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Abstract. McEliece cryptosystems, based on code-based cryptography,
is a candidate in Round 4 of NIST’s post-quantum cryptography stan-
dardization process. The QC-MDPC (quasi-cyclic moderate-density parity-
check) variant is particularly noteworthy due to its small key length.
The Guo-Johansson-Stankovski (GJS) attack against the QC-MDPC
McEliece cryptosystem was recently proposed and has intensively been
studied. This attack reconstructs the secret key using information on de-
coding error rate (DER). However, in practice, obtaining complete DER
information is presumed to be time-consuming. This paper proposes two
algorithms to reconstruct the secret key under imperfection in the DER
information and evaluates the relationship between the imperfection and
efficiency of key reconstruction. This will help us to increase the efficacy
of the GJS attack.

Keywords: McEliece cryptosystem · QC-MDPC codes · Reaction at-
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1 Introduction

Cryptography is an indispensable concept in modern society, which cannot exist
without networks. Cryptosystems based on difficulty of factoring, or similarly,
difficulty of discrete logarithm problems are currently applied in many situa-
tions. However, they will be jeopardized if large quantum computers are realized
because Shor’s algorithm, which can be executed by quantum computers, solves
factoring and discrete logarithm problems in polynomial time [24]. Thus, pro-
viding new cryptosystems that are secure even after the realization of large
quantum computers (post-quantum era) are getting increasing attention. Con-
sequently, National Institute of Standards and Technology (NIST) is calling for
proposals of post-quantum cryptosystems [1]. Some lattice-based cryptosystems
were recently released as Federal Information Processing Standards (FIPS), but
alternatives are still being sought extensively.

The McEliece cryptosystem is a public key cryptosystem based on the dif-
ficulty of decoding random linear codes [17], and has extensively been stud-
ied [5, 8, 22]. Its original version with Goppa codes is considered as one of the
Round-4 candidates in the post-quantum cryptography standardization initiated
by NIST. However, its public key size is excessively large because one uses the
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whole generator matrix of a linear code in this scheme. According to the de-
mand of smaller key sizes, a variant based on Quasi-Cyclic Moderate-Density
Parity-Check (QC-MDPC) codes was proposed [18]. Utilizing quasi-cyclicity of
the generator matrix in this scheme, one represents it by its first row; hence,
the key size can be reduced compared with the original McEliece scheme. The
QC-MDPC scheme is still being considered as an alternative to lattice-based
cryptography.

An attack on the QC-MDPC scheme was recently proposed [14]. This attack,
which is called the Guo-Johansson-Stankovski (GJS) attack, tries to reconstruct
the secret key from statistics of decoding errors. This is composed of two steps.
In the first step, an adversary repeatedly sends specific messages to a legitimate
receiver and observes receiver’s reactions, i.e., whether they succeed or fail to
decode the sent messages. Analyzing the decoding error rate (DER) through this
process allows the adversary to estimate distance spectrum, the set of distances
of all pairs of ones in the secret key, which is represented by a binary vector.
The performance of the estimation can change depending on what decoding
algorithm the legitimate receiver employs, and in particular, the bit-flipping (BF)
algorithm [2,7, 10,15,18,19,23] was shown to be vulnerable to this attack [4].

In the second part, the attacker tries to reconstruct the secret key from the
estimated distance spectrum. This process is performed by depth-first recur-
sive search, in the original proposal [14], and this is generally time-consuming.
Recently, breadth-first search algorithm for reconstructing the secret key is pro-
posed [20]. This breadth-first algorithm was shown to have smaller time com-
plexity than the depth-first search at the cost of its space complexity.

The first part of estimating the distance spectrum is considered more time-
consuming than the second part of reconstructing the secret key regardless of
what reconstruction algorithm is employed. This is because we typically assume
perfect estimation of the distance spectrum in the first part and the key re-
construction from the obtained complete distance spectrum in the second part.
Obtaining the complete distance spectrum in the first part requires a large num-
ber of trials of sending messages to the receiver. If we reduce the number of trials,
we will obtain an imperfect distance spectrum, and it will make the key recon-
struction in the second part more time-consuming. In such cases, it is non-trivial
which part is dominant in terms of time complexity.

In this paper, we consider key reconstruction from an imperfect distance spec-
trum. Assume that the number of trials of sending messages in the first part is
insufficient to perfectly determine the distance spectrum. Even in this case, how-
ever, we will be able to obtain “upper and lower bounds”of the true spectrum.
Extending the two above algorithms of depth-first and breadth-first search, we
propose two reconstruction algorithms using the lower and upper bound instead
of the distance spectrum itself. Both methods successfully reconstruct the secret
key under some level of imperfection in the distance spectrum. We compare the
time complexity of them and find that the breadth-first algorithm is more effi-
cient than the depth-first one, which is similar to the case of reconstruction from
the complete distance spectrum.

The remaining of this paper is organized as follows. In Sec. 2, we briefly
review the QC-MDPC McEliece cryptosystem. The key recovery attack based
on information of the DER is introduced in Sec. 3. In Sec. 4, we discuss how the
imperfection of the distance spectrum is defined and propose two reconstruction
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algorithm from an imperfect distance spectrum. Also in this section, we exhibits
results of numerical experiments. Section 5 is devoted to summary of this work.

2 QC-MDPC McEliece cryptosystems

2.1 McEliece cryptosystems

The McEliece cryptosystem is characterized by a parity-check matrix H ∈ F𝑟×𝑛2

and the corresponding generator matrix G ∈ F𝑘×𝑛2 of an error-correcting code
that can correct 𝑡-bit error. Here, 𝑛 is the code length, 𝑘 the information bit
length, and 𝑟 the codimension: 𝑟 = 𝑛 − 𝑘. F𝑖× 𝑗2 represents an 𝑖 × 𝑗 matrix with
elements in F2 = {0, 1}.

We randomly generate a permutation matrix Q ∈ F𝑛×𝑛2 and a regular matrix
S ∈ F𝑘×𝑘2 , and provide

G′ = SGQ. (1)

A public key of the McEliece cryptosystem is (G′, 𝑡) while the secret key is
(H ,S,Q). It is worth mentioning that any person can formally make a parity-
check matrix H ′ using G′, but this is different from H in the secret key. A
sender tries to convey a message m ∈ F𝑘2 . They encode the message as

c = mG′ + e, (2)

with a randomly generated error e ∈ F𝑛2 , whose Hamming weight is smaller than
𝑡: 𝑤(e) ≤ 𝑡.

The encoded message c is sent to the receiver, and is decrypted through the
following procedure.

(i) Operate Q−1 on c:

cQ−1 = mG′Q−1 + eQ−1 = mSG + e′,

where e′ denotes eQ−1.
(ii) e′ can be corrected in this code because 𝑤(e′) = 𝑤(e) ≤ 𝑡. Then, the receiver

obtains,
c′ = mSG.

(iii) G−1, S−1 are applied to c′:

c′G−1S−1 = mSGG−1S−1

= mSS−1

= m.

Therefore, the receiver recovers the original message m, which the sender tried to
convey. The performance of this process depends on how efficiently the legitimate
receiver corrects the error while the correction by attackers is kept to be difficult.
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2.2 QC-MDPC McEliece cryptosystem

As the public key of the McEliece cryptosystem is G′, which is typically a large
matrix, the key size tends to be large. To resolve this issue, the QC-MDPC
McEliece cryptosystem (QC-MDPC scheme, hereinafter) was proposed [18]. In
this scheme, Q and S are set to be the identity matrices with dimension 𝑛 and
𝑘, respectively. In Ref. [18], it is pointed out that assigning security functions to
these matrices is based on a “folklore" reasoning: the most important condition
to ensure security is that the public key does not divulge any useful informa-
tion to attackers. As shown below, the QC-MDPC scheme actually satisfies this
condition although it does not employ Q and S.

The secret key in the scheme is a parity-check matrix in the following form:

H =
[
H0 H1 · · ·H𝒏0−1

]
∈ F𝑟×𝑛2 ,

where each H𝒊 (0 ≤ 𝑖 ≤ 𝑛0 − 1) is a circulant matrix of size 𝑟 × 𝑟 and thus
𝑛 = 𝑛0𝑟. Let the first row of H𝒊 be h𝒊 . We assume that the weight of each h𝒊

is 𝑑𝑣. Correspondingly, the row weight of the whole parity-check matrix H is
𝑤 = 𝑑𝑣𝑛0. In the QC-MDPC scheme, H is taken to be sparse and its weight 𝑤
scales in 𝑂 (

√
𝑛 log 𝑛) [18].

The generator matrix corresponding to the parity-check matrix H is given
by

G =


(
H−1

𝒏0−1 ·H0

)𝑇
I𝒌

...(
H−1

𝒏0−1 ·H𝒏0−2
)𝑇


.

It is sufficient to publish only the first rows of the blocks because each block(
H−1

𝒏0−1 ·H𝒊

)𝑇
(0 ≤ 𝑖 ≤ 𝑛0 − 2) is a circulant matrix. Hence, the key size is much

smaller than the original version of McEliece scheme, which needs to publish the
whole generator matrix.

Encoding and decoding in this scheme is performed in a similar way to the
original version. We again explain its encoding and decoding procedure and how
this scheme works. The public key of this scheme is (G, 𝑡) while the secret key
is H. The sender encode their message m as

c = mG + e, (3)

with a randomly generated error e whose wight 𝑤(e) is less than 𝑡. After receiving
this encoded message c, the receiver decodes it through the following procedure.

(i) Operate H𝑇 on c to obtain the syndrome s:

s = cH𝑇 = mGH𝑇 + eH𝑇 = eH𝑇 .

(ii) Calculate e from the information of s and H. This problem can efficiently
be solved because of the sparsity of H. Subtracting the calculated e from c,
the receiver acquire c′ = mG.

(iii) The receiver operates G−1 to c′ and succeed to reproduce m.
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One may consider that an eavesdropper can intercept the sent message m be-
cause they have the generator matrix itself, which is not camouflaged with Q

and S. The eavesdropper constructs the parity-check matrix H̃ from the public
key G as

H̃ =
[
(H−1

𝒏0−1 ·H0) · · · (H−1
𝒏0−1 ·H𝒏0−2) | I𝒌

]
, (4)

and can perform the step (i) just like the legitimate receiver. Then, they acquire
s̃ = e𝐻. The step (ii) is, however, almost impossible for them: finding e from s̃

and H̃ is a difficult task because H̃ is not sparse in general. This problem is
called syndrome decoding problem, and known to be NP-hard (NP-equivalent),
which provides the security of the QC-MDPC scheme [6,16].

The parameters (𝑛, 𝑟, 𝑑𝑣) determine the security of the QC-MDPC scheme.
Table 1 exhibits the parameters corresponding to several security levels proposed
in Ref. [18]. Also, Table 2 shows parameters for Bit Flipping Key Encapsulation
(BIKE) scheme [3]. Throughout the remaining of this paper, we consider the
cases of (𝑛, 𝑟, 𝑑𝑣, 𝑛0) = (9602, 4801, 45, 2) and (24646, 12323, 71, 2). In these cases,
the parity-check matrix H is expressed as

H = [H0 H1] ,

and the generator matrix G is

G =
[
I𝒌

(
H−1

1 ·H0

)𝑇 ] .
Table 1. The parameters for the QC-MDPC scheme at 80, 128, and 256-bit security
levels.

security 𝑛0 𝑛 𝑟 𝑑𝑣 key size
80 2 9602 4801 45 4801
80 3 10779 3593 51 7186
80 4 12316 3079 55 9237
128 2 19714 9857 71 9857
128 3 22299 7433 81 14866
128 4 27212 6803 85 20409
256 2 65542 32771 137 32771
256 3 67593 22531 155 45062
256 4 81932 20483 161 61449

Table 2. The parameters for BIKE at 128, 192, 256 security levels.

Security 𝑛0 𝑛 𝑟 𝑑𝑣 key size
128 2 24646 12323 71 12323
192 2 49318 24659 103 24659
256 2 81946 40973 137 40973
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3 Review of the GJS attack

The goal of key recovery attacks is to obtain the secret key, i.e., H in the case
of the McEliece cryptosystems. In the QC-MDPC scheme, the secret key H can
easily be derived if we know H0 and the public key G. As H0 is a circulant
matrix, obtaining its first row h0 is sufficient to know H0. Summarizing, if we
obtain h0, we can easily reconstruct the secret key H. Therefore, we hereinafter
identify h0 with the secret key itself. In Ref. [13], a key recovery attack against
the QC-MDPC scheme, which aims to reconstruct h0 is proposed. This attack is
comprised of two steps. First, an attacker repeatedly sends a specific message to
a legitimate receiver, and collects the information of how many times the receiver
fails to decode the message, i.e., the information of decoding error rate (DER).
From this information, the attacker estimates the “distance spectrum" of the
secret key h0. The distance spectrum is the set of distances of all pairs of ones
in the key. Using the estimated distance spectrum, the attacker tries to construct
a secret key candidate h

′
0 in an appropriate way. The attack is successful if the

constructed candidate h
′
0 matches the secret key h0. In the original proposal in

Ref. [13], recursive search is employed to construct the candidate. This search
algorithm, however, tends to be time-consuming because of its recursive process.
Recently, a breadth-first algorithm was proposed in Ref. [20], which can reduce
the time complexity of reconstructing the key at the cost of its space complexity.
In this section, we explain how one can acquire the distance spectrum of the
secret key from the DER information, and review the above two methods for
reconstructing the secret key.

3.1 Distance spectrum

Consider a binary vector C = [𝑐0, · · · , 𝑐𝑟−1] ∈ F𝑟2. A (cyclic) distance between
the 𝑖-th component 𝑐𝑖 and the 𝑗-th component 𝑐 𝑗 is defined as follows:

𝑑 (𝑖, 𝑗) := min{|𝑖 − 𝑗 |, 𝑟 − |𝑖 − 𝑗 |}. (5)

It is worth mentioning that max𝑖, 𝑗 𝑑 (𝑖, 𝑗) = 𝑈 := ⌊𝑟/2⌋. We define the distance
multiplicity 𝜇𝐶 (𝑑) of distance 𝑑 in the vector C and the distance spectrum 𝐷 (C)
as

𝜇𝐶 (𝑑) =
��{(𝑖, 𝑗) | (𝑐𝑖 = 𝑐 𝑗 = 1

)
∧ 𝑑 (𝑖, 𝑗) = 𝑑

}�� , (6)
𝐷 (C) ={𝑑 ∈ [𝑈] | 𝜇𝐶 (𝑑) > 0}, (7)

where [𝑈] = {1, 2, · · · ,𝑈}. We also introduce the set of positions of ones in C as

P (C) ={𝑝0, 𝑝1, . . . , 𝑝𝑤(C )−1}, such that
𝑐𝑝𝑖 = 1, 0 ≤ 𝑖 ≤ 𝑤 (C) − 1.

In this paper, we often identify P (C) with C itself unless it causes any confusion.
For instance, we will use 𝐷 (P (C)) instead of 𝐷 (C) when this makes notation
simpler.

Let us explain how an attacker obtains the distance spectrum of the secret
key h0. To this end, we define the set of error patterns Ψ𝑑 as follows:

Ψ𝑑 =
{
v = (e, f ) | 𝑤(f ) = 0,

P (e) = {𝑠0, 𝑠1, . . . , 𝑠𝑡 }, 𝑠2𝑖 = (𝑠2𝑖−1 + 𝑑) mod 𝑟, 𝑖 = 1, . . . , 𝑡/2
}
. (8)
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This set is composed of errors v of length 2𝑟 where the first half e with length
𝑟 contains 𝑡/2 pairs of ones at distance 𝑑 and the second half f is a zero vector.
The attacker randomly selects one error v from Ψ𝑑 and send a message with the
selected error. They observe reactions of the receiver, and determine whether the
sent message is successfully decoded on not. The attacker repeats this process
𝑀 times for each 𝑑, and count the number of decoding failures, denoted by 𝑁.
An important observation pointed out in Ref. [14] is that the observed failure
ratio DER𝑑 := 𝑁/𝑀 relates with the distance multiplicity 𝜇h0

(𝑑): the smaller
multiplicity a distance 𝑑 has, the lower the DER𝑑 tends to be. In particular, dis-
tances with 𝜇h0

(𝑑) = 0 will be separated from the other distances with non-zero
multiplicities, and thus we can estimate the distance spectrum 𝐷 (h0). Ideally, if
we obtain the “true" DERs by taking the limit of 𝑀 → ∞, we should perfectly
determine 𝜇h0

(𝑑). In practice, we can only perform a large but finite number of
trials and obtain an empirical DERs, which makes the determination imperfect.

BF decoding and its variants have often been used as decoding methods for
the QC-MDPC scheme [7,10,15,18,19,23]. These methods are fast but vulnerable
to the above reaction attack. We employ the BF decoding to clearly exhibit the
effectiveness of this attack and show empirical DERs for all distances in Fig. 1.
We take the parameters (𝑛, 𝑟, 𝑑𝑣, 𝑡) = (9602, 4801, 45, 110) and the number of
trials 𝑀 = 10000 in this experiment. From this figure, one can observe that
the empirical DERs for 𝑑 ∈ 𝐷 (h0) are lower than that for 𝑑 ∉ 𝐷 (h0). Using
this property, one can make a threshold that separates DERs for 𝑑 ∈ 𝐷 (h0)
and for 𝑑 ∉ 𝐷 (h0), and estimates the distance multiplicities for all distances. In
particular, the distance spectrum of the secret key 𝐷 (h0) is estimated.

Fig. 1. Empirical DERs for all distances. The parameters are taken to be (𝑛, 𝑟, 𝑑𝑣, 𝑡) =
(9602, 4801, 45, 110). The number of trials is 𝑀 = 10000.
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3.2 Construction of secret key candidates

We assume that the attacker succeeds to acquire the distance spectrum perfectly.
Let h′

0 denote a secret key candidate to be obtained utilizing this spectrum. The
key candidate constructed from the distance spectrum can be different from the
secret key itself because the distance spectrum is invariant under cyclic shifts
and the mirror inversion. Also, as mentioned later, there can be several non-
trivially different candidates with the same distance spectrum. This is why we
represent the constructed candidates by h

′
0, not by h0.

Our goal is to obtain h
′
0, or equivalently, the corresponding set of positions

of ones in the candidate:

P (h′
0) = {𝑝0, 𝑝1, . . . , 𝑝𝑑𝑣−1}, (9)

where 𝑑𝑣 is the weight of the secret key h0. The original proposal in Ref. [14]
employed recursive search to construct P (h′

0). We will briefly review this search
algorithm.

Let us align the distances in the spectrum in increasing order as

𝐷 (h0) = {𝑖0, 𝑖1, · · · }, 0 < 𝑖0 < 𝑖1 < · · · .

We can set 𝑝0 = 0 and 𝑝1 = 𝑖0 without loss of generality because as afore-
mentioned, the distance spectrum is invariant under cyclic shifts and the mirror
inversion. Then, we tentatively set 𝑝2 = 𝑝1 + 𝑖0 and check whether the distance
between 𝑝1 and 𝑝2 is in 𝐷 (h0). If it is, we search candidates of 𝑝3 while fixing
𝑝2 = 𝑝1 + 𝑖0; otherwise, consider the possibility of 𝑝2 = 𝑝1 + 𝑖1 in the same way.
We repeat this process recursively until 𝑝𝑑𝑣−1 is fixed. Note that there is no
proof that the distance spectrum uniquely determines the secret key: a binary
vector, which is neither a cyclic shift nor the mirror image of the secret key, may
have the same spectrum. Hence, we need to exhaust all candidates that have the
obtained spectrum. The algorithm is summarized in Algorithms 1 and 2.

Algorithm 1 Recursive search for candidates
Input: 𝐷 (h0), 𝑝0 = 0, 𝑝1 = min(𝐷 (h0)), 𝑙 = 2.
Output: set of secret key candidates 𝓱

′
0

1: 𝓱
′
0 ← {}.

2: h
′
0 ← {𝑝0, 𝑝1}.

3: Call ℛ(h′
0, 𝑙 = 2) in Algorithm 2.

4: return 𝓱
′
0.

Algorithm 2 Recursive function ℛ(h′
0, 𝑙)

Input: h
′
0 = {𝑝0, 𝑝1, · · · , 𝑝𝑙−1}, 𝑙.

1: for all 𝑖 (𝑝𝑙−1 + 1 ≤ 𝑖 ≤ 𝑟) do
2: for all 𝑗 (0 ≤ 𝑗 ≤ 𝑙 − 1) do
3: if 𝑑 (𝑖, 𝑝 𝑗 ) ∉ 𝐷 (h0) then
4: goto line 25.
5: end if
6: end for
7: 𝑝𝑙 ← 𝑖.
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8: append 𝑝𝑙 to h
′
0.

9: if 𝑙 ≤ 𝑑𝑣+1
2 and 𝑝𝑙 ≥

⌈ 𝑟+𝑝1
2

⌉
then

10: goto line 25.
11: end if
12: if 𝑙 = 𝑑𝑣 − 1 then
13: Calculate 𝐷 (h′

0).
14: if 𝐷 (h′

0) = 𝐷 (h0) then
15: append h

′
0 to 𝓱

′
0.

16: goto line 25.
17: else
18: goto line 25.
19: end if
20: end if
21: 𝑙 ← 𝑙 + 1.
22: Recursive call of ℛ(h′

0, 𝑙).
23: Remove 𝑝𝑙 from h

′
0.

24: 𝑙 ← 𝑙 − 1.
25: end for
26: return

In the lines 9− 11 of Algorithm 2, we prune some candidates that match the
conditions. Naively speaking, this process prunes candidates in which more than
half of ones are concentrated in its latter part (latter-concentrated) while re-
serves candidates in which more than half of ones are concentrated in its former
part (former-concentrated). Note that the mirror image of a latter-concentrated
candidate is a former-concentrated one. If we do not perform this pruning pro-
cess, we will construct both of them. Although both can be candidates of the
true secret key, it is sufficient to construct one of them in this algorithm; after
that, the other is efficiently reproduced just by taking the mirror image of the
constructed one. Hence, we can prune latter-concentrated candidates without
loss of generality. Moreover, performing this process reduces the search space
and improve the time performance of the algorithm. This idea will be applicable
to any other construction algorithms.

This method uses recursive calls, which increases the time required to con-
struct the candidate set 𝓱

′
0. In Ref. [20], another method using breadth-first

search was proposed to construct key candidates. This is based on a construc-
tion method for QC-LDPC McEliece cryptosystems [12], which translates the
key reconstruction to a search problem for 𝑑𝑣-clique in a graph corresponding to
the distance spectrum. Algorithm 3 shows the explicit procedure of this breadth-
first key reconstruction.

Algorithm 3 Breadth-first key key reconstruction
Input: 𝐷 (h0), 𝑝0 = 0, 𝑝1 = min(𝐷 (h0)), 𝑟: length of the secret key.
Output: set of secret key candidates 𝓱

′
0.

1: 𝓱
′
0 ← {}.

2: 𝐷 (h0) = {𝑝0} ∪ 𝐷 (h0) ∪ (𝑟 − 𝐷 (h0))).
3: 𝑆0 ← {𝑝0, 𝑝1}.
4: 𝑆

′
0 ← {𝑏 ∈ 𝐷 (h0) \ 𝑆0 | 𝑑 (𝑏, 𝑝1) ∈ 𝐷 (h0)}.

5: 𝑁 ← 1, 𝑡 ← 2.
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6: 𝒮 = {𝑆0}.
7: 𝒮

′
= {𝑆′0}

8: while 𝑡 < 𝑑𝑣 and 𝑁 > 0 do
9: 𝒮← {}, 𝒮′ ← {}, 𝑛 = 0.

10: for all 𝑖 (0 ≤ 𝑖 < 𝑁) do
11: 𝑆

′
𝑖 = {𝑎0, 𝑎1, · · · }.

12: for all 𝑙 (0 ≤ 𝑙 <
��𝑆′𝑖 ��) do

13: 𝑆𝑖,𝑙 ← 𝑆𝑖 ∪ {𝑎𝑙}.
14: 𝑆

′
𝑖,𝑙 ← {𝑏 ∈ 𝑆

′
𝑖 \ {𝑎𝑙} | 𝑏 > 𝑎𝑙 , 𝑑 (𝑏, 𝑎𝑙) ∈ 𝐷 (h0)}}.

15: 𝐵𝑖,𝑙 ← 𝑆𝑖,𝑙 ∪ 𝑆
′
𝑖,𝑙.

16: if
(
𝐵𝑖,𝑙

)
𝑑𝑣+1
2
≥
⌈ 𝑟+𝑝1

2

⌉
then

17: goto line 24.
18: end if
19: if

��𝐵𝑖,𝑙 �� = 𝑑𝑣 and 𝐷 (𝐵𝑖,𝑙) = 𝐷 (h0) then
20: append 𝐵𝑖,𝑙 to 𝓱0.
21: else if

��𝐵𝑖,𝑙 �� > 𝑑𝑣 then
22: append 𝑆𝑖,𝑙 to 𝒮, 𝑆′𝑖,𝑙 to 𝒮

′ as the 𝑛th elements.
23: 𝑛← 𝑛 + 1.
24: end if
25: end for
26: end for
27: 𝒮← 𝒮,𝒮

′ ← 𝒮
′ , 𝑁 ← 𝑛, and 𝑡 ← 𝑡 + 1.

28: end while
29: for all 𝑖 (0 ≤ 𝑖 < 𝑁) do
30: if 𝐷 (𝑆𝑖) = 𝐷 (h0) then
31: append 𝑆𝑖 to 𝓱0.
32: end if
33: end for
34: return 𝓱0.

We will explain the procedure more precisely. First, an augmented distance
spectrum is defined as

𝐷 (h0) := {0} ∪ 𝐷 (h0) ∪ (𝑟 − 𝐷 (h0)), (10)

where (𝑟 −𝐷 (h0)) represents the set whose elements are obtained by subtracting
each element of 𝐷 (h0) from the key length 𝑟. This augmented distance spectrum
𝐷 (h0) is the set of possible positions of ones in the key when we set 𝑝0 = 0. At
the 𝑡-th step (𝑡 > 2), we have a family of sets 𝒮(𝑡 ) = {𝑆 (𝑡 )0 , 𝑆 (𝑡 )1 , . . . , 𝑆 (𝑡 )𝑁−1} and
its complement 𝒮

′ (𝑡 ) = {𝑆
′ (𝑡 )
0 , 𝑆

′ (𝑡 )
1 , . . . , 𝑆

′ (𝑡 )
𝑁−1}. Picking up an element 𝑎𝑙 ∈ 𝑆

′ (𝑡 )
𝑖

(0 ≤ 𝑖 < 𝑁), we make a new pair of sets,

𝑆 (𝑡+1)𝑖,𝑙 = 𝑆𝑖 ∪ {𝑎𝑙},

𝑆 (𝑡+1)
′

𝑖,𝑙 = {𝑏 ∈ 𝑆′𝑖 \ {𝑎𝑙} | 𝑏 > 𝑎𝑙 , 𝑏 − 𝑎𝑙 ∈ 𝐷 (h0)},

where their union 𝐵 (𝑡+1)𝑖,𝑙 := 𝑆 (𝑡+1)𝑖,𝑙 ∪ 𝑆
′ (𝑡+1)
𝑖,𝑙 can be a candidate of the key. When

the size of 𝐵 (𝑡+1)𝑖,𝑙 is less than 𝑑𝑣, it cannot be a candidate, and then we discard
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it. When the size equals to 𝑑𝑣, we check whether 𝐷 (𝐵𝑖,𝑙) = 𝐷 (h0) is satisfied. If
it is, we append 𝐵 (𝑡+1)𝑖,𝑙 into 𝓱

′
0 as a candidate; otherwise, it is discarded. When

the size is larger than 𝑑𝑣, 𝑆
(𝑡+1)
𝑖,𝑙 and 𝑆

′ (𝑡+1)
𝑖,𝑙 need to be further sieved, and then

proceed to the next step by being appended into 𝒮(𝑡+1) and 𝒮
′ (𝑡+1) , respectively.

It is worth mentioning that as in Algorithm 1 and 2, the line 21 of Algorithm 3
prune latter-concentrated candidates.

As aforementioned, the distance spectrum may not uniquely determine the
secret key. Thus, in practice, after collecting all candidates 𝓱

′
0, we need to de-

code messages using them, their cyclic shifts, and mirror images. A candidate
that successfully decodes messages will be the true secret key. However, many
numerical experiments imply that the distance spectrum should uniquely deter-
mine the recovered key up to the cyclic shifts and mirror images; this may be
due to the sparsity of the secret key [20].

4 Key reconstruction from imperfect distance spectrum

Clearly estimating the distance spectrum is in general a time-consuming task.
For instance, when we consider the 80-bit security parameters (𝑛, 𝑟, 𝑑𝑣, 𝑛0) =
(9602, 4801, 45, 2), it is implied that we need 𝑀 = 100, 000 or more trials to
separate the DERs [13]. As shown in Fig. 1, 10000 trials cannot sufficiently
separate DERs for 𝑑 ∈ 𝐷 (h0) and 𝑑 ∉ 𝐷 (h0): one can see that some red (blue)
points representing 𝑑 ∉ 𝐷 (h0) (∈ 𝐷 (h0)) is beneath (above) the threshold. More
trials make spectrum estimation more precise, but it takes a longer time. Figure 2
shows DERs with 5000 trials, which halves the time required for the estimation.
Clearly, it is more difficult to sufficiently separate the DERs than in the case of
𝑀 = 10000. Therefore, we cannot determine a clear threshold 𝑇 .

To deal with this inconvenience, we define an interval 𝒯 = [𝑇1, 𝑇2] (𝑇1 < 𝑇2),
where it is unclear whether the distance 𝑑 belongs to 𝜇(𝑑) = 0 or 𝜇(𝑑) = 1
(Fig. 2). Assume that if DER𝑑 is larger than 𝑇2, we consider that the distance 𝑑
does not exist in 𝐷 (h0). Meanwhile, if a distance 𝑑 has DER𝑑 less than 𝑇1, it is
assumed to exist in 𝐷 (h0) certainly. These assumptions will be justified by using
an appropriate classification method. Although we do not go into the details of
what method should be employed in practice, we provide a proposal to define
the interval 𝒯 in Appendix A.

The set of distances 𝑑 with such ambiguous DERs, which we refer to as
suspicious distances, is defined as

sus := {𝑑 ∈ [𝑈] | DER𝑑 ∈ 𝒯}.

It is assumed that the “true" threshold 𝑇 , which will perfectly separate 𝜇(𝑑) = 0
and 𝜇(𝑑) = 1 at the limit of the infinite number of trials, exists in the region 𝒯.

4.1 Upper and lower spectra

Our goal here is to consider key reconstruction algorithms, which can be valid
even when we only have the region 𝒯 instead of the threshold 𝑇 . In this case,
we cannot obtain the true distance spectrum 𝐷 (h0) of the secret key, and hence
the reconstruction algorithms need to be modified. Note that if 𝒯 is correctly
specified, we acquire an “upper" and a “lower”spectra of the true spectrum.
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𝒯

Fig. 2. Empirical DERs for all distances. The parameters are taken to be (𝑛, 𝑟, 𝑑𝑣, 𝑡) =
(9602, 4801, 45, 110) and 𝑀 = 5000. The red points represent DERs for 𝜇h0

(𝑑) = 0 while
the blue points does 𝜇h0

(𝑑) = 1. A region sandwiched by the black lines is 𝒯.

First, consider distances 𝑑 with DER𝑑 ≤ 𝑇1. As aforementioned, such dis-
tances 𝑑 are guaranteed to be in the true spectrum. We call the collection of
these spectrum the “lower”spectrum 𝒹(h0). This relates to the true spectrum
as follows:

𝒹(h0) = 𝐷 (h0) \ sus,
and therefore, it trivially satisfies the relation:

𝒹(h0) ⊂ 𝐷 (h0).

Next, consider distances 𝑑 with DER𝑑 > 𝑇2. These are guaranteed not to be in
the true spectrum. We refer to the complement of the collection of them, i.e., the
set of distances with DER𝑑 < 𝑇2, as the “upper " spectrum 𝒟(h0). The upper
spectrum contains the distances that may be in the true one. This relates to the
true spectrum as

𝒟(h0) = 𝐷 (h0) ∪ sus,
and thus,

𝐷 (h0) ⊂ 𝒟(h0).
The algorithm for constructing the upper spectrum 𝒟(h0) and the lower one
𝒹(h0) is provided in Algorithm 4.

Algorithm 4 Compute the lower and upper spectra
Input: 𝑇1, 𝑇2, number of decoding trials 𝑀 per distance, upper distance 𝑈.
Output: 𝒟(h0), 𝒹(h0).
1: 𝒟(h0) ← {}, 𝒹(h0) ← {}.
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2: for all 𝑖 (1 ≤ 𝑖 ≤ 𝑈) do
3: 𝑓 ← 0.
4: for all 𝑗 (0 ≤ 𝑗 < 𝑀) do
5: take v ∈𝛹𝑖.
6: Apply BF decoding to v.
7: if Hv𝑇 ≠ 0 then
8: 𝑓 ← 𝑓 + 1.
9: end if

10: end for
11: if 𝑓 /𝑀 ≤ 𝑇1 then
12: 𝒹(h0) ← 𝒹(h0) ∪ {𝑖}.
13: end if
14: if 𝑓 /𝑀 ≤ 𝑇2 then
15: 𝒟(h0) ← 𝒟(h0) ∪ {𝑖}.
16: end if
17: end for
18: return 𝒟(h0), 𝒹(h0).

4.2 reconstruction algorithms from imperfect spectrum

We propose two algorithms for key candidate construction provided that we
have the upper and lower spectra instead of the true spectrum. These can be
obtained by slight modification of the two algorithms explained in the previous
section. They differ in the following points. First, both algorithms use the upper
spectrum 𝒟(h0) for candidate construction. Candidates constructed from this
spectrum include those constructed from the true spectrum because of the con-
dition 𝐷 (h0) ⊂ 𝒟(h0). Second, when checking an obtained candidate h

′
0, we

use the lower spectrum 𝒹(h0). In line 14 of Algorithm 2 and lines 19 and 30 of
Algorithm 3, we check whether the distance spectrum of the candidate matches
the true spectrum or not. Instead, we now check whether the spectrum of the
candidate satisfies the following condition:

𝒹(h0) ⊂ 𝐷 (h
′
0),

which is a necessary condition for h
′
0 to be the true key because of the trivial

relation 𝒹(h0) ⊂ 𝐷 (h0).
The modified recursive algorithm is given in Algorithm 5 and 6. As easily

seen, modifications are not that many: we just replace 𝐷 (h0) in Algorithms by
the upper spectrum 𝒟(h0) or the lower one 𝒹(h0).
Algorithm 5 Recursive search for candidates from the imperfect spectrum
Input: 𝒟(h0), 𝒹(h0), 𝑝0 = 0, 𝑝1 = min(𝐷 (h0)), 𝑙 = 2.
Output: set of secret key candidates 𝓱

′
0

1: 𝓱
′
0 ← {}.

2: h
′
0 ← {𝑝0, 𝑝1}.

3: Call ℛ′ (h′
0, 𝑙 = 2) in Algorithm 6.

4: return 𝓱
′
0.

Algorithm 6 Recursive function ℛ
′ (h′

0, 𝑙) for the imperfect spectrum
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Input: h
′
0 = {𝑝0, 𝑝1, · · · , 𝑝𝑙−1}, 𝑙.

1: for all 𝑖 (𝑝𝑙−1 + 1 ≤ 𝑖 ≤ 𝑟) do
2: for all 𝑗 (0 ≤ 𝑗 ≤ 𝑙 − 1) do
3: if 𝑑 (𝑖, 𝑝 𝑗 ) ∉ 𝒟(h0) then
4: goto line 25.
5: end if
6: end for
7: 𝑝𝑙 ← 𝑖.
8: append 𝑝𝑙 to h

′
0.

9: if 𝑙 ≤ 𝑑𝑣+1
2 and 𝑝𝑙 ≥

⌈ 𝑟+𝑝1
2

⌉
then

10: goto line 25.
11: end if
12: if 𝑙 = 𝑑𝑣 − 1 then
13: Calculate 𝐷 (h′

0).
14: if 𝒹(h0) ⊂ 𝐷 (h

′
0) then

15: append h
′
0 to 𝓱

′
0.

16: goto line 25.
17: else
18: goto line 25.
19: end if
20: end if
21: 𝑙 ← 𝑙 + 1.
22: Recursive call of ℛ(h′

0, 𝑙).
23: Remove 𝑝𝑙 from h

′
0.

24: 𝑙 ← 𝑙 − 1.
25: end for
26: return

The modification of the breadth-first algorithm is obtained in a similar way to
the recursive one. The construction process utilizes the upper spectrum instead
of the true spectrum while the checking process employs the lower one. All other
processes are performed in the same way as in Algorithm 3.

Algorithm 7 Breadth-first key reconstruction from the imperfect spectrum
Input: 𝒟(h0), 𝒹(h0), 𝑝0 = 0, 𝑝1 = min(𝐷 (h0)), 𝑟: length of the secret key.
Output: set of secret key candidates 𝓱

′
0.

1: 𝓱
′
0 ← {}.

2: 𝒟(h0) = {𝑝0} ∪𝒟(h0) ∪ (𝑟 −𝒟(h0))).
3: 𝑆0 ← {𝑝0, 𝑝1}.
4: 𝑆

′
0 ← {𝑏 ∈ 𝒟(h0) \ 𝑆0 | 𝑑 (𝑏, 𝑝1) ∈ 𝒟(h0)}.

5: 𝑁 ← 1, 𝑡 ← 2.
6: 𝒮 = {𝑆0}.
7: 𝒮

′
= {𝑆′0}

8: while 𝑡 < 𝑑𝑣 and 𝑁 > 0 do
9: 𝒮← {}, 𝒮′ ← {}, 𝑛 = 0.

10: for all 𝑖 (0 ≤ 𝑖 < 𝑁) do
11: 𝑆

′
𝑖 = {𝑎0, 𝑎1, · · · }.

12: for all 𝑙 (0 ≤ 𝑙 <
��𝑆′𝑖 ��) do

13: 𝑆𝑖,𝑙 ← 𝑆𝑖 ∪ {𝑎𝑙}.
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14: 𝑆
′
𝑖,𝑙 ← {𝑏 ∈ 𝑆

′
𝑖 \ {𝑎𝑙} | 𝑏 > 𝑎𝑙 , 𝑑 (𝑏, 𝑎𝑙) ∈ 𝒟(h0)}}.

15: 𝐵𝑖,𝑙 ← 𝑆𝑖,𝑙 ∪ 𝑆
′
𝑖,𝑙.

16: if
(
𝐵𝑖,𝑙

)
𝑑𝑣+1
2
≥
⌈ 𝑟+𝑝1

2

⌉
then

17: goto line 24.
18: end if
19: if

��𝐵𝑖,𝑙 �� = 𝑑𝑣 and 𝒹(h0) ⊂ 𝐷 (𝐵𝑖,𝑙) then
20: append 𝐵𝑖,𝑙 to 𝓱0.
21: else if

��𝐵𝑖,𝑙 �� > 𝑑𝑣 then
22: append 𝑆𝑖,𝑙 to 𝒮, 𝑆′𝑖,𝑙 to 𝒮

′ as the 𝑛th elements.
23: 𝑛← 𝑛 + 1.
24: end if
25: end for
26: end for
27: 𝒮← 𝒮,𝒮

′ ← 𝒮
′ , 𝑁 ← 𝑛, and 𝑡 ← 𝑡 + 1.

28: end while
29: for all 𝑖 (0 ≤ 𝑖 < 𝑁) do
30: if 𝒹(h0) ⊂ 𝐷 (𝑆𝑖) then
31: append 𝑆𝑖 to 𝓱0.
32: end if
33: end for
34: return 𝓱0.

4.3 Numerical experiments

We demonstrate numerical experiments of key candidate construction from the
upper and lower spectra. We fisrt consider the 80-bit security parameters shown
in Table 1: (𝑛, 𝑟, 𝑑𝑣, 𝑛0) = (9602, 4801, 45, 2). Ten different binary vectors are
randomly generated as secret keys. The suspicious set sus, which makes the
distance spectrum imperfect, is also randomly generated: Note that we do not
perform actual processes of obtaining the distance spectrum. The size of sus,
𝑠 = |sus| is used as a parameter representing the spectrum imperfection. We
perform both construction algorithms for each secret key while increasing 𝑠.

Table 3 exhibits the time required for constructing the set of key candidates
𝓱

′
0 with changes in 𝑠 for each algorithm. From top to bottom, it shows the min-

imum, average, and maximum construction time for the ten secret keys. These
experiments are conducted using a 12th Gen Intel(R) Core(TM) i9-12900KF.

As one can see, both algorithms succeed to construct the set of candidates in
feasible time scales when 𝑠 is small. The construction time of both methods ex-
ponentially increases as 𝑠 increases. In all cases, Breadth-first method terminates
in a shorter time than the recursive one, which is the same behavior observed in
Ref. [20]. Surprisingly, we could not find non-trivially different candidates from
the secret key even when 𝑠 = 600. This may suggest that the sparsity of the key
is a strong condition for uniquely determining the key from its spectrum.
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Table 3. The construction time (in seconds) of the set of candidates 𝓱
′
0 for both

methods. The security parameters are set as (𝑛, 𝑟, 𝑑𝑣, 𝑛0) = (9602, 4801, 45, 2). 𝑠 = |sus|
represents the spectrum imperfection. The minimum, average, and maximum construc-
tion times for ten secret keys are shown from top to bottom in each cell.

𝑠 Recursive construction Breadth-first construction
(Algorithm 5 and 6) (Algorithm 7)

0
8.29 1.61
101 1.78
496 1.86

100
18.8 1.81
174 1.97
691 2.10

200
63.7 2.39
250 2.83
812 3.42

300
233 4.56

514.9 6.25
1221 8.77

400
883 13.2
1539 20.2
2844 28.3

500
3616 51.6
6483 89.1
11413 127

600
20106 281
34814 483
50459 750

We also evaluate the time required for constructing a secret key in the 128-
bit security parameters of BIKE, (𝑛, 𝑟, 𝑑𝑣, 𝑛0) = (24646, 12323, 71, 2) in a similar
manner. The recursive search for five instances out of ten fails to construct secret
keys within the time limit (7days) even with the perfect spectrum. Meanwhile,
the breadth-first search succeeds key construction with 𝑠 = 600 spectrum imper-
fection.
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Table 4. The construction time (in seconds) of the set of candidates 𝓱
′
0 for both

methods. The security parameters are set as (𝑛, 𝑟, 𝑑𝑣, 𝑛0) = (24646, 12323, 71, 2): the
128-bit security parameter of BIKE. 𝑠 = |sus| represents the spectrum imperfection. The
minimum, average, and maximum construction times for ten secret keys are shown from
top to bottom in each cell. We set the time limit of experiments to be 7days (= 604800
s).

𝑠 Recursive construction Breadth-first construction
(Algorithm 5 and 6) (Algorithm 7)

0
30684.63 2.84

- 3.86
>7days 4.93

100
37715.74 6.43

- 8.61
>7days 11.00

200
39567.36 18.01

- 24.51
>7days 30.43

300
43557.87 60.54

- 82.74
>7days 117.24

400
51930.30 208.41

- 304.91
>7days 508.32

500
68510.49 618.11

- 1210.65
>7days 2566.46

600
99027.03 1993.89

- 4661.15
>7days 11516.88

5 Summary

The key recovery attack on QC-MDPC McEliece cryptosystems (QC-MDPC
scheme) proposed in Ref. [14] consists of two steps. In the first step, an attacker
sends specific messages many times and estimates the distance spectrum of the
secret key, which is the collection of distances of all pairs of ones in the key. In
the second step, the attacker constructs candidates of the key from the estimated
distance spectrum. If the number of messages is sufficiently large, they acquire
the perfect distance spectrum, and the second step can easily be performed. In
practice, sending that many messages is time-consuming. Therefore, the attacker
will only send a finite number of messages, which makes the estimation imperfect.
For example, the perfect estimation of the spectrum requires over 100,000 trials
when we consider the QC-MDPC scheme with the 80-bit security parameters
(𝑛, 𝑟, 𝑑𝑣, 𝑛0) = (9602, 4801, 45, 2) and the error number 𝑡 = 110.

In this paper, we have proposed two algorithms than can construct key candi-
dates from an imperfect distance spectrum. In our algorithms, we utilize “upper
and lower bounds" of the true spectrum. One of our algorithms is based on
the recursive search, which is originally proposed in Ref. [14] while the other
is based on the breadth-first search proposed in Ref. [20]. We have shown that
both algorithms successfully construct key candidates from an imperfect distance
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spectrum up to some level of the imperfection for the 80-bit security parameters
(𝑛, 𝑟, 𝑑𝑣, 𝑛0) = (9602, 4801, 45, 2). This implies that even when the number of tri-
als in the first step is insufficient to estimate the perfect spectrum, it will still
be possible to construct key candidates. The time required for the second step
will be almost negligible compered to that for the first step even under the spec-
trum imperfection; therefore, reducing the number of trials as much as possible
will probably be efficient. This will pave the way into shortening the total time
required for the key recovery attack. Furthermore, we found that the construc-
tion time of the breadth-first recovery algorithm is shorter than the recursive
one. This is the same behavior as in the case where the distance spectrum is
fully acquired [20]. More importantly, for the 128-bit security of BIKE, only the
breadth-first recovery succeeds key construction within the time limit of 7 days.

We need to evaluate the imperfection level where the key construction does
not succeed any more. This will be our future work. Also, another type of im-
perfection is worth investigating. In this paper, we have assumed that the im-
perfection in the distance spectrum occurs randomly. Reference [25] suggested
that the imperfection may intensively be distributed in the latter half of the
spectrum when one uses Black-Gray-Flip decoding [25]. Therefore, it will be im-
portant to evaluate the key construction in the case where the imperfection is
concentrated in the latter half of the spectrum. Also, it is worth mentioning that
our approach will be applicable not only to the original GJS reaction attack but
alto to a timing attack proposed in Ref. [11].

Another method for constructing secret keys from imperfect spectrum was
provided in Ref [21], and should be compared with our method. An important
difference between their method and ours is that they use two (and more) dis-
tance spectra of h0 and h1, which is the first row of H1. As obtaining two
distance spectra is time-consuming compared with obtaining one, our method
may be advantageous to theirs, but careful considerations are required.

A How to determine suspicious interval

Here, we provide how to define the suspicious interval T whereby the suspicious
distances are classified. According to our numerical experiments and those in
Ref. [14], DER𝑑’s with distances 𝑑 having a fixed multiplicity 𝜇(𝑑) = 𝑘 looks to
be sampled from a Gaussian distribution, whose average and variance depend on
𝑘. Thus, we employ the Gaussian Mixture distribution to classify the distance
multiplicities of distances in a secret key.

The Gaussian Mixture distribution is defined as

𝑝(𝑥) =
𝐾∑
𝑘=0

𝜋𝑘N(𝑥 |𝑚𝑘 , 𝜎𝑘),
𝐾∑
𝑘=0

𝜋𝑘 = 1, (11)

where 𝑘 represents a multiplicity, 𝜋𝑘 is the probability of appearance of the
multiplicity 𝑘 in a secret key, andN(𝑚𝑘 , 𝜎𝑘) is the Gaussian distribution with the
average 𝑚𝑘 and the variance 𝜎𝑘 . DER’s obtained for a secret key with ignorance
on the multiplicity will approximately be generated from this distribution. The
standard deviation will obey the central limit theorem, and therefore decrease
as 1/

√
𝑀, where 𝑀 is the trial number for computing each DER𝑑. the number of

Gaussian distributions 𝐾 should be taken depending on the upper bound of the
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multiplicity 𝑘, which is related with the density of a key in considered security
parameters.

To estimate the parameters 𝜋𝑘 , 𝑚𝑘 , and 𝜎𝑘 , we employ the expectation-
maximization algorithm [9] using 𝑈 experimental data of DER’s. The explicit
algorithm is shown in Algorithm 8.

Algorithm 8 Estimate 𝜋𝑘 , 𝑚𝑘 , and 𝜎𝑘 from experimental data
Input: distribution number 𝐾, upper distance 𝑈, iteration 𝐿, experimental data

DER𝑑 (1 ≤ 𝑑 ≤ 𝑈), acceptable difference 𝛿 (≪ 1).
Output: 𝜋𝑘 , 𝑚𝑘 , 𝜎𝑘 (0 ≤ 𝑘 ≤ 𝐾).
1: Initialize 𝜋𝑘 , 𝑚𝑘 , and 𝜎𝑘 .
2: 𝐿prev =

∑𝑈
𝑑=1 ln

(∑𝐾
𝑘=0 𝜋𝑘N(DER𝑑 |𝑚𝑘 , 𝜎𝑘)

)
.

3: for all 𝑙 (1 ≤ 𝑙 ≤ 𝐿) do
4: for all 𝑘 (0 ≤ 𝑘 ≤ 𝐾) do
5: for all 𝑑 (1 ≤ 𝑑 ≤ 𝑈) do
6: 𝛾𝑑,𝑘 ← 𝜋𝑘N(DER𝑑 |𝑚𝑘 ,𝜎𝑘 )∑𝐾

𝑗=0 𝜋 𝑗N(DER𝑑 |𝑚 𝑗 ,𝜎 𝑗 )
.

7: end for
8: 𝑁𝑘 =

∑𝑈
𝑑=1 𝛾𝑑,𝑘 .

9: end for
10: 𝑁 =

∑𝐾
𝑘=0 𝑁𝑘 .

11: for all 𝑘 (0 ≤ 𝑘 ≤ 𝐾) do
12: 𝜋𝑘 = 𝑁𝑘/𝑁.
13: 𝑚𝑘 = 1

𝑁𝑘

∑𝑈
𝑑=1 𝛾𝑑,𝑘 · DER𝑑.

14: 𝜎𝑘 = 1
𝑁𝑘

∑𝑈
𝑑=1 𝛾𝑑,𝑘 (DER𝑑 − 𝑚𝑘)2.

15: end for
16: 𝐿 =

∑𝑈
𝑑=1 ln

(∑𝐾
𝑘=0 𝜋𝑘N(DER𝑑 |𝑚𝑘 , 𝜎𝑘)

)
17: if

��𝐿 − 𝐿prev�� ≤ 𝛿 then
18: goto line 22.
19: end if
20: 𝐿prev = 𝐿
21: end for
22: return 𝜋𝑘 , 𝑚𝑘 , 𝜎𝑘 (0 ≤ 𝑘 ≤ 𝐾).

We demonstrate the above estimation procedure for a randomly generated
binary vector with the bit length 4801 and the weight 45, which correspond
to the 80-bit security parameters discussed in the main text. The number of
Gauss distributions 𝐾 is taken to be 3 because the multiplicities more than 4
hardly occur for this density. Experimental data of DER’s are calculated with the
trial number 𝑀 = 5000, 10000 for each distance. Figure 3 shows good agreement
between the histogram of experimental data and the calculated Gaussian mixture
distributions with appropriate scaling.

Using the calculated parameters {𝜋𝑘 , 𝑚𝑘 , 𝜎𝑘}𝐾𝑘=0, we can estimate the suspi-
cious interval T defined by 𝑇1 and 𝑇2. Let us first consider how to determine
𝑇1. If DER𝑑 is less than 𝑇1, the multiplicity 𝜇(𝑑) is almost certainly non-zero.
The probability of appearance of the multiplicity 𝑘 in 𝑈 sample data is roughly
estimated as 𝜋𝑘 ; therefore, the number of distances with the multiplicity 𝑘 in
the sample data will be 𝑈𝜋𝑘 . The probability that all distances with 𝑘 = 0 have
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0.84 0.86 0.88 0.90 0.84 0.86 0.88 0.90

𝑀 = 5000 𝑀 = 10000

Fig. 3. The histgram of experimental data and the calculated Gaussian mixture distri-
butions. In both panels, the blue lines represent the calculated distributions. The left
panel shows them for the trial number 𝑀 = 5000 while the right one shows them for
𝑀 = 10000.

DER𝑑 more than 𝑇1 is calculated by(∫ 1

𝑇1

𝑑𝑦N(𝑦 |𝑚0, 𝜎0)
) ⌈𝑈𝜋0 ⌉

. (12)

By letting this be larger than an appropriate success probability 𝛼(< 1), we
obtain 𝑇1 as a function of 𝛼: 𝑇1 = 𝑇1 (𝛼). 𝑇2 is determined in a similar manner:(∫ 𝑇2

0

𝑑𝑦N(𝑦 |𝑚1, 𝜎1)
) ⌈𝑈𝜋1 ⌉

> 𝛽 =⇒ 𝑇2 = 𝑇2 (𝛽), (13)

where 𝛽(< 1) is an appropriately chosen success probability. Here we ignore the
contribution of the distributions for 𝑘 more than 2. The total probability of
successfully determining 𝑇1 and 𝑇2 is roughly estimated as 𝛼𝛽. Obviously, taking
higher 𝛼 and 𝛽 gives a higher success probability while it gives a larger number
of suspicious distances |sus|. In our experiments with (𝑛, 𝑟, 𝑑𝑣) = (9602, 4801, 45),
taking 𝛼 = 𝛽 = 0.9, we found that |sus| is roughly 400 for 𝑀 = 5000 and |sus| = 50
for 𝑀 = 10000. If we obtain 𝑇1 > 𝑇2, it is better to define a threshold 𝑇 rather
than the interval T . For instance, 𝑇 = (𝑇1 + 𝑇2) /2 will be a good threshold.
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