
Attacking Single-Cycle Ciphers on Modern
FPGAs

featuring Explainable Deep Learning

Mustafa Khairallah1,2 and Trevor Yap1

1 Nanyang Technological University, Singapore, Singapore
2 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden

{m.khairallah,trevor.yap}@ntu.edu.sg

Abstract. In this paper, we revisit the question of key recovery using
side-channel analysis for unrolled, single-cycle block ciphers. In particu-
lar, we study the Princev2 cipher. While it has been shown vulnerable in
multiple previous studies, those studies were performed on side-channel
friendly ASICs or older FPGAs (e.g., Xilinx Virtex II on the SASEBO-G
board), and using mostly expensive equipment. We start with the goal of
exploiting a cheap modern FPGA and board using power traces from a
cheap oscilloscope. Particularly, we use Xilinx Artix 7 on the Chipwhis-
perer CW305 board and PicoScope 5000A, respectively.
We split our study into three parts. First, we show that the new set-up
still exhibits easily detectable leakage, using a non-specific t-test. Second,
we replicate attacks from older FPGAs. Namely, we start with the attack
by Yli-Mäyry et al., which is a simple chosen plaintext correlation power
analysis attack using divide and conquer. However, we demonstrate that
even this simple, powerful attack does not work, demonstrating a peculiar
behavior. We study this behavior using a stochastic attack that attempts
to extract the leakage model, and we show that models over a small part
of the state are inconsistent and depend on more key bits than what
is expected. We also attempt classical template attacks and get similar
results.
To further exploit the leakage, we employ deep learning techniques and
succeed in key recovery, albeit using a large number of traces. We per-
form the explainability technique called Key Guessing Occlusion (KGO)
to detect which points the neural networks exploit. When we use these
points as features for the classical template attack, although it did not re-
cover the secret key, its performance improves compared to other feature
selection techniques.

Keywords: Deep Learning · Side-Channel Analysis · Princev2 · Low
Latency · FPGA

1 Introduction

Block ciphers with unrolled implementations have gained popularity over the
recent years with the emergence of ciphers such as Prince [7,8] (with both its

2 M. Khairallah and T. Yap

versions), Bipbip [4], SCARF [10], Speedy [14], Orthros [3], Gleeok [2], and
several others. These ciphers are typically designed with smaller security margins
and are popular in applications such as memory and/or cache encryption. In
these applications, the top priority is to perform the encryption and decryption
as fast as possible. Unlike older and more classical designs, these block ciphers are
typically implemented such that they take only one clock cycle using dedicated
hardware.

This strategy presents a challenge for side-channel adversaries. In fact, un-
rolling the implementation of a cipher (performing several rounds of the block
cipher in one clock cycle using dedicated hardware) provides some basic resis-
tance against side-channel attacks [6]. However, advanced attacks are still feasi-
ble [19,20,16,21].3 Nonetheless, the demonstrated attacks have been significantly
more complicated than attacks on classical unprotected ciphers.

While investigating these attacks, we have noticed that the majority of them
were performed on FPGAs that are two decades old, with the exception of [16],
where the attack was performed using a dedicated side-channel friendly ASIC.
More importantly, the traces were acquired using expensive equipment that is
typically found in well-established labs. More and more attacks on other ciphers
are being performed using cheaper equipment that can even potentially be oper-
ated in the field. Thus, we set out to investigate the vulnerability of the Princev2
cipher to side-channel analysis using cheaper setups. We use the Chipwhisperer
CW305 board with Xilinx Artix 7 FPGA and the PicoScope portable oscilloscope
for acquiring power traces. Compared to the oscilloscopes used in previous ex-
periments, the PicoScope has a significantly lower sampling frequency and cost.
It is hard to tell apriori whether the sampling frequency is even sufficient for the
task at hand. Typically, we would use the Nyquist criterion to determine if the
sampling frequency is sufficient relative to the measured signal. However, in the
case of unrolled implementations, the measured signal is not related to the clock
frequency but rather to the delay of the individual gates, as we hope to be able
to isolate different parts of the execution.

At the end of our study, we answer our research question in the affirmative:
even with this cheap setup, the implementation is still vulnerable to side-channel
attacks with reasonable resources. However, the road to this answer is more in-
teresting than the destination. Quickly, we found out that the traces still exhibit
observable leakage using Test Vector Leakage Assessment (TVLA), with very
few traces. However, when applying known attacks, particularly the correlation
power analysis in [19], we observe a peculiar behavior. While the attack con-
verged, indicating a uniquely recovered key, it turned out the recovered key was
wrong. This behavior was consistent with different parameters and with differ-
ent leakage models: Hamming distance, Hamming weight, and Identity leakage
models. To understand what is happening, we diverged our attention to a model
extraction profiling attack, namely the stochastic attack [17]. The stochastic at-
tack requires training on known keys and assumes only a polynomial leakage
model. For instance, a Hamming weight leakage model is a polynomial leakage

3 This is a comprehensive but non-exhaustive list.

Attacking Single-Cycle Ciphers on Modern FPGAs 3

model where all the bits of the targeted value contribute linearly and equally to
the leakage. However, we again observed that this polynomial model does not
hold. When we train with a fixed known key, we see that the model changes
depending on the value of the key, and when we train with many random keys,
we get inconsistent models.

Subsequently, we opted to use more modern and advanced tools: Deep-
Learning-based Side-Channel Analysis (DLSCA). It has been shown that DLSCA
has obtained significant performance over classical side-channel attacks [15,5].
Specifically, in the presence of jitter/desynchronized and masking countermea-
sures, it has been demonstrated that DLSCA can recover the secret key without
much preprocessing needed [9]. In fact, using a single-cycle cipher introduces
natural desynchronization [6]. Therefore, DLSCA is the most suitable tool for
exploiting the leakage within the traces. To the best of our knowledge, this is the
first time DLSCA has been applied to traces of an unrolled, single-cycle block
cipher. Furthermore, we utilize an explainability technique called Key Guess-
ing Occlusion (KGO) [18] on the well-performing Deep Neural Network (DNN).
This allows us to understand which timestamp/sample points the DNN is ex-
ploiting. We further use these relevant sample points for template attacks. The
performance of the classical template attack improves compared to other feature
selection tools or without any feature selection tools.

Part of the outcome of our study is the dataset that can be used to study
advanced template attacks. To help further investigation, the dataset can be
found at

https://shorturl.at/yLIMR

Outline. The paper is organized as follows: In Section 2, we give a brief descrip-
tion of the Princev2 cipher and the targeted operation. In Section 3, we show
the vulnerability of the implementation to TVLA. In Section 4, we apply corre-
lation power analysis and show the odd behavior that the traces exhibit. While
in Section 5, we study this behavior in more detail using the stochastic attack.
Next, the use of DLSCA is explored in Section 6. Finally, we conclude the paper
in Section 7.

2 The Princev2 block cipher

Princev2 [8] is an update to the design of Prince [7]. The only difference between
the two ciphers is in the key schedule. Thus, side-channel attacks, at least on the
first round, are still applicable. Princev2 has a 64-bit block size and 128-bit key
size. It is designed to have very small encryption critical path. The key is split
into two 64-bit halves, and the round keys alternate between these two halves.
It consists of 10 iterative rounds and one middle round. The first five rounds are
of the form

AddRoundKey → Sbox → LinearLayer

https://shorturl.at/yLIMR

4 M. Khairallah and T. Yap

while the last 5 rounds are of the form

LinearLayer → Sbox−1 → AddRoundKey.

The linear layer is an involution, so its inverse is the same as itself. Thus, the
last 5 rounds are essentially the inverse of the first 5 rounds if the round keys
were the same. The middle round is of the form

Sbox → LinearLayer → Sbox−1.

The block cipher is designed with this structure so that the same circuit can be
used for both encryption and decryption. In order to recover the full secret key,
we need to recover two different round keys. In our attacks, we target the first
two round keys. In particular, our attacks target the output of the operation:

Sbox(K ⊕ P),

where K and P are 4-bit variables. In the classical attacks (Section 4 and 5), we
target one nibble at a time. In other words, we need one set of traces for each
targetted nibble. In the DLSCA (Section 6), we collect one set of traces which
can be used to attack different nibbles.

3 Experimental set-up and detecting non-specific leakage

For our experiments, we use the Artix 7 xc7a35t FPGA, on the ChipWhisperer
CW305 development board. We use PicoScope PS5000a as our oscilloscope. We
use two oscilloscope channels, one for triggering, set at a range of 20V, and
one for measurement, set at a range of 200mV. The FPGA runs at 10 MHz
and the oscilloscope is set to time-base 2 (4ns sampling interval). This implies
that each clock cycle is represented in the trace approximately 25 samples. In
order to verify that the setup gives meaningful traces and that we can detect
leakage at all, we perform Welsh’s t-test using the TVLA framework. We used
1000 traces that randomly switch between random and fixed plaintexts, with 483
traces with a fixed plaintext and 517 random plaintexts. As expected, we can
easily detect non-specific leakage with t > 20. The result is shown in Figure 1.
Despite this positive and expected result, it is well known that TVLA does not
give an indication of how the observable leakage can be exploited in a meaningful
attack. In the remainder of the paper, we will attempt to exploit the leakage,
first using known attacks and then using DLSCA.

Several side-channel attacks on single-cycle ciphers have been proposed over
the years. [19,20,16,21] is a comprehensive (but non-exhaustive) list of exam-
ples. The main challenge in attacking single-cycle ciphers is their unrolled com-
binational circuit. This means that the measured power includes the switching
activity from all the gates of the combinational circuit. On the other hand, side-
channel attacks achieve the best results when we are able to perform attacks in
a divide-and-conquer manner: the attacker targets a small part of the computa-
tion at a time, e.g. one substitution box (sbox) or a handful of sboxes. In this

Attacking Single-Cycle Ciphers on Modern FPGAs 5

0 250 500 750 1000 1250 1500 1750 2000
Time (ns)

80

60

40

20

0

20

40

Vo
lta

ge
 (m

V)

Fig. 1. TVLA result against Princev2. Green is the t value, blue is the mean of all the
fixed plaintext traces and orange is the mean of all the random plaintext traces. The
red lines are set at ±4.5, the widely accepted standard for significant leakage.

framework, everything that is simultaneous to the targeted operation is seen as
algorithmic noise. Thus, if we target one sbox in a single-cycle implementation,
almost the whole cipher contributes to the noise. With a high-resolution, power-
ful oscilloscope, we can somehow reduce this effect by having more samples per
cycle and somewhat having a better resolution in identifying the logic propaga-
tion patterns in the trace. Our setup is, however, geared towards studying the
other end of this spectrum: a cheap low-resolution oscilloscope, a cheap board,
and relatively high-frequency implementation. While the TVLA result shows sig-
nificant observable leakage, it also shows that during the first clock cycle after
the trigger, the power consumption is quite high with significant peaks.

4 Correlation Power Analysis

Yli-Mäyry et al. [19] proposed a CPA attack on prince using the Tektronix
DPO7254 oscilloscope with 0.2ns sampling interval and Xilinx Virtex II FPGA.
Information on the clock frequency does not seem to be reported. They were
successful in recovering one round key with around 50, 000 traces. Yli-Mäyry et
al. [20] proposed a new technique for reducing the algorithmic noise. Instead
of collecting one set of traces with random plaintexts, they collected a separate
set of traces for each targeted sbox, where the plaintext nibble corresponding
to that sbox varies randomly, and the rest are set to zeros. This reduces the
switching activity and algorithmic noise in the first sbox layer. They used the
same oscilloscope as [19], but set to an even higher sampling frequency: 0.025ns
sampling interval. They were able to find the first round key with 16×500 traces.

6 M. Khairallah and T. Yap

This is significantly better than [19]. They also attack the second round key but
the number of traces increases by 10 − 40×. The authors seem to attribute
the improved performance of [20] compared to [19] solely to the new strategy.
While the strategy plays a major role, it should not be missed that the sampling
frequency is increased by 8 folds. We also note that both papers use the Sasebo-G
board, with Xilinx Virtex II FPGA4. The Sasebo-G board is heavily engineered
to ease side-channel analysis. The Virtex II board is quite outdated in 2024.

Moos [16] studied the problem of attacking Princev2 on a custom 40nm
side-channel-friendly ASIC. He performed two studies. The first is based on dy-
namic power analysis, using Teledyne LeCroy WaveRunner 8254M and 0.025ns
sampling interval. He also used a high-frequency electromagnetic probe to get
high-resolution power traces. In this case, he was able to recover the key with
about 500, 000 traces. In the second study, he targeted static power. He used
Teledyne LeCroy HRO 66Zi and 0.5ns sampling interval. He was able to recover
most of the first round key using an estimate of 16× 50, 000 traces.

While these attacks are powerful, they are also quite costly. Each of the three
oscilloscopes used in these experiments costs upwards of 10k Euros. Besides,
these oscilloscopes are only useful for attacks that can be performed in a lab, as
they lack portability. The oscilloscope we use (PicoScope 5000a) is portable, can
be powered by a laptop and costs < 2.5k Euros. We also needed an SMA-BNC
cable to interface between the oscilloscope and the CW305 board, which cost
about 30 Euros. We set to find out if the previous attacks are effective in this
cheap setting. We performed the CPA of [20]. A random fixed key is generated
at the beginning of the experiment and loaded to the FPGA. Next, we select
which nibble we want to target and set all other plaintext nibbles to 0. When
targeting the nibble at index i, the plaintext for trace j is on the form:

0x000000000000000rj << (4i)

where rj is a random nibble.

We collected 100, 000 traces per nibble and observed that the CPA attack
converges towards one key guess. It seemed to converge with the maximum
correlation coefficient ≈ 0.08. However, upon further inspection, it seemed that
the attack was always converging but not the correct value. For instance, the
results for one nibble for each key guess are displayed in Figure 2, with 8 as
the key guess with the highest correlation coefficient. The figure depicts the first
two clock cycles and corresponds to the first two peaks in the power traces in
Figure 1. There is also a clear ordering of the guess throughout the computation.
Figure 3 shows the maximum correlation coefficient for each key nibble guess.
Showing the correct guess should have been 0, but the attack guessed 8.

We tried this experiment numerous times and could not identify any pattern
for why this behavior was happening. It seems that the wrongly guessed key
value for the same nibble location and the same correct key nibble value also

4 [20] lists the board as Sasebo-G II, but Sasebo-G II came with Virtex 5, not Virtex
II.

Attacking Single-Cycle Ciphers on Modern FPGAs 7

0 25 50 75 100 125 150 175 200
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 2. Correlation coefficient for a key nibble in the first two clock cycles.

0 2 4 6 8 10 12 14 160.00

0.02

0.04

0.06

0.08

Fig. 3. Maximum correlation coefficient for a key nibble in the first two clock cycles.
Red is the guessed key nibble, while green is the correct key nibble.

change by changing the full key, while it remains the same for the same key. In
other words, consider the two round keys

0x0ae6568fd3cfa120

0xf27667ef4441a520

with plaintexts

0x000000000000000rj .

Both keys have a targeted key nibble of value 0, but during the attack, each key
will lead to a different wrong guess. Figures 2 and 3 have been generated using
the Hamming distance model at the output of the first sbox layer. However, the
same behavior was observed using the Hamming weight model.

8 M. Khairallah and T. Yap

5 Stochastic Attacks

To get one step closer to understanding the root cause of the behavior observed
in the CPA attack, we perform a stochastic attack. During CPA, we assume a
specific leakage model, such as Hamming weight or Hamming distance. During
the stochastic attack, we assume a polynomial leakage model, typically linear.
In particular, if the target variable is

X = S(K ⊕ P)

and X consists of 4 bits x3, x2, x1 and x0, then we assume the model

L(X) =

15∑
i=0

aix
i0
0 xi1

1 xi2
2 xi3

3

where ai ∈ R and i3i2i1i0 is the bit representation of the integer i for all 0 ≤ i ≤
15. If ai = 0 for every i ̸∈ {0, 1, 2, 4, 8}, then the model is linear. The stochastic
attack is a model extraction attack. In other words, its goal is not to recover a
secret key but to recover the hardware leakage model, assuming it is a polynomial
model. We collect many traces with known values of X. For the target nibble,
the stochastic attack performs a form of regression to recover the coefficients
ai for the values of X (which are known) and the measured traces. We refer
to [17] for full details on the computational part of the attack. If the Hamming
weight model is correct, then we would expect a0 ̸= 0, a1 ≈ a2 ≈ a4 ≈ a8 ̸= 0
and ai ≈ 0 for the other values of i. Our stochastic analysis was performed with
10, 000 traces per experiment. It shows two peculiar observations:

20 40 60 80 100
Time (ns)

20

15

10

5

0

5

10

15

20

Vo
lta

ge
 (m

V)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 4. Example of the model extracted by the stochastic attack

1. The model returned by the stochastic analysis is non-linear. For instance,
when we use the key

0x398c46c68f4664cd6afc2ccca4b2eb9f

Attacking Single-Cycle Ciphers on Modern FPGAs 9

and vary the target plaintext nibble randomly, we get a uniform distribution
for X. The model we get is shown in Figure 4. The blue cropped curve
corresponds to a0, which is the constant part of the polynomial. We expect
4 more curves to have significant non-zero values, but we can see that this
is not the case.

2. By changing the key values during the training phase, we get different leakage
models. This is demonstrated in Figures 5 and 6, by showing the linear part
of the model for different keys used in the training, with both random and
chosen examples. Note that while in these experiments, we use one key for
each iteration, the plaintext varies uniformly at random for each trace. Thus,
the distribution of X is the same for all experiments.

Moreover, changing the key for each trace does not help achieve a reliable
model either. In Figure 7, we give three identical experiments targeting the same
nibble and varying the full key randomly for each trace, each with 10, 000 traces.
We observe that the three experiments give different weights for different bits.
The observations from the TVLA test, CPA attack and stochastic attack lead
us to conclude that while the traces from our setup include enough information
for observable non-specific leakage, they do not include enough information to
be exploited by conventional attacks, both profiled and non-profiled. This begs
the question: is the implementation secure against our attack setup? We answer
this question negatively in the next section, using DLSCA.

6 Deep Learning-based Side-Channel Attack

In recent years, DLSCA has garnered significant interest due to its impressive
performance despite the presence of hiding and masking countermeasures. There-
fore, in this section, we explore the capability of DLSCA on unrolled, single-cycle
block ciphers. We will first recall the profiling attack.

6.1 Profiling Attack

Suppose Z and T to be random variables of the sensitive variable and traces,
respectively. There are two phases in a profiling attack: the profiling phase and
the attack phase. In the profiling phase, a clone device is used to build a distin-
guisher F . The adversary either has the knowledge of the key or can manipulate
the key of the clone device. Profiling traces of a known set of random public
variables (plaintexts or ciphertexts) are then collected from the clone device to
build F . Next, in the attack phase, several attack traces (using another set of
known public variables) are collected using the target device. Then, the attack
traces are given to F to output a probability score for each hypothetical sensitive
value i.e., yi = F(ti) for each attack traces ti acquired from the target device.
For key recovery, the log-likelihood score for each key k ∈ K is calculated:

score(k) =

Na∑
i=1

log(yi[zi,k])

10 M. Khairallah and T. Yap

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(a) 0x0000000000000000000f000000000000

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(b) 0x0000000000000000000f0f0000000000

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(c) 0x0000000000000000000fff0f00000000

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(d) 0x0000000000000000000fff0f000000ff

Fig. 5. Different linear leakage models obtained for different chosen training keys.

Attacking Single-Cycle Ciphers on Modern FPGAs 11

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(a) 0xd126cb4b31a9956863561bdcc0832d62

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(b) 0x8e2541eac0e9d3e0ed868f23e166783c

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(c) 0xc272b2ae66d3a152e34e9bd3392f8f26

20 40 60 80 100
Time (ns)

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Vo
lta

ge
 (m

V)

0
1
2
3
4

(d) 0x0dbc6fda00c47de857c71be3629c4e12

Fig. 6. Different linear leakage models obtained for different random training keys.

12 M. Khairallah and T. Yap

20 40 60 80 100
Time (ns)

20

15

10

5

0

5

10

15

20

Vo
lta

ge
 (m

V)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(a)

20 40 60 80 100
Time (ns)

20

15

10

5

0

5

10

15

20

Vo
lta

ge
 (m

V)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(b)

20 40 60 80 100
Time (ns)

20

15

10

5

0

5

10

15

20

Vo
lta

ge
 (m

V)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(c)

Fig. 7. Different linear leakage models obtained from three experiments where the key
varies for each trace.

with Na as the number of attack traces used and zi,k = Crypt(pti, k) are the
hypothetical sensitive values based on the key k with pti being the corresponding
public variable to the trace ti. In this work, we set Crypt to be the sbox of
Princev2. The scores are then sorted in a guess vector, G = [G0, G1, . . . , G|K|−1]
where G0 is the most likely key candidate while G|K|−1 is the least likely key
candidate. The rank of the key is defined as the index of G. We define GE as
the average rank correct secret key. Therefore, we recover the key successfully
when GE = 0. Furthermore, we denote NTGE as the least number of attack
traces required to attain GE = 0.

For the classical template attack, the conditional probability Pr(T |Z = z)
is assumed to be a multivariate Gaussian distribution and uses Bayes’ Theorem
to build the distinguisher. On the other hand, for a typical profiled DLSCA, a

Attacking Single-Cycle Ciphers on Modern FPGAs 13

Table 1. Hyperparameter search space.

Hyperparameter Options

MLP

Number of Dense Layers 1 to 8 (step 1)
Neurons per layer 10, 20, 50, 100, 200

CNN

Convolution layers 1 to 4 (step 1)
Convolution filters 4 to 16 (step 4)

Kernel size 26 to 52 (step 2)
Padding 0 to 16 (step 2)

Pooling type Average or Max
Pooling size 2 to 10 (step 2)

Number of Dense Layers 1 to 8 (step 1)
Neurons per layer 10, 20, 50, 100, 200

Others

Batch size 100 to 1, 000 in a step of 100
Activation function ReLU, SeLU,ELU or tanh

Optimizer Adam or RMSprop
Learning Rate 1e−3, 1e−4, 5e−4, 1e−5, 5e−5

Weight Initializer Random Uniform or Glorot Uniform or He Uniform

DNN is trained as a distinguisher with traces as the input and sensitive values
as the labels [22,11].

6.2 Experimental Setting

Hyperparameter Search Space: Among the many different DNN architec-
tures, the Multilayer Perceptron (MLP) and Convolutional Neural Network
(CNN) are the most commonly used architecture within the side-channel do-
main [22,11,1]. We utilize random search, a popular hyperparameter tuning
strategy, sampling 100 DNN configurations from the defined hyperparameter
search space stated in Table 1. As with many works, we use the softmax activa-
tion function [13] in the last layer for every DNN used and train each DNN with
100 epochs using the categorical-cross entropy loss function.

Dataset: The dataset consists of 50, 000 profiling traces collected under random
key settings and 50, 000 attack traces obtained using a fixed key setting. We
truncate the traces such that it only includes the encryption portion ranging
from sample point 5 to 31.5 Each of the traces consists of 26 sample points. We
use the output sbox of the first round of Princev2 as the label for our attack.6

5 We also manage to recover the secret key with full traces using DLSCA successfully.
6 We have also applied its Hamming weight as the label. However, we see superior
results with just the output of the sbox and will only present these results here.

14 M. Khairallah and T. Yap

6.3 Experimental Results

We target all 16 nibbles of the first round key and present our results in Table 2.
Using DLSCA, we successfully recovered the first round keys for all nibbles using
fewer than 20, 000 attack traces. Nibbles 3 and 8 were the easiest to attack, with
a NTGE of less than 17, 000. In contrast, nibble 14 proved the most challenging
to recover, as the MLP failed to retrieve the key, while the CNN required an
NTGE of 19, 997.

Next, we apply DLSCA to all 16 nibbles of the second-round key and display
the results in Table 3. Similar to the first-round keys, we successfully recover all
nibbles using fewer than 20, 000 attack traces. Notably, we can easily recover nib-
bles 2 and 7 with less than 18, 000 attack traces. Using both MLP and CNN, we
are able to recover the entire second-round key. Overall, we successfully recover
the full Princev2 key using DLSCA.

6.4 Explanability of Deep Neural Network

In order to understand which sample points the DNNs are using for key recovery,
we employ the explainability techniques called KGO proposed by [18]. KGO
utilizes a technique called occlusion, which replaces each sample point with a
default baseline value. The KGO algorithm iteratively occludes each sample
point to obtain the minimum set of sample points that is necessary for a trained
DNN to recover the secret key. These minimum set of relevant sample points
are called OccPoIs. [18] also proposed an algorithm called 1-KGO to state how
much contribution an OccPoI is to the DNN. This is done by occluding each
OccPoI one by one and obtaining the GE values for each OccPoI occluded. If
the GE is high, this means that this OccPoI has a high contribution to the key
recovery, while if the GE is low, it means that it contributes less for the DNN to
recover the key. We focus only on the best-performing MLP for nibble 0 as the
technique can extend to other well-performing networks. Using KGO, we acquire
the sample points 7 and 15 as OccPoIs. Then we apply the 1-KGO algorithm
and obtain the GE values 11 and 2 for sample points 7 and 15, respectively. This
means that the sample point 7 has the most contribution compared to 15. This
aligns with the TVLA result that sample point 7 leaks the most. We plot the
OccPoIs and their contribution in Figure 8 (blue plot).

To evaluate OccPoIs’ relevance in classical SCA, we conducted a template
attack utilizing OccPoIs. Notably, the GE converged to 2, outperforming the
GE = 11 achieved without feature selection on truncated traces. We also com-
pare its performance with two other feature selection tools, namely SOSD and
SOST [12], by selecting the same number of sample points as OccPoIs. SOSD
selected the sample points at 6 and 12 while SOST selected the sample points at
2 and 13 (illustrated in Figure 8). We apply template attack with these sample
points only and observe that both SOSD an SOST have high GE, suggesting that
SOSD and SOST fail to recover the secret key. This demonstrates that OccPoIs,
selected via DNNs with KGO, effectively exploit leakages and enhance classical
attack effectiveness.

Attacking Single-Cycle Ciphers on Modern FPGAs 15

Table 2. Performance using DLSCA. Random key setting with truncated traces for
first round.

Nibble 0 1 2 3 4 5 6 7

MLP 19847 19599 19971 15065 19353 18850 19959 18523

Nibble 8 9 10 11 12 13 14 15

MLP 16771 19677 19997 19345 19881 17300 (GE = 3) 18372

Nibble 0 1 2 3 4 5 6 7

CNN 19771 18048 19745 16416 19118 18843 19453 18025

Nibble 8 9 10 11 12 13 14 15

CNN 15246 19386 19866 19445 18924 17811 19997 18348

Table 3. Performance using DLSCA. Random key setting with truncated traces for
second round.

Nibble 0 1 2 3 4 5 6 7

MLP 18778 19846 17144 19901 19144 17510 19996 15436

Nibble 8 9 10 11 12 13 14 15

MLP 19995 19985 19188 19519 18381 (GE = 2) 19273 19829

Nibble 0 1 2 3 4 5 6 7

CNN 19199 19863 17036 18036 17110 19047 18620 15883

Nibble 8 9 10 11 12 13 14 15

CNN (GE = 1) 19932 17299 19503 (GE = 1) 19994 19972 19260

Fig. 8. Sample Points Selected by Various Feature Selection Tools.

16 M. Khairallah and T. Yap

Table 4. Performance using Template Attack with Feature Selection Used.

Technique Used Template Attack Performance

No Feature Selection GE = 11
KGO GE = 2
SOSD GE = 13
SOST GE = 11

7 Conclusion

In this paper, we investigated the vulnerability of the hardware implementation
of Princev2 on Artix 7 to power analysis using cheaper and portable oscilloscopes.
We demonstrated that the setup can still easily observe leakage and can perform
key recovery using DLSCA. We also presented the challenges of extending these
attacks to classical attacks that are not based on deep learning. Furthermore,
we investigated which sample points are useful (i.e., OccPoIs) to the neural
network for key recovery through the KGO explainability technique. We improve
the classical template attack by using these relevant sample points. As part of
future work, we plan to investigate the leakage model and the reasons behind
the observed inconsistencies in classical attacks in more detail.

Acknowledgment

Mustafa Khairallah is supported by the Wallenberg-NTU Presidential Postdoc-
toral Fellowship and worked on the experiments in the paper while at Lund
University Sweden. We would like to thank Shivam Bhasin for suggestions and
support during these experiments.

References

1. Acharya, R.Y., Ganji, F., Forte, D.: Information Theory-based Evolution of Neu-
ral Networks for Side-channel Analysis. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2023(1), 401–437 (2023). https://doi.org/10.46586/TCHES.V2023.I1.401-
437, https://doi.org/10.46586/tches.v2023.i1.401-437

2. Anand, R., Banik, S., Caforio, A., Ishikawa, T., Isobe, T., Liu, F., Minematsu,
K., Rahman, M., Sakamoto, K.: Gleeok: A family of low-latency prfs and its ap-
plications to authenticated encryption. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2024(2), 545–587 (2024). https://doi.org/10.46586/TCHES.V2024.I2.545-
587, https://doi.org/10.46586/tches.v2024.i2.545-587

3. Banik, S., Isobe, T., Liu, F., Minematsu, K., Sakamoto, K.: Orthros:
A low-latency PRF. IACR Trans. Symmetric Cryptol. 2021(1), 37–77
(2021). https://doi.org/10.46586/TOSC.V2021.I1.37-77, https://doi.org/10.

46586/tosc.v2021.i1.37-77

https://doi.org/10.46586/TCHES.V2023.I1.401-437
https://doi.org/10.46586/TCHES.V2023.I1.401-437
https://doi.org/10.46586/tches.v2023.i1.401-437
https://doi.org/10.46586/TCHES.V2024.I2.545-587
https://doi.org/10.46586/TCHES.V2024.I2.545-587
https://doi.org/10.46586/tches.v2024.i2.545-587
https://doi.org/10.46586/TOSC.V2021.I1.37-77
https://doi.org/10.46586/tosc.v2021.i1.37-77
https://doi.org/10.46586/tosc.v2021.i1.37-77

Attacking Single-Cycle Ciphers on Modern FPGAs 17

4. Belkheyar, Y., Daemen, J., Dobraunig, C., Ghosh, S., Rasoolzadeh, S.:
Bipbip: A low-latency tweakable block cipher with small dimensions.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(1), 326–368 (2023).
https://doi.org/10.46586/TCHES.V2023.I1.326-368, https://doi.org/10.

46586/tches.v2023.i1.326-368

5. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2),
163–188 (2020). https://doi.org/10.1007/S13389-019-00220-8, https://doi.org/
10.1007/s13389-019-00220-8

6. Bhasin, S., Guilley, S., Sauvage, L., Danger, J.: Unrolling cryptographic cir-
cuits: A simple countermeasure against side-channel attacks. In: Pieprzyk,
J. (ed.) Topics in Cryptology - CT-RSA 2010, The Cryptographers’ Track
at the RSA Conference 2010, San Francisco, CA, USA, March 1-5, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 5985, pp. 195–207.
Springer (2010). https://doi.org/10.1007/978-3-642-11925-5 14, https://doi.

org/10.1007/978-3-642-11925-5_14

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thom-
sen, S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive comput-
ing applications - extended abstract. In: Wang, X., Sako, K. (eds.) Advances in
Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, Decem-
ber 2-6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp.
208–225. Springer (2012). https://doi.org/10.1007/978-3-642-34961-4 14, https:
//doi.org/10.1007/978-3-642-34961-4_14

8. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos,
T., Nikov, V., Rasoolzadeh, S., Todo, Y., Wiemer, F.: Princev2 - more se-
curity for (almost) no overhead. In: Dunkelman, O., Jr., M.J.J., O’Flynn,
C. (eds.) Selected Areas in Cryptography - SAC 2020 - 27th International
Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 12804, pp.
483–511. Springer (2020). https://doi.org/10.1007/978-3-030-81652-0 19, https:
//doi.org/10.1007/978-3-030-81652-0_19

9. Cagli, E., Dumas, C., Prouff, E.: Convolutional Neural Networks with Data Aug-
mentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol.
10529, pp. 45–68. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4 3,
https://doi.org/10.1007/978-3-319-66787-4_3

10. Canale, F., Güneysu, T., Leander, G., Thoma, J.P., Todo, Y., Ueno, R.: SCARF
- A low-latency block cipher for secure cache-randomization. In: Calandrino,
J.A., Troncoso, C. (eds.) 32nd USENIX Security Symposium, USENIX Secu-
rity 2023, Anaheim, CA, USA, August 9-11, 2023. pp. 1937–1954. USENIX
Association (2023), https://www.usenix.org/conference/usenixsecurity23/

presentation/canale

11. Eng, T.Y.H., Bhasin, S., Weissbart, L.: Train Wisely: Multifidelity Bayesian Opti-
mization Hyperparameter Tuning in Side-Channel Analysis. IACR Cryptol. ePrint
Arch. p. 170 (2024), https://eprint.iacr.org/2024/170

https://doi.org/10.46586/TCHES.V2023.I1.326-368
https://doi.org/10.46586/tches.v2023.i1.326-368
https://doi.org/10.46586/tches.v2023.i1.326-368
https://doi.org/10.1007/S13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-642-11925-5_14
https://doi.org/10.1007/978-3-642-11925-5_14
https://doi.org/10.1007/978-3-642-11925-5_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-030-81652-0_19
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://www.usenix.org/conference/usenixsecurity23/presentation/canale
https://eprint.iacr.org/2024/170

18 M. Khairallah and T. Yap

12. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In:
Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13,
2006, Proceedings. Lecture Notes in Computer Science, vol. 4249, pp. 15–29.
Springer (2006). https://doi.org/10.1007/11894063 2, https://doi.org/10.1007/
11894063_2

13. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive compu-
tation and machine learning, MIT Press (2016), http://www.deeplearningbook.
org/

14. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block
ciphers engineering an ultra low-latency cipher from gate level for secure proces-
sor architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 510–
545 (2021). https://doi.org/10.46586/TCHES.V2021.I4.510-545, https://doi.

org/10.46586/tches.v2021.i4.510-545

15. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Implementa-
tions Using Deep Learning Techniques. In: Carlet, C., Hasan, M.A., Saraswat,
V. (eds.) Security, Privacy, and Applied Cryptography Engineering - 6th In-
ternational Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 10076, pp. 3–26. Springer
(2016). https://doi.org/10.1007/978-3-319-49445-6 1, https://doi.org/10.1007/
978-3-319-49445-6_1

16. Moos, T.: Unrolled cryptography on silicon A physical security anal-
ysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 416–442
(2020). https://doi.org/10.13154/TCHES.V2020.I4.416-442, https://doi.org/

10.13154/tches.v2020.i4.416-442

17. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side chan-
nel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and
Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK,
August 29 - September 1, 2005, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 3659, pp. 30–46. Springer (2005). https://doi.org/10.1007/11545262 3,
https://doi.org/10.1007/11545262_3

18. Yap, T., Bhasin, S., Picek, S.: OccPoIs: Points of Interest based on Neural Net-
work’s Key Recovery in Side-Channel Analysis through Occlusion. IACR Cryptol.
ePrint Arch. p. 1055 (2023), https://eprint.iacr.org/2023/1055

19. Yli-Mäyry, V., Homma, N., Aoki, T.: Improved Power Analysis on Unrolled Ar-
chitecture and Its Application to PRINCE Block Cipher. In: Güneysu, T., Le-
ander, G., Moradi, A. (eds.) Lightweight Cryptography for Security and Pri-
vacy - 4th International Workshop, LightSec 2015, Bochum, Germany, Septem-
ber 10-11, 2015, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 9542, pp. 148–163. Springer (2015). https://doi.org/10.1007/978-3-319-29078-
2 9, https://doi.org/10.1007/978-3-319-29078-2_9

20. Yli-Mäyry, V., Homma, N., Aoki, T.: Chosen-Input Side-Channel Analysis on Un-
rolled Light-Weight Cryptographic Hardware. In: 18th International Symposium
on Quality Electronic Design, ISQED 2017, Santa Clara, CA, USA, March 14-15,
2017. pp. 301–306. IEEE (2017). https://doi.org/10.1109/ISQED.2017.7918332,
https://doi.org/10.1109/ISQED.2017.7918332

21. Yli-Mäyry, V., Ueno, R., Miura, N., Nagata, M., Bhasin, S., Math-
ieu, Y., Graba, T., Danger, J., Homma, N.: Diffusional side-channel leak-
age from unrolled lightweight block ciphers: A case study of power
analysis on PRINCE. IEEE Trans. Inf. Forensics Secur. 16, 1351–1364

https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/11894063_2
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.46586/TCHES.V2021.I4.510-545
https://doi.org/10.46586/tches.v2021.i4.510-545
https://doi.org/10.46586/tches.v2021.i4.510-545
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.13154/TCHES.V2020.I4.416-442
https://doi.org/10.13154/tches.v2020.i4.416-442
https://doi.org/10.13154/tches.v2020.i4.416-442
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://eprint.iacr.org/2023/1055
https://doi.org/10.1007/978-3-319-29078-2_9
https://doi.org/10.1007/978-3-319-29078-2_9
https://doi.org/10.1007/978-3-319-29078-2_9
https://doi.org/10.1109/ISQED.2017.7918332
https://doi.org/10.1109/ISQED.2017.7918332

Attacking Single-Cycle Ciphers on Modern FPGAs 19

(2021). https://doi.org/10.1109/TIFS.2020.3033441, https://doi.org/10.1109/
TIFS.2020.3033441

22. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for Efficient CNN
Architectures in Profiling Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(1), 1–36 (2020). https://doi.org/10.13154/TCHES.V2020.I1.1-36, https://
doi.org/10.13154/tches.v2020.i1.1-36

https://doi.org/10.1109/TIFS.2020.3033441
https://doi.org/10.1109/TIFS.2020.3033441
https://doi.org/10.1109/TIFS.2020.3033441
https://doi.org/10.13154/TCHES.V2020.I1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36

	Attacking Single-Cycle Ciphers on Modern FPGAs

