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Abstract

Hyperledger Fabric is a unique permissioned platform for implementing blockchain in a consortium. It has a distinct transaction
flow of execute-order-validate. During the execution phase, a pre-determined set of endorsing peers execute a transaction and sign
the transaction response. This process is termed endorsement. In the validation phase, peers validate the transaction with reference
to an endorsement policy. The identity of the endorsing organizations is obtainable to all the nodes in the network through the
endorser signature and endorsement policy. Knowing this has led to serious vulnerabilities in the blockchain network.
In this paper, we propose a privacy-preserving endorsement system which conceals both endorser signature and endorsement policy.
Endorser is anonymized by replacing the signature scheme with a scoped-linkable threshold ring signature scheme. Endorsement
policy is secured using Pedersen commitments and non-interactive proof of knowledge of integer vector. We also achieve efficiency
in the computation by employing non-interactive proof of co-prime roots. We provide the necessary security analysis to prove
that the proposed work guarantees anonymity and unlinkability properties. A comparative analysis of our work with an existing
framework is provided which shows that the proposed scheme offers higher level of security and it is optimal in terms of efficiency.

Keywords: Hyperledger Fabric, blockchain, linkable threshold ring signature, endorsement policy, non-interactive zero
knowledge, proof of knowledge, privacy-preserving endorsement system

1. Introduction

Etymology dictates the origin of ledger as a service book
with substantial magnitude that is kept in one place with open
access. With time, physical ledgers hosted accounting informa-
tion in an orderly fashion. Blockchain is a digital ledger that
stores transactional data in a time-stamped manner. It is dis-
tributive in nature and requires all or majority of the participants
to agree on the data being stored through consensus. The tech-
nology guarantees non-repudiation to the participants through
the use of strong cryptographic hash functions. It constitutes
chain of blocks with each block containing a set of transac-
tions and the connectivity comes with every block storing the
hash of previous block. There are three important variants of
blockchain based on the need for authorization:

1. Public or Permissionless Blockchain: Any node can join
the network anytime without any prior permission.

2. Private or Permissioned Blockchain: Only authorized en-
tities within an organization are allowed to join the net-
work.

3. Consortium Blockchain: This is a variant of permissioned
blockchain where consortium of organizations are gener-
ally the participants of this network.
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1.1. Hyperledger Fabric
Hyperledger Fabric [1] an open source blockchain platform

hosted by Linux Foundation is a consortium blockchain frame-
work. It has a membership service provider that provides the
identities and credentials to each of the engaging organization.
It stands out from other permissioned framework for its unique
transaction flow and the various privacy and security options
offered by it: i)Channels allow a subset of parties to commu-
nicate without the other members even knowing the existence
of such a channel, ii)Identity Mixer / Idemix to anonymize the
clients with a zero-knowledge proof based signature scheme by
Camenisch et. al., [2], and provides iii)SideDB for the partici-
pants to store sensitive information locally, with only the hashes
of private information stored on-chain. Hyperledger as a com-
munity evolves continuously with researchers contributing to
the current limitations [3]. Fabric Architecture workflow is de-
picted in figure 1

1. Organization 1 requests the services of Hyperledger Fab-
ric through the Fabric client application.

2. The client sends a transaction proposal to the peers in the
Fabric network as dictated by the endorsement policy.

3. Peers check the identity and signature of the client and
proceed further only if it is a registered client. Peers
may be Endorsers or Committers. Endorser peers hold
the copy of chaincode which is executed and the peers
sign the results and send it back to the clients. Not all
peers execute the chaincode but only a subset based on
the endorsement policy performs execution. Endorse-
ment policy is a monotone logical expression of policy
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Figure 1: Hyperledger Fabric Workflow

principals such as ”two out of three” or ”(Org1.peer ∨
Org2.peer)or(Org1.member ∧ Org3.member)”. By al-
lowing only a subset of the endorsers to execute a trans-
action fine grained privacy is guaranteed as other permis-
sioned blockchain frameworks require all the nodes in the
network to execute the transaction.

4. On receiving the proposal response message the client
forwards the transaction to the orderer.

5. The role of the orderer is to batch the transactions ac-
cording to the timestamps into a block and broadcast the
block onto the network for validation

6. Peers check the validity of transactions in the block. Val-
idation ensures i) if every transaction has received suf-
ficient endorsement (by checking the identity and sig-
nature of the endorsers) and ii) the key version number
in the key-value store. The second check guarantees if
the data read during the chaincode execution remains the
same during the endorsement. If both the checks are
passed then a transaction is marked as valid and com-
mitted in the ledger. Else, the transaction is marked as
invalid and is not updated in the ledger state database.

Finally, the client is notified about the transaction status.

1.2. Limitations of Existing Architecture
The endorser signature and endorsement policy leaks the

respective organization and may lead to vulnerabilities such as
DDoS attack. Andola et.al., [4] showed the effects of DDoS at-
tack on the endorsing nodes of Hyperledger Fabric. The latency
of the system is increased by 1.044 seconds and the number of
transactions reduced from 125 to 100 per second.
Apart from securing the endorsers from any attack certain sensi-
tive applications demand peer anonymization as a privacy fea-
ture. Consider a voting scenario in Fabric framework, where
the participating organizations cast their votes by executing the
respective chaincode on the endorser peers. During the valida-
tion process all the peers (of participating organizations) check
the results of the transaction along with endorser signatures,
i.e., in this context the choice of endorser organizations are re-
vealed. Hence such applications demand that the endorsers be
anonymized.
According to the Fabric community [3], the problem of secur-
ing endorser signature and endorsement policy is an open prob-
lem. This paper is motivated by the stated privacy challenges

prevailing in Hyperledger Fabric. The paper proposes a solu-
tion with threshold ring signature scheme that is well known
for screening the identity of the signers. It is also important in
the above mentioned context that same endorsers should not be
allowed to cast their votes more than once. For this, a scheme
that prevents an endorser from signing more than once should
be in place. This is achieved by employing a linkable threshold
ring signature. The endorsement policies are secured through
commitment scheme and a membership proof is generated by
every endorser that the generated ring signature belongs to the
committed organization in the endorsement policy.

1.3. Our Contributions

• Endorser anonymization is achieved in Hyperledger Fab-
ric by employing a (transaction-level) linkable threshold
ring signature scheme which does not require any trusted
key-dealer in a threshold setting.

• The scheme is efficient as it employs linkable threshold
ring signatures of size O(t) from logarithmic size individ-
ual signatures.

• Non-interactive zero-knowledge proof of knowledge of
integer vector is employed along with Pedersen commit-
ment to achieve a privacy-preserving endorsement policy.

• We provide formal security proofs for the privacy-preserving
endorsement system in Hyperledger Fabric based on the
security definitions given in [5].

2. Literature Review

In 2001, the idea of ring signatures were first proposed by
Rivest et. al., [6] that allowed a signer to conceal its identity
amongst a ring or group of signers. Originally it was developed
for whistle-blowing applications that involved sending a piece
of information from an authorized group but screening the exact
individual who sent it. Initially security of ring signatures were
proven secure only under random oracle model [7, 8]. Eventu-
ally ring signature schemes secure under standard model were
developed but with the overhead of signature size being depen-
dent on the ring size [9, 10]. Linkable ring signatures were first
developed by Liu et al.,[11] which is more suitable for e-voting
applications [7] that guarantees no individual can caste their
vote twice. Recently Backes et. al., [12] proposed a linkable
ring signature scheme where the signature size is logarithmic in
the number of signers.
Threshold variants of ring signature [13] allowed t-out-of-n (t <
n) participants to cooperate in the signing process. Literature
has threshold ring signatures secure under random oracle model
[14, 15, 16], standard model [17, 18, 19, 20] and post-quantum
model [21, 22, 23, 24]. The schemes listed above suffer from
atleast one of the shortcomings: i) linear signature size ii) se-
cure only under general assumptions or generic group model iii)
requires a trusted key dealer iv) needs interaction among sign-
ers to cooperate in the signing process. Recently, construction
by Haque et.al., [25] overcomes all the aforesaid shortcomings
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and provides threshold ring signature that are linear in the size
of threshold O(t) .
The first use of threshold ring signatures for Hyperledger Fab-
ric was extensively studied in [26]. A major problem in im-
plementing threshold signature schemes for blockchains is that,
a trusted entity is needed to assemble the signature shares for
verification. In handling this issue, the authors suggest that a
submitting peer at the client interface will perform the aggrega-
tion of signatures. Threshold version of RSA and BLS signa-
tures are employed in [26]. The drawbacks of these threshold
signature schemes are two-fold: attributability of the signature
and unlinkability of endorsers; i.e., how to trace a signature to
its endorser if the need arises and how to ensure that one cannot
tell if the same endorser endorsed two transactions.
In [27], Mazumdar and Ruj proposed an anonymous endorse-
ment system for Fabric by constructing a constant-sized link-
able ring signature (FCsLRS) to address the problem of en-
dorser anonymization. The scheme is efficient as it generates
constant sized signatures. Also, transaction oriented linkabil-
ity is provided to avoid double signing (a construct similar to
double spending) by the same endorser on the same transac-
tion. The signature scheme is secure only under random oracle
model. Authors have suggested employing a threshold version
of the signature scheme that is efficient and secure under stan-
dard model as future work. In [28], a linkable threshold ring
signature scheme is employed to anonymize the endorsers but
results in an inefficient signature size and verification time. In a
subsequent work [29], the authors employ an efficient signature
scheme but prove its security under generic group model.
We propose an anonymization technique that makes use of a
transaction-level linkable threshold ring signature scheme based
on [25] that requires no set up, no trusted key dealer, non-
interactive i.e., no interaction is needed among the signers, ac-
countable, and is secure under standard model.

2.1. Preliminaries

Notations: The security parameter is denoted by λ. PPT in-
dicates probabilistic polynomial time and the notation out ←
A(in) represents a probabilistic algorithm which takes the pa-
rameter in as input and outputs out. The algorithm A here
out ← A(in; r) additionally takes as input the randomness used
to generate the output. A function neglgbl(.) : N → R+ is
called negligible if for all c > 0 there exists a k0 such that
neglgbl(k) < 1/kc ∀k > k0. Any function that is exponentially
small is termed as a negligible function.
Preliminaries can be found in Appendix A.

2.1.1. Linkable Threshold Ring Signature
The proposed Endorser Anonymization Technique adapts

to a linkable threshold ring signature scheme from [25] which
in turn takes the framework from [12]. The generic construc-
tion of the scheme is presented below. The scheme employs the
following components: i) VRF - verifiable random function ii)
PKE - public key encryption scheme iii)S PB - somewhere per-
fectly binding hashing iv) F - one-way permutation function v)
NIWI - non-interactive witness indistinguishable proofs.

Algorithm 1: LTRS.KeyGen(1λ)

(vk, sk)← GenVRF(1λ);
(vkL, skL)← GenVRF(1λ);
(vkmal, skmal)← GenVRF(1λ);
(pk1, sk1)← GenPKE(1λ);
(pk2, sk2)← GenPKE(1λ);
skF ← {0, 1}2λ;
rE ← PKE.R;
CT ← Enc(pk2, skF ; rE);
VK := (vk, vkL, vkmal, pk1, pk2,CT );
S K := (sk, skL, skmal, sk1, sk2, rE ,VK);
Result: return (VK,SK).

Algorithm 1 illustrates the generation of a pair of verifica-
tion and secret key (VK, S K) by every signer. VK is a composi-
tion of three verification keys from verifiable random function
(VRF), two public keys from public key encryption (PKE) and
CT which is a commitment to a secret key of one-way permu-
tation function skF . The anonymity property of ring signature
scheme is guaranteed through the witness indistinguishability
of NIWI proofs. skF helps in this anonymity proof generation
to switch between the witnesses without the use of a common
reference string and trapdoor information. Secret key S K is a
composition of corresponding secret keys along with the verifi-
cation key VK.
On input, a message m, a VRF generates a value and proof
(o, p). Given message m, (o, p) and the verification key vk any-
one can verify the correctness of the evaluation. When proof p
is not known for a corresponding value o, the value looks pseu-
dorandom. This is the idea behind the adapted threshold ring
signature where the proof p is encrypted to achieve (linkable)
anonymity.
Algorithm 2 illustrates the scoped linkable threshold ring sig-
nature generation process. Scoped linkability is a fine grained
notion of linkability. Signatures produced by same signer on
the same scope is linkable, while signatures by same signers
on different scopes are valid and remains unlinkable. In the
context of blockchain, scope is defined as a transaction and
each transaction has a transaction identifier tid. Signing al-
gorithm takes as input the message m, signer secret key S K,
ring of verification keys R, threshold value t and the transac-
tion id tid. Next, four pairs of VRF evaluations are generated:
(o, p); (o′, p′); (oL, pL); (omal, pmal). First one is for the message
m, second one is for the individual threshold ts, next is for scope
id to achieve scoped linkability and final pair is to guarantee
non-malleability of NIWI proof. The individual threshold ts

allows each signer to decide how many other signers should
contribute in the signing process to make the threshold signa-
ture valid such that the individual thresholds together comes up
to the total threshold t. To achieve non-slanderability property
of linkable threshold ring signature, non-malleability of NIWI
proof needs to be guaranteed. Non-slanderability ensures no ef-
ficient adversary could generate a malicious signature such that
it links to an honestly generated signature. Non-malleability of
NIWI proof is achieved by the use of strong one-time signa-
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ture. As mentioned above, only the values of VRFs are avail-
able and the proofs are encrypted and available as cipher texts
ct, ct′, ctL, ctmal respectively. PKE.R represents the randomness
used in the encryption scheme PKE.
NIWI proof is used to prove that the signature is valid under the
committed verification key of the signer. For this two hashing
keys are chosen hks and hki that are computationally binding
at indices s and i respectively. The first one corresponds to the
signer and the other is random. Next, hash digests are calcu-
lated as hs = Hash(hks,R) and hi = Hash(hki,R). Verification
keys VK s and VKi are committed to as (hks, hs); (hki, hi). Next,
the signer calculates a NIWI proof for statement x and witness
w. Next, the partial signature ρ is generated which is a com-
position of VRF evaluations: unique value o for the message
m, unique value o′ for the individual threshold ts, unique value
oL for the transaction id tid, omal to achieve non-malleability;
corresponding encryption of VRF proofs; hashing keys; NIWI
proof and transaction id tid. To achieve non-malleability, the
partial signature is signed with the one-time signature. Finally,
the ring signature σs is generated, that contains the partial sig-
nature, one-time signature on the partial signature and the ver-
ification key of one-time signature. Each signer broadcasts its
signature σs. The final threshold ring signature is a concatena-
tion of all the individual signatures: σ = (σ1, σ2, ..., σt).

The algorithm 3 verifies the threshold ring signature and
outputs 1 if it is valid or 0 otherwise. Validators verify every
σ j upto the threshold t. First it checks on NIWI proof and sub-
sequently verifies the one-time signature. Next, it verifies if
the VRF value is unique for each endorsement to avoid double-
signing. Finally, counts the individual σ js to check if the count
is greater than or equal to the threshold t. And if all of this ver-
ifies to 1 then the threshold signature σ is accepted. Algorithm
4 outputs linked if the same signer has signed for a scope more
than once or unlinked otherwise.

Linkable threshold ring signatures should satisfy the follow-
ing properties:

• Correctness: It ensures that when the key generation al-
gorithm and signature generation algorithms are executed
promptly, then the verification algorithm accepts the gen-
erated signature with overwhelming probability.

• Unforgeability: It guarantees that no PPT adversary can
successfully generate a valid signature σA on a message
m with respect to a ring R such that Veri f y(m, σA,R) = 1
for VKA /∈ R.

• Linkable Anonymity: Anonymity of ring signatures guar-
antees that the signature does not reveal the signer’s iden-
tity. Linkable anonymity guarantees signer anonymity
but allows anyone to check if two signatures were gen-
erated by the same ring member.

• Transaction-oriented linkability: It ensures no two sig-
natures were generated by the same endorser for same
transaction.

Algorithm 2: LTRS.Sign(m, S K,R, t, tid))
//Every signer s ∈ S , |S |≥ t
o← Eval(sks,m||R);
p← Prove(sks,m||R);
o′ ← Eval(sks, ts||m||R);
p′ ← Prove(sks, ts||m||R);
oL ← Eval(sks

L, tid);
pL ← Prove(sks

L, tid);
(vksOTS , sksOTS )← GensOTS (1λ);
omal ← Eval(sks

mal, vksOTS );
pmal ← Prove(sks

mal, vksOTS );
rct, rL, rmal ← PKE.R;
ct ← Enc(pks

1, p; rct);
ctL ← Enc(pks

1, pL; rL);
ctmal ← Enc(pks

1, pmal; rmal);
(hks, shks)← GenS PB(1λ,N, s);
hs ← Hash(hks,R);
τs ← Open(hks, shks,R, s);
//Pick other ring member i ̸= s
i← [N]\s;
rE0 , rE1 ← PKE.R;
(hki, shki)← GenS PB(1λ,N, i);
hi ← Hash(hki,R);
τi ← Open(hki, shki,R, i);
//Call on the NIWI for the statement x and w
x = (m,R, o, omal, oL, hs, hi, hks, hki, vksOTS ,

ct, ctmal, tid, ctL, ςsOTS )
w = (VK s,VKi, s, i, τs, τi, p, pmal, pL, ski0

F , ski1
F ,

rct, rE0 , rE1 , rL, rmal)
π← NIWI.Prove(x,w);
ρ := (o, o′, oL, omal, ct, ct′, ctL, ctmal, hks, hki, π, ts, tid);
ς ← S ignsOTS (sksOTS , ρ);
σs := (ρ, ς, pksOTS );
//Final threshold ring signature constructed by the
client

Result: return σ = {σ j}tj=1.
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Algorithm 3: LTRS.Verify(m,R, σ, t, tid)
//Parse signature
σ = (ρ, ς, pksOTS )t

j=1;
ρ := (o, o′, oL, omal, ct, ct′, ctL, ctmal, hks, hki, π, ts, tid);
count = 0;
for j ∈ [t] do

h′ := Hash(hks,R);
h′′ := Hash(hki,R);
x := (m,R, o, ct, ctL, ctmal, h′, h′′, hks, hki, tid);
b← NIWI.Veri f y(x, π);
b← b ∧ Veri f ysOTS (pksOTS , ρ, ς);
if b = 1 ∧ σ j.o ̸= σk.o ∀k ∈ [ j − 1]) then

count + +;
else

return 0;
end

end
if count ≥ t then

return 1;
else

return 0;
end

Algorithm 4: LTRS.Link(σ1, σ2)
Let ti := |σi|, i ∈ {1, 2}
for (j,k) ∈ [t1] × [t2] do

if σ j
1.oL = σ

k
2.oL then

return 1
end

end
return 0

• Non-Slanderability: It ensures that no corrupt signer act-
ing as adversary A can succeed in forging a signature
such that it is linkable with signature created by another
honest endorser.

• Claimability and Repudiability: It allows a signer to claim
a signature that he produced by revealing its identity. Re-
pudiability allows the signer to prove that he did not gen-
erate a particular signature.

Individual Ring Signature Size: |σ| is poly(λ) and does not de-
pend on the endorser set |E|. SPB.Verify has a circuit depth of
log(n).poly(λ) whereas the remaining algorithms in SPB are in-
dependent of n (endorser set) and are executed with circuits of
depth poly(λ). Hence, the signature size is log(n).poly(λ).

3. Proposed Privacy-Preserving Endorsement System

In order to ensure privacy of endorsement system three at-
tributes that leak information about endorsers have to be han-
dled. They are endorser identity, endorser signature and the
endorsement policy. An endorser identity is only a technical
identity and does not directly imply true identity hence this can
be discarded from the checklist. Every transaction response
holds an endorser certificate and a signature. And every node in
the network checks against the endorsement policy to validate
a transaction. This reveals the organizations involved in the en-
dorsement process. Therefore when it comes to preserving the
privacy of endorsement system it is the i) endorser signature
and ii) endorsement policy that should be secured.

3.1. Basic Idea

The endorsement in a privacy-preserving endorsement sys-
tem in Hyperledger Fabric contains two components. The first
component is the endorser signature which is a ring signature
that preserves the privacy of the signers. It is also a proof that
it belongs to one of the organizations in the ring. The ring is
a composition of verification keys of policy principals in the
endorsement policy. The individual signatures by every en-
dorser is aggregated, into a single threshold signature, by the
client once threshold number of signers sign the transaction re-
sponse. The validators receive a single threshold signature in-
stead of multiple individual signatures. The fact that thresh-
old signatures provide privacy to its signers, meaning that a
t-out-of-n threshold signature does not tell the verifier which
t of the n signers created the signature distinguishes it from
multi-signatures. Multi-signatures, on the other hand enforce
accountability as the verifier learns which are the signers who
created the signature. Moreover, there is no threshold restric-
tions in a multi-signature whereas, in a threshold signature scheme
the number of signers should be equal to or more than the spec-
ified threshold. The second component of an endorsement is
a membership proof that the identity and secret key of the en-
dorser used to produce a ring signature belongs to the commit-
ted organization in endorsement policy. This is because the en-
dorsement policy is not available in clear to the validators. It is
committed to ensure privacy of the participating organizations.
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It is only the parties authorized to create an endorsement policy
will have access to the policy in the clear. Parties authorized to
invoke the chaincode will have access to the policy in commit-
ted form. That is, only organization pseudonyms will be avail-
able to the invoking parties instead of the actual organization
identity. The efficiency of the verification process is improved
by aggregating the membership proofs from every endorser into
a single proof.
In the proposed work, every validating node receive a linkable
threshold ring signature and a membership proof along with the
transaction.

3.2. Fabric’s Endorser Anonymization Technique: FEAT
The first requirement to achieve privacy-preserving endorse-

ment system is securing the endorser signature. As already
stated, endorser signature on a transaction response reveals the
organizations involved in a transaction. So a cryptographic tool
is needed that preserves the privacy of the signer and at the same
time allows the signer to prove that it came from a designated
set. A ring signature exactly captures the aforesaid requirement.
It allows a signer to hide its identity amongst a ring (or group) of
potential signers. The advantage of employed signature scheme
is that it has the property of claimability and repudiability which
allows to track the misbehaving endorsers. The description of
the scheme is given in algorithm 5.

Algorithm 5: FEAT - Fabric’s Endorser Anonymiza-
tion Technique

GenerateKeys(1λ):
(VK, S K)← FEAT.KeyGen(1λ) : generates a

verification key VK and secret key S K pair.
GenerateSignature(m, S K,R, t):
σs ← FEAT.S ign(m, S K,R, t, tid) : signs a transaction
using the linkable threshold ring signature.

AssembleSignature(σ = {σs}
t
s=1): Client receives t

number of signatures stated by the endorsement
policy and aggregates it into a single signature.

VerifySignature(m,R, σ, t):
b1 ← FEAT.Veri f y(m,R, σ, t, tid) : Verifies if the

single threshold ring signature is valid.
b2 ← FEAT.Link(σ1, σ2) : b = b1 ∧ b2 : Verification

passes only if all the previous verification function
returns true.

Generate Keys
Every endorser generates a pair of keys: verification and a sign-
ing key (VK, S K). Client initiates a transaction and forwards a
transaction proposal to every endorser as stated by the endorse-
ment policy.
Generate Signature:
Endorsers on receiving a proposal message execute the transac-
tion and sign the transaction response using the threshold ring
signature instead of a regular signature. Each endorser signs
the message m with respect to the ring R for a transaction de-
noted by an unique identifier tid. Linkable property of signa-
ture prevents an endorser from signing more than once on the

same transaction. The same endorser is allowed to sign differ-
ent transactions remaining unlinkable. This implies that given
two endorsements on different transactions it is infeasible to tell
if they were made by same endorser or not. The endorsed trans-
action is then returned back to the client.
Assemble Signature
A client receives transaction response from t number of en-
dorsers. It aggregates the individual signatures into a single
endorsement and appends it to the transaction and forwards it
for validation.
Verify Signature
Verification involves checking the validity of individual signa-
tures within the threshold signature and checking if sufficient
number of endorsements are equal to the threshold t. Verifiers
also check no endorsers have endorsed twice on the same trans-
action through the link function.

3.2.1. Instantiation of Linkable Threshold Ring Signature Scheme
Algorithms 6, 7, 8, and 9 are instantiations of the LTRS

scheme described in the previous section. Let G be a bilinear

Algorithm 6: FEAT.KeyGen(1λ)

(gv, v)← GenVRF(1λ)
(gc, c)← GenVRF(1λ)
(gvL , vL)← GenVRF(1λ)
(gvmal , vmal)← GenVRF(1λ)
(gα, α)← GenPKE(1λ)
(gβ, β)← GenPKE(1λ)
skF ← {0, 1}2λ

γE ←$ Zq

CT ← Enc(gβ, skF ; γE)
VK := (gv, gvL , gvmal , gα, gβ,CT )
S K := (v, vL, vmal, α, β, γE ,VK)
Result: return (VK,SK)

group of prime order p such that |G|= p and p is a k-bit prime
and ⟨g⟩ be a generator of the group G.
Key Generation The secret and public keys for VRF are calcu-
lated as in Dodis and Yampolskiy VRF scheme [30] as follows:
(v, vL, vmal) are sampled from Z∗p and the corresponding public
keys are computed as (gv, gvL , gvmal ) respectively. Then the key
pairs for public-key cryptosystem (PKE) are calculated with El-
Gamal encryption scheme as: (gα, α) and (gβ, β).

Signing. Every endorser signs the transaction result with re-
spect to a ring R. The ring is defined as the set of valid endorsers
for a given endorsement policy. Signing starts by perform-
ing VRF evaluations with Dodis and Yampolskiy scheme [30].
Four pairs of VRF evaluations are generated: (o, p); (o′, p′);
(oL, pL); (omal, pmal). First one is for the chaincode result m,
second one is for the individual threshold ts, next is for transac-
tion id to achieve scoped linkability and final pair is to guaran-
tee non-malleability of NIWI proof. The proofs of VRF eval-
uations are encrypted with the ElGamal encryption scheme.
The individual threshold ts and aggregate threshold t depend
on the endorsement policy. The individual threshold value ts
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is 1 for the basic policy operators (AND, OR, and threshold).
Whereas the ts value varies for each policy principal in a com-
pound endorsement policy. A detailed description about setting
the threshold values is given in the subsequent section. The fi-
nal threshold t is an aggregate of individual thresholds of all
the endorsers. To achieve non-slanderability property of link-
able threshold ring signature, non-malleability of NIWI proof
needs to be guaranteed. Non-slanderability ensures no effi-
cient adversary could generate a malicious signature such that
it links to an honestly generated signature. Non-malleability of
NIWI proof is achieved by the use of strong one-time signa-
ture. As mentioned above, only the values of VRFs are avail-
able and the proofs are encrypted and available as cipher texts
ct, ct′, ctL, ctmal respectively. PKE.R represents the randomness
used in the encryption scheme PKE.
Somewhere Perfectly Binding (SPB) hash function serves as a
commitment to the signer’s verification key which is binding at
position s. For each position within the ring, the hash digest
generated for the ring is unique. Combined with NIWI proofs,
it allows a signer to prove that the signer’s verification key is
present in the ring R at position s. The SPB hash possess index
hiding property i.e., given the hashing key and hash digest it is
computationally infeasible to tell apart to which index position
the hashing key and the digest are generated. The instantia-
tion of SPB hash function is adapted from [12]. Operations
are performed over an abelian group G of prime order p. It is
assumed that every group element is represented efficiently by
log(p) + c = λ + c bits, with c being a constant. Certain elliptic
curve groups and multiplicative groups of finite fields possess
this property. With SPB hashing the ring R of verification keys
with cardinality N is compressed into a ring with two verifi-
cation keys (VKs,VKi) which are binding at positions s and i,
respectively. NIWI proof is used to prove that the signature
is valid under the committed verification key of the signer. A
2 − to − 1 hash function which is an instantiation of SPB hash
[12, 31] is employed. For this a hashing keys hk j for j ∈ {s, i}
that is computationally binding at index s and i are computed.
Index s holds the signer’s verification key and index i is chosen
randomly within the ring R. The hashing key hk is computed as
follows.
GenS PB(1λ,N, indx ∈ {0, 1}):

– Randomly choose a and b from (Zp\{0})d and w from
Zd

p, where d is the block size required to store the ring of
verification keys.

– Compute A j ← w.aT + (1 − indx).I and B j ← w.bT +

indx.I, where A and B are matrices A, B ∈ Zm×n
p and j ∈

{s, i}.

– Compute g0 ← gaT
, g1 ← gbT

, G j
0 ← gA, G j

1 ← gB

– hk j ← (g0, g1,G
j
0,G

j
1)

Based on the value of index indx ∈ {0, 1}, the hashing key is
computationally binding to the appropriate verification key. By
choosing indx = 0 the hashing key is generated for the verifi-
cation key VKs, and for indx = 1, the hashing key is generated

for the verification key VKi.
Next, hash digest is calculated as h = HashS PB(hk, (VKs,VKi)):

– (hk j, shk j)← (g0, g1,G
j
0,G

j
1; r j

S PB) for j = {s, i};

– hs ← (gVKs
0 .g

VKi
1 , (G

s
0)VKs .(Gs

1)VKi );

– hi ← (gVKs
0 .g

VKi
1 , (G

i
0)VKs .(Gi

1)VKi );

Gs
0 and Gi

0 are the values of G0 for signer s and random choice
i. Similarly, Gs

1 and Gi
1 are the values of G1 for signer s and

random choice i. The opening information τ j is generated as
OpenS PB(hk j, shk j,R, j):

– τ j ← (r j
S PB, j,VK j);

Verification keys VK s and VKi are committed to as (hk j, h j)
for j ∈ {s, i}. Opening information τ is the randomness, index
and the verification key. Next, the signer calculates a NIWI
proof for statement x and witness w. Next, the partial signa-
ture ρ is generated which is a composition of VRF evaluations:
unique value o for the message m, unique value o′ for the in-
dividual threshold ts, unique value oL for the transaction id tid,
omal to achieve non-malleability; corresponding encryption of
VRF proofs; hashing keys; NIWI proof and transaction id tid.
To achieve non-malleability, the partial signature is signed with
the one-time signature. Finally, the ring signature σs is gener-
ated, that contains the partial signature, one-time signature on
the partial signature and the verification key of one-time sig-
nature. At the end of the signing process, each endorser for-
wards its signature σs to the client in the transaction response.
Client now concatenates all the received signatures into a single
threshold signature as: σ = (σ1, σ2, ..., σt).

Verification. All the committing peers validate the endorser
signatures with respect to the endorsement policy.
Link. Transaction-level linkability is a fine grained notion of
linkability. Endorsements produced by same endorser on the
same transaction is linkable, while endorsements by same en-
dorsers on different transactions are valid. During verification,
in addition to the verification procedure described in algorithm
8 the Link procedure is also invoked. Algorithm 9 depicts the
description of the algorithm which performs a pairwise check.
It compares the oL values of every signature within the thresh-
old signatures. The algorithm returns Unlinked if every oL is
unique and linked otherwise.

Parameter Setting for Threshold Ring Signature

There are three basic variants of endorsement policies: i)
AND(of members/signers) ii) OR(of signers) iii) Threshold (t-
out-of-n signers) and a compound policy involving more than
one basic operator (AND, OR). All three variants of endorse-
ment policies can be implemented efficiently with the proposed
signature scheme. The parameters (t, n) are set by the client for
the (t-out-of-n) linkable threshold ring signature depending on
the endorsement policy as described below:
AND variant: (Org1.peer AND Org 2.peer AND Org3.peer),
client sets t = n = 3 for the linkable threshold ring signature.
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Algorithm 7: FEAT.Sign(m, S K,R, t, tid))
//Every signer s ∈ S , |S |≥ t
o← e(g, g)1/((m||R)+v);
p← g1/((m||R)+v);
o′ ← e(g, g)1/((ts ||m||R)+v);
p′ ← g1/((ts ||m||R)+v);
oL ← e(g, g)1/(tid+vL);
pL ← g1/(tid+vL);
(vksOTS , sksOTS )← GensOTS (1λ);
omal ← e(g, g)1/(vksOTS+vmal);
pmal ← g1/(vksOTS+vmal);
γct, γL, γmal ←$ Zq;
ct ← p × gα.γct ;
ctL ← pL × gα.γL ;
ctmal ← pmal × gα.γmal ;
(hks, shks)← GenS PB(1λ,N, s);
hs ← HashS PB(hks,R);
τs ← OpenS PB(hks, shks,R, s);
//Pick other ring member i ̸= s
i← [N]\s;
rE0 , rE1 ←$ Zq;
(hki, shki)← GenS PB(1λ,N, i);
hi ← HashS PB(hki,R);
τi ← OpenS PB(hki, shki,R, i);
//Call on the NIWI
x = (m,R, o, oL, omal, hs, hi, hks, hki, vksOTS ,

ct, ctc, ctmal, tid, ctL, ςsOTS )
w = (τs, τi, p, pmal, pL, ski0

F , ski1
F ,

rE0 , rE1 , γct, γL, γmal)
π← NIWI.Prove(x,w);
ρ := (o, o′, oL, omal, ct, ctL, ctmal, hks, hki, π, tid);
ς ← S ignsOTS (sksOTS , ρ);
σs := (ρ, ς, pksOTS );
//Final threshold ring signature constructed by the
client

Result: return σ = {σ j}tj=1.

Algorithm 8: FEAT.Verify(m,R, σ, t, tid)
//Parse signature
σ = (ρ, ς, pksOTS )t

j=1;
ρ := (o, o′, oL, omal, ct, ctL, ctmal, hks, hki, π, tid j);
count = 0;
for j ∈ [t] do

h′ := Hash(hks,R);
h′′ := Hash(hki,R);
x = (m,R, o, oL, omal, hs, hi, hks, hki

vksOTS , ct, ctmal, tid, ctL, ςsOTS )
b← NIWI.Veri f y(x, π);
b← b ∧ Veri f ysOTS (pksOTS , ρ, ς);
if b = 1 ∧ σ j.o ̸= σk.o ∀k ∈ [ j − 1]) then

count + +;
else

return 0;
end

end
if count ≥ t then

return 1;
else

return 0;
end

Algorithm 9: FEAT.Link(σ1, σ2)
Let ti := |σi|, i ∈ {1, 2}
for (j,k) ∈ [t1] × [t2] do

if σ j
1.oL = σ

k
2.oL then

return 1
end

end
return 0

8



OR variant: (Org1.peer OR Org 2.peer OR Org3.peer), client
sets t = 1 and n = 3 for the linkable threshold ring signature.
Threshold Variants: can be expressed using the basic logical
operators as shown below:

– OutOf ( 2, ’Org1.peer’, ’Org2.peer’, ’Org3.peer’ ), client
sets t = 2 and n = 3 for the linkable threshold ring signa-
ture.

– OutOf ( 1, ’Org1.admin’, ’Org2.admin’ )⇒OR ( ’Org1.admin’,
’Org2.admin’ ).

– OutOf ( 2, ’Org1.peer’, ’Org2.peer’ )⇒AND ( ’Org1.peer’,
’Org2.peer’ ).

Compound variant:
OR(’Org1.peer’, AND(’Org2.peer’, ’Org3.peer’)): Compound
variant is the one where both the basic operators appear in the
endorsement policy. Individual thresholds are useful for com-
pound variant endorsement policy and are assigned by the clients.
Total threshold t is then the aggregate of individual thresholds.
For the example given above, total threshold t is set to 2 and
n is 3. Individual thresholds are assigned as t2 for the policy
principal Org1.peer and t1 for both Org2.peer and Org3.peer.
Aggregation is done as follows.

OR(′Org1.peer′, AND(′Org2.peer′,′ Org3.peer′)) (1)

Substituting the individual thresholds in equation 1,

OR(t2, AND(t1, t1))

OR(t2, (t1 ∗ t1)) (∵ AND← ∗)

OR(t2, t2) (∵ t1 ∗ t1 => t1+1 => t2)

(t2 + t2) (∵ OR← +)

t2 (∵ t2 + t2 => 2.t2 => t2)

(2)

Similarly for AND(’Org1.peer’, OR(’Org2.peer’, ’Org3.peer’)):
total threshold t = 2 and n = 3. Individual thresholds are as-
signed as t1 for all three policy principals Org1.peer, Org2.peer
and Org3.peer. Aggregate of individual thresholds are calcu-
lated as before.
AND(t1,OR(t1, t1)) => (t1.(t1 + t1)) => (t1.t1) => t2.
The proposed privacy-preserving endorsement system can be
used to implement chaincode or collection or key-level secure
endorsement policy where the endorsers produce linkable thresh-
old ring signature, pseudonymous organization identity and zero-
knowledge membership proof using the technique described in
Section 4.2.

3.3. Privacy-Preserving Endorsement Policy

Endorsement policy is an expression over policy principals
[5]. Policy principals are represented as MSP.ROLE, where MSP
denotes the organization and ROLE denotes one of the four pos-
sible roles: (member,admin,client and peer). For example, a
valid principal is of the form Org1.peer. Securing endorse-
ment policy implies securing the organizations involved in the
endorsement process.

3.3.1. Our Approach
Consider an endorsement policy is of the form {Org1.peer

AND Org2.peer}. This implies that an endorsing peer from
Org1 and one endorsing peer from Org2 has to execute and sign
the result of the transaction. As the endorsement policy clearly
leaks the organizations involved in executing and signing the
transactions, there are possible attacks like DDoS against the
participating organizations. We propose a solution using cryp-
tographic techniques to secure the endorsement policy.
The idea is as follows: Every policy creator first generates a
commitment to the organization identities in the endorsement
policy using Pedersen commitment scheme. Then it shares the
randomness to generate the commitment to the respective en-
dorsing peers of each organization through secure communica-
tion channels. Hyperledger Fabric allows for configuring se-
cure communication using TLS. On receiving the commitment
to their organization and the respective randomness, endorsers
verify the validity of the commitment. Finally, endorsers cre-
ate a proof to prove that they are the designated endorsers for
the committed organization. The proof requires the knowledge
of randomness to generate commitment, identity, credential on
the and secret key of the endorser. A zero-knowledge proof
of knowledge can be generated using Schnorr protocol [32] and
applying Fiat-Shamir heuristic makes the protocol non-interactive.
The classical Schnorr protocol suffers from a limitation that it
has soundness error bounded by 1/2 under the standard model
of security [33]. This soundness limitation is overcome in [34],
by restricting the adversary to generic group model for groups
of unknown order [35]. The proposed scheme employs a suc-
cinct non-interactive zero-knowledge argument of integer vec-
tor by Boneh et.al., [34]. Individual membership proofs are
then aggregated using a proof of knowledge of co-prime roots
technique to make the verification process simpler.

3.3.2. Our Technique
The proposed technique is described as follows.

Generate Commitment to Organization Identity Algorithm
10 depicts the generation of organization pseudonym through
commitment to the organization identity.

Algorithm 10: Generate Commitment to Organiza-
tion Identity

Setup(λ): {G, g, h← NI − ZKPoKRep.S etup(λ)}
GenOrgPseudonym(Orgid): Calculate C ← gOrgid.hd.

Endorsement policy creators generate commitments
to the organization identities in the endorsement
policy. And, forward the organization pseudonym and
the associated randomness through a secure channel.

VerifyOrgPseudonym(C, d): The endorsers in the
policy check the validity of the commitment as
C ?
= gOrgid.hd.

The parameters needed for the protocol are generated in
the Setup phase by the committing peers (or verifiers) in the
network. For a chaincode-based endorsement policy, a default
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policy is set along with the chaincode. For state-based policy,
policy consists of the state owners or subset of state owners.
Any organization that owns a ownable state is said to be state-
owners. An entity that creates the endorsement policy is called
a policy creator. It is the policy creators which are aware of
the organizations involved in the endorsement policy. Hence
the pseudonyms are created for the organizations by the pol-
icy creators using the function GenOrgPseudonym(Orgid) as
C ← gOrgid.hd and forwarded to the endorsers. The endorsing
peers receive the commitment to their organization C and the
randomness d for generating the commitment. It then checks if
the received commitment C = gOrgid.hd.
Given an endorsement policy, (Org1.peer AND Org2.peer) it
will be expressed as pseudonyms of the organization identity
as (C1.peer AND C2.peer). Validating peers will now only
possess this pseudonymous identity and hence the organization
identity is no more leaked through endorsement policy.

Issue Credential
Every endorser before generating a membership proof requests
the certificate authority to issue a credential. The certificate au-
thority provides a certificate which serves as a link between the
endorser signing key and the organization identity. Algorithm
11 depicts the issue credential procedure.

Algorithm 11: Issue Credential
Request(id,VK,Orgid): Endorser send a certificate

request to the certificate authority. The request
consists of endorser’s identity id, verification key VK,
and the organization identity.

Issue(VK,Orgid): Certificate authority validates the
received information and issues a credential
σc ← S ign(skCA,m = (VK,Orgid)). It signs on the
pair: (VK,Orgid) verification key and organization
identity of the endorser to bind the endorser’s signing
key to the respective organization.

Generate Proof ofMembership
The peer then generates a non-interactive zero-knowledge proof
of knowledge of integer vector that it is indeed an authorized
entity to perform the endorsement process based on the NI-
ZKPoKRep. To prove that an endorser is a member of an or-
ganization it needs to prove knowledge of the secret random-
ness d, its secret key S K, the technical identity id that describes
the role within the organization, and the credential σc issued
by CA to link the endorser’s secret key with the organization
identity. The description of NI-ZKPoKRep is self-contained in
the algorithm 12 and a separate description is also given in Ap-
pendix A.5. Prover chooses bases gi ∈ G such that gwi

i is also
a group element for all i ∈ [1, 4]. The witness w1 is the ran-
domness d, to create the pseudonymous organization identity,
witness w2 is the secret key S K of the endorser, witness w3 is
the endorser id id and w4 is a signature on the verification key
and organization identity of the endorser by the certification au-
thority. The statement x is the product of gwi

i . Every endorser
invokes the NI − ZKPoKRep.Prove(x,wi) function to create a

membership proof that its identity is bound to the correspond-
ing pseudonymous organization identity. To construct a zero-
knowledge proof, the prover first randomly samples four blind-
ing factors k1, k2, k3, k4 from the range of integers [−B, B] such
that |G|/B should be negligible. The prime l is computed by
hashing the values (g, x, A) to prime and the challenge c is the
hash of the computed prime l. By the division algorithm, any in-
teger (say, s) and any positive integer (say, l) there exists unique
integers q and r such that s = l.q + r, where r ∈ {0, ..., l − 1}.
si is expressed as stated by the division algorithm and eventu-
ally the corresponding quotients and residues are derived. Fi-
nally proof π is constructed as π ← {A,Q, ri}. Policy creator
validates the proof through NI − ZKPoKRep.Veri f y(x, π) and
accepts or rejects based on the correctness of the proof. Veri-
fiers parses the proof π = {A,Q, ri}. Computes l and challenge
c as hash of prime l. It then checks if the residues ri are in the
range {0, 1, ..., l − 1}. It then checks if the verification equation
Ql∏4

i=1 gri
i

?
= Axc is satisfied. Equation 3 shows the correctness

of the verification equation.

Ql.

4∏
i=1

gri
i =

4∏
i=1

(gqi
i )lgri

i

= gqi.l+ri
i

= gsi
i

= gki+c.wi
i

= gki .gwi.c
i

= A.xc

(3)

AggregateMembership Proofs
Aggregating t membership proofs into a single constant size
proof is advantageous to verifiers. This is because, an aggre-
gated proof can be verified faster than verifying t different mem-
bership proofs individually.
The membership proof illustrates that the generated threshold
ring signature is valid with respect to the commitments to the
organization.
A succinct proof of knowledge of co-prime roots is used to ag-
gregate the membership proofs as shown in algorithm 13.

One of the policy creators after receiving the individual mem-
bership proofs from the policy principals invokes PoKCR.AggProof()
to aggregate them into a single batched proof by computing the
product of the individual proofs. Pseudo-code for PoKCR is
self-contained in the algorithms and a complete description can
be found in Appendix A.6. Parameter Q sent to the verifier in
the NI-ZKPoKRep is the proof π for an instance of PoKCR. Q
is the lth root of α. Verifiers recompute the root l which is the
product of individual li’s and y from the NI-ZKPoKRep proofs.
It accepts if the validation πl ?

= y passes. The verification pro-
cess runs in O(nlogn) time where n is the number of proofs to
be aggregated. The verification equations for πl ?

= y is given in
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Algorithm 12: Generate Proof of Membership
ProveOrgMem(x,w1 = d,w2 = S K,w3 = id,w4 =

σc): Every policy principal computes a membership
proof as: π← NI − ZKPoKRep.Prove(gi, x ∈ G; w ∈
Z4 : x =

∏
i gwi

i ∀i ∈ [1, 4])
Proof is calculated with NI-ZKPoKRep as follows:

– Prover randomly samples k1, k2, k3, k4 ←$ [−B, B],
where B > 22λ|G| and computes A =

∏4
i=1 gki

i .

– Computes l← Hprime(gi, x, A) and c← H(l).

– Computes si = ki + c.wi ∀i ∈ [1, 4].

– Derives quotients q ∈ Z4 and residues r ∈ [l]4

such that qi.l + ri = si ∀i ∈ [1, 4].

– Computes Q =
∏4

i=1 gqi
i .

– Constructs the proof as π← {A,Q, r}.

VerifyOrgMem(x, π): Policy creator verifies the proof
from every policy principal by computing
b← NI − ZKPoKRep.Veri f y(x, π) and accepts the
proof if the verification passes.

– Parse proof π as {A,Q, r}

– Computes l← Hprime(gi, x, A) and c← H(l)

– Check if: ri ∈ {0, ..., l − 1} ∀i ∈ [1, 4];
Ql∏4

i=1 gri
i

?
= Axc.

equation 4 as follows:

πl =

n∏
i=1

Ql
i

=

n∏
i=1

(α1/li )l

= y

(4)

The endorsement policy will be presented as pseudonymous or-
ganization identity with existing policy operators thus conceal-
ing the participating organizations. The membership proofs are
verified by the policy creators and aggregated. The committing
nodes in the Fabric network verify the aggregated proofs. In-
dividual proofs can also be extracted out from the aggregated
proof by the validating peers. An aggregated proof allows a
verifier to verify a single proof instead of verifying it separately
for every endorser. The final endorsement will now consist of a
single threshold signature and an aggregated membership proof
that the signers belong to the committed organization.

4. Threat Model and Security Model

4.1. Threat Model
The framework for threat model is adapted from [4] which

captures the power of adversary. As in any permissioned blockchain

Algorithm 13: Aggregate Membership Proofs
AggregateProof(πi∀i ∈ [1, n]): Policy creator invokes
PoKCR.AggProof(αi, l1, ..., ln ∈ Z,∀i ∈ [1, n]).

– πi := (Qi)

– Qi := (α)1/l where, α = (A
∏3

i=1(gri
i )−1xc).

– Computes a single aggregated proof as the
product of all the received membership proofs:
π←

∏n
i=1 Qi.

VerifyAggregateProof(π): Every committing peer
invokes PoKCR.VerifyAggProof(n, αi, l)

– Computes l←
∏n

i=1 li and y←
∏n

i=1(αl/li
i ).

– Accepts the proof, if πl ?
= y.

network, Hyperledger Fabric allows the ledger to be accessible
only to the members of the network. Channels in Hyperledger
Fabric allows only a subset of the members to access the re-
spective ledger. Assume an adversary A to be a member of a
channel in Hyperledger Fabric. Following are the assumptions
with respect to adversary A:

• A can see all the network traffic within the channel.

• It is possible for an adversary to change an unconfirmed
transaction sent from client to endorser during transac-
tion proposal phase.

• It can endorse (provided it is a policy principal) and/ or
validate the transactions within a channel.

• Any adversary A acting as a validator may hold back the
block of transactions without verifying its validity.

• Any adversary A acting as a validator may incorrectly
mark a transaction as valid or invalid without honestly
running the validation process.

4.2. Security Model for Privacy-preserving Endorsement Sys-
tem

The security goals for the anonymity and unlinkability of
endorsement system are adapted from [5].

4.2.1. Endorsement Policy Anonymity
This security model captures the idea that the real identity

of the policy principals expressed in the endorsement policy is
concealed. It is defined using a game that is played between
a challenger and a PPT adversary A. The game proceeds as
follows.

• The challenger runs GenerateKeys(1λ) algorithm and gives
the ring of verification keys R to the adversary A.

• Adversary A chooses a pair of equal length policy prin-
cipal identities id0, id1 and sends these identities to the
challenger.

11



• The challenger picks a random bit b ∈ {0, 1} and calcu-
lates the challenge commitment cb = Commit(idb, r), and
sends cb to the adversary A.

• The adversary outputs a guess b′ ∈ {0, 1}, it succeeds if
b′ = b.

We define the advantage of the adversary A in attacking the en-
dorsement policy anonymity of endorsement system ξ as Advξ,A(λ) =
|Pr[b = b′] − 1/2|.

Definition 4.1. We say that the endorsement policy is anony-
mous if for all PPT adversaries A we have Advξ,A(λ) is a negli-
gible function.

4.2.2. Policy Principal Unlinkability
This property demands that when the same policy princi-

pal is used in two different endorsement policies the principals
should remain unlinkable. It is defined using a game that is
played between a challenger and a PPT adversary A. The game
proceeds as follows.

• The challenger runs GenerateKeys(1λ) algorithm and gives
the ring of verification keys R to the adversary A.

• Adversary A chooses an identity id and sends it to the
challenger.

• The challenger picks a random bit b ∈ {0, 1} and for b =
0 calculates commitments c0, c1 with id else calculates
commitment c0 with id and c1 with random and sends
c0, c1 to the adversary A.

• The adversary outputs a guess b′ ∈ {0, 1}, it succeeds if
b′ = b.

We define the advantage of the adversary A in attacking the pol-
icy principal unlinkability of endorsement system ξ as Advξ,A(λ) =
|Pr[b = b′] − 1/2|.

Definition 4.2. We say that the policy principals in the endorse-
ment policy is unlinkable if for all PPT adversaries A we have
Advξ,A(λ) is a negligible function.

4.2.3. Endorser Anonymity
This security model captures the idea that it should be in-

feasible for an adversary to trace back the true identity of the
endorser from the endorser signature. It is defined using a game
that is played between a challenger and a PPT adversary A. The
game proceeds as follows.

• The challenger runs GenerateKeys(1λ) algorithm and gives
the ring of verification keys R to the adversary A.

• Adversary A chooses a pair of equal length endorser iden-
tities id0, id1 and sends these identities to the challenger.

• The challenger picks a random bit b ∈ {0, 1} and gener-
ates the challenge endorsement
σb = GenerateS ignature(m, S K,R, t). Challenge endorse-
ment is given to adversary A.

• The adversary outputs a guess b′ ∈ {0, 1}, it succeeds if
b′ = b.

We define the advantage of the adversary A in attacking the
anonymity of endorsement system ξ as Advξ,A(λ) = |Pr[b =
b′] − 1/2|.

Definition 4.3. We say that the endorsers in endorsement sys-
tem are anonymous if for all PPT adversaries A we have Advξ,A(λ)
is a negligible function.

4.2.4. Endorser Unlinkability
This property requires that when an endorser signs/endorses

two different transactions, it should be infeasible to track that
the endorsements were made by the same endorser. It is an ex-
tension to the endorser anonymity property. It is defined using a
game that is played between a challenger and a PPT adversary
A. The game proceeds as follows.

• The challenger runs GenerateKeys(1λ) algorithm and gives
the ring of verification keys R to the adversary A.

• Adversary A chooses an endorser identity id and sends it
to the challenger.

• The challenger picks a random bit b ∈ {0, 1} and gener-
ates two challenge endorsements σ0 and σ1. If b = 0,
both σ0 = GenerateS ignature(m0, S K0,R, t) and σ1 =

GenerateS ignature(m1, S K0,R, t) are generated for the
same id itself else the endorsements are generated sep-
arately as one for id and another for some random. Then,
the endorsements are given to adversary A.

• The adversary outputs a guess b′ ∈ {0, 1}, it succeeds if
b′ = b.

We define the advantage of the adversary A in attacking the
unlinkability of endorsement system ξ as Advξ,A(λ) = |Pr[b =
b′] − 1/2|.

Definition 4.4. We say that the endorsers in endorsement sys-
tem are unlinkable if for all PPT adversaries A we have Advξ,A(λ)
which is a negligible function.

5. Security Analysis of privacy-preserving endorsement sys-
tem

The work assumes the following corresponding to the Hy-
perledger Fabric framework: Fabric’s Certificate Authority (CA)
is assumed to be honest; more than half of the peer nodes and
endorsers are honest for the smooth execution of endorsement
system. In the following we prove that the security goals are
achieved by giving proofs by reduction. The security proofs are
based on [36].
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5.1. Endorsement Policy Anonymity and Unlinkability
Theorem 5.1. Our endorsement system provides anonymity
and unlinkability to the endorsement policy.

Proof. We will show that an adversary A can reveal the en-
dorsement policy in our endorsement scheme ξ with non-negligible
probability then there exist another adversary A′ which can break
the underlying commitment scheme and zero-knowledge proof
with non-negligible probability.

1. Adversary A chooses two organization identities Orgid0
and Orgid1 and forwards it to adversary A′.

2. A′ assigns m0 = Orgid0 and m1 = Orgid1 and forwards
the messages {m0,m1} to be committed to challenger C.

3. Challenger chooses a bit b ∈ {0, 1} and computes the
challenge message cb = Commit(mb; r) and a zero-knowledge
proof of its correctness as πb = NI−ZKPoKE.Prove(x =
cb,w = r) and forwards the challenge (message, proof)
pair (cb, πb) to adversary A′.

4. Adversary A′ forwards the pair to A.
5. Adversary A outputs a guess b′ to A which is then for-

warded to the challenger C.

Adversary A can compute the policy principal id Orgid corre-
sponding to the committed policy principals cid with probability
significantly better than 1

2 . This is given by:

Pr[A(cid) = Orgidi] −
1
2
> non − neglgbl(λ) (5)

The probability of A breaking the endorsement policy anonymity
and unlinkability is exactly equal to the probability of A′ break-
ing the commitment scheme and zero-knowledge proof system
given by equation 5. By the unconditional hiding property of
commitment scheme and statistical zero-knowledge property of
the NIZK scheme it is computationally infeasible to find the
policy principal and link a policy principal across different en-
dorsement policies. Since underlying schemes are secure so is
our scheme.

5.2. Endorser Anonymity and Unlinkability
Theorem 5.2. Our endorsement system provides anonymity
and unlinkability to the endorser across different endorsements.

Proof. We will show that an adversary A can reveal endorser in
our endorsement scheme ξ with non-negligible probability then
there exist another adversary A′ which can break underlying
linkable threshold ring signature with non-negligible probabil-
ity.

1. Adversary A chooses two endorser identities eid0 and eid1
and forwards it to adversary A′.

2. A′ forwards the identities {eid0, eid1} to the challenger C.
3. Challenger chooses a bit b ∈ {0, 1} and computes the

challenge signature σb = LTRS .S ign(m,SK,R,t,tid) and
forwards the challenge signature σb to adversary A′.

4. Adversary A′ forwards it to A.
5. Adversary A outputs a guess b′ to A which is then for-

warded to the challenger C.

Adversary A can compute the endorser id corresponding to the
endorsementσwith probability significantly better than 1

2 . This
is given by:

Pr[A(σi) = idi] −
1
2
> non − neglgbl(λ) (6)

The probability of A breaking the endorser anonymity is ex-
actly equal to the probability of A′ breaking the linkable thresh-
old ring signature scheme given by equation 6. By the link-
able anonymity property of linkable threshold ring signature it
is computationally infeasible to find the actual signer and link
an honest signer across different transactions. Since underlying
linkable threshold ring signature is a secure scheme so is our
scheme.

Theorem 1. If the linkable threshold ring signature scheme
possesses unforgeablity, linkable anonymity, transaction-level
linkability and non-slanderability then the proposed privacy-
preserving endorsement system is also secure under the stan-
dard model of security.
The detailed security proofs can be found in [25].

6. Implementation

Hyperledger Fabric is implemented in Ubuntu 16.04 64

bit OS, Intel Core I5 quad core processor. Fabric and
the chaincode use Go 1.12 [37]. Secure communication is es-
tablished between the nodes through TLS (Transport Layer Se-
curity). TLS is configured on peer nodes by setting the environ-
ment variable in peer/tls/enabled = true and providing a fully
qualified path for server certificate, server private key and CA
chain file. TLS was similarly configured at the clients as well
by setting the appropriate environment variables. To integrate
the privacy-preserving endorsement system in Fabric a new im-
plementation of the Membership Provider is needed. The MSP
implementation for the proposed work is given below:

6.1. MSP Implementation with Privacy-Preserving Endorsement
System

MSP Implementation of the privacy-preserving endorsement
system is supported for all the roles in the Fabric network:

• (skCA, pkCA, params) ← S etup(1λ), the algorithm takes
as input the security parameter λ and outputs the public
and private key pair for the Certificate Authority (CA).

• (skU , pkU)← Gen(params), the algorithm takes as input
the system parameters and outputs the public and private
keys for the users.

• id ← Enroll{CA(skCA, pkCA) ↔ U(skU , pkU)}, The al-
gorithm generates an enrollment identifier for the users
based on their role - (member,client,peer,admin) within
the organization. Enroll is a two party protocol between
the CA and the user U. CA provides as input its key-pair
and the user U provides its key-pair along with an identi-
fication information. Finally, the CA and user U gets an
identity id that matches the secret key skU .
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• CRL′ ← Revoke(CA(skCA,CRL, id)), the algorithm al-
lows a CA to revoke a particular identity id from the net-
work and generate an updated certificate revocation list
of revoked users.

• σ ← FEAT.GenerateS ignature(m, S K,R, t, tid) gener-
ates a t-out-of-n threshold ring signature with the secret
key S K for a message m of a transaction tid, and for a
designated set of verification keys from the endorser set,
where E. By setting threshold t = 1, linkable threshold
ring signature becomes a linkable ring signature scheme.

• 0/1 ← FEAT.Veri f yS ignature(m,R, σ, t, tid), the algo-
rithm on a single shot validates the threshold signature
with only information that the signature came from a des-
ignated set and nothing beyond that.

7. Performance Analysis

Table 1 compares FCsLRS, which is the previous work on
endorser anonymization, with the proposed work based on sig-
nature size and security model. It is to be noted that the com-
parison is made for the endorsers’ individual signatures. It is
clear from the analysis that FCsLRS scheme has a constant
signature size and hence less signature generation and verifi-
cation times whereas secure only under random oracle model.
But the proposed FEAT scheme is a logarithmic function of
the number of signers which is still efficient. Moreover the ex-
isting scheme does not consider securing the endorsement pol-
icy. Hence, comparing only the signature schemes the proposed
scheme is secure under standard assumptions. While consider-
ing the complete FEAT framework (securing endorser signature
and endorsement policy), the proposed scheme is secure under
generic group model of security.

Table 1: Comparative Analysis

Performance Metric FCsLRS [27] FEAT
Signature Size O(1) O(log(l))

Security Assumption ROM Standard Model
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Figure 2: Signature generation and verification time w.r.t number of endorsers

Figure 2 shows a comparative analysis in terms of signature
generation and verification time between the existing FCsLRS
scheme and the proposed FEAT scheme for λ = 1024 bits.

8. Conclusion and Future Work

The proposed privacy-preserving endorsement system for
Hyperledger Fabric conceals both the endorser identity and the
endorsement policy. The privacy-preserving endorsement sys-
tem achieves the security requirements of anonymity and un-
linkability among endorsers and endorsement policy.
In this work, the employed threshold ring signature scheme is
secure under the standard security assumptions but lacks se-
curity against quantum attacks. A possible future work would
be to design a secure endorsement system which has efficient
threshold ring signature that is post-quantum secure.
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Appendix A. Supplementary Preliminaries

Appendix A.1. Anonymous Endorsement System in Hyperledger
Fabric

The framework to achieve anonymous endorsement system
in Hyperledger Fabric using threshold ring signature is described
below:

• GenerateKeys(1λ): It takes as input the security parame-
ter and generate the keys for the endorsers.

• GenerateSignature(m, S K,R, t): This is run by every en-
dorser to generate their share of the threshold signature
σi. It takes as input the message m to be signed, secret
key of the signer S K, ring of verification keys R and the
threshold t that indicates the required number of endorse-
ments on the message m for the transaction to be valid.

• AssembleSignature(σ = {σi}ti=1): All endorsers forward
their individual signature or signature shareσi to the client.
On receiving t number of signatures, the client then ag-
gregates them into a single endorsement as σ = {σi}ti=1
and appends it with the transaction.

• VerifySignature(m,R, σ, t): Validators parse the individ-
ual signatures/signature shares to check if each of them
are valid. It then checks if the individual contribution add
up to the threshold t and returns true if it is valid.

Appendix A.2. Commitment Scheme
A commitment scheme is a triplet of PPT algorithms

(Gen,Commit,Open).

• Gen(1λ) generates a public commitment key PK for the
user taking the security parameter λ as input.

• Commit(PK,m) generates a commitment C and an open-
ing or decommitment information d as output, taking the
public key PK and message m to be committed.

• Open(C,m, d) outputs a single bit as output indicating va-
lidity or invalidity of the commitment, taking as input the
commitment C, message m and the decommitment infor-
mation d.

A commitment scheme should satisfy hiding and binding prop-
erties. Hiding ensures that a commitment should reveal no in-
formation about the message that is committed. Binding prop-
erty guarantees that no malicious committer should be able to
commit a message m and later decommit to a different message
m′.

Appendix A.3. Ring Signatures
A ring signature scheme is a triplet of PPT algorithms

(KeyGen, S ign,Veri f y) to generate keys for the signer, sign a
message and verify the signature on a message respectively.

• KeyGen(1λ) The key generation algorithm takes as input
the security parameter λ and outputs a secret key S K and
a verification key VK.
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• S ign(m, S K,R) The signing algorithm takes as input the
message to be signed, secret key of the signer S K and
a ring of verification keys R = {VK1,VK2, ...,VKn} and
outputs a signature σ.

• Veri f y(m, σ,R) The verification algorithm takes as input
the message M, signature σ and the ring of verification
keys R and generates a single bit response to indicate the
validity or invalidity of the signature.

A linkable ring signature additionally has a PPT algorithm link
that avoids a signer from signing a message more than once
with respect to a ring R. This linkability function is useful in
e-voting applications to prevent a user from voting twice.

• Link(σ1, σ2) This algorithm checks if the signatures σ1
and σ2 were produced by the same signer and outputs a
single bit to indicate linked or unlinked.

A t-out-of-n threshold ring signature for t ≤ n, allows t users to
generate a single threshold ring signature without revealing the
identity of signers who contributed to the threshold signature.
The signing and verification algorithms additionally take as in-
put a threshold parameter t that indicates t parties are involved
in the signature generation process. The advantage of a thresh-
old ring signature is that verification involves validating only a
single threshold signature for the t-signers. Linkable threshold
ring signatures should satisfy the following properties:

• Unforgeability: It guarantees that no PPT adversary can
successfully generate a valid signature σA on a message
m with respect to a ring R such that Veri f y(m, σA,R) = 1
for VKA /∈ R.

• Linkable Anonymity: Anonymity of ring signatures guar-
antees that the signature does not reveal the signer’s iden-
tity. Linkable anonymity guarantees signer anonymity
but allows anyone to check if two signatures were gen-
erated by the same ring member.

• Transaction-oriented linkability: It ensures no two sig-
natures were generated by the same endorser for same
transaction.

• Non-Slanderability: It ensures that corrupt signers acting
as adversary A cannot succeed in forging a signature such
that it is linkable with signature created by another honest
endorser.

• Claimability and Repudiability: It allows a signer to claim
a signature that he produced by revealing its identity. Re-
pudiability allows the signer to prove that he did not gen-
erate a particular signature.

The proposed Endorser Anonymization Technique adapts to a
modified linkable threshold ring signature scheme from [25]
which in turn takes the framework from [12].

Appendix A.4. Sigma-Protocol

A Σ-protocol [38] is a public-coin honest-verifier zero-knowledge
proof of knowledge protocol between a prover P and a verifier
V with a 3-move form:

1. Commit Phase: P sends a commitment I to a random
value r to V .

2. Challenge Phase: V sends a random challenge t-bit string
e to P.

3. Response Phase: P sends a response z which is a function
of witness w, r, e to V .

Σ-protocol is said to be secure if it satisfies the following
properties: i)Perfect Completeness: For honestly generated keys
and x belonging to a language L the verification should always
accept the proof. ii)Honest-Verifier Zero-Knowledge: Zero-
knowledge property guarantees a prover that a malicious ver-
ifier learns nothing beyond the truth of the statement. Honest-
verifier indicates that the verifier follows the protocol and chooses
the challenge uniformly at random. iii) Knowledge-Extractable:
It not only ensures that a witness w exists for the statement x
but also that the prover knows the witness. This is modeled by
a program interacting with the prover and extracts out the wit-
ness held by the prover.

Appendix A.5. Non-Interactive Zero-Knowledge Proof of Knowl-
edge Representation (NI-ZKPoKRep)

The protocol NI-ZKPoKRep is an honest-verifier statisti-
cally zero-knowledge argument of knowledge of integer vectors
in the generic group model for the relation:

RNI−ZKPoKRep = {(((gi,w) ∈ G); x ∈ Zn) :

w =
n∏

i=1

gxi
i ∀i ∈ [1, n]}

The protocol allows a prover with an integer vector x= (x1, ..., xn)
to prove that w =

∏n
i=1 gxi

i without disclosing the witness x =
(x1, ..., xn).

• S etup(λ) : The setup algorithm takes as input the secu-
rity parameter and generates the parameters needed for
the protocol. It samples a group G using a group genera-
tor function GGen(λ), then samples generators (g1, ..., gn)
group G.

• Prove(x,w) :

– Prover randomly samples k1, ..., kn ←$ [−B, B], where
B > 22λ|G| and computes A =

∏n
i=1 gki

i .

– Computes l← Hprime(gi, xi, A) and c← H(l).

– Computes si = ki + c.wi ∀i ∈ [1, 3].

– Derives quotients q ∈ Z3 and residues r ∈ [l]n such
that qi.l + ri = si ∀i ∈ [1, n].

– Computes Q =
∏n

i=1 gqi
i .

– Constructs the proof as π← {A,Q, r}.
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• Veri f y(π,w) :

– Parse proof π as {A,Q, r}
– Computes l← Hprime(gi, xi, A) and c← H(l)

– Check if: ri ∈ {0, ..., l−1} ∀i ∈ [1, 3]; Ql∏3
i=1 gri

i
?
=

Axc.

Appendix A.6. Proof of Knowledge of Co-prime Roots (PoKCR)

PoKCR is a technique to aggregate several NI-ZKPoKE
proofs. It generates a succinct proof of knowledge for multi-
ple co-prime roots x1, ..., xn (i.e.,gcd(xi, x j) = 1 : i ̸= j) for the
relation:

RPoKCR = {(α ∈ Gn; x ∈ Zn) : π = f (x) ∈ G}

• AggProof(αi ∈ G, xi ∈ Z∀i ∈ [1, n]): Aggregates the
individual proofs as: π ←

∏n
i=1 πi such that πxi

i = αi and
forwards it to the verifier.

• VerifyAggProof(n, α, xi): takes as input the total number
of proofs to be aggregated n, element α for which the
root needs to be calculated and the individual roots xi

∀i ∈ [1, n]. It recomputes x ←
∏n

i=1 xi, and computes

y←
∏n

i=1 α
x/xi
i . Accepts, if πx ?

= y.
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