
Adaptively Secure Threshold Blind BLS
Signatures and Threshold Oblivious PRF

Stanislaw Jarecki and Phillip Nazarian

University of California Irvine, USA, [sjarecki, pnazaria]@uci.edu

Abstract. We show the first threshold blind signature scheme and
threshold Oblivious PRF (OPRF) scheme which remain secure in the
presence of an adaptive adversary, who can adaptively decide which
parties to corrupt throughout the lifetime of the scheme. Moreover, our
adaptively secure schemes preserve the minimal round complexity and
add only a small computational overhead over prior solutions that
offered security only for a much less realistic static adversary, who must
choose the subset of corrupted parties before initializing the protocol.
Our threshold blind signature scheme computes standard BLS
signatures while our threshold OPRF computes the 2HashDH
OPRF [58], and we prove adaptive security of both schemes in the
Algebraic Group Model (AGM). Our adaptively secure threshold
schemes are as practical as the underlying standard (i.e. single-server)
BLS blind signature [14] and 2HashDH OPRF, and they can be used to
add cryptographic fault-tolerance and decentralize trust in any system
that relies on blind signatures, like anonymous credentials and e-cash,
or on OPRF, like the OPAQUE password authentication and the
Privacy Pass anonymous authentication scheme, among many others.

1 Introduction

Threshold and Blind Signatures. In threshold signatures, introduced by
Desmedt and Frankel [41, 42], n parties can compute signatures but corruption
of any t parties leaks no information on the signature key. Threshold signatures
enhance security and robustness of signatures, and have been a topic of a long line
of research, with the recent interest driven by blockchain and other decentralized
systems, motivating efficiency and security improvements, e.g. [50, 72, 73, 49,
21, 24, 69, 36, 4, 12, 34, 30], and a NIST call for standardization [16].

Blind signatures, introduced by Chaum [28], enable a server who holds the
key, to issue a signature on a message held by a user, in a way that keeps the
message hidden to the signer, and the user obtains only a signature on the
single message which it specified in the protocol. Blind signatures are a
powerful tool that enables many privacy-protecting applications, including
ecash [28, 29, 76], anonymous credentials [18, 17], electronic voting [52], and
blockchain transactions [57]. They are undergoing standardization efforts
[40, 25, 6] and are used in products by Apple [7] and Google [51]. In all these
applications the party who holds the signature key is the root of trust, and one

https://orcid.org/0000-0002-5055-2407
https://orcid.org/0009-0005-1230-6941

can make these schemes fault-tolerant and reduce the risk of key compromise,
by secret-sharing this key and replacing the blind signature scheme with a
threshold blind signature scheme (tBSig) [84, 70, 35].

BLS signatures [15], based on a bilinear map group, have the simplest (and
round-minimal) threshold signature protocol and blind signature protocol, both
proposed by Boldyreva1 [14]. Vo et al. [84] observed that these two protocols
can be naturally composed into a threshold blind BLS scheme, which is still
round-minimal and essentially as efficient as the BLS signature itself. There are
only three further works on provably secure threshold blind signatures. First,
Kuchta and Manulis [70] construct threshold blind signatures secure under the
Computational Diffie-Hellman (CDH) assumption, but it is much more
computationally intensive than threshold blind BLS. Second, Doerner et
al. [43] provide a threshold blind scheme that generates BBS+ signatures and
is secure assuming the security of oblivious transfer. Third, Crites et al. [35]
show a construction that is secure under the Discrete Logarithm (DL)
assumption in the Algebraic Group Model (AGM). Only the first of these is
round-optimal, and all three are shown secure only for a static adversary, who
chooses the subset of corrupted parties before the protocol starts to operate.2

Threshold Oblivious PRF. An oblivious pseudorandom function (OPRF) is a
protocol by which a user and server can jointly evaluate a PRF. Similar to a blind
signature scheme, the user does not learn the PRF key and the server does not
learn the PRF input. Applications include private set intersection [56, 62, 63, 68],
password-protected secret sharing [11, 58, 59, 37], private information retrieval
[45], password-authenticated key exchange (PAKE) [61], threshold PAKE [58,
53], and key management for outsourced file systems [60].

Among many OPRF realizations, see the survey on OPRF in [23], a
popular low-cost approach is called “(Two-)Hashed Diffie-Hellman”
(2HashDH) OPRF [58]. The 2HashDH OPRF of [58] is almost identical to
Boldyreva’s blind BLS, except that there is no pairing that allows for public
verification of function output. Statically secure threshold OPRF (tOPRF)
protocols, which compute 2HashDH OPRF in a threshold setting [59, 53], are
likewise very similar to the (statically secure) threshold blind BLS [84].

Adaptive security. In the context of threshold cryptosystems an adaptive
adversary model considers attackers who can corrupt up to a prescribed
threshold of protocol participants, but can decide when and whom to corrupt
at any time, possibly on the basis of protocol executions observed so far. By

1 There are many other blind signature schemes, e.g. [77, 80, 2, 82, 35, 27, 65], but these
are more complex and are not round-optimal. There are also alternative schemes
using bilinear maps that are proven secure under weaker assumptions, e.g. [26, 55],
but these schemes are significantly more computationally intensive than the blind
BLS of Boldyreva and do not produce standard BLS signatures.

2 Some other threshold blind signature schemes have been proposed under informal
security models and proofs, e.g. [66, 78]. There have also been recent works targeting
closely related notions such as threshold anonymous credentials, e.g. [79]. None of
these works consider an adaptive adversary.

2

contrast, the static adversary model, where the attacker must decide which
subset of participants to corrupt before the protocol starts, is an artificial
restriction, without much practical justification beyond the fact that it makes
security proofs easier. Indeed, constructing threshold cryptosystems, e.g.
threshold signatures, with provable security against adaptive adversary has
been a long-standing challenge, e.g. [22, 44, 74, 3, 5, 71], which has recently
seen a renewed interest spiked by emerging practical applications of threshold
cryptosystems, e.g. [8, 32, 38, 48, 9, 39]. We note that adaptively secure
threshold protocols usually tend to be either more expensive or rely on
stronger assumptions than schemes known to be statically secure. Our results
follow this pattern, as we explain further below.

The applications of threshold blind signatures or threshold Oblivious PRF,
would benefit from adaptive security because static security is an artificial
constraint. If a protocol achieves adaptive security with only very mild impact
on efficiency (as is the case for the protocols we show), such protocol will be
preferable in practice because stronger confidence in application security will
outweigh a mild efficiency impact. To pick just one example from the
applications of blind signatures and threshold OPRF listed above, an adaptive
tOPRF would imply adaptively secure proactive threshold PAKE, applying a
black-box tOPRF-to-tPAKE compiler of [53].

We stress that until our work, there was no threshold blind signature or
threshold OPRF solutions which were shown adaptively secure. Moreover, with
regards specifically to BLS signatures, even for threshold non-blind BLS,
adaptive security was not known until very recently. First, Bacho and Loss [8]
proved adaptive security for Boldyreva’s threshold BLS scheme, relying on the
AGM and the One-More Discrete Log (OMDL) assumption. Even more
recently, Das and Ren [39] showed a modified threshold BLS scheme, with a
very mild impact on efficiency, which is adaptively secure under the Decisional
Diffie-Hellman (DDH) and (co-)Computational Diffie-Hellman (CDH)
assumptions, but not the AGM.

Our contributions. We provide the first tBSig and tOPRF schemes with a
proof of adaptive security. Our proofs rely on the AGM and the OMDL, DDH,
and Strong Discrete Log (SDL) assumptions in the Random Oracle Model
(ROM). These dependencies are strong but justified in comparison to previous
work. The One-More Diffie-Hellman (OMDH) assumption is necessary for
standard, i.e. single-server, blind BLS [14] and 2HashDH OPRF [58], and
OMDH implies SDL. The AGM and OMDL have been used by proofs of
adaptively secure non-blind threshold signatures, including threshold BLS [8]
and threshold Schnorr [34], and the only proof of statically secure tOPRF [53]
uses DDH and OMDH asumptions3, and all these works assume ROM. We
note that our adaptively-secure tOPRF and BLS-based tBSig schemes impose
only a small computational overhead over resp. the statically-secure tOPRF of
[53] and statically-secure threshold blind BLS [14, 84].

3 A secure tOPRF based on just OMDH was claimed by [59], but [53] showed an error
in the proof of [59], and used the DDH assumption to fix it.

3

We note that we define adaptive tOPRF using game-based definitions
comparable to the game-based definitions of threshold blind signatures [70, 33].
However, in Appendix D we show a simple extension of our game-based
tOPRF which realizes an adaptively secure Universally Composable (UC)
tOPRF formalized in [53], and computes the same PRF as the 2HashDH
OPRF of [58]. Since our proofs are in the AGM, we show the above in the UC
framework adapted to AGM by Abdalla et al. [1]. Specifically, using the
terminology of [1], we show that our protocol G1-AGM emulates the UC
tOPRF functionality of [53], where G1 is a prime-order group. In particular, we
show a simulator which is G1-algebraic, i.e. it uses only algebraic operations on
the same group, and the UC tOPRF functionality is algebraic as well, because
it is independent of a group which the implementation uses.

From a technical standpoint, we build on a novel blinding technique
introduced in two recent works, the adaptive threshold (but not blind) BLS
signature of [39] and the (static) threshold OPRF of [53]. The technique adds a
blinding factor to threshold exponentiation, by masking it with an
exponentiation using an independent base, sampled via an RO hash, and
exponents which form a zero-sharing (which causes the blinding factor to
vanish after interpolation). The two works used this technique for very different
purposes: [39] used it to prove adaptive security for non-blind threshold BLS,
while [53] used it to eliminate attacks on blind threshold exponentiation/BLS,
present already in the static setting. We combine and expand on both usages of
these blinding factors (and we use two such factors instead of one) to realize
adaptive threshold blind BLS and oblivious PRF, and our techniques (see
below) may have further applications to threshold cryptosystems.

Lastly, throughout the paper our main focus is on tOPRF, including in our
security notions, protocol presentation, and our security proofs, but throughout
we mark as shadowed text the changes required to shift from tOPRF to tBSig.
Indeed, one can see e.g. in our main protocol, shown in Figure 3, that these
difference are small. Intuitively, tBSig differs from tOPRF only in the presence
of the bilinear map which can be used for verification of the tOPRF output,
which in the tBSig context is interpreted as a signature. The presence of this
bilinear map doesn’t have a major effect on most of our arguments, and we
explain that this is so in more details in a subsection at the end of Section 4.

1.1 Technical Overview

In this section, we provide a high-level explanation of the main ideas in our work.
As a jumping-off point, we begin with a simplified overview of the adaptively
secure threshold non-blind BLS scheme of Das and Ren [39], and we overview the
security challenges encountered by its threshold blind counterpart. Overcoming
these challenges requires several novel techniques, which we also outline here.

Das-Ren argument for adaptive threshold non-blind BLS. Recall that
the BLS signature is y = H0(x)

k where pk = gk is the public key, k is the secret
key, and H0 is a hash onto group ⟨g′⟩ s.t. there is a bilinear map on ⟨g⟩ × ⟨g′⟩.

4

In Das and Ren’s threshold BLS servers hold a Shamir secret-sharing {ki} of
k and a sharing {zi} of z = 0. To sign message x, server i computes partial
signature qi := H0(x)

ki · H1(x)
zi , where H1 is another hash onto group ⟨g′⟩.

Using interpolation in the exponent the user can aggregate qi’s to recover

y :=
∏
i∈S

(qi)
λi = H0(x)

∑
i∈S λiki ·H1(x)

∑
i∈S λizi = H0(x)

k ·H1(x)
0 = H0(x)

k

for a large enough subset S and Lagrange interpolation coefficients {λi}i∈S. Note
that the “blinding factors” H1(x)

zi in the partial signatures disappear from the
final signature, but their presence is integral to the proof of security.

In proving adaptive security, the reduction must be able to, upon
corruption of any server, produce secret keys (ki, zi) that explain that server’s
previous partial signatures. This thwarts a simple Computational
Diffie-Hellman (CDH) reduction that sets pk := gα where gα is one of the two
CDH challenge group elements, and uses trapdoors embedded in H0 responses
to compute partial signatures in spite of not knowing α, and therefore not
knowing all ki. Das and Ren’s idea is that the reduction generates all ki’s
honestly, but generates zi’s as a sharing of random z rather than z = 0, and
embeds the CDH challenge in H1 responses. Specifically, the reduction sets
pk := gk · gα = gk+α, and for all x queried to H0 except one of them chosen at
random, it sets H1(x) and H0(x) s.t. H1(x)

z = H0(x)
α, and this way partial

signatures qi = H0(x)
ki · H1(x)

zi interpolate to H0(x)
k · H1(x)

z = H0(x)
k+α.

This correlated programming of H0, H1 is possible using only gα and z (and if
the reduction trapdoors H0 outputs as H0(x) := gτx for random τx’s), and it is
undetectable under the DDH assumption. If the adversary corrupts only the
allowed threshold of servers then the fact that z ̸= 0 is hidden, and all appears
as normal if the key was k′ = k + α. The other group element of the CDH
challenge is programmed to H0(x

∗) := gβ , where x∗ is randomly chosen from
the queries to H0, and if the adversary outputs forgery y∗ = H0(x

∗)k+α for the
guessed argument x∗, the reduction can extract gα·β and thus win CDH.

Moving to threshold blind BLS. Using the “blind exponentiation” technique
due to Chaum [28], either BLS signature or BLS threshold signature scheme can
be made blind [14, 84]: The user computes p := H0(x)

r for randomly chosen r
and sends it to the servers. The servers use p in place of H0(x) in their partial
signatures, and the user exponentiates the aggregated result to 1/r to arrive at
the final signature. To make Das and Ren’s threshold BLS scheme blind, the
servers can use p instead of x in their blinding factors, i.e. set qi := pki ·H1(p)

zi .

At first glance, it might seem that Das and Ren’s proof techniques are still
immediately applicable to this blind threshold BLS scheme, but this is not the
case. In the newly blinded scheme an adversarial user can query the servers
using arbitrary p values, and this introduces major complications in the proof
of security. There are four types of adversarial query behaviors that our proof
must handle. Below we summarize these patterns, along with sketching the proof
techniques we use to show that the scheme is secure in spite of them.

5

#1: Blinded Queries. Suppose the reduction programs H0(x) := gτx for a
random trapdoor τx. An honest user will then pick random r and send p :=
H0(x)

r = gτx·r to the servers. If our reduction were to follow the above sketch,
it would have to program H1(p) := pα/z = (gα)(τx·r)/z given the CDH challenge
gα, but this seems hard because p is a random group element, and it is not clear
how the reduction could link it to exponents τx and r.

We resort to the Algebraic Group Model (AGM) to solve this: If the adversary
must accompany p = H0(x)

r with its algebraic representation, i.e. base H0(x)
and exponent r, then the reduction learns x, r and can set H1(p) := (gα)(τx·r)/z.

#2: Re-Randomized Queries. Suppose the adversary is an honest user who
re-uses some input x, i.e. it sets p1 := H0(x)

r1 and p2 := H0(x)
r2 for random

r1, r2. If H1(p1) = (p1)
α/z and H1(p2) = (p2)

α/z as above, the adversary can
detect that these responses are not random because H1(p1)

1/r1 = H1(p2)
1/r2 .

We solve this problem using a second zero-sharing {ẑi} and making the partial
signatures include two blinding factors, i.e. qi := pki · H1(p)

zi · H2(p)
ẑi . In the

reduction shares zi and ẑi interpolate to random z and ẑ, and the reduction
programs H1, H2 in a correlated way that achieves the same result as before,
setting H1(p) := pδp·α/z and H2(p) := p(1−δp)·α/ẑ, where δp is randomly chosen
for each p. This way qi’s still interpolate to p

k+α, and under the DDH assumption
this correlated programming remains undetectable to the adversary.

#3: Mixed Queries. Honest users use only a single H0(x) base to form p.
However, an adversary can instead combine many H0 outputs to form
p := H0(x1)

r1 · ... · H0(xL)
rL . This strategy is not necessarily self-defeating: If

the adversary forms L queries p1, ..., pL, each pi using a different randomizer
vector ri,1, ..., ri,L, and sends each such pi to t+1 servers and interpolates
these answers into pki , then it can extract H0(x1)

k, ..., H0(xL)
k as long as these

randomizer vectors are linearly independent. This is not a wasteful strategy
because it extracts signatures on L values using L · (t+1) queries. Das and
Ren’s CDH reduction relies upon guessing a single forgery target x∗ and
embedding the CDH challenge (rather than a trapdoor) into H0(x

∗), but in
our case, the above adversary can make H0(x

∗) a component in every query p,
and if it contains a challenge, and not a trapdoor, the reduction wouldn’t know
how to respond (in particular, it could not set H1(p) and H2(p) as above).

We circumvent this problem by replacing the above CDH reduction with
two reductions, to resp. One-More Discrete Logarithm (OMDL) and Discrete
Logarithm (DL). In the first reduction, to OMDL, we embed the t OMDL
challenges into the blinding factor shares zi, ẑi, while the ki shares are picked
honestly. The reduction only knows gzi and gẑi , but this is sufficient to
compute partial signatures due to the embedding of trapdoors in H1 and H2

responses. (This OMDL reduction programs H1 and H2 outputs differently
than described above, because at this point in the argument the main key is no
longer “rigged” as in the Das-Ren reduction described above, and pk is simply
set as gk for k known to the reduction.) Upon server corruption, the DL oracle
is used to find the correct zi, ẑi. We use this OMDL reduction to argue that the
adversary must form its final signatures via correct interpolation of partial

6

signatures on the same query p; otherwise, the reduction learns a system of
equations that is sufficient to solve for some zi or ẑi. Consequently, any p that
is not queried to at least t+1 servers (minus the number of eventually
corrupted servers) is useless to the adversary. The above step conceptually
simplifies the multiple servers setting into a single signing entity. Moreover, the
same argument ensures that the adversary’s final signatures are accompanied
by algebraic representations which involve t+1 partial signatures for any
meaningfully used server query p.

In the second step, the reduction solves DL if the adversary computes the
signatures on L arguments but makes less than L·(t+1) partial signature queries
(it is t+1 minus the number of eventually corrupted parties, but we omit that for
simplicity). This reduction proceeds similarly as the reduction described in part
#2 above, but the only challenge is gα: The reduction picks all ki, zi, ẑi shares
and correlates H1, H2 responses as the reduction in part #2. However, unlike
in Das and Ren’s proof, this reduction trapdoors all H0 outputs (in particular
there is no x∗ for which H0(x

∗) is programmed differently), and we show that
if the adversary’s algebraic representations explain L correct signatures using
less than L (times t+1) different p queries, then these representations provide
a system of equations by which the reduction can solve for α.

#4: Recursive Queries. Lastly, the adversary might perform recursive queries,
i.e. the adversary can use a server’s response as part of the input to a new server
query. Similarly, the adversary can use H1 and H2 outputs to form server queries
(and/or new H1 and H2 inputs). Recursive and mixed querying behaviors might
even occur in tandem, creating bizarre queries like p = H0(x1) · H1(H0(x1) ·
H1(H0(x2))). Unlike the other three querying behaviors, we have no concrete
example of an adversary that would act in these ways and succeed; nonetheless,
our reductions must be able to handle this behavior.

To solve this problem, we upgrade the aforementioned DL reduction into a
q-Strong DL (q-SDL) reduction. In the q-SDL problem, the reduction is given

not just gα, but also gα
2

, gα
3

, . . . , gα
q

. These higher powers can be used by the
reduction to compute proper H1 and H2 responses to recursive random oracle
queries. The q-SDL reduction knows all secret keys {ki, zi, ẑi}, so there is no
further problem handling recursive queries to the servers.

2 Preliminaries

2.1 Group Setting and Hardness Assumptions

We recall the setting of a bilinear pairing group needed for BLS signatures, and
the assumptions used in our security proofs.

Definition 1 (Bilinear Pairing). Let G1,G2,GT be cyclic groups of prime
order m with generators g1, g2, gT , respectively. A bilinear pairing is an efficiently
computable function e : G1 × G2 → GT with the property that e((g1)

a, (g2)
b) =

(gT)
ab for all a, b ∈ Zm.

7

In a type 1 (or “symmetric”) pairing setup, there are efficiently computable
homomorphisms from G1 to G2 and from G2 to G1 (it may be that G1 = G2).
In a type 2 pairing setup, there is an efficiently computable homomorphism only
from G2 to G1. In a type 3 pairing setup, there is no efficiently computable
homomorphism in either direction.

Definition 2 (Discrete Logarithm Problem). Let G be a cyclic group of
prime order m with generator g. The Discrete Logarithm problem (DL) on G
is, given (g, gξ) where ξ ←$ Zm, to find ξ. We say that DL is (ϵ, T)-hard in G if
all algorithms running in time T have no better than ϵ probability of solving the
DL problem.

Definition 3 (N-Relational Discrete Logarithm Problem). Let G be a
cyclic group of prime order m with generator g. The N -Relational Discrete
Logarithm problem (N -RDL) on G is, given (gξ1 , . . . , gξN) where
ξ1, . . . , ξN ←$ Zm, to find c1, . . . , cN ∈ Zm such that

∏
i∈[N](g

ξi)ci = 1 and

∃i∈[N] ci ̸= 0. We say that N -RDL is (ϵ, T)-hard in G if all algorithms running
in time T have no better than ϵ probability of solving the N -RDL problem.

Lemma 1. If DL is (ϵ, T)-hard in G, then N -RDL is (m
m−1 ·ϵ,O(T −N logm))-

hard in G.

The equivalence between the DL and N -RDL problems is well-known [67].
We include a brief proof of Lemma 1 in Appendix A. For brevity, we will omit
the factor m

m−1 ≈ 1 throughout the rest of this work.

Definition 4 (q-Strong Discrete Logarithm Problem). Let G be a cyclic
group of prime order m with generator g. The q-Strong Discrete Logarithm
problem (q-SDL) on G is, given (g, gξ, gξ

2

, . . . , gξ
q

) where ξ ←$ Zm, to find ξ.
We say that q-SDL is (ϵ, T)-hard in G if all algorithms running in time T have
no better than ϵ probability of solving the q-SDL problem.

DL is a special case of q-SDL where q = 1.

Proving security of our pairing-based signature scheme will require a different
version of q-SDL adapted to that setting.

Definition 5 (q-Strong co-Discrete Logarithm Problem). Let G1,G2 be
cyclic groups of prime order m with generators g1, g2, respectively. The
q-Strong co-Discrete Logarithm problem (q-co-SDL) on (G1,G2) is, given

(g1, (g1)
ξ, (g1)

ξ2 , . . . , (g1)
ξq , g2, (g2)

ξ) where ξ ←$ Zm, to find ξ. We say that
q-co-SDL is (ϵ, T)-hard in (G1,G2) if all algorithms running in time T have no
better than ϵ probability of solving the q-co-SDL problem.

We note that our variant of the q-co-SDL assumption is weaker than the one
that has appeared in previous pairing-based works, e.g. [54, 46, 83, 31, 86], as

our version provides only (g2)
ξ and not all q higher powers (g2)

ξ2 , . . . , (g2)
ξq .

8

Definition 6 (t-One-More Discrete Logarithm Problem). Let G be a
cyclic group of prime order m with generator g. The t-One-More Discrete
Logarithm problem (t-OMDL) on G is, given (g, gξ1 , . . . , gξt) where
ξ1, . . . , ξt ←$ Zm and given access to discrete logarithm oracle DLg(·), to find
all ξ1, . . . , ξt while making at most t − 1 calls to DLg(·). We say that t-OMDL
is (ϵ, T)-hard in G if all algorithms running in time T have no better than ϵ
probability of solving the t-OMDL problem.

DL is a special case of t-OMDL where t = 1.

Definition 7 (Decisional Diffie-Hellman Problem). Let G be a cyclic
group of prime order m with generator g. The Decisional Diffie-Hellman
problem (DDH) on G is to distinguish Diffie-Hellman tuples from random
tuples. In particular, the DDH advantage of an algorithm A is defined as:∣∣∣∣ Pr

a,b←$Zm

[A(g, ga, gb, gab) = 1]− Pr
a,b,c←$Zm

[A(g, ga, gb, gc) = 1]

∣∣∣∣
We say that DDH is (ϵ, T)-hard in G if all algorithms running in time T have
no better than ϵ DDH advantage.

2.2 Threshold Oblivious Pseudorandom Function

Threshold OPRF was defined in the UC setting in [59, 53] but here we provide
simpler game-based security definitions for tOPRF. We do so for three reasons:
First, to break down the monolithic UC definition to several easier to
understand properties, e.g. to see which assumption is used to achieve which
property. Second, to relate the tOPRF properties to the corresponding
properties of threshold Blind Signatures in Section 2.3. Third, in Appendix D
we show that a scheme that satisfies the game-based tOPRF properties can be
generically modified, by hashing the tOPRF input and output via a (Random
Oracle) hash, to realize the UC tOPRF functionality of [53].

Throughout this work we refer to the two types of parties in our schemes as
users and servers. Our definitions are simplified for the case of non-interactive,
i.e. single-round, protocols, but they can be easily extended to the general case
where UEval and SEval consist of multiple sequential rounds.

Definition 8 (tOPRF). A threshold oblivious pseudorandom function with
domain X and codomain Y is a tuple of PPT algorithms tOPRF =
(Setup,KeyGen,UEval,SEval,UAgg,Offline) with the following properties:

1. Setup(1κ) → pp. Given an input of security parameter length, the setup
algorithm selects public parameters pp for the protocol. The output of Setup
is an implicit input to all other algorithms.

2. KeyGen(n, t)→ ({ski}i∈[n], aux). Given the number of servers n and threshold
t, the key generation algorithm produces a secret key ski for each server and
auxiliary public data aux.

9

3. UEval(x, aux)→ (stU, pmU). Given function input x ∈ X and public data aux,
the user evaluation algorithm produces a message pmU sent to all servers, and
an internal state stU to be used later when aggregating the server responses.

4. SEval(i, ski, ctx, pm
U) → pmi. Given server i’s secret key ski, server context

data ctx, and user message pmU, the server evaluation algorithm produces a
response message pmi.

5. UAgg(stU,S, {pmi}i∈S) → y/⊥. Given a state from UEval and server
responses {pmi}i∈S for a set of t + 1 servers S, the user aggregation
algorithm produces either a function output y ∈ Y or a failure symbol ⊥.

6. Offline({ski}i∈[n], aux, x)→ y. Given an output of KeyGen and input x ∈ X ,
the offline evaluation algorithm produces a function output y ∈ Y.

tOPRF must further satisfy Deterministic Correctness, Pseudorandomness,
Blindness, and One-More Unpredictability, as defined below.

Correctness. Deterministic Correctness ensures that a properly performed
function evaluation on any given input always produces the same output, i.e.
that the protocol computes a function defined by KeyGen outputs.

Definition 9 (Deterministic Correctness). Consider the following
experiment (∗), which takes as input security parameter κ, integers n and t s.t.
0 ≤ t < n, x ∈ X , set S ⊆ [n] s.t. |S| = t+ 1, and ctx ∈ {0, 1}∗:

pp← tOPRF.Setup(1κ)

({ski}i∈[n], aux)← tOPRF.KeyGen(n, t)

(stU, pmU)← tOPRF.UEval(x, aux)

∀i∈S pmi ← tOPRF.SEval(i, ski, ctx, pm
U)

y ← tOPRF.UAgg(stU,S, {pmi}i∈S)

Threshold oblivious pseudorandom function tOPRF is deterministically correct
iff algorithm tOPRF.Offline is deterministic and, on every possible input,
experiment (∗) always produces ({ski}i∈[n], aux, y) such that
y = tOPRF.Offline({ski}i∈[n], aux, x).

Robustness. We define a robustness property, which ensures that dishonest
servers cannot trick a user into performing an incorrect evaluation. In works on
OPRFs, e.g. [45, 58], this property is referred to as verifiability, but we choose the
term robustness to avoid confusion with the verifiability property of a signature
scheme (which is different).

Definition 10 (Robustness). The robustness game GamerobustA,tOPRF(κ) is
defined as:

10

pp← tOPRF.Setup(1κ)

(n, t, stA)← A(1κ)
({ski}i∈[n], aux)← tOPRF.KeyGen(n, t)

(x, stA)← A(stA, {ski}i∈[n], aux)
(stU, pmU)← tOPRF.UEval(x, aux)

(S, {pmi}i∈S)← A(stA, pmU)

y ← tOPRF.UAgg(stU,S, {pmi}i∈S)

The advantage of adversary A in the robustness game is defined as:

Advrobust
A,tOPRF = Pr[y ̸= ⊥ ∧ y ̸= tOPRF.Offline({ski}i∈[n], aux, x)]

where ({ski}i∈[n], aux, x, y)← GamerobustA,tOPRF(κ).
Threshold oblivious pseudorandom function tOPRF is robust iff, for all PPT

adversaries A, Advrobust
A,tOPRF(κ) is negligible.

Pseudorandomness. We define tOPRF pseudorandomness using the standard
definition for PRF Pseudorandomness applied to the function computed in the
honest protocol execution.

Definition 11 (Pseudorandomness). The advantage of adversary A against
protocol tOPRF in the pseudorandomness game is defined as:

Advpseudorandom
A,tOPRF (κ) = |Pr[AtOPRF.Offline({ski}i∈[n],aux,·)(1κ) = 1]−Pr[Af(·)(1κ) = 1]|

where in the first probability pp ← tOPRF.Setup(1κ) and ({ski}i∈[n], aux)
← tOPRF.KeyGen(n, t) and in the second probability f is a uniformly chosen
function X → Y. Before beginning, A outputs integers n and t s.t. 0 ≤ t < n.

Threshold oblivious pseudorandom function tOPRF is pseudorandom iff, for
all PPT adversaries A, Advpseudorandom

A,tOPRF (κ) is negligible.

Blindness and Obliviousness. We next define the two closely related
properties of Blindness and Obliviouness. The Blindness property ensures that
servers do not learn the function inputs that users are evaluating. Even if
function inputs and outputs are later revealed, the servers still cannot link
those evaluations to the particular sessions that produced them. This property
is required to hold even in the case that all servers collude. This definition has
appeared before in [70, 33].

Definition 12 (Blindness). The advantage of adversary A against protocol
tOPRF in the blindness game GameblindA,tOPRF(κ) (see Figure 1), is defined as:

Advblind
A,tOPRF(κ) = |Pr[GameblindA,tOPRF(κ) = 1]− 1/2|

Threshold oblivious pseudorandom function tOPRF is blind iff, for all PPT
adversaries A, Advblind

A,tOPRF(κ) is negligible.

11

Game
blind/oblivious
A,Π (κ)

pp← Π.Setup(1κ)
Sstarted, Scompleted := ∅
θ ←$ {0, 1}

θ′ ← AOUEval ,OUAgg

(1κ)
if θ = θ′ return 1
else return 0

OUEval(sid , auxsid , x0,sid , x1,sid)

if sid ∈ Sstarted return ⊥
Sstarted := Sstarted ∪ {sid}
(stU0,sid , pm

U
0,sid)← Π.UEval(xθ,sid , auxsid)

(stU1,sid , pm
U
1,sid)← Π.UEval(x1−θ,sid , auxsid)

return (pmU
0,sid , pm

U
1,sid)

OUAgg(sid ,S0,sid ,S1,sid , {pmi
0,sid}i∈S0,sid , {pm

i
1,sid}i∈S1,sid)

if sid /∈ Sstarted ∨ sid ∈ Scompleted return ⊥
Scompleted := Scompleted ∪ {sid}
yθ,sid ← Π.UAgg(stU0,sid ,S0,sid , {pmi

0,sid}i∈S0,sid)

y1−θ,sid ← Π.UAgg(stU1,sid ,S1,sid , {pmi
1,sid}i∈S1,sid)

if y0,sid = ⊥ ∨ y1,sid = ⊥ return (⊥,⊥)
else return (y0,sid , y1,sid)

Fig. 1. The blindness game Gameblind
A,Π(κ) (include shadowed text) and the

obliviousness game Gameoblivious
A,Π (κ) (omit shadowed text) for a threshold oblivious

pseudorandom function or threshold blind signature scheme.

The Obliviousness property, an extension of the corresponding property of
single-server OPRFs, is a weaker variant of blindness, where A has no access to
OUAgg. In other words, the adversary does not get to see the user’s eventual
function outputs. Consequentially, a scheme which is oblivious but not blind
could allow the adversary to rig some evaluation sessions to produce incorrect
outputs: Since those outputs are not revealed to the adversary, this rigging
doesn’t help the adversary discern which inputs correspond to which sessions.

Definition 13 (Obliviousness). The advantage of adversary A against
protocol tOPRF in the obliviousness game GameobliviousA,tOPRF(κ) (see Figure 1), is
defined as:

Advoblivious
A,tOPRF(κ) = |Pr[GameobliviousA,tOPRF(κ) = 1]− 1/2|

Threshold oblivious pseudorandom function tOPRF is oblivious iff, for all PPT
adversaries A, Advoblivious

A,tOPRF(κ) is negligible.

Blindness implies Robustness. Blindness is achievable only if the user holds
the public data aux. Otherwise the user could not detect the session-rigging
attack described above. This provides a hint that blindness is closely related
to the user’s ability to verify the correctness of the messages {pmi}i∈S received
from the servers, i.e. that blindness implies robustness. To see this, suppose there
existed an adversary A that broke robustness. An adversary in the blindness
game could run A as a subroutine and use the resulting (aux, x,S, {pmi}i∈S) as
input 0 to OUEval and OUAgg. For input 1, the adversary could use the same x,
but coupled with honest SEval responses. With non-negligible probability, the
UEval and UAgg executions faced with input 0 will produce an incorrect function

12

output. The executions faced with input 1 will (by determinstic correctness)
always produce a correct function output. The adversary, who sees these outputs,
clearly has non-negligible advantage in discerning which one corresponds to the
session that was rigged.

Although verifiability, i.e. robustness, is a valued property for OPRFs, many
applications require users to evaluate OPRFs without having reliable access to
trusted public data aux. We explain in Appendix B how our tOPRF scheme
gracefully degrades from blind to merely oblivous when users run without input
aux (in which case robustness is lost as well).

One-More Unpredictability. Finally we define One-More Unpredictability,
which ensures that users cannot evaluate the function on more inputs than
allowed by the servers. Specifying precisely how many evaluations should be
allowed after a given series of server actions is not trivial.

In the realm of non-blind threshold signatures, Bellare et al. [13] recently
introduced a hierarchy of unforgeability definitions and observed that many
past works only target the weakest possible notion, labeled UF-0. Under UF-0,
an adversary may be able to compute a signature on a message after the
participation of only a single honest server. Except in the case that t servers
are corrupted, the security guarantee of UF-0 is obviously much weaker than
one would expect from a threshold cryptosystem. Their next definition, UF-1,
codifies the more intuitive notion that t + 1 servers must sign a message in
order to create a signature for it. The hierarchy continues to UF-2, which
specifies that t + 1 servers must sign a message and must see the same “leader
request”, which may contain some extra data in addition to the message itself.

Since we must consider blind/oblivious evaluation, the task of defining
One-More Unpredictability (or Unforgeability) is even more nuanced. All
previous works on threshold blind signatures either (i) only considered the case
where t servers are corrupted [84, 70] or (ii) used a very loose game-based
definition under which an adversary may be able to compute signatures with
only a single server’s participation [33]. These works target a security notion
roughly analagous to UF-0. Previous works on threshold oblivious PRFs
[59, 53] have used simulation-based security definitions that are stronger,
requiring that each function evaluation “uses up” a set of t + 1 server
participation “tickets”. Though not directly comparable, such a notion may be
considered on par with UF-1. We define One-More Unpredictability in a way
that is stronger still and roughly analagous to UF-2. In particular, we require
t + 1 servers to participate in evaluations on the same input (ctx, pmU). This
ctx-binding property was proposed for tOPRFs in [53] and is useful to
applications that wish to enforce server agreement on arbitrary side data, e.g. a
timestamp or user ID.

Definition 14 (One-More Unpredictability). The advantage of adversary
A against protocol tOPRF in the one-more unpredictability game
Gameom−unpredictableA,tOPRF (κ) (as defined in Figure 2), is defined as:

Advom−unpredictable
A,tOPRF (κ) = Pr[Gameom−unpredictableA,tOPRF (κ) = 1]

13

Game
om−unpredictable/om−unforgeable
A,Π (κ)

pp← Π.Setup(1κ)
when first referenced for any (ctx, pmU), evalset[ctx, pmU] := ∅
(n, t, stA)← A(1κ)
if not 0 ≤ t < n return 0
corrupt := ∅
({ski}i∈[n], pk, aux)← Π.KeyGen(n, t)

(L, {(x∗
ℓ , y

∗
ℓ)}ℓ∈[L])← AOSEval,OCorrupt

(stA, pk, aux)

if |corrupt| ≥ t+ 1
∨ L ≤ |{(ctx, pmU) : |evalset[ctx, pmU] ∪ corrupt| ≥ t+ 1}|
∨ ∃ℓ∈[L] y∗

ℓ ̸= Π.Offline({ski}i∈[n], aux, x
∗
ℓ) Π.Verify(pk, x∗

ℓ , y
∗
ℓ) ̸= 1

return 0
else return 1

OSEval(i, ctx, pmU)

pmi ← Π.SEval(i, ski, ctx, pm
U)

evalset[ctx, pmU] := evalset[ctx, pmU] ∪ {i}
return pmi

OCorrupt(i)

corrupt := corrupt ∪ {i}
return ski

Fig. 2. The one-more unpredictability game Gameom−unpredictable
A,tOPRF (κ) for a threshold

oblivious pseudorandom function (dashed text) and the one-more unforgeability game
Gameom−unforgeable

A,tBSig (κ) for a threshold blind signature scheme (shadowed text).

Threshold oblivious pseudorandom function tOPRF is one-more unpredictable
iff, for all PPT adversaries A, Advom−unpredictable

A,tOPRF (κ) is negligible.

2.3 Threshold Blind Signature

In this section we define Threshold Blind Signature (tBSig), a functionality
very similar to tOPRF. Unlike a tOPRF, a tBSig need not be deterministic nor
pseudorandom, but it must be publicly verifiable.

Definition 15 (tBSig). A threshold blind signature scheme with message
space X and signature space Y is a tuple of PPT algorithms
tBSig = (Setup,KeyGen,UEval,SEval,UAgg,Verify) with the following
properties:

1. Setup(1κ)→ pp.
2. KeyGen(n, t)→ ({ski}i∈[n], pk, aux). The key generation algorithm outputs a

public verification key pk.
3. UEval(x, pk, aux)→ (stU, pmU).
4. SEval(i, ski, ctx, pm

U)→ pmi.
5. UAgg(stU,S, {pmi}i∈S)→ y/⊥.
6. Verify(pk, x, y) → 0/1. Given a public key pk, a message x ∈ X , and a

purported signature y ∈ Y, the verification algorithm confirms whether the
signature is valid.

14

A tBSig is further required to satisfy Verifiable Correctness, Blindness, and
One-More Unforgeability, as defined below.

Verifiable Correctness ensures that a properly performed signing process on
any given message really does produce a valid signature.

Definition 16 (Verifiable Correctness). Consider the following experiment
(∗), which takes as input security parameter κ, integers n and t s.t. 0 ≤ t < n,
x ∈ X , set S ⊆ [n] s.t. |S| = t+ 1, and ctx ∈ {0, 1}∗:

pp← tBSig.Setup(1κ)

({ski}i∈[n], pk, aux)← tBSig.KeyGen(n, t)

(stU, pmU)← tBSig.UEval(x, aux)

∀i∈S pmi ← tBSig.SEval(i, ski, ctx, pm
U)

y ← tBSig.UAgg(stU,S, {pmi}i∈S)

Threshold blind signature scheme tBSig is verifiably correct iff, on every possible
input, experiment (∗) always produces (pk, y) such that tBSig.Verify(pk, x, y) = 1.

The Blindness property is identical to the tOPRF Blindness property.

Definition 17 (Blindness). Threshold blind signature scheme tBSig is blind
iff (tBSig.Setup, tBSig.KeyGen, tBSig.UEval, tBSig.SEval, tBSig.UAgg) satisfies
threshold oblivious pseudorandom function blindness (Definition 12).

Finally we consider One-More Unforgeability, which we define almost
identically to tOPRF One-More Unpredictability. We merely alter the
adversary’s win condition in the game to match tBSig’s different notion of
correctness. Note that this definition enforces “strong” unforgeability, under
which an adversary must be unable to re-randomize a signature on some
message into a different signature on the same message. For “weak”
unforgeability, Gameom−unforgeable could be amended so that the win condition
requires every x∗k to be unique.

Definition 18 (One-More Unforgeability). The advantage of adversary A
against protocol tBSig in the one-more unforgeability game Gameom−unforgeableA,tBSig (κ)
(as defined in Figure 2), is defined as:

Advom−unforgeable
A,tBSig (κ) = Pr[Gameom−unforgeableA,tBSig (κ) = 1]

Threshold blind signature scheme tBSig is one-more unforgeable iff, for all PPT
adversaries A, Advom−unforgeable

A,tBSig (κ) is negligible.

3 The 2B–HashTDH and 2B–tBlindBLS Protocols

Figure 3 presents our main protocols, the threshold oblivious pseudorandom
function scheme 2B–HashTDH (“twice-blind threshold hashed Diffie-Hellman”)

15

and the threshold blind signature scheme 2B–tBlindBLS (“twice-blind threshold
blind BLS”). The term “twice-blind” refers to the two blinding factors applied
to the server responses.

Note that scheme 2B–HashTDH is a threshold oblivious evaluation of function
Fk(x) = H0(x)

k. In Appendix D we show that a slight variant of this scheme,
where the final output is re-defined as F ′k(x) = H̃(x, Fk(x)) for a random oracle

hash H̃, realizes the universally composable tOPRF notion of [53].

The protocols in Figure 3 utilize two non-interactive zero knowledge proof
of knowledge systems (NIZKs), denoted NIZKKeyGen and NIZKSEval. Intuitively,
the former ensures that public keys are well-formed, and the latter ensures that
servers behave honestly. We formally define these NIZKs in Appendix B; both
have standard DL-based realizations. Note that they are only relevant to the
proof of blindness and play no role in one-more unpredictability/unforgeability.

Our schemes differ from the simplest tOPRF and tBSig protocols [59, 84]
only in the addition of the two server response blinding factors and the NIZKs.
The former come at no cost to the users and a low cost to servers: just the
storage of key shares zi and ẑi, computing two hash onto a group operations,
and replacing an exponentiation with a multi-exponentiation on three bases.
The blinding factors’ importance is explained in detail in the technical overview
(Section 1.1). Our NIZKs impose a more significant (though still reasonable)
overhead, but in section B.1, we explain that the cost of NIZKs can be avoided
or mitigated in many important cases.

4 Proof of Adaptive Security

To prove the security of our schemes, we begin by showing that 2B–HashTDH
and 2B–tBlindBLS are secure tOPRFs. A simple lemma then implies that
2B–tBlindBLS is also a secure tBSig.

Correctness, Pseudorandomness, and Blindness. It is easy to see that
the schemes satisfy deterministic correctness (Definition 9); the function they
compute is Offline({ski}i∈[n], aux, x) = H0(x)

k where k is the secret key that
interpolates from {ki}i∈[n]. It is also apparent that, under the DDH assumption,
this function is pseudorandom (Definition 11); we omit the proof of this fact,
which is a well-known and straightforward DDH reduction.

We also wish to prove that 2B–HashTDH and 2B–tBlindBLS are blind. Doing
so does not require any novel techniques and is not related to the challenge of
adaptive corruptions, so we defer this proof to Appendix C.

One-More Unpredictability. Here we tackle the main challenge of our work:
proving the one-more unpredictability of 2B–HashTDH against an adaptive
adversary (which will imply the one-more unforgeability of 2B–tBlindBLS).
This proof requires very slight differences (mostly in Lemma 2) for the case of
2B–tBlindBLS, due to its different definition of pk. We mark the differences
with shadowed text .

16

Setup(1κ)

G1, G2,GT are groups of prime order m with generators g1, g2, gT , respectively.

H0 : {0, 1}∗ → G1, H1 : {0, 1}∗ → G1, and H2 : {0, 1}∗ → G1 are hash functions.

e : G1 ×G2 → GT is a bilinear pairing. Pick gk, gz, gẑ ←$ G1.

KeyGen(n, t)

pick a0, a1, . . . , at, b1, . . . , bt, b̂1, . . . , b̂t ←$ Zm

define k := a0, polynomials k(i) :=
∑t

ι=0 aιi
ι, z(i) :=

∑t
ι=1 bιi

ι, ẑ(i) :=
∑t

ι=1 b̂ιi
ι

∀i∈[n] ki := k(i), zi := z(i), ẑi := ẑ(i), pki := (gk)
ki · (gz)zi · (gẑ)ẑi

pk := (gk)
k pk := (g2)

k , πKeyGen := NIZKKeyGen.Prove(pk, k)

return ({ski}i∈[n], pk, aux) := ({ki, zi, ẑi, pki}i∈[n], pk, (n, t, {pki}i∈[n], πKeyGen))

UEval(x, pk, aux = (n, t, {pki}i∈[n], πKeyGen))

pick r ←$ Zm

p := H0(x)
r

return (stU, pmU) := ((pk, aux, r, p), p)

SEval(i, ski = (ki, zi, ẑi, pki), ctx, pm
U = p)

qi := pki ·H1(ctx, p)
zi ·H2(ctx, p)

ẑi

πi := NIZKSEval.Prove((p,H1(ctx, p), H2(ctx, p), pki, qi), (ki, zi, ẑi))
return pmi := (qi, ctx, πi)

UAgg(stU = (pk, n, t, {pki}i∈[n], πKeyGen, r, p),S, {pmi = (qi, ctxi, πi)}i∈S)

if ∃i,j∈S ctxi ̸= ctxj return ⊥
if NIZKKeyGen.Verify(pk, πKeyGen) ̸= 1 return ⊥
if ∃i∈S NIZKSEval.Verify((p,H1(ctxi, p), H2(ctxi, p), pki, qi), πi) ̸= 1 return ⊥
∀i∈S compute Lagrange coeff. λi

y := (
∏

i∈S qλi
i)1/r

if
∏

i∈S pkλi
i ̸= pk e(y, g2) ̸= e(H0(x), pk) return ⊥; else return y

Offline({ski = (ki, . . .)}i∈[n], aux, x)

∀i∈[t+1] compute Lagrange coeff. λi

return H0(x)
∑

i∈[t+1] λiki

Verify(pk, x, y)

if e(y, g2) = e(H0(x), pk) return 1
else return 0

Fig. 3. The threshold oblivious pseudorandom function protocol 2B–HashTDH (dashed
text) and the threshold blind BLS signature protocol 2B–tBlindBLS (shadowed text).

17

Preliminaries. We begin by classifying all the G1 elements received and sent
by an adversary A in the one-more unpredictability game Gameom−unpredictableA,2B–HashTDH .
At the game’s start A sees g1, gk, gz, gẑ, pk, pk1, . . . , pkn ∈ G1. Throughout the
game, A sends queries to random oracles H0, H1, H2. Define that A queries
H0 at most q times with inputs x1, x2, . . . , xq ∈ {0, 1}∗ and receives responses
h1, h2, . . . , hq ∈ G1. Assume without loss of generality that A always queries
H1 and H2 in tandem on the same inputs. Define that A queries H1 and H2

at most q times with inputs (ctx1, p1), (ctx2, p2), . . . (ctxq, pq) ∈ {0, 1}∗ ×G1 and

receives responses h1, h2, . . . , hq ∈ G1 from H1 and ĥ1, ĥ2, . . . , ĥq ∈ G1 from H2.
Also, A sends queries to SEval. Assume without loss of generality that A queries
H1 and H2 on every (ctx, p) sent to SEval. Define that query SEval(i, ctxj , pj)
produces response qi,j ∈ G1 (note that SEval is deterministic). Finally, A outputs
purported function evaluations (x∗1, y

∗
1), (x

∗
2, y
∗
2), . . . , (x

∗
L, y
∗
L) ∈ {0, 1}∗ ×G1.

Since we assume that A is algebraic, every G1 element sent by A must be
accompanied by an algebraic representation in terms of A’s previously seen G1

elements. Label the y∗ℓ representations (using notation [X]+ ≡ {0} ∪ [X]):

y∗ℓ =
∏

j∈[q]+
(hj)

rℓj ·
∏

J∈[q]+
(hJ)

sℓJ · (ĥJ)
uℓ
J ·

∏
i,J∈[n]×[q]+

(qi,J)
vℓ
i,J

Group elements gk, gz, gẑ are not explicit in this representation. Looking
ahead, all our reductions and simulations will generate these values in the same
way as H0, H1, H2 responses, respectively. Therefore, (gk, gz, gẑ) can be

understood as (h0, h0, ĥ0) for p0 := h0. For the same reason, (pk1, . . . , pkn) can
be understood as (q1,0, . . . , qn,0). Since pk can be expressed in terms of
pk1, . . . , pkn, assume without loss of generality that A does not use directly pk
in any representations. Finally, observe that g1 is never used by our protocols.
We therefore omit it here under the simplifying assumption that g1 = gk.

The H1, H2, and SEval inputs pj are also G1 elements sent by A and so must
be accompanied by algebraic representations. Because these values are indexed

chronologically, the representation of pj cannot include any hJ , ĥJ , or qi,J for

J ≥ j. Therefore, label them as:

pj =
∏

j∈[q]+
(hj)

rjj ·
j−1∏
J=0

(hJ)
sjJ · (ĥJ)

uj
J ·

∏
i∈[n]

j−1∏
J=0

(qi,J)
vj
i,J

For all J ∈ [q]+, define S(J) ⊆ [n] to be the set of servers i for which

∃ℓ∈[L] v
ℓ
i,J ̸= 0 or ∃j∈[q] v

j
i,J ̸= 0. (Except for J = 0) A must have queried SEval

with (ctxJ , pJ) for every server in S(J). Assume without loss of generality that
S(J) and corrupt are disjoint; for i ∈ corrupt, A knows how to represent qi,J in
terms of other elements. Similarly, assume without loss of generality that, for
all J , |S(J)| ≤ t + 1 − |corrupt|; A can represent any qi,J values beyond that
threshold in terms of the others using interpolation.

18

Per the code of SEval, we know that qi,J = (pJ)
ki · (hJ)

zi · (ĥJ)
ẑi . We can

rewrite the representation of y∗ℓ accordingly:

y∗ℓ =
∏

j∈[q]+
(hj)

rℓj ·
∏

J∈[q]+
(pJ)

∑
i∈S(J) v

ℓ
i,Jki ·(hJ)

sℓJ+
∑

i∈S(J) v
ℓ
i,Jzi ·(ĥJ)

uℓ
J+

∑
i∈S(J) v

ℓ
i,J ẑi

(1)
We can perform the same expansion on the pj representations:

pj =
∏

j∈[q]+
(hj)

rjj ·
j−1∏
J=0

(pJ)
∑

i∈S(J) v
j
i,Jki ·(hJ)

sjJ+
∑

i∈S(J) v
j
i,Jzi ·(ĥJ)

uj
J+

∑
i∈S(J) v

j
i,J ẑi

(2)

Without loss of generality, assume A queries H0 on every x∗ℓ and define
j(ℓ) ∈ [q] to be the index such that x∗ℓ = xj(ℓ).

The Wrapper Algorithm. To bound the probability that A wins the one-
more unpredictability game, we define a wrapper algorithm B(A) that runs A as
a subroutine, simulating its input and oracle responses (step I). When A finishes,
B verifies the win conditions and aborts if they fail (step II). B then performs
several additional steps that act as a blueprint for subsequent reductions. In step
III, B iteratively “unrolls” any recursive parts of the algebraic representations
provided by A for its PRF evaluation outputs. Along the way, this step checks
that every SEval response used in those representations appears as part of a set
of t+ 1− |corrupt| properly interpolated responses from different servers. If this
check fails,Amust have found an unexpected way of making some blinding factor
cancel out. In this case, B aborts, and an OMDL reduction is implied because a
non-trivial relationship can be extracted between the {zi, ẑi} values. If step III
checks pass, then B in step IV checks that the PRF evaluation outputs provided
by A are not represented in other unexpected way, i.e. that the secret key does
not appear directly in the representation and that recursive query responses
are not meaningfully used. If this check fails, B aborts, and an SDL reduction
is implied because a non-trivial equation can be extracted involving the secret
element α, a component of the “rigged” effective key k′. Finally, in step V, we
use a matrix rank argument to show that, if all previous checks pass, then it is
impossible for A to have produced more than the allowed number of evaluation
outputs, which is a contradiction with step II. Since our reductions show that
step III and IV aborts occur with negligible probability, it follows that the step
II abort must occur with high probability, i.e. that A does not win the game.

Our SDL reduction requires careful rigging of the public keys and random
oracle responses, but our OMDL reduction does not. Also, we must ultimately
show that A cannot win the game in the “real world”, i.e. without rigging. Below
we first present the reduction blueprint B in the “rigged” form. Then, we use
two hybrids B′ and B′′ to argue that the removal of the rigging behavior is not
detectable by A, under the DDH assumption. Our SDL reduction is based on B,
and our OMDL reduction is based on B′′.

B step I: run A

19

– First generate the initial input to A:
• Pick “rigging values” α, z, ẑ ←$ Zm.

• Pick τk, δz ←$ Zm and define public parameters gk := (g1)
τk , gz :=

(gk)
(δz)·α/z, gẑ := (gk)

(1−δz)·α/ẑ.

• Receive (n, t) from A.
• Pick a0(= k), a1, . . . at, b1, . . . bt, b̂1, . . . b̂t ←$ Zm.

• Define k(i) :=
∑t

ι=0 aιi
ι, z(i) :=

∑t
ι=1 bιi

ι, ẑ(i) :=
∑t

ι=1 b̂ιi
ι, for all i.

• Compute honest keys ∀i∈[n] ki := k(i), zi := z(i), ẑi := ẑ(i).

• Define the “effective” PRF key k′ := k+α and corresponding public key

pk′ := (gk)
k+α (or pk′ := (g2)

k+α for 2B–tBlindBLS) .

• Compute rigged keys ∀i∈[n] z′i := zi + z, ẑ′i := ẑi + ẑ, pk′i := (gk)
ki+α ·

(gz)
zi ·(gẑ)ẑi . Set {z′i}i∈[n] and {ẑ′i}i∈[n] as sharings of z′ := z and ẑ′ := ẑ.

• Simulate proof πKeyGen (see Appendix B for details).

• Send (pk′, (n, t, {pk′i}i∈[n], πKeyGen)) to A.
– Respond to SEval and Corrupt game oracle queries earnestly using the

rigged keys {sk′i = (ki, z
′
i, ẑ
′
i, pk

′
i)}i∈[n], except simulate the NIZKSEval proofs

in SEval responses (see Appendix B for details). Maintain evalset as in
Gameom−unpredictable, indexed by (ctx, p).

– Respond to H0 queries using random G1 elements with known discrete
logarithms (i.e. “trapdoors”), i.e. set hj = H0(xj) := (g1)

τj for τj ←$ Zm.

– Respond to H1 and H2 queries in a manner that is correlated and
dependent on the input element. Specifically, pick δj ←$ Zm and set

hj = H1(ctxj , pj) := (pj)
(δj)·α/z and ĥj = H2(ctxj , pj) := (pj)

(1−δj)·α/ẑ.

(One can verify at this point that honest evaluation by A will behave as
expected, i.e. A will correctly compute PRF outputs for the effective key k′. We
will later show by DDH reduction that A’s view is indeed indistinguishable from
the real world in spite of B’s rigging of keys and random oracle responses.)

B step II: verify A’s victory
Receive claimed function evaluations {(x∗ℓ , y∗ℓ)}ℓ∈[L] from A, and verify that

(i) |corrupt| < t + 1, (ii) L > |{j : |evalset[ctxj , pj] ∪ corrupt| ≥ t + 1}|, and (iii)

∀ℓ∈[L] y
∗
ℓ = H0(x

∗
ℓ)

k′
. If any condition fails output (II.AdvLoses) and abort.

B step III: verify proper interpolation

For all J ∈ [q]+ such that |S(J)| = t + 1 − |corrupt|, define {λJ
i } to be the

Lagrange interpolation coefficients for interpolation set S(J)∪corrupt. Also, as a
shorthand, define κJ := k′−

∑
i∈corrupt λ

J
i ki. For all other J (i.e. those for which

|S(J)| < t+ 1− |corrupt|), define κJ := 0.

For each ℓ ∈ [L], we use the following loop to eliminate all pj elements from

the representation of y∗ℓ . The loop begins with j := q and ends with j = 0:

1. At the start of each iteration, we have the following representation for y∗ℓ ,
where {µℓ

J}J>j are defined by the previous iterations of the loop. Note that

20

in the first iteration, i.e. j = q, this representation matches equation (1).

y∗ℓ =
∏

j∈[q]+
(hj)

rℓj+
∑q

J=j+1
µℓ
JκJr

J
j (3)

·
j∏

J=0

(pJ)
∑

i∈S(J)(v
ℓ
i,J+

∑q

G=j+1
µℓ
GκGvG

i,J)·ki

·
j∏

J=0

(hJ)
(sℓJ+

∑q

G=j+1
µℓ
GκGsGJ)+

∑
i∈S(J)(v

ℓ
i,J+

∑q

G=j+1
µℓ
GκGvG

i,J)·z
′
i

·
j∏

J=0

·(ĥJ)
(uℓ

J+
∑q

G=j+1
µℓ
GκGuG

J)+
∑

i∈S(J)(v
ℓ
i,J+

∑q

G=j+1
µℓ
GκGvG

i,J)·ẑ
′
i

2. (Case 1) Set µℓ
j
:= 0 if the following three conditions are all satisfied:

(sℓ
j
+

q∑
G=j+1

µℓ
GκGs

G
j
) = 0

(uℓ
j
+

q∑
G=j+1

µℓ
GκGu

G
j
) = 0

(vℓ
i,j

+

q∑
G=j+1

µℓ
GκGv

G
i,j
) = 0 for all i ∈ S(j)

(This case happens when hj, ĥj and {qi,j}i∈S(j) bases do not meaningfully

participate in the representation of y∗ℓ .)

3. (Case 2) Otherwise do the following steps:
– Verify that |S(j)| = t + 1 − |corrupt|, otherwise output

(III.BadInterp) and abort. (This abort indicates that A did not make
enough SEval queries involving pj to perform proper interpolation.)

– Set µℓ
j
to a value that satisfies all the equations below:

(sℓ
j
+

q∑
G=j+1

µℓ
GκGs

G
j
) = µℓ

j
·

∑
i∈corrupt

λj
iz
′
i

(uℓ
j
+

q∑
G=j+1

µℓ
GκGu

G
j
) = µℓ

j
·

∑
i∈corrupt

λj
i ẑ
′
i

(vℓ
i,j

+

q∑
G=j+1

µℓ
GκGv

G
i,j
) = µℓ

j
· λj

i for all i ∈ S(j)

If there is no such value µℓ
j
then output (III.BadInterp) and abort.

(This abort indicates that A, though having queried enough qi,j values,

21

did not perform proper interpolation with them, e.g. the blinding factors

hj , ĥj do not cancel out in the algebraic expression for y∗ℓ .)

– Now it is verified that the exponents of the pj , hj , and ĥj factors in

equation (3) are just some constant multiple µℓ
j

of interpolation

coefficients. Therefore, these factors simplify to:

(pj)
∑

i∈S(j) µ
ℓ
j
λj
iki ·(hj)

µℓ
j

∑
i∈corrupt λ

j
iz

′
i+

∑
i∈S(j) µ

ℓ
j
λj
iz

′
i ·(ĥj)

µℓ
j

∑
i∈corrupt λ

j
i ẑ

′
i+

∑
i∈S(j) µ

ℓ
j
λj
i ẑ

′
i

4. In either case, the pj , hj , and ĥj factors simplify to:

(
(pj)

k−
∑

i∈corrupt λ
j
iki · (hj)

z′
· (ĥj)

ẑ′
)µℓ

j

(4)

Due to the rigged programming of H1 and H2 in step I, we know that

hj = (pj)
(δj)·α/z and ĥj = (pj)

(1−δj)·α/ẑ where z = z′ and ẑ = ẑ′. Therefore,

(hj)
z′ · (ĥj)

ẑ′
= (pj)

α and we can simplify expression (4) further:

(
(pj)

k−
∑

i∈corrupt λ
j
iki · (hj)

z′
· (ĥj)

ẑ′
)µℓ

j

=
(
(pj)

κj

)µℓ
j

(5)

Expand pj using its provided representation, equation (2), and then
substitute these factors back into equation (3). The result is precisely the
representation of y∗ℓ needed for the next loop iteration.

5. Decrement j and iterate.

At the end of this loop, if no abort occurs, we extract values {µℓ
J}J∈[q]+ and

obtain a greatly simplified representation of y∗ℓ , for all ℓ ∈ [L]:

y∗ℓ =
∏

j∈[q]+
(hj)

rℓj+
∑

J∈[q]+ µℓ
JκJr

J
j

B step IV: verify that A does not know the secret key k′

Rather than compute the µℓ
J values numerically, we can represent each one

as a polynomial function of α while treating α as a variable of unknown value.
Such a representation can be constructed during the loop in step III. There, µℓ

J is
defined as the value satisfying three equations that depend upon the values {κG}
and {µℓ

G} for G > J . The {κG} values are linear functions of α (in the simplest
case where no servers are corrupted, all κG = k + α). The {µℓ

G} values have
their own representations as polynomial functions of α, found by previous loop
iterations. Each iteration can create a polynomial of degree at most 1 greater
than those already found, so these polynomials are all of degree at most q.

Define coefficients {βℓ
J,e} found via the procedure described above:

∀ℓ,J∈[L]×[q]+ µℓ
J =

q∑
e=0

βℓ
J,eα

e (6)

22

Next, verify that:

∀ℓ,j∈[L]×[q] γℓ
j :=

∑
J∈[q]+

βℓ
J,0r

J
j =

{
1 j = j(ℓ)

0 j ̸= j(ℓ)
(7)

If not, output (IV.KeyKnown) and abort. This abort indicates that A has
found an unexpected representation for the secret key k′, which is using either
the scalar rℓj (implying direct knowledge of k′) or the higher-degree coefficients

{βℓ
J,e}e≥1 (implying meaningful participation of recursive queries).
Note that the J = 0 terms can be omitted from the summation in equation

(7) because r0j = 0 for all j ̸= 0.

B step V: expose contradiction

Express the matrix of all {γℓ
j} values in terms of the {βℓ

J,0} and {rJj } values:
γ1
1 γ1

2 . . . γ1
q

γ2
1 γ2

2 γ2
q

...
. . .

...

γL
1 γL

2 . . . γL
q

 =

β1
1,0 β1

2,0 . . . β1
q,0

β2
1,0 β2

2,0 β2
q,0

...
. . .

...

βL
1,0 βL

2,0 . . . βL
q,0

r11 r12 . . . r1q

r21 r22 . . . r2q
...

. . .
...

rq1 rq2 . . . rqq

Γ = BR

Matrix Γ is L×q. As verified in step IV, each row of Γ consists of all 0s except
for a single 1; each column contains at most a single 1. Therefore, rank(Γ) = L.

Matrix B is L× q, and matrix R is q× q. Define q∗ ≤ q to be the number of
columns in B that are not entirely 0. rank(B) ≤ q∗, and therefore rank(BR) ≤ q∗.
Since Γ = BR, it follows that L ≤ q∗.

The existence of a nonzero βℓ
J,0 implies that (Case 2) occured in the j = J

iteration of step III. As verified there, then, |S(J)| = t + 1 − |corrupt|, which
implies that A must have queried SEval with (ctxJ , pJ) for at least t+1−|corrupt|
uncorrupted servers, i.e. |evalset[ctxJ , pJ]∪corrupt| ≥ t+1. Therefore, as verified
in step II, L > q∗. This is a contradiction!

Reductions. It remains to show that the probability of (II.AdvLoses) is equal
(up to a negligible difference) to the probability that A loses the real one-more
unpredictability game and that events (III.BadInterp) and (IV.KeyKnown)
both occur with negligible probability. We approach these events in the reverse
of the order they appear in B.

All our reductions have some steps in common, since they are all based
on the same “reduction blueprint” B. First, they all run A, whose runtime we
denote TA. Second, they all run the loop in B step III; since L ≤ q, this loop is
O(qq). The q- co -SDL reduction in the proof of Lemma 2 additionally maintains
polynomial representations of the µℓ

J values as explained in B step IV; this
increases the runtime of the step III loop to O(qq2). That reduction also runs
a O(q1.815 logm) runtime polynomial root-finding algorithm as a subroutine.
Finally, two of the reductions employ as a substep the reduction from DL to

23

N -RDL (Lemma 1), with N ∈ O(q + q). Therefore, all reductions run in time
O(TA + qq2 + q logm + q1.815 logm). To avoid redundancy, we omit repeated
mention of runtimes from our reductions’ explanations until we combine our
results in Theorem 1.

Lemma 2. If q- co -SDL is (ϵSDL, TSDL)-hard in (G1, G2) and A makes at
most q queries to H0 and at most q queries to H1 and H2, then
Pr[B(A)→ (IV.KeyKnown)] ≤ 2 · ϵSDL.

Proof. At the time of a (IV.KeyKnown) event, we have found some ℓ, j ∈
[L] × [q] that violates equation (7). Define F as the event that the following
equation holds:

rℓj +
∑

J∈[q]+
µℓ
JκJr

J
j =

{
k + α j = j(ℓ)

0 j ̸= j(ℓ)
(8)

Intuitively, event F states that no H0 responses other than H0(x
∗
ℓ) are

meaningfully used in A’s algebraic representation of y∗ℓ = H0(x
∗
ℓ)

k+α.

Given a q- co -SDL input challenge = (g1, (g1)
α, (g1)

α2

, . . . , (g1)
αq

, g2, (g2)
α),

we use A to solve for α. We follow one of two reduction strategies at random.
Strategy #1 succeeds if event F occurs, and strategy #2 succeeds if it doesn’t.

Strategy #1
Run B(A), but using the group elements of challenge to compute everything

involving α. To confirm that this is possible, observe that α is never directly
needed by B:

– In step I, the τk trapdoor embedded in gk allows us to compute the public
parameters gz and gẑ and the public keys pk′i = (gk)

ki+α · (gz)z
′
i · (gẑ)ẑ

′
i and

pk′ = (gk)
k+α. (For 2B–tBlindBLS, pk′ = (g2)

k+α can be computed easily.)

– In step I, every pj input to H1 and H2 is accompanied by its algebraic
representation. In these representations, only bases involving α have discrete
logarithms that are unknown to us. Therefore, the elements of challenge
are sufficient to compute the correct responses. (In the extreme, A might
recursively call the random oracles on their own outputs q times, in which
case all elements of challenge are needed.)

– In step II, the τj(ℓ) trapdoor embedded in hj(ℓ) allows us to compute the

correct function output (hj(ℓ))
k+α for each x∗ℓ .

– In step III, we cannot compute the {µℓ
j
} values numerically. However, it is

sufficient to represent them as polynomial functions of α, as explained at
the start of step IV. The condition for (Case 1) can be checked in the
exponent using the elements of challenge. The check for (III.BadInterp)
can be skipped, since this reduction only succeeds in the case of
(IV.KeyKnown), which requires that the earlier (III.BadInterp) does
not occur. Instead, we can simply assume in (Case 2) that a satisfactory µℓ

j

exists and use any one of the three equations to find its representation as a
polynomial function of α, see equation (6).

24

After applying the definition of κJ and the aforementioned polynomial
representation of µℓ

J , equation (8) is a polynomial function of α, with degree at
most q + 1. The degree 1 coefficient of this polynomial is: ∑

J∈[q]+
βℓ
J,0r

J
j

−{
1 j = j(ℓ)

0 j ̸= j(ℓ)

The violation of equation (7) guarantees that this coefficient is nonzero, and
therefore that the polynomial as a whole is nonzero. The polynomial has at
most q+1 roots, one of which must be α. We can use a polynomial root-finding
algorithm, and then test all possibilities until finding the correct α and thereby
solving q- co -SDL.

Strategy #2

There is an obvious reduction from q- co -SDL to DL, and (per Lemma 1)
there is a reduction from DL to RDL. Therefore, we present strategy #2 as an
RDL reduction on input ((g1)

χk , (g1)
χ1 , . . . , (g1)

χq).

Run B(A), but use gk := (g1)
χk and for all j ∈ [q] use hj := (g1)

χj to respond
to random oracle query H0(xj). To confirm that this is possible, observe that
the τk, {τj}j∈[q] trapdoors are never used by B.

Since (II.AdvLoses) did not occur, y∗ℓ must correctly equal (hj(ℓ))
k+α:

(hj(ℓ))
k+α =

∏
j∈[q]+

(hj)
rℓj+

∑
J∈[q]+ µℓ

JκJr
J
j

If F does not occur, the exponent of hj is nonzero, and we have an RDL solution.

The probability of correctly guessing whether or not F will occur is 1/2.
The asymptotically fastest algorithms for polynomial root-finding over a finite
field are probabilistic and can find the roots in time O(q1.815 logm) with failure
probability ≤ 1/2 [64, 85]. Thus, our reduction wins q- co -SDL with probability
≥ 1/2 · 1/2 · Pr[B(A)→ (IV.KeyKnown)]. Our hardness assumption therefore
implies that Pr[B(A)→ (IV.KeyKnown)] ≤ 4 · ϵSDL.

To help us proceed, we define a hybrid B′ of the wrapper algorithm. B′ only
runs steps I through III and does not perform any key rigging in step I. In other
words, the {z′i} and {ẑ′i} keys really are sharings of zero in B′. In particular,
B′ sets all z′i := zi and ẑ′i := ẑi; consequently, z′ := 0 and ẑ′ := 0. Also,

k′ := k, pk′ := (gk)
k (for 2B–HashTDH) or pk′ := (g2)

k (for 2B–tBlindBLS) ,

and all pk′i := (gk)
ki · (gz)zi · (gẑ)ẑi .

Lemma 3. Define event (EarlyAbort) to be the union of (II.AdvLoses)
and (III.BadInterp). This event is equally probable for B(A) and B′(A), i.e.
Pr[B(A)→ (EarlyAbort)] = Pr[B′(A)→ (EarlyAbort)].

25

Proof. If A corrupts t + 1 or more servers, then (EarlyAbort) occurs with
probability 1 in both B and B′. Therefore, it suffices to show that the view of A
is identical in B and B′ as long as A does not corrupt t+ 1 servers.

In both B and B′, k(i) is a uniformly random t-degree polynomial. In B, α
is a uniformly random field element. For any k(i) and α that may be chosen in
B, an identical view can produced in B′ if polynomial k′(i) = k(i) +α is chosen:

– In B we set pk := (gk)
k(0)+α while in B′ we set pk := (gk)

k′(0).

(For 2B–tBlindBLS we replace gk with g2.) Clearly these are equal.

– In B, pki := (gk)
k(i)+α · (gz)zi · (gẑ)ẑi . In B′, pki := (gk)

k′(i) · (gz)zi · (gẑ)ẑi .
Clearly these are equal.

– In B, SEval response qi,j = (pj)
k(i) · H1(ctxj , pj)

zi+z · H2(ctxj , pj)
ẑi+ẑ. In

B′, qi,j = (pj)
k′(i) ·H1(ctxj , pj)

zi ·H2(ctxj , pj)
ẑi . These are equal due to the

rigged programming of H1 and H2:

(pj)
k(i) ·H1(ctxj , pj)

zi+z ·H2(ctxj , pj)
ẑi+ẑ

= (pj)
k(i) · ((pj)

(δj)·α/z)zi+z · ((pj)
(1−δj)·α/ẑ)ẑi+ẑ

= (pj)
k(i) · (pj)

(δj)·α · (pj)
(1−δj)·α · ((pj)

(δj)·α/z)zi · ((pj)
(1−δj)·α/ẑ)ẑi

= (pj)
k(i)+α · ((pj)

(δj)·α/z)zi · ((pj)
(1−δj)·α/ẑ)ẑi

= (pj)
k(i)+α ·H1(ctxj , pj)

zi ·H2(ctxj , pj)
ẑi

– In B, Corrupt response ski = (k(i), zi + z, ẑi + ẑ). In B′, ski = (k′(i), zi, ẑi).
Since at most t servers are corrupted, the perfect security of Shamir secret
sharing ensures that these key shares are uniformly distributed. In particular,
A does not see that z′i and ẑ′i are not really sharings of zero in B. It remains
only to show that ski agrees with the previously revealed public key pki and
SEval responses {qi,j}j∈[q]. The latter is immediate, because the revealed
secret keys are the same as those used in SEval. The former holds due to the
rigged choice of gz and gẑ. We omit step-by-step analysis of this fact because
it is essentially the same as the analysis given for qi,j above.

– The only remaining element of A’s view is the NIZKs sent during KeyGen
and SEval. In both B and B′, all NIZKs are simulated, and the only inputs
to the simulators are the values that are shown to be equal above. Therefore,
the NIZKs are also equal across B and B′.

– Also, steps II and III of B and B′ only use these same values that are shown
to be equal above.

We move now to a second hybrid B′′ that additionally does not rig the choice
of gz and gẑ and the programming of the random oracles in step I. In other words,
gz, gẑ, and the outputs of H1 and H2 really are all random (and uncorrelated) G1

elements in B′′. In particular, gz := (g1)
τz and gẑ := (g1)

τẑ where τz, τẑ ←$ Zm;

for all j ∈ [q], H1(ctxj , pj) := (g1)
τj and H2(ctxj , pj) := (g1)

τ̂j where τ j , τ̂ j ←$

Zm. In B′′, the view of A is identical to the real world one-more unpredictability
game except for the use of simulated NIZKs.

26

Lemma 4. If DDH is (ϵDDH , TDDH)-hard in G1 then
Pr[B′(A)→ (EarlyAbort)] ≤ Pr[B′′(A)→ (EarlyAbort)] + ϵDDH .

Proof. Given a DDH input challenge = (d1, d
′
1, d2, d

′
2), we can use A to

distinguish whether or not it is a Diffie-Hellman tuple. Run B′(A), but using
the group elements of challenge to program H1 and H2. In particular:

H1(ctxj , pj) = hj :=

(
(d1)

δ1,j · (d2)δ2,j
)α

H2(ctxj , pj) = ĥj :=

(
pj

(d′1)
δ1,j · (d′2)

δ2,j

)α/ẑ

where δ1,j , δ2,j ←$ Zm for all j ∈ [q]. Set gz and gẑ in the same way for random
δ1,z, δ2,z ←$ Zm. Notice that we do not explicitly choose z. If challenge is a
Diffie-Hellman tuple, then z is effectively the secret exponent hidden in that
tuple (called b in Definition 7). We are able to generate many pairs of correlated
group elements from challenge by using the well-known “DDH randomized self-
reduction” technique [81, 75].

In the case that challenge is a Diffie-Hellman tuple, (d1)
δ1,j · (d2)δ2,j is a

uniformly random group element and (d′1)
δ1,j · (d′2)δ2,j = ((d1)

δ1,j · (d2)δ2,j)z.
Thus, the execution is identical to B′(A).

In the case that challenge is a random tuple, hj and ĥj are independently
and uniformly random group elements. Thus, the execution is identical to B′′(A).
Note that step III of B makes use of the correlated programming of H1 and H2

in equation (5). However, that equation still holds in B′′ for a different reason:
z′ = ẑ′ = 0 and k = k′.

If event (EarlyAbort) occurs, then our distinguisher outputs 1.
Otherwise, our distinguisher outputs 0. This distinguisher’s advantage is
exactly equal to the difference between Pr[B′(A) → (EarlyAbort)] and
Pr[B′′(A) → (EarlyAbort)]. Our hardness assumption therefore implies that
Pr[B′(A)→ (EarlyAbort)] ≤ Pr[B′′(A)→ (EarlyAbort)] + ϵDDH .

We now consider the remaining abort conditions in B′′.

Lemma 5. If t-OMDL is (ϵOMDL, TOMDL)-hard in G1 and A makes at most
q queries to H0 and q queries to H1 and H2, then
Pr[B′′(A)→ (III.BadInterp)] ≤ 2 · ϵOMDL.

Proof. At the time of a (III.BadInterp) abort, we have found some ℓ, j ∈
[L]× [q] such that, in the representation of y∗ℓ , the exponent of either hj or ĥj is
not a properly-formed interpolation of some t+1 {zi} or {ẑi} keys, respectively.
Without loss of generality, assume that it’s the hj component that triggered

the abort (the ĥj case is entirely symmetric). Define F as the event that the
following equation holds:

(sℓ
j
+

q∑
G=j+1

µℓ
GκGs

G
j
) +

∑
i∈S(j)

(vℓ
i,j

+

q∑
G=j+1

µℓ
GκGv

G
i,j
) · zi = 0 (9)

27

Intuitively, event F states that no H1 responses are meaningfully used in A’s
algebraic representation of y∗ℓ = H0(x

∗
ℓ)

k+α.
Given a t-OMDL input challenge = (g1, (g1)

ξ1 , . . . , (g1)
ξt), we use A to solve

for all {ξι}. We follow one of two reduction strategies at random. Strategy #1
succeeds if event F occurs, and strategy #2 succeeds if it doesn’t.

Strategy #1
Run B′′(A), but using the group elements of challenge to compute everything

involving the secret keys {zi} and {ẑi}. In particular:

– For each ι ∈ [t], pick νι ←$ Zm and define ξ̂ι := ξι + νι. The {ξ̂ι} values

cannot be directly computed, but {(g1)ξ̂ι} can.
– In step I, define polynomials z(i) :=

∑t
ι=1 ξιi

ι and ẑ(i) :=
∑t

ι=1 ξ̂ιi
ι. Once

again, these polynomials are only computable in the exponent of g1; this is
sufficient to compute the public keys.

– In response to an SEval query to server i with input (ctxj , pj), we can use the
H1 and H2 trapdoors to compute the correct response in spite of not directly

knowing zi and ẑi: (pj)
ki · (hj)

zi · (ĥj)
ẑi = (pj)

ki · ((g1)zi)τj · ((g1)ẑi)τ̂j .
– When A wishes to Corrupt server i, use a single discrete logarithm oracle call

to find the correct zi and ẑi to return. In particular, zi = DLg1((g1)
zi) and

ẑi = zi −
∑t

ι=1 νιi
ι.

– In step III, we treat zi and ẑi (for uncorrupted i) as unknown variables.

The first condition that could trigger (III.BadInterp) is |S(j)| < t + 1 −
|corrupt|. Equation (9) has only |S(j)| unknowns {zi}i∈S(j). Use DLg1(·) |S(j)|−1
times to learn all of them but one, then use equation (9) to solve for the last.
Use DLg1(·) t−|corrupt|−|S(j)| more times until a total of t zi values are known.
The underlying challenge solutions {ξι}ι∈[t] can then be interpolated. Only t− 1
DLg1(·) oracle queries have been made.

The second condition that could trigger (III.BadInterp) is that there

exists no µℓ
j

satisfying (sℓ
j
+

∑q

G=j+1
µℓ
GκGs

G
j
) = µℓ

j
(
∑

i∈corrupt λ
j
izi) and

(vℓ
i,j

+
∑q

G=j+1
µℓ
GκGv

G
i,j
) = µℓ

j
λj
i for all i ∈ S(j). However, since

|S(j)| = t + 1 − |corrupt|, we know that {zi}i∈corrupt ∪ S(j) do in fact interpolate
to 0: ∑

i∈corrupt
λj
izi +

∑
i∈S(j)

λj
izi = 0 (10)

Equations (9) and (10) are independent linear equations with the same t+ 1−
|corrupt| unknowns {zi}i∈S(j). Use DLg1(·) t− 1− |corrupt| times to learn all of

them but two, then use equations (9) and (10) to solve for the last two. A total
of t+ 1 zi values are now known, so the underlying challenge solutions {ξι}ι∈[t]
can be interpolated. Only t− 1 DLg1(·) oracle queries have been made.

Strategy #2
There is an obvious reduction from t-OMDL to DL, and (per Lemma 1) there

is a reduction from DL to RDL. Therefore, we present strategy #2 as an RDL
reduction on input ((g1)

χk , (g1)
χz , (g1)

χẑ , (g1)
χ1 , . . . , (g1)

χq+2q).

28

Run B′′(A), but use (gk, gz, gẑ) := ((g1)
χk , (g1)

χz , (g1)
χẑ). For all j ∈ [q] use

hj := (g1)
χj to respond to random oracle query H0(xj). For all j ∈ [q] use hj :=

(g1)
χq+j and ĥj := (g1)

χq+q+j to respond to random oracle queries H1(ctxj , pj)
and H2(ctxj , pj), respectively. To confirm that this is possible, observe that the

τk, τz, τẑ, {τj}j∈[q], {τ j , τ̂ j}j∈[q] trapdoors are never used by B′′.
Since (II.AdvLoses) did not occur, y∗ℓ must correctly equal (hj(ℓ))

k. If F

does not occur, then the exponent of hj is nonzero in equation (3). This is
nearly an RDL solution, but we must eliminate the {pJ}J∈[j]+ bases. Recursively

expand each one using its representation, equation (2), until only hj , hG, and

ĥG bases remain. Since pJ can only include hG and ĥG factors for G < J , this
expansion does not tamper with the exponent of hj , which therefore remains
nonzero. Thus, we have an RDL solution.

The probability of correctly guessing whether or not F will occur is 1/2, so
this procedure wins t-OMDL with probability
1/2 · Pr[B′′(A) → (III.BadInterp)]. Our hardness assumption therefore
implies that Pr[B′′(A)→ (III.BadInterp)] ≤ 2 · ϵOMDL.

Finally we are ready to combine our previous results and conclude the proof.

Theorem 1. If q- co -SDL is (ϵSDL, TSDL)-hard in (G1, G2), DDH is
(ϵDDH , TDDH)-hard in G1, t-OMDL is (ϵOMDL, TOMDL)-hard in G1, A runs
in time O(min{TOMDL, TDDH , TSDL} − qq2 − q logm − q1.815 logm), A is
algebraic with respect to G1, simulation of NIZKKeyGen and NIZKSEval incurs
security loss ϵNIZK , A makes at most q queries to H0 and q queries to H1 and
H2, and H0, H1, and H2 are modeled as random oracles, then
Advom−unpredictable

A,2B–HashTDH ≤ 2 · ϵOMDL + ϵDDH + 4 · ϵSDL + ϵNIZK . Thus,
2B–HashTDH is one-more unpredictable (Definition 14).

Proof. Recall that the execution of B(A) ends with a contradiction, and it
therefore aborts before that point with probability 1.

1 = Pr[B(A)→ (EarlyAbort)] + Pr[B(A)→ (IV.KeyKnown)]

≤ Pr[B(A)→ (EarlyAbort)] + 4 · ϵSDL

≤ Pr[B′′(A)→ (EarlyAbort)] + ϵDDH + 4 · ϵSDL

= Pr[B′′(A)→ (II.AdvLoses)] + Pr[B′′(A)→ (III.BadInterp)]

+ϵDDH + 4 · ϵSDL

≤ Pr[B′′(A)→ (II.AdvLoses)] + 2 · ϵOMDL + ϵDDH + 4 · ϵSDL

B′′ differs from Gameom−unpredictableA,2B–HashTDH only in the use of simulated NIZKs. Define
one final hybrid B′′′ that uses real NIZKs (i.e. NIZKKeyGen.Prove and
NIZKSEval.Prove) instead. By the simulatability of the NIZKs (Appendix B),
|Pr[B′′(A)→ (II.AdvLoses)]− Pr[B′′′(A)→ (II.AdvLoses)]| ≤ ϵNIZK .

29

B′′′ simulatesGameom−unpredictableA,2B–HashTDH perfectly and outputs (II.AdvLoses) iffA
fails the game’s win condition. Therefore, Advom−unpredictable

A,2B–HashTDH = 1−Pr[B′′′(A)→
(II.AdvLoses)], and consequently:

Advom−unpredictable
A,2B–HashTDH ≤ 2 · ϵOMDL + ϵDDH + 4 · ϵSDL + ϵNIZK

4.1 Threshold Blind Signature Security

Now that tOPRF security is proven, we provide a simple lemma saying that any
publicly verifiable tOPRF is also a tBSig. Even though a tBSig doesn’t need to
be a tOPRF (specifically, it doesn’t need to be deterministic and pseudorandom),
our 2B–tBlindBLS scheme is a tOPRF, so this lemma enables us to quickly prove
its security.

Lemma 6. Suppose there exists a threshold oblivious pseudorandom function
(Definition 8) tOPRF = (Setup,KeyGen,UEval,SEval,UAgg,Offline) and a PPT
algorithm Verify such that for all integers 0 ≤ t < n, all ({ski}i∈[n], aux) ←
KeyGen(n, t), and all (x, y) ∈ X × Y:

Verify(pk, x, y) = 1 ⇐⇒ y = Offline({ski}i∈[n], aux, x) (11)

where pk is part of aux.
It follows that tBSig = (Setup,KeyGen,UEval,SEval,UAgg,Verify) is a

threshold blind signature scheme (where the output of KeyGen is parsed as
({ski}i∈[n], pk, aux)).

Proof. To prove Lemma 6, we must show that tBSig is verifiably correct
(Definition 16), blind (Definition 17), and one-more unforgeable (Definition
18). These three properties are immediately implied by the deterministic
correctness (Definition 9), blindness (Definition 12), and one-more
unpredictability (Definition 14) of tOPRF, because equation (11) makes the
respective definitions equivalent.

Per the definition of a bilinear pairing, 2B–tBlindBLS.Verify indeed satisfies
equation (11). Therefore, by Lemma 6, 2B–tBlindBLS is a secure threshold blind
signature scheme.

Note that our security proof for 2B–tBlindBLS depends upon the DDH
assumption in G1. If the protocol is instantiated with a type 1 (i.e. symmetric)
pairing setup, then the pairing function itself acts as a DDH tester. Therefore,
the protocol should be instantiated only with a type 2 or 3 (i.e. asymmetric)
pairing setup. We do not view this as a significant drawback; in practice, type
3 setups are more performant than types 1 or 2 anyways [47].

References

1. Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu Xu.
Algebraic adversaries in the universal composability framework. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS,
pages 311–341. Springer, Cham, December 2021.

30

2. Masayuki Abe. A secure three-move blind signature scheme for polynomially many
signatures. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 136–151. Springer, Berlin, Heidelberg, May 2001.

3. Masayuki Abe and Serge Fehr. Adaptively secure feldman VSS and applications
to universally-composable threshold cryptography. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 317–334. Springer, Berlin, Heidelberg,
August 2004.

4. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlomovits.
Low-bandwidth threshold ECDSA via pseudorandom correlation generators. In
2022 IEEE Symposium on Security and Privacy, pages 2554–2572. IEEE Computer
Society Press, May 2022.

5. Jesús F. Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified
threshold RSA with adaptive and proactive security. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 593–611. Springer, Berlin,
Heidelberg, May / June 2006.

6. Ghous Ali Amjad, Scott Hendrickson, Christopher A. Wood, and Kevin W. L. Yeo.
Partially Blind RSA Signatures. Internet-Draft draft-irtf-cfrg-partially-blind-rsa-
00, Internet Engineering Task Force, September 2024. Work in Progress.

7. iCloud Private Relay Overview, Dec 2021. https://www.apple.com/icloud/docs/
iCloud_Private_Relay_Overview_Dec2021.pdf.

8. Renas Bacho and Julian Loss. On the adaptive security of the threshold bls
signature scheme. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’22, page 193–207, New York, NY,
USA, 2022. Association for Computing Machinery.

9. Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi Zhu.
Twinkle: Threshold signatures from DDH with full adaptive security. In Marc Joye
and Gregor Leander, editors, EUROCRYPT 2024, Part I, volume 14651 of LNCS,
pages 429–459. Springer, Cham, May 2024.

10. Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure
under the discrete logarithm assumption and a generalized forking lemma. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 449–458.
ACM Press, October 2008.

11. Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-
protected secret sharing. In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, ACM CCS 2011, pages 433–444. ACM Press, October 2011.

12. Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro,
and Chenzhi Zhu. Better than advertised security for non-interactive threshold
signatures. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IV, volume 13510 of LNCS, pages 517–550. Springer, Cham, August 2022.

13. Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-
interactive threshold signatures: BLS and FROST. Cryptology ePrint Archive,
Paper 2022/833, 2022. https://eprint.iacr.org/2022/833.

14. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Berlin, Heidelberg,
January 2003.

15. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, September 2004.

16. L. Brandao and Peralta R. NIST first call for multi-party threshold schemes, 2023.
https://csrc.nist.gov/publications/detail/nistir/8214c/draft.

31

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://eprint.iacr.org/2022/833
https://csrc.nist.gov/publications/detail/nistir/8214c/draft

17. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials.
In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages
345–356. ACM Press, October 2008.

18. Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with appointed
verifiers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 388–
407. Springer, Berlin, Heidelberg, August 2001.

19. Jan Camenisch and Markus Stadler. Proof systems for general statements about
discrete logarithms. Technical Report No. 260, March 1997. ftp://ftp.inf.ethz.
ch/pub/publications/tech-reports/.

20. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

21. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. UC non-interactive, proactive, threshold ECDSA with identifiable aborts.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 1769–1787. ACM Press, November 2020.

22. Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Adaptive security for threshold cryptosystems. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 98–115. Springer, Berlin, Heidelberg,
August 1999.

23. Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseudorandom
functions. Cryptology ePrint Archive, Report 2022/302, 2022.

24. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and
Ida Tucker. Bandwidth-efficient threshold EC-DSA. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume
12111 of LNCS, pages 266–296. Springer, Cham, May 2020.

25. Sofia Celi, Alex Davidson, Steven Valdez, and Christopher A. Wood. Privacy Pass
Issuance Protocols. RFC 9578, June 2024.

26. Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya,
and Benedikt Wagner. PI-cut-choo and friends: Compact blind signatures via
parallel instance cut-and-choose and more. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages 3–
31. Springer, Cham, August 2022.

27. Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu. Pairing-free
blind signatures from CDH assumptions. In Leonid Reyzin and Douglas Stebila,
editors, CRYPTO 2024, Part I, volume 14920 of LNCS, pages 174–209. Springer,
Cham, August 2024.

28. David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203.
Plenum Press, New York, USA, 1982.

29. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi
Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer,
New York, August 1990.

30. Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical Schnorr
threshold signatures without the algebraic group model. In Helena Handschuh and
Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages
743–773. Springer, Cham, August 2023.

31. Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. Improved
constructions of anonymous credentials from structure-preserving signatures on
equivalence classes. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe,

32

ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/

editors, Public-Key Cryptography – PKC 2022, pages 409–438, Cham, 2022.
Springer International Publishing.

32. Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive Schnorr
threshold signatures. In Advances in Cryptology – CRYPTO 2023: 43rd Annual
International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
August 20–24, 2023, Proceedings, Part I, page 678–709, Berlin, Heidelberg, 2023.
Springer-Verlag.

33. Elizabeth Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi
Zhu. Snowblind: A threshold blind signature in pairing-free groups. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO
2023, pages 710–742, Cham, 2023. Springer Nature Switzerland.

34. Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. Fully adaptive Schnorr
threshold signatures. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part I, volume 14081 of LNCS, pages 678–709. Springer, Cham,
August 2023.

35. Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi
Zhu. Snowblind: A threshold blind signature in pairing-free groups. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081
of LNCS, pages 710–742. Springer, Cham, August 2023.

36. Ivan Damg̊ard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg
Pagter, and Michael Bæksvang Østergaard. Fast threshold ECDSA with honest
majority. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume
12238 of LNCS, pages 382–400. Springer, Cham, September 2020.

37. Poulami Das, Julia Hesse, and Anja Lehmann. DPaSE: Distributed password-
authenticated symmetric-key encryption, or how to get many keys from one
password. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako, editors,
ASIACCS 22, pages 682–696. ACM Press, May / June 2022.

38. Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bünz, and
Ling Ren. Threshold signatures from inner product argument: Succinct, weighted,
and multi-threshold. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers,
and Engin Kirda, editors, ACM CCS 2023, pages 356–370. ACM Press, November
2023.

39. Sourav Das and Ling Ren. Adaptively secure bls threshold signatures from ddh
and co-cdh. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology
– CRYPTO 2024, pages 251–284, Cham, 2024. Springer Nature Switzerland.

40. Frank Denis, Frederic Jacobs, and Christopher A. Wood. RSA Blind Signatures.
RFC 9474, October 2023.

41. Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl
Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer,
Berlin, Heidelberg, August 1988.

42. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, New York,
August 1990.

43. Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner.
Threshold BBS+ signatures for distributed anonymous credential issuance. In
2023 IEEE Symposium on Security and Privacy, pages 773–789. IEEE Computer
Society Press, May 2023.

44. Yair Frankel, Philip D. MacKenzie, and Moti Yung. Adaptively-secure optimal-
resilience proactive RSA. In Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing,
editors, ASIACRYPT’99, volume 1716 of LNCS, pages 180–194. Springer, Berlin,
Heidelberg, November 1999.

33

45. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword
search and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 303–324. Springer, Berlin, Heidelberg, February 2005.

46. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving
signatures on equivalence classes and constant-size anonymous credentials. Journal
of Cryptology, 1:1–49, 2018.

47. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings
for cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.
Applications of Algebra to Cryptography.

48. Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang,
and Yinuo Zhang. hinTS: Threshold signatures with silent setup. Cryptology
ePrint Archive, Report 2023/567, 2023.

49. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with
fast trustless setup. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 1179–1194. ACM Press, October
2018.

50. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet security. In
Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS
16International Conference on Applied Cryptography and Network Security, volume
9696 of LNCS, pages 156–174. Springer, Cham, June 2016.

51. Trust Tokens, Apr 2024. https://developer.chrome.com/docs/

privacy-sandbox/trust-tokens/.
52. Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis, and Bingsheng

Zhang. Towards everlasting privacy and efficient coercion resistance in remote
electronic voting. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea
Bracciali, Federico Pintore, and Massimiliano Sala, editors, FC 2018 Workshops,
volume 10958 of LNCS, pages 210–231. Springer, Berlin, Heidelberg, March 2019.

53. Y. Gu, S. Jarecki, P. Kedzior, P. Nazarian, and J. Xu. Threshold PAKE
with security against compromise of all servers. In Advances in Cryptology –
ASIACRYPT 2024, 2024.

54. Christian Hanser. Signatures on Equivalence Classes: A New Tool for Privacy-
Enhancing Cryptography. PhD thesis, Graz University of Technology, Austria,
February 2016.

55. Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Rai-choo! Evolving blind
signatures to the next level. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 753–783. Springer,
Cham, April 2023.

56. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and
pattern matching with security against malicious and covert adversaries. In Ran
Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 155–175. Springer, Berlin,
Heidelberg, March 2008.

57. Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly signed contracts:
Anonymous on-blockchain and off-blockchain bitcoin transactions. In Jeremy
Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner,
and Kurt Rohloff, editors, FC 2016 Workshops, volume 9604 of LNCS, pages 43–
60. Springer, Berlin, Heidelberg, February 2016.

58. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, Berlin, Heidelberg, December 2014.

34

https://developer.chrome.com/docs/privacy-sandbox/trust-tokens/
https://developer.chrome.com/docs/privacy-sandbox/trust-tokens/

59. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: Cost-
minimal password-protected secret sharing based on threshold OPRF. In Dieter
Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17International
Conference on Applied Cryptography and Network Security, volume 10355 of LNCS,
pages 39–58. Springer, Cham, July 2017.

60. Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable oblivious key
management for storage systems. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 379–393. ACM Press,
November 2019.

61. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric
PAKE protocol secure against pre-computation attacks. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 456–486. Springer, Cham, April / May 2018.

62. Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function
with applications to adaptive OT and secure computation of set intersection. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 577–594. Springer,
Berlin, Heidelberg, March 2009.

63. Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection.
In Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS,
pages 418–435. Springer, Berlin, Heidelberg, September 2010.

64. Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials
over finite fields. In Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, STOC ’95, page 398–406, New York, NY, USA, 1995.
Association for Computing Machinery.

65. Julia Kastner, Ky Nguyen, and Michael Reichle. Pairing-free blind signatures from
standard assumptions in the ROM. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part I, volume 14920 of LNCS, pages 210–245. Springer, Cham,
August 2024.

66. Jinho Kim, Kwangjo Kim, and Chulsoo Lee. An efficient and provably secure
threshold blind signature. In 4th International Conference on Information Security
and Cryptology – ICISC’01, Berlin, Heidelberg, 2001. Springer-Verlag.

67. Sungwook Kim, Hyeonbum Lee, and Jae Hong Seo. Efficient zero-knowledge
arguments in discrete logarithm setting: Sublogarithmic proof or sublinear
verifier. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology
– ASIACRYPT 2022, pages 403–433, Cham, 2022. Springer Nature Switzerland.

68. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

69. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr
threshold signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 34–65. Springer, Cham,
October 2020.

70. Veronika Kuchta and Mark Manulis. Rerandomizable threshold blind signatures.
In Trusted Systems- 6th International Conference – INTRUST 2014, 2014.

71. Benôıt Libert, Marc Joye, and Moti Yung. Born and raised distributively:
fully distributed non-interactive adaptively-secure threshold signatures with short
shares. In Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC,
pages 303–312. ACM, July 2014.

35

72. Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages
613–644. Springer, Cham, August 2017.

73. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 1837–1854. ACM Press, October 2018.

74. Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold
setting: From cryptosystems to signature schemes. In Colin Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 331–350. Springer, Berlin,
Heidelberg, December 2001.

75. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, mar 2004.

76. Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer,
Berlin, Heidelberg, August 1992.

77. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, June 2000.

78. Vı́ctor Reyes-Macedo, Akinori Kawachi, Gina Gallegos-Garćıa, and Moisés Salinas-
Rosales. A threshold-blind signature scheme and its application in blockchain-
based systems. IEEE Access, 12:138239–138251, 2024.

79. Alfredo Rial and Ania M. Piotrowska. Security analysis of coconut, an attribute-
based credential scheme with threshold issuance. Cryptology ePrint Archive,
Report 2022/011, 2022.

80. Claus-Peter Schnorr. Security of blind discrete log signatures against interactive
attacks. In Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01,
volume 2229 of LNCS, pages 1–12. Springer, Berlin, Heidelberg, November 2001.

81. Markus Stadler. Publicly verifiable secret sharing. In Ueli Maurer, editor, Advances
in Cryptology — EUROCRYPT ’96, pages 190–199, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

82. Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with
exponential security. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 782–811. Springer,
Cham, May / June 2022.

83. Masayuki Tezuka and Keisuke Tanaka. Redactable signature with compactness
from set-commitment. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E104.A(9):1175–1187, September 2021.

84. Duc-Liem Vo, Fangguo Zhang, and Kwangjo Kim. A new threshold blind signature
scheme from pairings. In Symposium on Cryptography and Information Security –
SCIS 2023, 2003.

85. Joachim von zur Gathen and Daniel Panario. Factoring polynomials over finite
fields: A survey. Journal of Symbolic Computation, 31(1):3–17, 2001.

86. Pengfei Wang, Xiangyu Su, Mario Larangeira, and Keisuke Tanaka. Auditable
attribute-based credentials scheme and its application in contact tracing. In
Christina Pöpper and Lejla Batina, editors, Applied Cryptography and Network
Security, pages 88–118, Cham, 2024. Springer Nature Switzerland.

36

A Proof of Lemma 1

Proof. Suppose there exists an adversary A that runs in time T and solves N -
RDL with probability ϵRDL. We can use A to solve for ξ given a DL input (g, gξ).
For each i ∈ [N], pick ai, bi ←$ Zm and define hi := gai · (gξ)bi . Run A on RDL
challenge (h1, . . . , hN). Notice that, in effect, ξi = ai + biξ for all i.

If A is successful, it outputs (c1, . . . , cN) such that
∏

i∈[N](hi)
ci = 1. In

the exponent, we have the equation
∑

i∈[N](ai + biξ)ci = 0. We can isolate

ξ = (−
∑

i∈[N] aici)/(
∑

i∈[N] bici). As long as the denominator
∑

i∈[N] bici ̸= 0,
we solve DL.

Since A is successful, ∃i∈[N] ci ̸= 0. Notice that bi is information-theoretically
hidden from A, i.e. hi is independent of bi. It follows by a one-time pad argument
that

∑
i∈[N] bici is a uniformly random element of Zm and Pr[

∑
i∈[N] bici = 0] =

1
m . Overall, then, our probability of solving DL is (1− 1

m) · ϵRDL. Our hardness
assumption therefore implies that ϵRDL ≤ m

m−1 · ϵ.

B Non-Interactive Zero Knowledge Proofs

The protocols in Figure 3 require two non-interactive zero knowledge proof of
knowledge systems (NIZKs), denoted NIZKKeyGen and NIZKSEval. Intuitively, the
former ensures that public keys are well-formed, and the latter ensures that
servers behave honestly. We represent a NIZK as a pair of algorithms
(Prove,Verify) for a relation R of statement/witness pairs. Prove(s, w) → π
produces a proof of knowledge π for (s, w) ∈ R. Verify(s, π) → 0/1 verifies
whether π proves knowledge of a witness w such that (s, w) ∈ R.

– NIZKKeyGen is a proof system for statements of the form pk ∈ G1 (for
2B–HashTDH) or pk ∈ G2 (for 2B–tBlindBLS) and witnesses of the form
k ∈ Zm. Relation RKeyGen is the set of (pk, k) pairs such that pk = (gk)

k

(for 2B–HashTDH) or pk = (g2)
k (for 2B–tBlindBLS).

– NIZKSEval is a proof system for statements of the form (p, h1, h2, pki, qi) ∈
(G1)

5 and witnesses of the form (ki, zi, ẑi) ∈ (Zm)3. Relation RSEval is the
set of ((p, h1, h2, pki, qi), (ki, zi, ẑi)) pairs such that pki = (gk)

ki ·(gz)zi ·(gẑ)ẑi
and qi = (p)ki · (h1)

zi · (h2)
ẑi .

These NIZKs are required to satisfy Completeness, Simulatability, and Strong
Soundness. We consider NIZKs in the random oracle model, where the Prove
and Verify algorithms have oracle access to a function HRO randomly sampled
from some distribution H.

Definition 19 (Completeness). Non-interactive zero knowledge proof of
knowledge system NIZK for relation R is complete iff, for every (s, w) ∈ R,
NIZK.Verify(s,NIZK.Prove(s, w)) always produces 1.

37

Definition 20 (Simulatability). The advantage of adversary A against
protocol NIZK for relation R in the simulatability game is defined as:

Advsimulatable
A,NIZK,SIM(κ) = |Pr[ANIZK.Prove(·,·)(1κ) = 1]− Pr[ASIM(·)(1κ) = 1]|

where A can only query its oracle on (s, w) ∈ R and SIM is an algorithm that
takes only the s part as its input. In the first probability, HRO is randomly sampled
from H. In the second probability, SIM programs the HRO queries of A.

Non-interactive zero knowledge proof of knowledge system NIZK is
simulatable iff there exists an efficient simulator SIM such that, for all PPT
adversaries A, Advsimulatable

A,NIZK,SIM is negligible.

Definition 21 (Strong Soundness). The acceptance event accA of prover A
against protocol NIZK for relation R is defined as:

A(1κ; ρ)→ ({(si, πi)}i∈[ω], ϕ) s.t. ∀i∈[ω] NIZK.Verify(si, πi) = 1

where A is a probabilistic algorithm that runs on randomness ρ sampled from
some distribution PA. A outputs ω proofs {(si, πi)}i∈[ω] and a side output ϕ.

The acceptance event accEXT of extractor EXT against prover A is defined
as:

A(1κ; ρ)→ ({(si, πi)}i∈[ω], ϕ) s.t. ∀i∈[ω] NIZK.Verify(si, πi) = 1

∧ EXTA(1κ;ρ)(1κ)→ ({wi}i∈[ω]) s.t. ∀i∈[ω] (si, wi) ∈ R

In this experiment, EXT and the “main” execution of A have oracle access to
random function HRO. For the executions of A run by EXT, EXT programs HRO.
Every execution of A runs on the same randomness ρ.

Non-interactive zero knowledge proof of knowledge system NIZK is sound iff,
for every PPT prover A, if Prρ←$PA,HRO←$H[accA] is non-negligible, then there
exists a PPT extractor EXT such that Prρ←$PA,HRO←$H[accEXT] is non-negligible.

The extraction loss LEXT(·) is a lower-bound on the probability of accEXT as a
function of the probability of accA. The extraction time TEXT(·) is an upper-bound
on the runtime of EXTA as a function of the runtime of A.

Note that we are using a “multi-point” version of strong soundness that
allows for (offline) extraction of multiple witnesses generated by a prover. This
property is achieved by a NIZK created via the Fiat-Shamir transform applied
to a Sigma protocol, per the generalized forking lemma of Bagherzandi et al.
[10]. The Sigma protocols for relations RKeyGen and RSEval are known as proofs
of discrete-logarithm respresentation: They are a straightforward extension of
Schnorr’s proof of discrete-logarithm knowledge, and their cost is comparable to
Schnorr’s signature, see e.g. the report by Camenisch and Stadler [19].

B.1 Performance Considerations

The security of 2B–HashTDH depends upon NIZK soundness only in its proof
of blindness (Section 4). Even in that proof the NIZKs are only relevant to the

38

analysis of UAgg outputs, which are part of the blindness game but are
excluded from the obliviousness game. Therefore, in applications where
obliviousness is sufficient, NIZKs can be omitted from 2B–HashTDH entirely.
In that case, users can evaluate the tOPRF without needing any public data
(i.e. pk, aux). As mentioned in Section 2.2, obliviousness is the more typical
security expectation for OPRFs. Only those applications that demand a robust
(i.e. verifiable) tOPRF need incur the overhead of public keys and NIZKs.

For 2B–tBlindBLS, the situation is even better. NIZK soundness does not
appear at all in the proofs of security. The only feature that the NIZKs
provide, then, is “partial verifiability,” i.e. the ability for a user to check
whether each SEval response is correctly formed. This check is only important
after an aggregated signature fails to verify. Therefore, we propose that NIZKs
can and should be omitted from the normal operation of 2B–tBlindBLS.
Instead, servers can provide an “Audit” interface by which a user can request a
proof that a previous SEval response was correct. Since SEval is deterministic,
servers can support this feature without even maintaining any state. In
practice, the inevitability of being caught should strongly disincentivize
dishonest server behavior, and NIZKs should be rarely needed.

C Proof of Blindness

We now prove that 2B–HashTDH and 2B–tBlindBLS are blind. We argue that,
under expected conditions, the view of A in Gameblind is identically distributed
regardless of the secret bit θ. In particular, the OUEval oracle always outputs two
uniformly random G1 elements. If A sends honest server responses to OUAgg,
then that oracle outputs (H0(x0,sid)

k, H0(x1,sid)
k), which does not depend on

θ. If A sends dishonest responses, then UAgg is expected to abort and output
(⊥,⊥), which obviously reveals no information about θ.

Thus, blindness is perfect unless, for some sid , OUAgg produces a (non-⊥)
output that is not of the form (H0(x0,sid)

k, H0(x1,sid)
k) for some k. For

2B–tBlindBLS, this event is impossible due to the pairing-based verification
check that UAgg performs; if y0 and y1 are not correctly formed (for some
given public key pk), UAgg is guaranteed to abort. For 2B–HashTDH, the event
is not impossible, but it occurs with negligible probability.

Theorem 2. If DL is (ϵDL, TDL)-hard in G1, NIZKKeyGen and NIZKSEval are
sound with extraction loss LEXT and extraction time TEXT (Definition 21), A
runs in time O(T−1EXT(T

−1
EXT(TDL))), and A makes at most qUAgg queries to OUAgg,

then Advblind
A,2B–HashTDH ≤ 2qUAgg ·L−1EXT(L

−1
EXT(ϵDL)). Thus, 2B–HashTDH is blind

(Definition 12).

Proof. Given an RDL input challenge = (gk, gz, gẑ), we can useA to find ck, cz, cẑ
such that (gk)

ck · (gz)cz · (gẑ)cẑ = 1 and ck ̸= 0 ∨ cz ̸= 0 ∨ cẑ ̸= 0.
Define B to be an algorithm that runs GameblindA,2B–HashTDH but uses

challenge to set the public parameters. As argued above, Advblind
A,2B–HashTDH is

39

upper-bounded by the probability that, for some sid , OUAgg produces an
unexpected output. In particular, an output is unexpected if at least one of
y0,sid and y1,sid is not correctly formed for the pk given in auxsid .
B selects a sid used by A at random and θ ←$ {0, 1}. yθ,sid is not correctly

formed with probability at least 1
2qUAgg

·Advblind
A,2B–HashTDH. This event implies that

all NIZKs πKeyGen,sid and {πi,θ,sid}i∈Sθ,sid
successfully verify. B outputs these

NIZKs.
Per the supposition that Advblind

A,2B–HashTDH is non-negligible, the soundness
of NIZKKeyGen implies the existence of an efficient extractor EXTKeyGen such

that EXTBKeyGen outputs witness k for πKeyGen,sid with probability at least

LEXT(
1

2qUAgg
· Advblind

A,2B–HashTDH). Similarly, the soundness of NIZKSEval implies

the existence of an efficient extractor EXTSEval such that EXT
EXTB

KeyGen

SEval outputs
witnesses (ki, zi, ẑi) for all {πi,θ,sid}i∈Sθ,sid

with probability at least

LEXT(LEXT(
1

2qUAgg
·Advblind

A,2B–HashTDH)).

UAgg aborts unless public keys correctly interpolate, i.e.
pk = (gk)

k =
∏

i∈Sθ,sid
pkλi

i . Representing pki using the extracted (ki, zi, ẑi), we

have (gk)
k = (gk)

∑
i∈Sθ,sid

λiki · (gz)
∑

i∈Sθ,sid
λizi · (gẑ)

∑
i∈Sθ,sid

λiẑi
. If∑

i∈Sθ,sid
λiki = k,

∑
i∈Sθ,sid

λizi = 0, and
∑

i∈Sθ,sid
λiẑi = 0, then yθ,sid would

be correctly formed for public key (gk)
k. It follows that one of these equalities

does not hold, and we therefore have an RDL solution: ck =
∑

i∈Sθ,sid
λiki − k,

cz =
∑

i∈Sθ,sid
λizi, cẑ =

∑
i∈Sθ,sid

λiẑi.

Putting it together, we have an O(TEXT(TEXT(TA))) algorithm that wins RDL
with probability LEXT(LEXT(

1
2qUAgg

·Advblind
A,2B–HashTDH)). Our hardness assumption

therefore implies that, if TA = O(T−1EXT(T
−1
EXT(TDL))), then Advblind

A,2B–HashTDH ≤
2qUAgg · L−1EXT(L

−1
EXT(ϵDL)).

D Universally Composable tOPRF

The UC threshold OPRF (tOPRF) functionality was first proposed by Jarecki
et al. [59], based on the prior notion of UC OPRF [58]. Recently, Gu et al. [53]
pointed out some ambiguities in the UC tOPRF model of [59] and proposed a
fixed model, which we adopt here, as well as a protocol that securely realizes it
in the static adversary setting under OMDH and DDH assumptions in ROM.
We note that the UC (t)OPRF models of [58, 59, 53] are used as building blocks
for applications such as password-protected secret sharing [59, 37], password-
authenticated key exchange [58, 61], and a threshold pasword-authenticated key
exchange (PAKE) [53], and that realizing the same functionality in the adaptive
adversary setting, can lead to adaptive security of these applications. (This is
the case e.g. in tPAKE of [53].)

In this section we present a variant UC–2B–HashTDH of our tOPRF
protocol 2B–HashTDH, and we prove that it is adaptively secure under the UC
model FtOPRF of [53]. We thus extend our earlier game-based results and

40

provide an adaptively-secure tOPRF that can be used as a building block into
any of the aforementioned higher-level constructions. Since our proofs are in
the AGM, we use the adaptation of the UC model to AGM by Abdalla et
al. [1]. Roughly speaking, Abdalla et al. [1] show that UC composition theorem
applies to the AGM model, as long as the simulator used in the security proof
is also algebraic, i.e. that it uses the group like the AGM algorithm. Technically
[1] require the functionality itself to be algebraic, but that’s immediate in the
case of FtOPRF since this functionality is oblivious to the group used in the
protocol that implements it. Finally (and naturally), the composition holds
only for environments which are algebraic with respect to the protocol, i.e.
they use the group elements output by the homest parties only as an AGM
adversary would. In the theorem below we use the [1] terminology that protocol
π AGM-emulates functionality F, but this is an AGM model counterpart to the
standard notion that protocol π UC-realizes functionality F of Canetti [20].

D.1 Security Model

Figure 4 is the FtOPRF functionality of [53] (with some minor syntactic changes).
FtOPRF is in some ways stronger than the game-based definition of tOPRF

given in Section 2.2. For example, FtOPRF requires that a tOPRF be “one-more
pseudorandom”, i.e. until t + 1 server responses are collected, the function
output is not just unpredictable but completely pseudorandom. Our
game-based definition separately requires one-more unpredictability and
pseudorandomness, but those properties do not imply one-more
pseudorandomness. Consider a protocol where every server can independently
compute just the first bit of the tOPRF output for any input. Such a protocol
could be one-more unpredictable (as long as the rest of the bits are
unpredictable without t + 1 servers’ participation) and pseudorandom (as long
as that first bit and the rest of the bits are pseudorandom), but it would not be
one-more pseudorandom and it would not realize FtOPRF.
FtOPRF also requires that, at the time of each evaluation, the ideal adversary

commits to the instance sid , server set S, and server context data ctx under which
that evaluation is occuring. Somehow, a simulator must be able to “extract” that
information from observing a real-world adversary’s behavior. This property is
also not guaranteed by the game-based tOPRF definition of Section 2.2.

D.2 Protocol

Figure 6 is UC–2B–HashTDH, a tOPRF protocol realizing FtOPRF.
UC–2B–HashTDH makes use of Fchannel, a functionality modeling a secure and
authenticated communication channel, but only during initialization. Fchannel is
defined in Figure 5.

UC–2B–HashTDH is essentially our main tORPF protocol 2B–HashTDH
augmented with an “outer” hash function H̃ applied to the function’s final
output y. This technique generically boosts one-more unpredictability to
one-more pseudorandomness. By also including the function input x in the

41

Notation
The functionality interacts with a set of parties P and an adversary A∗. P∗ =
P ∪{A∗}. Corr is the initial set of corrupted parties. By convention, A∗ ∈ Corr.
We assume strings sid of form sid = (. . . ,S) where S = (S1, . . . , Sn) ∈ (P∗)n. Ssid
denotes the list S specified by string sid .
Initially tx[sid , ctx, i] := 0 and Fsid(x) are undefined for all sid ,ctx, i, x. When
Fsid(x) is first referenced FtOPRF assigns Fsid(x)←$ {0, 1}l.
Initialization

1. On (toprf.init, sid) from P0 ∈ P∗, if sid is new (abort otherwise):
– send (toprf.init, sid ,P0) to A∗

– save (toprf.init, sid ,P0) and mark it compr if P0 ∈ Corr
2. On (toprf.sinit, sid , i,P0) from S where S = Ssid [i] or (S = A∗ and Ssid [i] ∈

Corr), save record (toprf.sinit, sid , i,P0) marked inactive
3. On (toprf.fininit, sid , i) from A∗ where ∃ record urec = (toprf.init, sid ,P0) and

record srec = (toprf.sinit, sid , i,P0) marked inactive:
– send (toprf.sinit, sid , i) to Ssid [i]
– if urec is compr or Ssid [i] ∈ Corr then mark srec compr
– else (i.e. urec is not compr and Ssid [i] /∈ Corr) mark srec active

Corruption

4. On (toprf.corrupt,P) from A∗ (with permission from Z):
– set Corr := Corr ∪ {P}
– mark every active record (toprf.sinit, sid , i,P0) compr where P = Ssid [i]

Evaluation

5. On (toprf.eval, sid , ssidU, x) from U ∈ P∗, if this is the first call from U for sid
and ssidU:
– send (toprf.eval, sid , ssidU,U) to A∗

– save (toprf.eval, sid , ssidU,U, x) marked fresh
6. On (toprf.sndrcomplete, sid , i, ctx) from S where ∃ record srec =

(toprf.sinit, sid , i,P0) not marked inactive and (S = Ssid [i] or (S = A∗ and
srec is marked compr)):
– send (toprf.sndrcomplete, sid , i, ctx) to A∗

– set tx[sid , ctx, i]++
7. On (toprf.rcvcomplete, sid , ssidU, sid

∗, ctx∗,S) from A∗ where |S| = t+ 1 and
∃ record (toprf.eval, sid , ssidU,U, x) marked fresh:
– if ∃j ∈ S such that tx[sid∗, ctx∗, j] = 0 then abort
– otherwise mark the record completed, set tx[sid∗, ctx∗, j]−− for all j ∈

S, and send (toprf.eval, sid , ssidU, Fsid∗(x)) to U

Fig. 4. FtOPRF: threshold OPRF functionality, parameterized by threshold t, number
of servers n, and output length l.

42

Notation
The functionality interacts with a set of parties P and an adversary A∗.

Secure Channel

1. On (channel.send, sid ,R,m) from S ∈ P:
– save (channel.message, sid , S,R,m) marked pending
– send (channel.send, sid , S,R, |m|) to A∗

2. On (channel.deliver, sid , S,R) from A∗ where ∃ record
(channel.message, sid , S,R,m) marked pending:
– mark the record completed
– send (channel.deliver, sid , S,m) to R

Fig. 5. Fchannel: secure and authenticated communication functionality

Setup
G1 is a group of prime order m with generator g1. H0 : {0, 1}∗ → G1, H1 :
{0, 1}∗ → G1, H2 : {0, 1}∗ → G1, and H̃ : {0, 1}∗ → {0, 1}l are hash functions.

Initialization

1. On input (toprf.init, sid), initializer P0 does:
– pick a0, ..., at, b1, . . . , bt, b̂1, . . . , b̂t ←$ Zm

– define polynomials k(i) :=
∑t

ι=0 aιi
ι, z(i) :=

∑t
ι=1 bιi

ι, ẑ(i) :=
∑t

ι=1 b̂ιi
ι

– ∀i∈[n] ki := k(i), zi := z(i), ẑi := ẑ(i)
– for each i ∈ [n], send (channel.send, (sid , i),Ssid [i], (i, ki, zi, ẑi)) to Fchannel

2. On input (toprf.sinit, sid , i,P0), server Ssid [i] does:
– await (channel.deliver, (sid , i),P0, (i, ki, zi, ẑi)) from Fchannel;
– then save record (toprf.share, sid , i, ki, zi, ẑi)
– output (toprf.fininit, sid , i)

Evaluation

3. On input (toprf.eval, sid , ssidU, x), evaluator U does:
– pick r ←$ Zm and compute p := H0(x)

r

– for each i ∈ [n], send (sid , i, ssidU, p) to Ssid [i]
– await responses (sid , i, ssidU, qi) from Ssid [i] for all i ∈ S, for any set

S ⊆ [n] of size t+ 1;
– then compute q :=

∏
i∈S qλi

i where λi is the Lagrange interpolation
coefficient for index i and index set S

– output (toprf.eval, ssidU, H̃(x, q1/r))
4. On input (toprf.sndrcomplete, sid , i, ctx), server Ssid [i] does:

– retrieve record (toprf.share, sid , i, ki, zi, ẑi) (abort if not found)
– await (sid , i, ssidU, p) from any U (if it hasn’t already been received);
– then compute qi := pki ·H1(ctx, p)

zi ·H2(ctx, p)
ẑi

– send response (sid , i, ssidU, qi) to U

Fig. 6. Protocol UC–2B–HashTDH which realizes FtOPRF in the Fchannel-hybrid world.

43

input to H̃, we solve our protocol’s sid extractability issue. (S and ctx are
extractable due to the blinding factors used by the servers.)

D.3 Proof of Security

Theorem 3. Protocol UC–2B–HashTDH G1-AGM emulates functionality
FtOPRF with parameters t and n in the (Fchannel,FRO)-hybrid model, assuming
hash functions H0, H1, H2, H̃ are modeled as random oracles, and assuming the
hardness of DL on G1 and one-more unpredictability of 2B–HashTDH.

Specifically, we show a simulator SIM s.t. for any efficient adversary A
against protocol Π = UC–2B–HashTDH and any environment Z s.t. (Z,A) are
(G1, Π)-algebraic, then (Z,SIM) are (G1,FtOPRF)-algebraic, and Z’s advantage
in distinguishing the view of A interacting with the real UC–2B–HashTDH
protocol and the view of SIM interacting with the ideal functionality FtOPRF, is
upper-bounded by 2q2 · m

m−1 · ϵDL +Advom−unpredictable
R↔Z,2B–HashTDH, where q is the number

of H0 queries, m = |G1|, and ϵDL and Advom−unpredictable
R↔Z,2B–HashTDH are the advantages

of algorithms (that run in time approximately equal to Z) in the DL and
2B–HashTDH one-more unpredictability games, respectively.

Proof. For any adversary A∗, we construct simulator SIM as shown in Figures 7,
8, and 9. Without loss of generality, we assume that A∗ is a “dummy” adversary
that merely passes messages to and from the environment Z.

First, note that simulator SIM is G1-algebraic. For simplicity of notation, we
describe SIM’s way of sampling randomG1 elements in Fig. 9 using an unspecified
sampling function, but this sampler can be trivially implemented in the algebraic
way, by picking random exponent r and outputting (g1)

r.

We now show that, for any efficient (i.e. PPT) Z, the distinguishing
advantage of Z between the real and simulated worlds is negligible. The
argument proceeds by a series of game changes, starting from the real world G0
and ending at the simulated world G4. By DistG,G

′

Z we denote distinguisher Z’s
distinguishing advantage between world G and world G′. Specifically,

DistG,G
′

Z = |PrZ↔G [Z → 1]− PrZ↔G′ [Z → 1]|.

Game G0: The real world. The distinguisher Z interacts with
UC–2B–HashTDH (Figure 6) in the role of the honest parties and in the role of
the adversary. H0, H1, H2 and H̃ are all true random oracles.

As a purely conceptual change from the true real world, one can imagine all
the computational processes of the honest parties (i.e. UC–2B–HashTDH and
Fchannel) abstracted into a single monolithic component, which we call the
simulator. This component also simulates the code of FtOPRF in parallel to its
“real world” functions. By the end of the following sequence of game changes,
all interactions with the honest parties will exclusively occur through the
interface of FtOPRF.

Game G1: H̃ returns PRF outputs. G1 is G0 with the following changes:

44

Notation
Notation is as in FtOPRF. G1 is a group of prime order m with generator g1.
Initially, evalsetsid(ctx, p) := ∅ for all sid , ctx, and p. Values t, n, l are parameters.

Honest Initialization

1. On (toprf.init, sid ,P0) from FtOPRF where P0 ̸= A∗:
– pick a0, ..., at, b1, . . . , bt, b̂1, . . . , b̂t ←$ Zm (such that a0 has never been

picked before)
– define polynomials k(i) :=

∑t
ι=0 aιi

ι, z(i) :=
∑t

ι=1 bιi
ι, ẑ(i) :=

∑t
ι=1 b̂ιi

ι

– save (toprf.init, sid ,P0, (g1)
k(0))

– for each i ∈ [n], save (toprf.share, sid , i,P0, k(i), z(i), ẑ(i)) marked
inactive

– for each i ∈ [n], send (channel.send, (sid , i),P0,Ssid [i], |(i, k(i), z(i), ẑ(i))|)
to A∗

2. On (channel.deliver, (sid , i),P0,Ssid [i]) from A∗ where ∃ record
(toprf.share, sid , i,P0, ki, zi, ẑi) marked inactive:
– mark the record active (or if P0 = A∗ mark it compr)
– send (toprf.fininit, sid , i) to FtOPRF

Dishonest Initialization

3. On (channel.send, (sid , i),Ssid [i], (i, ki, zi, ẑi)) from A∗ on behalf of P0 ∈ Corr:
– if this is the first such message for sid , then send (toprf.init, sid) to FtOPRF

on behalf of P0

– save (toprf.share, sid , i,A∗, ki, zi, ẑi) marked inactive

Corruption

4. On corruption by A∗ of party P (with permission from Z):
– send (toprf.corrupt,P) to FtOPRF

– set Corr := Corr ∪ {P}
5. If ever ∃ record (toprf.share, sid , i,P0, ki, zi, ẑi) marked active where Ssid [i] ∈

Corr− {A∗}, mark it compr and send (toprf.share, sid , i, ki, zi, ẑi) to A∗

Fig. 7. Simulator SIM for protocol UC–2B–HashTDH, part 1: Notation, Honest
Initialization, Corrupt Initialization, and Corruption

45

Honest Evaluation

6. On (toprf.eval, sid , ssidU,U) from FtOPRF where U ̸= A∗:
– pick r ←$ Zm and x′ ←$ {0, 1}λ and define p := H0(x

′)r

– for each i ∈ [n], send (sid , i, ssidU, p) to A∗ (addressed from U to Ssid [i])
– and await responses (sid , i, ssidU, qi) from A∗ (addressed from Ssid [i] to

U) for all i ∈ S, for any set S ⊆ [n] of size t+ 1;
– then compute q :=

∏
i∈S qλi

i where λi is the Lagrange interpolation
coefficient for index i and index set S

– if the algebraic representation of y is not of the form y = H0(x
′)k, then

pick random k ←$ Zm

– run FindEvalset((g1)
k), which returns (sid∗, ctx∗,S′) (see routine 9)

– send (toprf.rcvcomplete, sid , ssidU, sid
∗, ctx∗,S′) to FtOPRF

7. On (toprf.sndrcomplete, sid , i, ctx) from FtOPRF and (sid , i, ssid ′
U, p) from A∗

(addressed from U to Ssid [i]) where Ssid [i] ̸= A∗:
– set evalsetsid(ctx, p) := evalsetsid(ctx, p) ∪ {i}
– retrieve (toprf.share, sid , i,P0, ki, zi, ẑi)
– compute qi := pki ·H1(ctx, p)

zi ·H2(ctx, p)
ẑi

– send (sid , i, ssid ′
U, ctx, qi) to A∗ (addressed from Ssid [i] to U)

8. Define subroutine FindEvalset(k∗):
– find record (toprf.init, sid∗,P0, k

∗)
– if no such record exists, create it as follows:
• choose an unused sid∗ such that Ssid∗ = (A∗)n

• send (toprf.init, sid∗) to FtOPRF

• receive (toprf.init, sid∗,A∗) in response
• for each i ∈ [n], send (toprf.sinit, sid∗, i,A∗) and (toprf.fininit, sid∗, i)

to FtOPRF

• save (toprf.init, sid∗,A∗, k∗)
– if P0 = A∗, then define S∗ := [n]
– if P0 ̸= A∗, then define S∗ := {i : ∃ record (toprf.share, sid∗, i,P0, ki, zi, ẑi)

marked compr}
– for each i ∈ S∗:
• pick an unused ssid ′

• send (toprf.sndrcomplete, sid∗, i, ssid ′) to FtOPRF

• receive the same message in response (don’t run routine 8)
– pick any (ctx∗, p) such that |evalsetsid∗(ctx∗, p)| ≥ (t+1)−|S∗| (if no such

(ctx∗, p) exists, then emit (fail, sid∗) and halt the entire simulator)
– pick any evaluation set S′ ⊆ S∗ ∪ evalsetsid∗(ctx∗, p) of size |S′| = t+ 1
– set evalsetsid∗(ctx∗, p) := ∅
– return (sid∗, ctx∗,S′)

Fig. 8. Simulator SIM for protocol UC–2B–HashTDH, part 2: Honest Evaluation

46

Dishonest Evaluation

9. On fresh query x to H0(·), simply set H0(x)←$ G1 and return it
10. On fresh query (ctx, p) to H1(·), simply set H1(ctx, p)←$ G1 and return it
11. On fresh query (ctx, p) to H2(·), simply set H2(ctx, p)←$ G1 and return it
12. On fresh query (x, y) to H̃(·):

– if the algebraic representation of y is not of the form y = H0(x)
k, then

simply set H̃(x, y)← {0, 1}∗ and return it
– otherwise, run FindEvalset((g1)

k), which returns (sid∗, ctx∗,S′) (see
routine 9)

– pick an unused ssidU and send (toprf.eval, sid∗, ssidU, x) to FtOPRF

– send (toprf.rcvcomplete, sid∗, ssidU, sid
∗, ctx∗,S′) to FtOPRF

– receive (toprf.eval, ssidU, ỹ) in response
– set H3(x, y) := ỹ and return it

Fig. 9. Simulator SIM for protocol UC–2B–HashTDH, part 3: Dishonest Evaluation

– Subroutine FindEvalset is introduced (Figure 8). Given parameter k∗ ∈ G1,
this subroutine finds a PRF instance sid∗ that was initialized with key k(0)
such that k∗ = (g1)

k(0). If no such instance exists, it uses the interface of
FtOPRF to create one, with A∗ taking the nominal role of all n servers. In
G1, FindEvalset does not yet search for a (ctx∗, p) pair under which a sid∗

evaluation is legal. It therefore never fails and always outputs (only) sid∗.
– The simulator must answer H̃ queries that occur during honest user

evaluation and that are made directly by the adversary. In both cases, H̃
uses FindEvalset to set their outputs (Figure 9). In particular, upon fresh
query (x, y), H̃ checks whether y is algebraically represented as H0(x)

k for
some k ∈ Zm. If not, then H̃ simply samples a random output. If so, then
H̃ calls FindEvalset((g1)

k), which returns sid∗. It then outputs
ỹ := Fsid∗(x), where Fsid∗(·) is as defined in FtOPRF (Figure 4).

In the previous game, H̃(x, y) outputs a randomly sampled value
corresponding to (x, y). In this game, it outputs a randomly sampled value
corresponding to (x, sid), where sid is a PRF instance identifier that
FindEvalset maps to (x, y). In the case that y is not represented as H0(x)

k for
some k ∈ Zm, sid is effectively a one-time value that is never used for any
other (x, y). If there exists a perfect bijection between pairs (x, y) and pairs
(x, sid), then Z’s views of G0 and G1 are identical. Consider the two directions
of this bijection:

1. Suppose there exist x, y, sid , and sid ′ such that H̃(x, y) maps to both (x, sid)
and (x, sid ′).
H̃ only consults FindEvalset for fresh queries (x, y). Regardless of their
representations, repeated (x, y) queries are guaranteed to produce the same
output (i.e. map to the same sid). Therefore, sid = sid ′.

2. Suppose there exist x, y, y′, and sid such that H̃(x, y) and H̃(x, y′) both
map to (x, sid).

47

y and y′ must be represented as H0(x)
k and H0(x)

k′
, respectively, for some

k, k′ ∈ Zm (otherwise, they are guaranteed to map to different sids). Also,
FindEvalset((g1)

k) and FindEvalset((g1)
k′
) must both map to sid . Per the

procedure of FindEvalset, it follows that k = k′ = k(0), where k(0) is the
secret key for the PRF instance identified by sid . Therefore, y = y′.

Thus, this bijection between pairs (x, y) and pairs (x, sid) does indeed hold.

DistG0,G1Z = 0

Game G2: Honest user evaluation is oblivious. G2 is G1 with the following
changes:

– After picking random exponent r ←$ Zm, the honest user evaluation
procedure picks any new x′ and sets p := H0(x

′)r rather than p := H0(x)
r

for the actual PRF input x. This ensures that the same x′ is never used
twice (and x′ is never sent directly to H̃ by the adversary).

– Honest user evaluation proceeds as before, with the aggregation of q and
computation of y = q1/r. Then, however, the simulator checks whether y
is algebraically represented as H0(x

′)k for some k ∈ Zm. If not, it simply
samples a random output ỹ. If so, it calls FindEvalset((g1)

k), which returns
sid∗. It then outputs Fsid∗(x) for the actual input x (i.e. not x′).

In both G2 and G1, p is a uniformly random group element. In both G2 and
G1, honest user evaluation leads to subroutine call FindEvalset((g1)

k) where k is
the discrete log DLp(q). There is only one difference between G1 and G2 that may

be visible to Z: in G2, honest user evaluations do not contribute to H̃’s “cache”
of previous queries.

Even still, as long as all y values (i.e. those appearing during honest user
evaluation and those sent to H̃ by the adversary) have acceptable algebraic
representations, the games will be identical to Z. Thus, Z’s probability of
distinguishing G1 from G2 is upper-bounded by the probability that Z causes
two evaluations (x, y) and (x′, y′) such that y = H0(x)

k and y′ = H0(x
′)k for

some k ∈ Zm, and yet either y or y′ is not algebraically represented as such. At
least one of these (x, y) pairs must occur during honest user evaluation; the
other may come from honest user evaluation or from a direct adversarial query
to H̃. In either case, this event corresponds to a failure by the simulator to
recognize that the two evaluations are using the same key (and should
therefore be mapped to the same sid). We will denote this event E and prove
by reduction to DL that its probability is negligible.

Given a DL input challenge = (g1, (g1)
ξ), we construct reduction R, which

uses G2 ↔ Z to solve for ξ. Denote by (x, y) and (x′, y′) the two evaluations that
satisfy E. R begins by guessing J, J ′ ←$ [q] (where the H0 queries by G2 ↔ Z
are denoted x1, . . . , xq). R succeeds only if x = xJ and x′ = xJ′ . For all j ∈ [q],
we denote hj := H0(xj).

Event E states that y = (hJ)
k and y′ = (hJ′)k for some k ∈ Zm, yet either y

or y′ is not algebraically represented as such. Label the y and y′ representations

48

as:

y = (g1)
c0 ·

∏
j∈[q]

(hj)
cj

y′ = (g1)
c′0 ·

∏
j∈[q]

(hj)
c′j

H1 and H2 are also sources of G1 elements for G2 ↔ Z. However, R simply
programs those random oracles using group elements with known trapdoors (i.e.
known discrete logarithms with respect to g1); therefore any involvement of those
group elements is included in c0 and c′0 in these representations.

Event E states that c0 ̸= 0 ∨ ∃j∈[q]−{J} cj ̸= 0 ∨ c′0 ̸= 0 ∨ ∃j∈[q]−{J′} c
′
j ̸= 0.

Define γ = DLhJ
(hJ′), i.e. (hJ)

γ = hJ′ . Using γ, we can combine the
representations of y = (hJ)

k and y′ = (hJ′)k into one equation:

1 = (g1)
γc0−c′0 ·

∏
j∈[q]

(hj)
γcj−c′j

= (hJ)
γcJ−c′J · (hJ′)γcJ′−c′J′ · (g1)γc0−c

′
0 ·

∏
j∈[q]−{J,J ′}

(hj)
γcj−c′j

= (hJ)
γ2cJ′+γ(cJ−c′J′)−c′J · (g1)γc0−c

′
0 ·

∏
j∈[q]−{J,J ′}

(hj)
γcj−c′j

Define F to be the event that some exponent in this equation is non-zero.
Specifically, γ2cJ′ + γ(cJ − c′J′) − c′J ̸= 0 ∨ γc0 − c′0 ̸= 0 ∨
∃j∈[q]−{J,J ′} γcj − c′j ̸= 0. R follows one of two reduction strategies uniformly
at random. Strategy #1 succeeds if event F occurs, and strategy #2 succeeds
if it doesn’t. (Also, both strategies only succeed if event E occurs and J, J ′ are
correct guesses.)

Strategy #1
This strategy follows the Relational DL approach (Definition 3). R picks

γ ←$ Zm and programs hJ′ := (hJ)
γ . For all other j ∈ [q] − {J ′} (including

j = J), R picks aj , bj ←$ Zm and programs hj := (g1)
aj · ((g1)ξ)bj .

If E occurs, then R has values d0, {dj}j∈[q]−{J′} such that

(g1)
d0 ·

∏
j∈[q]−{J′}(hj)

dj = 1. In the exponent, we have the equation

d0 +
∑

j∈[q]−{J′}(aj + bjξ)dj = 0. We can isolate

ξ = (−d0 −
∑

j∈[q]−{J′} ajdj)/(
∑

j∈[q]−{J′} bjdj). As long as the denominator∑
j∈[q]−{J′} bjdj ̸= 0, R solves DL.

If F occurs, ∃j∈[q]−{J′} dj ̸= 0 (it is impossible that d0 ̸= 0 yet
∀j∈[q]−{J′} dj = 0). Notice that bj is information-theoretically hidden from
G2 ↔ Z, i.e. hj is independent of bj . It follows by a one-time pad argument
that

∑
j∈[q]−{J′} bjdj is a uniformly random element of Zm and

Pr[
∑

j∈[q]−{J′} bjdj = 0] = 1
m . Therefore, strategy #1 solves DL with

probability 1 − 1
m = m−1

m if event E occurs, event F occurs, and J, J ′ are
correct guesses.

49

Strategy #2
In this strategy, R picks a ←$ Zm and programs hJ := (g1)

a and hJ′ :=
((g1)

ξ)a. The goal of R is to compute ξ = γ. For all other j ∈ [q] − {J, J ′}, R
randomly programs hj ←$ G1.

If event F does not occur, then γ2cJ′ + γ(cJ − c′J′)− c′J = 0 ∧ γc0 − c′0 = 0
∧ ∀j∈[q]−{J,J ′} γcj − c′j = 0. If event E occurs, then either (a) cJ′ ̸= 0 ∨ c′J ̸= 0,
(b) c0 ̸= 0∨ c′0 ̸= 0, or (c) ∃j∈[q]−{J,J ′} cj ̸= 0∨ c′j ̸= 0. In case (a), the equation

γ2cJ′ + γ(cJ − c′J′) − c′J = 0 can be solved for γ. In case (b), the equation
γc0 − c′0 = 0 can be solved for γ. In case (c), the equation γcj − c′j = 0 can
be solved for γ. Therefore, strategy #2 solves DL with probability 1 if event E
occurs, event F does not occur, and J, J ′ is a correct guess.

The probability of correctly guessing J, J ′ is ≥ 1
q2 and the probability of

correctly guessing whether or not F will occur is 1
2 . Overall, then, R solves

DL with probability ϵDL ≥ PrG2↔Z [E] · 1
q2 ·

1
2 ·

m−1
m . As previously explained,

Z’s probability of distinguishing between G1 and G2 is upper-bounded by the
probability of E.

DistG1,G2Z ≤ 2q2 · m

m− 1
· ϵDL

Game G3: Illegal evaluations cause failure. G3 is G2 with the following
changes:

– As honest servers perform evaluations (i.e. toprf.sndrcomplete) the evalset of
each (ctx, p) pair is tracked (Figure 8).

– Subroutine FindEvalset is expanded. After finding sid∗, it “prints blank
tickets” for as many of this instance’s servers as it can (all n if the instance
was just created); these blank tickets could correspond to any pair (ctx, p).
Then it finds a pair (ctx∗, p) that has been evaluated by a set S′ of at least
t + 1 servers and “uses it up” by resetting its evalset to empty. If no such
(ctx∗, p) can be found, then it is illegal to perform an evaluation on this
PRF instance; the simulator immediately emits the event (fail, sid∗) and
halts. Otherwise, the relevant instance identifier sid∗, server subsession
identifier ctx∗, and evaluation set S′ are returned. FindEvalset now fully
matches its description in Figure 8.

– H̃ queries use FtOPRF’s toprf.rcvcomplete interface to query the output ỹ
(using the sid∗, S′, and ctx∗ from FindEvalset as parameters). H̃ now fully
matches its description in Figure 9.

– Honest user evaluation also uses FtOPRF’s toprf.rcvcomplete interface to query
the output ỹ (using the sid∗, S′, and ctx∗ from FindEvalset as parameters).
The honest user evaluation procedure now fully matches its description in
Figure 8.

Observe that FindEvalset’s mechanism for determining the legality of an
evaluation is always at least as restrictive as the “ticketing” mechanism used
by FtOPRF internally. FtOPRF allows an evaluation as long as every server in the

50

evaluation set has at least one unused ticket corresponding to ctx. FindEvalset
only allows an evaluation if every server in the evaluation set has at least one
unused ticket corresponding to ctx∗ and the same common query p. Therefore,
the interactions with toprf.rcvcomplete introduced in this game change are
guaranteed to succeed (since they are always preceded by successful calls to
FindEvalset).

Observe furthermore that the eventual evaluation output values ỹ are
unaltered by this game change. Therefore, the only potential change to Z’s
view is the newly added possibility of the fail event, which causes all
execution to immediately halt. Z’s probability of distinguishing between G2
and G3 is upper-bounded by the probability that Z triggers fail. We will prove
by reduction to the one-more unpredictability of 2B–HashTDH that the
probability of fail is negligible.

We construct reduction R, which is an adversary against
Gameom−unpredictable2B–HashTDH . R is G3 with the following changes:

– R begins by guessing the sid on which (fail, sid) will ultimately occur. Note
that fail is only possible for honestly initialized sids.

– On (toprf.init, sid ,P0) from FtOPRF, R does not pick secret keys. Instead,

it responds using the input from Gameom−unpredictable2B–HashTDH , including public key
(gk)

k.
– gk is used in place of g1 when saving public keys and when calling FindEvalset.
– FtOPRF corruption events to parties in Ssid are forwarded to the OCorrupt

oracle of the Gameom−unpredictable2B–HashTDH game.
– R uses the OSEval oracle to respond to toprf.sndrcomplete messages targeting

uncorrupted servers with sid .
– R saves a set W = {(x, y)} of values corresponding to each FindEvalset

execution that maps to sid . For FindEvalset calls originating from direct
adversarial H̃ queries, these values are the input to H̃. For FindEvalset calls
originating from honest user evaluation, the randomly chosen x′ and the
resulting y = q1/r are used.

The view of Z in this reduction is identical to its view in the game G3. The
event fail exactly corresponds to the winning condition in the one-more
unpredictability game. At the moment that fail occurs, the set W contains
one more 2B–HashTDH evaluation pair than should be allowed. R outputs W
and wins Gameom−unpredictable2B–HashTDH . R ↔ Z is an algebraic algorithm that treats H0,

H1, and H2 as random oracles. Therefore, by Theorem 1, Advom−unpredictable
R↔Z,2B–HashTDH

is negligible.
As previously explained, Z’s probability of distinguishing between G2 and G3

is upper-bounded by the probability of fail.

DistG2,G3Z ≤ Advom−unpredictable
R↔Z,2B–HashTDH

Game G4: The simulated world. The change from G3 to G4 is purely
conceptual. All interactions between the simulator and the honest parties now

51

occur through the interface of FtOPRF, so one can imagine the monolithic
simulator now cleanly split into the two components FtOPRF and SIM.

DistG3,G4Z = 0

Summing up the distinguishing advantage bounds for each incremental game
change yields an overall bound on Z’s distinguishing advantage between the real
and simulated worlds.

DistG0,G4Z ≤ 2q2 · m

m− 1
· ϵDL +Advom−unpredictable

R↔Z,2B–HashTDH

The distinguishing advantage of any efficient, algebraic Z between the real
and simulated worlds is negligible. Thus, UC–2B–HashTDH realizes FtOPRF.

52

	Adaptively Secure Threshold Blind BLS Signatures and Threshold Oblivious PRF
	Introduction
	Technical Overview

	Preliminaries
	Group Setting and Hardness Assumptions
	Threshold Oblivious Pseudorandom Function
	Threshold Blind Signature

	The 2B–HashTDH and 2B–tBlindBLS Protocols
	Proof of Adaptive Security
	Threshold Blind Signature Security

	Proof of Lemma 1
	Non-Interactive Zero Knowledge Proofs
	Performance Considerations

	Proof of Blindness
	Universally Composable tOPRF
	Security Model
	Protocol
	Proof of Security

