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Abstract

Key Exchange mechanisms (KE or KEMs) such as the Diffie-Hellman
protocol have proved to be a cornerstone conciliating the efficiency of
symmetric encryption and the practicality of public key primitives.

Such designs however assume the non-compromission of the long term
asymmetric key in use. To relax this strong security assumption, and
allow for modern security features such as Perfect Forward Secrecy (PFS)
or Post Compromise Security (PCS), Ratcheted-KE (RKE) have been
proposed.

This work proposes to turn the Hamming Quasi-Cyclic (HQC) cryp-
tosystem into such a Ratcheted-KE, yielding the first code-based such
construction.

Interestingly, our design allows indifferently one party to update the
key on-demand rather than the other, yielding a construction called bi-
directional RKE, which compares favorably to generic transformations.

Finally, we prove that the resulting scheme satisfies the usual correct-
ness and key-indistinguishability properties, and suggest concrete sets of
parameters, assuming different real-life use cases.

1 Introduction
Key management has long been a challenge in the design of secure communi-
cation systems. In particular, satellite communication systems exemplify this
challenge, given the extensive operational lifespans of satellites (often exceeding
two decades) and their resource constraints. Protocols must not only meet
demanding performance and reliability requirements but also remain secure
against potential quantum threats that may emerge in the next few decades.
In particular, the advent of large-scale quantum computers threatens to cause
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the obsolescence of traditional public-key cryptosystems, exposing satellites to
risks such as eavesdropping and key recovery. To mitigate these risks, there is an
urgent need for cryptographic mechanisms that ensure post-quantum resistance.

Among the candidates in the NIST’s Post-Quantum Cryptography (PQC)
standardization process, code-based schemes have shown great promise, offer-
ing robust security guarantees for secure communications. However, while post-
quantum Key Encapsulation Mechanisms (KEMs) are well-developed, these con-
structions often fail to support advanced security properties like perfect forward
secrecy (PFS) and post-compromise security (PCS). These two properties guar-
antee that even if a device is compromised at some point in time, the confiden-
tiality of past or future communications remains intact. This need has driven
the popularity of Ratcheted Key Exchange (RKE) protocols, which dynamically
update cryptographic keys to provide robust security in asynchronous, real-time
communication environments.

The concept of RKE was first formalized by Perrin and Marlinspike in the
cryptographic core of the Signal Protocol [PM16], now widely deployed in mod-
ern messaging platforms. Their work emphasized key update mechanisms to
achieve PFS and PCS in a lightweight and practical manner. Subsequent
research refined the RKE framework into more structured formalizations, in-
cluding: uni-directional RKE, focusing on forward-only key updates; sesqui-
directional RKE, introducing asymmetric ratcheting; and bi-directional RKE,
designed for improved efficiency and scalability. A practical example of these
advancements is the transformation of the Diffie-Hellman key exchange proto-
col into the Off-the-Record (OTR) protocol [BGB04]. OTR enhances Diffie-
Hellman with features such as deniable authentication and PFS, making it ideal
for private real-time messaging; yet not quantum-resistant.

Despite their success, existing RKE protocols rely on cryptographic primi-
tives vulnerable to quantum adversaries. Indeed, authors in [ACD19] present a
modular framework for the Double Ratchet algorithm used in Signal, focusing
on the separation of key exchange, message encryption, and key derivation. The
paper formalizes security properties such as PCS and asynchronous confiden-
tiality, ensuring message recovery even if keys are temporarily compromised. It
leverages error propagation models and coding techniques to evaluate resilience
to communication loss and adversarial tampering. Authors suggest that it is
possible to construct a post-quantum secure variant of the Signal RKE with any
post-quantum KEM. In a subsequent work, authors in [CGCD+20] conduct a
rigorous cryptographic analysis of the Signal protocol. The paper delves into the
analysis of the protocol’s use of hash-based key derivation functions (HKDFs)
in ratcheting and its impact on message confidentiality and integrity. It high-
lights the entropy growth of keys under successive updates, ensuring resistance
to entropy exhaustion or key-space overlap. This analysis does not include any
argument related to a possible quantum-resistance. Moving away from Signal,
authors in [DHRR22] proposes a strongly anonymous RKE protocol that en-
hances user anonymity in communication systems. The proposed scheme uses
randomized key derivations and secure state transitions to thwart adversarial
inference. It uses formal definitions of anonymity and security, which implicitly
depend on the principles of uncertainty (entropy) and the adversarial reduction
of that uncertainty. However, authors do not explicitly discuss the quantum
issue. Eventually, the first attempt toward a post-quantum RKE is [BFG+22]
which extends the Signal handshake to the post-quantum setting without ensur-
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ing post-quantum resistance in the ratcheting mechanism. Very recently, Signal
and Apple integrated post-quantum resistance in their key-exchange mecha-
nisms by using respectively PQXDH [KS24] (on the initial handshake), and
PQ3 [ES24] (on the entire protocol, including the ratcheting part). [DJK+25]
is another very recent proposal of post-quantum continuous key-exchange full
protocol.

It should be observed that all these post-quantum key exchanges rely on
lattice assumptions, and more specifically on the Kyber system [BDK+18]. The
present work proposes an alternative by leveraging instead problems based on
the Syndrome Decoding. This paper aims at describing a practical, efficient, and
formally secure post-quantum RKE protocol tailored to real-world constraints
and emerging threats.

Our protocol leverages the Hamming Quasi-Cyclic (HQC) cryptosystem, re-
cently selected by the NIST’s PQC project to become one of the five quantum-
resistant cryptographic standards [AAB+24]. HQC offers several advantages,
including robust theoretical security proofs, careful control of noise growth and
error probabilities in decoding, and minimized failure rates compared to alter-
natives. Compared to lattice-based schemes, HQC’s simpler structure facilitates
the symmetrization of the cryptographic operations of communicating parties,
and its high parameterizability allows for flexible adjustments to meet varying
security and efficiency requirements. These features make HQC a compelling
choice for building post-quantum RKE protocols, balancing security, efficiency,
and practicality.

Our contributions In this paper, we present the following contributions:

• Practical Construction: We propose a practical post-quantum RKE proto-
col based on the Syndrome Decoding problem and which modifies HQC’s
construction, addressing the unique requirements of long-lived, resource-
constrained communication systems.

• Parameter Selection: We rigorously compute secure and efficient param-
eter sets for the modified HQC within the context of RKE, ensuring ro-
bustness against quantum and classical adversaries.

• Formal Security Proofs: We provide concise security proofs, demonstrating
that our protocol is correct and key indistinguishable.

By addressing both theoretical and practical challenges, our work contributes
to improving the security of communications in satellites architectures, the In-
ternet of Things (IoT) net- works and also Unmanned Aerial Vehicles (UAVs)
in the quantum era.

2 Preliminaries
In this section, we introduce the notations, hard problems and some definitions
related to the construction of a Post-Quantum Bidirectional Ratcheted Key
Exchange (BRKE).
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2.1 Notations and background
Notations We denote Z the ring of integers and F2 the binary field; ω(·)
refers to the Hamming weight of a vector, and Snw to the set of words in Fn

2 of
weight w. Formally: Snw(F2) = {v ∈ Fn

2 s.t. ω(v) = w}, abbreviated later on
Rw. Vectors can be interchangeably considered as row vectors or polynomials
in R = F2[X]/(Xn − 1). Vectors and polynomials (resp. matrices) will be
represented by lower-case (resp. upper-case) bold letters. rot(h) for h ∈ R
denotes the circulant matrix whose ith column is the vector corresponding to
hXi in R. We denote C a linear code of parameters (n,k,d). In the definitions,
we will use calligraphic letters to refer to distributions D, and sans-serif ones to
refer to cryptographic problems P.

Difficult problems In this paragraph, we recall the main hard problems on
which the security of HQC.PKE is built. Most of the definitions introduced here
are provided for the sake of completeness and self-contained exposition. They
are described in detail in [AAB+24]. An experienced reader may proceed to the
next section.

Definition 1 (s − QCSD Distribution). Let n, s and w be positive integers.
The s−Quasi-Cyclic Syndrome Decoding Distribution s−QCSD(n,w) samples

a parity-check matrix H $←− F(s−1)n×sn
2 of a systematic QC code C of index

s and rate 1/s and a vector x = (x0, ...,xs−1)
$←− Fsn

2 such that ω(xi) = w
∀i ∈ [0, s− 1], computes y⊤ = Hx⊤ and outputs (H,y).

We now proceed to introduce decisional problems. However to avoid trivial
distinguishers an additional condition on the parity of the syndrome is needed.
Therefore we introduce the finite set Fn

2,b = {v ∈ Fn
2 s.t. v(1) = b mod 2}.

Similarly for matrices we define the finite sets:

Fn×2n
2,b = {H =

(
In rot(h)

)
∈ Fn×2n

2 s.t. h ∈ Fn
2,b}, and

F2n×3n
2,b1,b2

= {H =

(
In 0 rot(h1)
0 In rot(h2)

)
∈ F2n×3n

2 s.t. h1 ∈ Fn
2,b1 and h2 ∈ Fn

2,b2}

Definition 2 (2 − QCSD Distribution (with parity)). For positive integers
n, w and b, the 2-Quasi-Cyclic Syndrome Decoding Distribution with parity
2−QCSD(n,w,b) chooses uniformly at random a parity-check matrix H ∈ Fn×2n

2,b

together with a vector x = (x1,x2)
$←− F2n

2 such that ω(x1) = ω(x2) = w, and
outputs (H,HxT ).

Definition 3 (Decisional 2-QCSD Problem with parity). Let h ∈ Fn
2,b, H =

(In | rot(h)), and b
′
= w+ b×w mod 2. For y ∈ Fn

2,b′
, the Decisional 2-Quasi-

Cyclic Syndrome Decoding Problem with parity 2-DQCSD(n,w,b) asks to decide
with non-negligible advantage whether (H,y) came from the 2−QCSD(n,w,b)
distribution with parity or the uniform distribution over Fn×2n

2,b × Fn
2,b′

.

Definition 4 (3−QCSD − PT Distribution). For positive integers n, w, b1, b2,
l and b3 the 3-Quasi-Cyclic Syndrome Decoding Distribution with Parity and
Truncature 3 − QCSD(n,w,b1,b2) chooses uniformly at random a parity-check
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matrix H ∈ F2n×3n
2,b1,b2

together with a vector x = (x1,x2,x3)
$←− F3n

2 such that
ω(x1) = ω(x2) = ω(x3) = w, computes yT = HxT where y = (y1,y2) and
outputs (H, (y1,truncate(y2,l))) ∈ F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−l

2 ) where the truncate
function truncates the last l bits of y2.

Definition 5 (3−DQCSD-PT). Let n, w, b1, b2, l be positive integers and
b3 = w + b1 × w mod 2. Given (H,(y1,y2)) ∈ F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−l

2 ), the
Decisional 3−Quasi-Cyclic Syndrome Decoding with Parity and Truncation
Problem 3−DQCSD-PT(n,w,b1,b2,b3,l) asks to decide with non-negligible ad-
vantage whether (H,(y1,y2)) came from the 3 − QCSD − PT (n,w,b1,b2,b3,l)
distribution or the uniform distribution over F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−l

2 ).

2.2 Bidirectional Ratcheted Key Exchange
A BRKE [PR18] is a cryptographic protocol designed to provide secure commu-
nication by dynamically updating the long-term keys during an ongoing session;
the bi-directionality implies that both participants can generate new keys inde-
pendently of each other.

Definition Formally, a BRKE is defined for a finite key space K and an
associated-data space AD as a triple R= (init, send, receive) of algorithms to-
gether with a state space S and a ciphertext space C.

• init: the randomized initialization algorithm returns a pair of states
(SA, SB) ∈ S × S.

• send(statei, ad): the randomized sending algorithm takes a state statei ∈
S and an associated-data string ad ∈ AD, and produces an updated state
state

′

i ∈ S, a key k ∈ K and a ciphertext c ∈ C.

• receive(statei, ad, c): the deterministic receiving algorithm takes a state
statei ∈ S, an associated-data string ad ∈ AD, and a ciphertext c ∈ C, and
either outputs an updated state state

′

i ∈ S and a key k ∈ K or outputs
the special symbol ⊥ to indicate rejection.

Security model A BRKE scheme is secure if and only if it respects the prop-
erties of correctness and key indistinguishability. Both properties are formalized
through two games FUNC and KINDBR [PR18].

2.3 Hamming Quasi-Cyclic (HQC)
HQC is an efficient cryptosystem based on coding theory. It can be declined
into two primitives namely a public key encryption (PKE) scheme and a key
encapsulation mechanism (KEM-DEM). In this section, we recall the definition
and security model considered for its use as a PKE abbreviated as HQC.PKE.

Definition HQC uses two types of codes: a decodable [n,k] code C, generated
by G∈ Fk×n

2 and which can correct at least δ errors via an efficient algorithm
C.Decode(·); and a random double circulant [2n,n] code, of parity-check matrix
(1,h). The four polynomial-time algorithms constituting the PKE version of
the HQC cryptosystem are described as follows:
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• Setup(1λ): generates and outputs the global parameters
param= (n,k,δ,w,wr,we) where k is the length of the shared key being
exchanged, typically k = 256.

• KeyGen(param): samples h $←− Fn
2 , the generator matrix G∈ Fk×n

2 of C,
sk = (x,y) $←− Snw(F2) × Snw(F2), sets pk = (h,s = x + h · y), and returns
(pk,sk).

• Encrypt(pk,m): generates e $←− Snwe
(F2), r = (r1, r2)

$←− Snwr
(F2) ×

Snwr
(F2), sets u = r1 + h · r2 and v = mG + s · r2 + e, returns c = (u,v).

• Decrypt(sk,c): returns m
′ ← C.Decode(v− u · y).

Security model According to [AAB+24], HQC.PKE, with default parameters,
satisfies both the correctness and the INDistinguishability under Chosen Plain-
text Attack (IND-CPA)) security properties under the assumption that both
2-DQCSD-P and 3-DQCSD-PT (see Definitions 3 and 5) are hard problems.

3 Construction
In this section, we describe RHQC, our construction of a Post-Quantum BRKE
based on the NIST standard HQC. Parameter sets will be further discussed in
Section 4 as some transformations were operated on HQC to construct a secure
BRKE scheme.

Presentation of the scheme Let HQC be an instance of the HQC.PKE cryp-
tosystem described in Sub-section 2.3, and E = (KeyGen,Enc,Dec) be an in-
stance of a secure symmetric encryption scheme. Formally, the proposed RHQC
is a tuple HQC.RKE= (init, send, receive) of algorithms depicted in Table 1.
The use of these algorithms is explicited in the execution diagram provided in
Table 2.

Table 1: Description of HQC.RKE algorithms

proc init(1λ) :
HQC.Setup(1λ) :
return param = (n,k,δ,w,wr,we)

HQC.KeyGen(param) :

x,y
$←− Snwr

(F2)

seedh
$←− {0,1}256;h seedh←−−−− Fn

2
s = x+ hy
sets skA = (x,y).
sets pkA = (seedh,s) or (h,s).

sets STA = (param,λ,skA,_)
sets STB = (param,λ,_,pkA)
returns (STA, STB).

proc send(STB ,ad) :
(param,λ,_,pkA)← STB

mE
$←− E.KeyGen(1λ)

c
$←− HQC.Encrypt(pkA,mE) :

(h,s)← pkA

skB = (r1,r2)
$←− Snwr

(F2)

e
$←− Snwe

(F2)
sets pkB = (h,r1 + hr2)
sets v = mEG+ pkA[1]skB [1] + e
outputs c = (pkB [1],v)

updates STB = (param,λ,skB ,pkA)
returns c = (pkB [1],v)

proc receive(STA,ad,c) :
(pkB [1],v)← c
updates STA = (param,λ,skA,pkB = (h,pkB [1])
HQC.Decrypt(skA,c) :
computes mE/ ⊥← C.Decode(v − pkB [1]skA[1])

returns (STA,mE/ ⊥)

Let us note that, even if not explicitly defined in the construction above, we
require that the first exchange between Alice and Bob is authenticated (ideally
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Table 2: RHQC execution diagram

Alice Bob
init(1λ)

↙ ↘
STA STB

↓ ↓
key ← receive(STA,ad,c) c←−−− send(STB ,ad) → key

↓ ↓
STA STB

...
...

E .encrypt(key,mi) ci←−−→ E .decrypt(key,ci)
...

...
STA STB

↓ ↓
key′ ← send(STA,ad) c−−−→ receive(STB ,ad,c) → key′

↓ ↓
STA STB

...
...

where key (resp. key
′
) refers to mE (resp. m

′

E) in Table 1, mi and ci are
plaintexts and ciphertexts transiting between Alice and Bob inside the secure
channel represented as a gray rectangle.

by using a post-quantum signature scheme [NIS22]). This ensures that the
initial communication is secure against impersonation attacks and establishes
trust for subsequent exchanges.

Security properties We claim that RHQC is a secure BRKE, in that it
respects the properties of correctness and key indistinguishability as defined
in Sub-section 2.2. Section 4 further explores the conditions under which this
statement is verified.

4 Security analysis
Preamble We chose to use HQC.PKE to construct RHQC instead of HQC.KEM
because our goal is to build a RKE scheme to proposed a quantum-resistant au-
thenticated key renewing mechanism. By nature, keys in RKE are ephemeral.
Thus, it seemed more appropriate to use the HQC.PKE instead of the HQC.KEM.
In addition, since we spare a extra HQC.Encrypt operation compared to the
KEM version, we are more efficient.

RHQC leverages HQC.PKE which is IND-CPA. Thus, it can only be used to
construct schemes that use ephemeral keys. Considering the ratcheted nature
of RHQC, we had to modify the parameters of HQC and take into account the
growth of the weight of the residual error skA[0] · skB [1]− skA[1] · skB [0]+ e (of
maximal weight 2(w × wr) + we).

This difference unfolds two discussions:
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1. Considerations for a NIST-compliant RHQC: to this end, we are keeping
the same parameters yet adapting the size n of the code C to respect the
Decryption Failure Rate (DFR) imposed by the NIST. Updated parame-
ters and new DFR are provided in Sub-section 4.1.

2. Considerations for a more efficient RHQC: by nature, RHQC is to be used
for regular key renewing in various applications. Thus, we can consider
reducing the security levels to make RHQC more efficient. Indeed, switch-
ing from a security parameter of 143 to 128 has the immediate effect of
reducing the DFR because the weight of the objects diminish. As DFR is
reduced we can in turn lower the size n of the code C, and so on so forth.
A complete discussion is provided in Sub-section 4.2.

4.1 A NIST-compliant version of RHQC
In this section, we specify which codes are used for RHQC and give concrete
sets of parameters. We propose several sets of parameters, targeting different
levels of security (128, 192 or 256 bits of security) with DFR related to each
security level.

Concatenated codes We use the same codes as described in HQC’s paper
[AAB+24] namely concatenated codes made of a [n2,8,n2/2] Reed-Muller code
as the internal code and a [n1, k, n1 − k + 1] Reed-Solomon code as an external
code.

Sets of parameters The security analysis presented above enabled us to
determine sets of parameters to ensure the security of the proposed RHQC
scheme. They are summarized in Table 3. The parameter n1 is the length of
the Reed-Solomon code, n2 is the length of the Reed-Muller code, n is the length
of the ambient space; wi represents the weights w, wr, we which are weight of
resp. x and y, r1 and r2, and the error e such that w = wr = we; security refers
to the security categories defined by the NIST; and pfail is the probability of a
decoding failure.

Table 3: Parameters sets of a NIST-compliant RHQC.

Instance n1 n2 n wi security pfail
rhqc-128 51 3× 128 19597 75 level 1 < 2−128

rhqc-192 62 5× 128 39733 114 level 3 < 2−192

rhqc-256 100 5× 128 64013 149 level 5 < 2−256

4.1.1 Updated HQC security analysis

In this section, we provide the updated security analysis of HQC considering
the new sets of parameters.

Decoding error probability Demonstrating a very low (by order of 2−128)
decoding error probability is mandatory to ensure that RHQC is correct. Indeed,
the ability to successfully decode with high probability ensures that both parties
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in the RKE are able to recover the same secret. Since we change parameters in
the original underlying routine HQC, we are providing an updated analysis of
the decoding error probability for the code C.

We recall below Theorem 7 of [AAD+24].

Theorem 1 (Decoding failure rate of the concatenated code). Using a Reed-
Solomon code [ne,ke,de]F256

as the external code, the DFR1 of the concatenated
code can be upper bounded by:

ne∑
l=δe+1

(
ne

l

)
pli(1− pi)

ne−l

By applying Theorem 1, we summarized the resulting decoding error proba-
bilities in Table 4. The parameter security refers to the security level; p∗ is the
Bit Error Rate; the Reed-Solomon code column gives the parameters of the code;
and finally, DFR values are computed from Theorem 1 and given as log2(DFR).

Table 4: Decoding error probabilities for a NIST-compliant RHQC according
to several levels of security and n2 given in Table 3.

security p∗ Reed-Solomon code DFR
128 0,34 [51,16,36] −135
192 0,37 [62,24,39] −203
256 0,38 [100,32,69] −272

The computation of the DFR for several security levels shows that the de-
coding error probability is negligible thus, with the given sets of parameters,
the proposed RHQC is considered correct.

2-DQCSD-P and 3-DQCSD-PT security The best algorithms to solve the
syndrome decoding problem are Information Set Decoding (ISD) algorithms.
Since we are using HQC as an underlying routine, we also need to consider
known attacks on Quasi-Cyclic codes. To estimate the hardness of the pro-
posed instances of RHQC, we resorted to the online Binary Syndrome Decoding
Estimators [EB22] that considers best-known ISD attacks against the relevant
problems. A recent work [BC24] suggests that the previously mentioned estima-
tor approximates the cost of linear algebra along with some probability models.
Fortunately, the results suggested by [EB22] and [BC24] converge due to com-
pensating approximations for BIKE [ABB+24] and HQC [AAB+24] (the situ-
ation seems more intricate for Classic McEliece [ABC+22]).2 Although [BC24]
could be more accurate in the way it handles probabilistic assumptions, its com-
putational cost is several order of magnitude above [EB22], and out-of-reach for
the authors at the moment of writing this paper.

In Table 5, we summarize the results output by TII’s estimator [EVZB24].
1Remark: In the original paper, authors merge the notion of decoding error probability

and Decryption Failure Rate (DFR). Still, conclusions apply to the decoding error probability
of the concatenated code C.

2We refer the interested reader to the discussion on NIST PQC-forum available
at: https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/20240916154116.
102177.qmail\%40cr.yp.to
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Table 5: Results from TII’s Syndrome Decoding Estimator [EVZB24] for 2-
DQCSD and 3-DQCSD for rhqc-128. Time and memory are given as log2(·).

Algorithms Estimate 2-DQCSD Estimate 3-DQCSD
Time Memory Time Memory

Ball-Collision 170 41 154 42
BJMM 170 39 154 40
BJMM+ 170 38 154 39
Both-May 170 39 154 40
Dumer 170 41 154 42
May-Ozerov 170 39 154 40
Prange 191 29 175 31
Stern 170 41 154 42

In the original HQC scheme [AMBD+18], w and wr are not balanced, in order
to make both the 2-DQCSD and 3-DQCSD approximately as hard. However in
the case of RHQC, it is mandatory to set w = wr (see Section 4.3). This yields a
setup where key recovery attacks are way harder than message recovery attacks.
Additionally, the weights are set such that the best known ISD attack satisfies
NIST category I, defined as: “Any attack that breaks the relevant security
definition must require computational resources comparable to or greater than
those required for key search on a block cipher with a 128-bit key (e.g. AES128)”.
NIST estimates the bit complexity of category I to be 143 [NIS17]. Finally, as
HQC leverages quasi-cyclic codes, one also has to consider the impact of the
DOOM attack [Sen11], yielding a requirement of 151 (resp. 153) bits or more for
the 2-DQCSD (resp. 3-DQCSD). Setting w = wr will (non-optimally) enforce
category I for the former problem as soon as the later meets this category.

4.2 A relaxed more efficient version of RHQC
Table 3 shows the parameters of RHQC for various levels of security in a NIST-
compliant setting. However, to evaluate RHQC behavior in a more general
context, we investigate in this Section two deviations from NIST requirements,
that eventually yield much more efficient versions of RHQC. Both come from the
fact that RKE target ephemeral keys; it is therefore reasonable to aim at an IND-
CPA PKE instead of an IND-CCA2 KEM, although NIST requires the later.
Since we deviate from NIST requirements, two modifications seem natural. The
first one consists in reducing the security level from NIST category I back to
the standard 128-bits level (plus DOOM overhead). Such a reduction allows to
significantly decrease w = wr, which in turns reduces drastically the magnitude
of the noise to be decoded, hence squashing the DFR. We can then start reducing
n until either the DFR grows above 2−128 or the syndrome decoding instance
is not hard enough. (Usually the former condition is the first met). The second
deviation consists in accepting non-negligible DFR; since an RKE deals with
ephemeral keys and provide both PFS and PCS, an attack exploiting a high
DFR would only have a limited compromise area. We can then aim for higher
DFR, of order 2−λ/i for i ∈ {2,4}. The resulting parameters are captured
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in Table 6. We observe that relaxing these constraints leads to a remarkable
reduction of n from 19597 to 13829 bits.

Table 6: Parameters sets of an efficient RHQC-128.

Instance n1 n2 n wi pfail
rhqc-128-128 43 3× 128 16547 67 < 2−128

rhqc-128-64 39 3× 128 15013 67 < 2−64

rhqc-128-32 36 3× 128 13829 67 < 2−32

Table 7: Parameters sets of an efficient RHQC-192.

Instance n1 n2 n wi pfail
rhqc-192-192 56 5× 128 35227 106 < 2−192

rhqc-192-128 52 5× 128 33301 106 < 2−128

rhqc-192-64 48 5× 128 30763 106 < 2−64

rhqc-192-32 45 5× 128 28813 106 < 2−32

Table 8: Parameters sets of an efficient RHQC-256.

Instance n1 n2 n wi pfail
rhqc-256-256 91 5× 128 58243 140 < 2−256

rhqc-256-192 87 5× 128 55691 140 < 2−192

rhqc-256-128 83 5× 128 53147 140 < 2−128

rhqc-256-64 77 5× 128 49307 140 < 2−64

rhqc-256-32 74 5× 128 47363 141 < 2−32

The aforementioned constraints can also be relaxed for NIST’s security levels
3 and 5 thus yielding new parameters provided in Tables 7 and 8. Adjusting
the parameters, we observe a gain of 30% (resp. 28% and 26%) on the length
of the public keys for level 1 (resp. level 3 and 5). Yet, we believe there is still
room for optimization.

4.3 Security analysis of RHQC
In this section, we provide the security arguments demonstrating why RHQC is
correct and key indistinguishable, thus a secure BRKE.

Correctness According to [PR18], the correctness property requires that as
long as one party only accepts the output of the send function sent by the other
(i.e., accepts no forged messages from the attacker), output keys mi match those
output by the receive function. In other words:

Theorem 2 (Correctness of RHQC). Assuming a sender A and a receiver B
were jointly initialized with init(·), RHQC is correct if:

Pr[receive(STA,ad,send(STB ,ad)) = m |

(STA,STB)
$←− init(1λ)] = 1− negl(1λ)
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Proof. Essentially, the proof comes from the fact that applying receive(·) to a
“ciphertext” that comes from send(·) boils down to applying the HQC.Decrypt(·)
routine from HQC to a ciphertext that comes from the HQC.Encrypt(·) routine.
Let c = (pkB [1] = r1 + hr2,v = mG+ pkA[1]skB [1] + e) ← send(STB ,ad) for
some STB ← init(1λ). Then running receive(STA, ad, c) will call C.Decode on
input v − pkB [1]skA[1] = mG + skA[0]skB [1] − skA[1]skB [0] + e. Similarly to
HQC, it is sufficient that the error term e′ = (skA[0]skB [1]− skA[1]skB [0] + e)
has low enough weight for the decoding algorithm to succeed. The parameters
proposed in Tables 3 and 6 were obtained using the DFR formula from HQC.
Except for rhqc-128-64 and rhqc-128-32 which loosen the DFR restriction, the
decoding algorithm will only fail with probability negl(1λ). Since the decryption
failure probability is bound to the DFR, the correctness equation is satisfied.

Key Indistinguishability The key indistinguishability property asks that
an adversary cannot distinguish between two (or more) keys obtained with the
send(·) algorithm.

By construction, RHQC respects the key indistinguishability property as
defined in [PR18] with respect to the KINDBR game.

Proof. Let cA = (pkA[1], vA = mAG+ pkB [1]skA[1] + eA) (resp. cB = pkB [1],
vB = mBG + pkA[1]skB [1] + eB) a ciphertext produced by Alice (resp. Bob)
using the send(·) routine. In order to break the KINDBR, an adversary has
to distinguish between cA and cB, without having seen any former ciphertext
encrypted with pkA nor pkB (recall that the public keys are used only once).
Assuming the adversary knows mA and mB , the adversary has to distinguish
errors of the form pkB [1]skA[1] + eA from errors of the form pkA[1]skB [1] + eB.
However, pkA[1] and pkB [1] follow the exact same distribution, and the same
holds for skA[1] and skB [1], and for eA and eB. Therefore, the adversary has
to distinguish between two distributions that are exactly the same from an
information theory perspective, hence the result.

5 Conclusion
This paper addresses the pressing challenge of developing secure key manage-
ment solutions for asynchronous communication systems in the quantum era.
By leveraging the Hamming Quasi-Cyclic (HQC) cryptosystem, recently stan-
dardized by the NIST’s Post-Quantum Cryptography project, we propose a
novel ratcheted key exchange (RKE) protocol that meets the stringent security
resource constraints of asynchronous communication systems. Our protocol is
proven correct, key indistinguishable and quantum resistant, which, according
to the RKE framework, guarantees essential properties such as forward secrecy
(PFS) and post-compromise security (PCS), critical for long-term communica-
tion security.

Through careful adaptation of HQC’s construction and parameter optimiza-
tion, we demonstrate, via the provided formal security proofs, that our proto-
col is resilient against both classical and quantum adversaries and give sets of
parameters according to the users’ objectives (trade-off between security and
efficiency). This work offers a significant step forward in developing advance

12



cryptographic primitives resilient against emerging quantum threats and con-
sists of a suitable alternative to existing post-quantum RKE protocols.

As a future work, we envision to extend the protocol to support additional
features, in the multi-party setting for instance. In addition, we would like to ex-
plore the integration of the proposed protocol into existing resource-constrained
environments, such as satellite architectures, the Internet of Things (IoT) net-
works or Unmanned Aerial Vehicles (UAVs).
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