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Abstract

Black-box separations are a cornerstone of cryptography, indicating barriers to various goals. A recent
line of work has explored black-box separations for quantum cryptographic primitives. Namely, a number
of separations are known in the Common Haar Random State (CHRS) model, though this model is not
considered a complete separation, but rather a starting point. A few very recent works have attempted to
lift these separations to a unitary separation, which are considered complete separations. Unfortunately,
we find significant errors in some of these lifting results.

We prove general conditions under which CHRS separations can be generically lifted, thereby giving
simple, modular, and bug-free proofs of complete unitary separations between various quantum prim-
itives. Our techniques allow for simpler proofs of existing separations as well as new separations that
were previously only known in the CHRS model.
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1 Introduction

As cryptography transitions into a quantum world, it is important to understand the relationship between
various quantum cryptographic concepts. In particular, while one-way functions are widely considered to be
the most basic classical object, it has recently become apparent that there is a vast world of primitives that
live even below one-way functions. To help understand this new world (often dubbed “MicroCrypt”), there
has recently been much work on showing black-box separations between various tasks.

In this work, we will focus on a recently popular approach, which is the common Haar-random state
(CHRS) model [CCS25, AGL24a]. This model gives all users – protocols and adversaries alike – many copies
of a single Haar-random quantum state. Some primitives such as quantum commitments, one-way state
puzzles, and 1-copy pseudorandom states (1-PRS) exist in this model, but several recent works [CCS25,
AGL24a, AGL24b] have shown that a number of other primitives do not exist, such as many-time PRSs,
one-way state generators, and commitments and key agreement with classical communication. Thus, these
primitives are all separated from quantum commitments/one-way puzzles/1-PRSs in this model.

The power of the CHRS model comes from its simplicity, as it is essentially the most basic idealized
model one can imagine. However, the CHRS model is an isometry mapping a small input state (in this case,
the empty state) into a larger output state. Importantly, the isometry is irreversible, and there is no way to
coherently eliminate a copy of the state. Such an oracle does not adequately reflect “real-world” techniques
that are available, as quantum (unitary) circuits are reversible. For this reason, a separation in the CHRS
model is not considered a full separation, though it is still useful as a starting point. Instead, it is preferable
to use a unitary (reversible) oracle.

Remark 1.1. One may ask if it is even better to use a classical oracle for separations. Such a classical
oracle separation would capture systems based off of classical functions, and would indeed be relevant for
separating primitives that live “above” one-way functions. However, for the inherently quantum MicroCrypt
primitives we focus on here, the primitives in general cannot be represented using classical functions, but
instead will be represented using unitary operations. Therefore, a unitary separation seems essentially as
good as a classical one.

Unfortunately, unitary oracles are much harder to work with, as now one has to reason about query
complexity and deal with issues like reversing computation or adaptivity. Very recently, several works have
started to “lift” the CHRS model separations into a unitary separation [CCS25, BCN25, BMM+25]1 to give a
unitary black-box separation. The main result common to these works is to show that quantum commitments
do not imply many-time PRSs, though the different works have different variants of this statement. These
works all employ somewhat similar ideas, but differ significantly on the underlying details.

Our Work. Our main result, which is inspired by the particular techniques of [BMM+25], is the following:

Theorem 1.2 (informal). For any “typical”2 primitive A, A exists in a slightly modified CHRS model if
and only if it exists in a unitary oracle model. In particular, separations that exist in the modified CHRS
model also hold in a unitary oracle model.

Here, the CHRS variant provides all parties copies of the state |ψ−⟩ := |ψ⟩ − |0⟩ for a Haar-random |ψ⟩,
rather than |ψ⟩ itself.

It may seem that |ψ⟩ and |ψ−⟩ should have roughly the same power, and in one direction we show that
this is true:

1The first version of [CCS25] only included the CHRS model, but was more recently updated to include extensions to the
unitary model.

2Here, a “typical” primitive is one whose security experiment only queries the underlying primitive a bounded polynomial
number of times. We note that certain primitives such as quantum one-wayness or many-time PRSs technically allow an
arbitrarily polynomial number of queries, but we can also consider bounded-query versions which are “typical” by this definition,
and will be sufficient for our purposes.
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Theorem 1.3 (informal). For any primitive A whose security is described by a “single-stage game”,3 if A
exists in the plain CHRS model, it also exists in a |ψ−⟩ model and hence in a unitary model.

On the other hand, we show that a generic solution to the converse is actually false, in the sense that
there is no way to generically construct |ψ−⟩ from even many copies of |ψ⟩. However, the models are close
enough that we expect typical separations in the plain CHRS model to also hold in the modified CHRS
model. In fact, we show that the separation between commitments and many-time PRSs (or even quantum
one-wayness) holds in the |ψ−⟩ model. This reduces to showing that many-time PRSs and quantum one-
wayness do not exist in the |ψ−⟩ model, which we show through a very similar proof structure to the |ψ⟩
case analyzed in [CCS25, BCN25]. Combined with Theorem 1.2 this gives an alternative proof of some of the
main results of [CCS25, BCN25, BMM+25] that is more modular and arguably conceptually simpler. Along
the way, we identify significant conceptual errors in both [CCS25] and [BCN25], rendering their unitary
oracle separations incorrect. In particular, these bugs left separating commitments and one-wayness open
relative to a unitary oracle, which we resolve.4

We therefore argue that future work in this space should focus on proving separations in the |ψ−⟩
model, which still has much of the simplicity of the plain CHRS model, but which is equivalent to a unitary
separation through our Theorem 1.2.

We also give conditions under which a converse of Theorem 1.3 holds, meaning that separation in the
|ψ⟩ model implies an separation in the |ψ−⟩ model and hence unitary model. In particular, we show the
following:

Theorem 1.4 (informal). For any primitive A whose security and correctness experiments are defined by
“LOCC games”, A exists in the plain CHRS model if and only if it exists in our |ψ−⟩ model.

Here, LOCC (local operations classical communication) means that the game may involve many instances
of the cryptosystem, but that those instances can only interact with each other via classical communication.

As a concrete application, we apply Theorem 1.4 to the separation between quantum commitments and
key agreement with classical communication, lifting the CHRS model separation from [AGL24a] to the |ψ−⟩
model and hence to a unitary model. This separation is new to our work.

1.1 Motivation

Black-box separations. A fundamental goal in cryptography is to understand the relationship between
various concepts. A positive result uses a primitive A to build a primitive B. Meanwhile, a negative result,
also called a separation, aims to shows that it is impossible to build B from A. Stating negative results,
however, require care: we typically believe both A and B exist, so a trivial way to “build B from A” is
to simply ignore A and use the assumed solution to B instead. Starting with the work of Impagliazzo and
Rudich [IR89], the now-standard way to argue separations to provide a black-box oracle relative to which
A exists and B does does not. Such oracle separations lose some generality, but they rule out all black-
box constructions of B from A, which constitute the vast majority of cryptographic constructions. Such
separations are therefore called “black-box separations.”

Often, a complete black-box separation is unknown. In this case, a common tactic is to further restrict
the construction of B in some way – maybe it can only query the oracle at certain times, or it can only use the
primitive A in certain ways. There are numerous examples where such restrictions are made (e.g. [GMR01,
GMM07, RSS20, RS20]). Such separations only rule out a restricted class of constructions, and are therefore
considered much weaker evidence of an actually impossibility of building B from A. For this reason, it is
important to ensure that the restrictions are natural and reflect “real world” use cases as much as possible,
lest the restricted separation be meaningless. Even though restricted separations are weaker, they may still
be a starting point for a full separation, and can still be very useful for guiding protocol design.

3A single-stage game is a potentially interactive game between a single adversary and challenger, as opposed to “multi-stage”
games which have multiple isolated adversaries.

4Separating commitments and PRSs also appeared in [BMM+25], but there is no bug in their proof.
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Quantum black-box separations. These same questions remain fundamentally important as cryptog-
raphy transitions to a quantum world. One of the promises of quantum cryptography is that it may be
possible to overcome classical impossibilities. A notable example is multiparty computation (MPC): clas-
sical black-box separations indicate that MPC requires public key tools [IR89, MMP14], whereas quantum
(but black-box!) protocols give MPC from one-way functions [GLSV21, BCKM21], the most basic classical
symmetric key primitive.

In fact, quantum cryptography opens up an entire world of cryptographic protocols utilizing tools that
are “below” one-way functions, often referred to as MicroCrypt. That is, it is now widely believed that
there are (inherently quantum) primitives which do not imply even the lowly one-way function, as evidenced
by quantum black-box separations [Kre21, KQST23]. For example, while one-way functions are unlikely to
imply MPC classically, the opposite is now believed quantumly: one-way functions not only imply quantum
MPC, but quantum MPC is unlikely to imply one-way functions! Numerous other primitives are believed
to exist without one-way functions, such as pseudorandom states and unitaries [JLS18], one-way state gen-
erators [MY24], and more.

A central question is then to develop a new understanding of the relationship between quantum protocols,
especially those existing below one-way functions. Recent works have begun to address this question, but as
the bugs in [CCS25, BCN25] show, the process is challenging and error prone. We believe our results will be
useful in this endeavor, as they provide general lifting results to facilitate moving from much easier CHRS
(and similar) models into full unitary separations.

1.2 The Prior Results

Here, we discuss the unitary separations of [CCS25, BCN25, BMM+25]. These works accomplish somewhat
different results, but we focus on the common thread showing that commitments do not imply many-time
PRSs in the unitary model. We note that these works do not necessary present their ideas as we do here,
but our attempt here is to unify the underlying ideas into a common framework.

All of the results start from the existence of commitments and non-existence of many-time PRSs in the
CHRS model as proved in [CCS25], then translate those statements to the existence of commitments and
non-existence of PRSs relative to a unitary oracle. The works all use some version of the unitary oracle S|ψ⟩
which exchanges the states |0⟩ and |ψ⟩, leaving all other states unaffected.5 We will call S|ψ⟩ the “SWAP
oracle” and this model the “SWAP model.”

The first step in these works is to notice that S|ψ⟩ readily allows for constructing the state |ψ⟩. By
simulating the states used by the CHRS commitments in this way, they obtain a SWAP-model commitment
that is correct. Arguing security works by contradiction: assume there is an adversary A for the derived
SWAP-model commitment, and compile it into an adversary B for the original CHRS commitment. This
is accomplished by simulating S|ψ⟩ (the SWAP oracle) given copies of |ψ⟩ (the CHRS model). This in turn
relies on two key ideas:

• Simulating reflections about a state. Consider the oracle R|ψ⟩ = I − 2 |ψ⟩⟨ψ|, which reflects
around |ψ⟩. This oracle allows for determining if an input state is equalto |ψ⟩. In [JLS18], is it is
shown how to approximately simulate R|ψ⟩ using just several copies of |ψ⟩. The error can be made an
arbitrarily-small inverse polynomial by using an appropriate number of copies.

• Swapping states. S|ψ⟩ can be seen as providing |ψ⟩ when given the input state |0⟩, and taking back
the state when given |ψ⟩. If we have a pool of states |ψ⟩, we can simply give out and take back states
from our pool as needed. Note that this requires some care, as queries to S|ψ⟩ can be in superpositions.
Moreover, we need a way to tell if the input state is actually |ψ⟩; fortunately, this is accomplished with
R|ψ⟩, which is simulated as above.

This strategy for simulating S|ψ⟩ first appeared in [Zha24] in an entirely different context. There, it was
proved that for a Haar-random state |ψ⟩, the simulation is indistinguishable from S|ψ⟩ to arbitrarily-small

5[BMM+25] use this oracle, but for a distribution over |ψ⟩ that is not Haar-random. This distinction will not be important
for this discussion.
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inverse polynomial error. This result was used as a black-box by [BCN25], and very similar variants of it
were developed in [CCS25, BMM+25]. Through this simulation, the adversary A is successfully compiled
into an adversary B in the CHRS model, reaching a contradiction. Thus commitments exist in the SWAP
model.

The next step is to argue the non-existence of PRSs in the SWAP model. This can be seen as a dual
to the case above, with significant caveats. Namely, we now assume toward contradiction that there is a
protocol C for PRSs in the SWAP model and derive a PRS D in the CHRS model, reaching a contradiction.
To prove that D is a PRS we need in particular to prove that it is secure. For this, we suppose toward
contradiction that there is an adversary for D, and lift it into an adversary for C, which cannot exist by
assumption. At first glance, this appears identical to the commitment case above, except we have exchanged
the roles of adversary and protocol.

A Problem. Following this intuition, we may hope to use such simulation to prove the impossibility of
PRSs in the SWAP model. Let D be C but where queries to S|ψ⟩ are simulated using copies of |ψ⟩. Then
for any hypothetical adversary for D (which is in the CHRS model and therefore gets copies of |ψ⟩) we turn
it into an adversary for C in the SWAP model by using S|ψ⟩ to generate copies of |ψ⟩.

However, there is a major issue with this claim: the simulation of S|ψ⟩ uses state – namely, the several
copies of |ψ⟩ provided – and this state becomes entangled with the ultimate output. This is because, for
example, a query to S|ψ⟩ on |0⟩+ |1⟩ gives |ψ⟩+ |1⟩. Using the simulation, the output is in superposition of
having swapped out 0 or 1 copies of |ψ⟩. The simulation guarantee is only that the view of any adversary
given query access to S|ψ⟩ is indistinguishable from the simulated oracle, not that the two cases are literally
the same.

Fortunately, this is not a problem for showing the security of commitments in the SWAP model. The
entire security experiment acts as a distinguisher for the simulation, and the simulation guarantees that the
output of the experiment has approximately the same distribution.

The problem instead comes in showing that PRSs do not exist in the SWAP model. The PRS state is
now constructed via the simulated oracle S|ψ⟩; the simulator for this oracle now becomes entangled with the
final PRS state, meaning the state is not pure. This breaks even the correctness of PRSs, as PRSs inherently
need to have pure-state outputs to be non-trivial. But it gets even worse, as the adversary sees many copies
of the PRS state. An adversary can always test for purity by applying the swap test to its several copies.
In a true PRS the swap test will accept, but now in our simulated PRS the swap test will fail. Thus, the
derived CHRS-model PRS will not be correct nor secure.

Remark 1.5. One may wonder where the simulation indistinguishability guarantee fails. First, the guarantee
only holds relative to efficient distinguishers, whereas the purity requirement of a PRS is statistical. This
issue can be fixed by describing purity as a game, performing the swap test on two copies as in our attack
above. But here there is a more subtle issue: the state of each copy is simulated using a separate instance
of the simulator, but the indistinguishability of the simulation only works when there is a single simulator
for all queries. There is even a simple distinguisher that can distinguish the case where there are two
independent simulators. Thus, even though the purity requirement is turned into an efficient game, the
simulation guarantee does not apply.

The three prior works address this problem in different ways:

• [CCS25] restricts to primitives that have no correctness requirements. The authors then claim that
quantum pseudorandomness and EFI pairs (which are equivalent to commitments) are examples of
such correctness-less primitives. However, this is simply not true – PRSs have the purity requirement,
and EFI pairs require statistical far-ness. This gap means their proof is actually currently incorrect.
The problem is even worse since, as we observed above, the simulation issue actually affects the security
as well. The issue has been confirmed by the authors, who are currently working on a fix.

• In [BCN25], rather than trying to turn a SWAP-model PRS into a CHRS-model PRS, they give a direct
attack on any SWAP-model PRS. Their attack, however, still starts with a generic CHRS-model attack
and lifts it to the SWAP-model through simulation. This avoids the issue of [CCS25] since they do not
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need to prove that a simulated PRS is correct. However, their proof actually still contains a major but
subtle bug due to incorrect usage of the simulator’s guarantees. The issue has been confirmed by the
authors, who are retracting their claims of a unitary-oracle separation.

• [BMM+25] likewise employ a direct attack on PRSs in the SWAP model, which requires reproducing
the CHRS impossibility with modifications to work in the SWAP model. However, their approach is
quite different from [BCN25], and appears correct.

We note that the bugs in [CCS25] and [BCN25] leave the question of separating commitments from quantum
one-wayness relative to a unitary oracle open.

1.3 Our Results

A general lifting theorem via indifferentiability. Our aim is to abstract the techniques of [CCS25,
BCN25, BMM+25] into a general theorem that lifts separations from the CHRS model to separations in a
unitary model. We do so via the notion of indifferentiability [MRH04]. Very roughly, [MRH04] considers
attempting to build one oracle A from another B via a construction CB . The central observation isthat it
is not enough to show the indistinguishability of CB from A. This is because the adversary actually has
access to the underlying B oracle directly, and can use this access to potentially break the construction.
Indifferentiability resolves this issue, by giving the adversary access to both CB and B itself. Concretely,
indifferentiability, considers the following two worlds:

• The Real World: The adversary can query CB and B

• The Ideal World: There is a simulator SA that gets queries to A, and tries to simulate a B that is
consistent with A. Here, the adversary’s oracles (CB , B) are replaced by (A,SA).

Indifferentiability asks that, for any possible distinguisher, there exists a simulator S that makes the Real
and Ideal worlds indistinguishable. [MRH04] moreover demonstrate a composition theorem, showing that
indifferentiability implies that any primitive whose security is described by a “single-stage game” which exists
relative to A also exists relative to B. Setting A = CB gives the construction, and the simulator S is used to
prove security by translating an adversary relative to B into an adversary relative to A. Single-stage means
that the security experiment involves one adversary interacting with a challenger, as opposed to “multi-stage”
games which have multiple isolated adversaries. Fortunately, almost all cryptographic games are single-stage.
A stronger notion of reset indifferentiability was proposed in [RSS11], which allows the composition theorem
to apply even for multi-stage games. While these composition theorem were first demonstrated classically,
they extend to quantum protocols/adversaries as well.

Using indifferentiability, we show that the SWAP model S|ψ⟩ is actually equivalent to a slightly modified
CHRS variant where all parties are given access to |ψ−⟩ := |ψ⟩− |0⟩. That is, any construction or adversary
can be translated between the two models. Note that we actually do not need |ψ⟩ to be Haar random, and
we can use arbitrary states such as the subset states of [BMM+25].

The proof of this builds on the simulation idea using techniques from [BMM+25]. The proof of [BMM+25]
shows that the |ψ−⟩ states can actually be used to statelessly simulate S. The idea is to change our view of
S|ψ⟩: swapping between |0⟩ and |ψ⟩ is equivalent to just negating the phase on |ψ−⟩. Given several copies
of |ψ−⟩, we can simulate this phase change through a swap test, without any need to explicitly swap copies
of |ψ⟩ in and out of our pool. Note that while this simulator technically still has state – namely the pool
of |ψ−⟩ states – up to inverse-polynomial error it actually will not become entangled with the algorithm
querying S|ψ⟩. In particular, it is fine for different algorithms to use different copies of |ψ−⟩ to simulate,
unlike the simulation using |ψ⟩.

Abstracting this idea, we show that the simulation is fully general. Using the trivial observation that
S|ψ⟩ can simulate |ψ−⟩ by querying on |−⟩, we therefore establish the full equivalence of the S|ψ⟩ and |ψ−⟩
models. Since our simulators are stateless, we acheive even the stronger notion of reset-indifferentiability,
meaning our results apply to even multi-stage games. This gives Theorem 1.2.
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Remark 1.6. One caveat is that simulation still incurs inverse polynomial error. This is fine for the adversary,
since we can make the error sufficiently small (by using more copies of |ψ−⟩) so that the error is less than the
adversary’s advantage. But for simulating the construction, we have to use a bounded polynomial number of
copies, resulting in an arbitrarily-small but non-negligible correctness error. This further impacts security,
as each call to the cryptographic primitive in the security experiment results in a correctness error, which
could turn into adversarial advantage. Fortunately, the prior impossibilities are sufficiently robust that they
straightforwardly hold even with these inverse-polynomial errors.6

Separations in the |ψ−⟩ model. While |ψ−⟩ appears very close to |ψ⟩, we technically arrive at a
different common-state model. This means we cannot use the separations in the CHRS model as a black
box without inspecting the proof. Nevertheless, we show that the impossibilities of PRSs (and even one-
way state generators) from [CCS25, BCN25, BMM+25] readily translate to the |ψ−⟩ model with minimal
modifications. Thus, we separate commitments from many-time PRSs and even one-way state generatorss
in a unitary model, in a way that is much simpler and more modular than the prior work on unitary oracle
separations and also circumvents the bugs in [CCS25, BCN25].

Lifting |ψ⟩ to |ψ−⟩. It is natural to wonder if the |ψ⟩ and |ψ−⟩ models are equivalent as well. Combined
with our Theorem 1.2, this would allow for immediately translating |ψ⟩ separations into unitary separations
without having to inspect the underlying |ψ⟩ separations. Unfortunately, we explain that a stronger version
of this hope is not possible: it is impossible to simulate |ψ−⟩ from |ψ⟩, where both use the same Haar
random state |ψ⟩. Intuitively, this makes sense: Haar-random states cannot be copied nor deleted, given just
a polynomial-number of copies. Therefore, given any polynomial-number of copies of |ψ⟩, one will always
have an integer number of them. On the other hand |ψ−⟩ is essentially half of a |ψ⟩ state, which is not an
integer.

The good news is that we give a general condition under which it is possible to have |ψ⟩ and |ψ−⟩ be
equivalent. For starters, any construction in the |ψ⟩ model can be lifted to the |ψ−⟩ model, assuming the
security experiment is single-stage. Obtaining a correct construction requires obtaining copies of |ψ⟩ from
copies of |ψ−⟩, which can be accomplished through post-selecting |ψ−⟩ on the state not being 0. In order
for the derived construction to be secure, we then need to simulate an adversary relative to |ψ−⟩ using only
copies of |ψ⟩. Here, since we assume the security experiment is single-stage, the stateful simulation from
above actually suffices. This gives Theorem 1.3. This gives half of the goal of lifting a separation to the
unitary model, namely the part showing that primitives (e.g. commitments) exist in the unitary model.

Then we consider restrictions that yield give a converse to Theorem 1.3, which gives the other half of a
separation by showing that other primitives do not exist in the unitary model. In particular, we consider
“LOCC” games as games where there may be several invocations of the underlying cryptosystems, but
where the different invocations cannot talk to each other except via classical communication. We show, as
long as we restrict to primitives where security and correctness are defined by LOCC games, that |ψ⟩ and
|ψ−⟩ are in fact equivalent. This equivalence uses the stateful simulator for S|ψ⟩ to give |ψ−⟩, but we give
a much stronger simulation guarantee than that of prior works: you actually can have multiple instances
of the simulator, as long as they cannot talk to each other except for LOCC communication. This gives
Theorem 1.4.

We apply this to the separation of [AGL24a], who show that key agreement with classical communication
does not exist in the CHRS model, thereby separating it from commitments. The security and correctness
games for such key agreement are LOCC, and thus our result shows we can lift it into a separation in the
|ψ−⟩ model, and hence via Theorem 1.2 into a separation in a unitary model.

6A more subtle caveat is that for many-time primitives such as many-time PRSs or quantum one-wayness, the primitive is
called an unbounded polynomial number of times in the security experiment, while the error in each invocation in a bounded
inverse polynomial. Thus, by setting the number of queries of the experiment high enough, the errors from each query will
compound, giving an overall error that could approach 1. However, this will not typically be a problem, as the impossibilities
we deal with give attacks that use a concrete polynomial number of queries, thus ruling out even bounded versions of the
primitives in question.
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2 Preliminaries

2.1 Cryptographic Preliminaries

Definition 2.1. An idealized model P = {Pn}n∈N is a family of distributions over isometries. A uniform/non-
uniform oracle algorithm AP is a QPT algorithm with access to oracle gates performing some potentially
stateful process P.
Remark 2.2. Throughout this paper, we will consider all adversaries to have access to the idealized model
only at the index corresponding to the security parameter. This is common in the indifferentiability set-
ting [MRH04], and is .

One could consider a more general model where adversaries can query the idealized model at any security
parameter, as is considered in some of the prior work. It is not difficult to port all of our results over to
this setting. However, since our constructions are only secure at sufficiently high security parameters, this
would require applying a different ”brute-force” construction for low security parameters. As these technical
details are relatively involved, albeit not very informative, we omit such a detailed discussion in this work.

Definition 2.3. A cryptographic primitive Prim = (Prim1, . . . , P rimt) is a tuple of potentially stateful
uniform QPT algorithms.

A cryptographic adversary A = (A1, . . . ,Aℓ) is a tuple of potentially stateful non-uniform QPT algo-
rithms.

If P is an idealized model, a cryptographic primitive PrimP = (PrimP1 , . . . , P rim
P
t ) relative to P is

a tuple of potentially stateful uniform QPT oracle algorithms. Like-wise, a cryptographic adversary AP =
(AP1 , . . . ,APℓ ) is a tuple of potentially stateful non-uniform QPT oracle algorithms.

Definition 2.4. A cryptographic game G consists of the following

1. The syntax of a primitive Prim. This consists of the number of algorithms ℓPrim, the input and output
space of each algorithm, and whether each procedure is stateful or not.

2. A syntax of an adversary A. This consists of the number of algorithms ℓA, the input and output space
of each algorithm, and whether each procedure is stateful or not.

3. A QPT oracle procedure which, on input security parameter 1n, makes queries to a primitive Prim(1n, ·)
and an adversary A(1n, ·) satisfying the above syntax. At the end, the procedure should produce a bit b.

We say a primitive Prim (like-wise adversary A) is compatible if Prim = (Prim1, . . . , P rimℓPrim
), the input

and output spaces of each Primi match those described by G, and whether or not each Primi is stateful
matches with the syntax described by G.

We will denote the interaction between the game G and a compatible primitive Prim and adversary A
as G(1n, P rim,A).

If the syntax of G specifies that A consists of a single, stateful procedure, then we say that G is single-stage.
We say that Prim is (t, ϵ; c)-secure under G if for all quantum adversaries A running in time t, for all

sufficiently large n,
Pr[G(1n, P rim,A)→ 1]− c ≤ ϵ(n)

If PrimP is a cryptographic primitive relative to P, then we say that PrimP is (t, ϵ; c)-secure under G
(relative to P) if for all oracle adveraries AP making at most t oracle queries, for all sufficiently large n,

Pr
[
G(1n, P rimP ,APn)→ 1

]
− c ≤ ϵ(n)

We say that Prim is (ϵ; c)-secure under G if it is (t, ϵ; c)-secure for all t ≤ poly(n).
We say that Prim is c-secure under G if it is (n−d; c)-secure for all d ∈ N.
We will omit c whenever c = 0.

Remark 2.5. Note that here we allow adversaries in an idealized model to be inefficient, as long as they are
query bounded. It would also be reasonable to consider time and query bounded adversaries. In this setting
most separations can also be achieved by providing access to a sufficiently strong oracle independent of the
idealized model (for example, UnitaryPSPACE in [BCN25]).
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2.2 Local Operations Classical Communication

Definition 2.6. Let O = (O1, . . . ,Ot) be a tuple of oracles. An oracle LOCC algorithm AO = (AO1
1 , . . . ,AOt

t )
is a tuple of quantum interactive oracle algorithms taking in classical inputs and outputs. We write AO → z
to denote the process

AO1
1 ⇆ · · ·⇆ AOt

t

followed by returning AO1
1 ’s output z.

We say that a AO makes at most T queries to its oracle if the total number of queries made by
AO1

1 , . . . ,AOt
t to the oracles O1, . . . ,Ot is at most T . We will also work with LOCC algorithms over pairs of

oracles O1,O2 = ((O1
1,O2

1), . . . , (O1
t ,O2

t )), in which case we say that an algorithm AO1,O2

makes at most T1

queries to its first oracle if the total number of queries made by AO
1
1 ,O

2
1

1 , . . . ,AO
1
t ,O

2
t

t to the oracles O1
1, . . . ,O1

t

is at most T . The statement AO1,O2

makes at most T2 queries to its second oracle is defined analogously.

Definition 2.7. We say that a pair of tuples of oracles O = (O1, . . . ,Ot) and O′ = (O′1, . . . ,O′t) are
(T, ϵ)-LOCC indistinguishable if for all oracle LOCC algorithms A· making at most T oracle queries,∣∣∣Pr[AO → 1

]
− Pr

[
AO

′
→ 1

]∣∣∣ ≤ ϵ
We say that a pair of states ρA1,...,At

, σA1,...,At
are (T, ϵ)-LOCC indistinguishable if the oracles (Oρ1 , . . . ,O

ρ
t ), (Oσ1 , . . . ,Oσt )

are (T, ϵ)-LOCC indistinguishable where Oρi returns register Ai of ρ and Oσi returns register Ai of σ.
We say that a pair of oracles/states are ϵ-LOCC indistinguishable if they are (∞, ϵ)-LOCC indistinguish-

able.

Definition 2.8 (LOCC cryptographic games). We say that a cryptographic game G is LOCC if it can
be represented by a LOCC computation. In particular, we say that G is LOCC if it is represented by the
following computation

1. There exist some G
(·)
1 , . . . , G

(·)
ℓ such that G(Prim,A, 1n) is represented by the computation

GPrim1
1 ⇆ · · ·⇆ G

PrimℓPrim

ℓPrim
⇆ GA1

ℓPrim+1 ⇆ · · ·⇆ G
AℓA
ℓPrim+ℓA

followed by repeating the output of G1. Here, all messages sent between parties Gi, Gj must be classical.

2. We further require that for all stateless Primi, G
Primi
i makes at most one query to its oracle.

3. Similarly, for all stateless Ai, GAi

ℓPrim+i makes at most one query to its oracle.

2.3 Indifferentiability

In this section, we define indifferentiability and relevant variants. We also state useful composition theorems
which apply to indifferentiable constructions. Formal proofs of these composition theorems are provided for
completeness in Appendix A.

Definition 2.9 (Standard indifferentiability). Let P,Q be two idealized primitives. We say that a construc-
tion CP is (TSim, T1, T2, δ)-indifferentiable from Q if for all adversaries AO1,O2 making at most T1(n) queries
to O1 and T2(n) queries to O2, there exists a potentially stateful simulator SimQn making at most TSim(n)
queries to its oracle such that for all sufficiently large n,∣∣∣Pr[APn,C

Pn
(1n)→ 1

]
− Pr

[
ASimQn ,Qn(1n)→ 1

]∣∣∣ ≤ δ(n)
If in addition the simulator is stateless, then we say that CP is reset indifferentiable from Q.
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Theorem 2.10 (Bounded query composition theorem). Let P,Q be two idealized primitives, and let CP be a
construction (TSim, T1, T2, δ)-indifferentiable from Q. Let G be any single-stage cryptographic game making
at most TG,1 queries to its primitive and TG,2 queries to its adversary, and let PrimQ be any primitive
relative to Q making at most TPrim queries to its oracle. Let ϵ, TA : N→ [0, 1] be any functions and let c be
any constant.

As long as TG,1 ·TPrim ≤ T2 and TG,2 ·TA ≤ T1, then if PrimQ is (TA ·TSim, ϵ; c)-secure under G relative

to Q, then PrimCP
is (TA, ϵ+ δ; c)-secure under G relative to P.

Corollary 2.11 (General composition theorem). Let P,Q be two idealized primitives, let CP be a construc-
tion of Q from P, and let δ : N→ [0, 1]. If, for all p = poly(n), there exists some q = poly(n) such that CP

is (q, p, p, δ)-indifferentiable from Q, then the following holds:
For all primitives PrimQ and single-stage cryptographic games G, if PrimQ is (ϵ; c)-secure under G

relative to Q, then PrimCP
is (ϵ+ δ; c)-secure under G relative to P.

Remark 2.12. If, in any of these theorems, the construction CP additionally satisfies reset indifferentiability,
then we can remove the requirement that G is single-stage [RSS11].

What does it mean for a stateful construction to be indifferentiable? For the composition lemma
to hold, we need indifferentiability to hold when the adversary has query access to many different copies of
the construction. This is essentially the reverse of reset indifferentiability. However, we may resign ourselves
to a weaker composition theorem, which holds only for particular types of security games. In particular, we
could consider only LOCC security games, where the game can be written as a LOCC protocol where each
local operation only operates on one copy of the primitive. To handle this, we need indifferentiability to
hold against multiple adversaries communicating over LOCC channels where each adversary has access to a
fresh version of the construction. We will call such a property LOCC indifferentiability.

Definition 2.13 (LOCC indifferentiability). Let P,Q be two idealized primitives. We say that a con-
struction CP is (ℓA, TSim, T1, T2, ϵ)-LOCC indifferentiable from Q if for all LOCC adversaries A(·),(·) =

(A(·),(·)
1 , . . . ,A(·),(·)

ℓA
) making at most T1, T2 queries to its first and second oracles respectively, there exists a

simulator SimQ making at most TSim queries to its oracle such that∣∣∣Pr[A((P,CP
1 ),...,(P,CP

t )) → 1
]
− Pr

[
A((SimQ

1 ,Q),...,(SimQ
5 ,Q)) → 1

]∣∣∣ ≤ ϵ
where Ci, Simi are fresh instantiations of C and Sim for all i ∈ [k].

Theorem 2.14 (LOCC composition theorem). Let P,Q be two idealized primitives, and let CP be a (possibly
stateful) construction (ℓA, TSim, T1, T2, δ)-LOCC indifferentiable from Q. Let G be any LOCC cryptographic
game making at most TG,1 queries to its primitive and TG,2 queries to its adversary, with at most ℓA
adversaries. Let PrimQ be any primitive relative to Q making at most TPrim queries to its oracle. Let
ϵ, TA : N→ [0, 1] be any functions and let c be any constant.

As long as TG,1 ·TPrim ≤ T2 and TG,2 ·TA ≤ T1, then if PrimQ is (TA ·TSim, ϵ; c)-secure under G relative

to Q, then PrimCP
is (TA, ϵ+ δ; c)-secure under G relative to P.

3 Our Idealized Models

Notation 1. For any state |ϕ⟩, we define the state

|ϕ−⟩ := 1√
2
(|0⟩ − |ϕ⟩)

Definition 3.1. Let D = {Dn}n∈N be any family of distributions over pure states over n qubits (i.e. elements
of C2n). We define a series of oracles parameterized by D. For each of these oracles, let |ϕn⟩ ← D be a state
sampled during initialization, before any party receives oracle access. We will also consider the space C2n+1,
which will be the space spanned by the output space C2n of Dn and an orthogonal basis vector |0⟩.
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1. We define the structured state model (SSM) over D to be the oracle CHRSn : C→ C2n defined by the
isometry

|0⟩ 7→ |ϕn⟩

2. We define the weighted structured state model (SSM-) over D to be the oracle CHRS-n : C→ C2n+1

defined by the isometry

|0⟩ 7→ |ϕn−⟩ =
1√
2
(|0⟩ − |ϕn⟩)

3. We define the swap structured state model (Swap) over D to be the oracle Swapn : C2n+1 → C2n+1

defined by the unitary which swaps |0⟩ and |ϕn⟩ and acts as identity everywhere else. Formally,

Swapn = I − |0⟩⟨0| − |ϕn⟩⟨ϕn|+ |0⟩⟨ϕn|+ |1⟩⟨0|

Remark 3.2. Note that in these definitions we assume that |0⟩ is some state orthogonal to |ϕ⟩. We can
explicitly force this to happen by setting |0⟩ = |0⟩ |0⟩ and replacing |ϕn⟩ by |1⟩ |ϕn⟩.

4 Building CHRS from CHRS-

Definition 4.1. We say a distributions over states D is balanced if it does not change when we apply a
random phase. That is, if we define D′ to do the following

1. Sample |ϕ⟩ ← Dn

2. Sample θ ← [0, 2π]

3. Output eiθ |ϕ⟩

then D = D′.
Similarly, we say a family of distributions D = {Dn}n∈N is balanced if Dn is balanced for all n ∈ N.

Definition 4.2. For any t ∈ N, set S ⊆ [t], state |ϕ⟩ ∈ C2n , define

|Set
t,S,ϕ
⟩ :=

t⊗
i=1

(1i/∈S |0⟩ − 1i∈S |ϕ⟩)

For any t ∈ N, 0 ≤ c ≤ t, state |ϕ⟩ ∈ C2n , define

|Rep
t,c,ϕ
⟩ :=

(
t

c

)−1/2 ∑
S⊆[t]:|S|=c

|Set
t,S,ϕ
⟩

We will sometimes omit t when clear from context.

Definition 4.3. B(t, p) is the binomial distribution over t instances. Formally, it is the distribution defined
by

Pr[B(t, p)→ c] =

(
t
c

)
2c

for all 0 ≤ c ≤ t.

Lemma 4.4. Let D be any a balanced distribution and let t1, t2 ∈ N. Define

ρn = E
|ϕ⟩←D

[
|ϕ−⟩⟨ϕ−|⊗t1 ⊗ |ϕ⟩⟨ϕ|⊗t2

]
ρ′n = E

|ϕ⟩←D,c←B(t1,1/2)

[
|Rep
t1,c,ϕ

⟩⟨Rep
t1,c,ϕ

| ⊗ |ϕ⟩⟨ϕ|⊗t2
]

Then ρ = ρ′.
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Proof. In particular, we will show that ρ = ρ′ as density matrices. Note that

|ϕ−⟩⊗t1 =
1√
2t1

∑
S⊆[t1]

t1⊗
i=1

(1i/∈S |0⟩ − 1i∈S |ϕ⟩)

=
1√
2t1

∑
S⊆[t1]

|Set
S,ϕ
⟩ =

t1∑
c=1

(
t1
c

)1/2
√
2t1
|Rep
c,ϕ
⟩

(1)

And so

ρ = E
|ϕ⟩←µn

[
|ϕ−⟩⟨ϕ−|⊗t1 ⊗ |ϕ⟩⟨ϕ|⊗t2

]
= E
|ϕ⟩←µn

 ∑
c,c′∈[t1]

(
t1
c

)1/2(t1
c′

)1/2
2t1

|Rep
c,ϕ
⟩⟨Rep
c′,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2


= E
|ϕ⟩←µn

∑
c∈[t1]

(
t1
c

)
2t1
|Rep
c,ϕ
⟩⟨Rep
c,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2


+

∑
c ̸=c′∈[t1]

(
t1
c

)1/2(t1
c′

)1/2
2t1

E
|ϕ⟩←µn

[
|Rep
c,ϕ
⟩⟨Rep
c′,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2

]
= ρ′ +

1

2t1

∑
S,S′⊆[t1],|S|≠|S′|

E
|ϕ⟩←µn

[|Set
S,ϕ
⟩⟨Set
S′,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2 ]

(2)

We then claim that since D is balanced, for all S, S′ ⊆ [t1] such that |S| ≠ |S′|,

E
|ϕ⟩←µn

[
|Set
S,ϕ
⟩⟨Set
S′,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2

]
= 0 (3)

for all c ̸= c′. In particular, since D is balanced, we have

E
|ϕ⟩←µn

[
|Set
S,ϕ
⟩⟨Set
S′,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2

]
= E
|ϕ⟩←µn

[
E

θ←[0,2π]

[
| Set
S,eiθϕ

⟩⟨ Set
S′,eiθϕ

| ⊗ et2iθe−t2iθ |ϕ⟩⟨ϕ|⊗t2
]]

= E
|ϕ⟩←µn

[
E

θ←[0,2π]

[
| Set
S,eiθϕ

⟩⟨ Set
S′,eiθϕ

| ⊗ |ϕ⟩⟨ϕ|⊗t2
]] (4)

But we also have

| Set
S,eiθϕ

⟩⟨ Set
S′,eiθϕ

| =
t1⊗
i=1

(1i/∈S∩S′ |0⟩⟨0|+ eiθ1i∈S\S′ |ϕ⟩⟨0|

+e−iθ1i∈S′\S |0⟩⟨ϕ|+ 1i∈S′∩S |ϕ⟩⟨ϕ|)

= (eiθ)|S\S
′|(e−iθ)|S

′\S| |Set
S,ϕ
⟩⟨Set
S′,ϕ
|

= e(|S|−|S
′|)iθ |Set

S,ϕ
⟩⟨Set
S′,ϕ
|

(5)
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and so by Equations (4) and (5), and since |S| − |S′| ≠ 0,

E
|ϕ⟩←µn

[
|Set
S,ϕ
⟩⟨Set
S′,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2

]
= E
|ϕ⟩←µn

[
E

θ←[0,2π]

[
e(|S|−|S

′|))iθ |Set
S,ϕ
⟩⟨Set
S′,ϕ
| ⊗ |ϕ⟩⟨ϕ|⊗t2

]]
= E
|ϕ⟩←µn

[0]

= 0

(6)

And so by Equations (2) and (6), we have ρ = ρ′.

We construct CHRS from CHRS- for the specific case when D is the Haar distribution.

Construction 1. Define CCHRS-
n as follows:

1. Run CHRS-n → |ψ⟩.

2. Apply the measurement {|0⟩⟨0| , I − |0⟩⟨0|} to |ϕ⟩.

3. If the result is I − |0⟩⟨0|, output the residual state.

4. Otherwise, repeat.

5. If this process fails m times, output ⊥.

Theorem 4.5. For all TSim, T1, T2,m satisfying T1 ≤ TSim, for D the Haar distribution over n qubits,
CCHRS- is

(
TSim, T1, T2,

T2

2m

)
indifferentiable from CHRS.

Proof. The main idea behind the simulator is that it directly constructs the state ρ′ from Lemma 4.4. The
simulator is defined as follows.

Construction 2. The simulator SimCHRS
n acts as follows on initialization

1. Sample c← B(TSim(n), 1/2) (samples c from the binomial distribution).

2. Run CHRSn c times to produce c copies of |ϕn⟩ in registers B1, . . . , Bc.

3. Construct the state
| Rep
TSim,c,|1⟩

⟩A1,...,ATSim
|ϕn⟩⊗cB1,...,Bc

|1⟩D

4. For each qubit i of A, controlled on Ai being 0, do a SWAP between Ai and BD and increment register
D by one. This produces the state

(
TSim
c

)−1/2 ∑
S⊆[TSim]:|S|=c

TSim⊗
i=1

(1i/∈S |0⟩Ai
+ 1i∈S |ϕ⟩Ai

)

⊗ |1⟩⊗cB1,...,Bc
|c+ 1⟩D

Note that this is exactly | Rep
TSim,c,ϕn

⟩ |1⟩⊗c |c+ 1⟩.

On query i, Simn outputs registers Ai.

To show indifferentiability, we will work through a series of hybrid games. Let A(·,·) be any adversary
making at most T1, T2 queries to its oracles respectively.

1. Hybrid 1: ASimCHRS,CHRS, the ideal world in the indifferentiability game.
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2. Hybrid 2: AS̃im,CHRS, the same as hybrid 1, but we replace the state | Rep
TSim,c,ϕn

⟩ |c+ 1⟩ used by the

simulator with |ϕn−⟩⊗k |c+ 1⟩. In particular, S̃im behaves exactly the same as Sim, but its internal
state after sampling c is set to

k⊗
i=1

1√
2

(
|0⟩Ai

|0n⟩Bi
− |1⟩Ai

|ϕn⟩Bi

)
⊗ |0n⟩⊗cC1,...,Cc

|c+ 1⟩D

3. Hybrid 3: ACHRS-,CHRS, the same as hybrid 1, but the simulator is replaced with the honest CHRS-
oracle. In an abuse of notation, in this hybrid both CHRS and CHRS- are going to refer to the same
state |ϕ⟩ ← D.

4. Hybrid 4: ACHRS-,CCHRS-

, the real world in the indifferentiability game.

We then proceed to show that each of these hybrids are close.

1. Pr
[
ASimCHRS,CHRS → 1

]
= Pr

[
AS̃im

CHRS
,CHRS → 1

]
. This follows directly from Lemma 4.4. In

particular, the mixed state representing the internal state of the simulator along with all responses
from CHRS has the exact same density matrix in both games.

2. Pr
[
AS̃im

CHRS
,CHRS → 1

]
= Pr

[
ACHRS-,CHRS → 1

]
. This is because during query i ≤ TSim made to

S̃im, registers Ai contain |ϕn−⟩, which is exactly what is returned by CHRS-. Furthermore, since
T1 ≤ TSim, we will always have i ≤ T1 ≤ TSim and so register Ai will always be assigned.

3.
∣∣∣Pr[ACHRS-,CHRS → 1

]
− Pr

[
ACHRS-,CCHRS- → 1

]∣∣∣ ≤ T2

2m . Note that as long as CCHRS does not

fail, it will output |ϕn⟩. Thus, the only way to distinguish these two sets of oracles is if CCHRS- ever
fails. But by union bound, this probability is ≤ T2

2m .

And so we get that CCHRS- is
(
TSim, T1, T2,

T
2m

)
indifferentiable from CHRS.

Corollary 4.6. Let m = 2n and let CCHRS- be the construction from Construction 1. For all primitives
PrimCHRS and cryptographic games G, if PrimCHRS is (c, ϵ)-secure under G relative to CHRS, then

PrimCCHRS-

is (c, ϵ+ 1
2n )-secure under G relative to CHRS.

Proof. This follows from Corollary 2.11. In particular, observe that for all polynomials p, for all sufficiently
large n,

p(n)

22n
≤ 1

2n

5 CHRS- and CHRS are equivalent

We now construct Swap from CHRS-.

Proposition 5.1 (Adapted from Theorem 4 of[JLS18]). Let t ∈ N. Let |ψ⟩ be a quantum state of dimension
d and let R|ψ⟩ = I−2 |ψ⟩⟨ψ| be reflection around |ψ⟩. Let ΠSym be the projection onto the symmetric subspace

∨t+1Cd and let RΠSym = I − 2ΠSym be reflection around the symmetric subspace.
Define the quantum channel Q to, on input ρ, apply RΠSym to ρ ⊗ |ψ⟩⊗t and output the first register.

Then ∥∥Q−R|ψ⟩ ·R|ψ⟩∥∥⋄ ≤ 2√
t+ 1

We define CCHRS- to simply run the algorithm from the lemma on n states sampled from CHRS-.
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Theorem 5.2. For all T1, T2, t. C
CHRS- is

(
1, T1, T2,

2T2√
t+1

)
reset indifferentiable from Swap.

Proof. The simulator SimSwap
n here will be defined as follows:

1. Denote |ϕn⟩ to be the state which Swap swaps with 0.

2. Begin with the state |−⟩ |0⟩.

3. Apply Swap controlled on the first qubit to the second qubit.
This produces the state 1√

2
|0⟩ |0⟩ − 1√

2
|1⟩ |ϕn⟩.

4. Apply X to the first qubit controlled on the second qubit being 0.

This produces the state |1⟩
(

1√
2
|0⟩ |0⟩ − 1√

2
|1⟩ |ϕn⟩

)
.

5. Output the second register. Up to a global phase this state is exactly |ϕn−⟩.

In particular, this is an exact, stateless simulator. By making a single oracle query to Swap, it produces
the state |ϕn−⟩.

Applying induction to Proposition 5.1 shows that for all adversaries A making at most T2 queries to the
second oracle, ∣∣∣Pr[ACHRS-,CCHRS-

→ 1
]
− Pr

[
ACHRS-,Swap → 1

]∣∣∣ ≤ 2T2√
t+ 1

But SimSwap and CHRS- are identical, and so we have∣∣∣Pr[ACHRS-,CCHRS-

→ 1
]
− Pr

[
ASimSwap,Swap → 1

]∣∣∣ ≤ 2T2√
t+ 1

Corollary 5.3. Since the simulator is stateless, the converse also holds. That is, for all t, T1, T2, Sim
Swap

is
(
t, T1, T2,

2T1√
t+1

)
reset indifferentiable from CHRS-.

6 Barriers to simulating |ϕ−⟩ using |ϕ⟩.
We first observe that given any polynomial number of copies of |ϕ⟩, it is impossible to, in a black-box manner,
produce |ϕ−⟩. This follows essentially immediately from our Lemma 4.4. In particular, Lemma 4.4 shows
that the mixed state

ρ = |ϕ⟩⟨ϕ|⊗t1 ⊗ E
c←B(t2,1/2)

[|Rep
t2,c,ϕ

⟩⟨Rep
t2,c,ϕ

|]

is indistinguishable from the pure state

ρ′ = |ϕ⟩⟨ϕ|⊗t1 ⊗ |ϕ−⟩⟨ϕ−|⊗t2

But note that if you could produce |ϕ−⟩ from |ϕ⟩⊗t1 , then you could distinguish these two states by
doing a swap test between the produced state |ϕ−⟩ and the last register.

And so it is impossible to directly produce |ϕ−⟩ from |ϕ⟩. This does not rule out the ability to produce
|ψ−⟩ for some distinct but identically distributed state |ψ⟩.

We also observe that if we consider D the distribution over states to be something other than the Haar
distribution, there are some tasks which are possible with oracle access to |ϕ−⟩ but not with |ϕ⟩. In particular,
let D be the distribution eiθ |1⟩ for a random phase θ. Given t copies of |ϕ⟩⊗t = (eiθ |1⟩)⊗t, it is impossible
to compute θ since θ appears only in the global phase etiθ. On the other hand, given t copies of

|ϕ−⟩⊗t =
(

1√
2
|0⟩ − eiθ√

2
|1⟩
)
,
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it is possible to approximate θ by guessing the value of θ and performing swap tests.
Thus, if we consider the game where two parties must agree on a shared random bit with no communica-

tion, it is possible for two parties with oracle access to |ϕ−⟩ to win this game, but not for two parties with
oracle access to |ϕ⟩.

Overall, while we do not definitively rule out any indifferentiable construction of CHRS- from CHRS
for Haar random states, we do rule out most obvious approaches. Any construction must explicitly use the
fact that the states are Haar random, and must transform the given state in some non-trivial way.

7 Simulating SWAP in the LOCC model

In this section, we show how to simulate the CHRS- model using the CHRS model against a restricted
class of adversaries for the specific case where D is the Haar distribution. Our main idea behind building an
”indifferentiable” version of CHRS- model using the CHRS model is to reverse the roles of simulator and
construction in Theorem 4.5. Note that this leaves us with a stateful construction, which is typically not
allowed. However, by restricting the indifferentiability adversary to be LOCC, we show that a composition
theorem holds for this construction whenever the cryptographic game is itself LOCC.

In particular, let CCHRS be the simulator from Construction 2. As a reminder, each query to CCHRS

will output a fresh register of

E
c←B(t,1/2)

[
|Rep
t,c,ϕ
⟩⟨Rep
t,c,ϕ
|
]

We proceed to prove the following main theorem

Theorem 7.1. For all ℓA, T1, T2 = poly(n), CCHRS simulating t copies is
(ℓA, n, T1, T2, O(ℓA(T1 + T2)

5/
√
2n))-LOCC indifferentiable from CHRS- as long as T2 ≤ t.

The key idea behind this proof will rely on a key lemma (Lemma 7.6), which informally says that any
pair of LOCC adversaries cannot tell if they are given two copies of this construction or one shared copy.
The rest of the proof proceeds by a hybrid argument, given in full in Section 7.3.

To show the key lemma, we rely on the technique of [AGL24a], which observes that two states are LOCC
indistinguishable if their partial transposes are close in trace distance. We then explicitly compute the
difference in the partial transposes of the relevant density matrices.

It turns out that the trace norm of this difference can be connected (through careful analysis) to the
trace norm of a matrix which is 0 everywhere other than a block of all ones (see Lemma 7.5 for details). It is
not difficult to explicitly compute the trace norm of this matrix, which allows us to then bound the LOCC
distinguishability between one and two copies of the construction.

7.1 Representing Haar random states

We give a number of definitions regarding type vectors, a notion closely connected to representations of Haar
random states.

A t-copy type over [N ] is a multiset T over elements in [N ]. A vector v ∈ [N ]t has type T if for all
x ∈ [N ], x appears k times in v if and only if x has multiplicity k in T . We write type(v) = T . We define a
type vector

|T ⟩ ∝
∑

type(v)=T

|v⟩

In the spirit of [AGL24a], we say a type T is collision free if the multiplicity of all of its elements is at
most 1. Then

|T ⟩ = 1√
t!

∑
type(v)=T

|v⟩

We denote Ty(t,X) to be the set of t-copy types over X. We denote
(
X
t

)
to be the set of t-copy collision-

free types over X, i.e. the subsets of X of size t.

17



We will often consider types over [N ] ∪ {0} with special significance added to the 0 locations. We will
often require that all 0 locations appear in some subset of the registers.

Let T ⊆ [N ] be any type. We define T 0(t) to be the type defined by adding 0s to T until it reaches t
elements. Formally,

T 0(t) := T ∪ {0, . . . , 0}︸ ︷︷ ︸
t−|T |

Let A,B be any registers containing |A|, |B| states of dimension N + 1 respectively. Let T be any type
satisfying |A| ≤ |T | ≤ |A|+ |B|. We will define

|Z(T,B)⟩AB ∝
∑

|v|=|A|+|B|
type(v)=T 0(|A|+|B|)

vi ̸=0 for i∈A

|v⟩

which will represent the type vector T 0(|A|+|B|) restricted to all the 0s appearing in the subregisters of B.
For any collision-free subset T ⊆ [N ],

|Z(T,B)⟩AB =
1√

|T |!
(

t
|T |−|A|

) ∑
|v|=|A|+|B|

type(v)=T 0(|A|+|B|)

vi ̸=0 for i∈A

|v⟩

We also extend the requirement that all 0s appear in some subset of the registers to the case where a
certain amount of 0s appear in one subset and a different amount in another. In particular, we define∣∣∣Z2(T,B1, B2)

bf1 ,b
f
2

〉
AB1B2

∝
∑

|v|=|A|+|B1|+|B2|
type(v)=T 0(|A|+|B1|+|B2|)

vi ̸=0 for i∈A
#non-0s in vB1

=bf1
#non-0s in vB2

=bf2

|v⟩

Note that for a collision-free type T ,∣∣∣Z2(T,B1, B2)
bf1 ,b

f
2

〉
AB1B2

=
1√

|T |!
(b1
bf1

)(b2
bf2

) ∑
|v|=|A|+|B1|+|B2|

type(v)=T 0(|A|+|B1|+|B2|)

vi ̸=0 for i∈A
#non-0s in vB1

=bf1
#non-0s in vB2

=bf2

|v⟩

Lemma 7.2. Let A1, A2, B1, B2 be registers containing a1, a2, b1, b2 states of dimension N + 1 respectively.
For all collision-free T ,

|Z(T, (B1, B2))⟩A1,A2,B1,B2

=
∑
X⊆T

|X|∈[a1,a1+b1]
|T |−|X|∈[a2,a2+b2]

√
α|X| |Z(X,B1)⟩A1,B1

|Z(T \X,B2)⟩A2,B2

where

αi =

(
b1
i−a1

)(
b2

|T |−i−a2

)(
b1+b2

|T |−a1−a2

)(|T |
i

)
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Lemma 7.3. Let A1, A2, B1, B2 be registers containing a1, a2, b1, b2 states of dimension N + 1 respectively.
For all collision-free T , ∣∣∣Z2(T,B1, B2)

bf1 ,b
f
2

〉
A1,A2,B1,B2

=
1√( |T |
a1+b

f
1

) ∑
X⊆T

|X|=a1+bf1

|Z(X,B1)⟩A1B1
|Z(T \X,B2)⟩A2B2

(7)

The proofs of these two lemmas are deferred to Appendix B.

Theorem 7.4. Let t, n ∈ N. Then,

E
|ϕ⟩←µn

[
|ϕ⟩⟨ϕ|⊗t

]
= E
T←Ty(t,[2n])

[|T ⟩⟨T |]

7.2 Key Lemma

Let D be the Haar distribution. We will define CCHRS to be exactly the simulator SimCHRS from Con-
struction 2.

Lemma 7.5. Define

0
M×N

:=


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


︸ ︷︷ ︸
N columns

M rows 1
M×N

:=


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


︸ ︷︷ ︸
N columns

M rows (8)

Let

V :=

[
0 1

M×N
0 0

]
be the matrix with M ×N ones in the top right corner (of any dimension). Then

∥V ∥1 =
√
MN

The proof is deferred to Appendix B.

Lemma 7.6 (Key Lemma). Let A1, B1, A2, B2 be registers containing a1, b1, a2, b2 respectively states of
dimension N + 1, satisfying N ≥ (a1 + a2 + b1 + b2 + 1)2. Define ρ̃(A1,B1),(A2,B2) to be the state

E
c←B(b1+b2,1/2)

T←( [N]
a1+a2+c)

[
|Z(T, (B1, B2))⟩⟨Z(T, (B1, B2))|A1,A2,B1,B2

]

and σ̃(A1,B1),(A2,B2) to be the state

E
c1←B(b1,1/2)
c2←B(b2,1/2)

T←( [N]
a1+a2+c1+c2

)

[∣∣Z2(T,B1, B2)
c1,c2

〉〈
Z2(T,B1, B2)

c1,c2
∣∣
A1,A2,B1,B2

]

Then
∥∥∥ρ̃ΓA2B2 − σ̃ΓA2B2

∥∥∥
1
≤ e(a1+a2+b1+b2)

5

√
N

.
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Proof.

ρ̃ =
∑

c∈[b1+b2]

∑
T∈( [N]

a1+a2+c)

(
b1+b2
c

)
2b1+b2

1(
N

a1+a2+c

) |Z(T, (B1, B2))⟩⟨Z(T, (B1, B2))|A1A2B1B2

Setting

αc =

(
b1+b2
c

)
2b1+b2

1(
N

a1+a2+c

) βc,c1 =

(
b1
c1

)(
b2
c−c1

)(
b1+b2
c

)(
a1+a2+c
a1+c1

) γc,c1,c2 = αc
√
βc,c1βc,c2 (9)

and applying Lemma 7.2 gives∑
c∈[b1+b2]
c1,c2≤c

γc,c1,c2
∑

T∈( [N]
a1+a2+c)
X,Y⊆T

|X|=|Y |=a1+c1

|Z(X,B1)⟩ ⟨Z(Y,B1)|A1B1
⊗ |Z(T \X,B2)⟩ ⟨Z(T \ Y,B2)|A2B2

Observe that when c1 > b1 or c2 > b2, γc,c1,c2 = 0. And so

ρ̃Γ
(A2,B2)

=
∑

c∈[b1+b2]
c1,c2≤c

γc,c1,c2
∑

T∈( [N]
a1+a2+c)
X,Y⊆T
|X|=a1+c1
|Y |=a2+c2

|Z(X,B1)⟩ ⟨Z(Y,B1)|A1B1
⊗ |Z(T \ Y,B2)⟩ ⟨Z(T \X,B2)|A2B2

(10)

We can similarly expand out σ̃.

σ̃(A1,B1),(A2,B2)

=
∑
c1∈[b1]
c2∈[b2]

(
b1
c1

)(
b2
c2

)
2b1+b2

(
N

a1+a2+c1+c2

) ∑
T∈( [N]

a1+a2+c1+c2
)

∣∣Z2(T,B1, B2)
c1,c2)

〉 〈
Z2(T,B1, B2)

c1,c2
∣∣

=
∑

c∈[b1+b2]
c1≤c

(
b1
c1

)(
b2
c−c1

)
2b1+b2

(
N

a1+a2+c

) ∑
T∈( [N]

a1+a2+c)

∣∣Z2(T,B1, B2)
c1,c2)

〉 〈
Z2(T,B1, B2)

c1,c2
∣∣

(11)

Applying Lemma 7.3 gives

σ̃(A1,B1),(A2,B2)

=
∑

c∈[b1+b2]
c1≤c

(
b1
c1

)(
b2
c−c1

)
2b1+b2

(
N

a1+a2+c

) 1(
a1+a2+c
a1+c1

)
∑

T∈( [N]
a1+a2+c)
X,Y⊆T

|X|=|Y |=a1+c1

|Z(X,B1)⟩ ⟨Z(Y,B1)|A1B1
⊗ |Z(T \X,B2)⟩ ⟨Z(T \ Y,B2)|A2B2

(12)

As (
b1
c1

)(
b2
c−c1

)
2b1+b2

(
N

a1+a2+c

) 1(
a1+a2+c
a1+c1

) = γc,c1,c1 ,
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subtraction then gives

ρ̃Γ
A2B2 − σ̃ΓA2B2

=
∑

c∈[b1+b2]
c1 ̸=c2≤c

γc,c1,c2
∑

T∈( [N]
a1+a2+c)
X,Y⊆T
|X|=a1+c1
|Y |=a1+c2

|Z(X,B1)⟩ ⟨Z(Y,B1)|A1B1

⊗ |Z(T \ Y,B2)⟩ ⟨Z(T \X,B2)|A2B2
(13)

We then observe (again in the style of [AGL24a]) that for each X,Y , if we set I = X∩Y , C = T \(X∪Y ),
X ′ = X \ I, Y ′ = Y \ I, then

|Z(X,B1)⟩ ⟨Z(Y,B1)|A1B1
⊗ |Z(T \ Y,B2)⟩ ⟨Z(T \X,B2)|A2B2

= |Z(I ∪X ′, B1)⟩ ⟨Z(I ∪ Y ′, B1)|A1B1
⊗ |Z(C ∪X ′, B2)⟩ ⟨Z(C ∪ Y ′, B2)|A2B2

(14)

We will define

τc1,c2,I,C =
∑

X∈([N]\(I∪C)
a1+c1−|I|)

Y ∈([N]\(I∪C)
a1+c2−|I|)
X∩Y=∅

|Z(I ∪X ′, B1)⟩ ⟨Z(I ∪ Y ′, B1)|A1B1

⊗ |Z(C ∪X ′, B2)⟩ ⟨Z(C ∪ Y ′, B2)|A2B2

(15)

Equations (13) to (15) together give us

ρ̃Γ
A2B2 − σ̃ΓA2B2

=
∑

c∈[b1+b2]
c1 ̸=c2≤c

γc,c1,c2

a1+min(c1,c2)∑
i=0

a2+c−max(c1,c2)∑
j=0

∑
I∈([N]

i )

∑
C∈([N]\I

j )

τc1,c2,I,C
(16)

But note that

τc1,c2,I,C

⪯
∑

X∈([N]\(I∪C)
a1+c1−|I|)

Y ∈([N]\(I∪C)
a1+c2−|I|)

|Z(I ∪X ′, B1)⟩ ⟨Z(I ∪ Y ′, B1)|A1B1
⊗ |Z(C ∪X ′, B2)⟩ ⟨Z(C ∪ Y ′, B2)|A2B2 (17)

which is a matrix with all entries 0 besides a block of size
(
N−|(I∪C)|
a1+c1−|I|

)(
N−|(I∪C)|
a1+c2−|I|

)
of all 1s. And so

by Lemma 7.5, we have

∥τc1,c2,I,C∥1 =

√(
N − |(I ∪ C)|
a1 + c1 − |I|

)(
N − |(I ∪ C)|
a1 + c2 − |I|

)

≤

√(
N

a1 + c1 − |I|

)(
N

a1 + c2 − |I|

) (18)
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Thus, we get that ∥∥∥ρ̃ΓA2B2 − σ̃ΓA2B2
∥∥∥
1

≤
∑

c∈[b1+b2]
c1 ̸=c2≤c

γc,c1,c2

a1+min(c1,c2)∑
i=0

a2+c−max(c1,c2)∑
j=0

∑
I∈([N]

i )

∑
C∈([N]\I

j )

∥τc1,c2,I,C∥1

≤
∑

c∈[b1+b2]
c1 ̸=c2≤c

γc,c1,c2

a1+min(c1,c2)∑
i=0

a2+c−max(c1,c2)∑
j=0

(
N

i

)(
N

j

)√(
N

a1 + c1 − i

)(
N

a1 + c2 − i

)

≤
∑

c∈[b1+b2]
c1 ̸=c2≤c

γc,c1,c2

a1+min(c1,c2)∑
i=0

a1+c−max(c1,c2)∑
j=0

N i ·N j ·
√
N2a1+c1+c2−2i

≤
∑
c∈[2t]
c1 ̸=c2≤c

γc,c1,c2

t+min(c1,c2)∑
i=0

t+c−max(c1,c2)∑
j=0

Na1+j+(c1+c2)/2

(19)

But note that since c1 ̸= c2, we have max(c1, c2) ≥ min(c1, c2) + 1 and so c1+c2
2 = max(c1,c2)+min(c1,c2)

2 ≤
max(c1, c2)− 1

2 and so expanding on Equation (19) we get ∥∥∥ρ̃ΓA2B2 − σ̃ΓA2B2
∥∥∥
1

≤
∑

c∈[b1+b2]
c1 ̸=c2≤c

γc,c1,c2

a1+min(c1,c2)∑
i=0

a2+c−max(c1,c2)∑
j=0

Na1+j+max(c1,c2)−1/2

≤
∑

c∈[b1+b2]
c1 ̸=c2≤c

γc,c1,c2(a1 +min(c1, c2))(a2 + c−max(c1, c2))N
a1+a2+c−1/2

≤
∑

c∈[b1+b2]
c1 ̸=c2≤c

((a1 + c)(a2 + c) ·Na1+a2+c−1/2αc)
√
βc,c1βc,c2

(20)

We then compute out that

(a1 + c)(a2 + c)Na1+a2+c−1/2αc

= (a1 + c)(a2 + c)

(
b1+b2
c

)
2b1+b2

Na1+a2+c−1/2(
N

a1+a2+c

)
≤ (a1 + c)(a2 + c)

(
b1+b2
c

)
2b1+b2

Na1+a2+c−1/2

(N − a1 − a2 − c)a1+a2+c

= (a1 + c)(a2 + c)

(
b1+b2
c

)
2b1+b2

(
N

N − a1 − a2 − c

)a1+a2+c Na1+a2+c−1/2

Na1+a2+c

≤ (a1 + c)(a2 + c)

(
b1+b2
c

)
2b1+b2

(
N

N − a1 − a2 − c

)a1+a2+c 1√
N

(21)
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And since N >> a1, a2, we have N ≥ (a1 + a2 + c+ 1)2 and so

N

a1 + a2 + c
≥ a1 + a2 + c+ 1

N ≤ N − a1 − a2 − c+
(
N − a1 − a2 − c
a1 + a2 + c

)
N

N − a1 − a2 − c
≤ 1 +

1

a1 + a2 + c(
N

N − a1 − a2 − c

)a1+a2+c
≤ e

(22)

Combining Equations (21) and (22), we get

(a1 + c)(a2 + c)Na1+a2+c−1/2αc ≤
(a1 + c)(a2 + c)e√

N
(23)

Combining Equations (20) and (23), we get∥∥∥ρ̃ΓA2B2 − σ̃ΓA2B2
∥∥∥
1
≤

∑
c∈[b1+b2]
c1 ̸=c2≤c

(a1 + c)(a2 + c)e√
N

√
βc,c1βc,c2

≤ (a1 + b1 + b2)(a2 + b1 + b2)e√
N

∑
c∈[b1+b2]
c1 ̸=c2≤c

√
βc,c1βc,c2

≤ (a1 + b1 + b2)(a2 + b1 + b2)e√
N

∑
c∈[b1+b2]
c1 ̸=c2≤c

1

≤ (a1 + b1 + b2)(a2 + b1 + b2)(b1 + b2)
3 e√

N
≤ e(a1 + a2 + b1 + b2)

5

√
N

(24)

7.3 Proof of LOCC indifferentiability given key lemma

Lemma 7.7 ([AGL24a] Proof of Theorem 7.9). Let ρAB , σAB be two states over registers A and B. The
LOCC distinguishing advantage between ρAB and σAB is bounded by

1

2

∥∥∥ρΓB

− σΓB
∥∥∥
1

Theorem 7.8. Let n ∈ N and let N = 2n. Let A1, B1, A2, B2 be register containing a1, b1, a2, b2 respectively
states of dimension N + 1 satisfying N ≥ (a1 + a2 + b1 + b2 + 1)2. Define ρ(A1,B1),(A2,B2) to be the state

E
|ϕ⟩←µn

c←B(b1+b2,1/2)

[
|ϕ⟩⟨ϕ|⊗a1A1

⊗ |ϕ⟩⟨ϕ|⊗a2A2
⊗ | Rep

b1+b2,c,ϕ
⟩⟨ Rep
b1+b2,c,ϕ

|B1,B2

]

and σ(A1,B1),(A2,B2) to be the state

E
|ϕ⟩←µn

c1←B(b1,1/2)
c2←B(b2,1/2)

[
|ϕ⟩⟨ϕ|⊗a1A1

⊗ |ϕ⟩⟨ϕ|⊗a2A2
⊗ | Rep

b1,c1,ϕ
⟩⟨ Rep
b1,c1,ϕ

|B1
⊗ | Rep

b2,c2,ϕ
⟩⟨ Rep
b2,c2,ϕ

|B2

]

Then ρ, σ are O
(

(a1+a2+b1+b2)
5

√
N

)
-LOCC indistinguishable.
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Proof. By Lemma 7.7, the LOCC distinguishing advantage between ρA1B1A2B2 and σA1B1A2B2 is upper
bounded by

1

2

∥∥∥ρΓA2B2 − σΓA2B2
∥∥∥
1

Note that we can construct ρ and σ by applying an isometry to

E
|ϕ⟩←µn

c←B(b1+b2,1/2)

[
|ϕ⟩⟨ϕ|⊗a1+a2+c

]

and

E
|ϕ⟩←µn

c1←B(b1,1/2)
c2←B(b2,1/2)

[
|ϕ⟩⟨ϕ|⊗a1+a2+c1+c2

]

respectively. Applying Theorem 7.4, we can generate ρ and σ by applying the same isometry to

E
c←B(b1+b2,1/2)

T←Ty([N ],a1+a2+c)

[|T ⟩⟨T |]

and

E
c1←B(b1,1/2)
c2←B(b2,1/2)

T←Ty([N ],a1+a2+c1+c2)

[|T ⟩⟨T |]

This leads to the observation that

ρ = E
c←B(2t,1/2)

T←Ty([N ],a1+a2+c)

[
|Z(T, (B1, B2))⟩⟨Z(T, (B1, B2))|A1,A2,B1,B2

]

and
σ = E

c1←B(t,1/2)
c2←B(t,1/2)

T←Ty([N ],a1+a2+c1+c2)

[∣∣Z2(T,B1, B2)
c1,c2

〉〈
Z2(T,B1, B2)

c1,c2
∣∣
A1,A2,B1,B2

]

Let ρ̃, σ̃ be from Lemma 7.6. Since the probability that a given type T ← Ty([N ], t) is not collision-free

is ≤ t2

N by the birthday bound, we have

∥ρ− ρ̃∥1 = O

(
(a1 + a2 + b1 + b2)

2

2n

)
∥∥∥σ − ĩgma∥∥∥

1
= O

(
(a1 + a2 + b1 + b2)

2

2n

) (25)

By the triangle inequality and Lemma 7.6,∥∥∥ρΓA2B2 − σΓA2B2
∥∥∥
1
≤ O

(
(a1 + a2 + b1 + b2)

5

√
N

)
which is negligible in n.

And so therefore ρ, σ are LOCC indistinguishable.

Lemma 7.9. Define

Πtc =
∑
S⊆[t]
|S|=c

t⊗
i=1

(1i/∈S(|0⟩⟨0|) + 1i∈S(I − |0⟩⟨0|))
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and let M t = {Πti}i∈[t]. That is, M t is the measurement which counts the number of non-zero registers out
of t registers.

Let |ϕ⟩ be any state and let A1, . . . , Aℓ, B1, . . . , Bℓ be registers each containing a1, . . . , aℓ, b1, . . . , bℓ states
respectively. Let b = b1 + · · ·+ bℓ, a = a1 + · · ·+ aℓ Let ρ be the state

E
c←B(b,1/2)

[
|ϕ⟩⟨ϕ|⊗aA1...Aℓ

⊗ |Rep
b,c,ϕ
⟩⟨Rep
b,c,ϕ
|B1...Bℓ

]
Let σA1A2 be the state produced by measuring the number of copies of |ϕ⟩ contained in register B1, . . . , Bi.
That is, the mixed state resulting from applying the measurement M bi to each register B1, . . . , Bi of ρ. Then,

σ = E
cj←B(bj ,1/2),j≤i

c←B(bi+1+···+bℓ,1/2)

[
|ϕ⟩⟨ϕ|⊗aA1...Aℓ

⊗ | Rep
b1,c1,ϕ

⟩⟨ Rep
b1,c1,ϕ

|A1
⊗ · · · ⊗ | Rep

bi,ci,ϕ
⟩⟨ Rep
bi,ci,ϕ

|Ai

⊗ | Rep
bi+1+···+bℓ,c,ϕ

⟩⟨ Rep
bi+1+···+bℓ,c,ϕ

|
]

Proof. For ease of presentation, we will omit the A registers and consider the case i = 1, ℓ = 2. The full
proof is analogous.

In this case, we will work with

ρ = E
c←B(b,1/2)

[
|Rep
b,c,ϕ
⟩⟨Rep
b,c,ϕ
|B1B2

]
and σ the result of applying M t to register B1.

Let us first fix c, and compute the mixed state resulting from applying M b1 to |Rep
b,c,ϕ
⟩⟨Rep
b,c,ϕ
|. Note that

|Rep
b,c,ϕ
⟩ =

(
b

c

)−1/2 ∑
S∈([b]c )

|Set
b,S,ϕ
⟩

=

(
b

c

)−1/2 c∑
c1=0

∑
S1∈([b1]

c1
)

∑
S2∈( [b2]

c−c1
)

| Set
b1,S1,ϕ

⟩ | Set
b2,S2,ϕ

⟩

=

(
b

c

)−1/2 c∑
c1=0

 ∑
S1∈([b1]

c1
)

| Set
b1,S1,ϕ

⟩

⊗
 ∑
S2∈( [b2]

c−c1
)

| Set
b2,S2,ϕ

⟩


=

(
b

c

)−1/2 c∑
c1=0

((
b1
c1

)1/2

| Rep
b1,c1,ϕ

⟩

)
⊗

((
b2

c− c1

)1/2

| Rep
b2,c2,ϕ

⟩

)

=

c∑
c1=0

√√√√(b1c1)( b2
c−c1

)(
b
c

) | Rep
b1,c1,ϕ

⟩ | Rep
b2,c−c1,ϕ

⟩

(26)

But observe that for all b1, c1,
| Rep
a1,c1,ϕ

⟩ ∈ Πb1c1 .

And so applying the measurement Ma1 on the B1 register of | Rep
b1+b2,c,ϕ

⟩⟨ Rep
b1+b2,c,ϕ

|B1B2
produces the mixed

state

c∑
c1=0

(
b1
c1

)(
b2
c2

)(
b1+b2
c

) | Rep
b1,c1,ϕ

⟩⟨ Rep
b1,c1,ϕ

| ⊗ | Rep
b2,c−c1,ϕ

⟩⟨ Rep
b2,c−c1,ϕ

| (27)
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By linearity, we have that σ is equal to

b1+b2∑
c=0

(
b1+b2
c

)
2b1+b2

(
c∑

c1=0

(
b1
c1

)(
b2
c2

)(
b1+b2
c

) | Rep
b1,c1,ϕ

⟩⟨ Rep
b1,c1,ϕ

| ⊗ | Rep
b2,c−c1,ϕ

⟩⟨ Rep
b2,c−c1,ϕ

|

)

=

b1∑
c1=0

c2∑
c2=0

(
b1
c

)(
b2
c

)
2b1+b2

| Rep
b1,c1,ϕ

⟩⟨ Rep
b1,c1,ϕ

| | Rep
b2,c2,ϕ

⟩⟨ Rep
b2,c2,ϕ

|

= E
c1←B(b1,1/2)
c2←B(b2,1/2)

[
| Rep
b1,c1,ϕ

⟩⟨ Rep
b1,c1,ϕ

|B1
⊗ | Rep

b2,c2,ϕ
⟩⟨ Rep
b2,c2,ϕ

|B2

]
(28)

Corollary 7.10. Let ℓ, n ∈ N with N = 2n. Let A1, . . . , Aℓ, B1, . . . , Bℓ be registers containing a1, . . . , aℓ, b1, . . . , bℓ
respectively states of dimension N + 1. Let a = a1 + · · · + aℓ, b = b1 + · · · + bℓ. We will require that
N > (a+ b+ 1)2.

Define ρa,b(A1,B1),...,(Aℓ,Bℓ)
to be the state

E
|ϕ⟩←µn

c←B(b,1/2)

[
|ϕ⟩⟨ϕ|⊗aA1...Aℓ

⊗ |Rep
ℓt,c,ϕ
⟩⟨Rep
ℓt,c,ϕ
|B1,...,Bℓ

]

and σa,b(A1,B1),...,(Aℓ,Bℓ)
to be the state

E
|ϕ⟩←µ

c1,...,cℓ←B(t,1/2)

[
|ϕ⟩⟨ϕ|⊗aA1...Aℓ

⊗ | Rep
b1,c1,ϕ

⟩⟨ Rep
b1,c1,ϕ

|B1
⊗ · · · ⊗ | Rep

bℓ,cℓ,ϕ
⟩⟨ Rep
bℓ,cℓ,ϕ

|Bℓ

]

Then ρℓ, σℓ are O(ℓ(a+ b)5)/
√
2n)-LOCC indistinguishable.

Proof. This follows a hybrid argument. In particular, let Hybi be

E
|ϕ⟩←µn

cj←B(bj ,1/2),j≤i
c←B(bi+1+···+bℓ,1/2)

[
|ϕ⟩⟨ϕ|⊗aA1...Aℓ

⊗ | Rep
b1,c1,ϕ

⟩⟨ Rep
b1,c1,ϕ

|B1
⊗ · · · ⊗ | Rep

bi,ci,ϕ
⟩⟨ Rep
bi,ci,ϕ

|Bi

⊗ | Rep
bi+1+···+bℓ,c,ϕ

⟩⟨ Rep
bi+1+···+bℓ,c,ϕ

|Bi+1...Bℓ

] (29)

We will show that for all i, Hybi and Hybi+1 are LOCC indistinguishable.
Let A be any algorithm distinguishingHybi andHybi+1 with advantage ϵ. We will construct an algorithm

A′ distinguishing ρ and σ from Theorem 7.8 with advantage ϵ.
The A1 and B1 registers from Theorem 7.8 will consist of the registers A1, . . . , Ai+1 and B1, . . . , Bi+1

respectively. The A2 and B2 registers will consist of the registers Ai+2, . . . , Aℓ and Bi+2, . . . , Bℓ respectively.
A′ will operate as follows: for each 1 ≤ j ≤ i, apply the measurement M bi from Lemma 7.9 to register

Bi. Then, run A, passing party Aj registers AjBj , and produce the same output.
By Lemma 7.9, if the initial state was ρ, then measuring the number of copies of |ϕ⟩ in registers B1, . . . , Bi

produces exactly Hybi.
Similarly, if the initial state was σ, then measuring the number of copies of |ϕ⟩ in the registers B1, . . . , Bi

produces exactly Hybi+1.
Thus, A′’s distinguishing advantage is exactly the same as A’s, and so by Theorem 7.8, Hybi and Hybi+1

are O((a+ b)5/
√
2n)-LOCC indistinguishable.

By the triangle inequality, ρa,b and σa,b are O(ℓ(a+ b)5)/
√
2n)-LOCC indistinguishable.
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Theorem 7.11 (Theorem 7.1 restated). For all ℓA, T1, T2 = poly(n), CCHRS simulating t copies is
(ℓA, n, T1, T2, O(ℓA(T1 + T2)

5/
√
2n))-LOCC indifferentiable from CHRS- as long as T2 ≤ t.

Proof. We first define the simulator SimCHRS- to be the construction from Construction 1 instantiated with
m = n. That is, the simulator samples CHRS- and measures if the state is 0. If it is, it samples again,
otherwise, it returns the state.

We will prove this via a sequence of hybrids.

1. Hyb1: The real game, where A(·) = (A(·)
1 , . . . ,A(·)

ℓ ) has query access to the oracles
((CHRS, CCHRS

1 ), . . . , (CHRS, CCHRS
ℓ )) where each CCHRS

i is a different instance of the construc-
tion.

2. Hyb2: Where we allow the construction to share state between each LOCC party. That is, we replace
the oracle with
((CHRS, CCHRS), . . . , (CHRS, CCHRS)).

3. Hyb3: The ideal game, where A· has query access to the oracles
((SimCHRS-,CHRS-), . . . , (SimCHRS-,CHRS-)).

The argument for each hybrid goes as follows:

1. |Pr[Hyb1 → 1]− Pr[Hyb2 → 1]| ≤ O
(
ℓ·T 5
√
2n

)
:

this follows immediately from Corollary 7.10. In particular, the oracle ((CHRS, CCHRS
1 ), . . . , (CHRS, CCHRS

ℓ ))
can be simulated by giving each Ai query access to (Ai, Bi) of ρ

a,b.

2. |Pr[Hyb2 → 1]− Pr[Hyb3 → 1]| ≤ T2

2n :
this follows from exactly the same argument as Theorem 4.5, but with the role of construction and
simulator swapped.

By the triangle inequality, ∣∣∣∣Pr[A((CHRS,CCHRS
1 ),...,(CHRS,CCHRS

t )) → 1
]
−

Pr
[
A((SimCHRS-

1 ,CHRS-),...,(SimCHRS-
5 ,CHRS-)) → 1

]∣∣∣∣ ≤ O(ℓ · T 5

√
2n

) (30)

8 Applications

We formalize a number of useful theorems which can be used to directly apply our results in practice.

Corollary 8.1 (Constructions in CHRS- to Swap). Let D = {Dn}n∈N be any balanced family of distribu-
tions over n qubit states parameterizing CHRS-,Swap. Let G be any efficient security game. Let d ∈ N
and let ϵ : N→ [0, 1]. Let SimSwap be the construction from Corollary 5.3.

Let PrimCHRS- be a primitive. Define

Prim
Swap

:= PrimSimSwap

.

If PrimCHRS- is (ϵ; c)-secure under G relative to CHRS-, then Prim
Swap

is (ϵ+ n−d; c)-secure under
G relative to Swap.

Proof. This follows from Corollaries 2.11 and 5.3 by setting t = q = (pnd)2.

27



Corollary 8.2 (Constructions in Swap to CHRS-). Let D = {Dn}n∈N be any balanced family of distribu-
tions over n qubit states parameterizing CHRS-,Swap. Let G be any efficient security game making at most
TG,1, TG,2 ≤ poly(n) queries to the primitive and adversary respectively. Let d ∈ N and let ϵ : N→ [0, 1].

Let PrimSwap be a primitive making at most TPrim queries to its oracle.
Let CCHRS- be the construction from Theorem 5.2 with t = (2TG,1 · TPrim · nd)2. Define

Prim
CHRS-

:= PrimCCHRS-

.

If PrimSwap is (ϵ; c)-secure under G relative to Swap, then Prim
CHRS-

is (ϵ+ n−d; c)-secure under G
relative to CHRS-.

Proof. This follows from Theorems 2.10 and 5.2. In particular, we want to show that for all TA ≤ poly(n),

Prim
Swap

is (t, ϵ+ n−d; c) secure under G.
We know that PrimSwap is (TA, ϵ; c) secure under G. Furthermore, Theorem 5.2 gives that CCHRS- is(

1, TG,2 · TA, TG,1 · TPrim, 2TG,1·TPrim√
t+1

≤ n−d
)
-indifferentiable from Q.

And so, by Theorem 2.10, we get that Prim
CHRS-

is (TA, ϵ+n
−d; c)-secure under G relative to CHRS-.

Corollary 8.3 (Constructions in CHRS to CHRS-). Let D = {Dn}n∈N be any balanced family of distribu-
tions over n qubit states parameterizing CHRS-,CHRS. Let G be any efficient single-stage security game.
Let ϵ : N→ [0, 1]. Let CCHRS- be the construction from Construction 1 with m = 2n.

Let PrimCHRS be a primitive. Define

Prim
CHRS-

:= PrimSimCHRS-

.

If PrimCHRS is (ϵ; c)-secure under G relative to CHRS-, then Prim
CHRS-

is
(
ϵ+ 1

2n ; c
)
-secure under

G relative to CHRS-.

Proof. This follows immediately from Corollaries 2.11 and 4.6.

Corollary 8.4 (Constructions in CHRS to Swap). Let G be any single-stage security game. If there exists

a primitive PrimCHRS which is c-secure under G relative to CHRS, then there exists a primitive Prim
Swap

which is c-secure under G relative to Swap.

Proof. This follows from Corollaries 8.1 and 8.3 and the observation that since d can be arbitrary, the
constructions actually preserve negligible security.

Corollary 8.5 (Constructions in CHRS- to CHRS). Let CHRS,CHRS- be parameterized by D =
{µn}n∈N, the Haar distribution over n qubits. Let d ∈ N and let ϵ : N → [0, 1]. Let G be any efficient
LOCC security game making at most TG,1, TG,2 ≤ poly(n) queries to the primitive and adversary respec-
tively.

Let PrimSwap be a primitive making at most TPrim queries to its oracle.
Let CCHRS- be the construction from Theorem 7.1 with t ≥ TG,1 · TPrim. Define

Prim
CHRS-

:= PrimCCHRS-

.

If PrimSwap is (ϵ; c)-secure under G relative to Swap, then Prim
CHRS-

is (ϵ+O(2−n/2); c)-secure under
G relative to CHRS-.

Proof. This follows immediately from Theorems 2.14 and 7.1.
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Sample applications Note that existing works show that for D a Haar random state

1. One-way state generators [BCN25, BMM+25], multi-copy pseudorandom states [CCS25, AGL24a], and
key exchange and commitments with classical communication [AGL24a] do not exist relative toCHRS.

2. One-way puzzles [BCN25], one-copy pseudorandom states [CCS25, AGL24a], and quantum commit-
ments exist relative to CHRS.

These composition theorems then give us (with a little bit of work) that all those statements are true
when CHRS is replaced by Swap.

1. One-way state generators, multi-copy pseudorandom states, and key exchange and commitments with
classical communication do not exist relative to Swap.

2. One-way puzzles, one-copy pseudorandom states, and quantum commitments exist relative to Swap.

In detail, [BCN25]’s argument that one-way state generators do not exist in the CHRS can easily be
adapted to the CHRS- and to handle inverse polynomial error. Our results then immediately give that one-
way state generators do not exist relative to Swap. Full details of this argument are given in Appendix C.1
and section 8.1.

Note that this immediately implies that multi-copy pseudorandom states do not exist in the Swap model,
since pseudorandom states can be used to build one-way state generators [MY22, CGG+25].

Furthermore, our Corollary 8.4 immediately gives that key exchange and commitments with classical
communication do not exist relative to Swap, since their security games are LOCC and neither primitive
exists relative to CHRS [AGL24a]. To show this explicitly, we formally define the security game for classical
communication key exchange in Appendix C.2.

On the other hand, all positive constructions (one-way puzzles, one-copy pseudorandom states, and
quantum commitments) translate to the Swap model immediately via Corollary 8.4. Note that there is a
subtlety here, which is that one-way puzzle security cannot be described by an efficient cryptographic game.
However, one-way puzzles are equivalent (via black box reduction) to state puzzles, a primitive introduced
by [KT24] with an efficient security game. And so, through this reduction, it can also be observed that
one-way puzzles exist in the Swap model.

8.1 OWSG do not exist in the CHRS model for any distribution

A one-way state generator is a procedure (StateGen, V er), where StateGen takes in a classical key k and
produces an output state ρk. V er takes in an output state ρ and a key k and checks if k matches ρ. Security
says that given any polynomially many copies of ρk, it should be hard to find a k′ which passes verification.
A game-based definition is given in Appendix C.1.

It is known from [BCN25] that one-way state generators do not exist in the CHRS model. In order to
adapt this impossibility to the Swap model, it turns out that it is sufficient to adapt the attack from [BCN25]
to the CHRS- model with bounded polynomial copy security and inverse polynomial error. In particular,
we prove a slightly more general result

Lemma 8.6 (Proof adapted from Theorem 4.1 of [BCN25]). For any family of distributions D, there does
not exist a

(
O(n2), 1

10n2

)
-one-way state generator relative to CHRS.

with the following corollary.

Corollary 8.7 (Proof in Appendix C.1). There does not exist a one-way state generator relative to Swap.

The attack from [BCN25] utilizes a threshold search procedure to find the key for the one-way state
generator from many copies of the state. Formally, the threshold search procedure is defined as follows.
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Definition 8.8 (Threshold Search Problem [BO21]). Let {Mi}i∈[m] be a collection of 2-outcome measure-
ments. Let ρ be any quantum state with the promise that there exists some k such that

Tr(Miρ) ≥ 3/4

The threshold search problem is to, given some number of copies of ρ, output k such that Tr(Miρ) ≥ 1/3.

Lemma 8.9 (Randomized Threshold Search Procedure [WB24]). There is an algorithm which uses O(log2(m))
space and copies of ρ which solves the threshold search problem with constant probability.

We adapt their attack to an arbitrary CHRS setting (and inverse polynomial security error) as follows.
Let OWSGCHRS = (StateGenCHRS, V erCHRS). Let TV er be an upper bond on the number of queries

made by V er.
Let |ϕn⟩ be the state returned by CHRS.
Since in the CHRS model, the oracle has no input, we can assume that V er(k, ρ) applies some unitary

Uk to the state ρA ⊗
(
|ϕn⟩⊗TV er

)
B

and then measures a bit in the computational basis.

We define Πk to be the following operator acting on the input for Uk on registers AB,

Πk = U†k(|1⟩⟨1| ⊗ I)Uk

That is, Πk is the operator which checks if V er(k, ρ) accepts.

Lemma 8.10. Consider the following experiment

1. Sample k ← {0, 1}n

2. Sample StateGenCHRS(k)→ ρk, 10n times

3. Check if Π⊗10nk accepts
(
ρk ⊗ |ϕn⟩⊗TV er

)⊗10n
Then the probability that this process accepts is at least 1− 1

n .

Proof. Note that this experiment is just the correctness game for the one-way state generator played 10n times
with the same k. In particular, if BADi is the event that the ith copy of the verifier rejects, then correctness
says that Pr[BADi] ≤ 1

10n2 . And so by the union bound, Πk accepts with probability≥ 1− 10n
10n2 = 1− 1

10n .

Lemma 8.11. If for any key k and fixed state ρ, if the probability that Π⊗10nk accepts
(
ρ⊗ |ϕn⟩⊗TV er

)⊗10n
is ≥ 1/3, then the probability that Πk accepts ρ⊗ |ϕn⟩⊗TV er is ≥ 1− 1

n .

Proof. Let p = Tr
(
Πk

(
ρ⊗ |ϕn⟩⊗TV er

))
be the probability that V er(k, ·) accepts ρ. Then p10n ≥ 1

3 and so

we get

p ≥ 1

31/10n
= e−

ln 3
10n ≥ 1− ln 3

10n
≥ 1− 1

n
(31)

These two lemmas together show that for an honestly sampled StateGen(k)→ ρk, the threshold search
procedure will find an accepting preimage.

In particular, the algorithm to find k given ρ
O(n2)
k is to run threshold search for {Πk}k∈2n on O(n) copies

of
(
ρk ⊗ |ϕn⟩⊗TV er

)⊗10n
. Note that in this case, m = 2n, and so threshold search requires O(log(2n)) = O(n)

copies.
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From Lemma 8.10, we know that for StateGen(k)→ ρk,

Tr

(
Πk

(
ρk ⊗ |ϕn⟩⊗TV er

)⊗10n)
≥ 3

4

and so the promise of threshold search is met. And so, with constant probability, this algorithm finds some
k′ such that

Tr

(
Πk′

(
ρk ⊗ |ϕn⟩⊗TV er

)⊗10n)
≥ 1

3

By Lemma 8.11, this means that V er(k′, ρk) accepts with probability at least 1− 1
n .

In total, this algorithm wins the game G
sec−O(n2)
OWSG with probability c · (1− 1/n) for some constant c (the

constant of threshold search). In particular, this is greater than 1
10n2 , and so Lemma 8.6 follows.
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A Indifferentiability Composition Theorems

Theorem A.1 (Bounded query composition theorem). [Theorem 2.10 restated] Let P,Q be two idealized
primitives, and let CP be a construction (TSim, T1, T2, δ)-indifferentiable from Q. Let G be any single-stage
cryptographic game making at most TG,1 queries to its primitive and TG,2 queries to its adversary, and let
PrimQ be any primitive relative to Q making at most TPrim queries to its oracle. Let ϵ, TA : N → [0, 1] be
any functions and let c be any constant.

As long as TG,1 ·TPrim ≤ T2 and TG,2 ·TA ≤ T1, then if PrimQ is (TA ·TSim, ϵ; c)-secure under G relative

to Q, then PrimCP
is (TA, ϵ+ δ; c)-secure under G relative to P.

Proof. Given any adversary AP making at most TA queries to its oracle, we can define an adversary BQ
which simulates A, and whenever A makes a query to P, B answers it by running SimQ. Note that B makes
at most TA · TSim queries to its oracle.

Note that G(1n, P rimCP
,AP) is an algorithm making at most TG,1 ·TPrim ≤ T2 queries to the construc-

tion and at most TG,2 · TA ≤ T1 direct queries to P.
By (TSim, T1, T2, ϵ)-indifferentiability,∣∣∣Pr[G(1n, P rimCP

,AP , )
]
− Pr

[
G(1n, P rimQ,ASimQ

)
]∣∣∣ ≤ δ(n)

But note that ASimQ
= BQ. By (TA · TSim, c, ϵ)-security of Prim under G relative to Q,

Pr
[
G(1n, P rimQ,BQ)

]
− c ≤ ϵ(n)

By the transitive property, we have

Pr
[
G(1n, P rimCP

,AP)
]
− c ≤ ϵ(n) + δ(n)

Corollary A.2 (General composition theorem). [Corollary 2.11 restated] Let P,Q be two idealized primi-
tives, let CP be a construction of Q from P, and let δ : N→ [0, 1]. If, for all p = poly(n), there exists some
q = poly(n) such that CP is (q, p, p, δ)-indifferentiable from Q, then the following holds:

For all primitives PrimQ and single-stage cryptographic games G, if PrimQ is (ϵ; c)-secure under G

relative to Q, then PrimCP
is (ϵ+ δ; c)-secure under G relative to P.

Proof. Let AP be any adversary making at most TA queries to its oracle. Let TG,1, TG,2 ≤ poly(n) be an
upper bound for the number of queries to Prim,A respectively by G(Prim,A). Note that the values of
TG,1, TG,2 may depend on A.
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Let p = max(TG,1 ·TPrim, TG,2 ·TA). We know that for some q ≤ poly(n), CP is (q, p, p, δ)-indifferentiable
from Q. Furthermore, since TA · q ≤ poly(n), we know that PrimQ is (TA · q, ϵ; c) secure under G relative
to Q.

And so the exact same argument as Theorem 2.10 gives that

Pr
[
G(1n, P rimCP

,AP)
]
− c ≤ ϵ(n) + δ(n)

Theorem A.3 (LOCC composition theorem). [Theorem 2.14 restated] Let P,Q be two idealized primitives,
and let CP be a (possibly stateful) construction (ℓA, TSim, T1, T2, δ)-LOCC indifferentiable from Q. Let G be
any LOCC cryptographic game making at most TG,1 queries to its primitive and TG,2 queries to its adversary,
with at most ℓA adversaries. Let PrimQ be any primitive relative to Q making at most TPrim queries to its
oracle. Let ϵ, TA : N→ [0, 1] be any functions and let c be any constant.

As long as TG,1 ·TPrim ≤ T2 and TG,2 ·TA ≤ T1, then if PrimQ is (TA ·TSim, ϵ; c)-secure under G relative

to Q, then PrimCP
is (TA, ϵ+ δ; c)-secure under G relative to P.

Proof. This proof is exactly the same as Theorem 2.10. In particular, given any adversary

AP = (AP1 , . . . ,APℓA), we define the adversary BQ = (BQ1 , . . . ,BQℓA) so that BQi = ASimQ

i . In particular, each

BQi initializes its own copy of the simulator Sim.

We then observe that the game G(1n, P rimCP
,AP) is an LOCC algorithm with query access to

((P, CP1 ), . . . , (P, CPt )), while the game G(1n, P rimQ,ASimQ
) is an LOCC algorithm with query access to

((SimQ1 ,Q), . . . , (Sim
Q
5 ,Q)).

The rest of the proof proceeds identically to Theorem 2.10, replacing indifferentiability with LOCC-
indifferentiability.

B Combinatorical Lemmas for Section 7

Lemma B.1 (Lemma 7.5 restated). Define

0
M×N

:=


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


︸ ︷︷ ︸
N columns

M rows

1
M×N

:=


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


︸ ︷︷ ︸
N columns

M rows

Let

V :=

[
0 1

M×N
0 0

]
be the matrix with M ×N ones in the top right corner (of any dimension). Then

∥V ∥1 =
√
MN
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Proof. We can compute

V V † =

[
1

M×N
· 1
N×M

0

0 0

]

= N

[
1

M×M
0

0 0

] (32)

and so since
( 1
M×M

)2 =M( 1
M×M

) (33)

we have

√
V V † =

√
N/M

[
1

M×M
0

0 0

]
(34)

Combining Equations (32) and (34), we get

∥V ∥1 = Tr
(√

V V †
)
=
√
N/M ·M =

√
MN

Lemma B.2 (Lemma 7.2 restated). Let A1, A2, B1, B2 be registers containing a1, a2, b1, b2 states of dimen-
sion N + 1 respectively. For all collision-free T ,

|Z(T, (B1, B2))⟩A1,A2,B1,B2

=
∑
X⊆T

|X|∈[a1,a1+b1]
|T |−|X|∈[a2,a2+b2]

√
α|X| |Z(X,B1)⟩A1,B1

|Z(T \X,B2)⟩A2,B2

where

αi =

(
b1
i−a1

)(
b2

|T |−i−a2

)(
b1+b2

|T |−a1−a2

)(|T |
i

)
Proof. ∑

X⊆T
|X|∈[a1,a1+b1]

|T |−|X|∈[a2,a2+b2]

√
α|X| |Z(X,B1)⟩A1,B1

|Z(T \X,B2)⟩A2,B2

=
∑
X⊆T

|X|∈[a1,a1+b1]
|T |−|X|∈[a2,a2+b2]

∑
|v|=a2+b1

type(v)=X0(a2+b1)

vi ̸=0 for i∈A1

∑
|w|=a2+b2

type(w)=(T\X)0(a2+b2)

wi ̸=0 for i∈A2

√
α|X|

1√
|X|!

(
b1

|X|−a2

) 1√
|T \X|!

(
b2

|T\X|−a1

) |v⟩ |w⟩
(35)
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But note that

√
α|X|

1√
|T |!
(

b1
|T |−a2

) 1√
|T |!
(

b2
|T |−a2

)
=

√√√√( b1
|X|−a1

)(
b2

|T |−|X|−a2

)(
b1+b2

|T |−a1−a2

)(|T |
|X|
) 1

|X|!
(

b1
|X|−a2

) 1

|T \X|!
(

b2
|T\X|−a1

)
=

√
1(

b1+b2
|T |−a1−a2

) |T |!
|X|!(|T |−|X|)! |X|!|T \X|!

=

√
1(

b1+b2
|T |−a1−a2

)
|T |!

(36)

and so ∑
X⊆T

|X|∈[a1,a1+b1]
|T |−|X|∈[a2,a2+b2]

√
α|X| |Z(X,B1)⟩A1,B1

|Z(T \X,B2)⟩A2,B2

=
∑
X⊆T

|X|∈[a1,a1+b1]
|T |−|X|∈[a2,a2+b2]

∑
|v|=a2+b1

type(v)=X0(a2+b1)

vi ̸=0 for i∈A1

∑
|w|=a2+b2

type(w)=(T\X)0(a2+b2)

wi ̸=0 for i∈A2

√
1(

b1+b2
|T |−a1−a2

)
|T |!
|v⟩ |w⟩

=
∑

|v|=a1+a2+b1+b2
type(v)=T 0(a1+a2+b1+b2)

vi ̸=0 for i∈A1A2

√
1(

b1+b2
|T |−a1−a2

)
|T |!
|v⟩

= |Z(T, (B1, B2))⟩A1A2B1B2

(37)

Lemma B.3 (Lemma 7.3 restated). Let A1, A2, B1, B2 be registers containing a1, a2, b1, b2 states of dimen-
sion N + 1 respectively. For all collision-free T , ∣∣∣Z2(T,B1, B2)

bf1 ,b
f
2

〉
A1,A2,B1,B2

=
1√( |T |
a1+b

f
1

) ∑
X⊆T

|X|=a1+bf1

|Z(X,B1)⟩A1B1
|Z(T \X,B2)⟩A2B2

(38)

Proof.

1√( |T |
a1+b

f
1

) ∑
X⊆T

|X|=a1+bf1

|Z(X,B1)⟩A1B1
|Z(T \X,B2)⟩A2B2

= N
∑
X⊆T

|X|=a1+bf1

∑
|v|=a1+b1

type(v)=X0(a1+b1)

vi ̸=0 for i∈A1

∑
|w|=a2+b2

type(v)=(T\X)0(a2+b2)

wi ̸=0 for i∈A2

|v⟩ |w⟩
(39)
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where

N =

√√√√ 1( |T |
a1+b

f
1

)
(a1 + bf1 )!

(b1
bf1

)
(a2 + bf2 )!

(b2
bf2

)
=

√√√√ (a1 + bf1 )!(|T | − a1 + bf1 )!

|T |!(a1 + bf1 )!(a2 + bf2 )!
(b1
bf1

)
!
(b2
bf2

)
!

=

√√√√ (a1 + bf1 )!(a2 + bf2 )!

|T |!(a1 + bf1 )!(a2 + bf2 )!
(b1
bf1

)
!
(b2
bf2

)
!

=

√√√√ 1

|T |!
(b1
bf1

)
!
(b2
bf2

)
!

(40)

and so combining these two equations we get

1√( |T |
a1+b

f
1

) ∑
X⊆T

|X|=a1+bf1

|Z(X,B1)⟩A1B1
|Z(T \X,B2)⟩A2B2

=

√√√√ 1

|T |!
(b1
bf1

)
!
(b2
bf2

)
!

∑
X⊆T

|X|=a1+bf1

∑
|v|=a1+b1

type(v)=X0(a1+b1)

vi ̸=0 for i∈A1

∑
|w|=a2+b2

type(v)=(T\X)0(a2+b2)

wi ̸=0 for i∈A2

|v⟩ |w⟩

=
∣∣∣Z2(T,B1, B2)

bf1 ,b
f
2

〉
A1A2B1B2

(41)

C More Details on Applications

C.1 OWSG do not exist in the Swap model

Definition C.1. A one-way state generator is a cryptographic primitive OWSG = (StateGen, V er) with
the following syntax

1. StateGen(1n, k) → ρk: on input the security parameter n and a key k ∈ {0, 1}n, outputs a quantum
state ϕk.

2. V er(1n, k′, ρ): on input the security parameter, a key k′, and a state ρ, outputs 0 or 1.

and satisfying the following guarantees

1. Correctness: (StateGen, V er) is secure under the (adversary-less) game
GcorOSWG(1

n, (StateGen, V er)), defined as follows:

(a) Sample k ← {0, 1}n.
(b) Run StateGen(1n, k)→ ρk.

(c) Output 1 if V er(k, ρk) = 0.

2. Security: (StateGen, V er) is secure under the game
Gsec−tOWSG(1

n, (StateGen, V er),A),A), defined as follows:
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(a) Sample k ← {0, 1}n.
(b) Run StateGen(1n, k) t+ 1 times, producing ρk ⊗ ϕk⊗t.
(c) Run A(1n, ρk⊗t)→ k′.

(d) Output V er(k′, ρk).

Definition C.2. An (t, ϵ)-one-way state generator is a cryptographic primitive OWSG = (StateGen, V er)
satisfying the same syntax as a OWSG but with the following weakened correctness and security requirements

1. Correctness: (StateGen, V er) is ϵ-secure under the game GcorOWSG

2. Security: (StateGen, V er) is ϵ-secure under the game Gsec−tOWSG

Lemma C.3 (Lemma 8.6 restated). For any family of distributions D, there does not exist a
(
O(n2), 1

10n2

)
-

one-way state generator relative to CHRS.

Since the CHRS- model is just the CHRS model under a different distribution of states, we get the
following corollary.

Corollary C.4. For any family of distributions D, there does not exist a
(
10n, 1

10n2

)
-one-way state generator

relative to CHRS-.

Lemma C.5. If there exists a
(
10n, 1

20n2

)
-one-way state generator relative to Swap, then there exists a(

10n, 1
10n2

)
-one-way state generator relative to CHRS-.

This follows immediately from Corollary 8.2 setting d to 3.

Corollary C.6. There does not exist a
(
10n, 1

2n

)
-one-way state generator relative to Swap.

Corollary C.7. There does not exist a one-way state generator relative to Swap.

C.2 Classical communication key exchange does not exist in the Swap model

Definition C.8. An rmax-classical communication key exchange protocol is a cryptographic primitive (A,B)
with the following syntax

1. A(1n, r,mB) → mA: a stateful procedure which takes in a security parameter 1n, a round number r,
and Bob’s message mB, and produces a message mA

2. B(1n, r,mA) → mB: a stateful procedure which takes in a security parameter 1n, a round number r,
and Alice’s message mA, and produces a message mB

satisfying the following properties

1. Correctness: (A,B) is secure under the following (adversary-less) LOCC security game GcorKE(1
n, (A,B)) =

(GA1 , G
B
2 ) defined as follows:

(a) Set m0
B to be the empty string.

(b) For i = 1, . . . , rmax

i. GA1 queries A(1n, i,mi−1
B )→ mi

A and forwards mi
A to GB2

ii. GB2 queries B(1n, i,mi
A)→ mi

B and forwards mi
B to GA1 .

(c) GA1 receives A’s final output bA.

(d) GB2 receives B’s final output bB and forwards the result to GA1 .

(e) GA1 outputs 1 if and only if bA ̸= bB.
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2. Security: (A,B) is c = 1/2-secure under the following LOCC security game GsecKE(1
n, (A,B)) =

(GA1 , G
B
2 , G

A
3 ).

(a) Set m0
B to be the empty string.

(b) For i = 1, . . . , rmax

i. GA1 queries A(1n, i,mi−1
B )→ mi

A and forwards mi
A to GB2 and GA3 .

ii. GB2 queries B(1n, i,mi
A)→ mi

B and forwards mi
B to GA1 and GA3 .

iii. GA3 sends mi
A,m

i
B to A.

(c) GA3 receives A’s final output b′, and forwards the result to GA1 .

(d) GA1 receives A’s final output bA.

(e) GA1 outputs 1 if and only if bA = b′.

If rmax ≤ poly(n), then we just say that (A,B) is a classical communication key exchange protocol.

Definition C.9. An (rmax, ϵ)-classical communication key exchange protocol is a protocol (A,B) satisfy-
ing the same syntax as a classical communication key exchange protocol but with the following weakened
correctness and security requirements

1. Correctness: (StateGen, V er) is secure under the game GcorKE

2. Security: (StateGen, V er) is (ϵ, 1/2)-secure under the game GsecKE

Theorem C.10 (Key exchange amplification). Let rmax ≤ poly(n). If there exists a (rmax, 1/n)-classical
communication key exchange protocol relative to any oracle O, then there exists a rmax-classical communi-
cation key exchange protocol relative to O.

For the remainder of this section, let D = {µn}n∈N be the family of Haar random distributions on n
qubits.

Theorem C.11 (Theorem 8.4 from [AGL24a]). There does not exist a classical communication key exchange
protocol in the CHRS model parameterized by D.

Corollary C.12. There does not exist a classical communication key exchange protocol in the Swap model
parameterized by D.

Proof. If there exists a protocol secure in the Swap model, then there also exists a (rmax, 1/3n)-classical
communication key exchange protocol secure in the Swap model. And so by Corollary 8.2 there exists a
(rmax, 1/2n) protocol secure in the CHRS- model. But since the security games for classical communication
key exchange are LOCC, by Corollary 8.5, there exists a (rmax, 1/n) protocol secure in the CHRS model.
By Theorem C.10, there exists a negligibly secure classical communication key exchange protocol secure in
the CHRS model.

And so by Theorem C.11, there does not exist a classical communication key exchange protocol in the
Swap model.
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