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Abstract. Multi-party computation (MPC) has become increasingly
practical in the last two decades, solving privacy and security issues in
various domains, such as healthcare, finance, and machine learning. One
big caveat is that MPC sometimes lacks usability since the knowledge
barrier for regular users can be high. Users have to deal with, e.g., vari-
ous CLI tools, private networks, and sometimes even must install many
dependencies, which are often hardware-dependent.

A solution to improve the usability of MPC is to build browser-
based MPC engines where each party runs within a browser window.
Two examples of such an MPC web engine are JIFF and the web variant
of MPyC. Both support an honest majority with passive corruptions.

webSPDZ: Our work brings one of the most performant and versa-
tile general-purpose MPC engines, MP-SPDZ, to the web. MP-SPDZ
supports ≥40 MPC protocols with different security models, enabling
many security models on the web. To port MP-SPDZ to the web, we
use Emscripten to compile MP-SPDZ’s C++ BackEnd to WebAssem-
bly and upgrade the party communication for the browser (WebRTC
or WebSockets). We call the new MPC web engine webSPDZ. As with
the native versions of the mentioned MPC web engines, MPyC-Web and
JIFF, webSPDZ outperforms them in our end-to-end experiments.

We believe that webSPDZ brings forth many interesting and practi-
cally relevant use cases. Thus, webSPDZ pushes the boundaries of prac-
tical MPC: making MPC more usable and enabling it for a broader com-
munity.

Keywords: Privacy-Enhancing Technology· Private Computations· Multi-
Party Computation· MP-SPDZ· MPC Web Engine· webSPDZ.
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1 Introduction

With the ever-increasing gathering and availability of data, also the amount of
use cases to learn from data increased virtually in all areas of our lifes. E.g., in
the areas of (i) health care, (ii) smart driving, or (iii) smart energy management.

To realize such computations in a privacy-preserving way, multi-party compu-
tation (MPC) has proven to be an increasingly practical cryptographic building
block. E.g., MPC has been used to protect privacy in (i) detection of early brain
tumors through inference of MRI images [32], (ii) reducing fuel consumption
through speed advisory systems for vehicles [30], or (iii) saving energy through
smart-meter systems in buildings [44]. Already in 2008, the first-known large-
scale real-life use case of MPC took place: the popular Danish sugar-beet trad-
ing [13]. Moreover, in 2024 MPC has been used to perform real-life cross-hospital
analytics [7].

One primary aspect to practically enable MPC are ready-to-use MPC en-
gines. Especially general-purpose engines are of interest as they virtually allow
arbitrary computations with a dynamic range of participating parties.

Motivation. Imagine a meeting where everyone should participate in a spon-
taneous privacy-preserving survey. To actively join an MPC computation, one
needs to setup the respective MPC engine. E.g., to install all requirements and
configure the engine for each party. Although many MPC engines provide Docker
containers with tutorial programs, it is still an initial hurdle to get everything
running; especially if one is not a technical expert.

Bogdanov et al. [11] conducted an end-user survey regarding the potential
use of MPC in various areas and use cases. Their survey results underline the
relevance of MPC for technical non-experts. E.g., in the area of biomedical data
Wirth et al. [48] explained the relevance of learning from shared data while
ensuring the privacy of thereof. As such, Wirth et al. chose MPC as their privacy-
preserving computational building block; although they also noted its practical
limitations:

“SMPC is still rarely used in real-world biomedical data sharing activities
due to several barriers, including its technical complexity and lack of
usability.” [48]

Barak et al. [8] reported the same relevance of commoditizing MPC in 2018,
and explained the importance and advantage of the web browser for end users:

“A far more compelling way of carrying out the above study would be
to have each company run its own copy of the MPC. However, ..., none
of these companies would install software and would only use a browser
interface.” [8]
...
“As the browser is becoming the new OS for end users, additional features
and capabilities are constantly added ... open the possibility of achieving
high performance MPC directly in the browser.” [8]
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Ballhausen et al. [7] reported the use of a native general-purpose MPC engine
to analyze real-world cancer-related data across hospitals. Though, they also
mentioned practical hurdles of using MPC in this project: “...included a complex
tech stack, demanding implementation, complicated technology management...”.
Hence, it is a relevant issue to make MPC more accessible and usable for a
broader audience.

One of the most promising cross-platform solutions is to bring MPC en-
gines to the web browser. Users just need a compatible browser. Moreover, the
portable nature of web-based solutions enables the use of MPC for many end-user
devices; e.g., PCs, smartphones, tablets, or even “wearables” like smartwatches
in the near future [42]. The smooth setup of web-based solutions with the cross-
platform aspect, enables the advantages of MPC for nearly everyone.

State of the Art. Already in 2018, Barak et al. [8] have performed MPC in
the web browser and presented benchmarks of several experiments. They built
upon Emscripten, but reported issues of not having “Single Instruction, Multiple
Data” (SIMD) [47] in the browser. However, while the web-app’s source code is
available on GitHub [16], we did not find the source code of their MPC engine
for the browser.

The “JavaScript library for building web apps that employ MPC” (JIFF) [22]
and the “Web Variant of Multiparty Computation in Python” (MPyC-Web) [35]
are two recent popular general-purpose examples for performing MPC on the
web. Though, both engines only support one security model (passive security
using Shamir’s secret sharing with honest majority) and JIFF needs a central
server for party communication. Although messages sent between parties are
end-to-end encrypted, the central server presents a single point of failure, could
be a communication bottleneck, and could infer certain computation-related
metadata, like the amount of communication rounds.

Hence, while running MPC on the web is possible, one cannot choose from
various security models for general-purpose computations with peer-to-peer (P2P)
party communication and a dynamic amount of participating parties.

Our Contributions. With this work, we enable for the first time MPC compu-
tations on the web supporting different security models and virtually > 40 MPC
protocols with active and passive corruptions as well as honest or dishonest
majority.

We achieve this variety by bringing the native general-purpose MPC engine
“Multi-Protocol SPDZ - A Versatile Framework for MPC” (MP-SPDZ) [27] to
the web browser, dubbed webSPDZ. We built upon MP-SPDZ due its variety of
protocols, active development such as frequent bug fixes and updates, and regular
stable releases every few months as well as “popularity” as general-purpose MPC
engine which has about 900 stars on GitHub and more than 250 forks.

Inspired by the pioneering work of Barak et al. [8], we use Emscripten to com-
pile MP-SPDZ’s C++ backend to WebAssembly (Wasm), which is usually faster
than JavaScript in the web browser [38,45]. For P2P-based party communication
in the browser, we build upon “Web Real-Time Communication” (WebRTC).
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Moreover, webSPDZ achieves the fastest MPC runtimes in the web browser
in our end-to-end benchmarks. For benchmarking, we choose a simple MPC
program to benchmark, yet one that is often used as a building block, which
is the dot···product between two secret vectors. As MPC protocols, we use the
secret-sharing schemes of Shamir (to practically compare webSPDZ with exist-
ing MPC web engines) and Replicated. To showcase a real-life case, we answer
“who pays for dinner?” via MPC in the browser on three smartphones in ∼0.13s.

Outline. Section 3 describes the developed MPC web engine, webSPDZ. Section 4
evaluates and discusses the runtime performance of webSPDZ, MPyC-Web, and
JIFF, as well as webSPDZ’s native variant (MP-SPDZ, which is dubbed natSPDZ in
this section). Section 5 describes the related work in more detail. Additionally,
Section 2 presents supporting preliminaries and Section 6 concludes this work.

2 Preliminaries for webSPDZ

In this section, we first briefly describe MPC with the related security models and
protocols, and define the term “general-purpose MPC (web) engine”. For further
information, the interested reader can check, e.g., Smart [41] and Lindell[28].
Then, we show the main tools that bring MP-SPDZ to the web browser: Wasm,
Emscripten, and WebRTC.

2.1 MPC-related Building Blocks

MPC enables various parties to jointly compute a function over secret inputs.
While no party learns the input of other parties or intermediate results, all or
a subset of dedicated parties receive the function outputs. MPC computations
use a dedicated MPC protocol under a specific security model. To practically
enable computations using generic MPC protocols/programs, parties use so-
called “MPC engines”.

MPC Security Models. One usually decides first how many parties can an ad-
versary corrupt and the type of corruption. Depending on the amount of parties
that can be (statically) corrupt, protocols largely classify into two categories:

1. Honest majority where at most half of the parties are corrupt.
2. Dishonest majority which allows up to all but one corrupted parties.

For types of corruptions, the MPC literature states primarily two:

1. Passive or semi-honest security where corrupted parties try to learn as much
as possible from the protocol transcript.

2. Active or malicious security where corrupted parties can arbitrarily deviate
from the protocol by sending malformed data.
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MPC Protocols. To perform MPC computations, various protocols provide
different levels of security. In this paper, we focus on protocols that work with
arithmetic circuits. We built upon the secret-sharing protocols Shamir [15,39,2]
and Replicated [6] for 3 parties. These protocols provide passive security in an
honest-majority setting. Moreover, we use the replicated protocol for 4 parties
by Dalskov et al. [18], which provides active security.

Since the most difficult task in MPC is to multiply two secrets, we use proto-
cols that build upon “Beaver triples [9]”. These Beaver triples are generated in an
(i) input-independent preprocessing phase, and consumed during the (ii) actual
(online) computation phase where parties get to use their secret inputs [29].

General-Purpose MPC Web Engines. With MPC engines, we denote a
framework which enables parties to actively participate in MPC computations.
If an MPC engine can be run in a web browser, we denote it as MPC web en-
gine. With general-purpose, we denote an MPC engine which virtually supports
arbitrary computations and a dynamic number of participating parties.

2.2 Web-Browser-related Building Blocks

To bring MP-SPDZ to the web browser, we primarily built upon three pillars: (1)
Wasm to run code in the browser, (2) Emscripten to compile MP-SPDZ’s C++
BackEnd to Wasm, and (3) WebRTC for P2P communication in the browser.

Wasm [21]. WebAssembly (Wasm) has been developed to run code in the
web browser safe, fast, portable, and compact [38]. As such, Wasm is a low-level
binary instruction format, which uses only integers and floats, and is supported
by most popular browsers [46]. An essential browser feature for our work is native
64-bit memory, which, e.g., Chrome and Firefox recently enabled by default.
Since Wasm’s pure runtime is close to native, it usually runs alongside JavaScript
to speed up certain code parts.

Usually, Wasm is a compilation target and not written by hand. Thus, de-
velopers write native code and then compile it to Wasm (e.g., via Emscripten).

Emscripten [19]. Is the most-popular (open-source) tool that compiles native
C/C++ code to Wasm. Emscripten builds upon an LLVM frontend and uses a
backend that generates JavaScript code [50]. The toolchain is well-documented
and provides many features. Some important features for our work are a set of
already ported libraries to Wasm and many APIs that allow easy integration
of, e.g., file systems, Wasm workers (threads), or C++ support for JavaScript
objects.

The Emscripten compiler emcc replaces the native compiler and provides
a variety of flags to, e.g., optimize performance and code size. emcc outputs a
Wasm and JavaScript file. The JavaScript file loads the Wasm file and provides
an API to interact with the compiled Wasm modules. For testing purposes, emcc
also auto-generates an HTML file.

https://webassembly.org/features/
https://webassembly.org/features/
https://llvm.org/
https://emscripten.org/docs/api_reference/index.html
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WebRTC [21]. Google released the “Web Real-Time Communication” (WebRTC)
project as an open-source framework in 2011. Since then, WebRTC has been fur-
ther developed and standardized by the World Wide Web Consortium (W3C).
By now, most popular browsers support the technology.

WebRTC is a collection of APIs that enables encrypted peer-to-peer (P2P)
communication between web browsers without additional plugins. Every WebRTC
connection is encrypted using the protocols Datagram Transport Layer Secu-
rity (DTLS) for key exchange and Secure Real Time (SRT) for encrypted data
transmission. For further details on WebRTC’s security architecture, the interested
reader can check, e.g., the Internet Engineering Task Force (IETF) [25].

The connection-building process is called Interactive Connectivity Establish-
ment (ICE). First, each peer uses a STUN (Session Traversal Utilities for NAT)
server to dissolve the public IP address and create an ICE candidate; while a
TURN (Traversal Using Relays around NAT) server acts as a fallback. Then,
these ICE candidates are exchanged between any two peers via a signaling server.
When parties establish a WebRTC connection, the STUN/TURN/signaling servers
are not needed anymore and the whole communication is P2P. Please note that
the signaling process is not part of the WebRTC standard as it relies on other
protocols like SIP (Session Initiation Protocol) over WebSockets. E.g., Blum et
al. [10] and Sredojev et al. [43] give further details on WebRTC.

3 webSPDZ

This section describes the “Web Variant of Multi-Protocol-SPDZ” (webSPDZ).
Initially, we describe webSPDZ’s source-code approach. Then, we describe how to
transform MP-SPDZ into an MPC web engine.

Section 3.1 describes how to cross-compile MP-SPDZ’s C++ backend to Wasm
using Emscripten. Section 3.2 describes the changes to enable P2P communi-
cation in the web browser using WebRTC. Besides WebRTC, Appendix B describes
an alternative communication approach using WebSockets. Then, Section 3.3
gives an example of performing MPC in the web browser using webSPDZ. Finally,
Section 3.4 describes security and privacy considerations for practical instantia-
tions of webSPDZ.

Source Code. We open-sourced webSPDZ on GitHub4. Since we base webSPDZ
on MP-SPDZ, most of the source code is identical to MP-SPDZ’s C++ backend. For
further information on practical use of webSPDZ, please refer to the repository.
For instance, we show webSPDZ’s tech stack, provide ready-to-use test files, and
highlight some additional information on transforming MP-SPDZ to webSPDZ.

4 github.com/tbuchs/webSPDZ

https://en.wikipedia.org/wiki/WebRTC#Support
https://developer.mozilla.org/en-US/docs/Glossary/WebRTC
https://getstream.io/resources/projects/webrtc/advanced/stun-turn
https://github.com/tbuchs/webSPDZ
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3.1 Compiling MP-SPDZ’s C++ backend to WebAssembly

We show how to compile MP-SPDZ’s C++ backend to Wasm by first compiling
the library dependencies. Then we describe the relevant code changes in MP-SPDZ
to make it compatible with wasm. Finally we show some features we had to
bring in, such as compiler settings, thread management, and various APIs. For
more details on compiling C++ to Wasm using Emscripten, please refer to, e.g.,
Emscripten’s documentation.

Porting Library Dependencies. To support the > 40 protocols, MP-SPDZ
mainly relies on four (open-source) libraries: Boost, Libsodium, OpenSSL, and
GMP. We have added pre-compiled “.a archives” of the libraries so we can link
them to the Wasm version.
Boost. Includes a set of libraries that MP-SPDZ uses, e.g., for network commu-
nication and multithreading. We replace the original library by linking a ported
version of Boost from the open-source project Ports, using the flag
-sUSE_BOOST_HEADERS=1 .
Libsodium. Emscripten provides the command emconfigure , which can
replace all default environment variables with Emscripten-specific ones. Lib-
sodium provides a build script for Emscripten, which provides the necessary
commands to build it from source.
OpenSSL. We must build OpenSSL manually using several flags.Then, we must
adapt the compiler path in the resulting Makefile. The resulting “.a archive” is
then linked in the framework.
GMP. MP-SPDZ uses GMP for arithmetic operations. We can use the original
GMP library without any patches since the datatype long has the correct size
of 8 bytes in 64-bit Wasm. We focus on 64-bit Wasm since most web browsers,
such as Firefox and Chrome, support it now. For our experiments with 32-bit
Wasm, please refer to Appendix A (GMP Library for 32-bit webSPDZ).

Modifying MP-SPDZ implementation. Since some commands and func-
tions are unavailable in a Wasm-based environment, we must adapt the respec-
tive code parts in MP-SPDZ’s C++ backend. For instance, some optimization
approaches or network parts have to be revised. The following paragraphs show
the most relevant code modifications to enable webSPDZ.
Architecture-specific inline assembly. MP-SPDZ optimizes runtime in many
different ways. One is using inline assembly to enable high-speed operations via
the CPU. However, since Wasm does not support inline assembly, we need to re-
place it with equivalent C++ code. Fortunately, MP-SPDZ provides architecture-
specific implementations in many cases.
SIMD instructions. “Single Instruction, Multiple Data” (SIMD) instructions
are another optimization technique in MP-SPDZ. For instance, MP-SPDZ uses
AVX 256-bit instructions and the AES-NI and PCLMUL instruction sets to
speed up AES and certain multiplications. However, e.g., these AES-related in-
structions are not available. Moreover, SIMD instructions in Wasm are usually

https://emscripten.org/docs/porting/index.html
https://www.boost.org/
https://doc.libsodium.org
https://www.openssl.org/
https://gmplib.org/
https://github.com/emscripten-ports
https://github.com/emscripten-core/emscripten/issues/20244
https://github.com/emscripten-core/emscripten/issues/20244
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less performant than the original instruction sets. As such, we emulate many
SIMD via software-specific code.
Networking. MP-SPDZ bases its networking on C++ (POSIX) sockets, either
SSL sockets of the Boost library or default BSD sockets. Since web browsers
do not support POSIX socket functions, such as listen() or accept(),
Emscripten bridges WebSockets and POSIX sockets via proxy servers. Further,
we also want P2P communication for the MPC computations on the web to
enhance privacy. Therefore, we introduce a new networking layer for P2P party
communication in a web browser environment. Section 3.2 (Peer-to-Peer Party
Communication in the Web Browser) describes this new networking layer.
Makefile. In MP-SPDZ’s Makefile, we must change the compiler and linker flags
for the used Emscripten APIs and the unsupported flags in a web browser envi-
ronment. The remaining MP-SPDZ’s Makefile is mostly unchanged. Finally, the
Emscripten compiler emcc replaces the original gcc compiler.

Compiler Settings, Threads, and APIs. The large variety of implemented
features in Emscripten simplifies the cross-compilation process. We use sev-
eral APIs from Emscripten and various compiler settings. For instance, we
use the compiler flags -sMEMORY64=1, which generates 64-bit Wasm code and
-sASYNCIFY, which enables synchronous C++ code and asynchronous JavaScript
code. We require this interplay of C++ and JavaScript code when waiting for a
network response, such as input from other parties. However, such Emscripten
compiler flags can lead to decreased performance and a larger code size.

Dealing with the UI Thread. The web browser uses the main thread to
execute code and perform tasks in the UI. When we have a synchronous opera-
tion, such as waiting for another party’s input, the UI will freeze until the oper-
ation has finished. We have implemented a solution that avoids this UI freezing
by carefully implementing a thread-management solution. webSPDZ’s web appli-
cation runs in a separate thread, using the -sPROXY_TO_PTHREAD compiler flag.
The UI thread spawns a new thread within the application and only becomes
active if needed. Within the application thread, multithreading is still possible.

However, in some cases, the application thread needs the support of the UI
thread. For instance, the the WebRTC API must access the web browser’s Window
component, which the UI thread handles. Therefore, some networking parts can
only run in the UI thread. Emscripten provides the proxying.h API to proxy
between the threads. However, this proxying can lead to a performance decrease.

File system in the web browser. Emscripten’s file system API provides a
POSIX-like file system in a web browser environment. We use WasmFS, a Wasm-
based file system. WasmFS is faster than, e.g., the JavaScript-based filesystem.

https://mp-spdz.readthedocs.io/en/latest/networking.html
https://emscripten.org/docs/porting/networking.html
https://w3c.github.io/webrtc-pc/#interface-definition
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3.2 Peer-to-Peer Party Communication in the Web Browser

Due to security and privacy considerations, We do not want to rely on an external
(proxy) server for party communication within MPC computations. Thus, as a
second preparation step, we enable P2P communication between MPC parties
in the web browser.

To enable P2P communication, we adapt MP-SPDZ’s networking layer. We
built upon WebRTC to be portable across various browsers while retaining secu-
rity & privacy. To support WebRTC in MP-SPDZ’s C++ backend, we use the C++
library libdatachannel . The library’s developer provides a ported Wasm ver-
sion with a limited feature set called libdatachannel-wasm14 . Since the library
does not yet support Wasm64, we had to change the library’s code for webSPDZ
in some places. We benefited from MP-SPDZ’s modular C++ design when inte-
grating the new networking layer. MP-SPDZ implements most communication in
the Player class. We create a subclass called WebPlayer for the new WebRTC
communication.

Further, we implement WebRTC’s signaling process for connection establish-
ment. To establish a connection to a signaling web-socket server, which exchanges
necessary meta connection information between parties, we use Emscripten’s
WebSocket API. We implemented a JavaScript-based signaling server that ac-
cepts incoming web-socket connections from parties and forwards sent data to
the other parties. When the signaling process finishes, the web-socket connection
is closed and parties purely communicate via P2P for, e.g., MPC computations.
Figure 1 shows webSPDZ’s networking communication with three parties. Please
refer to, e.g., Section 2.2 for details on WebRTC’s connection establishment.

Moreover, we can introduce another networking approach for other cases with
different networking requirements. As for the WebPlayer ’s subclass, we can add
another Player ’s subclass with relatively few lines of code.

(2) MPC
P2

P3

P2P

P1
P2P P2P

(1) P2P Setup
Signaling/STUN/TURN

Communication

(0) Web Application
Website Communication

Fig. 1: webSPDZ’s networking communication with three parties. First (0)
each party communicates with a web-app server that provides the MPC program.
Next (1), each party sets up P2P channels using WebRTC’s signaling server.
Finally (2), parties communicate via P2P for the actual MPC computation.
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3.3 Running MP-SPDZ in the Web Browser using webSPDZ

This section describes the final assembly of transforming MP-SPDZ into webSPDZ.
First, we describe a complete flow of performing an MPC computation in the
web browser. While the execution steps are similar to the native variant of
MP-SPDZ, we highlight the differences. The complete flow is the following:

1. Compile webSPDZ. After compilation, Emscripten outputs a .wasm ,
.js , and test .html file. We use the auto-generated .html file. The
.js file serves as a bridge between the web browser’s JavaScript engine and
Wasm. Further, we can call the C++-backend’s functions via the .js file.

2. Write and compile the MPC program. As for native MP-SPDZ, we write
an MPC program in MP-SPDZ’s Python-based front-end language and compile
it. Then, MP-SPDZ’s compiler outputs a schedule file containing the computa-
tion’s meta information and a bytecode file containing low-level instructions
for the C++ virtual machine.

3. Provide webSPDZ’s web application. Now, we can host webSPDZ using
the web-application server, which provides the .wasm , .js , and .html
files.

4. Parties join the MPC computation. To start the MPC computation,
each party opens webSPDZ’s web application via a web browser tab. Par-
ties provide webSPDZ’s execution parameters as query parameters via the
browser’s address bar.

5. Parties set up P2P communication. When all required parties have
joined, each party performs the P2P setup via WebRTC. When each party has
finished the P2P setup, parties can communicate in a P2P way for the MPC
computation.

6. Parties perform the MPC computation in the web browser. As for
native MP-SPDZ, parties might provide input, depending on the respective
MPC program, and jointly perform the MPC computation. After a successful
MPC computation, pre-defined parties can read the computation results in
their browser interface.

3.4 Security & Privacy Considerations of webSPDZ

This section discusses security- and privacy-related considerations of webSPDZ.
First, we discuss (networking) communication-related aspects. Then, we discuss
(MPC) computation-related aspects.

Communication-related security & privacy. For the communication dur-
ing MPC computations, parties communicate in a P2P way via WebRTC. WebRTC
encrypts these communications using the the Secure Real-time Transport Pro-
tocol (SRTP). We only need the signaling server for the communication setup.
However, the default communication setup does not authenticate parties’ mes-
sages.

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc3711
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We use the signaling server due to usability. With the signaling server, parties
can establish a P2P communication without manually exchanging connection
information (the ICE candidates). In sensitive cases, we could use other channels
to exchange connection information. For instance, one could use a trusted group
channel in the Signal messaging app.

Regarding external entities, we can host both the signaling and webSPDZ’s
web application, which provides the MPC program and engine, on the same
server. Since both applications run on the same server, they fall into the same
trust domain. This unification of trust increases the overall trust in the system,
as one already needs to trust webSPDZ’s web application, which is the same as
trusting the content of other web applications, such as google.com or eprint.iacr.
org.

We use a Google STUN server (stun.1.google.com) to translate a party’s
IP address and create the ICE candidates. While the respective server learns
when an IP address starts communicating, we must also trust the STUN server’s
answers. Hence, we balance a trade-off between privacy, usability, and trust.
One can change the STUN server according to their needs. For instance, many
publicly available STUN servers exist. Ideally, each application/organization self-
hosts its STUN/TURN servers in sensitive cases.

Computation-related security & privacy. In general, webSPDZ provides
the same computational security & privacy as the native variant of MP-SPDZ.
Virtually, webSPDZ can support the same protocols. Hence, we can select the
same protocols based on the desired level of security. For instance, we can equally
select the corruption mode (passive vs. active security) and trust in the parties’
majority (honest vs. dishonest majority). MP-SPDZ gives a detailed overview of
the various security models and corresponding protocols, e.g., in its GitHub
repository [1].

4 Performance Evaluation of webSPDZ

In this section, we practically evaluate the performance of webSPDZ. Initially, we
describe the MPC program for our lab-environment benchmarks, the dot···product,
and our benchmarking approach. Then, we show our results for the lab-
environment benchmarks and the exemplary real-life case on three Android
smartphones, “Dining MPC Phones”, which answers who pays for dinner.

For the lab-environment benchmarks, we used the MPC protocols Shamir (3
parties) and Replicated (3 and 4 parties). Shamir and Replicated with 3 parties
provide passive security (corruption) for an honest majority. Replicated with 4
parties provides active security. For the real-life case, we used Replicated with 3
parties.

Since both the native and web variants of MP-SPDZ are built upon the same
BackEnd and use the same FrontEnd, in this section, we dub the native variant
of MP-SPDZ “natSPDZ”.

https://support.signal.org/hc/en-us/articles/360007318911-How-do-I-know-my-communication-is-private
google.com
eprint.iacr.org
eprint.iacr.org
stun.1.google.com
https://gist.github.com/sagivo/3a4b2f2c7ac6e1b5267c2f1f59ac6c6b
https://webrtc.org/getting-started/turn-server
https://webrtc.org/getting-started/turn-server
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4.1 Evaluation Strategy

Programs & Protocols. For the lab-environment benchmarks, we build upon
the strategy from Keller [27] and compute the dot···product of two vectors (mul-
tiplication is one of the most expensive operations in MPC). Figure 2 shows the
source code for webSPDZ and natSPDZ, respectively (both use the same FrontEnd
code). We select the most comparable MPC web engines and run them for two
protocols.

As MPC protocols, we first use Shamir, as all engines support it, with 3 par-
ties for 100,000 vector elements. Further, we use Replicated with 3 and 4 parties,
respectively, using webSPDZ and MP-SPDZ for 100 up to 1,000,000 vector elements.
Shamir and Replicated for 3 parties provide passive security for an honest ma-
jority (threshold t =

⌈
#parties

2

⌉
− 1 ; e.g., t = 1 for 3 parties). Replicated with 4

parties provides active security. We set a field size of 128 bits. Except for JIFF,
which we set to 48 bits as it could only handle up to 53 bits in our experiments,
by explicitly setting the prime modulus.

As an exemplary real-life case, the “Dining MPC Phones”, we answer: “Who
pays for dinner?”. The program only reveals the party with the highest salary
while keeping the parties’ salaries private. Three Android smartphones (= 3
parties) use webSPDZ via the Google Chrome browser, using the MPC protocol
Replicated.

1 start_t imer(1) # Full Program
2 n = int(program.args [1])
3 start_t imer(2) # Input Phase
4 a = sint.Array(n)
5 b = sint.Array(n)
6 a.input_from (0) # Party 0
7 b.input_from (1) # Party 1
8 stop_t imer(2)
9 start_t imer(3) # Pure Dot···Product Computation

10 res = sint.dot_product(a,b)
11 stop_t imer(3)
12 stop_t imer(1)

Fig. 2: Source code of the dot···product for the two MPC engines webSPDZ and
natSPDZ. Inspired by Keller’s benchmarking code [26]. # denotes a comment.

Input & Measurements. In our benchmarks, Party 0 and 1 each input a
secret vector and share it among all parties. We measure the runtime for (1) the
whole program (Full), from startup until the final result, (2) the input phase
(creating or reading in the vectors and sharing them among all parties), and
(3) the pure dot···product computation. We do not measure compile times since

https://multiparty.org/jiff/docs/jsdoc/module-jiff-client-JIFFClient.html#JIFFClient
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we can compile an MPC program in advance. Moreover, we can reuse such
compilations given the same parameters. We measured each setting three times
and took the average.

Selected MPC Engines & Run Environment. We benchmarked the fol-
lowing MPC web engines:

– “JavaScript library for building web apps that employ MPC” (JIFF) [22]
• Version: from June 6th 2024 [23] (Commit ID: f5a22d8 ). Dot···product

product implementation based on Hastings et al.’s example code [33].
To improve performance, we reduced the server’s log output.

• Browser: we use node.js to run JIFF. Since both node.js and the
web browser Google Chrome run on the V8 engine, using node.js should
lead to comparable or even better performance than a pure browser
environment.

– “Web Variant of Multiparty Computation in Python” (MPyC-Web) [35]
• Version: from February 16th 2024 (Commit ID: 5b72f19 ). Dot···product

implementation based on Keller’s benchmarking code [26] (mpyc).
• Browser: Firefox 132.0.1. Same as webSPDZ, MPyC-Web compiles the (Python)

BackEnd source to Wasm.
– “Web Variant of Multi-Protocol-SPDZ” (webSPDZ) (this work)

• Version: based on MP-SPDZ’s source code from June 20th 2024 (Commit
ID in MP-SPDZ’s repository: 18e934f ; Commit ID in webSPDZ’s repos-
itory: bfffc9d). Dot···product implementation based on Keller’s bench-
marking code [26] (mp-spdz).

• Browser: Firefox Nightly 134.0a1. webSPDZ compiles the (C++) Back-
End source to Wasm.

Additionally, we compare webSPDZ with the native variant of MP-SPDZ, natSPDZ.
Section 5 (Related Work) gives further details on JIFF and MPyC-Web. For

an as-fair-as-possible comparison, natSPDZ uses the same version of MP-SPDZ as
webSPDZ.

We crafted Docker containers for each engine. For webSPDZ, MP-SPDZ, and
JIFF, each party ran in its own Docker container with a limit of 4GB RAM and 4
CPUs of an x86_64 AMD EPYC 7502 32-Core Processor using Linux. webSPDZ’s
Docker containers simulated the web browser. For MPyC-Web, we connected the
parties via browser tabs from the local machine (outside the Docker container).

Reproducibility. We have open-sourced webSPDZ and our benchmarking data
on GitHub5. For instance, we provide the source code and Docker files for all
benchmarked MPC engines. Based on the benchmarking machine, the results
may vary. However, the relative runtimes of the various engines should be similar.

5 github.com/tbuchs/webSPDZ

https://nodejs.org/en/learn/getting-started/the-v8-javascript-engine
https://www.docker.com/resources/what-container/
https://github.com/tbuchs/webSPDZ
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4.2 Evaluation Results

Table 1 shows the results of our lab-environment benchmarks. Additionally,
Figure 3 shows Replicated runtimes with 3 parties for 100 up to 1,000,000
(1 million) vector elements for the program phases Input and Pure Computation.
Figure 4 shows the “Dining MPC Phones” case evaluation on three smartphones.
webSPDZ nominated the party that pays for dinner (highest salary) in ∼0.13s .

Shamir Protocol for 3 Parties. To compute the dot···product for 100,000 vec-
tor elements, JIFF takes overall ∼4.5min. MPyC-Web takes overall ∼6.6s (1.17s
Input; 0.001s Pure Computation). Thus, MPyC-Web seems to have a heavier ini-
tialization phase. webSPDZ and MP-SPDZ take overall ∼1.2s and ∼0.12s respec-
tively. MP-SPDZ’s runtime aligns with Keller’s results [27] (0.08s using 64 bits).

Replicated Protocol for 3 and 4 Parties. To compute the dot···product for
100,000 vector elements using the Replicated protocol, webSPDZ takes overall
∼0.26s (0.23s Input; 0.03s Pure Computation) and ∼1.83s for 3 and 4 parties,
respectively. MP-SPDZ takes overall ∼0.072s (68ms Input; 4ms Pure Computa-
tion) and ∼0.12s for 3 and 4 parties, respectively. As for the Shamir protocol,
MP-SPDZ’s runtime aligns with Keller’s results [27] (0.03s using 64 bits for the
3-party variant).

For the extended evaluation of Replicated with 3 parties using 100 up to
1,000,000 (1 million) vector elements, the overall runtime of webSPDZ is first
similar to MP-SPDZ and then increases faster when inputting more data.

The Pure Computation runtime of webSPDZ is similar to MP-SPDZ up to
100,000 vector elements. However, interestingly, for 1,000,000 vector elements,
webSPDZ was even slightly faster than MP-SPDZ.
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Fig. 3: Runtime in seconds of the dot···product for various vector elements in
an unrestricted (LAN-like) network. Using the MPC protocol Replicated for 3
parties with the MPC engines webSPDZ and MP-SPDZ (dotted line).
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Table 1: Time in seconds to compute the dot···product for 100,000 vector ele-
ments, using the MPC protocols Shamir and Replicated with 3 parties in an
unrestricted (LAN-like) environment. In an honest-majority setting with pas-
sive security, where 2 parties provide input. Averaged over 3 runs and party
with max. Full runtime shown. Since only webSPDZ supports protocols beyond
Shamir, we do not show Replicated timings for the other MPC web engines.
MPC Engines Shamir (3P) Rep. Ring (3P)

Full Input Pure
Comp. Full Input Pure

Comp.

Web
JIFF (48-bit) 265.11 49.76 215.34 ⊥ ⊥ ⊥
MPyCweb (128-bit) 6.58 1.17 0.001 ⊥ ⊥ ⊥
webSPDZ (128-bit) 1.16 1.04 0.11 0.26 0.23 0.03

Native
natSPDZ (128-bit) 0.12 0.11 0.007 0.072 0.068 0.004

Fig. 4: “Dining MPC phones”. Three Android smartphones evaluated who pays
for dinner in ∼0.13s, using webSPDZ (Replicated) via the Google Chrome browser.
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Σ Summary. One of the main runtime bottlenecks is the input phase. In the
web browser, inputting data seems costlier than in a native environment, prob-
ably because of higher networking costs.

Further, for JIFF, the Pure Computation runtime, and MPyC-Web, the ini-
tialization phase, took relatively long too. Although JIFF uses only a field size
of 48 bits, it is the slowest engine in our experiments. We assume that JIFF’s
slow runtime originates from (i) JavaScript and (ii) routing each party message
via a coordination server. Further, MPyC-Web has the fastest Pure Computation
runtime in our benchmarks. The fast runtime might originate from running all
parties and the setup server in the same Docker container. In this case, we as-
sume that MPyC-Web’s runtime is equal to or faster than running each party in
an individual Docker container.

Hence, webSPDZ is the fastest and most versatile MPC web engine
(in our end-to-end benchmarks). Virtually, webSPDZ can support each MP-SPDZ’s
MPC protocols (>40).

5 Related Work

In this section, we compare recent related work regarding MPC engines which ei-
ther run in the web browser (showing additional details for JIFF and MPyC-Web),
or are specifically designed to enhance usability. For each engine, we also show
the year of appearance until the last active commit if the developers have open-
sourced it. Finally, we sum up gathered lessons learnt from the related work.

In the last decade, several MPC engines have been developed. The majority
of these engines aims to be as fast as possible. On this quest, these engines have
been built upon different programming languages. For instance:

– C++: MP-SPDZ [27], MOTION [14], ABY3 [34], or Sequre [40].
– Rust: swanky [20].
– Python: MPyC [3].
– Java: FRESCO [5].
– JavaScript: JIFF [22].
– “SecreC 2” [37]: Which has been specifically designed for MPC and is used

by, e.g., Sharemind [12].

For further MPC engines, please refer to, e.g., Rotaru’s “Awesome MPC” list [4],
Hastings et al.’s SoK paper [24], or Keller’s MPC-engine overview in the MP-SPDZ
paper [27].

While these MPC engines provide relatively fast computations and/or a va-
riety of MPC protocols with different security models, most require tech-related
knowledge to set everything up. Further, for each engine setup, specific MPC
knowledge would be beneficial, e.g., which protocol and security model to use.
These tech-related and MPC knowledge prerequisites are inherent entry barriers
for most end users.

Thus, some MPC engines address usability, too, such as Sharemind [12]
or EasySMPC [48]. Further, two engines provide a way to perform MPC in a
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web browser: JIFF and MPyC-Web. These web-compliant engines inherently en-
hance usability for end users as they just need to open a compatible browser
tab.

5.1 Other MPC Web Engines

As briefly mentioned in Section 1 (Introduction), already in 2018, Barak et al. [8]
have performed MPC in the web browser.

Barak et al. developed a large-scale application which consisted of an admin-
istrative web app, as well as a design and implementation of a dedicated MPC
protocol for low-bandwidth participants, dubbed HyperMPC. As such, they even
benchmarked a scenario with 500 participating parties. The web app provided a
user-friendly way to provide input and join the computation. The computation
could be joined, e.g., via the web browser, a mobile device, a cloud service, or
an IoT device.

In the appendix, Barak et al. briefly describe their way of performing MPC
in the web browser. They built upon, e.g., Emscripten but reported issues of
not having SIMD in the web browser. Though, while the web-app’s source code
is available on GitHub [16], we neither found the source code of HyperMPC, nor
of their approach to compile the engine for a web browser environment.

The “JavaScript library for building web apps that employ MPC” (JIFF) and
the “Web Variant of Multiparty Computation in Python” (MPyC-Web) are two
recent popular examples for performing MPC in the web browser.

JIFF (2017–2024–. . . ) [22]. Is a general-purpose MPC web engine based on
JavaScript, created by the “Boston multiparty group”. Its source code is publicly
available on GitHub [23]. MPC computations use Shamir’s secret sharing for
passive security in a pre-processing and online phase. The pre-processing phase
operates in an honest-majority setting. The online phase operates in a dishonest-
majority setting. Thus, overall JIFF operates in an honest-majority setting.

For party communication, JIFF uses a central coordination server. Besides
the usual trust assumptions on honest parties in MPC, this central server presents
one of the main privacy concerns and communication bottlenecks. Moreover, the
“Boston multiparty group” also provides JIGG, which operates on garbled cir-
cuits.

MPyC-Web (2023–2024–. . . ) [35]. Is a general-purpose MPC web engine
based on Python and Wasm, created by Schoenmakers, Nikolov, and others.
MPyC-Web builds upon the “Native Variant of Multiparty Computation in Python”
(MPyC-Nat)[3] and uses PyScript to compile the Python source code to Wasm
and the JavaScript library PeerJS for peer-to-peer communication via WebRTC.
Its source code is publicly available on GitHub [35]. MPC computations use
Shamir’s secret sharing for passive security in an honest-majority [31].

https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
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5.2 Usability-focused MPC Engines

Besides MPC web engines which inherently provide enhanced usability, other
MPC engines specifically address usability. E.g., EasySMPC, which has been cre-
ated due to a lack of usability for the target audience in the biomedical sector.
Or Sharemind, which aims to provide an easy-to-use statistics tool similar to
the plaintext computation tool “R”.

EasySMPC (2020–2023) [48]. Is an MPC engine based on Java, created by
Wirth, Kussel, Müller, Hamacher, and Prasser. EasySMPC’s source code is pub-
licly available on GitHub [49]. MPC computations use arithmetic secret sharing,
with a dynamic number of participating parties. Though, EasySMPC only sup-
ports additions and subtractions. As JIFF, the engine needs a kind of central
server as their party communication uses emails. As communication alternative,
it supports a dedicated (micro) server.

EasySMPC focuses on usability in the biomedical sector, offering a dedicated
(native) Java-based desktop app. One of their main usability advantages is a
graphical user interface, where users can enter input as in a web form. While
the Java desktop app worked for their specific use case, such a special-purpose
native approach limits the scope of portability.

Sharemind (2008–2024–. . . ) [12]. Is an MPC engine based on “SecreC 2”,
created by Bogdanov, Laur, and Willemson. Sharemind’s source code regarding
the “SecreC 2” standard library or SDK is publicly available on GitHub [17].
MPC computations use additive secret sharing, fixed to 3 parties, supporting
arbitrary computations.

One focus of Sharemind is easy-to-use statistics. As such, the engine has been
used by a recent cross-hospital data analytics project [7]. The project operated
on real-world cancer-related patient data.

5.3 Σ All in All

While MPC engines exist that address usability either specifically or inherently
(web-based), the main limitation of the related work is the versatility of MPC
protocols and security models. Each investigated engine supports one protocol
in a passive honest-majority setting. webSPDZ currently supports five protocols
and virtually as many as MP-SPDZ (>40).

Besides, some engines use a central server for communication, such as JIFF
or EasySMPC, which adds privacy concerns. webSPDZ needs a server for the setup
phase, e.g., to share the MPC’s Wasm code and arrange connection information,
but the parties use a P2P connection for the actual MPC computations.

One significant usability-enhancing aspect of some engines is the graphical in-
terface. EasySMPC even allows input to be provided purely via their graphical in-
terface. While webSPDZ provides easy-to-access computations via a web browser
tab, parties usually must provide an input file.
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6 Future Work

In this section, we outline potentially interesting future work. First, upgrading
webSPDZ with a focus on MPC protocols, performance, and usability. Then, to
further evaluate the performance of webSPDZ itself and in comparison with other
MPC (web) engines, by performing further benchmarks for a variety of MPC
settings. Moreover, we show miscellaneous potentials, such as use cases, run
environments, and verifiability of computations.

Upgrading webSPDZ. webSPDZ currently supports five MPC protocols: pas-
sive and active Shamir, Replicated Ring for 3 and 4 parties, and semi2k (2
parties). Porting protocols from MP-SPDZ to webSPDZ takes some manual effort.
By smoothening or even automating the porting process, we can enable all (>40)
MP-SPDZ-supported protocols faster.

webSPDZ’s browser-related tools, Wasm, Emscripten, and
WebRTC, will likely be further developed. Thus, over time, Wasm-related opera-
tions in the browser will likely get faster. As soon as more browser features are
supported and integrated in webSPDZ, e.g., more/full support for SIMD or im-
provements in the filesystem API, we expect a performance increase for webSPDZ.

Parties currently provide program parameters as query parameters in the
web browser’s address bar. Especially for non-tech users, providing a graphical
way to configure relevant MPC settings, such as the number of parties or used
protocol, and providing input would increase usability.

Another aspect is the loading of MPC programs. Parties access MPC pro-
grams via a URL from webSPDZ’s app server. If parties compile an MPC program
directly in the browser, trust in the overall system can be increased.

Further Benchmarks & MPC Engines. On the one hand, one could evaluate
the performance more comprehensively by testing various MPC settings, such as
network delays, number of parties, or MPC protocols. For instance, Lorünser &
Wohner [31] benchmarked the native variants of MP-SPDZ and MPyC and observed
a relative runtime change between the two engines for different network delays.
It would be interesting to see if the same holds for the engines’ web variant.
Moreover, measuring webSPDZ more fine-grained could lead to valuable insights
into potential runtime bottlenecks. Next to runtime performance, communication
(number of protocol rounds and network data) could also be measured.

On the other hand, one could evaluate further MPC web engines and their
native parts. The leading question hereby could be, how far are we from closing
the gap between MPC native and MPC web engines? Especially with contin-
uous feature development in the web browser in mind, this might lead to sur-
prising discoveries. Due to our positive experience with the compilation tool
Emscripten, one could experiment with porting further C++-based MPC na-
tive engines to the web browser. For instance, MOTION [14] or Sequre [40], or
the Java-based engine FRESCO [5] using tools like wasmer-java or TeaVM. More-
over, since Sequre was faster than native MP-SPDZ for some of their benchmark
settings [40], one could investigate if the same holds for the web.

https://github.com/wasmerio/wasmer-java
https://github.com/konsoletyper/teavm
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Miscellaneous. Since we compiled MP-SPDZ’s C++ BackEnd to Wasm, one
could investigate further run targets. For instance, IoT devices that support
Wasm in a smart-home environment. Such run targets even further broaden the
applicability of MPC.

Moreover, many approaches exist to verify, e.g., the correctness of a program
run or create proofs for secret-shared data. For instance, Ozdemir and Boneh [36]
use zero-knowledge proofs for distributed secrets. One could investigate if “Ver-
ifiable MPC” is equivalent on the web?

7 Conclusions

Our vision is to enable MPC for everyone by making it simple to use the tech-
nology. One promising solution is to use web-based MPC engines, which enable
a party to actively join an MPC computation by simply opening a web browser
tab.

While some MPC engines address end-user usability specifically or inher-
ently (web-based), each investigated engine supports one protocol in a passive,
honest-majority setting. Thus, the main limitation of the state-of-the-art is the
versatility of MPC protocols and security models. Besides, some engines use a
central server for communication (e.g., JIFF or EasySMPC), which adds privacy
concerns and potential bottlenecks.

That is why we created webSPDZ, the web variant of MP-SPDZ, one of the
most performant and flexible general-purpose MPC engines, which supports
> 40 protocols with different security models. Hence, webSPDZ enables many
security models on the web. To transform MP-SPDZ into an MPC web engine, we
use (i) Emscripten to compile MP-SPDZ’s C++ BackEnd to WebAssembly and
(ii) WebRTC to enable peer-to-peer (P2P) party communication in the browser.

As with the native variants of the two recent MPC web engines, MPyC-Web and
JIFF, webSPDZ outperforms them in our end-to-end experiments. Compared to
native engines, one of the main bottlenecks in the browser seems to be the phase
of inputting data. For pure computation, webSPDZ performed almost identically
to its native variant and even outperformed it for one setting. The reason for the
slower input phase could originate from, e.g., a slower file system or less efficient
P2P party communication in the browser. Closing the gap between MPC native
and web engines would be one of the interesting future works. As one usability-
enhancing aspect, webSPDZ could add a GUI for, e.g., inputting data.

We believe that webSPDZ brings forth many interesting and practically rele-
vant use cases. Thus, webSPDZ pushes the boundaries of practical MPC: to make
MPC more usable and enabling it for a broader community.
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A GMP Library for 32-bit webSPDZ

In earlier versions of webSPDZ, we experimented with 32-bit Wasm. However,
since, e.g., the web browsers Firefox and Chrome now support 64-bit Wasm, we
focus on 64-bit Wasm in this paper. For the interested reader, in this section, we
describe one of our main challenges of 32-bit webSPDZ, porting the C++ library
GMP to 32-bit Wasm.

As GMP relies on C89, where the datatype long long is unavailable, porting
GMP to Wasm requires manual effort. Since the datatypes long and size_t
have only 4 bytes in 32-bit architectures like Wasm32, we need the datatype
long long as it has 8 bytes in any architecture.

Luckily, one of the developers of GMP has been very helpful and provided
a patched version of GMP. After adding the patch to the library, we can define
the GMP datatype mp_limb_t as 8 bytes, equal to a long long . Then, we
can compile GMP to Wasm using Emscripten. We configure cross-compilation
to Wasm using the following command: emconfigure ./ configure –disable-
assembly –host none –enable-cxx ABI=longlong CFLAGS=-fPIC CXXFLAGS=-
fPIC . The patch helped a lot in porting the library, though it was not officially
available in the GMP repository when we experimented with 32-bit webSPDZ.
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B Alternative Party Communication using WebSockets

Besides the described peer-to-peer (P2P) party communication using WebRTC, we
experimented with WebSockets to increase performance. Each (communication)
thread can open a WebSocket connection. Thus, WebSockets enable multithread-
ing for sending and receiving data, while WebRTC can only send and receive data
via the browser’s main thread. However, we did not see a significant perfor-
mance increase in our experiments. Moreover, WebSocket communication needs
a server, while WebRTC communication is P2P (for the MPC computation).

For further details, e.g., Emscripten’s documentation shows various ways to
use WebSockets with Emscripten.
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