
An Efficient Sequential Aggregate Signature Scheme with
Lazy Verification∗

Arinjita Paul1†, Sabyasachi Dutta2, Kouichi Sakurai3 and C. Pandu Rangan4∗

1 Niobium Microsystems, Portland, USA
arinjita@niobiummicrosytems.com

2 SRM University-AP, India
saby.math@gmail.com

3 Faculty of Information Sc. and Electrical Engg, Kyushu University, Japan
sakurai@inf.kyushu-u.ac.jp

4 Kotak-IISc AI-ML Centre, KIAC, IISc, Bangalore, India
prangan55@gmail.com

Abstract

A sequential aggregate signature scheme (SAS) allows multiple potential signers to se-
quentially aggregate their respective signatures into a single compact signature. Typically,
verification of a SAS signatures requires access to all messages and public key pairs uti-
lized in the aggregate generation. However, efficiency is crucial for cryptographic protocols
to facilitate their practical implementation. To this end, we propose a sequential aggre-
gate signature scheme with lazy verification for a set of user-message pairs, allowing the
verification algorithm to operate without requiring access to all messages and public key
pairs in the sequence. This construction is based on the RSA assumption in the random
oracle model and is particularly beneficial in resource constrained applications that in-
volve forwarding of authenticated information between parties, such as certificate chains.
As an extension of this work, we introduce the notion of sequentially aggregatable proxy
re-signatures that enables third parties or proxies to transform aggregatable signatures
under one public key to another, useful in applications such as sharing web certificates
and authentication of network paths. We also present a construction of a sequential ag-
gregate proxy re-signature scheme, secure in the random oracle model, based on the RSA
assumption, which may be of independent interest.

1 Introduction
Aggregate signature schemes, introduced by Boneh et al [10], enable a third party to com-
bine a set of signatures (σ1, σ2, . . . , σn) corresponding to a group of user key and message
pairs (pk1, pk2, . . . , pkn) and (m1,m2, . . . ,mn) into a single, compact signature. This approach
aims to achieve shorter signature lengths compared to the straightforward concatenation of
individual signatures. Aggregate signature schemes are particularly advantageous in resource-
constrained applications that involve transmission of authenticated data among parties, where
computational and storage efficiency are essential for practical adoption.

One notable application of aggregate signatures include certificate chains in the Public
Key Infrastructure (PKI). In a PKI of depth n, a certificate associated with a user’s public key
comprises a chain of n certificates, typically issued by a hierarchy of Certifying Authorities (CA),
where the CA at depth i−1 certifies the CA at depth i. Given that each user’s certificate must
be included in all communications, it is desirable to ensure that its size remains independent of
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the certificate chain’s depth. During the signing process, each user is aware of the most recent
signature prior to their own within the chain, and aggregation is conducted in an incremental
and sequential manner.

To improve efficiency in such scenarios requiring low bandwidth, limited storage, and re-
duced computational capabilities, sequential aggregate signatures (SAS) was introduced by
Lysyanskaya et al. [25], in which the ith signer aggregates its own signature with the existing
aggregate signature formed by the previous i− 1 signers. This approach effectively reduces sig-
nature size in secure routing protocols, such as Secure Border Gateway Protocol (SBGP) [19].
Additionally, it offers scalability improvements in blockchains by decreasing block sizes [1]. This
could also be beneficial in scenarios involving signing a data stream that arrives in a sequence,
such that some parts of the data may not be accessible in the future or may be confidential,
thereby limiting the verifier’s access to the data stream.

1.1 Motivation
To the best of our knowledge, the verification algorithm of all existing sequential aggregate sig-
nature schemes requires access to all user key and message sequence PK = (pk1, pk2, · · · , pkn)
and M = (m1,m2, · · · ,mn) used to generate the aggregate. Enhancing efficiency of this useful
primitive can be achieved by reducing the computational cost associated with the verification
operation. Specifically, the cost can be minimized if the verification of a sequential aggregated
signature can be conducted securely while limiting the amount of message-dependent compu-
tations.

For instance, in blockchain systems, sequential aggregate signatures can significantly re-
duce block sizes by aggregating signatures from multiple transactions. Optimized verification
allows nodes to validate blocks by focusing only on specific transactions, thereby optimizing
resource utilization. Similarly, in Internet of Things (IoT) applications, which often operate
under stringent resource constraints, efficient verification of sequential aggregate signatures can
improve performance by confirming data only under certain conditions, thus conserving energy
and processing power. Additionally, this approach can facilitate efficient routing updates in
secure routing protocols [19].

In this work, we study sequential aggregate signatures in the light of the above discussion.
We propose a novel construction of a secure sequential aggregate signature scheme such that
the verification can be successfully performed using only the ith message and public key pair
(m,pki), corresponding to the latest signature added to the aggregate. We refer to this enhanced
verification process as lazy verification.

In this work, we further demonstrate that sequential aggregate signatures can be effec-
tively extended to facilitate sequential aggregation in proxy re-signature schemes. In proxy
re-signatures [2], a semi-trusted entity “proxy" is provided with some information that allows
turning a user Alice’s signature on a message into another user Bob’s signature on the same
message. Such a primitive is very useful in real-world applications such as sharing web certifi-
cates, forming weak group signatures, and authenticating network paths. As an extension, we
define the notion of unidirectional and single-hop sequentially aggregatable proxy re-signature
and propose an efficient and secure design of our novel primitive.

1.2 Related Work and Our Contribution
Aggregate signature generation technique, introduced by Boneh, Gentry, Lynn and Shacham [10]
is used to combine multiple distinct signatures corresponding to (possibly) distinct messages of
different parties into a succinct signature. Although there are several results in the literature
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Scheme Aggregate Sequential History Verification requires Security Model Hardness
aggregate freeness all document access assumption

Boneh et al. [10] Yes No No Yes Random Oracle CDH
Lysyanskaya et al. [25] Yes Yes No Yes Random Oracle RSA
Lu et al. [24] Yes Yes No Yes Standard Water’s Signature
Boldyreva et al. [9] Yes Yes No Yes Random Oracle CDH
Neven et al. [27] Yes Yes No Yes Random Oracle RSA
Schroder et al. [30] Yes Yes No Yes Random Oracle LRSW
Brogle et al. [12] Yes Yes Yes Yes Random Oracle RSA
Fischlin et al. [15] Yes Yes Yes Yes Random Oracle BLS
Lee et al. [21] Yes Yes No Yes Standard DBDH, LW2
Kim et al. [20] Yes Yes No Yes Random Oracle Factoring
Boudgoust et al. [11] Yes Half No Yes Random Oracle M-LWE, M-SIS
Our Scheme Yes Yes Yes No Random Oracle RSA

Table 1: A summary of sequential aggregate signature schemes

for aggregate signature generation [3, 10, 26, 32], note that, all these results fail to preserve the
order of the message sequence in the message stream. Towards obtaining order unforgeability,
Lysyanskaya et al. [25] introduced the idea of sequential aggregate signatures. Later, Gentry
et al. [16] proposed a general framework for designing sequential aggregate signature schemes.
Further results include [4, 8, 11, 12, 18, 20, 21, 23, 28, 36], which requires signers themselves to
compute the aggregated signature in order, with the output of each signer used as input to the
next during the signing process. Fischlin et al. [15] proposed the idea of history-free sequential
aggregate signatures, wherein the signature aggregation algorithm does not need to receive the
previous message-key pair in the sequence as input to generate an aggregate. One drawback
of the technique followed in the above results is that the verifier needs access to the complete
message stream for verification.

In this work, we wish to obtain efficient verification of sequential aggregate signatures, that
is, we wish to verify an aggregate signature with only the ith message and public key pair
(mi, pki), corresponding to the latest signature added to the aggregate signature, which, to
the best of our knowledge, has not been explored in the literature. Such a construction can
be extremely useful in computation-constrained applications as discussed above. The starting
point of our construction is the probabilistic signature scheme (PSS) by Bellare et al [5], that
provides the property of message recovery, essential in the design of our aggregate verification
protocol. Our key generation mechanism follows from the work of Hohenberger et al. [17],
which gives constructions for short and stateless signatures based on the RSA assumption in
the standard model. Table 1 gives a summary of the existing works in the literature in the
context of sequential aggregate signatures.

Blaze et al. [6] introduced the notion of proxy re-signatures, which enables a semi-trusted
party termed as proxy to transform signatures computed under the secret key of one user into
one from another user on the same message. It is important to note here that the proxy should
not learn any information about any signing key or sign arbitrary messages on behalf of either
parties. In 2005, Ateniese and Hohenberger [2] revisited the primitive by providing appropri-
ate security definitions and efficient constructions in the random oracle model, relying on the
hardness of the Computational Diffie-Hellman (CDH) and 2-Discrete Logarithm (2-DL) as-
sumptions. Ever since their introduction, several proxy re-signature schemes based on various
assumptions and exhibiting different properties have been proposed in the literature. Based on
the direction of delegation, proxy re-signature schemes can be classified into unidirectional and
bidirectional schemes. In a unidirectional scheme, the re-signature key enables transformation
of a signature from a user Alice towards another user Bob, but not vice-versa. A bidirectional
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scheme enables the proxy to transform a signature both ways. Again, based on the number of
re-signing allowed, proxy re-signature schemes can be classified into single-hop and multi-hop
schemes. In a single-hop scheme, a signature can be transformed only once, while in a multi-
hop scheme, a signature can be transformed polynomial number of times. In this work, we
explore proxy re-signature only in the single-hop and unidirectional setting. The first unidirec-
tional proxy re-signature scheme was proposed by Libert et al. [22] in the multi-hop setting
in the standard model, based on bilinear maps and hardness of diffie-hellman variant assump-
tions. Following their work, several designs were proposed in the literature in the unidirectional
setting [14,31,33,35]. A good survey on proxy re-signature schemes is present here [13].

A desirable property of proxy re-signature is sequential data aggregation, enabling transfor-
mation of sequential aggregate signatures towards a new key for the same message sequence. It
is an important and necessary functionality in scenarios such as Internet of Things (IoT) and
cloud computing. Besides, in applications requiring proof of path travelled in a graph, for exam-
ple, e-passports, sequentially aggregatable proxy re-signatures save on bandwidth and storage
as compared to traditional re-signature solutions. None of the proxy re-signature results dis-
cussed earlier support signature aggregation. Aggregatable (not sequential) proxy re-signatures
has been explored in the identity based setting as in [34] but not in the PKI setting. In this
work, we introduce proxy re-signatures supporting sequential aggregation in the PKI setting.

2 Preliminaries

2.1 Hardness Assumption
Definition 1. (RSA assumption[29]) Let κ be the security parameter. Let N be a positive
integer, which is the product of two k-bit, distinct odd primes p and q. Let e be a randomly
chosen positive integer less than and relatively prime to ϕ(N) = (p − 1)(q − 1). The RSA
assumption is that, given (N, e) and a random ν ∈ Z∗

N , it is hard to compute x such that xe = ν
mod N . A probabilistic algorithm A has an advantage ϵ in solving the RSA assumption if:

Pr
[
A(N, e, ν) = x

]
≤ ϵ

where the probability is over the random choices of ν ∈ Z∗
N , e ∈ Z∗

ϕ(N) and the random bits of
A.

2.2 Sequential Aggregate Signature Schemes
An aggregate signature scheme [10] combines n signatures from n different signers on n distinct
messages into one signature, wherein the aggregate signature is of unit length. In this primitive,
the signatures are first individually generated and then combined into an aggregate. Sequential
aggregate signature schemes [25] are a variant of aggregate signature schemes in which the ag-
gregation takes place sequentially. More formally, the sequential aggregate signature generation
algorithm takes as input a sequence of public keys PK = (pk1, pk2 · · · , pki−1) and messages
M = (m1,m2, · · · ,mi−1), an aggregate signature σi−1 corresponding to the sequence of public
keys PK and messages M, a new message mi and private key ski with its corresponding public
key pki, and returns the new sequential aggregate signature σi for the public key and message
sequence PK||pki := (pk1, pk2 · · · , pki−1, pki) and M||mi := (m1,m2, · · · ,mi−1,mi). Fischlin
et al. [15] introduced the notion of history-freeness in sequential aggregate signatures towards
an efficient aggregation approach, which does not require verification of the aggregate-so-far
before adding a new signature to the aggregate. It takes as input only the aggregate-so-far, the
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local message and signing key but not the previous messages and public keys in the sequence to
compute the aggregate. Towards a further “lightweight" approach, we introduce the notion of
stand-alone verification in which the aggregate verification algorithm is also history-free. The
algorithm takes as input only the aggregate-so-far σi, the ith message mi and public key pki
in the sequence and verifies the aggregate signature without relying on (explicit) access to the
previous message and key sequence. We define such a scheme as sequential aggregate signature
with lazy verification, as below:

Definition 2. (Sequential Aggregate Signatures with Lazy Verification) A sequential aggregate
signature scheme with lazy verification is a tuple of efficient algorithms SAS = (Setup, KeyGen,
AggSign, AggVerify), where:

• Setup(1κ): The Setup algorithm takes as input a security parameter κ and returns the
public parameters params.

• KeyGen(Ui, params): The key generation algorithm takes as input a user information
Ui and public parameters params, and generates a private and public key pair (ski, pki).

• AggSign(σi−1,mi, ski, params): The sequential signature aggregation algorithm takes
as input an aggregate signature σi−1, a message mi ∈ M and private key ski and
public parameters params. It returns the aggregate signature σi corresponding to the
public key sequence PK||pki = (pk1, pk2 · · · , pki−1, pki) and message sequence M||mi =
(m1,m2, · · · ,mi−1,mi). We assume a special starting symbol σ0 = ∅ for an empty aggre-
gate, which is distinct from all other possible signature aggregates.

• AggVerify(σi,mi, pki, params) The aggregation verification algorithm takes as input an
aggregate signature σi corresponding to the public key sequence PK = (pk1, pk2 · · · , pki)
and message sequence M = (m1,m2, · · · ,mi), the ith message and public key pair in the
sequence (mi, pki) and public parameters params. It returns 1 if and only if σi is a valid
signature of the public key sequence PK and message sequence M, and 0 otherwise.

2.2.1 Correctness

The sequential aggregate signature scheme is correct if for any finite sequence of key pairs
(sk1, pk1), (sk2, pk2), · · · , (skn, pkn) output by KeyGen, for any message sequence M =
(m1, · · ·mi−1) and message mi ∈ M, and for all σi ← AggSign(σi−1,mi, ski, params) with
AggV erify(σi−1,mi−1, pki−1, params) = 1 or σi−1 = ∅, we have AggV erify(σi,mi, pki, params)
= 1.

2.2.2 Security Model

Lysyanskaya et al. [25] introduced the concept of sequential aggregate signatures and proposed
a security model termed LMRS security based on the chosen key model [7, 10] that captures
the notion of sequential unforgeability in SAS schemes. However, as remarked by Fischlin
et al. [15], the LMRS model fails to reflect the added conditions of the adversary and desired
security guarantees in history-free SAS schemes.

In the history-free setting, the aggregation algorithm does not have access to the previously
signed messages, which permits the adversary to generate new aggregation chains “from the
middle" without any knowledge of the preceding message sequence. To capture such attacks in
our security model, we adapt the idea of aggregation-unforgeability defined by Fischlin et al. [15].
In this model, the adversary is provided with an aggregation oracle that returns aggregates for
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ordered sets of messages. The adversary is initially bestowed with the public keys of t honest
parties. The security game for aggregation unforgeability between the challenger C and forger
A is divided into the following phases:

• Setup: The challenger C runs the Setup and Key generation algorithm to generate public
keys pk1, pk2, · · · , pkt of t honest parties in the system, and returns the keys to A.

• Phase 1: Adversary A issues queries to the following oracles in this phase, which are
initialised with the t key pairs (sk1, pk1), (sk2, pk2), · · · , (skt, pkt):

– QCor(pki): The oracle returns the private key corresponding to the public key pki.
The adversary can obtain upto t− 1 private keys of his choice.

– QSetKey(pki, pk
∗
i ): The oracle replaces the public key pki of a corrupt party with a

new key pk∗i . This oracle models rogue-key attacks.

• Phase 2: Once the adversary A starts the second phase, it is denied access to the
corruption of key-setting oracle of Phase 1. The adversary A issues aggregation queries
to the following oracle provided by the challenger C.

– OSeqAgg(σ
′,M,PK): The oracle takes as input an aggregate-so-far σ′, a sequence

of new messages and public keys M and PK and verifies if all public keys in PK
belong to honest parties. If the check fails, it returns ⊥. Else, it computes a new
aggregate σ on all input data and returns σ.

• Response: A eventually outputs a tuple (M∗,PK∗, σ∗) and wins the game if σ∗ is a
valid non-trivial (defined next) aggregate signature for the sequence M∗, PK∗ such that
(M∗,PK∗) does not belong to the closure (defined next).

2.2.3 Closure

Aggregation-unforgeability in the history-free setting demands that an adversary cannot output
a valid aggregation chain, unless it is a trivial combination of previous aggregation queries and
values by corrupt parties, recursively defined as closure [15]. Such a constraint rules out mix-
and-match attacks where the adversary can query several partial chains (of honest parties) and
combine such chains into a challenge tuple in the Response phase, affixed via corrupted keys
or matching starting/end chain points.

Let SSeq denote the set of all query/response tuples ((σ′,M,PK), σ) that results fromA’s in-
teraction with OSeqAgg oracle. Also, let SCor denote the set of all keys modified or corrupted by
adversary A. We now define closure recursively through a function TrivialSSeq,SCor

(M,PK, σ)
that returns all sequences that can be trivially derived starting from the message and public-
key sequence M, PK and an aggregate-so-far σ, and appending trivial sequences obtained by
local computations of corrupt parties or aggregation queries. The closure containing all triv-
ial sequences is initialised with an empty message sequence, public key pk0 = ∅ and starting
signature σ0 = ∅ in the beginning.

Definition 3. (Sequential Closure)[15] TrivialSSeq,SCor
(M,PK, σ) is a recursive function of
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trivial combinations defined as:

TrivialSSeq,SCor
(M,PK, σ) := {(M,PK)}∪⋃

((σ,M’,PK’),σ′)∈SSeq

TrivialSSeq,SCor
(M||M’,PK||PK’, σ′)

∪
⋃

∀pki∈SCor∧∀m′∈M,σ′

TrivialSSeq,SCor
(M||m′,PK||pk′, σ′)

Consider the following example. Suppose the adversary A queries oracle OSeqAgg with
parameters (σi−1,M,PK) which returns an aggregate σi, appending tuple ((σi−1,M,PK), σi)
to set Sseq. Next, A further queries oracle OSeqAgg using the previous response with parameters
(σi,M’,PK’) such that final aggregate of the previous query matches the starting aggregate
of the present query, then the sequence (M||M’,PK||PK’) is a trivial sequence.

Definition 4. A history-free sequential aggregate signature scheme is aggregation-unforgeable if
for all PPT algorithm A that makes atmost qc, qs and qsa queries to the oracles QCor,QSetKey

and QSeqAgg, the probability of A to win the above game is negligible.

2.3 Sequential Aggregate Proxy Re-Signature Schemes

We define the notion of our novel primitive which we term as sequential aggregate proxy re-
signatures in the unidirectional and single-hop setting.

Definition 5. (Sequential Aggregate Proxy Re-Signatures) A sequential aggregate proxy re-
signature scheme is a tuple of efficient algorithms (Setup, KeyGen, ReKeyGen, AggSign, Re-
Sign, AggVerify), where:

• (Setup, KeyGen, AggSign, AggVerify:) The Setup, key generation, sequential signa-
ture aggregation, verification algorithms are identical to SAS.

• ReKeyGen(ski, pki, skj , pkj , params): The re-key generation algorithm takes as inputs
the private and public key pairs (ski, pki), (skj , pkj) of the delegatee Ui and delegator Uj

respectively and generates a rekey rki→j for the proxy.

• ReSign(σi,mi, pki, pkj , rki→j , params): The algorithm takes as input an aggregate sig-
nature σi (generated by either AggSign or Resign) corresponding to the public key se-
quence PK = (pk1, pk2, · · · , pki−1, pki) and message sequence M = (m1,m2, · · · ,mi−1,mi),
the ith message and public key pair (mi, pki), the delegator’s public key pkj, rekey rki→j

and public parameter params. It returns an aggregate signature σj corresponding to
the new public key sequence PK’ = (pk1, pk2, · · · , pki−1, pkj) and message sequence
M’ = (m1,m2, · · · ,mi−1,mj) if and only if AggVerify(σi,mi, pki, params) returns 1,
and ⊥ otherwise.

2.3.1 Correctness

The correctness property has two requirements. For any finite sequence of key pairs
(sk1, pk1), (sk2, pk2), · · · , (skn, pkn) output by KeyGen, a message sequence M = (m1, · · ·mi−1),
messages mi,mj ∈ M, re-signature key rki→j ← ReKeyGen(ski, pki, skj , pkj , params) with
i, j ≤ n and all σi ← AggSign(σi−1,mi, ski, params) where σi−1 is a valid sequential aggregate
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signature output by AggSign or ReSign with AggV erify(σi−1,mi−1, pki−1, params) = 1 or
σi−1 = ∅, both the following conditions must hold:

AggV erify(σi,mi, pki, params) = 1 and

AggV erify(ReSign(σi,mi, pki, pkj , rki→j , params),mj , pkj , params) = 1.

2.3.2 Security Model

Our security definitions of aggregation unforgeability in sequential aggregate proxy re-signature
schemes are adaptions of the internal and external security definitions by Ateniese et al. [2]
combined with aggregation-unforgeability defined by Fischlin et al. [15]. While external security
ensures security of the scheme from adversaries outside the system (that is, apart from the
proxy and delegation partners), internal security strives to protect the scheme against dishonest
proxies and colluding delegation partners.

In our security model, the adversary is initially bestowed with the public keys of t honest
parties. The security game for aggregation unforgeability between the challenger C and forger
A is divided into the following phases:

• Setup: The challenger C runs the Setup and key generation algorithm to generate public
keys pk1, pk2, · · · , pkt of t honest parties in the system, and returns the keys to the forger
A.

• Phase 1: Adversary A issues queries to the QCor(pki) and QSetKey(pki, pk
∗
i ) oracle de-

fined in SAS security game, which are initialised with the t key pairs (sk1, pk1), (sk2, pk2),
· · · , (skt, pkt).

• Phase 2: Once the adversary A starts the second phase, it is denied access to the
corruption of key-setting oracle of Phase 1. The adversary A issues aggregation queries to
the OSeqAgg(σ

′,M,PK) oracle provided by the challenger C. Additionally, the adversary
A is also provided with a re-signing oracle defined below.

– Qrk(pki, pkj): The oracle takes as input public keys of the delegatee i and delegator
j and returns the re-signature key that allows transformation of signatures from user
pki to pkj . The adversary can only query rekeys where both pki and pkj are honest
parties.

– Ors(σ,M,PK, pki, pkj): The oracle takes as input an aggregate-so-far σ, a sequence
of new messages and public keys M and PK, public keys pki, pkj of the delegatee
and delegator respectively and verifies if all the public keys in PK belong to honest
parties. If the check fails, it returns ⊥. Else, it re-signs the aggregate-so-far σ into
a new aggregate σ′ on all the input data and returns σ′, re-signed under public key
pkj .

• Response: A eventually outputs a tuple (M∗,PK∗, σ∗) and wins the game if σ∗ is a
valid non-trivial aggregate signature for the sequence M∗, PK∗ such that (M∗,PK∗)
does not belong to the closure.

Definition 6. A sequential aggregate proxy re-signature scheme is aggregation-unforgeable
if for all PPT algorithm A that makes atmost qc, qs, qsa, qrk and qrs queries to the oracles
QCor,QSetKey,QSeqAgg,Qrk and Qrs, the probability of A to win the above game is negligible.
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3 Our Sequential Aggregate Signature Scheme
This section provides the aggregate signature scheme for a sequence of distinct messages
M = {m1,m2, · · · ,mn} generated by users PK = {pk1, pk2, · · · , pkn} respectively. We use
the notation (r)⌊n⌋ to represent the most significant r bits of a string n, and ⌊n⌋(r) to rep-
resent the least significant r bits of the string n. The aggregate signature σi (where i is the
latest sequence of message to be signed) is computed such that it can be verified using only the
public key of the latest signer pki corresponding to his message mi instead of verifying against
the message and public key sequence M and PK in the system. The scheme consists of the
following algorithms.

• Setup(1κ): This algorithm chooses an RSA modulus N = pq as the product of two safe
primes p, q where p− 1 = 2p′ and q − 1 = 2q′, such that 2ℓ < ϕ(N) < 2ℓ+2, where ℓ is a
security parameter derived from κ. Let k and k1 be parameters determined by κ, where k1
lies between 1 and k, satisfying 2k1 ≤ k−1. Let G denote the group of quadratic residues
of order p′q′ with generator g. Next, it chooses a random key K for a pseudo random
function (PRF) F : {0, 1}∗ → {0, 1}ℓ and a random string η ∈ {, 1}ℓ. It establishes the
hash function H() : {0, 1}∗ → {0, 1}ℓ as follows:

H(K,η)(z) = FK(j, z)⊕ η,

where j, called the resolving index for z, which is the smallest j ≥ 1 such that FK(j, z)⊕
η is odd and prime. For i ∈ [1, N ], it computes ei = HK,η(i) and further computes
Y =

∏N
j=1 e

−1
j mod ϕ(N). It also chooses three more cryptographic hash functions:

H1 : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 → {0, 1}k1 , g2 : {0, 1}k1 → {0, 1}k−2k1−1. The public
parameters are params = (N, η,K,H, Y,H1, g1, g2), where anyone can compute H() given
η and K.

• Keygen(Ui, params): For a user Ui, the algorithm sets the private key by first computing
ej = HK,η(j) for j ∈ N\{i} and setting ski = Y

∏
j∈N\{i} ej . It computes the public key

pki = gski . It returns the public-private key pair (pki, ski).

• AggSign(σi−1,mi, pki, ski, params): The signature aggregation algorithm takes as input
an aggregate-so-far σi−1, a message and public key pair (mi, pki). The message mi forms
the latest part of the message sequence M = {m1,m2, · · · ,mi} and the signer with public
key pki computes the signature as below:

si−1 = ⌊σi−1⌋(2k1+1),

ri = H1(mi||pki),
ωi = H1((k−2k1−1)⌊σi−1⌋||ri),
r∗i = g1(ωi)⊕ ri,

ω∗
i = g2(ωi)⊕(k−2k1−1) ⌊σi−1⌋,

σ∗
i = (0||ωi||r∗i ||ω∗

i )
ski mod N

= (0||ωi||r∗i ||ω∗
i )

e−1
i mod N,

σi = si−1||σ∗
i .

Remark 1. Note that if any ei divides ϕ(N), then σ∗
i remains undefined. However, this

event occurs with a negligible probability which is shown in [17].
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Remark 2. The aggregate signature component σ∗
i is computed by first appending a 0 bit

to components ωi, r∗i and ω∗
i . The 0-bit is to guarantee that σ∗

i is in Z∗
N .

• AggVerify(σi,mi, pki, params): Given as input a signature σi, the latest message and
public key pair mi and pki in the sequence, the verifier parses σi = si−1||σ∗

i , computes
ei = HK,η(i) and verifies signature as shown below:

1. Compute γi = σ
∗(ei)
i mod N .

2. Compute ri = H1(mi||pki).
3. Parses γi as (b||ωi||r∗i ||ω∗

i ).
4. Compute σ′

i−1 = g2(ωi)⊕ ω∗
i .

5. Check if the following three checks hold:

ωi
?
= H1(σ

′
i−1||ri), (1)

ri
?
= g1(ωi)⊕ r∗i , (2)

b
?
= 0. (3)

If any of the checks fail, return invalid, else return valid.

3.1 Correctness
• The consistency of the verification algorithm from Equation (1) is as follows:

RHS = H1(σ
′
i−1||ri)

= H1((k−2k1−1)⌊σi−1⌋||ri)
= ωi

= LHS.

• The consistency of the verification algorithm from Equation (2) is as follows:

RHS = g1(ωi)⊕ r∗i

= g1(ωi)⊕ g1(ωi)⊕ ri

= ri

= LHS.

3.2 Security Proof
Theorem 1. If the RSA scheme is (t′, ϵ′) secure, then our SAS scheme is (t, ϵ) aggregation-
unforgeable in the random oracle model, where:

ϵ′ ≥ ϵ− 2(qsa + qH1
)2 · (2−k1)

t′ ≤ t+ (qsa + qH1
)te,

where te denotes the time taken for modular exponentiation.

10



An Efficient Sequential Aggregate Signature Scheme with Lazy Verification

Proof. Suppose there exists a forger A that can forge a signature using the SAS scheme with
a non-negligible probability ϵ. In such a case, we show that, there exists an algorithm C that
breaks the RSA scheme with a non-negligible probability ϵ′. In the proof, the challenger C
receives a challenge key and has access to a signature oracle for this key. The security game
for aggregation unforgeability between C and A takes place in the following phase as per the
security model discussed.

• Setup: Algorithm C runs the Setup algorithm that chooses an RSA modulus N as the
product of two safe primes p, q where p− 1 = 2p′ and q− 1 = 2q′, such that 2ℓ < ϕ(N) <
2ℓ+2, and G is the group of quadratic residues of order p′q′ with generator g. Next, it
chooses a random key K for the pseudo random function F and a random string η ∈ {0, 1}ℓ
and establishes the hash function H(K,η). It returns the public parameters params to A.
The challenger C receives as input the public key pkc and generates t−1 key pairs (ski, pki)
via the KeyGen algorithm. It inserts the key pkc at a random index position τ ≤ t such
that PK = (pk1, · · · , pkτ−1, pkc, pkτ+1, · · · , pkt). Note that algorithm C is given as input
an RSA instance ⟨N, e, ν⟩ where (N, e) are parameters generated by the Setup algorithm
and ν ∈R Z∗

N . For convenience, we consider f : Z∗
N → Z∗

N be a function such that
f(x) = xe mod N , and algorithm C leverages it to compute f−1(ν) = νd mod N . The
algorithm C provides an environment running the aggregate signature scheme to forger
A where A can make oracle queries to the signing and hash functions in the following
phases.

• Phase 1: We enumerate the oracles simulated by the challenger C on which the forger A
can query.

– Hash queries:

∗ H1 queries: When the forger A sends a query to H1 oracle, C does the following:
1. C first parses the input as (δi||ρi).
2. C maintains a list LH1

of the form ⟨δi, ρi,
ωi⟩. If there exists a tuple in LH1

with values δi and ρi, it returns the
corresponding hash value ωi.

3. Otherwise, if the query is of the form of a message and public-key pair
(mi, pki), C picks ωi ∈R {0, 1}k1 and sets H1(δi, ρi) = ωi. It scans list LH1

for a tuple ⟨δj′ , ρj′ , ωj′⟩ where j′ ̸= i and ωj′ = ωi. If found, it aborts.
Otherwise, it returns it to A.

4. Else, if the query is of the form (δi, ρi) where ρi = H1(mi||pki) for a message
and public key pair mi, pki such that pki ̸= pkc, C picks ωi ∈R {0, 1}k1 and
sets H1(δi, ρi) = ωi. It scans list LH1 for the existence of a tuple ⟨δj′ , ρj′ , ωj′⟩
where j′ ̸= i and ωj′ = ωi. If found, it aborts. Otherwise, it returns ωi to
A. If pki = pkc, it sets the hash value such that, if the forger A forges
a signature for a message mi such that ρi = H1(mi||pkc), C can use it to
invert ν. To enable such inversion, we associate the output for the query to
an image of the form νxe

c, where xc ∈ Z∗
N . Therefore, if A forges a signature,

it comes up with f−1(νxe
c) = xcν

d, and then C can recover νd by dividing
out the known value xc.

5. For the above association, C picks xc ∈ Z∗
N and sets y∗c = νxe

c mod N .
Note that if the first bit of y∗c is not 0, it repeats the step again till a value
beginning with bit 0 is obtained.
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6. C breaks y∗c into 0||ωi||r∗i ||ω∗
i .

7. C sets H1(δi||ρi) = ωi.
8. It scans list LH1 for the existence of a tuple ⟨δj′ , ρj′ , ωj′⟩ where j′ ̸= i and

ωj′ = ωi. If found, it aborts.
9. It sets g1(ωi) = r∗i ⊕ ri and g2(ωi) = ω∗

i ⊕ δi.

10. It returns ωi as the output of the oracle query.
∗ g1 queries: C maintains a list Lq1 with tuples of the form ⟨ωi, αi⟩. If query qi

is a query to g1 with input ωi, C checks if there exists an entry in list Lq1 with
value ωi. If exists, it returns value αi. Otherwise, it picks a random string
αi ← {0, 1}k1 and sets g1(ωi) = αi. It returns αi to forger A, and updates list
Lq1 with tuple ⟨ωi, αi⟩.

∗ g2 queries: I maintains a list Lq2 with tuples of the form ⟨ωi, βi⟩. If qi is a
query to g2 with input ωi, then C checks if there exists an entry in list Lq2

with value ωi. If exits, it returns value βi. Otherwise, it picks a random string
βi ← {0, 1}k−2k1−1 and sets g2(ωi) = βi. It returns βi to forger A, and updates
list Lq2 with tuple ⟨ωi, βi⟩.

– Key queries:
∗ QCor(pki): On input of a public key pki, if index i ∈ {1, · · · , t}\j, the challenger
C returns the private key ski corresponding to the key pki. The forger can obtain
upto t− 1 private keys of his choice.

∗ QSetKey(pki, pk
∗
i ): The oracle replaces the public key pki of a corrupt party with

a new key pk∗i if index i ∈ {1, · · · , t}\j.

• Phase 2: In this phase, the forger A is denied access to the key queries but can still query
the hash oracles. When A sends a query to OSeqAgg(σ

′,M,PK) oracle, the challenger
computes the aggregate as shown below:

1. C considers the latest message and public key pair in the input sequence M and PK
as (mi, pki).

2. C checks if there exists a tuple in LH1 corresponding to the query (mi, pki). If not
present, repeat the steps of the hash query oracle H1 to update list LH1

and continue.
Let ρi = H1(mi||pki).

3. C picks xi ∈ Z∗
N and sets yi = f(xi). Note that if the first bit of yi is not 0, it repeats

the step again till a value beginning with bit 0 is obtained.
4. C breaks yi into 0||ωi||r∗i ||ω∗

i .
5. It sets H1(δi||ρi) = ωi, where δi =(k−2k1−1) ⌊σ′⌋.
6. It scans list LH1

for the existence of a tuple ⟨δj′ , ρj′ , ωj′⟩ where j′ ̸= i and ωj′ = ωi.
If found, it aborts.

7. Otherwise, it sets g1(ωi) = r∗i ⊕ ri and g2(ωi) = ω∗
i ⊕ δi.

8. It updates LH1 with the tuple ⟨δi, ρi, ωi⟩.
9. It computes si−1 = ⌊σ′⌋(2k1+1) as per protocol and computes σi = si−1||xi.

10. It returns σi as the output of the aggregate signature query.

• Response: A eventually outputs a tuple (M∗,PK∗, σn). C performs the following com-
putations:
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1. C checks if pkc ∈ PK ∗. If the check passes, it parses M∗ = (m1,m2, · · · ,mc, · · · ,mn)
and PK∗ = (pk1, pk2, · · · , pkc, · · · , pkn).

2. It parses the aggregate signature σn = sn−1||σ∗
n and computes en = HK,η(n). It

further computes γn = σ
∗(en)
n and parses γn = (b||ωn||r∗n||ω∗

n). If Equations (1), (2)
and (3) hold, it computes σ′

n−1 = g2(ωn)⊕ ω∗
n and sets σn−1 = sn−1||σ′

n−1.
3. C repeats step 3 till it obtains σc and parses it to obtain sc−1||σ∗

c .
4. It finally outputs σ∗

c/xc. Note that (σ∗
c/xc)

ec = σ∗ec
c /xec

c = y∗c/x
ec
c = νxec

c /xec
c = ν

mod N as desired, where ec = HK,η(c).

• Probability Analysis: Let Distinct be the event that the game does not abort in the
signing and H1 hash oracle query phase. Therefore, the probability Pr[¬Distinct] ≤
2(qsa + qH1)

2 · (2−k1). Hence the advantage of C in breaking the RSA assumption given
that Distinct holds and the forger A outputs a valid forgery is:

ϵ′ ≥ ϵ− 2(qsa + qH1)
2 · (2−k1)

The running time of C is given by t′ ≤ t + (qsa + qH1
)te, where te is the time taken for

a modular exponentiation. A valid forgery of A breaks the RSA scheme, and hence, A
cannot win the game with a non-negligible probability. This completes the proof of the
theorem.

4 A Sequential Aggregate Proxy Re-Signature Protocol
In this section, we provide a sequential aggregate proxy re-signature scheme in the PKI setting,
which is an extension of our SAS scheme.

4.1 Construction
A sequential aggregate proxy re-signature scheme for a message and public key sequence M =
{m1,m2, · · · ,mn}, PK = {pk1, pk2, · · · , pkn} respectively consists of the following algorithms.

• Setup(1κ): The setup algorithm is identical to our SAS construction.

• KeyGen(Ui, params): The key generation algorithm is identical to our SAS construc-
tion.

• ReKeyGen(ski, pki, skj , pkj ,mi, param): Given as input the private keys of the delega-
tee i and delegator j, the rekey generation algorithm computes ei = HK,η(i). It computes
the rekey rki→j = ei · skj and returns rki→j .

• AggSign(σi−1,mi, ski, params): The sequential signature aggregation algorithm is iden-
tical to our SAS construction.

• ReSign(σi,mi, pki, pkj , rki→j , params): The algorithm takes as input a sequential ag-
gregate signature σi, the ith message and public key pair (mi, pki), the delegator’s pub-
lic key pkj , re-signature key rki→j and public parameters params. It first verifies if
AggVerify(σi,mi, pki, params) returns 1, else return ⊥. If the verification succeeds, it
parses the aggregate-so-far σi = si−1||σ∗

i and computes the resignature σ∗
j = (σ∗

i )
rki→j

mod N . It returns the aggregated re-signature σj = si−1||σ∗
j .
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• AggVerify(σi,mi, pki, params): The aggregation verification algorithm is identical to
our SAS construction.

4.2 Correctness
The correctness of our protocol follows from the consistency of our SAS algorithm.

4.3 Security Proof
Theorem 2. If the RSA scheme is (t′, ϵ′) secure, then our sequential aggregate proxy re-
signature scheme is (t, ϵ) aggregation-unforgeable in the random oracle model, where:

ϵ′ ≥ ϵ− 2(qsa + qrs + qH1
)2 · (2−k1)

t′ ≤ t+ (qsa + qrs + qH1
)te,

where te denotes the time taken for modular exponentiation.

Proof. Suppose there exists a forger A that can forge a re-signature using the sequential aggre-
gate proxy re-signature scheme with a non-negligible probability ϵ(κ). In such a case, we show
that, there exists an algorithm C that breaks the RSA scheme. In the proof, the challenger
C receives a challenge key and has access to a signature and re-signature oracle for this key.
The security game for aggregation unforgeability between C and A takes place in the following
phase as per the security model discussed.

• Setup: The setup phase proceeds as per the security game of our SAS scheme.

• Phase 1: In this phase, the challenger C responds to the oracle queries of the forger in
the same way as shown in the security game of our SAS scheme.

• Phase 2: In this phase, the forger A is denied access to the key queries but can still query
the hash oracles. When A sends a query to the OSeqAgg oracle, the challenger computes
the aggregate as shown in the security game of our SAS scheme.

– Qrk(pki, pkl): On input of two public keys pki and pkl, if the indices i ∈ {1, · · · , t}\j
and l ∈ {1, · · · , t}\j, the challenger C computes and returns the re-signature key
rki→l as per the protocol.

– Ors(σi,M,PK, pki, pkl): On input of an aggregate-so-far σi, public keys pki and
pkl, if indices i ∈ {1, · · · , t}\j and l ∈ {1, · · · , t}\j, C re-signs and returns the new
aggregate-so-far σi on all the input data as below:

1. C parses the aggregate-so-far σi as si−1||σ∗
i and computes ei = HK,η(i). It

further computes γi = σ
∗(ei)
i and parses γi = 0||ωi||r∗i ||ω∗

i . It computes σ′
i−1 =

g2(ωi)⊕ ω∗
i and sets σi−1 = si−1||σ′

i−1.
2. C checks if there exists a tuple in LH1

with values mi (latest message in the
message sequence M) and pkl. If not present, repeat the steps of the hash query
oracle H1 to update list LH1 and continue. Let ρl = H1(mi||pkl).

3. C picks xl ∈ Z∗
N and sets yl = f(xl). Note that if the first bit of yl is not 0, it

repeats the step again till a value beginning with bit 0 is obtained.
4. C breaks yl into 0||ωl||r∗l ||ω∗

l .
5. It sets H1(δl||ρl) = ωl, where δl =(k−2k1−1) ⌊σi−1⌋.
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6. It scans list LH1 for the existence of a tuple ⟨δj′ , ρj′ , ωj′⟩ where j′ ̸= i and
ωj′ = ωl. If found, it aborts.

7. Otherwise, it sets g1(ωl) = r∗l ⊕ rl and g2(ωl) = ω∗
l ⊕ δl.

8. It updates LH1
with the tuple ⟨δl, ρl, ωl⟩.

9. It computes σl = si−1||xl, where si−1 was obtained in Step 1.
10. It returns σl as the output of the re-signature query.

• Response: A eventually outputs a tuple (M∗,PK∗, σc). C performs the following com-
putations:

1. C checks if pkc ∈ PK ∗. If check passes, it parses M∗ = (m1,m2, · · · ,mc, · · · ,mn)
and PK∗ = (pk1, pk2, · · · , pkc, · · · , pkn).

2. It parses the aggregate signature σn = sn−1||σ∗
n and computes en = HK,η(n). It

further computes γn = σ
∗(en)
n and parses γn = (b||ωn||r∗n||ω∗

n). If Equations (1), (2)
and (3) hold, it computes σ′

n−1 = g2(ωn)⊕ ω∗
n and sets σn−1 = sn−1||σ′

n−1.

3. C repeats step 3 till it obtains σc and parses it to obtain sc−1||σ∗
c .

4. It finally outputs σ∗
c/xc. Note that (σ∗

c/xc)
ec = σ∗ec

c /xec
c = y∗c/x

ec
c = νxec

c /xec
c = ν

mod N as desired, where ec = HK,η(c).

• Probability Analysis: Let Distinct be the event that the game does not abort in
the signing, re-signing and H1 hash oracle query phase. Therefore, the probability
Pr[¬Distinct] ≤ 2(qsa + qrs + qH1

)2 · (2−k1). Hence the advantage of C in breaking the
RSA assumption given that Distinct holds and the forger A outputs a valid forgery is:

ϵ′ ≥ ϵ− 2(qsa + qrs + qH1
)2 · (2−k1)

The running time of C is given by t′ ≤ t+ (qsa + qrs + qH1)te, where te is the time taken
for a modular exponentiation. A valid forgery of A breaks the RSA scheme, and hence,
A cannot win the game with a non-negligible probability. This completes the proof of the
theorem.

5 Conclusion

In this paper, we have developed an efficient method for generating sequential aggregate signa-
tures based on the RSA assumption and demonstrated that the scheme is secure in the random
oracle model. The novelty of our work lies in the fact that our protocol enables efficient veri-
fication of sequential aggregate signatures, such that an aggregate signature σi can be verified
with only the ith message and public key pair (m,pki), corresponding to the latest signature
added to the aggregate signature. To the best of our knowledge, such history-free verifica-
tion has not been explored in the literature, making our scheme more efficient than existing
approaches to sequential aggregate signatures, as discussed in our work. Additionally, as an
extension of our sequential aggregate signature, we present the first construction of a sequential
aggregate proxy re-signature scheme secure under the RSA assumption in the random oracle
model, incorporating the desired properties of unidirectionality and single-hop functionality.
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