
Post Quantum Migration of Tor

Denis Berger1, Mouad Lemoudden1, and William J Buchanan1

Blockpass ID Lab, Edinburgh Napier University, UK,
b.buchanan@napier.ac.uk

Abstract. Shor’s [51] and Grover’s [26] algorithms’ efficiency and the
advancement of quantum computers imply that the cryptography used
until now to protect one’s privacy is potentially vulnerable to retrospec-
tive decryption, also known as harvest now, decrypt later attack in the
near future. This dissertation proposes an overview of the cryptographic
schemes used by Tor, highlighting the non-quantum-resistant ones and
introducing theoretical performance assessment methods of a local Tor
network. The measurement is divided into three phases. We will start
with benchmarking a local Tor network simulation on constrained de-
vices to isolate the time taken by classical cryptography processes. Sec-
ondly, the analysis incorporates existing benchmarks of quantum-secure
algorithms and compares these performances on the devices. Lastly, the
estimation of overhead is calculated by replacing the measured times
of traditional cryptography with the times recorded for Post Quantum
Cryptography (PQC) execution within the specified Tor environment.
By focusing on the replaceable cryptographic components, using theo-
retical estimations, and leveraging existing benchmarks, valuable insights
into the potential impact of PQC can be obtained without needing to
implement it fully.

Keywords: Tor; Post-Quantum Cryptography; NIST; Onion Routing;

1 Introduction

1.1 Background

To highlight the significance of the cryptography within the Tor network, a brief
history and explanation of its functioning are needed. Released in 2002, Tor
represents about two million estimated users [54]. It aims to fight censorship
and surveillance, allowing users to browse anonymously. The definition of Tor’s
anonymity is described by Dingledine and Syverson [16] as unlink-ability between
the user’s identity and their actions. Their paper highlights the ”not perfect” side
of the definition, explaining that it aims to prevent traffic analysis to a certain
degree. Tor’s mode of operation mainly relies on three types of ”proxies”, through
which the user connection goes. The client selects an entry node, middle node
and exit node, forming a path to the targeted resource. For each node, a key
exchange happens between the client and the node, starting with the entry relay
and then extending to the other nodes. Once the key exchange has occurred, data

2 Denis Berger, Mouad Lemoudden, and William J Buchanan

is re-encrypted at each step of the circuit. It makes three layers of encryption
until it reaches the exit node, where the traffic is decapsulated to reach its final
destination.

The Tor network is often associated with facilitating illegal activities, primar-
ily through onion services - formerly known as hidden services. However, metrics
collected by the Tor paper reveal a discrepancy between the proportion of onion
service traffic and that of the total network bandwidth. While unlawful content
is hosted on Onion services, this constitutes only a small fraction of the overall
activity enabled by the Tor network (see Section A). OS are a way to present
content within the network itself without having to leave Tor. They conceal the
physical location of the server and are accessible exclusively through the network
using addresses ending in ’.onion’. Since the implementation of Version 3, these
56-character alphanumeric strings are created by encoding the service’s long-
term public key (32 bytes Ed25519), checksum and version (”x03” by default)
in Base32 [56]#224. Dingledine and Syverson [16] introduced a new mechanism
called rendezvous-point relying on a DH key exchange where the user and OS
establish a shared secret through Diffie-Hellman, with a ”rendezvous” relay con-
necting the circuits from both parties without learning their identities or reading
the data transmitted. Yet, since version 0.3.2.1−alpha, Onion Services cryptog-
raphy has been improved by replacing the schemes SHA1, DH, 1024-RSA with
SHA3, Ed25519, curve25519. Today the main usage of cryptography in the net-
work as shown in Table 11, 12 is relying on RSA, ECC and AES. The latter, as a
symmetric encryption algorithm, is less vulnerable to QC. An attacker equipped
with a sufficiently advanced quantum computer could, in theory, compromise
these cryptographic schemes to impersonate relay nodes, decrypt confidential
content, and forge digital signatures, thereby creating documents that appear
authentic to recipients. Gidney and Eker̊a [22] estimate 20 million required phys-
ical qubits to break RSA-2048 encryption and highlight a considerable decrease
in this estimation from 2015 to 2021, thus encouraging a faster adoption of PQC.

1.2 Purpose

On the 13th of August 2024, the NIST [45] released three long-awaited PQC stan-
dards, of which CRYSTALS-Kyber KEM and CRYSTALS-Dilithium signature
scheme (renamed ”ML-KEM” and ”ML-DSA”) both based on lattice problems.
Another lattice-based standard publication, FALCON is expected shortly. On
the other hand, the NIST more recently announced a new timeline, banning
RSA and ECDSA from 2035 [36]. Along the wave of new publications in the
field, the interrogation below persists:

How can one evaluate its relay performance now as a reference point for later?

The four core aims of this paper can be summarised in the following points
to assist in answering the latter research question.

– First, based on the literature analysis, the paper intends to identify a set of
appropriate schemes for Tor post-quantum cryptography migration.

2. LITERATURE REVIEW 3

– To set up a functioning Tor network comprised of multiple physical nodes in
order to measure it and evaluate its performance at scale.

– Thirdly, identifying and measuring the cryptographic processes within Tor
software.

– Finally, the scope of this research is to estimate a theoretical overhead value
by incorporating the results of the previously defined objectives with post-
quantum benchmark performances made on the devices used.

2 Literature Review

Tor specifications are supplied by proposals, allowing its implementation to grow
and adapt to attacks over time. This literature review focuses on the cryptogra-
phy features of the Tor paper. Firstly, the network’s cryptography design must
be explored to understand the technical environment and constraints. The sec-
ond section of this review will go through the main schemes used, reviewing the
relevant cryptosystems and their place within onion routing in order to iden-
tify the ones that could be broken by a cryptographically relevant QC and the
potential replacement candidates.

2.1 Tor Design and Architecture

In 2004, Dingledine and Syverson [16] addressed the disadvantages of the ini-
tial design by introducing features that have remained fundamental to this day.
One of them is directory authorities: they are a small group of ”trusted nodes”
reaching a common agreement on the network state. In fact, Tor is not a fully
decentralised, peer-to-peer network. This consensus allows Tor clients to have a
global view of the network and aims to prevent malicious relays from manipulat-
ing its topology. Dingledine and Syverson [16] explain how these servers provide
this information by sharing a directory signed with their long-term keys. Yet,
the paper’s technical design has been improved many times since. For instance,
shortly after, the TAP was introduced [23] and strengthened the cryptographic
rigour formalising a circuit-based approach.

Circuits and Handshake Circuit creation relies on the directory authorities in
the very first step of the process when a given client (OP) chooses the first relay.
As it needs a list of reliable relays, it will fetch the consensus document from
the directory authorities, providing necessary data on the relays, such as their
public keys, roles, supported protocols and bandwidth [55]. Figure 1 below shows
a high-level view of the circuit creation process. A circuit is typically composed of
four channels: OP to R1, R1 to R2, R2 to exit node (RN) and RN to destination.
After a circuit is established, the OP securely shares a unique symmetric key
with each relay in the circuit. Additionally, each R exchanges a distinct circuit
identifier with the nodes adjacent to it within the circuit, facilitating secure
and efficient communication between nodes without revealing the entire path. A

4 Denis Berger, Mouad Lemoudden, and William J Buchanan

Fig. 1: Tor Circuit Creation. The /2 represents the version, as their older speci-
fications became obsolete [55].

channel is defined as an encrypted link established directly between two relays
or between a client and a relay, implemented as TLS sessions over TCP.

Tor relies on several cell types: Cells, shown in Figure 1, are responsible for
circuit creation. During channel negotiation, CERTS cells are used to describe
the keys that a Tor instance is claiming to have. It also provides certificates to
authenticate that those keys belong to long-term key(s) that uniquely identify a
relay.

In standard TLS, the authentication is usually only necessary on the server
side as the client identity is not important; this also applies to the first connec-
tion of a Tor circuit. Yet, the three other channel establishments need mutual
authentication as the nodes must prove the genuineness of their affiliation in the
circuit [48].

NTOR, the key exchange protocol currently used by Tor, introduced sig-
nificant improvements over the TAP protocol [24]. It reduces the computational
overhead by employing ECC, offering faster key exchange and smaller data trans-
missions. Also, NTOR strengthens FS, preventing decryption, even if long-term
keys are compromised. The paper reflects on the challenge of One-Way Authenti-
cated Key Exchange (1W-AKE) and how it applies to anonymity. In 1W-AKE,
one party (the client) authenticates the other(relay) and remains unauthenti-
cated. Goldberg et al.’s design [24] offers to authenticate the relay to the client
by using the relay’s public key and performing a key exchange via Curve25519
Diffie-Hellman.

Gosh and Kate [21] address the limitations of NTOR in light of quantum
algorithms while maintaining forward secrecy, calling their 1W-AKE implemen-

2. LITERATURE REVIEW 5

tation HybridOR. It combines lattice-based cryptography, Learning With Error
(ring-LWE), with the current DH assumption, maintaining compatibility with
the current infrastructure.

Schanck et al. [48] proposed a hybrid design of the ntor circuit-extension
handshake demonstrating a practical implementation using NTRUEncrypt. Schanck
et al. [48] permits the incorporation of any number of KEMs, allowing the other
quantum-resistant algorithms to be integrated more easily without rebuilding the
entire protocol. They compare the performance of this hybrid handshake with the
main Tor’s handshakes (tap and ntor) and the one from Gosh and Kate. Compu-
tation time (in microseconds, µs) and the communication overhead, the number
of bytes transmitted between the client and server are shown for an instantia-
tion with ntruees443ep1. NTOR remains the most efficient both in overhead and
time taken. They also display the proportion of the total handshake time that is
spent on the client-side operations relative to the overall handshake time. ntor
equally shares the handshake time, the hybrid reaches 74% and Gosh-Kate 67%.

Gosh-Kate protocol’s implementation by Schanck et al. [48] showed, on av-
erage, a smaller computation time (900µs) but a larger number of bytes (1344).
On the other hand, their hybrid design heavily relies on the client role (661µs for
client init and 74%), which could increase latency if the client’s device has lim-
ited resources. However, their hybrid design implementation reduces the number
of computational steps and amount of data exchanged. The evaluation is lim-
ited to NTRUEncrypt only; comparing it with other quantum-robust schemes
would shed light on the efficiency of the overall hybrid implementation. They
highlight a major obstacle, the size of the circuit-extension handshakes ”CRE-
ATE” cells being limited to 505 bytes (in NTOR) while ntruees443ep1 requires
693 bytes [48]. The work resulted in two distinct specification proposals; one
aiming to widen the cell size [56]#249, the other to enable the hybridisation of
ntor protocol and a KEM. The first one has been supersuded by proposal #340,
introducing the sub-protocol ”RelayCell” which focuses on cell packing and frag-
mentation. The second, [56]#263, was made obsolete by proposal #269; created
by the authors of the papers and Tor’s developers, it takes the incorporation of
different post-quantum KEM further and emphasises compatibility with Tor’s
handshake.

Currently, the Tor code includes four different circuit-extension handshakes
[55]:

– ”CreateFast” deprecated (unauthenticated, non-forward-secure) handshake,
which was previously used for the first hop of each circuit.

– The ntor handshake. [24]

– The Onion Service ntor handshake variant allows each party to encrypt data
(without forward secrecy) after the first message. Clients have used it since
version 3 of the OS protocol to encrypt data in the introduction and ren-
dezvous cells. [56]#224

– The ntor v3 also permits each party to encrypt data at the cost of FS, enables
the client to send an authenticated encrypted message within its onion skin

6 Denis Berger, Mouad Lemoudden, and William J Buchanan

and allows the relay to send an encrypted and authenticated reply as part
of its response. [56]#332

In 2019, Lauer et al. [33] proposed a 0-RTT handshake relying on punc-
turable KEMs to achieve a lower latency design than ntor; yet, the paper
shows that it can result in higher computational overhead on certain low-
power devices. The authors claim to achieve ”immediate” FS, which appears
to meet Tor’s need for perfect FS, as the immediate variant mandates the
deletion of ephemeral keys instantaneously. This approach could facilitate
key management and allow the integration of post-quantum KEMs within
the Tor handshake.

Relay and Link Layer Also called onion skinning, the Relay ”layer” is one
of the most important of Tor’s protocols. At the origin OP, a symmetric key is
shared with each relay in the circuit using a telescoping key exchange protocol.
During the circuit creation 1, instead of encrypting an entire circuit in one go,
the circuit is built incrementally, with the client negotiating session keys with one
node at a time. The OP encrypts the message multiple times, starting with the
key for the final relay and moving backwards. When a message is transmitted,
each intermediate relay decrypts one layer using its symmetric key, revealing
the next hop or, for R N, the destination. The message is always padded to
a fixed size, preventing traffic analysis based on message length. This approach
ensures that no single relay has a full view of the communication path, enhancing
anonymity. However, according to Degabriele and Stam [15], due to its use of
AES-128 in Counter-Mode for each layer of encryption, Tor’s relay protocol
is susceptible to tagging attacks, where a malicious entry and exit node can
tamper with and detect changes in the data to de-anonymise the user. This
is exacerbated by Tor’s low-latency design, which prioritises performance over
stronger cryptographic guarantees.

Rogaway and Zhang [47] introduce the concept of Onion Authenticated-
Encryption, including indistinguishability from random bits and end-to-end au-
thenticity verification as critical security measures.

While Degabriele and Stam [15] assess the relay protocol under CCA, iden-
tifying potential metadata leakage or improper handling of intermediary nodes,
Rogaway and Zhang’s findings [47] highlight that Tor’s current protocol fails to
meet these security benchmarks, specifically showing vulnerability to tagging at-
tacks due to its reliance on counter-mode AES with an absence of a mechanism
for authenticity checking throughout the relay path. They suggest improving in-
tegrity validation by applying robust authenticated encryption with associated
data (AEAD) schemes which would ensure the detection of tampering at an
intermediary (middle node) layer. Moreover, they propose to add layer-specific
nonce usage and key diversification across encryption layers against tagging at-
tacks. Globally, their work calls for a protocol restructuring, which would not
be solved by the implementation of PQC. Since Grover’s algorithm [26] demon-
strates limited parallelisation capabilities, the quantum threat is not estimated

2. LITERATURE REVIEW 7

to be significant to asymmetric cryptosystems; thus, increasing the key size is
expected to provide sufficient security [27].

Concerning the link layer, TLS ensures authentication, integrity, and en-
cryption of data in transit between nodes. Its speed is a crucial metric in the
Tor protocol for the user experience as it directly impacts circuit creation la-
tency (every new Tor circuit requires a fresh TLS handshake between nodes)
and the network scalability as a higher TLS connection capacity allows to han-
dle more users efficiently. At present, Tor’s TLS avoids session resumption for
additional security and relies on stateless connections to avoid potential state-
carrying [55]. Hence, treating each connection independently makes it harder for
one to track connections or identify patterns. The newer version omits client
certificates and uses a single-element, non-distinctive certificate chain to avoid
detection by deep packet inspection systems, mimicking HTTPS traffic. TLS
renegotiation was added but later moved to encrypted data records in version 3
to improve anti-blocking features and limit observable TLS signatures.

Tor aims to cease using TLS 1.2 [56] #294, as 1.3 incorporates significant
improvements such as the handshake design, particularly with its 1-RTT mean-
ing only one round-trip time is required until the first application message is
sent, decreasing latency [17]. In a ”classical” key exchange context, the assump-
tion relies on Diffie-Hellman, while with PQC integration, it typically includes
KEM, implicating a revision of the 1-RTT mode. In 2020, Schwabe et al. [49]
introduced ”KEMTLS”, a fully post-quantum modification of TLS 1.3, replac-
ing signature-based authentication with KEM. Their design drastically cuts the
computational costs associated with PQC signatures while achieving IND-CCA
but not strict full-forward secrecy, for which they declared achieving levels 1, 3
and 5 according to the Noise protocol framework [40]. The same authors released
a variant of their previous KEMTLS named KEMTLS-PDK [50], yet in the con-
text of Tor, this revised version relying on pre-distributed keys and partially
cached information, might not be a straightforward fit if connections could be
linked back to cached or pre-shared keys.

As for hybrid instantiation, the main method consists of concatenating the
classical and PQC key material (public keys/ciphertexts) and treating them as
a single element. Stebila et al. [53] draw a transitional capable design with back-
wards compatibility, allowing one device (client or server) to still use traditional
schemes if it is not ”hybrid-aware”, therefore resulting in three possible scenar-
ios: hybrid handshake, client downgrade or server downgrade to classical only.
Their design aims to keep TLS 1.3 features such as high performance or 1-RTT.

The IETF draft declares the main security property of KEMs as IND-CCA2,
correlating with the first motivation of CECPQ2 [32]; the second version of the
TLS 1.3 key exchange protocol developed by Google and Cloudflare. In fact,
Langley [32] highlights that, in TLS, managing confidentiality is more straight-
forward than authenticity, as encryption keys are independently negotiated for
each session, while post-quantum authenticity presents a greater challenge, as it
needs to integrate with the existing certificate authority and certificate ecosys-
tem, making it considerably more complex to establish and maintain. Tor’s TLS

8 Denis Berger, Mouad Lemoudden, and William J Buchanan

connection layer for relays and bridges, like the standard TLS, uses X.509 certifi-
cates to authenticate themselves during handshake exchanges [55]. Concerning
the OS, the ”.onion” address, being a hash of the service’s public key, confirms
the server’s identity itself without the need for a CA. Firefox, on which Tor’s
browser is based, has already released the option to use X25519Kyber768 for
TLS. Tor’s TLS implementations have been slightly modified from the standard
to meet its needs for compatibility and against traffic analysis. The ongoing re-
search and deployments give a strong base to migrate the network’s link layer; if
the circuit-layer protocol ensures the main security and anonymity guarantees,
in Tor, TLS is a necessary complement and has mitigated critical bugs in the
past [56]#294. The relay and circuit-extend protocols, as Tor-specific protocols,
seem to need a deeper analysis to build a migration design. However, the relay
layer does not appear highly endangered [7]. The stream protocol has not been
reviewed due to its significant reliance on the other layers and its minimal impact
on onion routing compared to them.

2.2 Schemes

Based on research papers and Tor’s official source code, this section outlines
the used schemes and their potential replacement candidates, each addressing
specific security requirements. NIST defined PQC security level from 1 to 5.
The first level is equivalent to the 128-bit traditional security level (strength of
AES-128).

TAP [23] implemented at most 80-bit security standard, [5], through the use
of RSA with a 1024-bit modulus and DH 1024 in its key exchange. Since NTOR
[24] paper, Tor cryptography publications [21,48] agree on the necessity of at
least a 128-bit security standard. Tor has started to adopt Curve25519 (also
written x25519) in most key-enabled cryptography processes; nonetheless, RSA
is still used as an identity key in the relay layer, see Table 11, and in TLS 1.2.

Baseri et al. [7] compiled a comparative inventory of the vulnerable protocols
and evaluated the corresponding mitigation strategies. The paper presents a risk
assessment framework that includes multiple known attack strategies based on
the STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, De-
nial of Service, and Elevation of Privilege) model. They differentiate the risk
into two categories: the algorithmic level, where a mathematical assumption is
not strong enough, and the protocol level, where the implementation presents a
vulnerability, such as side-channel or fault-injection attacks. Hybrid implemen-
tation, aiming to protect the new cryptography migration from these risks, is
highlighted in the context of a crypto-agility approach. However, due to Tor’s
infrastructure, the computational load, packet size, and bandwidth requirements
need to be considered.

Table 1 breaks up Tor’s layers by schemes (currently used), their security
level, key size in bytes and role. When looking at the replacements, the bench-
marking of PQC schemes tends to highlight the overall performance of lattice-
based algorithms: Saber, Kyber as KEM and Dilithium as a signature scheme
in constrained environments, such as running on Raspberry Pi [6]. Nevertheless,

2. LITERATURE REVIEW 9

Saber was judged less efficient than Kyber in a broader range of environments
[2].

The following first covers quantum-safe key exchange schemes, followed by a
review of PQC signature algorithms.

Key Exchange For key exchange, Tor almost always uses X25519 (Tables
1 and 11). It is known for its efficiency and is used in multiple PQC hybrid
instantiations [53,30]. The work of Schanck et al. [48] is also a hybridisation
of X25519 with ntruees443ep1 and HKDF-SHA256. In proposal #269 [56], a
hybrid handshake alternative, it mainly differs from ntor in the computation of
the authentication tag and key derivation.

Two lattice-based schemes have been instantiated as examples in the pro-
posal:

– NTRUE KEM with EESS443EP2 specific parameter set, estimated at 128-
bit security for both traditional and quantum-resistant settings. The design
declares the maximum message size m = 49 bytes, the KEM public key
length |PK| = 615 bytes, and a KEM ciphertext size |CT | = 610 bytes.

– NewHope KEM is declared with |PK| = 1824 and |CT | = 2048.

The chosen NTRU parameter EESS443EP2 is interesting as it proposes rel-
atively small keys; Cheng et al. [13] showed the performance of the EES param-
eters in constrained devices. Yet, according to Bernstein et al., [9], this classic
NTRU parameter falls under a category vulnerable to automorphism-based ex-
ploits and other attacks such as lattice-reduction. In contrast, NTRU Prime is
still of interest from a security point of view, achieving IND-CCA2; it is a third-
round NIST candidate with its ”Streamlined” and ”LPRime” variants. The pre-
ferred parameter is Streamlined, sntrup761, as a balance of performance and
security; it approximately achieves NIST category two post-quantum security
with an estimation of 2153 based on the Core-SVP.

Another KEM scheme that was not selected for standardisation by the NIST
in 2022 is FrodoKEM. For randomness generation, its main implementations
rely either on AES-CTR or SHAKE XOF, the latter offers better performance
across a broader range of hardware types, as demonstrated by Bos et al. [10].
FrodoKEMs claimed categories 1, 3 and 5 of NIST PQC security according to
the given parameters; FrodoKEM-640 targets the first level and FrodoKEM-
976 the third. In Table 2, their key and ciphertext sizes are significantly larger
compared to the sntrup761 setting except for the shared secret key. Furthermore,
ML-KEM presents multiple advantages. It is indistinguishable from the chosen
ciphertext attack, assuming that D-MLWE is intractable and that G, H, and
J are random functions. Additionally, it maintains IND-CCA2 by a quantum
adversary able to make both classical and quantum queries (in superposition) to
G, H, and J [11,44]. Above all, it shows encouraging performances in comparison
with other schemes [6,31]. Table 3 shows the three distinct standardised formats
of Kyber and its corresponding key sizes.

In hybrid implementations, the increase in handshake size tends to lead to
higher bandwidth usage and latency during the handshake process. However, the

10 Denis Berger, Mouad Lemoudden, and William J Buchanan

Table 1: Tor’s main layers cryptography schemes. *The ”directory authorities”
section is presented within the relay layer for clarity; however, it may be more
appropriately classified as a distinct category. For further specifications, refer to
Appendix A

Table 2: Sizes (in bytes) of FrodoKEMs and sntrup761’s keys and ciphertexts.

encapsulation

key

decapsulation

key

ciphertext shared secret

key

sntrup761 1,158 1,763 1,039 32
FrodoKEM-640-AES 9,616 19,888 9,720 16
FrodoKEM-640-SHAKE 9,616 19,888 9,720 16
FrodoKEM-976-AES 15,632 31,296 15,744 24

2. LITERATURE REVIEW 11

Table 3: Sizes (in bytes) of keys and ciphertexts of ML-KEM. [44]

encapsulation

key

decapsulation

key

ciphertext shared secret key

ML-KEM-512 800 1,632 768 32
ML-KEM-768 1,184 2,400 1,088 32
ML-KEM-1024 1,568 3,168 1,568 32

overall performance heavily depends on the underlying mathematical assumption
and its implementation. The Open Quantum Safe [42] benchmarking displays the
performance of the schemes on x86 64 architecture according to the operations
(key generation, encapsulation, decapsulation) per second and per CPU cycle. It
ranks HQC-128 and Kyber512, both achieving NIST level 1 security, with higher
key generation per second. The table 4 shows a summary of OQS measures for
the schemes of interest. Overall, taking into consideration size and performance
attributes Kyber/ML-KEM appears to be the highest performer. It is followed
by HQC, which reaches faster key generation per second and maintains good
key encapsulation and decapsulation speeds despite larger key and ciphertext
sizes (see Table 5). The streamlined NTRU Prime, sntrup761, comes next with
smaller keys and ciphertext sizes than HQC-128, ML-KEM-768 or FrodoKEM-
640. Claiming at least the second NIST security category, it represents a trade-off
between performance, security, and bandwidth. FrodoKEM tends to fall behind
due to reduced operational efficiency, considering its large key sizes and security
level.

Table 4: KEM performance comparison. Operations per second per algorithm,
Reference code type (unoptimised), 2024-04-02, OQS [42]

keygen/s keygen

(cycles)

encaps/s decaps/s security

category

HQC-128 6,719.33 371,892 3,571.00 2,349.00 1
HQC-192 2,855.00 875,523 1,465.00 1,000.00 3
Kyber512 23,348.00 106,974 18,970.00 16,118.00 1
Kyber768 13,660.67 182,899 11,630.00 10,096.33 3
sntrup761 115.55 21,636,049 2,308.00 818.00 2
FrodoKEM-640-SHAKE 345.99 7,224,951 282.67 280.33 1

While Kyber is a derivation of the Kyber PKE algorithm using FO trans-
form, HQC uses a variant of the FO transform called HHK, allowing HQC to
achieve IND-CCA2 security [34]. Among a few other minor modifications, the
FIPS 203 standard of Kyber, ML-KEM specifies a variant of the FO transform
for the encapsulation and decapsulation mechanism; in this work, the Kyber
benchmarks are considered for evaluating ML-KEM performance.

12 Denis Berger, Mouad Lemoudden, and William J Buchanan

The code-based HQC scheme displays excellent performances, yet its large
keys and ciphertexts (table 5) may require further adaptation to integrate it
within Tor protocols.

Table 5: Sizes (in bytes) of keys and ciphertexts of HQC. [34]

encapsulation key ciphertext shared secret key

HQC-128 2,249 1,632 2,305
HQC-192 4,522 2,400 4,586
HQC-256 7,245 3,168 7,317

The 512-byte limit affects the amount of data that can be included in the
handshake process. The currently open proposal #340 [56] aims to implement a
cell packing, optimising the cell usage and a fragmentation mechanism allowing
larger cryptographic keys. Based on proposal #269 design, the work on PQC
migration toward a hybrid-handshake [21,48] and the attributes of the observed
schemes, ML-KEM-768 and sntrup761 appear to fit the circuit-extension require-
ments. HQC may be an alternative if larger keys can be implemented easily. This
work ignores strong cryptosystems such as McEliece, which imposes substantial
key size and, therefore, communication overhead.

The current cell size limit remains an obstacle to hybrid or full PQC migra-
tion for all layers. Concerning the relay layer, no key exchange has been pro-
cessed, but the challenge also concerns signature schemes. Regarding the link
layer, it produces key exchange within its TLS implementation. The RFC [46]
standard defines the handshake with three core stages: server parameters, key
exchange and authentication. In a PQC environment, the second phase would
rely on KEMs. The third is reviewed in the next section. Currently, Tor’s TLS
uses P256 ECDHE (and still has legacy support for secp224r1) for handshakes
and Ed25519 for server identity known as link keys [55]. Indeed, ML-KEM-768
appears to be the selected parameter for the newly adopted designs [53]. Færøy
[20], in a fork of C Tor, experimented the integration of hybrid key exchange
TLS with X25519Kyber768Draft00 .

In 2020, Paquin et al. [39] presented the performance trade-offs of several
schemes, including hybrid ECDH-P256-Kyber512. Compared to the classical p-
256 curve, the hybrid scheme shows an increase of packet loss and completion
time. Their work highlights the effect of higher RTTs, where the hybrid scheme
demonstrates a greater degradation; in their conclusion, the authors discussed
how the enlargement of MTU might improve TLS establishment performance.
In 2024, the post-quantum TLS survey by Alnahawi et al. [4] points out the
significant impact of large keys with FrodoKEM as an analogy with 2.7× the
time of a Kyber handshake and 2.53× the time of the typical classical handshake
with x25519. They state that the combination of Kyber512 (NIST security level
1) and x25519 took 1.25× the time of the traditional handshake, while the NIST
level 3 of this hybridisation has a very close performance (1.28×). Finally, the

2. LITERATURE REVIEW 13

paper overviews how the work of [49] differs from other designs in its approach
of achieving AKE as the pure PQC solution KEMTLS. Indeed, KEMTLS is
achieving a form of 1W-AKE as the server is authenticated to the client without
DSA by using a long-term KEM public key for encapsulation, with the server
responding via an encapsulation based on the client’s ephemeral KEM public
key.

Therefore, achieving a 1W-AKE means the client does not need to authenti-
cate itself. A pure KEM 1W-AKE implementation is interesting in the context
of the future circuit-extension handshake. Recently, Pan and al. [37] introduced
a one-way Verifiable Weak FS notion and presented the first lattice-based tightly
FS AKE via key confirmation in the classical random oracle model (using the
lattice-based protocol from Pan et al. [38]); showing that the OW-VwFS can be
transformed tightly to FS using key confirmation in the random oracle model
(ROM). The circuit-extension handshake requiring FS [48], in a near future a
fully KEM reliant 1-WAKE handshake could potentially replace ntor or the
hybrid-ntor. Based on [49]’s benchmarks (NIST Round 3 estimation results), it
could be as fast as or faster than the current handshake encryption.

Signature This subsection takes a closer look at the potential signature mech-
anisms that could be integrated within Tor’s different layers.

The current 1W-AKE relies on public key cryptography. The hybrid circuit-
extension design presented in proposal #269, inspired by Schanck et al.’s work
[48], does not integrate post-quantum DSA. It maintains the usage of ECDH
primitives (signing with the server’s Curve25519 public key) for authentication.
This is based on the assumption that the session negotiation itself is not vulner-
able to quantum attacks. The hybrid protocol derives session keys and authen-
tication tags from shared secrets of both the ECDH shares and KEM-derived
secrets, allowing the verification of authenticity without an explicit digital sig-
nature during session establishment. This approach avoids the additional com-
putational cost and larger communication footprints of the standardised DSAs
and the significant modifications to the Tor protocol that their incorporation
would lead to. Although the recently introduced ML-DSA and SLH-DSA 14
have larger signature sizes compared to the stateful hash-based schemes XMSS
and LMS 15, they offer the advantage of reducing state management complexity
and lower operational overhead; thus are better candidates in case they would
be used in the handshake. The Falcon scheme, like ML-DSA, is based on Lat-
tice; it proposes even smaller keys (Table 16) but considerably slower run times;
Dilithium with security level 2 parameters generates key pairs approximately
178 times faster per second than Falcon512, which corresponds to security level
1 (Table 6). SLH-DSA is the only stateless hash-based standard so far, offering
robust security without relying on new mathematical problems. However, it gen-
erates large signatures (from nearly 8 KB to 50 KB) and performs slower signing
than its lattice-based competitors; SPHINCS+ at security Level 3 achieves about
14 signing operations per second as shown in Table 6.

14 Denis Berger, Mouad Lemoudden, and William J Buchanan

Table 6: PQC performance comparison. Operations per second per algorithm,
Reference code type (unoptimised), 2024-04-02, OQS [42]

keygen/s keypair

(cycles)

sign/s verify/s security

category

Falcon-512 53.26 46,938,518 176.55 17,246.00 1
Falcon-1024 17.91 139,565,458 80.56 8,341.00 5
Dilithium2 9,486.00 263,444 2,099.33 8,752.33 2
Dilithium3 5,184.33 482,134 1,320.00 5,519.00 3
SPHINCS+-SHA2-128f-s 558.81 4,473,508 23.86 404.73 1
SPHINCS+-SHA2-192f-s 382.08 6,542,247 14.52 270.91 3

The relay layer is heavily reliant on the circuit-extension handshake in terms
of authentication, yet it also depends on Tor’s own certificate mechanism. Tor
does not rely on standard CA-issued certificates for its core functioning, avoiding
reliance on centralised CAs. Signing is done with Ed25519 keys; their format
differs for certificates used by authorities to sign their identity key [55]. CERTS
cells are at least 104 bytes when containing a single certificate of 96 bytes (32
of certified key and 64 of signature), its expiration date of 4 bytes plus 4 bytes
representing the number, type and length of certificates in the cell. This number
is approximate as an extension can be added to bundle the signing key along with
the certificate, which adds up to at least 36 bytes. Therefore, 140 bytes would
represent one certificate and its signing key, which fits into the current absolute
maximum fixed size of 512 bytes. ML-DSA, the smallest recently standardised
post-quantum equivalent, where only the public key and signature sizes represent
a total of 3,732 bytes (Table 14).

In regards to Onion Services, which also rely on a public key for authentica-
tion (Table 12), to prevent the linking of descriptors, they use a blinded version
of the identity key that changes at regular intervals instead of using the identity
key directly [55]#224. This allows to hide the original identity key while still
authenticating without linking the real key directly. The feature is vulnerable to
quantum attacks where a capable adversary could forge the OS signature and
potentially redirect queries addressed to the service. Regarding its migration to
PQC primitives, Eaton et al. [18] assessed four schemes, including Dilithium,
which outperforms the others both in signing and verification but also reaches a
close result of its unblinded counterpart.

TLS signatures can be divided in two categories, ”online” signatures of mes-
sages in the handshake protocol and static ones of certificates in the certificate
chain; where the ”statics” allow a greater signing time as the computation takes
place in advance. Typically, the root certificate signs the intermediate CA certifi-
cate, which itself signs the leaf certificate. The latter is used to sign the transcript
during the handshake; the other signatures are static. The certificate chain size
gives practical insight into assessing the overhead. Kampanakis and Childs-Klein
[28] estimate the authentication data size of ML-DSA-44 and ML-DSA-6 of 14

2. LITERATURE REVIEW 15

KB and 19 KB, respectively (including the intermediate CA certificate). Their
work on the increased latency caused by the certificates is based on the esti-
mated sizes of the chain; the observed chains are built with RSA, not actual
ML-DSA certificates. The paper states a 32% handshake time increase com-
pared to 2.5 KB chain. In Tor TLS, the certified key type varies from Ed25519
to a hash (SHA256) of an X.509 certificate. Since the hash itself is not directly
reversible, this part of TLS authentication is therefore less exposed to quantum
attacks. Yet, the underlying X.509 certificate remains dependent on the public
key primitive used. While standards drafts are proposing to include the recently
standardised SLH-DSA [25], its performance stays far behind the Dilithium and
Falcon [52]. Kampanakis and Kallitsis [29] proposed a backwards-compatible
mechanism to omit the intermediate CA certificate, allowing lighter and faster
PQC TLS Handshakes.

Currently, an IETF draft is in progress to extend ACME challenges to vali-
date ”.onion” domains through a Tor-compatible mechanism; The draft by Misell
[35] presents a new challenge type, ”onion-csr-01”, while still incorporating the
”http-01”, ”dns-01” and ”tls-alpn-01” challenges. Relying on the broader web
PKI, aside from the potential privacy concerns for the onion service, stays sen-
sitive to quantum attacks.

If proposal #340 is implemented as specified, the digest field, responsible for
checking the cell integrity, should reach a size of 14 bytes, allowing the integration
of larger hashes (currently SHA-1). Although hash functions are less directly
threatened by quantum algorithms than PKE. It has been shown that Grover’s
algorithm can be used to reduce the time required for preimage attacks on hash
functions like SHA-1, SHA-2, and SHA-3; and also to minimise the time needed
for hash inversion in O(

√
n), halving the security of the function [41].

Ultimately, the NIST [3] is still looking for a signature scheme and declared
that some second-round candidates have undergone minimal or no formal crypt-
analysis in published research. Thus, potential signature schemes may still reveal
themselves in future research and deployment as a match for Tor’s requirements.
For instance, FAEST, which achieves faster key generation than ML-DSA, dis-
plays smaller key sizes and relies on the mature security of SHA3 and AES, yet
its signatures are more than twice the size of the latter lattice-based scheme for
their respective minimum security levels [8].

2.3 Reflection

The attraction towards hybrid models is justified by the potential fallback to
classical encryption in case a given quantum robust scheme fails. Even if they
have been cautiously examined, new PQC schemes could potentially be broken
by an adversary. As an analogy, SIKE reached the fourth round of the NIST
competition before being proven insecure [12]. To not solely rely on relatively
young solutions, hybrids appear to outweigh the faster, fully PQC (KEMTLS).
As for the ease of instantiation, the concatenation method of algorithms allows
a simpler implementation of these hybrids.

16 Denis Berger, Mouad Lemoudden, and William J Buchanan

The circuit layer comes up as the most urgent layer to migrate to PQC. Im-
plementing a transitional hybrid scheme would require a KEM and a DSA mech-
anism. The second migration would concern the link protocol. In comparison,
TLS has benefited from a greater number of deployments and research. While OS
reuses these fundamental blocks, it incorporates additional mechanisms such as
introduction, rendezvous points and hidden service descriptor encryption, which
have separate cryptographic processes. Public key cryptography is used among
both: key exchange for the introduction, rendezvous points and authentication
for both points and descriptors.

Regarding Tor’s components that should be tested with quantum-robust
KEM, four are standing out:

– The circuit-extension handshake
– Onion skin
– Link layer TLS
– OS Introduction, Rendezvous points

As for the ones that can be evaluated using DSA, the following stand out:

– Consensus document
– Relay Identity Authentication
– Link TLS handshake authentication
– Encrypted Descriptor

The subsection 2.1 highlighted the fact that Tor already faces cryptogra-
phy challenges that will not be solved by the integration of quantum-resistant
schemes. The latter implies a potential redesign of certain underlying protocols
beforehand, as proposed by Degabriele and Stam [15]. Overall, the review em-
phasized the various cryptographic layers and looked over their interactions. It
appears technically feasible to transition to PQC standards incrementally, layer
by layer. Regarding the necessity of migrating the encapsulated TLS layer to
PQC when its outer layer is already quantum-resistant, the recommendation is
affirmative, as it is preferable to ensure comprehensive quantum security.

On the other hand, Rahman et al. [43] proposed an integration of QKD for
symmetric key exchange without relying on trusted nodes. The design presents a
quantum relay to facilitate the key exchange between client and nodes, yet this
approach would require a specific quantum communication infrastructure, such
as quantum repeaters, which are still in development and not widely available.

It can be observed that the diversity of KEM standards is currently limited
compared to that of DSA (ML-DSA, SLH-DSA, XMSS and LMS).

3 Methodology and Design

This section seeks to develop the implementation design based on insights gained
from the literature review. The research takes an inductive approach, collecting
data to build a theory regarding the impact of PQC migration in Tor.

3. METHODOLOGY AND DESIGN 17

3.1 Technical Requirements

On a security level, the implemented protocols will need to achieve IND-CCA2,
and at least the first NIST PQC security category. From a size perspective, none
of the schemes observed fit in the current cell size. At the data-link layer, to
reduce fragmentation, it is preferable for public key sizes to fit in the Ethernet
MTU of 1500 bytes. Only ML-KEM-512,768 or sntrup761 for KEM and Falcon-
512, ML-DSA-44 for signature are matching. Yet, as previously noted, Tor cell
body lengths are currently limited to 509 bytes and will be adjusted to 493
bytes, except for ”DATAGRAM” messages which aim to support UDP-over-
tor Tor proposal [56] #339. Fragmentation of PQC keys across several cells
appears inevitable (Tables 2, 3, 5, 14, 15, 16). Reassembly, verification, and
potential retransmissions will be necessary. ML-KEM and Falcon encapsulation
and public keys respectively fit in two Tor cells. In terms of actual runtime,
ML-DSA significantly outperforms Falcon.

Regarding relays, memory (≥ 1 to 1.5 GB of RAM per node), disk storage
(≥ 200 MB) and bandwidth minimal requirements (≥ 16 Mbps) as defined by
Tor paper will need to be met in the hardware equipment used.

Arti offers a safer and faster development than C Tor due to Rust’s design.
Generally, Rust language does not outperform C, yet it shows close performances
[57]. Initiated in 2020, the Rust implementation takes a simpler approach com-
pared to the older C version. At present, a performance comparison of the two
implementations is difficult to make as Arti is not fully finished. For instance,
relays cannot be run just yet [55]. Thus, this work focuses on C language Tor
implementation and cryptographic libraries.

3.2 Network Architecture

A star topology will be formed around a central switch device. For the sake of
mimicking the key roles, the network needs to provide enough diversity; there-
fore, nine nodes will operate together. Two machines will act as directory au-
thorities. Four nodes will serve as guard relays, two as exit relays, and one will
be dedicated to functioning as a middle hop and OS. Given the size and config-
uration of the network, there will be no dedicated directory caches, and nodes
will endorse multiple flags. For instance, the onion service descriptor ”HSDir”
flag.

3.3 Local Benchmark

The implementation will start by looking at the tools relevant to measuring the
Tor network and running them within our scenario. A packet capture will permit
the observation of the time of transmitted frames with the corresponding traffic
type.

Tor uses sbws (Simple Bandwidth Scanner) and OnionPerf to measure its
performance. [54]. Sbws usually relies on the download and upload of files through
the circuits to measure the benchmark. This method can be mimicked manually

18 Denis Berger, Mouad Lemoudden, and William J Buchanan

using tools such as wget or curl. The implementation will look for a method to
efficiently measure the circuit round-trip latencies and circuit build times.

3.4 Code Performance

With regard to the three layers, the list of C files below represents the core
Tor protocol operations; they will be assessed on the performance of their most
computationally expensive functions.

– circuit establish circuit function in circuitbuild.c handles the pro-
cess of selecting paths and managing the handshake protocols between nodes
to establish circuits.

– onion.c is responsible for the creation, encoding, and parsing of cells (CRE-
ATE, CREATED, EXTEND, and EXTENDED). It invokes handshakes.

– channel.c implements the transmission, reception, and processing of cells
across different connections.

– relay.c manages RELAY cells, including their encryption, decryption, for-
warding, and processing for routing data.

The following code files will be evaluated to weigh the cryptography opera-
tions they represent.

– onion ntor.c implements the ntor handshake.
– onion ntor v3.c, as specified in proposal 340 [56], the cell fragmentation

requires the enhanced handshake, ntor v3.
– relay crypto.c relay cells payload encryption, decryption, integrity verifi-

cation via cryptographic digests, and the initialisation of symmetric keys.
– hs ntor.c, closer to ntor v3 than ntor; it is the implementation of the hand-

shake for onion services.
– tortls.c is the main TLS implementation file in Tor.
– channeltls.c, is the only instantiation of channel abstraction. It handles

the v3+ link handshake, certificate verification, and cell processing over OR
connections.

In Tor’s ”crypto” code directory, the deprecated fast handshake file onion fast.c

is ignored. A frequency analysis will be conducted to associate roles of nodes with
the functions they execute the most.

3.5 PQC

The following algorithms will be considered viable candidates: ML-KEM-512 and
Falcon-512 at security level 1, as well as sntrup761, ML-DSA-44 at security level
2 and ML-KEM-768 at level security 3. The Open Quantum Safe C library [42]
provides implementations of the considered schemes. The speed tests for signa-
ture and KEMs will be run on the different devices with their code. Regarding
the performance evaluation of the classical scheme, it will use the OpenSSL
speed tool. Combinations of the selected schemes will be made to evaluate their
timing with their security level. All of them will be run on at least two different
devices. Advertised results summarised in sections 2.2 and 2.2 will be taken into
account.

4. IMPLEMENTATION 19

3.6 Reflection

The implementation of this outline should be helpful in shedding light on the
weight of post-quantum in Tor according to the assumption that if a given cryp-
tographic process represents a proportion of Tor’s total run-time, then a given
latency increase will lead to a raise of at least of the total timing.

4 Implementation

Firstly the benchmark techniques will focus on the local network before targeting
cryptographic timings (circuit-extend, onion service and TLS). Secondly, the
measurements obtained will be compared with their potential PQC substitutes.

4.1 System Setup

The hardware used for this implementation consists of 9 Raspberry Pis used as
onion relays, of which two model 4b with 8 GB RAM, seven model 5 (two
with 8 GB and five with 4 GB RAM). As a client, a Thinkpad laptop X1
with i7-10850H CPU and 32GB RAM. They are connected using two-metre-long
straight-through Ethernet cables and a Cisco Catalyst 2900 switch (Figure 11).
It should be noted that a Raspberry 4b with 4 GB RAM is added for stability
when needed.

Each Raspberry runs Ubuntu server 24.04, and the Lenovo personal computer
runs Kali Linux 2024.3. The switch runs DHCP to avoid access the Raspberries
through monitors, but the IPs are configured statically, the switch’s minimal
configuration can be found in Listing 1.4. Each node is running Tor version
0.4.8.10.

The Nginx web server is used for the hidden service. It publishes a simple
http page 12. It is resolved and reached by launching the Tor browser using a
separate Tor daemon (see Listing 1.10). Tor software is designed to run within
a large network with a great number of nodes; the implementation of a local
testing network with a small number of nodes meets multiple constraints. To
ensure anonymity, Tor code discards guards on certain conditions.

4.2 Local Network Benchmark

Average bandwidth connectivity between devices was measured to be 93.8 Mb/s
using the iPerf network performance measurement tool [14]. The network is
configured as described in Section 3.2; Chutney [55], a Python tool for testing
Tor network locally, is used to generate torrc configuration files for each node
(Listings 1.5 and 1.6).

The torrc files have been slightly adapted, but most of the settings remain
identical to Chutney’s templates. Listings 1.7 and 1.8 display the used param-
eters for directory authorities and guard relay. For instance, due to the size of
the network setting PathsNeededToBuildCircuits has been decreased to allow

20 Denis Berger, Mouad Lemoudden, and William J Buchanan

more flexible circuit building. The client configuration also points to the local
directory authorities and contains the setting for testing networks, which ad-
justs default values, as described in ”man tor” 1.9. The conflux setting has been
disabled, and the nodes have been specified in the configuration to facilitate the
onion.

If accessing the internet through the local Tor nodes, from the browser’s point
of view, the timing displayed is heavily influenced by external variables such as
broadband and thus is not relevant to evaluating the Tor implementation itself.
However, considering the timing difference between the same test request made
from Firefox to the internet directly and the Tor browser going through the local
nodes, it can be inferred that passing through the established Tor channel only
adds a few hundred milliseconds 13. Tor’s traffic is mostly web [54], measuring the
time taken to visit an internet resource adds a relevant data point of the overhead
introduced by the class. The laptop is configured to perform NAT between its
ethernet and WLAN interfaces, and its IP is set as the default gateway on all
nodes. DNS points to Google 8.8.8.8 address.

Pcap Analysis This configuration allows sniffing the first packet sent to the
guard relay and the first packet leaving the exit node 14. (to the duckduckgo.com
domain without search content) For this circuit exiting by node ”.23” the client
sends its Tor encrypted packet to the entry node at 15:29:50.360220332. The
exit node sends a DNS request at 15:29:50.414655443 and its decapsulated
ClientHello message at 15:29:50.462253502 (see Figure 15). Therefore, giving
timing of 102 milliseconds to exit the circuit, including the DNS requests (which
are influenced by broadband) and 54 milliseconds without.

When trying a similar request, the measured time, with ”DNS overhead”,
is 110 milliseconds and approximately 60 milliseconds without (see Figure 17).
The browser process is killed between each measure, and its cache stays empty.
In this capture, entry and exit nodes are the same, but the circuit is different,
as shown in Figure 16. For a third circuit and another web request, we get 4 ms
from the first TCP sent to the DNS request made by exit and 57 ms if waiting
for the ClientHello. This timing further stresses the need to automate the
measurement process to derive metrics from a larger sample size.

Simple Bandwidth Scanner As for the sbws tool, it is currently developed
for targeting the real Tor or a locally hosted (single-device) Tor simulation. Here,
it has been built locally, and its source code file, ”generals.py” has been slightly
modified to force the generated Tor daemon to point at the local directory au-
thorities. This method avoids including the processing of the browser. To use
this tool, a new node has been added to act as a web server. It publishes the
1 GiB file accessible on port 443 with HTTPS (TLS is required on the target
in this scenario to run sbws). The laptop has been configured as a DNS server,
allowing the nodes to resolve the address ”local.tor” to IP 192.168.1.24. The
self-signed SSL certificate is updated as trusted on the nodes and the option
ServerDNSDetectHijacking 0 is added to their torrc configuration. The tool

4. IMPLEMENTATION 21

stops after one loop when detecting that it is assessing a testing network and
creates a raw text file, which is used to generate ”v3bw” files. As for OS, ”At-
tachstream” functionality is not currently supported for .onion addresses.

Gauging the circuit’s timings against the direct and non-encapsulated traffic
would bring a relevant comparison. Thus, the following subsection aims to do
so.

Curl Measurements First, we compare the latency of passing through the
network with sending curl requests directly to the external server. The listings
1.1 and 1.2, display the curl requests run from the client passing through its Tor
daemon with SOCKS5.

Listing 1.1: Curl GET request to duckduckgo

curl --socks5 -hostname 127.0.0.1:9050 -w "%{ time_total} " -o /dev/null -s
https :// duckduckgo.com

The Tor paper defines Round-trip latencies as the time between sending
the HTTP request and receiving the HTTP response header [54]. Here, this is
replicated by time total variable in the curl command. This technique also
permits us to reach the OS and to directly benchmark it.

Listing 1.2: Curl GET request to Onion Service

curl --socks5 -hostname 127.0.0.1:9050 -w "%{ time_total} " -o /dev/null
http :// adg4jkv2xpciraegkj3rpcfrdnzlaeqnlt7a3wzylhzcvshzkerhacyd.onion

Furthermore, POST requests are also sent to the target address, allowing
us to download and upload performances with a 1 GiB large file (just as sbws
can do) and the average of a typical POST request. This is done by adding curl
parameters, as shown in Listing 1.11 for the evaluation of access to an external
resource without relying on broadband internet. Figure 2 represents the average
speeds measured with the 1 GiB file.

Finally, to evaluate the overhead of TLS in the onion service, it is imple-
mented and compared with HTTP.

Circuits Build Time Using stem library, the following script allows obtaining
timing metrics for a given number of built circuits. Two ways have been imple-
mented: the first is by waiting for the controller to mark the status of the circuit
as built, and the second one is by checking its status at small intervals. The
latter demonstrates greater consistency in its results.

22 Denis Berger, Mouad Lemoudden, and William J Buchanan

Fig. 2: Onion Services download and upload average speeds

Listing 1.3: Python script using stem controller library

import time
import numpy as np
from statistics import mean , median , stdev
from stem import CircStatus
from stem.control import Controller

def benchmark_circuits(controller , numCircuits =1000):
circuitBuildTimes = []
for i in range(numCircuits):

startTime = time.time()
Creating a new circuit and waiting until circuit is fully built
circId = controller.create_circuit(await_build=False)
while True:

circ = controller.get_circuit(circId)
if circ.status == CircStatus.BUILT:

break
time.sleep (0.001) # Checking the status as frequently as possible

endTime = time.time()
buildTime = endTime - startTime
circuitBuildTimes.append(buildTime)
controller.close_circuit(circId)

if circuitBuildTimes:
avgTime = mean(circuitBuildTimes)
mdTime = median(circuitBuildTimes)
mnTime = min(circuitBuildTimes)
mxTime = max(circuitBuildTimes)
sdTime = stdev(circuitBuildTimes) if len(circuitBuildTimes) > 1 else

0
q1Time = np.percentile(circuitBuildTimes , 25)
q3Time = np.percentile(circuitBuildTimes , 75)
print(f"Metrics for {numCircuits} circuits:")
print(f" Average build time: {avgTime :.4f} seconds")
print(f" Median build time: {mdTime :.4f} seconds")
print(f" Min build time: {mnTime :.4f} seconds")
print(f" Max build time: {mxTime :.4f} seconds")
print(f" Standard dev: {sdTime :.4f} seconds")
print(f" First quartile (Q1): {q1Time :.4f} seconds")
print(f" Third quartile (Q3): {q3Time :.4f} seconds")

else:
print("No circuits")

if __name__ == "__main__":
with Controller.from_port(port =9051) as controller:

benchmark_circuits(controller , numCircuits =1000)

4. IMPLEMENTATION 23

4.3 Cryptography Benchmark

To measure the cryptographic operations performance in terms of execution
time, the relevant functions of the files described in section 3.4 are executed with
the clock gettime() function, the results are returned as standard output, and
the RunAsDaemon option needs to be disabled. The executable file has been run
on all devices. The functions are used at different frequencies according to the
role of the node.

Fig. 3: Proportion of iterations per relay role for a given function. In this exper-
iment, OS and middle relay are the same devices.

Focusing on the traditional cryptography used, the table 7 below presents
the performance achieved by Raspberry Pi 4 and 5 (4GB) using OpenSSL.

The first Tor protocol to invoke these cryptosystems is the circuit-extend.
Lauer et al. [33] measured the time of the ntor handshake execution by the user at
0.30 ms, and 0.10 ms by the OR. Yet, Schanck et al. [48] benchmarked a 0.000527
ms total performance for ntor computation. Here, a low-level approach is taken
to estimate the ntor execution time: onion skin ntor create computes the first
client-side step of ntor in 0.13 ms; while the function onion skin ntor client handshake,
which performs the ntor final client-side step was executed in 0.77 ms on aver-
age by all nodes. The server-side steps of the handshake achieved an average of
2.1 ms altogether.

In the PQC migration context, the ntor v3 handshake is expected to be
the standard, as previously mentioned in section 3.4. It performed significantly
better than the classical ntor with 0.67 ms on the client side and 0.63 ms on the
server side.

24 Denis Berger, Mouad Lemoudden, and William J Buchanan

Table 7: Benchmark of Tor’s asymmetric schemes on Raspberry Pi. Average
operation iteration per second.

sign/s verify/s Model

Ed25519 2,939.1 1,327.0 4b
RSA2048 199.2 7,492.9 4b
RSA3072 21.3 1,209.6 4b

Ed25519 16,301.1 6,846.1 5
RSA2048 281.0 10,289.0 5
RSA3072 90.1 4,652.2 5

key exchange/s Model

X25519 1,044.6 4b
X25519 5,973.5 5

Figure 4 shows the mean and median values of most measured functions; the
very small metrics have been left aside for the graph’s clarity.

Fig. 4: Execution speeds per function

4.4 PQC Run Times

The schemes of interest have been benchmarked using the OQS library to grasp
the performance of the nodes against PQC schemes. Table 8 shows the aver-
age number of operations per second on Raspberry Pi (4GB of RAM) 4b and
5 for both KEM and signatures. Here, the Raspberry Pi 4 significantly under-
performed the results published by OQS. For example, ML-KEM-512 ran 3,807

4. IMPLEMENTATION 25

key generation operations per second, whereas Kyber-512 achieved 23,348 ken-
gen/s 4. On the other hand, Model 5 accomplished closer outputs.

Table 8: Benchmark of PQC schemes on Raspberry Pi. Average time (µs) per
operation, Code retrieved from liboqs [42]

keygen/s encaps/s decaps/s Model

ML-KEM-512 3,807.3 3,462.0 2,783.0 4b
ML-KEM-768 2,539.0 3,905.0 2,571.5 4b
sntrup761 25.2 841.7 410.6 4b

ML-KEM-512 23,168.3 19,178.0 15,136.3 5
ML-KEM-768 13,976.6 11,900.6 9,614.3 5
sntrup761 158.1 6,067.0 3,210.3 5

keypair/s sign/s verify/s

Falcon-512 23.6 615.3 7,866.3 4b
ML-DSA-44 2,642.7 286.1 3,213.9 4b

Falcon-512 95.4 3,360.6 19,831.3 5
ML-DSA-44 8,986.3 1,885.0 8,139.0 5

Based on the fact that a key exchange for a KEM requires key generation,
encapsulation and decapsulation operations;

TKE = Tkengen + Tencaps + Tdecaps

here, the fastest post-quantum KEM scheme performed slightly faster than
X25519. The 4b model achieved 0.95 ms per classical KE exchange and 0.91 ms
per ML-KEM-512 KE; nonetheless, the model 5 achieved closer results with
0.167 ms per X25519 against 0.161 ms. The operations per second are displayed
in tables 7 and 8. On the client (x86 64 architecture), X25519 was benchmarked
as KEM and it resulted in 22,839.0 kegen/s, 11,950.9 encaps/s and 26,040.8 de-
caps/s; thus corresponding to a speed of 0.1659 ms per key exchange. Meanwhile,
ML-KEM-512 produced 38,732.0 keygen/s, 33,241.3 encaps/s and 36,170 decap-
s/s, showing a speed difference of 66% (between 0.1659 and 0.0835). From a
run-time point of view, adopting ML-KEM-44 to replace Curve25519 key ex-
change on these devices would result in an acceleration of the overall process.
Yet, this is the only scheme where X25519 is slower. On Raspberry model 4b,
ML-KEM-768 showed a 14% execution time increase while sntrup761 performed
the KE operations in 43.3 ms, nearly 50 times slower than X25519. Nevertheless,
on the client, the NTRU scheme was only 6 times slower than the classical key
exchange with a timing of 1.005 ms/KE. Regarding DSA schemes, the Edwards-
curve 25519 signing remains the fastest of the standards, followed by Falcon-512,
which is still, on average, 4.8 times slower. Moreover, Ed25519 key and signa-
ture sizes (32 and 64 bytes, respectively) stay significantly smaller than both

26 Denis Berger, Mouad Lemoudden, and William J Buchanan

post-quantum DSA (see Tables 14 and 16), which introduces storage and trans-
mission overhead. It should be noted that the need for flexible key management
increases, as the public and private keys of Falcon and ML-DSA differ, unlike
the currently used Ed25519.

In terms of verifying operation speed, Falcon slightly surpasses RSA2048 on
the Raspberry Pi 4b and runs almost twice as fast in comparison to Model
5. Without taking size and key pair generation into consideration, the fastest
combination of quantum-robust signature cryptosystems, as a hybrid, would be
Falcon-512 with Ed25519 at security level one. RSA is not considered, as Tor is
trying to move away slowly from it. However, if one considers key sizes and key
pair operations per second, ML-DSA with Ed25519 is a better choice, achieving
the second NIST security category.

4.5 Reflection

The size of the network has consequently influenced the nodes’ configurations,
ensuring enough guards, which has been a core challenge to achieve correct
circuit building. Logs have been highly valuable alongside Nyx, a Tor command-
line monitor 18. The settings have mostly been manually deployed, and most
could be easily automated with a script.

5 Evaluation

This section will evaluate the implementation and its outcomes in relation to
the aims and objectives outlined in the initial research proposal.

5.1 Results

Bandwidth and Circuit Performance For an average bandwidth of 93.8
Mbits/s between nodes, without passing through the circuits in the network,
the mean time taken for a circuit to be built varies between approximately 44
and 60 milliseconds. The tools used did not allow accurate measurement of the
circuit build time per hop but rather the entire circuit building. The stem scripts,
however, may be modified to measure a single-hop latency. This has not been
done here, yet the overall latency gives an approximation of a single hop circuit
build time. Their results are compared in Figure 5. The graph displays metrics
from twelve different script executions over time. The upper row displays timings
more spread out, yet faster than the lower one. They have been differentiated,
as each script execution would either average a circuit time close to 44 ms or the
upper 57 ms, due to hardware differences in the chosen nodes.

When using Tor circuits to fetch the ”local.tor” HTML page (HTTPS), up-
load speed is 3,808.52 kB/s; download reaches 9,648.06 kB/s. Without passing
through circuits, much closer values are obtained: 11,511.83 kB/s of upload speed
and 11,410.24 kB/s for download speed. This implies asymmetrical bandwidth

5. EVALUATION 27

Fig. 5: Circuit build time. The Q1 and Q3 measurements are omitted from the
graph.

capabilities between paths; this is supported by the results obtained in the file
transmission, as shown in 2 with higher upload speeds on the exit path.

The Pcap analysis results have shown limitations in terms of accuracy; on
the other hand, using a greater sample of curl timings data, relevant metrics are
obtained. Table 9 displays the median and average values of a single request ac-
cording to the targeted source. The three targets are running Nginx web servers,
all equipped with SSL certificates.

Table 9: Performance of web traffic through local Tor network. Total time (ms)
per curl operation.

Duckduckgo Local webserver Onion Service Request type

Mean 262.9 136.7 174.6 GET
Median 260.8 142.4 166.0 GET
Mean 141.8 172.6 POST
Median 148.0 171.5 POST

The round-trip latency can be calculated accurately by subtracting the av-
erage latency of direct route requests from that of requests routed through Tor.
Based on 1,900 requests per source, fetching ”duckduckgo.com” yields an over-
head of 83.1 ms, while accessing the ”local.tor” Nginx webserver incurs an ad-
ditional latency of 82.4 milliseconds. Rounding up these values, the estimated
latency overhead is approximately 83 milliseconds.

28 Denis Berger, Mouad Lemoudden, and William J Buchanan

Regarding OS performance, the data exchange to fetch the test page (as
shown in Figure 12) takes approximately 20 ms extra compared to the identi-
cally configured Nginx server. Knowing that OS requires going through three
more hops than the external resource fetching it, the time per hop extension for
fetching via OS is approximately 7 ms, while the circuit-building time per hop
ranges from 15 to 20 ms (based on stem script results). This could be explained
by the optimised ntor handshake varied initiated in hs ntor.c.

The bandwidth results obtained from sbws corroborate the initial bandwidth
measurement of 93 Mbits/s made using iPerf. Notably, the first authority guard
is excluded from this analysis as it introduces an error. In Figure 6, the first
authority guard is omitted as it results in an error due to the fact that sbws uses
it to fetch data in the network, corrupting its bandwidth assessment.

Fig. 6: sbws upload bandwidth per node

Cryptography Comparison The comparison potentially demonstrates that
the optimisation of the X25519 implementation allows constrained devices to
execute its KE almost as fast as the ML-KEM-512 standard, while on a 32GB
machine, the post-quantum standard is able to perform at least 50% faster than
its classical counterpart. In a similar manner, NTRU (sntrup761) does much
better on the client than it does on the Raspberry Pi. Memory usage should
be compared for a deeper analysis. Falcon-512 is the fastest on the constrained
devices. However, it represents a much larger latency on more powerful hard-
ware (e.g., laptops). It should be noted that the architecture - here aarch64

for the Raspberry Pis - should be taken into account; the OpenSSL executable
for x86 64, used on the laptop, provided more accurate computations of each
operation per scheme.

5. EVALUATION 29

In terms of roles, the analysis, of results displayed in Figure 3, reveals distinct
functional distributions among Tor nodes, highlighting the specialised respon-
sibilities of each. Guard nodes show the largest proportion of iteration for encryp-
tion and circuit-related operations relay encrypt cell inbound, relay decrypt cell,

and circuit package relay cell, whereas the middle node, also acting as an
OS mainly displayed handshake-related function iterations. As expected, exit
nodes primarily engaged in outbound traffic handling (relay encrypt cell outbound

and channel write packed cell). Authority nodes have a smaller, consistent
presence, reflecting their role in network management and verification rather
than direct cell processing. Thus, Onion service nodes evidently exhibited the
highest usage of public-key cryptography functions, followed by guard nodes,
executing the most handshake-related operations.

5.2 Effectiveness

The network benchmarking process displays consistent results. Asymmetric la-
tencies have been identified; however, they are not necessarily problematic. The
real Tor network relies on a diversity of hardware, resulting in asymmetric band-
width. Compared to advertised metrics (see Figure 9), the circuit round-trip
latencies share common characteristics in their results, with a higher but faster
onion latency compared to when directed to a public server. On the other hand,
estimating a precise proportion of public key cryptography processes is difficult
by solely analysing the timings of cryptographic functions.

Related Work Zsolt et al. [?] highlight the impact of PQC on Tor but fo-
cus mainly on the scheme’s performances and less on Tor software. Their work
acknowledges the advantage of lattice-based KEM cryptosystems but presents
SIKE as an optimal choice; it does not cover the efficiency of DSA schemes. In
comparison, this paper benefits from a more advanced status in the NIST stan-
dardisation process. Evgnosia-Alexandra [19] gives a brief cryptographic analy-
sis of potential candidates and emphasises hybrid Ring-LWE approaches. Yet,
Evgnosia-Alexandra’s paper also promotes SIKE as the appropriate choice to
minimise overhead. In contrast, this work dived into Tor’s software performances
in a constrained environment evaluating the potential PQC load in a pragmatic
manner.

5.3 Reflection

Based on the frequency analysis of C function execution, middle-OS and guard
nodes appear to perform the most asymmetric cryptographic operations. It can
be inferred that considering previous benchmarks of PQC algorithms on Rasp-
berry Pis, their minimum hardware memory requirements may need to be in-
creased. However, reducing the acceptable criteria could also lead to a reduction
in network capacity.

30 Denis Berger, Mouad Lemoudden, and William J Buchanan

6 Conclusion

Overall, this work has presented several methods to evaluate a local Tor network,
which can be easily implemented and repeated in future testing environments.
It also presented a reference point, providing results of these measurement tech-
niques that one could consider in a similar experiment.

The key deliverables of the paper are:

– Four algorithms have been demonstrated to be more appropriate than others:
ML-KEM, NTRU (sntrup761) as KEMs, followed by ML-DSA and Falcon
as signature schemes.

– A local Tor network has been successfully deployed with multiple physical de-
vices; it reached a Tor circuit-round latency of 83 ms for a non-encapsulated
bandwidth mean value of 93.8 Mbits/s.

– The C code related to Tor cryptographic operations has been timed. How-
ever, the relevance of the timings should be interpreted with caution within
the context of this experiment.

– Using the obtained results alongside PQC performances, an accurate esti-
mate of the overhead percentage cannot be determined. Numerous unclear
variables are likely to influence the final latency evolution. This work has
highlighted that the hardware characteristics of Tor nodes will be one of
these factors.

Most of the raw results have been made publicly available at 1.

6.1 Limitations

The drawbacks of this work can be represented by three main points below.

– While trying to satisfy the low-bandwidth requirement, the selected schemes
only cover the two first NIST security categories. Furthermore, they lack di-
versity in their mathematical assumptions, relying solely on lattice problems.

– The benchmarking is heavily subjective.
Firstly, it is influenced by the technology used, such as the optimisation of
cryptosystems based on a CPU architecture. In this context, this theoretical
bare-metal Tor network simulation could be improved by using hardware
generally used in the real Tor network. This would require more intrusive
relay metrics and may go against security and privacy principles. Secondly,
the timings are greatly influenced by the configuration. The torrc files have
been adapted to obtain a functional local network with the given number
of nodes. Yet, another blend of settings could result in a more realistic im-
plementation. Adding more nodes should improve the stability of the setup.
Going further, the nodes could be distanced geographically. Planet Lab [1]
may be an appropriate test bed. Additionally, the methods and tools em-
ployed in the measurement process can significantly alter the results, for
instance time is consistently taken as reference points and other measuring
units such as CPU cycles are neglected.

1 https://gitlab.torproject.org/diunisu/testing-network-results

6. CONCLUSION 31

– The estimation of the PQC overhead is only theoretical and misses a mul-
titude of parameters, such as different traffic types or volumes. In a virtual
environment, further testing with Shadow could provide valuable insights
based on the real Tor traffic, while on physical machines, adapting or creat-
ing tools like OnionPerf to target local instantiations could also produce more
relevant measures. In the future, Tor’s software optimisations and restruc-
turing of the underlying protocols will also impact network performance.

6.2 Future Work

Future work includes advancing the post-quantum circuit-extend handshake de-
sign, inter alia, by comparing a DSA-free handshake to a KEM authentication
(still requiring DSA for static leaf signature). This should be followed by a soft-
ware implementation draft to enable practical evaluation of the integration of
these PQC schemes. It would be particularly useful to assess its performance in
a realistic scenario. Looking ahead, when the Arti code will allow the running
of relays, it will be helpful to note the difference in cryptography performance
between C Tor and Rust in this context.

32 Denis Berger, Mouad Lemoudden, and William J Buchanan

Glossary

Acronym Meaning

ACCE Authenticated and Confidential Channel Establishment
ACME Automated Certificate Management Environment
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
AKE Authenticated Key Exchange
ARTI A pure-Rust Tor Implementation
CA Certificate Authorities
CCA Chosen-Ciphertext Attacks
SVP Shortest Vector Problem
CRYSTALS Cryptographic Suite for Algebraic Lattices
DH Diffie-Hellman
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DSA Digital Signature Algorithm
ECC Elliptic Curve Cryptography
ECDH Elliptic-Curve Diffie-Hellman
EES Efficient Embedded Security
FALCON Fast Fourier Lattice-based Compact signatures over NTRU
FO Fujisaki-Okamoto transform
FS Forward Secrecy
HHK Hofheinz-Hövelmanns-Kiltz transform
HQC Hamming Quasi-Cyclic
IETF Internet Engineering Task Force
IND-CCA INDistinguishability under Chosen-Ciphertext Attack
IND-CCA2 INDistinguishability under Adaptive-Ciphertext Attack
IND-CPA INDistinguishability under Chosen-Plaintext Attack
IP Internet Protocol
KEM Key Encapsulation Mechanism
LMS Leighton–Micali Signature
MLWE Module Learning With Error
ML-KEM Module-Lattice-based Key-Encapsulation Mechanism
ML-DSA Module-Lattice-based Digital Signature Algorithm
MTU Maximum Transmission Unit
NAT Network Address Translation
NIST National Institute of Standards and Technology
NSA National Security Agency
NTRU Nth degree TRUncated polynomial ring
OS Onion Services
PDK Pre-Distributed (public) Keys
PFS Perfect Forward Secrecy
PKE Public Key Encryption

A. APPENDIX A 33

PQC Post-Quantum Cryptography
PRNG Pseudo-Random Number Generator
QC Quantum Computer
QKD Quantum Key Distribution
RAM Random-Access Memory
Acronym Meaning

RSA Rivest-Shamir-Adleman
RTT Round-Trip Time
SHA Secure Hash Algorithms
SSL Secure Sockets Layer
TAP Tor Authentication Protocol
TCP Transmission Control Protocol
TLS Transport Layer Security
TOR The Onion Routing
XMSS eXtended Merkle Signature Scheme
1W-AKE One-Way Authenticated Key Exchange

A

Fig. 7: V3 onion service traffic over 2023

34 Denis Berger, Mouad Lemoudden, and William J Buchanan

Fig. 8: Total bandwidth traffic between over 2023

Table 11: Relay Keys. Source: Tor gitlab [55]

A. APPENDIX A 35

Fig. 9: OnionPerf latencies between July 2024 and September 2024

36 Denis Berger, Mouad Lemoudden, and William J Buchanan

Table 12: Onion Service Keys. Source: Tor gitlab [55]

Table 13: Directory authorities Keys. Source: Tor Gitlab [55] and
/var/lib/tor/cached-certs

A. APPENDIX A 37

– AES-128-CTR: in counter mode as stream cipher; IV of all 0 bytes.
– RSA: exponent of 65,537. OAEP-MGF1 padding, with SHA-1 as its

digest function (label left unset). Tor paper plans to move away from
SHA-1 to align with evolving cryptographic standards and best prac-
tices.

– SHA-1 as ”hash of a public key”, DER encoding of an ASN.1 RSA
public key (as specified in PKCS.1).

– Relay identity keys: currently two types are still deployed: RSA1024
is legacy and being replaced by Ed25519 which is the one advertised in
the table.

– Tor’s TLS 1.2 Ciphers:
• TLS1 TXT DHE RSA WITH AES 256 SHA
• TLS1 TXT DHE RSA WITH AES 128 SHA
• TLS1 TXT ECDHE RSA WITH AES 256 GCM SHA384
• TLS1 TXT ECDHE RSA WITH AES 128 GCM SHA256
• TLS1 TXT ECDHE RSA WITH AES 256 CBC SHA
• TLS1 TXT ECDHE RSA WITH AES 128 CBC SHA

– Tor’s TLS 1.3 AEAD Ciphers:
• TLS1 3 TXT AES 128 GCM SHA256
• TLS1 3 TXT AES 256 GCM SHA384
• TLS1 3 TXT CHACHA20 POLY1305 SHA256
• TLS1 3 TXT AES 128 CCM SHA256

Fig. 10: Schemes specification for Table 1

Source: Tor’s gitlab (tortls openssl.c, tortls nss.c, tortls.c), Specifications [55]

Listing 1.4: Cisco switch configuration

> enable
configure terminal
ip dhcp pool LAN_POOL
network 192.168.1.0 255.255.255.0
interface vlan1
ip address 192.168.1.1 255.255.255.0
no shutdown
service dhcp
exit
write memory

38 Denis Berger, Mouad Lemoudden, and William J Buchanan

Table 14: DSA standards released by NIST in 2024. Source: FIPS 204, 205[45];
Size displayed in bytes

Table 15: Hashed-based DSA standardised by NIST in 2020. Source: Open
Quantum Safe [42]; Size displayed in bytes, four example settings selected

among others

A. APPENDIX A 39

Table 16: Falcon DSA key sizes. Source: Open Quantum Safe [42]; Size
displayed in bytes

Fig. 11: Hardware used for the implementation

Fig. 12: Onion Service test

40 Denis Berger, Mouad Lemoudden, and William J Buchanan

Fig. 13: Comparison of request timing between the local Tor network (upper
image) and direct internet access (lower image). The upper screenshot is from

the Tor browser, while the lower one is from the Firefox browser.

Fig. 14: Tor browser displaying circuit

Fig. 15: Wireshark sniffing eth0 interface

A. APPENDIX A 41

Fig. 16: Tor browser displaying circuit

Fig. 17: Wireshark sniffing eth0 interface

42 Denis Berger, Mouad Lemoudden, and William J Buchanan

Listing 1.5: Chutney configuration file

Authority1 = Node(tag="a1", authority=1, relay=1, torrc="authority.tmpl")
Authority2 = Node(tag="a2", authority=1, relay=1, torrc="authority.tmpl")

GuardRelay1 = Node(tag="g1", relay=1, guard=1, torrc="relay.tmpl")
GuardRelay2 = Node(tag="g2", relay=1, guard=1, torrc="relay.tmpl")
GuardRelay3 = Node(tag="g3", relay=1, guard=1, torrc="relay.tmpl")

MiddleRelay1 = Node(tag="m1", relay=1, middle=1, onion_service =1, torrc="
relay.tmpl")

MiddleRelay2 = Node(tag="m2", relay=1, middle=1, rendezvous =1, torrc="relay.
tmpl")

ExitRelay1 = Node(tag="e1", relay=1, exit=1, torrc="relay.tmpl")
ExitRelay2 = Node(tag="e2", relay=1, exit=1, torrc="relay.tmpl")

NODES = [Authority1 , Authority2 , GuardRelay1 , GuardRelay2 , GuardRelay3 ,
MiddleRelay1 , MiddleRelay2 , ExitRelay1 , ExitRelay2]

ConfigureNodes(NODES)

Fig. 18: Nyx overview

A. APPENDIX A 43

Listing 1.6: Listing of files generated by node type (chutney)

000a1 (Directory authority)
fingerprint
fingerprint -Ed25519
keys
authority_certificate
authority_identity_key
authority_signing_key
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc

004g3 (Guard relay)
fingerprint
fingerprint -Ed25519
keys
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc

005m1 (Middle relay)
fingerprint
fingerprint -Ed25519
keys
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc

007e1 (Exit relay)
fingerprint
fingerprint -Ed25519
keys
Ed25519_master_id_public_key
Ed25519_master_id_secret_key
Ed25519_signing_cert
Ed25519_signing_secret_key
secret_id_key
secret_onion_key
secret_onion_key_ntor
lock
torrc

44 Denis Berger, Mouad Lemoudden, and William J Buchanan

Listing 1.7: Directory authority torrc file

TestingTorNetwork 1

PathsNeededToBuildCircuits 0.35
TestingDirAuthVoteExit $D36D51189EC2112507DDB293FC166C5E5ADA9B91 ,

$3E5729E0BE77AAD422BE2D95D72200EF01D1F29F
TestingDirAuthVoteExitIsStrict 1
TestingDirAuthVoteHSDir $BD452B626D1A453BB3E557B363CEC39F1E63D089 ,

$CCE340CBBFFA07C8E434261FFCA5AB457DD06217 ,
$D36D51189EC2112507DDB293FC166C5E5ADA9B91

TestingDirAuthVoteHSDirIsStrict 1
TestingDirAuthVoteGuard $84C8BDC0ECB2A6F7B536A2C6696DE0ADE8AC09A9 ,

$139726CAC0132D62C1D6E5E2F306315CCFE857A9 ,
$A0595788A046B7B2DF48B04A02C262DC525A82E2 ,
$691B61F16F6D48F65183AF7A39BC789645C14C49 ,
$2EEB5B771A2A177EC0D184D410DDB4F153FF354F

TestingDirAuthVoteGuardIsStrict 1
V3AuthNIntervalsValid 2
V3BandwidthsFile /home/ubuntu /000a1/bwfile.v3bw

MiddleNodes $691B61F16F6D48F65183AF7A39BC789645C14C49 ,
$CCE340CBBFFA07C8E434261FFCA5AB457DD06217

DataDirectory /home/ubuntu /000a1
RunAsDaemon 1
ConnLimit 60
Nickname test000a1
ShutdownWaitLength 2
DisableDebuggerAttachment 0

AddressDisableIPv6 1
ControlPort 8000
ControlSocket /home/ubuntu /000a1/control
CookieAuthentication 1
PidFile /home/ubuntu /000a1/pid

Log notice file /home/ubuntu /000a1/notice.log
Log info file /home/ubuntu /000a1/info.log
Log debug file debug.log
ProtocolWarnings 1
SafeLogging 0
LogTimeGranularity 1

AuthoritativeDirectory 1
V3AuthoritativeDirectory 1
ContactInfo auth0@test.test
DirAuthority test000a1 orport =5100 no-v2 v3ident =4832

D1130A4F32E4410E42D33C36B6B87EC37C27 192.168.1.15:7100
EA30E583EF155930ACE4144D0CFA800725C65D46

DirAuthority test001a2 orport =5101 no-v2 v3ident =43
DE83E17AB616F71A36394D519732767B2CEF50 192.168.1.16:7101
BD452B626D1A453BB3E557B363CEC39F1E63D089

SocksPort 9050
OrPort 5100
Address 192.168.1.15
DirPort 7100
ExitRelay 0
DisableNetwork 0
ConfluxEnabled 0
TestingAuthKeyLifetime 3 months
ServerDNSAllowNonRFC953Hostnames 1
ServerDNSDetectHijacking 0

A. APPENDIX A 45

Listing 1.8: Guard relay torrc file

TestingTorNetwork 1
PathsNeededToBuildCircuits 0.45
TestingDirAuthVoteExit *
TestingDirAuthVoteHSDir *
V3AuthNIntervalsValid 2

TestingDirAuthVoteGuard *
TestingMinExitFlagThreshold 0

DataDirectory /home/ubuntu /002g1
RunAsDaemon 1
ConnLimit 60
Nickname test002g1
ShutdownWaitLength 2
DisableDebuggerAttachment 0
AddressDisableIPv6 1
ControlPort 8002
ControlSocket /home/ubuntu /002g1/control
CookieAuthentication 1
PidFile /home/ubuntu /002g1/pid
Log notice file /home/ubuntu /002g1/notice.log
Log info file /home/ubuntu /002g1/info.log
ProtocolWarnings 1
SafeLogging 0
LogTimeGranularity 1

DirAuthority test000a1 orport =5100 no-v2 v3ident =4832
D1130A4F32E4410E42D33C36B6B87EC37C27 192.168.1.15:7100
EA30E583EF155930ACE4144D0CFA800725C65D46

DirAuthority test001a2 orport =5101 no-v2 v3ident =43
DE83E17AB616F71A36394D519732767B2CEF50 192.168.1.16:7101
BD452B626D1A453BB3E557B363CEC39F1E63D089

OrPort 5102
Address 192.168.1.17
ExitRelay 0
DisableNetwork 0
ConfluxEnabled 0

46 Denis Berger, Mouad Lemoudden, and William J Buchanan

Listing 1.9: Client torrc file

TestingTorNetwork 1

DirAuthority test000a1 orport =5100 no-v2 v3ident =4832
D1130A4F32E4410E42D33C36B6B87EC37C27 192.168.1.15:7100
EA30E583EF155930ACE4144D0CFA800725C65D46

DirAuthority test001a2 orport =5101 no-v2 v3ident =43
DE83E17AB616F71A36394D519732767B2CEF50 192.168.1.16:7101
BD452B626D1A453BB3E557B363CEC39F1E63D089

SocksPort 9050
DisableNetwork 0
CircuitBuildTimeout 60
LearnCircuitBuildTimeout 0
DataDirectory /var/lib/tor
LogTimeGranularity 1

NumEntryGuards 1
UseEntryGuards 0
ClientOnly 1

SocksPolicy accept 192.168.0.0/16
RunAsDaemon 1
ConfluxEnabled 0

Listing 1.10: Tor Browser command

$ TOR_SKIP_LAUNCH =1 TOR_SOCKS_PORT =9050 TOR_SKIP_CONTROLPORTTEST =1 /home/
$USERNAME /. local/share/torbrowser/tbb/x86_64/tor -browser/Browser/start -
tor -browser

Listing 1.11: Tor Browser command

for i in {1..500}; do
curl --socks5 -hostname 127.0.0.1:9050 -w "%{ time_total}, " -o /dev/null -

X POST \
-H "Content -Type: application/json" \
-H "User -Agent: BenchmarkingAgent /1.0" \
-H "Accept: application/json" \
-d ’{

"cookie ": "value111111111111111111111111",
"username ": "testuser",
"password ": "76478736456728374637823764637382" ,
"session_id ": "abc123xyz4567890",
"data": {

"field1 ": "Some random text to increase payload size 1",
"field2 ": "Some random text to increase payload size 2",
"field3 ": "Some random text to increase payload size 3"

}
}’ \
-s https :// local.tor/postpath
done

A. APPENDIX A 47

References

1. Planetlab europe. https://www.planet-lab.eu/. Accessed: 2024-11-13.
2. Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on the third
round of the nist post-quantum cryptography standardization process, 9 2022.

3. Gorjan Alagic, Maxime Bros, Pierre Ciadoux, David Cooper, Quynh Dang, Thinh
Dang, John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene
Peralta, Ray Perlner, Angela Robinson, Hamilton Silberg, Daniel Smith-Tone, and
Noah Waller. Status report on the first round of the additional digital signature
schemes for the nist post-quantum cryptography standardization process. NIST
Internal Report 8528, National Institute of Standards and Technology, October
2024.

4. Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier. A com-
prehensive survey on post-quantum TLS. IACR Communications in Cryptology,
1(2), 2024.

5. Elaine Barker, Quynh Dang, and Nadya Hanon. NIST Special Publication 800-
57 Part 1, Revision 5: Recommendation for Key Management, Part 1: General.
Technical Report 800-57pt1r5, National Institute of Standards and Technology,
2020. Accessed: 2024-10-23.

6. Jon Barton, William Buchanan, Nikolaos Pitropakis, Sarwar Sayeed, and Will
Abramson. Post Quantum Cryptography Analysis of TLS Tunneling on a Con-
strained Device. pages 551–561, 01 2022.

7. Yaser Baseri, Vikas Chouhan, Ali Ghorbani, and Aaron Chow. Evaluation frame-
work for quantum security risk assessment: A comprehensive study for quantum-
safe migration. 4 2024.

8. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifiable zero-
knowledge and post-quantum signatures from VOLE-in-the-head. Cryptology
ePrint Archive, Paper 2023/996, 2023.

9. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van
Vredendaal. NTRU prime: reducing attack surface at low cost. Cryptology ePrint
Archive, Paper 2016/461, 2016.

10. Joppe W. Bos, Olivier Bronchain, Frank Custers, Joost Renes, Denise Verbakel,
and Christine van Vredendaal. Enabling FrodoKEM on embedded devices. Cryp-
tology ePrint Archive, Paper 2023/158, 2023.

11. Joppe W Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS
- Kyber: A CCA-Secure Module-Lattice-Based KEM. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

12. Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH.
Cryptology ePrint Archive, Paper 2022/975, 2022.

13. Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan. AVRN-
TRU: Lightweight ntru-based post-quantum cryptography for 8-bit avr microcon-
trollers. In DATE 2021: Design, Automation and Test in Europe. IEEE, 2021.

14. DAST and ESnet Development Team. iPerf: The Network Bandwidth Measurement
Tool. NLANR and ESnet, 2003. Available at https://github.com/esnet/iperf.

15. Jean Paul Degabriele and Martijn Stam. Untagging tor: A formal treatment of
onion encryption. In Lecture Notes in Computer Science (including subseries Lec-

https://www.planet-lab.eu/
https://github.com/esnet/iperf

48 Denis Berger, Mouad Lemoudden, and William J Buchanan

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
10822 LNCS, pages 259–293. Springer Verlag, 2018.

16. Roger Dingledine and Paul Syverson. Tor: The second-generation onion router,
2004.

17. Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A crypto-
graphic analysis of the tls 1.3 handshake protocol. Journal of Cryptology, 34, 10
2021.

18. Edward Eaton, Douglas Stebila, and Roy Stracovsky. Post-quantum key-blinding
for authentication in anonymity networks. https://eprint.iacr.org/2021/963.
pdf, 2021. A compressed version appears in the proceedings of Latincrypt 2021.

19. Kelesidis Evgnosia-Alexandra. A note on post quantum onion routing. Cryptology
ePrint Archive, Paper 2021/111, 2021.

20. Alexander Hansen Færøy. Boringssl tor fork. https://gitlab.torproject.org/

ahf/tor/-/commits/ahf%2Fboringssl. Branch: ahf/boringssl.
21. Satrajit Ghosh and Aniket Kate. Post-quantum forward-secure onion routing (fu-

ture anonymity in today’s budget). Cryptology ePrint Archive, Paper 2015/008,
2015.

22. Craig Gidney and Martin Eker̊a. How to factor 2048 bit rsa integers in 8 hours
using 20 million noisy qubits. Quantum, 5:433, April 2021.

23. Ian Goldberg and David R Cheriton. On the security of the tor authentication
protocol, 2006.

24. Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity and one-way
authentication in key exchange protocols, 2012.

25. Lamps Working Group. Stateless hash-based digital signature algorithms (slh-
dsa) in x.509 public key infrastructure (pki). Internet-Draft draft-ietf-lamps-x509-
slhdsa-02, Internet Engineering Task Force, October 2024. Work in Progress.

26. Lov K. Grover. A fast quantum mechanical algorithm for database search, 1996.
27. Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Imple-

menting grover oracles for quantum key search on aes and lowmc. In EUROCRYPT
2020, 2020. International Association for Cryptologic Research.

28. Panos Kampanakis and Will Childs-Klein. The impact of data-heavy, post-
quantum TLS 1.3 on the time-to-last-byte of real-world connections. Cryptology
ePrint Archive, Paper 2024/176, 2024.

29. Panos Kampanakis and Michael Kallitsis. Faster post-quantum tls handshakes
without intermediate ca certificates. In Shlomi Dolev, Jonathan Katz, and Amnon
Meisels, editors, Cyber Security, Cryptology, and Machine Learning, pages 337–355,
Cham, 2022. Springer International Publishing.

30. Ehren Kret and Rolfe Schmidt. The pqxdh key agreement protocol. https:

//signal.org/docs/specifications/pqxdh/pqxdh.pdf, May 2023. Revision 3,
updated on 2024-01-23.

31. Alvary Kefas Kwala, Shri Kant, and Alpna Mishra. Comparative analysis of lattice-
based cryptographic schemes for secure iot communications. Discover Internet of
Things, 4(13), 2024.

32. Adam Langley. CECPQ2: Post-Quantum Confidentiality in TLS, 2018. Accessed:
2024-09-14.

33. Sebastian Lauer, Kai Gellert, Robert Merget, Tobias Handirk, and Jörg Schwenk.
T0RTT: Non-Interactive Immediate Forward-Secret Single-Pass Circuit Construc-
tion. Proceedings on Privacy Enhancing Technologies, 2020(2):336–357, 2020.

34. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier Blazy,
Jurjen Bos, Jean-Christophe Deneuville, Philippe Gaborit Arnaud Dion, Jérôme

https://eprint.iacr.org/2021/963.pdf
https://eprint.iacr.org/2021/963.pdf
https://gitlab.torproject.org/ahf/tor/-/commits/ahf%2Fboringssl
https://gitlab.torproject.org/ahf/tor/-/commits/ahf%2Fboringssl
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf

A. APPENDIX A 49

Lacan, Edoardo Persichetti, Jean-Marc Robert, Pascal Véron, and Gilles Zémor.
Hamming quasi-cyclic (hqc) fourth round specification. Technical report, Sand-
boxAQ, Univ. of Limoges, TII, Ecole Polytechnique, Worldline, ENAC, ISAE Su-
paero, Florida Atlantic Univ., Univ. of Toulon, Univ. of Bordeaux, February 2024.
Updated version.

35. Q. Misell. Automated certificate management environment (acme) extensions for
”.onion” special-use domain names. Internet-Draft draft-ietf-acme-onion-04, Inter-
net Engineering Task Force (IETF), November 2024. Work in Progress.

36. Dustin Moody, Ray Perlner, Andrew Regenscheid, Angela Robinson, and David
Cooper. Transition to post-quantum cryptography standards. NIST Internal Re-
port 8547, National Institute of Standards and Technology, November 2024.

37. Jiaxin Pan, Doreen Riepel, and Runzhi Zeng. Key exchange with tight (full)
forward secrecy via key confirmation. Cryptology ePrint Archive, Paper 2024/361,
2024.

38. Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. Tighter security for generic
authenticated key exchange in the QROM. Cryptology ePrint Archive, Paper
2023/1380, 2023.

39. Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-
quantum cryptography in tls. In Jintai Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography, pages 72–91, Cham, 2020. Springer International Publish-
ing.

40. Trevor Perrin. The Noise Protocol Framework, 2018. Revision 34, Status: official.
41. Richard Preston. Applying grover’s algorithm to hash functions: A software per-

spective. The MITRE Corporation, 2 2022.
42. Open Quantum Safe Project. Open quantum safe library: liboqs. https:

//openquantumsafe.org. Accessed: 2024-10-08.
43. Mohammad Saidur Rahman, Stephen DiAdamo, Miralem Mehic, and Charles

Fleming. Quantum secure anonymous communication networks, 2024.
44. Gina M Raimondo and Laurie E Locascio. FIPS 203 federal information pro-

cessing standards publication module-lattice-based key-encapsulation mechanism
standard. NIST, National Institute of Standards and Technology, page 47, 2024.

45. Gina M Raimondo and Laurie E Locascio. FIPS 204 federal information process-
ing standards publication module-lattice-based digital signature standard. NIST,
National Institute of Standards and Technology, page 55, 2024.

46. Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Request
for Comments 8446, August 2018. Standards Track.

47. Phillip Rogaway and Yusi Zhang. Onion-AE: Foundations of Nested Encryption.
Proceedings on Privacy Enhancing Technologies, pages 85–104, 2018.

48. John M. Schanck, William Whyte, and Zhenfei Zhang. Circuit-extension hand-
shakes for tor achieving forward secrecy in a quantum world. Cryptology ePrint
Archive, Paper 2015/287, 2015.

49. Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-Quantum TLS With-
out Handshake Signatures. Technical Report 2020/534, IACR Cryptology ePrint
Archive, 2020. Accessed: 2024-10-8.

50. Peter Schwabe, Douglas Stebila, and Thom Wiggers. More efficient post-quantum
KEMTLS with pre-distributed public keys. Cryptology ePrint Archive, Paper
2021/779, 2021.

51. P.W. Shor. Algorithms for quantum computation: discrete logarithms and factor-
ing. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, 1994.

https://openquantumsafe.org
https://openquantumsafe.org

50 Denis Berger, Mouad Lemoudden, and William J Buchanan

52. Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. Post-quantum
authentication in TLS 1.3: A performance study. Cryptology ePrint Archive, Paper
2020/071, 2020.

53. Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hybrid key exchange in tls
1.3. Internet-Draft draft-ietf-tls-hybrid-design-11, Internet Engineering Task Force,
October 2024.

54. Tor metrics. on the 20/9/2024.
55. Tor specifications. Accessed on the 21/9/2024.
56. Tor proposals. Accessed on the 18/9/2024.
57. Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu. Towards

understanding the runtime performance of rust. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’22), pages 1–6, New York, NY, USA, 2022. ACM.

	Post Quantum Migration of Tor

