
Worst-case Analysis of Lattice Enumeration
Algorithm over Modules

Jiseung Kim1, Changmin Lee2, and Yongha Son3

1 Jeonbuk National University
jiseungkim@jbnu.ac.kr

2 Korea University
changminlee@korea.ac.kr

3 Sungshin Women’s University
yongha.son@sungshin.ac.kr

Abstract. This paper presents a systematic study of module lattices.
We extend the lattice enumeration algorithm from Euclidean lattices to
module lattices, providing a generalized framework. To incorporate the
refined analysis by Hanrot and Stehlè (CRYPTO’07), we adapt key def-
initions from Euclidean lattices, such as HKZ-reduced bases and quasi-
HKZ-reduced bases, adapting them to the pseudo-basis of modules.
Furthermore, we revisit the lattice profile, a crucial aspect of enumera-
tion algorithm analysis, and extend its analysis to module lattices. As
a result, we improve the asymptotic performance of the module lattice
enumeration algorithm and module-SVP.
For instance, letK = Q[x]/⟨xd+1⟩ be a number field with a power-of-two
integer d, and suppose that n lnn = o(ln d). Then, the nonzero shortest

vector in M ⊂ Kn can be found in time d
d
2e

+o(d), improving upon the

previous lattice enumeration bound of (nd)
nd
2e

+o(nd).
Our algorithm naturally extends to solving ideal-SVP. Given an ideal
I ⊂ R, where R = Z[x]/⟨xt + 1⟩ with a power-of-two integer t = nd,
we can find the nonzero shortest element of I in time exp(O(t

2e
ln ln t)),

improving upon the previous enumeration bound of exp(O(t
2e

ln t)).
Keywords: Lattice Enumeration, Module Lattice, Module-SVP

1 Introduction

The Learning with Errors (LWE) problem [20] has emerged as one of the foun-
dational problems in cryptography, particularly in the context of post-quantum
cryptography. Its significance stems from its post-quantum hardness and its ver-
satility in cryptographic applications [3,9]. The hardness of LWE is closely tied
to the Shortest Vector Problem (SVP) in lattices, a problem that is well-known
to be NP-hard (under randomized reductions) with some approximate factors
[11,13,18]. This connection provides a robust theoretical foundation for designing
cryptographic schemes resistant to quantum attacks.

Recent advancements have focused on algebraic lattice problems, such as
Ring-LWE [17] and Module-LWE [14], which are widely regarded as strong can-
didates for post-quantum cryptographic primitives. These variants leverage alge-
braic structures to achieve improved efficiency while maintaining their security

guarantees. Notably, cryptographic primitives like Kyber [2] and Dilithium [6],
which are based on the hardness of the Module-LWE problem, have gained global
recognition. Kyber (a key encapsulation mechanism) and Dilithium (a digital
signature scheme), selected as part of the winners in the NIST Post-Quantum
Cryptography standardization process, underscore their importance as practical
and efficient solutions for securing digital systems against quantum adversaries.

Despite the increasing interest in module lattices, a notable gap remains in
the development of efficient algorithms that fully exploit their algebraic struc-
ture. While some algorithms [5, 15, 19] have been proposed, they often fail to
outperform their counterparts designed for traditional Euclidean lattices.

For instance, the classical Lenstra–Lenstra–Lovász (LLL) [16] lattice basis
reduction algorithm has been extended to module lattices, leading to algorithms
such as module-LLL [15]. Although module-LLL incorporates additional alge-
braic constraints, its practical performance improvements are often limited com-
pared to its application in Euclidean lattices. This underscores the challenges
of effectively using module structures in algorithmic design. Similarly, enumera-
tion techniques tailored for module lattices have yet to achieve their theoretical
potential, particularly in comparison to their success in Euclidean lattices.

This leads to a fundamental question:

Can algorithms for module lattices be accelerated by
leveraging their intrinsic module structure?

Addressing this question is essential for advancing the practical applicability of
Module-LWE based cryptography.

1.1 This work

We provide a partial answer to this question. Specifically, we present an im-
proved analysis of the lattice enumeration algorithm [10,12] for module lattices
by leveraging module structures. This analysis leads to the following theorem.

Theorem 1.1 (Informal). Let K be a number field of extension degree d with
its discriminant ∆K .Given a pseudo-basis ((Ii,bi))i≤n of a rank-n module M ⊂
Km, one can find the nonzero shortest vector in M in time

n
nd
2e · d d

2e+o(nd)

up to a polynomial factor.

As direct applications, we introduce two results. The detailed discussion of
applications is given in Section 4.1.

Application 1.2. Let n lnn = o(ln d) and R = Z[x]/⟨xd + 1⟩, where d is a
power of two and M ⊂ Kn, where K = Q[x]/⟨xd + 1⟩. Then, one can find the

nonzero shortest vector v ∈ M in time d
d
2e+o(d) up to a polynomial factor.

Previously, it terminates in time (nd)
nd
2e +o(nd) up to a polynomial factor.

2

Application 1.3. For a power-of-two integer t, we can find the nonzero shortest
element of an ideal I ⊂ Z[x]/⟨xt + 1⟩ in asymptotic time e

t
2e ln ln t, improving

upon the previous worst-case bound of e
t
2e ln t given in [10].

Technical Overview. Our improvement leverages algebraic structures to en-
hance the performance of lattice enumeration algorithms [8,10,12] in the context
of modules.

To achieve this, we first introduce module analogs of definitions from Eu-
clidean lattices. Specifically, we define a module-HKZ-reduced pseudo-basis, which
serves as a counterpart to the HKZ-reduced basis in the Euclidean lattice. Fur-
thermore, we introduce the notion of a quasi-module-HKZ-reduced pseudo-basis,
which extends the concept of a quasi-HKZ-reduced basis from [10] to module
lattices. Using these definitions, we propose a module lattice enumeration algo-
rithm.

On the other hand, a rank-n module M ⊂ Km can be regarded as an nd-
dimensional Euclidean lattice generated by a HKZ-reduced basis {⃗b1, . . . , b⃗nd}.
According to the analysis of Hanrot and Stehlé [10], it satisfies

∥⃗b∗1∥ ≤ ∥⃗b∗(i−1)d+1∥ ·
√
nd

ln(n
n−i+1).

This result directly affects the complexity of the enumeration algorithm. The
dominant cost in lattice enumeration is determined by the number of integer
points in a given search space, which can be approximated as:

O

 nd∑
i=1

(2πe)i · ∥⃗b∗1∥i√
nd

i
·
∏

j≥n−i+1 ∥⃗b∗j∥

 = max
i

O

 (2πe)i · ∥⃗b∗1∥i√
nd

i
·
∏

j≥n−i+1 ∥⃗b∗j∥

 .

In order to adapt the analysis, we prove that given a module-HKZ-reduced
pseudo-basis ((Ii,bi))1≤i≤n of a module M , the following holds:

∥b∗
1∥≤∥b∗

i ∥ ·
√
n
ln(n

n−i+1).

Compared to the profile of an HKZ-reduced basis of the nd-dimensional Eu-
clidean lattice, the profile of a module-HKZ-reduced pseudo-basis gives a differ-
ent relation, which is a motivation of the new analysis of the lattice enumeration
algorithm over modules.

Observation 1.4. Let ((Ii,bi))i≤n be a module-HKZ-reduced pseudo-basis of a

rank-n module with extension degree d, and let {⃗b1, . . . , b⃗nd} be an HKZ-reduced
basis of an arbitrary Euclidean lattice. Then, the following bounds hold:

(Module lattice) ∥b∗
1∥≤∥b∗

i ∥ ·
√
n
ln(n

n−i+1)

(Euclidean lattice) ∥⃗b∗1∥ ≤ ∥⃗b∗(i−1)d+1∥ ·
√
nd

ln(n
n−i+1)

3

From Observation 1.4, we see that for each index i, the ratio ∥b∗
1∥/∥b∗

i ∥ is

smaller than ∥⃗b∗1|/∥⃗b∗(i−1)·d+1∥. We thus expect that the complexity of the module
enumeration algorithm is estimated as follows:

O

 n∑
i=1

(2πe)i · ∥b∗
1∥i√

nd
i
·
∏

j≥n−i+1 ∥b∗
j∥

 = max
i

O

 (2πe)i · ∥b∗
1∥i√

nd
i
·
∏

j≥n−i+1 ∥b∗
j∥

 .

We emphasize that a smaller ratio of ∥b∗
1∥/∥b∗

i ∥ increases the denominator,
which effectively reduces the overall time complexity of the enumeration algo-
rithm.

Based on the module lattice enumeration algorithm, we additionally provide
an improved analysis of Module-SVP algorithm.

Application to Module-CVP. This paragraph begins with a natural question:
how can the algorithm be applied to solve module-CVP, and does it improve the
algorithm’s performance?

As shown in [10], our analysis can be extended to the module-CVP. The
module-CVP asks us to find the closest lattice vector given a pseudo-basis B =
((Ii,bi))1≤i≤n of a module M and a target vector t ∈ span(M). The high-
level strategy for solving module-CVP is essentially the same as for solving the
module-SVP. However, unlike the module-SVP case, the module enumeration
algorithm does not improve the performance of solving module-CVP.

Let D = (di)1≤i≤nd be the corresponding Z-module basis of M . The first
step in solving module-CVP is to compute the module-HKZ reduced pseudo-
basis (Ii,bi).

On the other hand, with a Z-basis for the module M , Babai’s nearest plane
algorithm [1] can be employed in the same way as for the lattice enumeration
algorithm. By Babai’s nearest plane algorithm, we know that there exists a
lattice vector d at a distance of at most

√
nd ·maxi ∥d∗

i ∥ from the target vector
t, where d∗

i are the Gram-Schmidt orthogonalized vectors corresponding to the
Z-basis D.

Additionally, due to the definition of the profile of d∗
i , it follows that maxi ∥d∗

i ∥ =
∥d∗

1∥. Consequently, if we set A = nd · ∥d1∥2 in the module lattice enumeration
procedure, we can find all solutions, and it terminates in time maxi≤nd N

CVP
i

where

NCVP
i ≤

√
2πe

i ·
√
nd

i
· ∥d∗

1∥i√
nd

i∏
j≥nd−i ∥d∗

j∥
.

Since ∥d∗
j∥ for all j is less than ∥d∗

1∥, the term is maximized when i = nd.

At this point, the denominator becomes equal to the volume of the lattice
Λ(D). This result implies that the ring structure cannot be exploited in the
module-CVP scenario. Therefore, we conclude that under these circumstances,
the algebraic structure provides no performance improvement.

4

2 Preliminaries

Notations. Vectors and matrices are denoted in bold letters. The n-dimensional
unit ball with radius R is denoted by Bn(R), and its volume is given by Rn ·

πn/2

Γ (n/2+1) . For any finite set U , the number of elements in U is denoted by #U .

For any measurable set S ⊂ Rn, its volume is denoted by vol(S). The Euclidean
norm of a vector v ∈ Rn is denoted by ∥v∥. The natural logarithm of a nonzero
x ∈ R is denoted by lnx, while the logarithm with base 2 is denoted by either
log x or log2 x.

2.1 Algebraic Number Theory Backgrounds

This section introduces the definitions of key algebraic objects. For more details,
please refer to [15].

Let K be a number field of extension degree d. The field K has r1 real
embeddings and 2r2 complex embeddings, denoted by σi, where r1 + 2r2 = d.
Using these embeddings, we define a function σ : K → Rr1 × C2r2 as σ(x) =
(σ1(x), . . . , σd(x)), which is called the canonical embedding. For convenience, we
set σr1+i(x) = σr1+r2+i(x), where · denotes complex conjugation.

The embeddings are used to define the field norm and the field trace for any
x ∈ K as follows: N (x) =

∏d
i=1 σi(x) and Tr(x) =

∑d
i=1 σi(x). Additionally,

we define the following norms for every x ∈ K: ∥x∥ =
√∑d

i=1 |σi(x)|2 and

∥x∥∞ = max1≤i≤d |σi(x)|. Given a number field K of extension degree d, we
denote its real tensor product by KR = K ⊗Q R.

Let R be the ring of integers of K. The ring R has a Z-basis (x1, . . . , xd) and
can also be regarded as a lattice under the canonical embedding. The discrimi-
nant of K is defined as ∆K = |det(σi(xj))|2.

A fractional ideal I of K is an additive subgroup of K that is closed under
multiplication by any element of the ring of integers R. Additionally, there exists
a nonzero integer x ∈ Z \ {0} such that xI ⊆ R.

A nonzero ideal can be viewed as a lattice in KR using the canonical embed-
ding, and we refer to this lattice as the ideal lattice. In general, finding a Z-basis
for an arbitrary ideal I is computationally difficult. However, throughout this
paper, we assume that a Z-basis for I is given. In other words, we focus only on
ideals for which a Z-basis is known.

The norm of an ideal I, denoted by N (I), is defined as N (I) = N (xI)
|N (x)| , for

any x ∈ R\{0} such that xI ⊆ R. The norm satisfies the multiplicative property:
N (I · J) = N (I) · N (J), for any fractional ideals I and J .

2.2 Lattice Backgrounds

A lattice Λ ⊂ Rm is the set of vectors generated by all integer combinations of n
linearly independent vectors b⃗1, . . . , b⃗n ∈ Rm. The parameters m and n are called
the dimension and the rank of the lattice Λ, respectively. The vectors b⃗1, . . . , b⃗n

5

are called a basis of the lattice and are denoted by B = (⃗b1, . . . , b⃗n) ∈ Rm×n. In

other words, the lattice Λ can be expressed as Λ = {
∑n

i=1 xi⃗bi : xi ∈ Z}. Here,
n is called the rank of Λ, and Λ is called a full-rank lattice if m = n. The set
P (B) = {

∑n
i=1 xi⃗bi : xi ∈ [0, 1)} is called the parallelepiped of the basis B.

Definition 2.1 (Shortest Vector Problem (SVP)). Given a basis of a lattice Λ,
find the shortest nonzero vector x⃗ ∈ Λ \ {⃗0} such that ∥x⃗∥ = λ1(Λ), where λ1(Λ)
is the Euclidean norm of the shortest nonzero vector in Λ.

Gram-Schmidt Orthogonalization. For a basis B = (⃗b1, . . . , b⃗n) of a lat-

tice Λ and i ∈ {1, . . . , n}, we define b⃗∗i as the projection of b⃗i orthogonally

onto span(⃗b1, . . . , b⃗i−1). The Gram-Schmidt orthogonalization of B is the set

of vectors {⃗b∗1, . . . , b⃗∗n}. For simplicity, we define Pi as the projection operator

orthogonal to span(⃗b∗1, . . . , b⃗
∗
i−1).

The Gram-Schmidt orthogonalized basis can be represented in matrix form
as B∗ = (⃗b∗1, . . . , b⃗

∗
n). The volume of a full-rank lattice Λ with basis B is defined

as
∏n

i=1 ∥⃗b∗i ∥ and is denoted by det(B) or vol(Λ). We note that the lattice volume
is well defined: it does not depend on the choice of basis B.

Definition 2.2 (HKZ-reduction). We say that B = (⃗b1, . . . , b⃗n) is an Hermite-

Korkine-Zolotarev (HKZ) reduced basis if ∥⃗b1∥ = λ1(Λ(B)), and the remaining
basis vectors are HKZ-reduced when projected onto the subspace orthogonal to
b⃗1.

Lemma 2.3 ([10, Lem. 1.]). If (⃗b1, . . . , b⃗n) is HKZ-reduced, then for any i ≤ n,
we have

∥⃗b∗i ∥ ≤
√

n− i+ 5

4
·

∏
j≥i

∥⃗b∗j∥

 1
n−i+1

.

Definition 2.4 (Quasi-HKZ-reduction). A basis (⃗b1, . . . , b⃗n) is quasi-HKZ-reduced

if it is size-reduced, if ∥⃗b∗2∥ ≥ ∥⃗b∗1∥/2 and if once projected orthogonally to b⃗1,

the other b⃗i’s are HKZ-reduced.

The Gaussian Heuristic is used to estimate the number of lattice points in
measurable sets or the length of the shortest vector.

Heuristics 2.5 (Gaussian Heuristic). Let Λ be a full rank lattice in Rn, and
S is a measurable set in Rn. Then, the number of lattice points in S ∩ Λ is
approximately vol(S)/ vol(Λ).

Lemma 2.6. Suppose that a basis (⃗b1, . . . , b⃗n) is HKZ-reduced and satisfies the
worst-case bound of the inequality in the Lemma 2.3. Then, it holds that

∥⃗b∗1∥ = ∥⃗b∗i ∥ ·
√
n
ln(n

n−i+1).

6

Lemma 2.7 ([10, Thm. 3.]). Let {⃗bi}1≤i≤d be HKZ-reduced Then

∥⃗b1∥i∏
j≥d−i ∥⃗b∗i ∥

≤
√
d
i·(1+ln d

i).

2.3 Module lattice backgrounds

Let ((Ii,bi))
n
i=1 be a pseudo-basis of a module M , where M =

∑n
i=1 Iibi and bi

are KR-linearly independent vectors in Km
R . Here, independent means that the

zero vector cannot be expressed as a non-trivial KR-linear combination of the
bi. n is called the rank of the module M .

As in the number field case, for any vector v ∈ Km
R , we can define the ex-

tended canonical embedding σ(v). The definition is straightforward: σ(v) ∈ Rnd

is obtained by concatenating the embeddings of the components of v. Conse-
quently,M can be viewed as a lattice via the extended canonical embedding map.
This allows us to define the volume of a module from a lattice perspective. More

precisely, the volume of a module is given by det(M) = ∆
n/2
K · N (detKR(M)),

where detKR(M) = det(B̄T ·B)1/2 ·
∏

i Ii. Here, (Ii,B) is a pseudo-basis of M .4

Furthermore, we extend the inner products for a,b ∈ Km
R as follows:

⟨a,b⟩KR =
∑
i

aib̄i ∈ KR, and ⟨a,b⟩ = Tr

(∑
i

aib̄i

)
∈ C.

The inner product defined over KR is also used to define some (algebraic) norms.
For example, for any v ∈ Km

R , we define ∥v∥KR =
√
⟨v,v⟩KR . Similarly, we define

N (v) = N (∥v∥KR).

Note that lattice reduction algorithms, such as LLL [16], BKZ [4], and HKZ
reduction, can be easily generalized since the inner product ⟨a,b⟩ is well-defined.
Conceptually, this generalization is equivalent to applying reduction algorithms
after identifying ring elements to the complex space via the canonical embedding.

With these preliminaries, we formally define the module-SVP and module-
CVP problems:

Definition 2.8 (Module-SVP). Let K be a number field and KR as above. Given
a module M ⊂ Km

R , the module-SVP is to find a nonzero vector x ∈ M such
that ∥x∥ is minimized.

Definition 2.9 (Module-CVP). Let K be a number field and KR as above. Given
a module M ⊂ Km

R and a target t ∈ Km
R , the module-CVP is to find the vector

x ∈ M closest to the target vector t with respect to the ∥ · ∥ norm.

Let λ1(M) denote the norm of the shortest nonzero element of M , and let
λN
1 (M) = inf{N (v) : v ∈ M \ {0}}. Then, the following inequality holds:

4 The determinant of a module is well-defined.

7

Lemma 2.10 ([15, Lem. 2.2]). For any rank-n module M , we have:

d−d/2λ1(M)d∆
−1/2
K ≤ λN

1 (M) ≤ d−d/2λ1(M)d ≤ nd/2∆
1/2
K N (det

KR
M)1/n.

Gram-Schmidt Orthogonalization for Modules. The Gram-Schmidt Or-
thogonalization can be extended from real numbers to number fields using the
inner products defined over KR.

More precisely, for KR-linearly independent vectors (b1, . . . ,bn) ∈ Km×n
R ,

we define b∗
1 = b1, and for i > 1,

b∗
i = bi −

∑
j<i

µi,jb
∗
j , where µi,j =

⟨bi,b
∗
j ⟩KR

⟨b∗
j ,b

∗
j ⟩KR

.

Using these definitions, one can compute the QR-factorization of the matrix over
KR by setting ri,i = ∥b∗

i ∥KR . Then, we have B = Q ·R, where Q ∈ Km×n
R is a

matrix satisfying Q̄ ·Q = I, and R = (ri,j) is an upper triangular matrix. For a
simple description, the orthogonal projection of v onto (b1, . . . ,bi)

⊥ is denoted
by τi(v).

The following lemma can be directly obtained from QR-factorization.

Lemma 2.11 ([15, Lem. 2.6]). Let ((Ii,bi))i≤n be a pseudo-basis of a module
M ⊂ Km

R . Then, it holds

det
KR

M =
∏
i

ri,iIi and detM = ∆
n/2
K

∏
i

N (ri,i · Ii).

Moreover, using the canonical embedding, we obtain an analogue result of
the Minkowski’ bound. The shortest vector v of a rank-n module M is bounded
as follows:

∥v∥ ≤
√
n ·

(
∆

n/2
K

n∏
i=1

N (ri,i · Ii)

)1/nd

=
√
n ·∆1/(2d)

K ·

(
n∏

i=1

N (ri,i · Ii)

)1/nd

(1)

Lemma 2.12 (Thm. 4, [7]). Suppose a pseudo-basis ((Ii,bi))i≤n and a full-rank
set of vectors (si) of M ⊂ Km

R are given. Then, there exists an algorithm that
returns a pseudo-basis {(Ji, ci)}i≤n such that ci ∈ M and c∗i = s∗i for all i.
Furthermore, if M ⊂ Km, the time complexity is polynomial in log∆K and the
input bit-length.

Handling bit-lengths. Lee et al. [15] proposed algorithms for handling the
bit-length of ideals. All algorithms preserve the module space, but provide ef-
ficient representations of ideals and R-factor of pseudo-basis. For example, a

8

scaled pseudo-basis ((Ii,bi))i≤n implies N (Ii) ≤ 1 for all i. Fortunately, every
algorithm terminates in polynomial time in log∆K and the input bit-length.

We introduce the formal definitions and algorithms to transform the input
pseudo-basis into a good pseudo-basis.

Definition 2.13 ([15, Def. 3.5]). We say a pseudo-basis ((Ii,bi))i≤n with Ii ⊂ K
and bi ∈ Km

R for all i is scaled if for all i ≤ n,

R ⊂ Ii, N (Ii) > 2−d2

∆
−1/2
K and ∥ri,i∥ ≤ 2d∆

1/(2d)
K N (ri,iIi)

1/d.

If ∥ri,j/ri,i∥ ≤ (4d)d∆
1/2
K for all i < j ≤ n, it is called a size-reduced.

Algorithm 1: Scaling the ideals

Input: A pseudo-basis ((Ii,bi))1≤i≤n of a module M
Output: A scaled pseudo-basis of M

1 for i = 1 to n do

2 Use LLL to find si ∈ ri,i · Ii \ {0} such that ∥si∥ ≤ 2d∆
1/(2d)
K N (ri,i · Ii)1/d.

3 Find xi ∈ Ii such that si = ri,i · xi and update I ′i = Ii · ⟨xi⟩−1 and
b′
i = xi · bi.

4 end for
5 return ((I ′i,b

′
i))i≤n.

Lemma 2.14 ([15, Lem. 3.6]). Given a pseudo-basis ((Ii,bi))i≤n of a module
M , Algorithm 1 returns a scaled pseudo-basis of the module M and preserves
the N (ri,iIi) for all i. The algorithm terminates in polynomial time in log∆K

and the input bit-length.

We further introduce a notion called size-reduced. To this end, we addition-
ally introduce ⌊·⌉R operation. Given input y =

∑
i yixi ∈ KR for some yi ∈ R,

the operation ⌊y⌉R returns
∑

⌊yi⌉xi.

Algorithm 2: Size-reduction

Input: A pseudo-basis ((Ii,bi))1≤i≤n of a module M
Output: A size-reduced pseudo-basis of M

1 for j = 1 to n do
2 for i = j − 1 to 1 do
3 Compute xi = ⌊ri,j/ri,i⌉R
4 bj = bj − xi · bi

5 end for

6 end for
7 return ((Ii,bi))i≤n.

9

Lemma 2.15 ([15, Lem. 3.7]). Given a pseudo-basis ((Ii,bi))i≤n of a module
M , there exists an algorithm (Algorithm 2) that returns a scaled size-reduced
pseudo-basis of the module M and preserves the N (ri,iIi) for all i. The algorithm
terminates in polynomial time in log∆K and the input bit-length.

3 Lattice Enumeration Algorithm over Modules

This section presents an analysis of the lattice enumeration algorithm for mod-
ules. We adapt the analysis from [10] to modules, demonstrating improvements
in asymptotic performance.

First, recall Kannan’s lattice enumeration algorithm (Algorithm 3). Given a

basis {⃗b1, . . . , b⃗d} of a lattice and a bound A ∈ Z, the goal of the enumeration

algorithm is to find all lattice vectors
∑

i xi⃗bi such that ∥
∑

i xi⃗bi∥2 ≤ A, where
xi ∈ Z. Intuitively, the algorithm counts all integer points within a given bound.

More precisely, the condition ∥
∑

i xi⃗bi∥2 ≤ A can be reformulated as

d∑
i=1

xi +

d∑
j=i+1

µQ
j,ixj

2

· r̄i ≤ A, (2)

where µQ
j,i =

⟨⃗bi ,⃗b∗j ⟩
∥⃗b∗j ∥2

and r̄i = ∥⃗b∗i ∥2. For each i ∈ [d], define ci = −
∑d

j=i+1 µ
Q
j,i ·xj

and yi = xi−ci. Then, finding integer points (x1, . . . , xd) is equivalent to finding
all integer points (y1, . . . , yd) ∈ Zd that satisfy

y2d · r̄d ≤ A,

y2d−1 · r̄d−1 + y2d · r̄d ≤ A,

· · ·
d∑

i=1

y2i · r̄i ≤ A. (3)

Let Ni represent the number of integer points satisfying

{(yi, . . . , yd) |
∑
j≥i

y2j · r̄j ≤ A}.

As analyzed in [10], the time complexity of the enumeration algorithm is dom-
inated by maxi Ni, up to a polynomial factor. As a consequence, by combining
Lemma 2.7 with the upper bound of Ni, [10] concludes the algorithm for solving
SVP using the lattice enumeration algorithm terminates in time dd/(2e)+o(d) up
to a polynomial factor.

The algorithm primarily involves inner product computations and QR-factorization
of the input Z-basis. Since inner product calculations and QR-factorization of
a pseudo-basis for a module are already addressed in [15], extending the lattice
enumeration algorithm to modules appears straightforward. However, there are

10

technical challenges, such as adapting definitions for modules and devising an
algorithm to convert a given pseudo-basis of a module into a Z-basis.

In the latter part of this section, we define relevant terms and propose an
algorithm to derive a Z-basis for a module. Finally, we provide a new analysis of
the lattice enumeration algorithm over modules, showing that it outperforms its
counterpart for Euclidean lattices. Specifically, Section 3.1 introduces definitions
for module lattices, and Section 3.2 describes the module lattice enumeration
algorithm. Lastly, Section 3.3 provides a detailed analysis of the module lattice
enumeration algorithm.

Algorithm 3: Lattice Enumeration Algorithm

Input: An Z-basis (⃗b1, . . . , b⃗d) and a bound A ∈ Z.
Output: All vectors in Λ(⃗b1, . . . , b⃗d) of which 2-norm is bounded by A.

1 Compute µQ
i,j ’s and ∥⃗b

∗
i ∥’s of (⃗b1, . . . , b⃗d).

2 x← 0⃗, l← 0⃗, i← 1 and S ← ∅
3 while i ≤ d do

4 li ← (xi +
∑

j>i xjµ
Q
j,i)

2∥⃗b∗i ∥2

5 if i = 1 and
∑

j≥i lj ≤ A then

6 S ← S ∪ {x⃗}, x1 ← x1 + 1
7 end if
8 if i ̸= 1 and

∑
j≥i lj ≤ A then

9 i← i− 1

10 xi ←
⌈
−
∑

j>i(xjµ
Q
j,i)−

√
A−

∑
j>i lj

∥⃗b∗i ∥
2

⌉
11 end if
12 if

∑
j≥i lj > A then

13 i← i+ 1, and xi ← xi + 1.
14 end if

15 end while
16 return S

3.1 Definitions for Modules

We first extend the notions of Euclidean lattices to module lattices in order to
employ the enumeration algorithm over modules. The Hermite-Korkine-Zolotarev
(HKZ)-reduced basis (Definition 2.2) is adapted to a module-HKZ-reduced pseudo-
basis (Definition 3.1), as no basis exists in some modules. Similarly, the quasi-
HKZ-reduced basis for Euclidean lattices (Definition 2.4) can be extended the
quasi-module-HKZ-reduced pseudo-basis for any modules (Definition 3.2).

These definitions are mainly used in the analysis of module lattice enumer-
ation algorithm in Section 3.3. Intuitively, we define all the necessary module-
related concepts to make it easier to adapt existing algorithms from [8, 10, 12].

11

For example, computing the quasi-module-HKZ-reduced pseudo-basis in Defi-
nition 3.2 turns out to be simpler than expected. This is because the previous
algorithms for computing quasi-HKZ-reduced bases can be directly adapted to
the module setting. Detailed algorithms will be provided in later sections.

Definition 3.1 (Module-HKZ-reduced). A pseudo-basis ((Ii,bi))1≤i≤n is said
to be module-HKZ-reduced the vector b1 reaches the lattice minimum, and the
projections of the ((Ii,bi))2≤i≤n’s orthogonally to the vector b1 are themselves
a module-HKZ-reduced pseudo basis.

Note that the projection of ((Ii,bi))2≤i≤n to the vector b1 is identical to
that of {bi}2≤i≤n to the vector b1. The projection of {bi}2≤i≤n to bi means
that bi − µi,1b1.

Hanrot and Stehlé [10] proposed a notion, named quasi-HKZ-reduced basis
to tightly analyze the Kannan’s lattice enumeration algorithm. To analyze the
algorithm to the module variant, we also required an extended definition of
quasi-HKZ-reduced for modules.

Definition 3.2 (Quasi-Module-HKZ-reduction). A pseudo-basis {(I1,b1)}1≤i≤n

of module M is quasi-module-HKZ-reduced, if {(I1,b1), (I2,b2)} is module-HKZ-
reduced pseudo-basis. and if once projected orthogonally to b1, the other (Ii,bi)’s
are HKZ-reduced.

When we deal with algebraic objects such as ideals, modules, the represen-
tation of the objects should be considered in order to instantiate algorithms for
algebraic objects. Throughout this paper, we assume that every pseudo-basis is a
scaled pseudo-basis (Definition 2.13). Sometimes, we employ a size-reduced algo-
rithm to hand bit-lengths. Fortunately, there exists an algorithm which converts
an input pseudo-basis into a scaled one and a size-reduced one (Algorithm 2).

3.2 Module Lattice Enumeration Algorithm

This section provides a module lattice enumeration algorithm (Algorithm 5).
Similar to the previous analysis [10], we will use the property of quasi-module-
HKZ-reduced pseudo-basis (Definition 3.2) to analyze the performance of the
module lattice enumeration algorithm.

The core idea of this section is that the input to Algorithm 3 must be a
Z-basis of the lattice, rather than a pseudo-basis that we have. Therefore, it is
necessary to convert the pseudo-basis into a Z-basis of the lattice. The conversion
algorithm is given in Algorithm 4, and we provide the correctness and complexity
of the algorithm in Theorem 3.3.

Theorem 3.3 (Conversion to Z-basis). Let K be a number field of an ex-
tension degree d, and let KR = K ⊗Q R. Let M ⊂ Km be a rank-n module,
and let ((Ii,bi))1≤i≤n be its scaled and size-reduced pseudo-basis. Let ci be a
LLL-reduced Z-basis of Ii. Then, Algorithm 4, given ((Ii,bi))1≤i≤n as input,
returns a Z-basis {w1, . . . ,wnd} for M . The time complexity of the algorithm is
poly(B, log∆K) · n · 2O(d), up to a polynomial factor, where B is the input size.

Specifically, it holds that
∏d

j=1 ∥w∗
(i−1)·d+j∥ = N (Ii · b∗

i) ·
√
∆K .

12

Algorithm 4: Z-basis Conversion
Input: An LLL-reduced Z-basis ci of an ideal Ii for each i ≤ n

A pseudo-basis ((Ii,bi))1≤i≤n of a module M
Output: Z-basis of a module M

1 Compute the Gram-Schmit orthogonalization of a pseudo-basis,
((Ii,bi))1≤i≤n. Let {(Ii, ri)}1≤i≤n be an output.

2 for i = 1 to n do
3 Compute a set of matrices {Ui} such that ci · ri,k ·Ui is a HKZ-reduced,

where ci is a Z-basis of an ideal Ii.
4 end for
5 Compute W = [w1, . . . ,wnd], which is a Z-basis of a module M
6 return W

Proof of Theorem 3.3. We first prove the correctness of Algorithm 4, showing
that it outputs a Z-basis for the module M .

Let ((Ii,bi))1≤i≤n be a pseudo-basis of the rank-n module M . We assume
that the pseudo-basis is a scaled sized reduced pseudo-basis using Algorithm 2.
By applying the Gram-Schmidt orthogonalization (GSO) to the pseudo-basis,
we obtain Q, {(Ii, ri)}1≤i≤n, where R = [r1, . . . , rn] satisfies

R =


r1,1 r1,2 · · · r1,n

r2,2 · · · r2,n
. . .

...

rn,n

 ∈ Kn×n
R .

Next, we construct a Z-basis for the module QT ·M . Let ci = (ci,1, . . . , ci,d)
denote an LLL-reduced Z-basis of the ideal Ii. Since ((Ii, ri))i≤n is also a pseudo-
basis of QT ·M , any element of QT ·M can be expressed as a combination of ci
and ri. Hence, the Z-basis of QT ·M can be expressed as

BZ =


c1 · r1,1 c2 · r1,2 · · · cn · r1,n

c2 · r2,2 · · · cn · r2,n
. . .

...

cn · rn,n

 ∈ Kn×nd
R ,

where ci · rj,k = (ci,1 · rj,k, . . . , ci,d · rj,k) ∈ Kd
R is a row vector.

AlthoughBZ is a valid Z-basis ofQT ·M , we refine it to employ the complexity
analysis of the module enumeration algorithm. For each i ∈ [n], compute a matrix
Ui ∈ Zd×d such that ci · ri,i ·Ui is HKZ-reduced.5 Intuitively, it is conducted as
the followings:

5 Later, we will just require the profile ∥b∗
i ∥, so this computation suffices for our

purpose.

13

1. Identify the d elements of ci · ri,i as the complex space using the canonical
embedding σ, resulting in [σ(ci,1 · ri,i), . . . , σ(ci,d · ri,i)] ∈ Cd×d, which forms
a basis for a d-dimensional lattice.

2. Compute an unimodular matrix Ui ∈ Zd×d such that the product

[σ(ci,1 · ri,i), . . . , σ(ci,d · ri,i)] ·Ui

is HKZ-reduced.
3. Define ci · ri,i ·Ui as the HKZ-reduced basis for the original space.

We then construct a new basis of QT · M by multiplying the block-diagonal
matrix diag(U1, . . . ,Un) with BZ, ensuring that for each i, ci · ri,i ·Ui is HKZ-
reduced. Let

W = Q ·BZ · diag(U1, . . . ,Un).

The resulting matrix W is expressed as [w1, . . . ,wnd] and remains a Z-basis for
the module M .

In addition, by the construction, it directly implies that
∏d

j=1 ∥w∗
(i−1)·d+j∥ =∏d

j=1 ∥QT · w∗
(i−1)·d+j∥ is the volume of the lattice generated by ci · ri,i. It

concludes that

d∏
j=1

∥w∗
(i−1)·d+j∥ = N (Ii · ri,i) ·

√
∆K .

Time complexity. The conversion algorithm mainly consists of two steps. First,
compute the Gram-Schmidt orthogonalized pseudo-basis {(Ii, ri)}i∈[n]. Next,
compute a matrix Ui such that ci · ri,i · Ui is HKZ-reduced, for all i. It is
obvious that the complexity of the conversion algorithm is dominated by the
second step. In order to compute Ui, we compute HKZ-reduced basis of a cer-
tain d-dimensional lattice over KR, which terminates in 2O(d) · poly(B′), where
B′ is the maximum length of ci · ri,i. From the inner product in KR, the size B′

corresponds to a polynomial in the input length of ci ·ri,i and log∆K . Thus, the
total time complexity is poly(B, log∆K) · n · 2O(d).

The output matrix W will be used as input for the lattice enumeration
algorithm (Algorithm 3) with a specified size bound A. While W is not an
integer matrix, the generalization of the enumeration algorithm to handle such
inputs is natural and effective. This is because all operations required by the
enumeration algorithm, such as computing norms and updating lattice points,
are well-defined for any Z-basis, though it originates from an integer lattice.

By substituting W as the input to Algorithm 3, the algorithm functions as
intended in the generalized setting and successfully enumerates all points in the
module M within the specified size bound A.

This natural generalization gives rise to the following module lattice enumer-
ation algorithm (Algorithm 5).

The correctness of Algorithm 5 follows directly from the correctness of Algo-
rithm 4 and Algorithm 3.

14

Algorithm 5: Module Lattice Enumeration Algorithm

Input: A pseudo-basis ((Ii,bi))1≤i≤n of a module M and a bound A
Output: All vectors in M of which 2-norm is bounded by A.

1 Call W← Algorithm 4({ci}i≤n, ((Ii,bi))i≤n)
2 Call S ← Algorithm 3(W, A)
3 return S

In the next section, we analyze the asymptotic performance of Algorithm 5
when the input pseudo-basis is a quasi-module-HKZ-reduced basis (Definition 3.2).
For detailed results, refer to Theorem 3.4.

3.3 Analysis of the Lattice Enumeration Algorithm over Modules

Building on the definitions of modules introduced in Section 3.1, we present a
new analysis of the lattice enumeration algorithm over modules.

The main goal of this subsection is to prove Theorem 3.4, which will be used
to analyze the performance of the module-SVP and module-CVP algorithms.
Although the theorem assumes that the input pseudo-basis of the module lat-
tice enumeration algorithm is quasi-module-HKZ-reduced, as defined in Defini-
tion 3.2, the process for obtaining such a pseudo-basis will be discussed in the
next section.

Throughout this section, we assume that the pseudo-basis ((Ii,bi))i≤n is
quasi-module-HKZ-reduced.

Theorem 3.4. Let K be a number field of an extension degree d, and let
KR = K ⊗Q R. Let M ⊂ Kn be a rank-n module. Suppose that a pseudo-basis
((Ii,bi))i≤n of M is a quasi-module-HKZ-reduced pseudo-basis in Definition 3.2.
Then, the module lattice enumeration algorithm in Algorithm 5 that takes as in-
puts ((Ii,bi))i≤n and a bound A terminates in time polynomial in O(maxi Ni)
up to a polynomial factor, where Ni is bounded by

(2
√
2πe)i ·

√
n
i′ ln(n−1

ek) ·
√
d
i′·(ln d

i′) ·
√
n
d·k·ln n

k .

Wosrt-bound assumption for the module-HKZ-reduced basis. As in the
analysis of [10], we also assume the worst-case assumption that indicates the size
of the shortest vector in the lattice equals to Minkowski’s bound. This assump-
tion provides the upper bound on the worst-case complexity of the algorithm.

We thus explain the worst-case bound for the module-HKZ-reduced basis. Let
((Ii,bi))i∈n be the module-HKZ-reduced basis. We note that by definition of the
module-HKZ-reduced, b∗

i is the shortest vector of the submodule generated by
{(Ij ,b∗

j)}j≥i and the rank-1 submodule generated by (Ii,b
∗
i). By Minkowski’s

bound for two submodule, ∥b∗
i ∥ satisfies two constraints:

∥b∗
i ∥ ≤

√
(n− i+ 1) · d ·∆1/2d

K ·

∏
j≥i

N (Ij · b∗
j)

1/d

 1
n−i+1

(4)

15

∥b∗
i ∥ ≤

√
d ·∆1/2d

K · N (Ii · b∗
i)

1/d. (5)

Letting the first bound M1 and the second bound M2, respectively, we consider
the following case: Suppose that M1 ≥ M2. Then assuming the worst-bound for
∥b∗

i ∥ means ∥b∗
i ∥ = M1. At the same time, from the Equation (5), it holds that

M1 = ∥b∗
i ∥ ≤ M2 ≤ M1.

Assuming M1 ≤ M2 gives the same equality. Hence, assuming the worst-bound
for module lattice means

∥b∗
i ∥ =

√
(n− i+ 1) · d ·∆1/2d

K ·

∏
j≥i

N (Ij · b∗
j)

1/d

 1
n−i+1

(6)

=
√
d ·∆1/2d

K · N (Ii · b∗
i)

1/d. (7)

Assuming the worst-case bound, we prove the following result.

Lemma 3.5. Let K be a number field of an extension degree d, and let KR =
K⊗QR. Let M ⊂ Kn be a rank-n module. Suppose that a pseudo-basis ((Ii,bi))1≤i≤n

is module-HKZ-reduced of a module M . Assuming the worst-case bound, we have

N (I1 · b∗
1)

1/d≤N (Ii · b∗
i)

1/d ·
√
n
ln(n

n−i+1)

∥b∗
1∥≤∥b∗

i ∥ ·
√
n
ln(n

n−i+1),

where {(Ii,b∗
i)}1≤i≤n is the Gram-Schmidt orthogonalization of the pseudo-basis.

In particular, when n = 2, it holds that

∥b∗
1∥ = 2 · ∥b∗

2∥.

Proof of Lemma 3.5. The proof is straightforward via definitions of module-
HKZ-reduced and Minkowski’s bound.

Rearranging the Equation (6), we have

N (Ii · b∗
i)

1/d =
√

(n− i+ 1) ·

∏
j≥i

N (Ij · b∗
j)

1/d

 1
n−i+1

. (8)

This equation is similar to the relation of HKZ-reduced basis of the Euclidean

lattice in Lemma 2.3, which states that ∥⃗b∗i ∥ ≤
√

n−i+5
4 ·

(∏
j≥i ∥⃗b∗j∥

) 1
n−i+1

except for the constant. We adapt the previous analysis [10] in the modules in
order to obtain N (I1 · b∗

1) and N (Ii · b∗
i). More precisely, let wi = lnN (Ii,b

∗
i).

Then, by the relation in Equation (8), it holds that

wi =
∑
j≥i

wj

n− i+ 1
+

ln(n− i+ 1)d

2
.

16

Then, we have

(n− i+ 1)wi =
∑
j≥i

wj +
(n− i+ 1) · ln(n− i+ 1)d

2
.

By substituting i = i+ 1, it gives another identity:

(n− i)wi+1 =
∑

j≥i+1

wj + (n− i) · ln(n− i)d

2
.

Using the above two equations, we directly obtain the following relation:

wi = wi+1 +
d ln n−i+1

n−i

2
+

ln(n− i+ 1)d

2(n− i)
.

From the inductive definition of wi, we have

wi = wn +
d ln(n− i+ 1)

2
+

n−1∑
j=i

ln(n− j + 1)d

2(n− j)

It means that

1

d
w1 −

1

d
wi =

ln(n
n−i+1)

2
+

i−1∑
j=1

ln(n− j + 1)

2(n− j)
.

Let Si =
ln(n

n−i+1)

2 +
∑i−1

j=1
ln(n−j+1)
2(n−j) . Then, we have exp(Si) ≤

√
n
ln(n

n−i+1). We

defer the computation at Appendix A. As a consequence, we have

N (I1 · b∗
1)

1/d≤N (Ii · b∗
i)

1/d ·
√
n
ln(n

n−i+1),

which implies ∥b∗
1∥≤∥b∗

i ∥ ·
√
n
ln(n

n−i+1) using Equation (7).
Note that the last equality is directly obtained by using the Equation (8)

with n = 2 and i = 1.

N (I1 · b∗
1)

1/2d =
√
2 · N (I2 · b∗

2)
1/2d.

Applying Equation (7) gives the result ∥b∗
1∥ = 2 · ∥b∗

2∥. This completes the
proof.

Proof of Theorem 3.4. We are now ready to prove the Theorem 3.4. It suffices
to estimate the performance of the algorithm of which input is Z-basis W and
a size ∥b1∥.

According to [10], given an input (W, ∥w∗
1∥) on Algorithm 3, the time com-

plexity of the enumeration algorithm is dominated by maxi Ni up to a polynomial

17

factor, where Ni is the number of lattice points generated by τn−i(W) of size
≤ ∥w∗

1∥. From the Gaussian heuristics, it is represented by

Ni :=

√
2πe

i∥w∗
1∥i√

nd
i∏

j≥nd−i ∥w∗
j∥

. (9)

Therefore, the remaining part of this proof is to estimate an upper bound of Ni

for every i.
We first remind that {(I1,b1), (I2,b2)} is module-HKZ reduced due to the

definition of the quasi-module-HKZ-reduction (Definition 3.2). Since w1 and
wd+1 is the shortest vector of rank-1 module (I1,b1) and (I2,b

∗
2), Lemma 3.5

also give the following relations:

∥w∗
1∥ = 2∥w∗

d+1∥,

which directly gives another representation of Ni:

Ni =
(2
√
2πe)i · ∥w∗

d+1∥i√
nd

i∏
j≥nd−i ∥w∗

j∥

Furthermore, ((Ii,b
∗
i))2≤i≤n is the module-HKZ-reduced with the relations

∥w(i−1)d+1∥ = ∥b∗
i ∥. Applying the Lemma 3.5 with the worst-case bound di-

rectly gives the following relations:

∥w∗
d+1∥ ≤ ∥w∗

(i−1)d+1∥ ·
√
n− 1

ln(n−1
n−i) ≤ ∥w∗

(i−1)d+1∥ ·
√
n
ln(n−1

n−i) (10)

∥w∗
d+1∥ =

√
d · N (I2 · b2)

1/d∆
1/2d
K (11)

Leveraging these relations, we compute the bound of Ni. Let i = kd+ i′ for
some k and i′. Then, it satisfies that

Ni =
(2
√
2πe)i · ∥w∗

d+1∥i√
nd

i∏
j≥nd−i ∥w∗

j∥

=
(2
√
2πe)i · ∥w∗

d+1∥i
′

√
nd

i ∏
nd−i≤j<d·(n−k)

∥w∗
j∥︸ ︷︷ ︸

Ai

·
∥w∗

d+1∥d·k∏
j≥d·(n−k) ∥w∗

j∥︸ ︷︷ ︸
Ci

.

That is, we split Ni into a product of two fractions. Intuitively, Ai indicates the
profiles of a lattice generated by ci ·ri,i ·Ui and Ci indicates the remaining term,
respectively.

Using the Equation (10), Ai is replaced by

Ai =
(2
√
2πe)i · ∥w∗

d·(n−k−1)+1∥
i′ ·

√
n
i′ ln(n−1

k)

√
nd

i ∏
nd−i≤j<d·(n−k)

∥w∗
j∥

.

18

By the construction of wj , the basis {wj}d·(n−k−1)+1≤j<d·(n−k) is HKZ-reduced.
We can thus apply Lemma 2.7 to the HKZ-reduced basis, which implies

Ai ≤
(2
√
2πe)i ·

√
n
i′ ln(n−1

k)

√
nd

i
·
√
d
i′·(1+ln d

i′).

On the other hand, due to the Theorem 3.3, we remind that

N (Ii · b∗
i) ·
√
∆K = N (Ii · ri,i) ·

√
∆K =

∏
(i−1)d+1≤j≤id

∥w∗
j∥. (12)

Plugging Equation (11), one can show that

Ci =
∥w∗

d+1∥d·k∏
j≥d·(n−k) ∥w∗

j∥

=

√
d
d·k

·∆k/2
K · N (I2 · b2)

k

∆
k/2
K ·

∏
j≥n−k N (Ij · b∗

j)

=
√
d
d·k

·

(
N (I2 · b2)

k/d∏
j≥n−k N (Ij · b∗

j)
1/d

)d

The results in Lemma 3.5 with {N (Ii · b∗
i)

1/d}2≤i≤n show that {N (Ii ·
b∗
i)

1/d}2≤i≤n follows the HKZ-reduced identity. It implies that applying the
Lemma 2.7, this term is bounded by

Ci ≤
√
d
d·k

·
(√

n
k·(1+ln n

k)
)d

.

Putting them together, we can give an upper bound of Ni:

Ni ≤
(2
√
2πe)i ·

√
n
i′ ln(n−1

k)

√
nd

i
·
√
d
i′·(1+ln d

i′) ·
√
d
d·k

·
(√

n
k·(1+ln n

k)
)d

= (2
√
2πe)i ·

√
n
i′ ln(n−1

ek) ·
√
d
i′·(ln d

i′) ·
√
n
d·k·ln n

k .

This completes the proof.

4 Algorithm for Solving Module-SVP

In this section, we provide an algorithm that computes module-HKZ-reduced
bases to solve Module-SVP. Then, based on the results of Theorem 3.4, we claim
that our new analysis using module structures provides a more tight upper bound
of the lattice enumeration algorithm over modules.

We first introduce a subroutine algorithm that obviously returns an HKZ-
reduced basis.

19

Algorithm 6: HKZ-reduction over rank-2 module M

Input: A pseudo-basis ((Ii,bi))1≤i≤2 of a module M
Output: An HKZ-reduced pseudo-basis of M

1 Call Algorithm 4 with the input ((Ii,bi))1≤i≤2 and Z-basis of Ii, and let M be
an output.

2 HKZ-reduce on M, and let u1 be an output.

3 Compute a projection of M onto u⊥
1 , and let τu⊥

1
(M) be an output.

4 HKZ-reduce on τu⊥
1
(M), and let u2 be an output.

5 Extend the pseudo-basis ((I2,u2)) to the rank-2 module M using rational

multiples of u1 satisfying ⌊ ⟨u1,u2⟩KR
⟨u1,u1⟩KR

⌉R = 0. Let ((I ′i, b̃i))1≤i≤2 be a new

basis.

6 Call the algorithm of Lemma 2.12 with ((Ii, b̃i))1≤i≤2 and (u1,u2) as inputs,

and let ((Ji,bi))i≤2 be an output.

7 return ((Ji,bi))i≤2.

To this end, we should clarify how we obtain the quasi-module-HKZ reduced
pseudo-basis ((Ii,bi))i≤n given the pseudo-basis ((Ji,di))i≤n of a module M .
If possible, we directly apply Algorithm 5 with inputs ((Ii,bi))i≤n and ∥b1∥ to
solve module-SVP. Indeed, the shortest vector of the outputs of Algorithm 5
would be a desired vector.

Fortunately, the process of converting to a quasi-module-HKZ-reduced pseudo-
basis is inspired by the algorithm for computing a quasi-HKZ-reduced basis on
Euclidean lattices. We emphasize again that the concept of a module-HKZ-
reduced pseudo-basis, including Definition 3.2, is specifically designed to make
it easier to adapt algorithms developed for similar concepts in Euclidean lattices.

The conversion algorithm is given in Algorithm 7. The important modifica-
tion of the algorithm is to use the size-reduction of module vectors, corresponding
to Line 4 of Algorithm 7, and call HKZ-reduction algorithm on a rank-2 module
as a subroutine of algorithm.

Theorem 4.1. Let K be a number field of an extension degree d. Let M ⊂ Kn

be a rank-n module. Let ((Ji,di))1≤i≤n be a pseudo-basis of a module M . Given
the input pseudo-basis ((Ji,di))1≤i≤n, Algorithm 7 returns a quasi-module-HKZ
reduced basis. It terminates in #iter · TMHKZ(n− 1), where TMHKZ(n− 1) is the
time complexity of Algorithm 8 with a rank n−1 module and #iter is the number
of loop iterations is bounded by

1

log
√
3/2

· log
∆

1/2d
K · ∥b1∥
λ1(M)

,

which is polynomial in log∆K , and the bit-length of inputs.

To prove the theorem, we require an additional inequality. Let λI
1(M) =

inf{N (I · v) : I · v ∈ M \ {0}}. Then, the following inequality holds:

20

Algorithm 7: Quasi-Module-HKZ Conversion

Input: A pseudo-basis ((Ii,bi))1≤i≤n of a module M
Output: An quasi-module-HKZ-reduced pseudo-basis ((Ii,bi))1≤i≤n of a

module M
1 Update module-HKZ-reduced pseudo-basis of ((I1,b1), (I2,b2)) by applying

Algorithm 6 with an input ((I1,b1), (I2,b2)).
2 Compute the projections {b′

i}, where b′
i = bi − µi,1 · b1 is orthogonal to b1.

3 Compute a module-HKZ-reduced basis:
((I2,b

′
2), . . . , (In,b

′
n))← Algorithm 8((I2,b

′
2), . . . , (In,b

′
n)).

4 Extend the pseudo-basis ((I2,b
′
2), . . . , (In,b

′
n)) to the module M using

rational multiples of b1 satisfying ⌊µi,1⌉R = 0 for any i > 1. Let
((Ii,bi))1≤i≤n be a new basis.

5 if ((Ii,bi))1≤i≤n is not quasi-module-HKZ-reduced then
6 Update module-HKZ-reduced pseudo-basis of ((I1,b1), (I2,b2)) by

applying Algorithm 6 with an input ((I1,b1), (I2,b2)).
7 Go back to Line 2.

8 end if
9 return ((Ii,bi))1≤i≤n

Lemma 4.2. For any rank-n module M , we have:

d−d/2λ1(M)d∆
−1/2
K ≤ λI

1(M) ≤ λN
1 (M).

Proof of Lemma 4.2. Let v be a module element of the minimal algebraic norm.
Then it implies that R · v ∈ M \ {0}. Then by definition, we have

λI
1(M) ≤ N (R · v) = λN (M).

Next, for any s ∈ M \ {0}, Minkowski’s theorem applied to the module lattice
R · s gives us

λ1(M) · λ1(R · s) ≤
√
d ·∆1/2

K · N (R · s)1/d.

The first equality follows by definition of the infimum.

Proof of Theorem 4.1. We now prove a bound on the number of loop iterations
after Line 4, which implies termination. For this proof, we use the worst-bound
for the-module HKZ-reduced basis of a rank-2 module. We also note that without
loss of generality, we assume that N (I2 · b∗

2)
1/d ≤ 1

3N (I1 · b∗
1)

1/d for basis after
Line 4 at each iteration. If not, we can argue that

∥b∗
1∥ ≤

√
d ·
√

∆K

1/d
· N (I1 · b∗

1)
1/d < 3

√
d ·
√
∆K

1/d
· N (I2 · b∗

2)
1/d

= 3∥b∗
2∥.

The last equality comes from the worst-bound of ∥b∗
2∥. More precisely, after

the Line 4, ((Ii,b
′
i))2≤i≤n is the module-HKZ-reduced, we can ensure that

√
d ·

21

√
∆K

1/d · N (I2 · b∗
2)

1/d = ∥b∗
2∥. Thus, we can conclude the shortest vector

can be recovered through Algorithm 5, ((Ii,bi))1≤i≤n, 3∥b∗
2∥). We note that

((Ii,b
∗
i))2≤i≤n is module-HKZ reduced, it gives the asymptotically same result

with the Theorem 3.4. Since we aim at describing an algorithm for the module
SVP through the quasi-module-HKZ, we assume that N (I2 · b∗

2)
1/d ≤ 1

3N (I1 ·
b∗
1)

1/d.
We first suppose that the basis M2 = ((Ii,bi))1≤i≤2 after Line 4 is not

module-HKZ lattice. It means that ∥b1∥ is not the shortest vector of the rank-2
module lattice M2 := ((I1,b1), (I2,b2)). We now shot that λ1(M2) decreases by

a factor
√

2
3 at every iteration of the algorithm.

Let c1 be the shortest vector of M2 and ((J1, c1), (J2, c2)) be the module-
HKZ-reduced basis of M2. From the worst-bound argument, we have

∥c1∥ =
√
2d ·

√
∆K

1/d
· N (J1 · J2 · c∗1 · c∗2)1/2d =

√
d ·
√
∆K

1/d
· N (J1 · c∗1)1/d

=
√
2d ·

√
∆K

1/d
· N (I1 · I2 · b∗

1 · b∗
2)

1/2d.

The last equality is correct because ((I1,b1), (I2,b2)) is also a pseudo-basis of
M2.

Rearranging the equation, we have

N (J1 · c∗1)1/d =
√
2 · N (J1 · J2 · c∗1 · c∗2)1/2d

=
√
2 · N (I1 · I2 · b∗

1 · b∗
2)

1/2d ≤
√

2

3
· N (I1 · b∗

1)
1/d,

where the last inequality comes from the above assumption N (I2 · b∗
2)

1/d ≤
1
3N (I1 · b∗

1)
1/d.

On the other hand, from the Lemma 4.2, this quantity at each stage has a
lower bound:

N (I1 · b1) ≥ λI
1(M) ≥ d−d/2λ1(M)d∆

−1/2
K .

Combining the decrease rate with the lower bounds, this implies that the number
of loop iterations is bounded by

1

log
√
3/2

· log N (I1 · b1)
1/d

d−1/2λ1(M)∆
−1/2d
K

≤ 1

log
√
3/2

· log
∆

1/2d
K · ∥b1∥
λ1(M)

.

This completes the proof.

The algorithm is also based on the module lattice enumeration algorithm.
As in the previous algorithms, it is also inspired by the Kannan’s HKZ reduced
algorithm [10,12].

Theorem 4.3. Given a pseudo-basis ((Ii,bi))1≤i≤n of a module M , Algorithm 8

returns a module-HKZ-reduced basis ((I ′i, d̃i))i≤n. This algorithm concludes after
performing n iterations of Algorithm 9, Algorithm 1, and Algorithm 2.

22

Algorithm 8: Module-HKZ-reduced pseudo-basis

Input: A pseudo-basis ((Ii,bi))i≤n of a module M
Output: A module-HKZ-reduced basis of M

1 Call c1 ← Algorithm 9(((Ii,bi))i≤n)
2 Pick n− 1 vectors, which is independent to c1 from {bi}i≤n.
3 Letting these vectors as ci for 2 ≤ i ≤ n with arbitrary order, call the

algorithm of Lemma 2.12 with ((Ii,bi))i≤n and (ci)i≤n as inputs, and let
((I ′i,di))i≤n denote the output.

4 Update the pseudo-basis by applying Algorithm 1 and Algorithm 2.
5 Compute the projections {d′

i}, where d′
i = di − µi,1 · d1 is orthogonal to d1

for every i ≥ 2.
6 Update ((I ′i,d

′
i))2≤i≤n ← Algorithm 8(((I ′i,d

′
i))2≤i≤n) .

7 Extend the basis {d′
2, . . . ,d

′
d} to M using rational multiples of d1 satisfying

⌊µi,1 =
⟨ui,u

∗
1⟩KR

⟨u∗
1 ,u

∗
1⟩KR

⌉R = 0 for any i > 1. Let {d̃1, . . . , d̃d} be a new basis.

8 return (I ′i, d̃i)i≤n.

Proof. By the setup, c1 is the shortest vector in the module M . On the other
hand, the pseudo basis of ((I ′i,di))1≤i≤n, as guaranteed by the algorithm of
Lemma 2.12, ensures that ∥d1∥ = ∥c1∥ implying that d1 is also the shortest
vector in the module M. After update on line 6, (I ′i,d

′
i) be the module-HKZ-

reduced pseudo basis. Therefore, the resulting pseudo basis (I ′i, d̃i)i≤n is the
module-HKZ-reduced pseudo basis by definition.

The number of iterations the algorithm is used is determined exactly by the
dimension n.

4.1 Module-SVP

This section provides a simple modification for solving module-SVP, rather than
computing the module-HKZ-reduced basis. The algorithm is given by Algo-
rithm 9.

Algorithm 9: Module-SVP

Input: A pseudo-basis ((Ii,bi))i≤n of a module M
Output: Shortest vector of a module M

1 Compute ((Ii,bi))i≤n ← Algorithm 7(((Ii,bi))i≤n)
2 Call S ← Algorithm 5(((Ii,bi))i≤n, ∥b1∥). Let b0 be the nonzero smallest

vector in S.
3 return b0

Theorem 4.4. Let M ⊂ Kn be a module of a rank n, and ((Ii,bi))i≤n be a
pseudo-basis of M . Suppose that Z-basis Ii and a 2d-dimensional HKZ reduc-
tion algorithm are given. Setting αK = 22d · ∆K based on the HKZ reduction,

23

Algorithm 9 returns the nonzero shortest vector of module M , and terminates in
time

poly(n, d,B, log∆K) ·
(

max
0≤i<n·d

Ni + THKZ

)
,

where B is the bit-length of inputs, THKZ is the time complexity of the given
HKZ algorithm, and

Ni = (2
√
2πe)i ·

√
n
i′ ln(n−1

ek) ·
√
d
i′·(ln d

i′) ·
√
n
d·k·ln n

k with i = d · k + i′.

Proof of Theorem 4.4. Since Algorithm 5 returns all module elements of which
size less than ∥b1∥. Thus, by definition, b0 should be the nonzero smallest vector
in M .

Moreover, it is also obvious that the Algorithm 6 equipped with the 2d-
dimensional HKZ algorithm guarantees γ = 1 in the result. Thus, with αK =
22·d ·∆K , Algorithm 7 terminates in #iter · (TMHKZ(n− 1) + THKZ) with

#iter =
1

log
√

3/2
· log

∆
1/2d
K · ∥b1∥
λ1(M)

The time complexity of Algorithm 5 consists of Algorithm 4 and Algorithm 3.
By the Theorem 3.3, the time complexity of Algorithm 4 is dominated by that
of Algorithm 7.

On the other hand, because TMHKZ(n − 1) employs the Algorithm 9 as a
subroutine, TMHKZ(n − 1) is bounded by Algorithm 3(((Ii,bi))i≤n, ∥b1∥). It
implies the asymptotic complexity of Algorithm 9 is exactly the same as that
of Algorithm 5 except for poly(n, d,B, log∆K) · THKZ . As a consequence, we
conclude Algorithm 9 also terminates in time

poly(n, d,B, log∆K) ·
(

max
0≤i<n·d

Ni + THKZ

)
using the proof of Theorem 3.4.

Proposition 4.5. Let n lnn = o(ln d) and R = Z[x]/⟨xd+1⟩, where d is a power
of two and M ⊂ Kn, where K = Q[x]/⟨xd + 1⟩. Then, one can find the nonzero

shortest vector v ∈ M in time d
d
2e+o(d) up to a polynomial factor.

Proof of Proposition 4.5. Since d is a power of two integer, the discriminant ∆K

of K equals to dd. On the other hand, Theorem 4.4 shows the complexity of

module-SVP is dominated by the term
√
d
i′·ln d

i′ , which is maximized as
√
d

d
e

with i′ = d
e . Consequently, the asymptotic time complexity of module-SVP is

d
d
2e+o(d).

As a direct corollary of Proposition 4.5, we describe how to solve the ideal-
SVP in the ring Z[x]/⟨xt + 1⟩, where t is a power of two. This setup is highly
applicable in cryptographic contexts, including fully homomorphic encryption
schemes [3].

24

Corollary 4.6. Let I be an ideal over Z[x]/⟨xt + 1⟩, where t is a power of two.
Then, one can solve the ideal SVP on I in time eO(t

2e ln ln t).

Proof of Corollary 4.6. Solving ideal SVP on I can be treated as solving module-
SVP in (Z[X]/⟨xd+1⟩)t/d. It allows to optimiz Ni through an appropriate choice

of d. We first describe how to set i′ and k. In the NI , the terms
√
d
i′·ln d

i′ and√
n
d·k·ln n

k are dominant of the cyclotomic ideal lattice. Under the setup, i′ = d
e

and k = n
e makes the Ni maximize with Ni = d

d
2e · n d·n

2e .

We then set d = t
log t so that d

d
2e = n

d·n
2e . Under the d setup, the complexity

Ni becomes

e(
t
2e ln ln t)+o(t).

This concludes the proof.

For comparison, we briefly recall the result from [10]: Given an Euclidean
lattice of dimension t, Kannan’s SVP algorithm finds the shortest nonzero vector
in the lattice in time tt/(2e)+o(t) = et ln t/(2e)+o(t), up to a polynomial factor, while
our algorithm terminates in et ln ln t/(2e)+o(t).

References

1. László Babai. On lovász’lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

2. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: a cca-
secure module-lattice-based kem. In 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

3. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):1–36, 2014.

4. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates.
In International Conference on the Theory and Application of Cryptology and In-
formation Security, pages 1–20. Springer, 2011.

5. Gabrielle De Micheli, Daniele Micciancio, Alice Pellet-Mary, and Nam Tran. Re-
ductions from module lattices to free module lattices, and application to dequan-
tizing module-lll. In Annual International Cryptology Conference, pages 836–865.
Springer, 2023.

6. Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-based digital sig-
nature scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 238–268, 2018.

7. Claus Fieker and Damien Stehlé. Short bases of lattices over number fields. In
International Algorithmic Number Theory Symposium, pages 157–173. Springer,
2010.

8. Ulrich Fincke and Michael Pohst. A procedure for determining algebraic integers
of given norm. In Computer Algebra: EUROCAL’83, European Computer Alge-
bra Conference London, England, March 28–30, 1983 Proceedings, pages 194–202.
Springer, 1983.

25

9. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Proceedings of the fortieth annual
ACM symposium on Theory of computing, pages 197–206, 2008.

10. Guillaume Hanrot and Damien Stehlé. Improved analysis of kannan’s shortest
lattice vector algorithm. In Annual international cryptology conference, pages 170–
186. Springer, 2007.

11. Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem
to within almost polynomial factors. Theory of Computing, 8(23):513–531, 2012.

12. Ravi Kannan. Improved algorithms for integer programming and related lattice
problems. In Proceedings of the fifteenth annual ACM symposium on Theory of
computing, pages 193–206, 1983.

13. Subhash Khot. Hardness of approximating the shortest vector problem in lattices.
Journal of the ACM (JACM), 52(5):789–808, 2005.

14. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for
module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

15. Changmin Lee, Alice Pellet-Mary, Damien Stehlé, and Alexandre Wallet. An lll
algorithm for module lattices. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 59–90. Springer, 2019.

16. Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

17. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Annual international conference on the theory and
applications of cryptographic techniques, pages 1–23. Springer, 2010.

18. Daniele Micciancio. The shortest vector in a lattice is hard to approximate to
within some constant. SIAM journal on Computing, 30(6):2008–2035, 2001.

19. Tamalika Mukherjee and Noah Stephens-Davidowitz. Lattice reduction for mod-
ules, or how to reduce modulesvp to modulesvp. In Annual International Cryptol-
ogy Conference, pages 213–242. Springer, 2020.

20. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM (JACM), 56(6):34, 2009.

A Upper bound of Si

The purpose of this section is to present the estimation of Si. Let Si = 1
2 ·

ln(n
n−i+1) +

∑i−1
j=1

ln(n−j+1)
2(n−j) for 1 ≤ i ≤ n. Our goal is to show that

exp(Si) ≤
√
n
ln(n

n−i+1).

Consequently, we conclude

N (I1 · b∗
1)

1/d≤N (Ii · b∗
i)

1/d ·
√
n
ln(n

n−i+1).

By substituting x = n− j to
∑i−1

j=1
ln(n−j+1)
2(n−j) , it is approximately

n−1∑
x=n−i+1

ln(x)

2x
.

26

Since the function ln(x)
2x is a decreasing function, the sum is less than

1

2

∫ n

x=n−i+1

lnx

x
dx =

1

4
((lnn)2 − (ln(n− i+ 1))2).

Recall that

Si =
1

2
ln(

n

n− i+ 1
) +

i−1∑
j=1

ln(n− j + 1)

2(n− j)
.

Let Γ = ln(n)− ln(n− i+ 1) = ln(n
n−i+1). Then we have

(lnn)2 − (ln(n− i+ 1))2 = (lnn+ ln(n− i+ 1))× Γ.

Hence, it holds

i−1∑
j=1

ln(n− j + 1)

2(n− j)
≤ 1

4
((lnn+ ln(n− i+ 1))Γ) =

1

4
ln(n(n− i+ 1))Γ.

Adding the extra term 1
2Γ , one obtains

Si ≤ Γ ·
(
1

2
+

1

4
ln(n(n− i+ 1))

)
.

Consequently, it satisfies

exp(Si) ≤ exp

(
Γ ·
(
1

2
+

1

4
ln(n(n− i+ 1))

))
.

On the other hand, ln(n(n− i+1)) ≤ lnn2. Thus, it is less than 1
2 ln(n). Hence,

exp(Si) ≈ exp(
1

2
· ln(n) · Γ) = exp(

1

2
· ln(n) · ln(n

n− i+ 1
)).

Since exp(12 ln(n)) =
√
n, we finally get

exp(Si) ≤
√
n
ln(n

n−i+1),

establishing the claimed form.

27

	Worst-case Analysis of Lattice Enumeration Algorithm over Modules

