ha, Hb,W ), where G = (G, G, q) and Ha, Hb,W ∈ G, compute

(G1, . . . , Gℓ) ← A (G, Ha +Hb)(
G′1, . . . , G

′
ℓ

)
← A (G, Ha −Hb)

2. Let L = {G1, . . . , Gℓ} and L′ = {4 ·W +G′1, . . . , 4 ·W +G′ℓ}.

3. If L ∩ L′ ̸= ∅ then output 1, and otherwise output 0.

For analyzing D’s success probability, note that if the group element W is uniformly distributed and
independent of Ha and Hb, then it is also independent of the inputs, Ha+Hb and Ha−Hb, provided
to A. Thus, it is also independent of the outputs, (G1, . . . , Gℓ) and (G′1, . . . , G

′
ℓ), produced by A.

Therefore, when considering the case in which Ha = a ·G, Hb = b ·G and W = c ·G for uniformly
and independently sampled a, b, c← Zq, it holds that

Pr [D (G, Ha, Hb,W ) = 1] = Pr
[
∃i, j ∈ [ℓ] s.t. Gi = 4 ·W +G′j

]
≤

∑
i,j∈[ℓ]

Pr
[
4 ·W = Gi −G′j

]
=

ℓ2

q

≤ ℓ2

2κ
. (3.1)

For considering the case in which Ha = a · G, Hb = b · G and W = ab · G for uniformly and
independently sampled a, b ← Zq, we denote by Success and Success′ the events in which A is
successful in their first and second execution, respectively. Since the transformation (a, b) → (a +
b, a − b) is invertible over Zq, the inputs Ha + Hb = (a + b) · G and Ha − Hb = (a − b) · G are
similarly uniformly and independently distributed, and therefore the events Success and Success′ are
independent. Conditioned on these two events, there exist i, j ∈ [ℓ] such that Gi = (a+ b)2 ·G and
G′j = (a− b)2 ·G, and therefore

Gi −G′j = 4ab ·G = 4 ·W.

Therefore, conditioned on the events Success and Success′, the algorithm D always outputs 1, and
we have

Pr [D (G, a ·G, b ·G, ab ·G) = 1] ≥ Pr
[
Success ∧ Success′

]
= (Pr [Success])2

=
(
Advℓ-sqDH

GGen,A(κ)
)2

. (3.2)

Putting together Eq. (3.1) and (3.2) we obtain

AdvDDH
GGen,D(κ) = |[D (G, a ·G, b ·G, ab ·G) = 1]− [D (G, a ·G, b ·G, c ·G) = 1]|

≥
(
Advℓ-sqDH

GGen,A(κ)
)2
− ℓ2

2κ
,
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where a, b, c ← Zq, as required. Finally, in terms of D’s running time, note that D invokes A twice,
performs ℓ+4 additions of group elements and a single inversion of a group element, and determines
whether L ∩ L′ ̸= ∅. Thus, tD ≤ 2tA + tSI(ℓ, κ) + (ℓ+ 4) · τadd + τinv.

4 The Augmented Oblivious Transfer Protocol

In this section we present the augmented Chou-Orlandi batch oblivious transfer protocol and analyze
its security. As discussed in Section 1.1, we provide our analysis within the standard real-vs-ideal
framework considering static corruptions by malicious adversaries. In this framework, we consider
a hybrid model in which the underlying zero-knowledge functionalities are modeled via ideal func-
tionalities. This guarantees that our concrete analysis focuses on the security of the protocol in a
modular manner that distinguishes between any security loss that may result from the protocol itself
and any such loss that may result from any particular choice for implementing the zero-knowledge
functionalities. In addition to the zero-knowledge functionalities, the protocol relies on ideal func-
tionalities for modeling a random oracle and a group-generation algorithm (see Section 2.3 for formal
descriptions of the ideal functionalities).

The protocol, described in Figure 1, is parameterized by the security parameter κ ∈ N, and by
a “batch parameter” n = n(κ) that determines the number of oblivious transfer instances whose
executions are batched together. For simplicity, we assume that the sender’s input strings are of
length κ bits.

Correctness. As shown by Chou and Orlandi [CO15a], for any inputs {(mi,0,mi,1)}i∈[n] and
c = (c1, . . . , cn) ∈ {0, 1}n, and for any i ∈ [n], the correctness of the protocol is established by
distinguishing between the cases ci = 0 and ci = 1:

• Case I: ci = 0. In this case, the receiver computes Ci = ri · G and the sender computes
Di,0 = a · Ci = (a · ri) · G. Then, the receiver recovers the exact same Di,0 by computing
ri ·A = ri · (a ·G), and this enables to retrieve mi,0.

• Case II: ci = 1. In this case, the receiver computes Ci = A+ ri ·G = (a+ ri) ·G and the sender
computes Di,1 = a · Ci − T = (a · (a + ri) − a2) · G = (a · ri) · G. Then, the receiver recovers
the exact same Di,1 by computing ri ·A = ri · (a ·G), and this enables to retrieve mi,1.

Security. The following lemma captures the concrete security guarantees of the protocol ΠOT:

Lemma 4.1. Let F = (FGGen,FRO,FZK-DL,FZK-PED), let tA = tA(κ) and qA = qA(κ) be functions of
the security parameter κ ∈ N, and let A be an adversary in the F-hybrid model that runs in time tA
and issues at most qA queries to the random-oracle functionality. Then, there exist a non-rewinding
ideal-model adversary Sim that runs in time tSim = O(tA) and a non-uniform algorithm B for solving
the qA-sqDH problem that runs in time tB = O(tA) for which

SD
(
HYBRIDFΠOT,A(aux)

(x1, x2, κ), IDEALFOT,Sim(aux)(x1, x2, κ)
)
≤ AdvqA-sqDH

GGen,B (κ)

for any security parameter κ ∈ N, input (x1, x2) =
(
{(mi,0,mi,1)}i∈[n] , c

)
, and auxiliary information

aux ∈ {0, 1}∗.

We note that the non-uniformity of the qA-sqDH algorithm B is used for providing it with a
triplet (x1, x2, aux) that essentially maximizes the statistical distance between the hybrid and ideal

9



The Batch Oblivious Transfer Protocol ΠOT

Parameters: Security parameter κ ∈ N, batch parameter n ∈ N.

Ideal functionalities: FGGen, FRO = H : {0, 1}∗ → {0, 1}κ, FZK-DL and FZK-PED.

Parties and inputs:

• Sender S: {(mi,0,mi,1)}i∈[n], where mi,b ∈ {0, 1}κ for every i ∈ [n] and b ∈ {0, 1}.

• Receiver R: c = (c1, . . . , cn) ∈ {0, 1}n.

Execution:

1. The parties jointly call FGGen on input 1κ, and obtain a description G = (G, G, q) of a cyclic group G
of order q that is generated by G ∈ G, where q is a κ-bit prime.

2. S: Sample a← Zq, send A = a ·G to R, and send (proof, (G,A), a) to FZK-DL.

3. R: Upon receiving A from S and (verified, (G,A)) from FZK-DL, sample r = (r1, . . . , rn)← Zn
q , and for

every i ∈ [n] compute Ci = ci ·A+ ri ·G. Then, send (proof, (G,A,C1, . . . , Cn), (c, r)) to FZK-PED.

4. S: Upon receiving (verified, (G,A,C1, . . . , Cn)) from FZK-PED, set T = a2 · G, and for every i ∈ [n]
compute

Di,0 = a · Ci

Di,1 = Di,0 − T

ki,b = H (i,Di,b) for each b ∈ {0, 1}
wi,b = ki,b ⊕mi,b for each b ∈ {0, 1}.

Then, send {(wi,0, wi,1)}i∈[n] to R.

5. R: Upon receiving {(wi,0, wi,1)}i∈[n] from S, for every i ∈ [n] compute

Di,ci = ri ·A
ki,ci = H (i,Di,ci)

mi,ci = ki,ci ⊕ wi,ci ,

and output (m1,c1 , . . . ,mn,cn).

Figure 1: The Batch Oblivious Transfer Protocol ΠOT.
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executions for our ideal-model adversary Sim for every κ ∈ N (see the proof below). This form
of non-uniformity is not essential, and can be avoided by using the above protocol to implement
a random-sender OT, in which the sender randomly samples the input {(mi,0,mi,1)}i∈[n] instead
of being provided with a prescribed input. Then, a full-fledged OT protocol is easily derived from
a random-sender one using the standard technique of masking the sender’s actual input with the
randomly-sampled one (this does not affect the concrete security of the protocol).

Equipped with Lemma 4.1, the following corollary now follows directly by combining it with
Lemma 3.3:

Corollary 4.2. Based on Assumption 2.3, for any adversary A in the F-hybrid model that runs in
time tA and issues at most qA queries to the random-oracle functionality there exists a non-rewinding
ideal-model adversary Sim that runs in time tSim = O(tA) for which

SD
(
HYBRIDFΠOT,A(aux)

(x1, x2, κ), IDEALFOT,Sim(aux)(x1, x2, κ)
)
≤

√
t2A(κ) + q2A(κ)

2κ

for any security parameter κ ∈ N, input (x1, x2) =
(
{(mi,0,mi,0)}i∈[n] , c

)
, and auxiliary information

aux ∈ {0, 1}∗.

In the remainder of this section, we provide the proof of Lemma 4.1.

Proof of Lemma 4.1. We separately consider the case where the sender S is corrupted and the
case where the receiver R is corrupted.

Case I: S is corrupted. Let A be a probabilistic polynomial-time adversary corrupting S in the F-
hybrid model, where F = (FGGen,FRO,FZK-DL,FZK-PED), and denote the inputs held by the parties in
the ideal model by (x1, x2) =

(
{(mi,0,mi,1)}i∈[n] , c

)
. We construct a probabilistic polynomial-time

ideal-model adversary Sim as follows:

1. On input ({(mi,0,mi,0)}i∈[n] , aux), perfectly simulate the group-generation functionality FGGen

by producing a description G = (G, G, q) of a cyclic group G of order q that is generated by
G ∈ G, where q is a κ-bit prime.

2. Invoke A on the input ({(mi,0,mi,0)}i∈[n] , aux) and the description G of the cyclic group.
Throughout the execution of A, whenever A issues a random-oracle query x, perfectly simulate
the random-oracle functionality FRO: If the query x has been previously made then retrieve the
stored value H(x) and respond with (output, x,H(x)). Otherwise, uniformly sample H(x) ←
{0, 1}κ, store the pair (x,H(x)), and respond with (output, x,H(x)).

3. Obtain the messages A and (proof, (G,A), a) sent from A to R and FZK-DL, respectively. If
A ̸= a ·G, then submit some fixed input on behalf of S to the ideal functionality FOT, respond
to FOT with abort, and output A’s output. Otherwise (i.e., A = a · G), continue to the next
step.

4. Sample r = (r1, . . . , rn) ← Zn
q , and for every i ∈ [n] compute Ci = ri · G. Then, send

(verified, (G,A,C1, . . . , Cn)) to A on behalf of FZK-PED, and obtain the messages {(wi,0, wi,1)}i∈[n]
sent from A to R.
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5. Set T = a2 ·G, and for every i ∈ [n] compute

Di,0 = a · Ci

Di,1 = Di,0 − T

ki,b = H (i,Di,b) for each b ∈ {0, 1}
m′i,b = ki,b ⊕ wi,b for each b ∈ {0, 1}.

6. Submit the input
{(

m′i,0,m
′
i,1

)}
i∈[n]

on behalf of S to the ideal functionality FOT, respond to

FOT with continue, and output A’s output.

Provided with the above description of Sim, the perfect hiding property of the Pedersen commit-
ments C1, . . . , Cn (together with our above analysis of the correctness of the protocol), guarantee
that the two distributions HYBRIDFΠOT,A(aux)

(x1, x2, κ) and IDEALFOT,S(aux)(x1, x2, κ) are identical.
Specifically, the only difference is that Sim computes Ci = ri ·G instead of Ci = ci ·A+ri ·G for every
i ∈ [n]. However, the resulting distributions are identical since each ri ∈ Zq is sampled uniformly.

Case II: R is corrupted. Let A be a probabilistic polynomial-time adversary corrupting R in
the F-hybrid model, where F = (FGGen,FRO,FZK-DL,FZK-PED), and denote the inputs held by
the parties in the ideal model by (x1, x2) =

(
{(mi,0,mi,0)}i∈[n] , c

)
. We construct a probabilistic

polynomial-time ideal-model adversary Sim as follows:

1. On input (c, aux), perfectly simulate the group-generation functionality FGGen by producing a
description G = (G, G, q) of a cyclic group G of order q that is generated by G ∈ G, where q is
a κ-bit prime.

2. Invoke A on the input (c, aux) and the description G of the cyclic group. Throughout the
execution of A, whenever A issues a random-oracle query x, perfectly simulate the random-
oracle functionality FRO: If the query x has been previously made then retrieve the stored
value H(x) and respond with (output, x,H(x)). Otherwise, uniformly sample H(x)← {0, 1}κ,
store the pair (x,H(x)), and respond with (output, x,H(x)).

3. Sample A ← G uniformly, and send A and (verified, (G,A)) to A on behalf of S and FZK-DL,
respectively.

4. Obtain the message (proof, (G,A,C1, . . . , Cn), (c
′, r′)) sent by A to FZK-PED, and let c′ =

(c′1, . . . , c
′
n) ∈ {0, 1}n and r′ = (r′1, . . . , r

′
n) ∈ Zn

q . If for some i ∈ [n] it holds that Ci ̸=
c′i · A + r′i · G, then submit some fixed input on behalf of R to the ideal functionality FOT,
respond to FOT with abort, and output A’s output. Otherwise (i.e., Ci = c′i · A + r′i · G for
every i ∈ [n]), continue to the next step.

5. Submit the input c′ on behalf of R to the ideal functionality FOT, and obtain an output
{mi}i∈[n] from FOT.

6. For every i ∈ [n] compute Di,c′i
= r′i · A and set ki,c′i = H(i,Di,c′i

). If H(i,Di,c′i
) has not

yet been defined via a random oracle query previously issued by A, then uniformly sample
H(i,Di,c′i

) ← {0, 1}κ and store the pair ((i,Di,c′i
), H(i,Di,c′i

)) for consistently responding to
A’s following random oracle queries.

7. For every i ∈ [n] set wi,c′i
= ki,c′i ⊕mi, and uniformly sample wi,1−c′i ← {0, 1}

κ.
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8. Send {(wi,0, wi,1)}i∈[n] to A on behalf of S, and output A’s output.

Provided with the above description of Sim, we now upper bound the statistical distance between
the two distributions HYBRIDFΠOT,A(aux)

(x1, x2, κ) and IDEALFOT,S(aux)(x1, x2, κ). First, note that
the values Di,c′i

= r′i · A are identically distributed in both cases. Therefore the only difference
is that Sim uniformly sample wi,1−c′i ← {0, 1}

κ, instead of defining Di,1−c′i = a2 · G − r′i · A and
then setting wi,1−c′i = mi,1−c′i ⊕H(i,Di,1−c′i). Therefore, as long as for every i ∈ [n] the adversary
A does not query the random-oracle functionality on the input (i, a2 · G − r′i · A), then the two
distributions HYBRIDFΠOT,A(aux)

(x1, x2, κ) and IDEALFOT,S(aux)(x1, x2, κ) are identical. Thus, letting
E(x1, x2, aux, κ) denote the event in which during the simulation by Sim the adversary A queries the
random-oracle functionality on the input (i, a2 ·G− r′i ·A) for some i ∈ [n], it holds that

SD
(
HYBRIDFΠOT,A(aux)

(x1, x2, κ), IDEALFOT,Sim(aux)(x1, x2, κ)
)
≤ Pr [E(x1, x2, aux, κ)] .

In the remainder of the analysis of this case, we present an algorithm B for solving the qA-sqDH
problem for which

Pr [E(x1, x2, aux, κ)] ≤ AdvqA-sqDH
GGen,B (κ) (4.1)

for every κ ∈ N and for every (x1, x2, aux). On input (1κ,G, A), algorithm B first internally emu-
lates the above-described ideal-model execution IDEALFOT,S(aux)(x1, x2, κ) for the triplet (x1, x2, aux)
that maximizes the probability of the event E(x1, x2, aux, κ) (note that, for every k ∈ N, we use
(x1, x2, aux) as a non-uniform advice for the algorithm B).

Let r′ = (r′1, . . . , r
′
n) ∈ Zn

q denote the values extracted by Sim in Step 4 of Sim’s description,
and let {(ij , Hj)}j∈[qA] denote the random oracle queries issued by A. For every j ∈ [qA], algorithm
B computes Gj = r′ij · A + Hj and outputs (G1, . . . , GqA). Clearly, if A queries the random-oracle
functionality on the input (i, a2 · G − r′i · A) for some i ∈ [n], then for some j ∈ [qA] it holds that
(ij , Hj) = (ij , a

2 ·G− r′ij ·A), and therefore Gj = a2 ·G. That is, in this case, the algorithm B solves
the given qA-sqDH instance, and therefore Eq. 4.1 holds as required.
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