
Blind Brother: Attribute-Based Selective Video Encryption
Eugene Frimpong

eugene.frimpong@tuni.fi

Tampere University

Tampere, Finland

Bin Liu
∗

bin.liu@tuni.fi

Tampere University

Tampere, Finland

Camille Nuoskala

camille.nuoskala@tuni.fi

Tampere University

Tampere, Finland

Antonis Michalas
†

antonios.michalas@tuni.fi

Tampere University

Tampere, Finland

ABSTRACT
The emergence of video streams as a primary medium for com-

munication and the demand for high-quality video sharing over

the internet have given rise to several security and privacy issues,

such as unauthorized access and data breaches. To address these

limitations, various Selective Video Encryption (SVE) schemes have

been proposed, which encrypt specific portions of a video while

leaving others unencrypted. The SVE approach balances security

and usability, granting unauthorized users access to certain parts

while encrypting sensitive content. However, existing SVE schemes

adopt an all-or-nothing coarse-grain encryption approach, where a

user with a decryption key can access all the contents of a given

video stream. This paper proposes and designs a fine-grained ac-

cess control-based selective video encryption scheme, ABSVE, and
a use-case protocol called Blind Brother. Our scheme encrypts

different identified Regions of Interest (ROI) with a unique symmet-

ric key and applies a Ciphertext Policy Attribute Based Encryption

(CP-ABE) scheme to tie these keys to specific access policies. This

method provides multiple access levels for a single encrypted video

stream. Crucially, we provide a formal syntax and security defi-

nitions for ABSVE, allowing for rigorous security analysis of this

and similar schemes – which is absent in prior works. Finally, we

provide an implementation and evaluation of our protocol in the

Kvazaar HEVC encoder. Overall, our constructions enhance security

and privacy while allowing controlled access to video content and

achieve comparable efficiency to compression without encryption.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Security
andprivacy→Keymanagement;Access control; Privacy-preserving
protocols.

KEYWORDS
Access Control, Attribute-Based Encryption, HEVC, Selective Video

Encryption

1 INTRODUCTION
In the modern digital era, visual communication has become a cor-

nerstone of human interaction, with video streams emerging as the

go-to medium for sharing information, expressing creativity, and

∗
Also with grchain.io.

†
Also with RISE Research Institutes of Sweden.

fostering connectivity [18]. With this increased usage and consump-

tion of video streams, the demand for high-quality video sharing

over the internet has skyrocketed. This high demand led to the

introduction of the High-Efficiency Video Coding (HEVC) [17, 26]

standard to support higher video quality and more efficient video

compression techniques. Alongside the myriad benefits of video

sharing and using the HEVC standard, security and privacy con-

cerns exist that may undermine individual rights, compromise sen-

sitive data, and facilitate malicious activities. One of the most sig-

nificant security concerns associated with videos is the risk of

unauthorized access and data breaches [10, 22]. In a world where

video streams traverse numerous networks and devices, malicious

actors can intercept video transmissions, gain unauthorized entry

to video databases, and exploit sensitive information for nefarious

purposes. Alternatively, unauthorized people in an organization

may gain access to the contents of a video stream that they other-

wise should not have access to. These concerns severely threaten

individuals, organizations, and even governments, jeopardizing

personal privacy and sometimes national security.

A straightforward approach to address the privacy concerns re-

lated to video sharing is to encrypt the video bitstream, popularly

referred to as Naive Encryption Algorithm (NEA) [1, 22]. However,

this has been proven to be impractical, as it proceeds to encrypt and

decrypt the entire bitstream as textual data. More specifically, NEA

is incompatible with various video codecs, formats, or streaming

protocols, as video streams must be decrypted before being viewed,

which makes the encrypted video useless to a user who does not

possess a decryption key. Additionally, due to the large size of video

streams, encryption and decryption of the entire bitstream requires

significant computational resources, which makes NEA an ineffi-

cient technique. To this end, several Selective Video Encryption

(SVE) [6, 11, 12, 14, 27, 31] schemes have been proposed in recent

years. In an SVE scheme, specific portions of a video stream are en-

crypted while leaving other portions of the bitstream unencrypted.

This approach provides fine-grained control over which parts of

the video are protected and which parts remain accessible without

decryption (i.e., codec compliance [22] – the SVE encrypted video

can be played without being first decrypted). The primary goal of

SVE is to strike a balance between security and usability, allowing

unauthorized users to access certain parts of the video while keep-

ing sensitive or private content encrypted and protected. Standard

cryptographic techniques, such as basic symmetric or asymmet-

ric encryption methods, can be used to implement SVE. However,

these require careful consideration of the encryption process, key

https://orcid.org/0000-0002-4924-5258
https://orcid.org/0000-0002-6591-3711
https://orcid.org/0009-0001-6741-887X
https://orcid.org/0000-0002-0189-3520

E. Frimpong et al.

management, and the design of mechanisms to ensure that access to

different parts of the video is controlled appropriately. Furthermore,

SVE schemes often utilize techniques provided by the encoder (e.g.

HEVC tiles [24]) that segment a given video frame into different

units, such as blocks, tiles or slices
1
, and then apply encryption

selectively to these units.

The technique of splitting a video frame into different units

introduced the possibility of encrypting specific regions of interest

(ROI) in a video stream [12, 27]. For example, given a video of

traffic surveillance, SVE can be used to encrypt all identified faces

to ensure unauthorized parties with access to the encrypted video

can still play the video without seeing citizens’ faces. However, to

the best of our knowledge, existing SVE schemes adopt an all-or-
nothing course-grain approach when encrypting the identified ROIs.
That is, one key stream is used to encrypt all ROIs in a given video

stream, and once a user has access to this key, they can decrypt all

parts of the video.

However, existing SVE schemes are directly constructed using

specific cryptographic primitives without establishing formal syn-

tax and security definitions for SVE itself. As a result, the security

guarantees provided by those underlying primitives do not auto-

matically extend to the SVE scheme and the protocols that employ

them. The lack of formal definitions means that current SVE con-

structions lack rigorous and formal security proofs, undermining

their reliability as a security-critical component. Without such

formal definitions, it is impossible to rigorously reason about the

security of these schemes. To address this gap and meet the need

for fine-grained access control, we introduce the Attribute-based

Selective Video Encryption (ABSVE) scheme by formally defining

its syntax and security properties. ABSVE extends SVE by enabling

policy-based access control over video contents. This enhancement

provides greater flexibility in controlling access to controlling ac-

cess to encrypted video content based on predefined attributes and

policies.

ABSVE enables fine-grained access control by encrypting each

identified ROI in a video stream with a unique symmetric key.

Subsequently, the encryption keys are encrypted with a Ciphertext-

Policy Attribute-Based Encryption (CP-ABE) [2, 4, 8] scheme, which

links the keys to a specific policy. Using this approach, we consider

a use case where every encryption key corresponding to a different

ROI is encrypted under a different policy, thereby ensuring multiple

access levels to the contents of a single video stream. Based on

ABSVE, we present Blind Brother, a fine-grained access control-

based video encryption protocol that enforces access control over

video streams among system participants. Finally, we demonstrate

that our protocol is provably secure with respect to the formal

security definitions we proposed for fine-grained access control-

based video encryption protocols.

Contributions: The core contribution of this work lies in demon-

strating the implementation and feasibility of combining CP-ABE

with ROI encryption on video files, highlighting the practicality

and achievability of this integration. To support this, our sub-

contributions are summarized as follows:

1
A slice is a data structure (an entire picture or region of a picture) that can be

decoded independently from other slices of the same picture, in terms of entropy

coding, signal prediction, and residual signal reconstruction [26].

C1. We establish the first formal syntax and security definitions

for ABSVE, an extension of SVE designed to enable policy-

based access control over video content.

C2. We design an ABSVE scheme, enabling fine-grained access

control by leveraging a CP-ABE scheme to associate sym-

metric keys for encrypting distinct regions of a given video

stream to an access policy.

C3. Subsequently, we construct Blind Brother – a use-case

protocol based on the proposed scheme that demonstrates

the applicability of our work in a real-world application.

The security of the scheme and protocol is extensively ana-

lyzed and proved.

C4. Finally, we implement and evaluate the performance of our

scheme in the real-time Kvazaar HEVC encoder [19, 28].

2 MOTIVATION AND APPLICATION DOMAIN
Video stream encryption with object-specific keys has a broad

application spectrum ranging from the protection of sensitive infor-

mation in public surveillance systems to data-safeguarding in both

commercial and private environments. The following fields could

become possible implementation examples: (a) smart cities with the

aim of anonymizing individuals in real-time, (b) retail settings in or-

der to preserve customer privacy while monitoring store activities,

(c) in healthcare facilities to ensure patient interactions captured

by security cameras remain confidential. In this section we will

focus on an example demonstrating how the proposed system can

be protective of individual privacy on a daily basis while enabling

necessary interventions in exceptional cases.

• Privacy Protection for Everyday Life: Helen, a 52-year-
old history professor at the University of Athens, follows

a predictable routine: she leaves her home every morning

at 8:30 AM and cycles to her university office. Her move-

ments could be captured by cameras along her route. This

would reveal sensitive personal information, such as her

home address, workplace, and daily habits. In combination

with facial recognition technologies, her identity could be

exposed and result to a breach of her privacy, though He-

len is an ordinary citizen with no connection to criminal

activities.

• Crime Investigation Scenario: One evening, while cy-
cling back home, Helen is assaulted and her bag is stolen.

The police consults footage from cameras along her route

and identifies a suspect.

Societal Paradox

These examples underline a critical societal paradox with

societal repercussions: while surveillance systems are in-

valuable for crime prevention and resolution, continuous

recording of daily life causes intrusions into personal pri-

vacy. This calls for innovative approaches that balance

these competing priorities.

This challenge can be addressed by our proposed system via

selective encryption of sensitive video content. If, for example, we

take the second scenario, faces and other sensitive elements in the

Blind Brother

footage would remain encrypted unless the authorities detected a

possible suspect. In this case, the system would only decrypt the

necessary portions of the data, such as the suspect’s face. As a result,

the system protects individual privacy during routine operations,

while allowing room for effective law enforcement when necessary.

Through advanced encryption technologies, object detection

algorithms, and selective decryption protocols, the system initiates

privacy-preserving surveillance solutions that safeguard individual

rights and reinforce safety in public spaces, thus respecting and

protecting democratic values in modern society.

3 BACKGROUND
This section is divided into two parts. First, we present the funda-

mental video concepts and frameworks utilized in this paper. Next,

we provide definitions for the core cryptographic components of

our design.

3.1 HEVC
HEVC is a video project standard developed by the ITU-T Video

Experts Group (VCEG) and the ISO/IEC Moving Picture Experts

Group (MPEG) [26]. The standard’s primary aim is to provide a

generic syntax that developers can follow when building video

compression applications. It is important to mention that the stan-

dardized processes of the HEVC are limited to bitstream structure,

syntax, constraints on the bitstream, and bitstream mapping for

decoded pictures. The rest of this section provides an overview of

the various components of the HEVC encoding process.

HEVC Motion Prediction: HEVC utilizes advanced motion pre-

diction to reduce a given video sequence’s spatial and temporal

redundancy during video encoding and decoding. HEVC utilizes a

hybrid prediction approach for the video coding layer – inter/intra
picture prediction. Intra-prediction is used for encoding frames that

do not rely on any previously encoded frames. It exploits the spatial

redundancy within a frame by predicting pixel values from neigh-

bouring pixels. HEVC supports various intra-prediction modes,

such as vertical, horizontal, DC, and angular modes, thus allowing

flexible prediction based on the characteristics of the video content.

On the other hand, inter-prediction is used for encoding frames by

exploiting temporal redundancy between the current frame and

previously encoded frames. It predicts the current frame by motion-

compensating (MC) from reference frames. HEVC uses block-based

motion estimation to search for the best matching block in refer-

ence frames and then applies motion compensation to generate the

prediction.

Motion Prediction in Action: In a typical HEVC encoder, the

encoding algorithm follows a specific procedure. Firstly, each input

video frame is split into blocks (the specification of the block parti-

tioning is shared with the decoder). Subsequently, when coding the

first frame of the input video or any frame at a clean random access

point, only intra-picture prediction is used. For all other frames

in the video sequence, inter-picture prediction is used for most of

the blocks. To encode with inter-picture prediction, the algorithm

selects motion data and a motion vector (MV) from a chosen refer-

ence frame to predict the samples of each block. MVs are used to

estimate the motion between frames by describing the spatial shift

of blocks. HEVC divides the frames into smaller blocks, typically

ranging from 4x4 to 64x64 pixels, and performs motion estimation

to find the best matching block in the reference frames. The MV

value represents the displacement in horizontal and vertical direc-

tions needed to align the current block with its best match in the

reference frames. MC is performed once the MVs are obtained to

generate the predicted frame.

MV Differences and Signs: Components of the MV coding pro-

cess that help efficiently represent and transmit motion information

between frames. They are part of the process of encoding and de-

coding motion vectors in inter-frame prediction. MV differences,

also known as motion vector differentials, refer to the differences

between the motion vectors of neighbouring blocks or partitions.

Instead of directly encoding the absolute motion vectors for each

block, HEVC encodes the differences between the motion vectors of

the current block and its predicted motion vectors. This allows for

a more efficient representation of motion vectors, as the differences

are often smaller values compared to absolute motion vectors. MV

signs, on the other hand, represent the direction of motion for a

givenMV. In inter-frame prediction, a motion vector can be positive,

indicating motion in a specific direction, or negative, indicating

motion in the opposite direction. HEVC employs differential coding

to represent the signs of motion vectors. The sign of a motion vector

is predicted based on the signs of neighbouring motion vectors or

partitions, and the difference in signs is encoded using fewer bits

compared to encoding the absolute sign for each motion vector.

By utilizing MV differences and MV signs, HEVC achieves to effi-

ciently code motion vectors and thus reduce bit rates for motion

information transmission.

HEVC Transform Coding: HEVC utilizes a block-based coding

technique to convert blocks of pixels from the spatial domain to

the frequency domain. The most commonly used technique in

HEVC is the High-Efficiency Transform (HEVC-Transform), based

on the discrete cosine transform (DCT). The transform process

decorrelates the pixel values within a block and concentrates the

energy in fewer coefficients, enabling efficient representation and

compression of the video data. Transform coefficients (TCs) are

numerical values that represent the frequency components of a

block after it has undergone a transformation. After successful

transformation, the TCs are quantized to reduce their precision and

eliminate perceptually insignificant information. This quantization

process introduces a trade-off between coding efficiency and video

quality. TCs that contribute less to visual quality are assigned higher

quantization values andmay be discarded or represented with fewer

bits during encoding, resulting in higher compression.

HEVC Tiles: The HEVC standard introduced the tile feature to
support parallel processing and packetization. In a nutshell, tiles are

independently decodable frame regions encoded with some shared

header information [24]. Coding dependencies do not cross the tile

boundary when tiles are enabled. These dependencies include MV

prediction, intra-picture prediction, and context selection. Control-

ling coding dependencies within a particular tile ensures that a

decoder can process multiple tiles in parallel, greatly improving ef-

ficiency. Additionally, the partitioning afforded by tiles can be used

to facilitate the identification and independent processing of spe-

cific ROIs within a video. Figure 1 shows a video frame partitioned

into 15 tiles (red rectangles).

E. Frimpong et al.

Figure 1: HEVC Tiles Concept [24]

Kvazaar: This is a cross-platform HEVC encoder developed and

maintained by a large community of researchers [19, 28]. The

Kvazaar project is written in C and supports HEVC Main, Main

Still Picture, and Main 10 profiles for an 8-bit 4:2:0 progressive

video. The core advantages of the project include coding efficiency

close to the reference software implementation [17], real-time cod-

ing speed, optimized computation and memory resources, easy

portability to various platforms, and a well-documented source

code.

3.2 Core Cryptographic Building Blocks
In this section we provide the main cryptographic building blocks

utilized in this work. More precisely, we give definitions for a sym-

metric encryption and for a CP-ABE scheme followed by a brief

discussion of the concept of hybrid cryptosystems.

Definition 3.1 (Private Key Encryption (SKE)). A private-key en-

cryption scheme E is a tuple of three algorithms E = (KeyGen, Enc,
Dec) such that:

• KeyGen : The Key Generation is a probabilistic algorithm

that takes as input a security parameter 𝜆, and outputs a

private K← KeyGen(1
𝜆

).

• Enc : Encryption is a possibly probabilistic algorithm that

takes as input a private key K and a message m ∈ M and

outputs a ciphertext 𝑐 ← Enc(K,m).

• Dec : Decryption is a deterministic algorithm that takes as

input a secret key K and a cipertext 𝑐 and outputs a message

𝑚 ← Dec(K, c).

CP-ABE is an encryption scheme that offers fine-grained access

control over encrypted data [2, 4]. In CP-ABE, the data and the

access policies are associated with a concrete set of attributes Y.
A user’s access to the encrypted data depends on whether their

attributes satisfy the access policy 𝑃 associated with the ciphertext.

This attribute-based approach allows for flexible access control,

where access can be granted based on various combinations of

attributes. It is particularly useful when data is shared among multi-

ple users with different access privileges. In CP-ABE, every user has

a secret key generated based on a set of attributes. Each ciphertext

is associated with an access policy defined in terms of attributes.

The ciphertext can only be decrypted by a user if their attribute set

satisfies the policy associated with the ciphertext (i.e., 𝑃 (Y) = True).
For the rest of this paper, we refer to the space of attributes as

Ω = {𝑎1, . . . , 𝑎𝑛}, while the space of policies will be denoted as

P = {𝑃1, . . . , 𝑃𝑚}.

Definition 3.2 (Ciphertext-Policy ABE). A CP-ABE scheme is a

tuple of the following four algorithms:

• CPABE.Setup: This is a probabilistic algorithm that takes

as input a security parameter 𝜆 and outputs a master public

key MPK and a master secret key MSK. We denote this by

(MPK,MSK) ← Setup(1
𝜆

).

• CPABE.Gen: This is a probabilistic algorithm that takes as

input a master secret key MSK, a set of attributes Y ⊆
Ω and the unique identifier of a user 𝑢𝑖 , and outputs a

decryption key bound to the user and their list of attributes.

We denote this by dki ← Gen(MSK,Y, 𝑢𝑖).
• CPABE.Enc: A probabilistic algorithm that takes as input a

master public keyMPK, a message𝑚, and a policy 𝑃 ∈ P.
The algorithm outputs a ciphertext 𝑐𝑚 associated with the

policy 𝑃 on a successful run. We denote this by

𝑐𝑚 ← Enc(MPK,𝑚, 𝑃).

• CPABE.Dec: A deterministic algorithm that takes as input

a user’s secret key and ciphertext and outputs the original

message𝑚 iff the set of attributes Y associated with the

underlying secret key satisfies the policy 𝑃 associated with

𝑐𝑚 . We denote this by𝑚 ← Dec(dki, 𝑐𝑚).

Hybrid Cryptosystems: In cryptography, a hybrid cryptosystem

combines the convenience of a public-key cryptosystem with the

efficiency of a symmetric-key cryptosystem. Public-key cryptosys-

tems are advantageous because they do not require the sender

and receiver to share a common secret for secure communication.

Examples include the TLS protocol [9], the SSH protocol [30], Ker-

beros [25], and many others.

Our work adopts a similar approach, integrating SKE with CP-

ABE, as demonstrated in prior research (e.g., [23]). The concept

is straightforward: symmetric encryption is employed to encrypt

specific ROIs in a video, while CP-ABE is used to distribute the

symmetric keys to users who meet a defined policy. These users

can then use the corresponding symmetric keys to decrypt certain

objects within the video.

4 RELATEDWORKS
Several works have explored the concept of SVE in the context

of video streams [6, 7, 11, 12, 22, 27, 29, 31]. For example, in [12],

authors proposed a selective encryption solution to encrypt ROIs

in specific tile based on the HEVC standard using AES symmetric

encryption. Their work implemented the encryption at the Context-

Adaptve Binary Arithmetic Coding (CABAC) binstring level and

focused on encrypting a set of HEVC parameters such as the MV dif-

ference, MV signs, TC, and TC signs. Subsequently, authors in [27]

built upon the work proposed in [12] by extending the encryption

to the luma and chroma Intra Prediction Modes (IPMs). In both

papers, the authors prevented the propagation of encryption out-

side the identified tiles by restricting the MVs of non-ROI regions

inside the background region. Another approach to SVE was pro-

posed in [29], combining encryption with data hiding. In this work,

authors encrypted parameters such as MV signs and IPMs. Mean-

while, they used TC levels for data embedding. They also expanded

Blind Brother

the encryption space within CABAC encoded streams, including

IPMs, to enhance video reconstruction, and employed a coefficient

modification technique for data hiding, ensuring format compat-

ibility and visual quality. More recently, authors in [6] proposed

a randomly selective encryption scheme which utilizes the RC4

algorithm and focuses on expanding the encryption positions in the

video stream as well as randomizing the positions. Authors in [7]

proposed a robust SVE scheme that focuses on synchronizing slices

to ensure decryption is possible in case of packet loss. In this work,

each slice of the I/P/B frame is independently encrypted based on a

pseudorandom binary sequence (PRBS) generated by an RC4 stream

cipher. The PRBS is designed to be related to the coding parame-

ters of each slice. Not all the schemes target the HEVC standard,

although it is considered the most popular and mature standard.

In [11], authors explore SVE in the Versatile Video Coding (VVC)

Standard [5]. The VVC standard is the new generation of video

coding standards developed by the MPEG and ITU/VCEG group.

Authors in [11] extend SVE to VVC by proposing a scheme which

determines encryptable bins with the TCs and encrypts a set of

VVC elements much like [12] and [27].

In the works mentioned above, the central objective has been

to devise an SVE approach that seamlessly integrates with the en-

coding process. The aim is to strike a balance between achieving

efficiency without overwhelming computational resources while

ensuring that the resulting visual quality remains within acceptable

bounds. However, amid these pursuits, the critical aspects of key

distribution and access control have regrettably been relegated to

the background. In our work, we address the aforementioned gap

and extend the capabilities of SVE to encompass a finer level of

access control. Our scheme takes a more comprehensive approach,

leveraging multiple encryption keys corresponding to the identified

ROIs. Blind Brother provides a secure and controlled method of

granting access to the encryption keys, intricately tied to a user’s

specific access rights, thus ensuring a robust and tailored security

framework. By merging encryption efficiency, visual quality preser-

vation, and fine-grain access control, we endeavour to establish a

more holistic foundation for video data protection.

5 SYSTEM MODEL
In this section, we provide a brief description of the system model

considered for Blind Brother. Our setup consists of four entities:

(i) Administrator (AD), (ii) Edge Devices (D), (iii) Cloud Service

Provider (CSP), and (iv) Users (U).

• Administrator: We assume the existence of a trusted ad-

ministrator AD, who manages and is responsible for a set

of edge devices in a specific environment.AD is responsible

for generating the CP-ABE master secret and public key as

well as the CP-ABE decryption key for a user.

• Edge Devices: Let D = {𝑑1, . . . , 𝑑𝑦} be a set of edge de-
vices deployed in an environment to capture video streams

𝑉 . Each device encrypts the captured video streams and

uploads them to cloud storage.

• Cloud Service Provider: We assume the existence of a

cloud service provider CSP, an abstract external storage

platform whose primary responsibility is the storage of

encrypted videos received from each device 𝑑𝑖 .

• Users: LetU = {𝑢1, . . . , 𝑢𝑧 } be the set of registered users

in our environment who wish to view parts of an encrypted

video uploaded by a device 𝑑𝑖 . A user 𝑢 𝑗 is considered to

be registered if they possess a CPABE decryption key dkj
generated based on their set of attributes Y𝑗 = (𝑎1, . . . , 𝑎𝑡).

TEE – To Use or Not to Use?

Despite criticism from the cryptographic commu-

nity—primarily due to the numerous attacks that have

been discovered—TEE remains an active area of research,

ensuring continuous improvements. Furthermore, al-

though in crypto community it is preferred to place trust

in mathematics than in the hardware (a perspective with

which the authors of this paper agree), we believe that

using a TEE in a scenario like the one presented in this

paper is a well-suited approach. Specifically, the authority

responsible for generating ABE keys could operate within

an isolated environment, enhancing both security and

functionality. Due to space constraints and to keep our

description simpler, we have omitted the inclusion of a

TEE in our discussion. However, we encourage the reader

to refer to the architectures and proofs in [3].

6 SELECTIVE VIDEO ENCRYPTION
This section presents the fundamental concepts underlying our

fine-grained SVE scheme for the HEVC standard. The scheme is

using HEVC standard and extends it by incorporating an encryp-

tion mechanism with access control capabilities. The encryption

process focuses on encrypting the MV differences, MV signs, TC,

TC signs, and Luma and Chroma Intra Prediction Modes (IPM)

HEVC parameters. These parameters have been proven to be the

ideal encryption parameters to enable successful decryption and

decoding without increasing the bitrate [7, 11, 31]. Additionally, to

identify the various ROIs, we utilize Dlib2 – an open-source Object

Identifier (OI) through which we identify and track objects in a

frame.

In the following subsections, we first provide a detailed descrip-

tion of how we combine the HEVC tile concept with the OI to

achieve our goals. Subsequently, we present the formal definition

of the ABSVE and its security definitions.

6.1 Tile Concept and Object Identification
Using the HEVC tile concept briefly described in section 3, we as-

sume that each frame of an input video stream is partitioned into a

number of tiles. For this work, let’s consider a 6 × 3 matrix of tiles

(i.e. 18 tiles per frame). Hence, let TL = (𝑇𝐿1, . . . ,𝑇𝐿18) be the set

of all tiles in a given video frame. Furthermore, we use an OI to

provide the necessary capabilities for object identification in the

given video stream. More precisely, when the video stream is fed

to the OI, it initializes a tracker with a bounding box around the

object of interest in the first frame. Subsequently, the OI employs a

correlation filter-based tracking algorithm to estimate the object’s

position and size in subsequent frames. Although the Dlib library

2
https://github.com/davisking/dlib

https://github.com/davisking/dlib

E. Frimpong et al.

focuses on object tracking rather than identification, once the ob-

ject is consistently tracked, additional techniques, such as image

classification models, are utilized to identify the object within the

bounding box. Integrating the OI with the Kvazaar HEVC encoder

enables the OI to output a tile𝑇𝐿𝑠 representing a tile containing an

object of interest. More formally, when a given video stream𝑉 is fed

into the OI, it outputs a set of tiles (𝑇𝐿𝑠)𝑠∈S , whereS ⊆ [18], which

contain objects of interest. Given the specific tiles containing the

objects of interest, we proceed to encrypt the necessary parameters

in each tile.

6.2 Encryption of Parameters
To encrypt IPM parameters and syntax elements of variable length

in a tile of interest 𝑇𝐿𝑠 , we utilize a stream cipher. The encryption

process occurs at the CABAC bin string level to distort the visual

quality of the specific tile of interest. We note that the tiles not

identified by the OI to contain any object of interest are untouched

and remain clear. To this end, the encryption process is divided into

encryption of the IPM and encryption of the syntax elements. IPM
Encryption: To ensure compliance with the HEVC standard, we

encrypt the IPMs while preserving their original scanning order

before encryption. This encryptionmethod allows the encryption of

IPMs to be compatible with HEVC. Overall, there are 35 IPMs, and

the scanning order details the order in which these modes are tested

during the encoding process [26]. The IPM scanning order follows

the raster scan pattern, allowing it to efficiently explore and select

the best inter-prediction mode for each coding unit. The scanning

order starts from the top-left corner of a coding unit and proceeds

row by row, from left to right, until it reaches the bottom-right

corner. To this end, the encryption process involves classifying the

IPM elements into three sets:

𝑆𝑒𝑡𝑉𝑒𝑟𝑡 = {6, 7, 8, 9, 10, 11, 12, 13, 14},
𝑆𝑒𝑡𝐻𝑜𝑟 = {22, 23, 24, 25, 26, 27, 28, 29, 30},
𝑆𝑒𝑡𝐷𝑖𝑎𝑔 = {0, 1, 2, 3, 4, 5, 15, 16, 17, 18, 19, 20, 21, 31, 32, 33, 34}

Each set represents IPMs in the same scanning direction (vertical,

horizontal, and diagonal). To encrypt, each set undergoes a circular

shift operation based on the input key, resulting in a new position

for the IPM in the same set. Furthermore, to encrypt the luma

and chroma IPMs, we assume 𝑁 as the number of elements in

a set 𝑀 = [1, . . . , 𝑁], where 𝑀 ∈ R𝑁 , 𝑛𝑏 is the number of bits

generated by the keystream, and 𝑗 is the index position of the IPM.

On encryption, the new IPM produced at the 𝑠 − 𝑡ℎ position of IPM

𝑀[𝑠] is given by:

𝑀′[𝑗] = 𝑀[(𝑠 + 𝑛𝑏) (mod 𝑁)] (1)

Syntax Elements Encryption: A simple XOR operation is used

when encrypting the syntax elements (i.e. MV differences, MV signs,

TC and TC signs). The equation used is given below:

𝐶𝑠 = 𝑄𝑠 ⊕ X(ks), (2)

where 𝐶𝑠 is the resulting ciphertext, 𝑄𝑠 syntax element, and X(ks)
is the key stream generated from the secret key ks for tile 𝑇𝐿𝑠 .

Eventually, the algorithm outputs 𝐶𝑉 , an encryption of the video

containing both encryptions of tiles of interest 𝑇𝐿𝑠 and plain tiles

𝑇𝐿𝑡 , for 𝑡 ̸∈ S. Note that, while the encryption of a tile𝑇𝐿𝑠 consists

in computing both𝐶𝑠 and𝑀
′
[𝑠], the latter is not part of the output

ciphertext as it never leaves the encoding of decoding process

hence never comes out. The complete video encryption is provided

in algorithm 1.

Algorithm 1: ABSVE.EncVid
1 Input (𝑉):

2 Output (𝐶𝑉 , (ks)𝑠∈S):

3 Partition𝑉 into 18 tiles (𝑇𝐿1, . . . ,𝑇𝐿18);

4 Pass𝑉 through the OI to output (𝑇𝐿𝑠)𝑠∈S , S ⊆ [18];

5 for 𝑠 ∈ S do
6 Generate a key ks;
7 IPM
8 SetVert = {6, 7, 8, 9, 10, 11, 12, 13, 14};

9 SetHor = {22, 23, 24, 25, 26, 27, 28, 29, 30};

10 SetDiag = {0, 1, 2, 3, 4, 5, 15, 16, 17, 18, 19, 20, 21, 31, 32, 33, 34};

11 if IPM > 5 and IPM < 15 then
12 Enc_IPM = Circular shift(SetVert, IPM, X(ks));
13 else if IPM > 21 and IPM < 31 then
14 Enc_IPM = Circular shift(SetHor, IPM, X(ks));
15 else
16 Enc_IPM = Circular shift(SetDiag, IPM, X(ks))
17 Luma and Chroma IPM
18 𝑀 ′[𝑠] = 𝑀[(𝑠 + 𝑛𝑏) (mod 𝑁)];

19 Syntax Elements
20 𝐶𝑠 = 𝑄𝑠 ⊕ X(ks);
21 end

6.3 Attribute-Based Selective Video Encryption
Scheme

We extend the SVE scheme in [27] to support enforcing fine-grained

access control over video streams based on predefined attributes and

policies. An ABSVE scheme is given by a tuple of five algorithms:

ABSVE = (KeyGen, DKGen, EncVid, EncKeys, Decrypt), with the

universe of attributes Ω = {𝑎1, ..., 𝑎𝑛} and the space of policies

P = {𝑃1, ..., 𝑃𝑚}. An encrypted video stream corresponding to a

policy 𝑃 can be decrypted by a secret key associated with a set of

attributes Y ⊆ Ω only when 𝑃 (Y) = True. The formal syntax of

ABSVE is as follows.

Definition 6.1. (Attribute-based SVE) An ABSVE scheme is de-

fined by the following five algorithms:

• ABSVE.KeyGen: This is a probabilistic algorithm that takes

as input a security parameter 𝜆 and outputs a master public

key MPK and a master secret key MSK. We denote this by

(MPK,MSK)←$ KeyGen(1
𝜆

).

• ABSVE.DKGen: This is a probabilistic algorithm that takes

as input the master secret key MSK, a registration token

regA which consists of an attribute set Y ⊆ Ω and a user

identifier 𝑢, outputs a decryption key dk for the user and
its associate attribute sets. We denote this by

dk←$ DKGen(MSK, regA).

• ABSVE.EncVid: This is a probabilistic algorithm that takes

as input a video stream 𝑉 and a set S indicating objects of

Blind Brother

interest in 𝑉 , outputs the encrypted video 𝐶𝑉 along with a

set of corresponding keys 𝐾 for subsequent video access.

We denote this by (𝐾,𝐶𝑉)←$ EncVid(𝑉 ,S).

• ABSVE.EncKeys: This is a probabilistic algorithm that takes

as input a set of keys 𝐾 , the master key MPK and a policy

𝑃 , outputs the encryption of keys 𝐶𝐾 . We denote this by

𝐶𝐾 ←$ EncKeys(𝐾,MPK, 𝑃).

• ABSVE.Decrypt: This is a deterministic algorithm that takes

as input a decryption key dk, an encrypted key set 𝐶𝐾 and

an encrypted video 𝐶𝑉 , outputs a decrypted video 𝑉 ′. We

denote this by 𝑉 ′ ← Decrypt(dk,𝐶𝐾 ,𝐶𝑉).

Correctness: An ABSVE scheme is correct if for all 𝜆, 𝑉 , Y, 𝑃 , S,
satisfying 𝑃 (Y) = True, all (MPK,MSK) outputted by KeyGen, all
dk outputted by DKGen(MSK, regA) with regA = (Y, 𝑢), all (𝐾,𝐶𝑉)

outputted by EncVid(𝑉 ,S), all 𝐶𝐾 outputted by EncKeys(𝐾,MPK),

it holds that:

Decrypt(dk,𝐶𝐾 ,𝐶𝑉) = 𝑉 .

Semantic Security: Wedefine semantic security for ABSVE schemes

to ensure that ciphertexts (encrypted video streams) are indistin-

guishable. This is formalized through a game where the adversary

attempts to distinguish ciphertexts encrypted under fixed policy

sets. The adversary has access to two oracles: DKGen, which gen-

erates decryption keys for specified attribute sets, and Challenge,

which allows requests to encrypt a video along with associated keys

and a policy from the supported policy set, based on a random bit

𝑏 chosen at the beginning of the game. To prevent trivial wins, the

adversary cannot use any decryption key from DKGen to recover

any encrypted content returned from Challenge. Specifically, for

all policies 𝑃 in list Ch and attribute sets Y in list 𝐼 , it must hold

that 𝑃 (Y) = False throughout the game.

Definition 6.2 (Semantic Security). We say an ABSVE scheme for

tile set S, policy set P and attribute universe Ω is semantically

secure, if for all p.p.t. adversary A, it holds that the advantage of

A:

Advind-S-P-Ω
ABSVE,A (𝜆) =

����Pr[Expind-S-P-Ω
ABSVE,A (𝜆)→ true] − 1

2

����
is negligible in 𝜆, where the experiment is defined as follows.

Expind-S-P-Ω
ABSVE,A (𝜆)

𝑏←$ {0, 1}; I,Ch← ∅
(MPK,MSK)←$ KeyGen(1

𝜆
)

𝑏′←$A(1
𝜆,MPK : DKGen,Challenge)

Return (𝑏 = 𝑏′)

7 BLIND BROTHER
In this section, we present our ABSVE protocol Blind Brother, a
core contribution of this work based on the ABSVE scheme intro-

duced in subsection 6.3. Overall, Blind Brother utilizes the tuple

of five algorithms introduced by ABSVE, namely, ABSVE.KeyGen,
ABSVE.EncVid,ABSVE.EncKeys,ABSVE.DKGen, andABSVE.Decrypt
Furthermore, we consider that encryption of syntax elements is per-

formed using a symmetric encryption denoted as SKE = (Gen, Enc,Dec).
Blind Brother employs the following building blocks to provide

secure communication among all protocol entities:

Oracles

DKGen(regA)

Parse regA as (·,Y)

If Y ̸⊆ Ω then Return ⊥
For all 𝑃 ∈ Ch:
If 𝑃 (Y) = True then

Return ⊥
I ← I ∪Y
Return 𝑑𝑘←$ DKGen(MSK, regA)

Challenge(𝑉0,𝑉1, 𝑃)

If |𝑉0 | ̸= |𝑉1 | ∨ 𝑃 ̸∈ P then

Return ⊥
For all Y ∈ I:

If 𝑃 (Y) = True then
Return ⊥

𝐾,𝐶𝑉 ←$ EncVid(𝑉𝑏 ,S)

𝐶𝐾 ←$ EncKeys(𝐾,MPK, 𝑃)

Ch← Ch ∪ {𝑃}
Return 𝐶𝐾 ,𝐶𝑉

• An IND-CPA secure public key encryption scheme PKE =

(Gen, Enc,Dec);
• AnEUF-CMA secure signature scheme S = (Gen, Sign,Verify);

• A first and second pre-image resistant cryptographic hash

function H(·);
• A synchronized clock between all entities.

To provide a comprehensive overview of Blind Brother, we con-
sider a use case scenario, where an administrator AD manages

a number of camera-equipped devices (𝑑1, . . . , 𝑑𝑛) deployed in an

environment to capture video feeds. Each device 𝑑𝑖 encodes and en-

crypts video streams𝑉𝑖 and securely uploads to the CSP. To access

an uploaded video, a registered user 𝑢 𝑗 contacts the CSP to retrieve

a specific video and decrypts parts of the encrypted video based on

their access rights and decryption key. We divide the entire process

into three phases: Setup and Registration, Video Upload and Video
Access. A complete overview of Blind Brother is presented in

Figure 2.

Setup andRegistration Phase: Each entity first generates its sign-
ing and verification key pair via the signature scheme S and asym-

metric encryption and decryption key pair via the public key en-

cryption scheme PKE. Subsequently, AD runs the ABSVE.KeyGen
algorithm with a security parameter 𝜆 as input and outputs the

master public and private keys MPK,MSK. For simplicity, we de-

note the signature on message𝑚 generated by party 𝑥 as 𝜎𝑥 (𝑚).

On a successful run, AD securely transfersMPK to each device 𝑑𝑖
via𝑚1:

𝑚1 = ⟨𝑡1,MPK, 𝜎𝐴𝐷 (H(𝑡1 | |𝑀𝑃𝐾))⟩.
Finally, each user 𝑢 𝑗 contacts AD to initiate user registration. Dur-

ing user registration, a user 𝑢 𝑗 who wishes to access video streams

stored with CSP requests a CP-ABE decryption key bound to their

specific attributes. This is done by generating a registration token

regA, which contains the user’s identity and attributes such that

regA = (𝑢 𝑗 ,Y𝑗). The generated token is then securely sent to AD
through𝑚2:

𝑚2 = ⟨𝑡2, PKE.Enc(pkAD, regA), 𝜎𝑢 𝑗 (H(𝑡2 | |𝑐𝑟𝑒𝑔𝐴))⟩,

where 𝑐𝑟𝑒𝑔𝐴 = Enc(pkAD, regA). On receiving𝑚2, AD verifies the

message’s authenticity. Subsequently,AD executes theABSVE.DKGen
algorithm with inputs Y𝑗 , 𝑢 𝑗 , and MSK, and outputs the CP-ABE

decryption key dkj. To complete user registration, the generated

key is securely sent to 𝑢 𝑗 through𝑚3:

𝑚3 = ⟨𝑡3, PKE.Enc(pkuj , dkj), 𝜎𝐴𝐷 (H(𝑡3 | |𝑐𝑑𝑘 𝑗))⟩,

E. Frimpong et al.

Admin Device CSP User

Se
tu
p
an

d
R
eg

is
tr
at
io
n

V
id
eo

U
pl
oa

d
V
id
eo

A
cc
es
s

Run ABSVE.KeyGen

(MPK,MSK)

𝑚1

Run ABSVE.EncVid

(𝐶𝑉𝑖 ,K𝑖)

Run ABSVE.EncKeys

𝐶Ki

𝑚4

𝑚2 = ⟨𝑡2, Enc(pkA, regA), 𝜎𝑢 𝑗 (H(𝑡2 ∥ 𝑐regA))⟩

Run ABSVE.DKGen

dkj

𝑚3 = ⟨𝑡3, Enc(pkuj , dkj), 𝜎𝐴(H(𝑡3 ∥ dkj))⟩

𝑚5

𝑚6

Run ABSVE.Decrypt

V′

Figure 2: Blind Brother Overview

where 𝑐𝑑𝑘 𝑗 = PKE.Enc(pkuj , dkj). When 𝑢 𝑗 receives𝑚3, they verify

the message’s authenticity, integrity, and freshness and retrieve dkj
on successful verification.

Video Upload Phase: To initiate this phase, each device 𝑑𝑖 cap-

tures a video stream 𝑉𝑖 . The video stream is then passed through

an object detector to identify the set of tiles (𝑇𝐿𝑠)𝑠∈S containing

regions of interest. Now, using the set of index S ⊆ [𝑛] and the raw

video file 𝑉𝑖 as inputs, 𝑑𝑖 executes the ABSVE.EncVid algorithm to

selectively encrypt the video during compression (algorithm 1). On

a successful run, ABSVE.EncVid outputs the encrypted compressed

video 𝐶𝑉𝑖 and the set of symmetric keys used for the video encryp-

tion process Ki = (ks)𝑠∈S . Thereafter, 𝑑𝑖 runs the ABSVE.EncKeys
algorithm to encrypt the set of symmetric keys. This algorithm

takes as input a specific policy 𝑃𝑖 ,MPK and the set of symmetric

keys Ki, and outputs 𝐶Ki = (𝑐ks)𝑠∈S bound to 𝑃𝑖 . Once completed,

𝑑𝑖 uploads the encrypted video stream to CSP through𝑚4:

𝑚4 = ⟨𝑡4,𝐶𝐾𝑖 ,𝐶𝑉𝑖 , 𝜎𝑑𝑖 (H(𝑡4 | |𝐶𝑉𝑖 | |𝐶𝐾𝑖))⟩.

Video Access Phase: When a user 𝑢 𝑗 wishes to access video

streams stored with CSP, they contact the CSP to request the

uploaded video along with its corresponding key set. This is accom-

plished with a video access token reqV, which contains an identifier
for a specific video or a description of a possible event. This is sent

to the CSP through𝑚5:

𝑚5 = ⟨𝑡5, PKE.Enc(pkCSP, reqV), 𝜎𝑢 𝑗 (H(𝑡5 | |𝑐𝑟𝑒𝑞𝑉))⟩,

where 𝑐𝑟𝑒𝑞𝑉 = PKE.Enc(pkCSP, reqV). On receiving a request for

an uploaded video, CSP verifies the message and, on successful

verification, returns the video and its corresponding set of keys to

the requesting party through𝑚6:

𝑚6 = ⟨𝑡6,𝐶𝐾𝑖 ,𝐶𝑉𝑖 , 𝜎𝐶𝑆𝑃 (H(𝑡6 | |𝐶𝑉𝑖 | |𝐶𝐾𝑖))⟩.
When 𝑢 𝑗 receives the response from the CSP, they verify the mes-

sage’s authenticity, integrity, and freshness and proceed to video

decryption. To do so, 𝑢 𝑗 runs the ABSVE.Decrypt algorithm with

inputs𝐶𝐾𝑖 ,𝐶𝑉𝑖 , and the CP-ABE decryption key dkj. When success-

ful, ABSVE.Decrypt first outputs K′i , the set of keys the user 𝑢 𝑗 can
access according to their attributes and the policy set by A. Using
K′i , ABSVE.Decrypt finally outputs 𝑉 ′

𝑖
, where 𝑉 ′

𝑖
is a selectively

decrypted version of 𝑉𝑖 .

8 SECURITY DEFINITIONS
In this section, we introduce two formal security definitions, namely

robustness and secure access, for the fine-grained access control-

based video encryption protocol described in section 7.

The first security definition we present is robustness. In standard

fine-grained access control protocols, correctness guarantees that

any user can successfully access the files they are authorized to

retrieve. Similarly, in fine-grained access control-based video en-

cryption protocols, correctness should guarantee that authorized

users can successfully access the video tiles they are entitled to. In

the typical security definition of correctness in cryptographic access

Blind Brother

control systems (e.g. [13, 20, 21]), the adversary is restricted from

taking over users and altering the messages exchanged between

parties in the system. However, robustness is a strictly stronger

security notion than correctness. In the game defining robustness,

the adversary has the additional ability to generate and tamper with

messages exchanged between the parties. Despite the presence of

such an active adversary, the protocol is expected to guarantee

correctness of the system.

This security property is defined via the following experiment

involving a challenger, acting as AD, and an adversary A interact-

ing with the fine-grained access control-based video encryption

protocol Π. The challenger first runs Setup, which generates initial

local states for all parties and provides each device 𝑑 with an ini-

tialization message msg𝑑 . Upon receiving msg𝑑 , device 𝑑 executes

Init𝐷 , verifying msg𝑑 and updating its local state. All device ini-

tialization messages are revealed to A, who may then invoke the

oracle DeviceInit(𝑑,msg𝑑) to further initialize devices, receiving

a boolean response indicating success. User registration proceeds

analogously: the adversary may call UserReg(𝑢,Y, regA) to regis-

ter a user 𝑢 with attributesY and upon success, an update message

is returned. The user then updates its local state by calling UserInit,

which runs Init𝑈 after verifying this update message.

The adversary can request a device 𝑑 to upload a video stream𝑉

with policy 𝑃 by querying VideoUpload(𝑑,𝑉 , 𝑃). The oracle runs

VideoEncrypt to produce (𝐶, 𝑣𝑖𝑑), and then executes VideoUpload
with 𝑑’s local state and (𝑣𝑖𝑑,𝐶), yielding the upload message. An

entry 𝑣𝑖𝑑,𝑉 , 𝑃,𝐶 is then recorded in the list V . The upload mes-

sage is revealed to A. We do not consider availability attacks (e.g.,

blocking messages), and the cloud service provider (CSP) is not
required to validate inputs. The oracle directly records each entry

as generated by the device.

The adversary can also invoke VideoUpload1(𝑑,msg) to provide

arbitrary upload information. If msg is valid and no entry for 𝑣𝑖𝑑

exists in V , the oracle returns 𝑣𝑖𝑑 and sets a flag forged = True,
indicating successful forgery. To access an encrypted video, the

adversary can query VideoRAccess oracle with a video access

token reqV. The token is structured as a specific video identifier 𝑣𝑖𝑑

along with a potential event name 𝑒𝑣𝑒𝑛𝑡 . After that, the adversary

receives the encrypted video 𝐶 from the records inV .

There are two situations in which the adversary can be consid-

ered to win:

(1) A device uploads a video 𝑉 according to a policy 𝑃 , but no

authorized user (with attributes satisfying 𝑃) can correctly

recover 𝑉 .

(2) A user gains access to video data identified by some 𝑣𝑖𝑑 that

was never uploaded by any device (i.e., the data is forged).

In either case, if there exists a user 𝑢∗ and a video identifier 𝑣𝑖𝑑∗

such that 𝑢∗ fails to decrypt an authorized video or the forged flag

is set, the adversary A wins the game.

Definition 8.1 (Robustness). A fine-grained access control-based

video encryption protocol Π for edge devices D, registered users

U and policies P is said to be robust, if for all p.p.t adversary A,

it holds that

Advrobust-D-U-P
Π,A (𝜆) = Pr[𝐸𝑥𝑝robust-D-U-P

Π,A (𝜆)→ True]

is negligible in 𝜆, where the experiment 𝐸𝑥𝑝robust-D-U-P
Π,A is defined

as follows.

𝐸𝑥𝑝robust-D-U-P
Π,A (𝜆)

V ← ∅; forged← False
(pp, stAD, {st𝑑 }𝑑∈D , {msg𝑑 }𝑑∈D , {st𝑢 }𝑢∈U)←$ Setup(1

𝜆
)

(𝑢∗, reqV∗)←$ A(1
𝜆, pp, {msg𝑑 }𝑑∈D : O

robust
)

Parse reqV∗ as (𝑣𝑖𝑑∗, 𝑒𝑣𝑒𝑛𝑡)
If (forged = True) ∨

(∃ 𝑣𝑖𝑑∗ such that (𝑣𝑖𝑑∗,𝑉 ∗, 𝑃∗,𝐶∗) ∈ V ∧
𝑃∗(Y𝑢∗) = True ∧𝑉 ∗ ̸= VideoAccess(st𝑢∗ ,𝐶∗)) then

Return True

Oracles Orobust
DeviceInit(𝑑,msg𝑑)

If 𝑑 ̸∈ D then Return ⊥
result = Init𝐷 (pp, st𝑑 ,msg𝑑)

If result = ⊥ then Return ⊥
Else st𝑑 = result

Return True

UserReg(regA)

Parse regA as (𝑢,Y)

If 𝑢 ̸∈ U then Return ⊥
msg𝑢 ←$ UserReg(𝑢,Y)

Return msg𝑢

UserInit(𝑢,msg𝑢)

If 𝑢 ̸∈ U then Return ⊥
result = Init𝑈 (pp, st𝑢 ,msg𝑢)

If result = ⊥ then Return ⊥
Else st𝑢 = result

Return True

VideoUpload(𝑑,𝑉 , 𝑃)

If 𝑑 ̸∈ D ∨ 𝑃 ̸∈ P then

Return ⊥
(𝑣𝑖𝑑,𝐶)←$ VideoEncrypt(st𝑑 ,𝑉 , 𝑃)

msg←$ VideoUpload(st𝑑 , 𝑣𝑖𝑑,𝐶)

V ← V ∪ {𝑣𝑖𝑑,𝑉 , 𝑃,𝐶 }
Return (𝑣𝑖𝑑,msg)

VideoUpload1(𝑑,msg)

If 𝑑 ̸∈ D then Return ⊥
Extract (𝑣𝑖𝑑,𝐶) from msg
If ∃ (𝑣𝑖𝑑, ∗, ∗, ∗) ∈ V then

Return ⊥
If VerifyCSP(𝑑,msg) = True then

V ← V ∪ {𝑖𝑑, ∗, ∗,𝐶 }
forged = True
Return 𝑣𝑖𝑑

Return ⊥

VideoRAccess(reqV)

Parse reqV as (𝑣𝑖𝑑, 𝑒𝑣𝑒𝑛𝑡)

If ∃ (𝑣𝑖𝑑, ∗, ∗,𝐶) ∈ V then

Return𝐶

Else Return ⊥

The second security definition we introduce is secure access.
Essentially, it ensures that unauthorized users cannot obtain any

partial content of encrypted video tiles. This property is defined

by a security game similar to the robustness game, but now the

adversary A attempts to guess a random bit 𝑏 chosen at the begin-

ning of the game. The game maintains three lists:V for encrypted

video content, Ch for challenge policies, and Cr for corrupted users.
Unlike the robustness game, the adversary may call a corruption

oracle Corrupt to compromise users. Thus, UserReg is modified

to permit corruption before and after user registration. However,A
cannot run UserInit, since only the challenger can initialize users.

Honest users do not write data, so they cannot aid the adversary

in leaking video content through write operations. Similarly, the

adversary has no capability to impersonate devices.

The adversary issues a challenge via Challenge by specifying a

device 𝑑 , two equal-length video streams 𝑉0 and 𝑉1, and a policy 𝑃 .

The challenger encrypts and stores𝑉𝑏 (for the secret bit 𝑏) inV . To

prevent trivial wins, every corrupted user’s attribute set must fail

to satisfy the challenge policies. The game ends when the adversary

outputs a guess 𝑏′. The adversary wins if 𝑏′ = 𝑏.

E. Frimpong et al.

We require that a fine-grained access control-based video encryp-

tion protocol guarantees secure access if, for all, efficient adversaries

cannot win the above game with a probability significantly higher

than one-half.

Definition 8.2 (Secure Access). A fine-grained access control-

based video encryption protocol Π for edge devices D, registered

usersU and policies P is said to be secure with respect to video

access, if for all p.p.t adversary A, it holds that

Advind-D-U-P
Π,A (𝜆) =

����Pr[Expind-D-U-P
Π,A (𝜆)→ true] − 1

2

����
is negligible in 𝜆, where the experiment Expind-D-U-P

Π,A is defined

as follows.

Expind-D-U-P
Π,A (𝜆)

V,Ch,Cr ← ∅; 𝑏←$ {0, 1}
(pp, stAD, {st𝑑 }𝑑∈D , {msg𝑑 }𝑑∈D , {st𝑢 }𝑢∈U)←$ Setup(1

𝜆
)

𝑏′←$A(1
𝜆, pp, {msg𝑑 }𝑑∈D : O

ind
)

Return (𝑏 = 𝑏′)

Oracles Oind
DeviceInit(𝑑,msg𝑑)

If 𝑑 ̸∈ D then Return ⊥
result = Init𝐷 (pp, st𝑑 ,msg𝑑)

If result = ⊥ then Return ⊥
Else st𝑑 = result

Return True

UserReg(regA)

Parse regA as (𝑢,Y)

If 𝑢 ̸∈ U then Return ⊥
If 𝑢 ∈ Cr then
For all 𝑃 ∈ Ch:

If 𝑃 (Y𝑢) = True then
Return ⊥

st𝑢 ←$ UserReg(𝑢,Y)

If 𝑢 ∈ Cr then Return st𝑢
Else Return 𝑢

VideoUpload(𝑑,𝑉 , 𝑃)

If 𝑑 ̸∈ D ∨ 𝑃 ̸∈ P then

Return ⊥
(𝑣𝑖𝑑,𝐶)←$ VideoEncrypt(st𝑑 ,𝑉𝑏 , 𝑃)

V ← V ∪ {𝑣𝑖𝑑,𝑉 , 𝑃,𝐶 }
Return 𝑣𝑖𝑑

VideoRAccess(reqV)

Parse reqV as (𝑣𝑖𝑑, 𝑒𝑣𝑒𝑛𝑡)

If ∃ (𝑣𝑖𝑑,𝑉 , 𝑃,𝐶) ∈ V then

Return𝐶

Corrupt(u)

If 𝑢 ̸∈ U then Return ⊥
For all 𝑃 ∈ Ch:
If 𝑃 (Y𝑢) = True then

Return ⊥
Cr ← Cr ∪ {𝑢}
Return st𝑢

Challenge(𝑑,𝑉0,𝑉1, 𝑃)

If 𝑑 ̸∈ D ∨ 𝑃 ̸∈ P then

Return ⊥
If |𝑉0 | ̸= |𝑉1 | then
Return ⊥

For all 𝑢 ∈ Cr :
If 𝑃 (Y𝑢) = True then

Return ⊥
(𝑣𝑖𝑑,𝐶)←$ VideoEncrypt(st𝑑 ,𝑉𝑏 , 𝑃)

V ← V ∪ {(𝑣𝑖𝑑,𝑉𝑏 , 𝑃,𝐶)}
Ch← Ch ∪ {𝑃 }
Return (𝑖𝑑,𝐶)

9 SECURITY ANALYSIS
Having introduced the security definitions, we now analyze the

security of our construction Blind Brother. All participants are
assumed to have synchronized clocks, so we treat each timestamp

as a nonce for simplicity. The proofs for all security theorems pre-

sented in this section can be found in Appendix A.

The secure access property of our construction is proved in

two steps. First, we prove the semantic security of Blind Brother,
assuming the underlying schemes CPABE and SKE meet their re-

spective IND-CPA security notion.

Theorem 9.1. If the CP-ABE scheme CPABE is selective IND-CPA
secure and the symmetric encryption SKE is IND-CPA secure, the
ABSVE scheme ABSVE is semantically secure.

Up to now, we have not discussed how user attribute sets are

assigned. If no user can access any video content under the poli-

cies in P, we end up with a trivial scenario: devices could upload

arbitrary (even random) content, preserving secure access with-

out robustness. Such a scenario is clearly meaningless in practice.

Therefore, we assume that each video file is accessible to at least

one user according to the policy. Under this non-trivial assumption,

we establish the secure access property of our construction through

the following theorem.

Theorem 9.2. If the public key encryption scheme PKE is IND-
CPA secure, the signature scheme S is EUF-CMA secure, and the ABSVE
schemeABSVE is semantically secure, the construction Blind Brother
is secure with respect to video access in the random oracle model.

Next, we establish the robustness of the construction, relying on

the security of the signature scheme.

Theorem 9.3. If the signature scheme S is EUF-CMA secure, the
construction Blind Brother is robust in the random oracle model.

10 EXPERIMENTS
This section presents a detailed account of the experimental evalu-

ations performed to assess Blind Brother’s computational over-

head and objective video quality. Our primary objective was to

evaluate the trade-off between security, efficiency and computa-

tional complexity, alongside the influence of Blind Brother on

the video quality and transmission bandwidth. To this end, we inte-

grated Blind Brotherwith the real-time Kvazaar [19] encoder and

evaluated it on five video sequences of different resolutions (Table 1).

Our experiments were conducted on a 64-bit 20-core Intel Core

12th Gen Core i7 machine with 32GB RAM and running Ubuntu

20.04 operating system. Additionally, we used a modified version

of the OpenABE
3
library to implement the CP-ABE component

for key distribution. Finally, to ensure statistical significance, each

experiment was repeated 20 times, with the average results con-

sidered to provide a comprehensive overview of Blind Brother’s
performance.

Video Sequence Resolution Size
FlowerKids 3840 x 2160 7.5 GB

Beauty 1920 x 1080 1.9 GB

YachtRide 1920 x 1080 1.9 GB

Demonstrator 1280 x 720 0.8 GB

FourPeople 1280 x 720 0.8 GB

Table 1: Test Video Sequences

Computational Overhead: In this phase, we focused on the com-

putational expenses incurred when integrating Blind Brother
into Kvazaar. More specifically, we compared the object identifi-

cation, encoding and encryption processes against the encoding

process when using Kvazaar without any modifications. Addition-

ally, we measured the computational cost of the ABSVE.EncKeys
3
https://github.com/zeutro/openabe

https://github.com/zeutro/openabe

Blind Brother

algorithm to demonstrate the feasibility of the algorithm for a

varying number of symmetric keys and attributes. For the compari-

son between Blind Brother and encoding with Kvazaar without

any modifications, we considered five video sequences (Table 1)

with a 6x3 tile configuration and a different number of ROIs. Us-

ing video sequences with a different number of ROIs allowed us

to observe Blind Brother when run with a different number of

symmetric encryption keys (number of ROIs = number of used sym-

metric keys). Overall, we made several observations from the com-

putational experiments (Table 2). Notably, in the case of relatively

low-resolution video sequences, i.e. the 1280x720p FourPeople and
Demonstrator sequences, we observed a notably more significant

disparity in computational times, roughly measuring around 58.4%.

Conversely, when examining the higher-resolution video sequences,

more specifically the 1920x1080p Beauty and YachtRide sequences,
the disparity in computational times was comparatively modest,

at approximately 6.5%. This divergence in computational impacts

can be attributed to the inherent efficiency of the OI component

utilized in our experiments. Additionally, we observed that the num-

ber of ROIs in the video sequence did not impact the computational

complexity in any visible manner. These results provide evidence

that the additional computational complexity introduced by Blind
Brother does not adversely affect the performance of Kvazaar and

can be easily applied to a real-world scenario.

Video Sequence Basic Encoding Blind
Brother

FlowerKids 700.6s 842.1s

Beauty 335.7s 355.8s

YachtRide 245.7s 261.3s

Demonstrator 51.3s 81.6s

FourPeople 52.6s 84.2s

Table 2: Computational Comparisons

Evaluation of ABSVE.EncKeys: A core component of Blind
Brother is the execution of the ABSVE.EncKeys algorithm at the

end device. In this part of our experiments, we focused on assessing

the performance of the ABSVE.EncKeys algorithm. This evalua-

tion entailed executing the algorithm with a variable number of

symmetric encryption keys, generated by the ABSVE.EncVid algo-

rithm, alongside an array of access policies set by the end device.

The combination of an arbitrary number of keys and policy size

lends realism to our simulations. It’s noteworthy, however, that the

number of symmetric keys remains bounded by the total number

of tiles in a given video frame in a practical setting. To begin, we

first evaluated the ABSVE.EncKeys algorithm by employing a fixed

policy of five (5) attributes. Within this context, we encrypted a

list of keys from 10 to 1000 (Figure 3). Our evaluations revealed

that encrypting a 10-key list with a 5-attribute policy took approx-

imately 0.12 seconds, while encrypting a 1000-key list with the

same policy size took approximately 12.13 seconds. Furthermore,

decryption took 26.64 seconds for a 1000-key list and 0.30 seconds

for a 10-key list with the same policy size.

Subsequently, we evaluated ABSVE.EncKeys, this time bearing

a fixed list of 18 keys and a variable policy size ranging from 5

to 25 attributes (Figure 4). Encrypting an 18-key list alongside

0 200 400 600 800 1,000

0

5

10

15

20

25

30

Number of Keys

T
i
m
e
(
s
e
c
o
n
d
s
)

Encryption

Decryption

Figure 3: Varying Key Size

0 5 10 15 20 25

0

0.5

1

1.5

2

Policy Size

T
i
m
e
(
s
e
c
o
n
d
s
)

Encryption

Decryption

Figure 4: Varying Policy Size

a 25-attribute policy took approximately 0.82 seconds, while for a

policy of 5 attributes, it took 0.21 seconds. To decrypt a list of 18

encrypted keys with a policy size of 25, it took 1.56 seconds; for a

policy size of 5 attributes, it took 0.46 seconds. From these results,

we can stipulate that the computational overhead incurred by the

encryption of the symmetric keys with CP-ABE, when juxtaposed

with the selective encryption of a given video, is negligible. This

assertion, in turn, lends credence to the practical viability of Blind
Brother.

Objective Video Quality Assessment: To measure the effect of

Blind Brother on video quality, we employ the widely recognized

Peak Signal to Noise Ratio (PSNR) metric [16]. PSNR quantifies the

differences between the original signal (i.e. the original video) and

the compressed version, factoring in distortions and noise intro-

duced during compression. More precisely, PSNR quantitatively

assesses the extent to which a compressed video strays from its

original counterpart. This assessment evaluates the mean squared

error (MSE) calculated between corresponding pixels in the origi-

nal and the compressed video. This method enables us to quantify

how the two versions differ from one another, providing valuable

insights into the perceptual quality of our proposed scheme’s re-

sults. Overall, a higher PSNR value indicates less distortion and

better similarity between the original and reconstructed video. In

E. Frimpong et al.

other words, a higher PSNR generally implies higher perceived

quality. However, it is worth acknowledging that PSNR does not

always match human perception perfectly. It may not capture all

visual quality aspects, especially complex compression artefacts

not well represented by MSE [15]. For this reason, PSNR is often

complemented with other metrics like Structural Similarity Index

(SSIM) and Video Quality Metric (VQM), which better accommo-

date perceptual variations. However, for the purposes of this work,

our evaluations utilize PSNR as the sole chosen metric.

Video Sequence Basic Encoding Blind
Brother

FlowerKids 42.99 23.65

Beauty 40.39 11.12

YachtRide 43.52 27.56

Demonstrator 43.51 11.85

FourPeople 42.51 12.56

Table 3: PSNR Evaluations

To provide comprehensive results, we calculated the PSNR value

for each video sequence when encoded without any encryption and

when encoded with Blind Brother. In general, Blind Brother
significantly decreases the quality of the video sequences as com-

pared to basic encoding (Table 3). These results are not surprising

as we encrypt specific ROIs which leads to greater visual distortion;

however, these results buttress our claims that Blind Brother
provides privacy in video streams based on identified ROIs.

11 POSSIBLE SOCIETAL IMPACT
Edward Snowden’s disclosures shed light on the fact that the cur-

rent level of surveillance in modern societies is incompatible with

human rights. Many people, especially city dwellers, have a hard

time going about their daily lives without falling under the gaze of

public surveillance cameras in streets, public transport, buildings

and public spaces. Cameras are everywhere, including drones or

other devices. With surveillance technology becoming more sophis-

ticated, many of us must come to terms with the unsettling truth

that maintaining our private lives will become harder and harder.

Even if the intention is to keep us safe, public surveillance can be

harmful to society: there is indeed proof that the need for national

security often trespasses individual privacy. Maintaining a balance

between the two has been a very challenging task. Advancements

in technology (cryptography, hardware, computational power, etc.)

can help us build privacy-respecting surveillance systems.

Keeping in mind that encryption is the best option for standing

up against surveillance of any kind, this work aspires to pave the

way for the implementation of camera programs that respect the

democratic nature of societies. In addition to that, we hope to help

governments fulfill their responsibility to citizens while answering

the call for national security. After all, privacy is not just a regulation

that authorities must abide by, but a fundamental human right that

requires safeguarding.

12 CONCLUSION
In this work, we demonstrated the implementation and feasibility

of combining ciphertext-policy attribute-based encryption with

region-of-interest encryption on video files, highlighting the practi-

cality of this integration. To achieve this, we designed a fine-grained

access control selective video encryption scheme that leverages

CP-ABE to tie symmetric keys for video stream encryption to spe-

cific access policies, ensuring robust access control. Building on

this foundation, we developed Blind Brother, a use-case protocol
that illustrates the real-world applicability of our scheme and con-

ducted a comprehensive security analysis to validate its resilience.

Finally, we implemented our scheme within the real-time Kvazaar

HEVC encoder, demonstrating its performance and feasibility in

practical encoding scenarios. Together, these contributions provide

a foundation for privacy-preserving video encryption that balances

security, functionality, and efficiency.

REFERENCES
[1] Agi, I., Gong, L.: An empirical study of secure mpeg video transmissions. Pro-

ceedings of Internet Society Symposium on Network and Distributed Systems

Security p. 137–144 (1996)

[2] Agrawal, S., Chase, M.: Fame: Fast attribute-based message encryption. Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security (2017)

[3] Bakas, A., Michalas, A.: Modern family: A revocable hybrid encryption scheme

based on attribute-based encryption, symmetric searchable encryption and sgx.

In: Chen, S., Choo, K.K.R., Fu, X., Lou,W., Mohaisen, A. (eds.) Security and Privacy

in Communication Networks. pp. 472–486. Springer International Publishing,

Cham (2019)

[4] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. 2007 IEEE Symposium on Security and Privacy (SP ’07) (2007)

[5] Bross, B., Wang, Y.K., Ye, Y., Liu, S., Chen, J., Sullivan, G.J., Ohm, J.R.: Overview of

the versatile video coding (vvc) standard and its applications. IEEE Transactions

on Circuits and Systems for Video Technology 31(10), 3736–3764 (2021)
[6] Chen, C., Wang, X., Huang, G., Liu, G.: An efficient randomly-selective video

encryption algorithm. 2022 IEEE 8th International Conference on Computer and

Communications (ICCC) (2022)

[7] Chen, C., Wang, X., Liu, G., Huang, G.: A robust selective encryption scheme for

h.265/hevc video. IEEE Access 11 (2023)

[8] Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: Proceedings

of the 14th ACM Conference on Computer and Communications Security. CCS

’07, Association for Computing Machinery, New York, NY, USA (2007)

[9] Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.

RFC 5246 (Proposed Standard) (Aug 2008), http://www.ietf.org/rfc/rfc5246.txt,

updated by RFCs 5746, 5878, 6176

[10] Du, H., Chen, L., Qian, J., Hou, J., Jung, T., Li, X.Y.: Patronus: A system for

privacy-preserving cloud video surveillance. IEEE Journal on Selected Areas in

Communications 38(6), 1252–1261 (2020)
[11] Farajallah, M., Gautier, G., Hamidouche, W., Deforges, O., Assad, S.E.: Selective

encryption of the versatile video coding standard. IEEE Access 10 (2022)

[12] Farajallah, M., Hamidouche, W., Deforges, O., Assad, S.E.: Roi encryption for

the hevc coded video contents. 2015 IEEE International Conference on Image

Processing (ICIP) (2015)

[13] Ferrara, A.L., Fuchsbauer, G., Warinschi, B.: Cryptographically enforced rbac. In:

2013 IEEE 26th Computer Security Foundations Symposium. pp. 115–129 (2013)

[14] Hamidouche, W., Farajallah, M., Sidaty, N., Assad, S.E., Deforges, O.: Real-time

selective video encryption based on the chaos system in scalable hevc extension.

Signal Processing: Image Communication 58, 73–86 (2017)
[15] Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. 2010 20th International

Conference on Pattern Recognition (2010)

[16] Huynh-Thu, Q., Ghanbari, M.: Scope of validity of psnr in image/video quality

assessment. Electronics Letters 44(13), 800 (2008)
[17] Institute, F.H.H.: High efficiency video coding (hevc) reference software (Feb

2015), https://hevc.hhi.fraunhofer.de/

[18] Kemp, S.: Digital 2023: Global overview report – global digital insights (Feb 2023),

https://datareportal.com/reports/digital-2023-global-overview-report

[19] Lemmetti, A., Viitanen, M., Mercat, A., Vanne, J.: Kvazaar 2.0: Open-source

hevc/h.265 encoder. Proceedings of the 11th ACM Multimedia Systems Confer-

ence (2020)

[20] Liu, B., Michalas, A., Warinschi, B.: Cryptographic role-based access control,

reconsidered. In: Provable and Practical Security - 16th International Conference

(ProvSec) (2022)

[21] Liu, B., Warinschi, B.: Universally composable cryptographic role-based access

control. In: Chen, L., Han, J. (eds.) Provable Security - 10th International Confer-

ence, ProvSec 2016, Nanjing, China, November 10-11, 2016, Proceedings. Lecture

http://www.ietf.org/rfc/rfc5246.txt
https://hevc.hhi.fraunhofer.de/
https://datareportal.com/reports/digital-2023-global-overview-report

Blind Brother

Notes in Computer Science, vol. 10005, pp. 61–80 (2016)

[22] Liu, F., Koenig, H.: A survey of video encryption algorithms. Journal of Computers

and Security 29(1), 3–15 (2010)
[23] Michalas, A.: The lord of the shares: Combining attribute-based encryption

and searchable encryption for flexible data sharing. In: Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing. pp. 146–155. SAC ’19, ACM,

New York, NY, USA (2019), http://doi.acm.org/10.1145/3297280.3297297

[24] Misra, K., Segall, A., Horowitz, M., Xu, S., Fuldseth, A., Zhou, M.: An overview

of tiles in hevc. IEEE Journal of Selected Topics in Signal Processing 7(6) (2013)
[25] Neuman, B., Ts’o, T.: Kerberos: an authentication service for computer networks.

IEEE Communications Magazine 32(9), 33–38 (1994)
[26] Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency

video coding (hevc) standard. IEEE Transactions on Circuits and Systems for

Video Technology 22(12), 1649–1668 (2012)
[27] Taha, M.A., Sidaty, N., Hamidouche, W., Dforges, O., Vanne, J., Viitanen, M.:

End-to-end real-time roi-based encryption in hevc videos. 2018 26th European

Signal Processing Conference (EUSIPCO) (2018)

[28] Viitanen, M., Koivula, A., Lemmetti, A., Ylä-Outinen, A., Vanne, J., Hämäläinen,

T.D.: Kvazaar: Open-source hevc/h.265 encoder. Proceedings of the 24th ACM

international conference on Multimedia (2016)

[29] Xu, D.: Commutative encryption and data hiding in hevc video compression.

IEEE Access 7, 66028–66041 (2019)
[30] Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Connection Protocol. RFC 4254

(Proposed Standard) (January 2006), http://www.ietf.org/rfc/rfc4254.txt

[31] Zhang, Q.J., Ye, Q., Yuan, Z.M., Li, L.: Fast hevc selective encryption scheme based

on improved cabac coding algorithm. 2020 IEEE 6th International Conference

on Computer and Communications (ICCC) (2020)

A SECURITY OF THE CONSTRUCTION
In this section, we provide the proofs for the security theorems

presented in section 9.

A.1 Proof of Theorem 9.1
Proof. We prove the theorem with a security game for an ad-

versary A. We prove that Blind Brother achieves s-IND-CPA

security iff CPABE is s-IND-CPA secure. The game is initialized

by flipping a coin 𝛽
$←− {0, 1}. The adversary A picks an access

structure (Y, {𝑃1, . . . , 𝑃ℓ }) ⊂ (Ω,P) and receives the keysMPK, for
(MPK,MSK)← CPABE.Setup(1

𝜆
).A picks two valid videos𝑉0,𝑉1,

identifies the tiles of interest through the object identifier (subsec-

tion 6.1) and extracts the corresponding sets S0,S1. Then,A sends

the pairs Π0 = (𝑉0,S0),Π1 = (𝑉1,S1) to C. A can send up to 𝑛

adaptative requests for decryption keys related to sets of attributes

Y1, . . . ,Y𝑛 ̸⊂ Ω\Y. She obtains a set of decryption keys dkY1
, . . . ,

dkY𝑛 for dkY𝑖 ← CPABE.DKGen(regA𝑖). The key point here is

that A sends request for attributes Y𝑖 such that ∀𝑃 ∈ {𝑃1, . . . , 𝑃ℓ },
𝑃 (A𝑖) = 𝐹𝑎𝑙𝑠𝑒 . A receives an encryption (𝐶𝑉𝛽 ,𝐶𝐾) of Π𝛽 , where

𝐶𝑉𝛽 ← CV.EncVid(𝑉𝛽 ,S𝛽) and 𝐶𝐾 ← CV.EncKey (K,MPK). It

then has the possibility to repeat the key generation step for addi-

tional adaptative requests. Then, A sends a guess 𝛽′ for 𝛽 . Denote
𝜆1, 𝜆2 the respective security parameters of CPABE and SKE. By
assumption, A has an advantage 𝜖1 = 𝑛𝑒𝑔𝑙 (𝜆1) against CPABE and

an advantage 𝜖2 = 𝑛𝑒𝑔𝑙(𝜆2) against SKE. Remark that, by definition,

the distribution of 𝐶𝑉𝛽 and 𝐶𝐾 are indistinguishable from the uni-

form distribution on their respective space. Hence, 𝜖1 and 𝜖2 are

independent. This results in an overall advantage 𝜖 = 𝜖1 + 𝜖2 =

𝑛𝑒𝑔𝑙 (𝜆1, 𝜆2). □

A.2 Proof of Theorem 9.2
Proof. We now provide a proof of this theorem using a sequence

of games, which we describe below. Similar to the proof of the

previous theorem, we will not present the reductions in full details,

but will discuss the general ideas and the key steps involved.

Game 0: The first game is the experiment which defines secure

access in Theorem 8.2.

Game 1: This game proceeds similarly to the previous one, with

the exception that when the adversary requests to initialize a device

𝑑 with a valid initial messagemsg𝑑 , the challenger aborts the game.

Analogous to the proof of the previous security theorem, we can

readily establish the following claim.

Claim 1. |Pr[Game
0,A] − Pr[Game

1,A]| ≤ 𝜖0, where 𝜖0 is the ad-

vantage of an efficient adversary that breaks EUF-CMA security of

the signature scheme S.

Game 2:We now transformGame 1 intoGame 2with the following

modifications. During this game, the challenger maintains a list L
indexed by users to record the decryption keys. More specifically,

when the challenger runs the ABSVE.DKGen algorithm to generate

the decryption key dk𝑢 for a user𝑢 in response to a user registration

request (by querying the oracle UserReg with a valid registration

token regA), it records dk𝑢 in L[𝑢]. Meanwhile, the challenger

runs the encryption algorithm of the public key encryption scheme,

PKE.Enc, to encrypt a random string of the same length as dk𝑢 using
𝑢’s public key pk𝑢 . In the case that 𝑢 is corrupted or the adversary

requests to corrupt 𝑢 after registration, the challenger retrieves the

decryption key from L[𝑢] and provides it to the adversary.

Claim 2. |Pr[Game
1,A] − Pr[Game

2,A]| ≤ 𝜖1, where 𝜖1 is the ad-

vantage of an efficient adversary that breaks IND-CPA security of

the public key encryption scheme PKE.

We prove this claim by showing the construction of a distin-

guisher D between Game 1 and Game 2 given the public key and

the oracle access in the IND-CPA security game for the public key

encryption scheme PKE. The main idea is, D plants its challenge

for the IND-CPA game in its simulation of secure access game for

Blind Brother and therefore obtains a hybrid between the above

two games. More specifically, D randomly selects a user 𝑢 ∈ U
and chooses a random bit 𝑏 at the beginning of the simulated game.

When generating the decryption key for 𝑢, D calls the challenge

oracle in its game with a query of (dk𝑢 , rs) to obtain a ciphertext 𝑐 ,

where rs is a random string of the same length of dk𝑢 . Then, D in-

cludes 𝑐 as the ciphertext in the message as a response toA’s query

to UserReg with respect to 𝑢. Whenever A requests to corrupt 𝑢

to learn its local state, D terminates the simulation and outputs 0.

When A outputs a guess 𝑏′ for the random bit 𝑏, D outputs 1 if

𝑏′ = 𝑏; otherwise, it outputs 0.

We get a closer look at the distinguisher D. If the challenge

oracle in the IND-CPA game always returns an encryption of dk𝑢 ,
the simulated game is identical to Game 1; if it always returns

an encryption of rs, then the game corresponds to Game 2. Thus,

D effectively simulates a hybrid game of Game 1 and Game 2.

Based on the mild assumption we made regarding the non-trivial

system in section 9, regardless of the file thatA has specified as its

challenge, there must be at least a user in the system has access to

it. In other words, the assumption ensures that there exists at least

one user who remains uncorrupted during the game and D has

the probability at least
1

U of selecting that user, which provides a

lower bound on its success probability (
1

U · 𝜖1). Additionally, when

http://doi.acm.org/10.1145/3297280.3297297
http://www.ietf.org/rfc/rfc4254.txt

E. Frimpong et al.

A manages to win the game without taking over any user, D’s

probability is bounded by 𝜖1. Thus we have

1

U · 𝜖1 ≤ Pr[D → 1] ≤ 𝜖1,

and the claim is proved.

Finally, we analyze advantage ofA inGame 2. It is clear that the

adversary cannot learn any part of a user’s local state (specifically,

the decryption key sent from AD) without corrupting it, as the

local state is replaced with a random string which is independent

of the decryption key. Furthermore, A cannot impersonate AD
to have any device encrypt and upload video contents using an

inappropriate key crafted by the adversary. A successful adversary

in this final game would need to gain some advantage in breaking

the semantic security of ABSVE.

Claim 3. Pr[Game
2,A] = 𝜖2, where 𝜖2 is the advantage of an efficient

adversary that breaks semantic security of the attribute-based video

encryption scheme ABSVE.

The claim can be proven by showing a construction of an adver-

sary B for semantic security of ABSVE, from an adversary A that

breaks the secure access property of Blind Brother. The main

idea is that B can simulate toA the Game 2 in such a way that B’s
advantage in winning its game is exactly the same as the advantage

of A can gain in Game 2. Upon receiving the master public key

MPK from its challenger, B initialises Blind Brotherwithout gen-
erating the corresponding MSK by running ABSVE.KeyGen. After
that B starts to simulate the oracles thatA has access to according

to their specifications, exception for Challenge1. WhenA queries

Challenge1 by specifying a device 𝑑 , two video contents 𝑉0,𝑉1

of the same length, and a policy 𝑃 ∈ P as its challenge, B checks

that if there is no corrupt user can get access the content of that

entry according to 𝑃 , it calls Challenge with (𝑉0,𝑉1, 𝑃) to obtain

the ciphertext 𝐶 and sends it with a unique video id 𝑣𝑖𝑑 to A.

It is clear that the two games share the identical policy set P,
while the attribute sets of the users in Blind Brother are recorded
in the list Ch during the semantic security game. Therefore, as

long as B maintains the invariant that no corrupt user can get

access to any of the challenged files, the game for semantic security

of ABSVE will never return an error, as 𝑃 (Y) will never hold for

any associated attribute set Y ∈ Ch. Thus we can conclude that

the simulation that B provides is perfect. Moreover, the simulated

game is fully determined by the random bit selected in B’s game.

Therefore, the probability that B correctly guesses the random bit

is the same as the probability thatA wins the simulated game, and

we have

Pr[Game
2,A] = 𝜖2 .

From the Claims 1,2 and 3, we have

Pr[Game 0] ≤ 𝜖0 + 𝜖1 + 𝜖2 .

In conclusion, assuming the public key encryption scheme is IND-

CPA secure, the signature is EUF-CMA secure and attribute-based

video encryption scheme is semantically secure, Blind Brother is

secure with respect to video access. □

A.3 Proof of Theorem 9.3
Proof. We prove the theorem through a sequence of games,

which are described in detail below. Since the reductions involved

in this proof are straightforward, we will not provide a detailed

description for each of them. Instead, we will discuss the general

idea and the key steps involved in the reductions. Additionally, we

treat the hash function as a random oracle.

Game 0: The initial game is the original experiment which defines

robustness. Here and below, we denote the probability thatA wins

in game 𝑖 as Pr[Game𝑖,A]. It is important to notice that the protocol

participants are assumed to have synchronized clocks. Therefore,

we treat the timestamps as random strings for simplicity and do

not consider their cryptographic properties. In addition, to clearly

demonstrate that each of the winning conditions in the final game

cannot be satisfied, we will transform the initial game in two steps.

Game 1: This game proceeds the same as the initial game, with

the following modifications. Whenever the adversary queries the

oracle UserInit with an initial message msg𝑢 for a user 𝑢 ∈ D
that includes a valid signature not previously generated by the

challenger in response for some query to the oracle UserReg, the

game aborts. The validity of the signature (contained in𝑚3) can

be verified by running the initialisation algorithm Init𝑈 with the

public parameter pp and the user’s initial local state st𝑢 .

Claim 4. |Pr[Game
0,A] − Pr[Game

1,A]| ≤ 𝜖0, where 𝜖0 is the ad-

vantage of an efficient adversary that breaks EUF-CMA security of

the signature scheme S.

The claim can be proved by simply constructed an adversary

B that breaks the game that defines EUF-CMA security, given an

adversaryA who can successfully forge a valid initial message with

a signature not generated by the challenger for some user in the

system. B can easily simulate the robustness game for A, except

that it does not run the KeyGen algorithm of the signature scheme

S. Therefore, it needs to call the signing oracle to obtain signatures

for the initial messages generated in response to queries to the

simulated oracle UserReg. Instead, upon receiving the registration

token from A, B queries the signing oracle in its EUF-CMA game

and attaches the obtained signature to the initial message. When

A queries UserInit with a valid initial message msg𝑢 for some

user 𝑢, B takes the timestamp 𝑡 and the encrypted key 𝑐𝑑𝑘𝑢 , along

with the corresponding signature and forwards this as its output

in the EUF-CMA game. Since the message was not signed by the

challenger in B’s game, B wins the game whenever A wins the

simulated game, with the same probability.

Game 2: This game proceeds as the previous one, with the ex-

ception that the challenger aborts the game when the adversary

queries the DeviceInit oracle with a valid initial message msg𝑑
(containing a valid signature) for a device 𝑑 , which is not generated

during the setup process. The validity of the signature can be veri-

fied by running the initialisation algorithm Init𝐷 with the public

parameter pp and the device’s initial local state st𝑑 .

Claim 5. |Pr[Game
1,A] − Pr[Game

2,A]| ≤ 𝜖1, where 𝜖1 is the ad-

vantage of an efficient adversary that breaks EUF-CMA security of

the signature scheme S.

The proof of this claim can be carried out similarly as in the

previous one. The adversary B for the EUF-CMA game simulates

the robustness game for the adversary A. Since it does not possess

the signing key of the challenger, B must query its signing oracle to

Blind Brother

obtain the signatures for the initial messages for each device in the

system during the setup process. WhenA queries DeviceInit with

a valid initial message for some device 𝑑 , B takes the timestamp

and ciphertext (𝑡,𝐶𝐾𝑑 , 𝐶𝑉𝑑), and the corresponding signature as its

output. It is clear that B’s simulation is perfect. To win the game,

A has to come up with a valid signature for a message which is not

previously signed by B. Therefore, B wins the game whenA wins

the simulated game. Thus we have |Pr[Game
1,A]−Pr[Game

2,A]|≤
𝜖1.

Now we analyze the adversary’s advantage in the final game.

The adversary can win the game if either of the two winning condi-

tions is satisfied: (1) it manages to generate an invalid video entry

which was not previously generated by any device and successfully

uploads it to CSP by calling the VideoUpload; (2) The user it spec-

ifies cannot correctly retrieve some video content uploaded by a

device genuinely.

We first elaborate the second condition. Recall that the correct

decryption of the video data depends on the local states of both

the device uploading the video and the user accessing the video.

However, after the consecutive modifications in the previous game,

the adversary will not be able to manipulate the local states of either

the devices or the users, since the challenger will abort the game.

The correctness of the underlying cryptographic primitives guar-

antees that the specified authorised user must be able to correctly

retrieve the video content. Therefore, the only scenario where the

adversary can win the game is by calling VideoUpload to upload

invalid contents, which could result in decryption failure (thereby

setting the flag forged to True). Notice that if such a content is pre-

viously generated by any device in the system, it will be recorded

in the listV and the adversary cannot win in this case. Therefore,

the adversary must be able to forge a valid signature for the valid

content so that it can be successfully accepted by the CSP.

Claim 6. Pr[Game
2,A] ≤ 1

D · 𝜖2, where 𝜖2 is the advantage of an

efficient adversary that breaks EUF-CMA security of the signature

scheme S.

Now we show that, given an adversary A that breaks robust-

ness of Blind Brother, an adversary B for the EUF-CMA security

game can be constructed as follows. B first selects a random index

𝑖 from the range {1, ...,D} before simulating the robustness game

for A. Then it runs Setup initialises the cryptographic primitives

employed in the protocol, with the exception that it does not gen-

erate the signing key for the device 𝑖 (i.e. it is not included in the

initial local state st𝑖) but includes the verification key it obtains

from the EUF-CMA game in the public parameters. After that, B
runs a local copy of A and simulates to it the oracles O

robust
. Dur-

ing the simulation, whenever B needs to generate a signature on

behalf of device 𝑖 , it queries the signing oracle in its game to obtain

the signature. When A queries VideoUpload with a valid content

which is not recorded in the listV for a device 𝑑 , B aborts the game

if 𝑑 ̸= 𝑖; otherwise it records the signature and stores the content

inV . When A specifies a user with an access request reqV as its
output, B retrieves the encrypted video stream with the timestamp

(𝑡,𝐶𝐾𝑖 ,𝐶𝑉𝑖) fromV and outputs it with the corresponding signa-

ture. It is clear that the above simulation is perfect. With the use of

the signing oracle in the EUF-CMA game, B is able to answer all

queries from A appropriately according to the protocol specifica-

tion. Additionally, the valid forgery submitted by A is guaranteed

not to have been generated by the device 𝑖 previously. Therefore,

when A wins the simulated game, B wins the EUF-CMA game.

From Claims 4, 5 and 6, we can conclude that

Advrobust-D-U-P
CV,A = Pr[Game

0,A] ≤ 𝜖0 + 𝜖1 +

1

D · 𝜖2,

and the theorem is proved. □

	Abstract
	1 Introduction
	2 Motivation and Application Domain
	3 Background
	3.1 HEVC
	3.2 Core Cryptographic Building Blocks

	4 Related Works
	5 System Model
	6 Selective Video Encryption
	6.1 Tile Concept and Object Identification
	6.2 Encryption of Parameters
	6.3 Attribute-Based Selective Video Encryption Scheme

	7 Blind Brother
	8 Security Definitions
	9 Security Analysis
	10 Experiments
	11 Possible Societal Impact
	12 Conclusion
	References
	A Security of the Construction
	A.1 Proof of Theorem 9.1
	A.2 Proof of Theorem 9.2
	A.3 Proof of Theorem 9.3

