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Abstract. This short note explains how the Tate pairing can be used to
efficiently sample torsion points with precise requirements, and other ap-
plications. These applications are most clearly explained on Montgomery
curves, using the Tate pairing of degree 2, but hold more generally for
any degree or abelian variety, or even generalized Tate pairings, as long as
we have non-degeneracy. This note is explanatory in nature; it does not
contain new results, but aims to provide a clear and concise explanation
of results in the literature that are somewhat hidden, yet are extremely
useful in practical isogeny-based cryptography.

This note explains the use of profiles of Tate pairings, generalizing some
results in the literature. In short, the Tate pairing allow us to study the fibers
φ−1(P ) of an isogeny φ. For scalar multiplication [n], this allows us to study
divisibility of points and therefore to find rational points of order ℓk. Many
applications in isogeny-based cryptography use such results, especially for ℓ = 2.

However, the general derivation of these divisibility results is hidden in the
literature, and not easy to find. We go over several results, both for elliptic curves
and Jacobians of hyperelliptic curves, and reframe them using (profiles of) Tate
pairings. The core theoretical framework is by Robert [16], which explains the
study of fibers φ−1(P ) in detail.1 Work by Bruin [2] explains the generalization of
the Tate pairing, and work by Corte-Real Santos and me [7] develops more tools
that fit into this framework, and applies profiles to 2-dimensional Jacobians.

We first look at classical results on divisibility by the [2]-map, described in el-
ementary terms. We then introduce the concept of profiles to unify these results.
After that, we look at some other applications of divisibility using Tate pairings
in genus 1 and 2, and the study of fibers of generalized Tate pairings for spe-
cific cases. To simplify exposition, we restrict ourselves to non-degenerate Tate
pairings for elliptic curves over finite fields, and sometimes principally polarized
abelian surfaces or varieties. We hope that this note inspires others to think in
terms of profiles of generalized Tate pairings whenever results require certain
divisibility properties, or simply more extravagant use of the Tate pairing.

1Sections 3 and 4 of [16] are heavy in algebraic geometry, however, many of the
useful applications in its Section 5 can be understood in the traditional interpretation!
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1 Divisibility results

Many results on the divisibility of points are Tate pairings in disguise [16, Sec.
5.2]. An easy, yet surprisingly useful result is the following classical theorem.

Theorem 1. [12] Let E be an elliptic curve over a finite field Fq with Fq-rational
2-torsion, given in short Weierstrass form as

E : y2 = (x− λ1)(x− λ2)(x− λ3), λi ∈ Fq.

Then P ∈ [2]E if and only if xP − λi is a square in Fq for i = 1, 2, 3.

As the quadratic character of (xP − λi) is precisely the 2-Tate pairing

t2 : E[2](Fp2)× E(Fp2)/[2]E(Fp2)→ {1,−1} (1)

of (λi, 0) with P , this result is equivalent to the non-degeneracy of the 2-Tate
pairing: a point P ∈ E has trivial 2-Tate pairings with all points in E[2] must
be in the trivial equivalence class of E(Fp2)/[2]E(Fp2), hence P ∈ [2]E(Fp2).

This theorem finds immediate applications in isogeny-based cryptography
using Montgomery curves of the form EA : y2 = x3 + Ax2 + x, where we take
λ1 = 0. In this case, whenever xP is non-square for some P ∈ E(Fq), we must
have P ∈ E \ [2]E. When EA is maximal supersingular and 2f | p + 1, any
P ∈ E \ [2]E has order divisible by 2f . We can therefore efficiently sample a
point P of order 2f by sampling a non-square xP ∈ Fq and checking if it is a
point on EA, then setting P ← [p+1

2f
]P .

Two results generalize this approach to easily obtain a basis (P,Q) for E[2f ]
instead of only a point P ∈ E[2f ]. First, Zanon, Simplicio, Pereira, Doliskani,
and Barreto [18] show that by choosing xP carefully, we can immediately obtain
a suitable xQ to complete the torsion basis.

Lemma 1. Let EA be a maximal supersingular Montgomery curve over Fp2 with
p = 2f · h− 1 for f ∈ N and some cofactor h, and A ̸= 0. Let xP = −A/(1 + t2)
be the x-coordinate of a point P ∈ E(Fp2), where t ∈ Fp2 is a non-square chosen
so that xP is also non-square.

Then xQ = −xP − A is the x-coordinate of a point Q ∈ E(Fp2), and
([h]P, [h]Q) is a basis for E[2f ].

Second, Theorem 2 of AprèsSQI [6] shows that the quadratic characters of
(x− λi) contain precise information on points P ∈ E[2f ].

Lemma 2. Let EA be a maximal supersingular Montgomery curve over Fp2 with
p = 2f ·h−1, written as EA : y2 = x(x−α)(x−1/α). Let T0 = (0, 0), T1 = (α, 0),
and T2 = (1/α, 0) be the 2-torsion points of EA. Let P ∈ E[2f ], then

[2f−1]P = Ti ⇔ t2(Ti, P ) = 1 and t2(Tj , P ) = −1 for j ̸= i.

This implies that we can determine the 2-torsion point that P is above by
computing only three Tate pairings!

All these results have one thing in common, which will be key to understand-
ing the usefulness of the Tate pairing: they require us to compute multiple Tate
pairings for the same point! In the next section, we give a natural interpretation,
which unifies these results and allows us to expand our Tate toolkit.
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2 Profiles of Tate pairings

Assuming µn ⊂ F∗
q , the (reduced) Tate pairing tn of degree n over Fq for an

elliptic curve E is a non-degenerate pairing [2]

tn : E[n](Fq)× E(Fq)/[n]E(Fq)→ µn.

As Robert [16] notes, it also makes sense to view the Tate pairing of a point
P ∈ E(Fq) when evaluated in all of E[n]. This gives a map which we denote t[n],
which we describe in terms of the kernel points Ki ∈ E[n]:

t[n] : E(Fq)→ µm
n , P 7→ (tn(K1, P ), . . . , tn(Km, P ))

We call the image t[n](P ) the n-profile of P under the Tate pairing. Non-
degeneracy now implies that t[n] is trivial precisely when P ∈ [n]E(Fq). In other
words, when viewing the codomain as E(Fq)/[n]E(Fq), the map t[n] is injec-
tive [16, Cor. 5.2]. This gives a neat explanation of Theorem 1: for degree n = 2,
the quadratic characters of the three values (x−λi) become the 2-profile t[2](P ),
and the trivial profile (1, 1, 1) indicates P ∈ [2]E. The two generalizations Lem-
mas 1 and 2 have similar interpretations using profiles. For clarity, we begin with
Lemma 2, and use this understanding for Lemma 1.

Example 1. Lemma 2 essentially shows that the profile of P determines the coset
of E(Fq)/[2]E(Fq) in which P lies! This allows for an even broader implemen-
tation: Any basis (P,Q) for E[2f ] must have P and Q in different, non-trivial,
cosets of E(Fq)/[2]E(Fq). In simpler terms, if we want a basis P,Q for E(Fq)[2

f ],
we need two points P and Q with different non-trivial profiles t[2](P ) and t[2]Q.

Example 2. From this point of view, Lemma 1 becomes remarkable: by the choice
of xP as a non-square, we get that P has a non-trivial profile. Hence, t[2](P ) is
either (−1, 1,−1) or (−1,−1, 1). And the clever choice of xQ as −xP −A ensures
two things: First, xQ is non-square and defines a point Q ∈ E. Second, this choice
determines the quadratic character of xQ − α and xQ − 1/α, by

xQ − α = −xP −A− α = −xP + α+ 1/α− α = −(xP − 1/α),

where we use that A = −α−1/α. Thus, this choice of xQ ensure that the profile
of Q is either (−1,−1, 1) or (−1, 1,−1) and different from the profile of P , hence
ensuring a basis for E[2].2

2.1 Rational torsion.

The Tate pairing t[n] is especially intuitive when E[n] ⊂ E(Fq): given a basis
P,Q, we first note that the profile of a pointR is determined by (tn(P,R), tn(Q,R))
already. And in fact, viewing t[n](R) as determined by a basis P,Q is the ‘correct’

2We thank Damien Robert for explaining entangled basis generation in this way.
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interpretation, as the map t[n] : E(Fq)/[n]E(Fq)→ µ2
n becomes an isomorphism!

We find a genus-1 example of [7, Lem. 6],

E[n]
∼−→ E(Fq)/[n]E(Fq)

∼−→ µ2
n.

One should be careful not to misunderstand the depth of the above isomor-
phisms: They show us that (profiles of) the Tate pairing determines cosets in
E/[n]E, and this is everything the Tate pairing does, as it has no more infor-
mation to give. In other words, the Tate pairing allows us to decompose E(Fq)
in cosets, where the size of E[n](Fq) determines the number of cosets and hence
the precision of our decomposition of E(Fq).

3 Sampling generators for the ℓ•-torsion

So far, we have restricted ourselves to curves E with ‘nice’ 2•-torsion E[2∞](Fq) ∼=
Z2f × Z2f . But the Tate pairing has a useful connection with the more general
ℓ•-torsion, more aptly named the Sylow-ℓ subgroup E[ℓ∞](Fq), where ℓ ̸= p
prime.3 We will denote the Sylow-ℓ subgroup by Sℓ,Fq (E) and we may think of
Sℓ,Fq

(E) as a group isomorphic to Zℓf × Zℓg for f, g ∈ N, with f ≥ g ≥ 0.

For ℓ = 2, we can easily find generators for S2,Fq
(E), as long as we know

E[2], using a genus-1 interpretation of [7, Sec. 3], which is close to the techniques
described before: We look for two points P,Q ∈ E(Fq) with different non-trivial
profiles, clearing the cofactor if necessary. None of this relies particularly on
n = 2, and we could do the same for any other prime ℓ to find generators of
Sℓ,Fq (E) for ℓ ̸= p. In fact, this even generalizes to higher-dimensional abelian
varieties as demonstrated in [7, Sec. 3] for n = 2 on two-dimensional Jacobians.
Profiles therefore allow us to determine precise cosets in E(Fq)/[n]E(Fq), and
this can be used to determine points with certain ‘nice’ properties, such as an
order divisible by ℓk.

In more precise terms, for primes ℓ, the Sylow-ℓ subgroup on a principally
polarized abelian variety A of dimension g for ℓ ̸= p is a subgroup of A(Fq) of
the form

Zℓf1 × Zℓf2 × . . .× Zℓfd

with fi ∈ N such that f1 ≥ f2 ≥ . . . ≥ fd > 0 and d ≤ 2g. Given a ba-
sis K1, . . . ,Kd for A[ℓ], we can find generators for Sℓ,Fq

(A) by finding points
Bi ∈ A(Fq) whose ℓ-Tate profiles are independent, and then clearing the cofac-
tor #A(Fq)/ℓ

∑
fi . This ensures linear combinations of the Tate profiles, corre-

sponding to linear combinations of the Bi, span all possible profiles and hence
give representatives of every coset in A(Fq)/[ℓ]A(Fq). By a counting argument,
we find that the Bi generate Sℓ,Fq

(A).

3One could also say that this is the Fq-rational part of the ℓ-Tate module, i.e., those
Fq-rational points on E whose order is ℓf for some integer f .
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4 Generalized Tate pairings

Bruin [2] explains how we can generalize the Tate pairing to any separable
isogeny

φ : E → E′, ker φ̂ ⊆ E′[q − 1]

to which Robert [16] refers as the Tate-Cartier pairing, and [7] as the φ-Tate
pairing tφ. When reduced, this pairing becomes a map

tφ : kerφ (Fq)× coker φ̂ (Fq)→ µn,

with n = degφ, the dual φ̂ : E′ → E, and coker φ̂ (Fq) = E(Fq)/φ̂(E
′(Fq))

the Fq-rational part of the cokernel.4 In general, when working on any abelian
variety, and assuming an Fq-rational basis K1, . . . ,Km for kerφ, we can define
the profile tkerφ(P ) as the evaluation of tφ(Ki, P ) for every kernel generator Ki,
and we can again go ahead and decompose the cokernel E(Fq)/φ̂(E

′(Fq)) into
cosets, which again is isomorphic to µm

n as a group [7, Lem. 6], for prime n and
φ an n-isogeny.

Remark 1. This improves our understanding of the situation in Section 2.1: when
E[n] is not rational, say E[n](Fq) is cyclic and generated by K, we get

tkerφ : E(Fq)/φ̂(E
′(Fq))

∼−→ µn, P 7→ tφ(K,P ),

derived from the generalized Tate pairing for the isogeny φ : E → E/⟨K⟩,
instead of the [n]-Tate pairing.

Computing this Tate pairing tφ is not hard: it can be computed as the Tate
pairing tn where n = degφ. This gives us a counter-intuitive result: the ‘general-
ization’ of the Tate pairing to any isogeny φ is actually already captured by the
information from tn, and the profile tkerφ(P ) is a subprofile of t[n](P ). Hence,
we determine the position of P only up to larger cosets in E(Fq)/φ̂(E

′(Fq))
compared to E(Fq)/[n](E(Fq)) The generalized Tate pairing gives us coarser
information! In other words, if the curve E does not have enough rational n-
torsion, or if we only compute a subset of pairings tn(Ki, P ), then we can only
divide E(Fq) into larger cosets.

Nevertheless, this generalized Tate pairing allows us to understand previous
results in framework of profiles. We rephrase Lemma 2 in terms of generalized
Tate pairings.

Lemma 3. Let EA be a maximal supersingular Montgomery curve over Fp2 with
p = 2f ·h−1, written as EA : y2 = x(x−α)(x−1/α). Let T0 = (0, 0), T1 = (α, 0),
and T2 = (1/α, 0) be the 2-torsion points of EA. Let φi : E → E/⟨Ti⟩. Then,

tkerφi(P ) ̸= 1 ⇔ P ∈ E\φ̂i(E
′(Fq)) ⇔ 2f | Order(P ) and [2f−1]P ̸= Ti.

This explains the trick to sample points P with order divisible by 2f by
sampling points with non-square x-coordinate xP : we are sampling points in
E \ φ̂ (Fq), for the isogeny φ : E → E⟨(0, 0)⟩.

4We recover the Tate pairing of degree n by φ = [n], with φ = φ̂.
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5 Examples of applications

We show that a broad range of applications find an concise interpretation as
profiles of Tate pairings.

5.1 Decompostion of R as aP + bQ

Let E/Fp2 be a maximal supersingular elliptic curve, with 2f | p+1, and let P,Q
be a basis for E[2f ], then we may want to decompose a third point R as aP +
bQ. First, we find the profiles t[2f ](P ) = (t2f (P, P ), t2f (Q,P )) and t[2f ](Q) =
(t2f (P,Q), t2f (Q,Q)). Then, the decomposition R = aP + bQ is equivalent to
the decomposition as profiles

t[2f ](R) = t[2f ](P )a · t[2f ](Q)b, where t[2f ](R) = (t2f (P,R), t2f (Q,R)).

Of course, the easier approach uses bilinearity of the Tate pairing to compute a
and b by discrete logarithms of t2f (P,R) and t2f (Q,R) in base ζ = t2f (P,Q).
Nevertheless, these discrete logarithms generalize when interpreted as profiles in
terms of their structure µn

2f .

5.2 Pairing the volcano

Robert [16, Sec. 5] gives an interpretation of ‘Pairing the Volcano’ [13]. We will
showcase how this fits our understanding using the easiest example: the 2-volcano
used in CSURF [3].

Let p be a prime p ≡ 7 mod 8. We will work over Fp with supersingular
Montgomery curves EA : y2 = x3+Ax2+x. These curves come in two categories:
those whose Fp-rational endomorphisms Endp(E) forms a ring isomorphic toO =

Z
[
1+

√
−p

2

]
and those with Endp(E) ∼= O′ = Z[

√
−p]. The 2-volcano structure in

this case is rather nice: the surface is given by those E with Endp(E) ∼= O, and
the floor is given by E with Endp(E) ∼= O′. On the surface, we have E(Fp)[2] ∼=
Z2 × Z2, whereas on the floor E(Fp)[2] ∼= Z2. This implies we have three 2-
isogenies on the surface, out of which two are horizontal. The last isogeny is
vertical, and connects us to the floor. The dual of this isogeny is the single Fp-
rational 2-isogeny on the floor, connecting us back to the surface. See Figure 1
for an illustrative picture.5

For EA with x3 + Ax2 + x = x(x − α)(x − 1/α), we once again denote the
three torsion points by T0 = (0, 0), Tα = (α, 0) and Tα = (1/α, 0). On the
surface, α ∈ Fp, whereas on the floor α ∈ Fp2 \ Fp. Denote by φ0, φα, φα the
three isogenies with kernel T0, Tα, Tα respectively, then the generalized φ-Tate
pairing should be able to tell us which isogeny is vertical, and which ones are
horizontal. That is, the self-Tate pairing tφ(P, P ) is non-trivial if and only if
P ̸∈ φ̂(E′(Fp)) if and only if φ is vertical. We have seen the first ‘if and only

5We thank Thomas Decru for the picture.
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O = Z
[
1+

√
−p

2

]

O = Z[
√
−p]

Fig. 1. Volcano structure using 2-isogenies for p ≡ 7 mod 8.

if’ already, whereas the second ‘if and only if’ is the analogue of [13, Prop. 4.8],
which we illustrate for this specific example as follows.

Let φ : E → E′ be a horizontal isogeny, and let P,Q denote a basis for E[2]
such that P generates the kernel of φ, then the dual φ̂ is generated by φ(Q). We
still have E′ on the surface, so E′[2] ⊂ E′(Fp). Hence, there is some point P ′

such that E′[2] = ⟨φ(Q), P ′⟩. We then must have φ̂(P ′) = R for some 2-torsion
point R ∈ E(Fp) with φ(R) =∞E′ , as φ(φ̂)(P ′) = [2]P ′ =∞E′ . So R = P , and
we find that P ∈ φ̂(E′(Fp)), as required.

If φ : E → E′ was instead vertical, then E′ has only a single 2-torsion point
P ′, and this point generates the dual. Then, if P ∈ φ̂(E′(Fp)) and so P = φ̂(Q)
then Q is either another rational 2-torsion point, which does not exist on E′,
or a 4-torsion point. But all 4-torsion points Q on E′ are mapped to P ′ under
[2] = φ◦ φ̂, and so φ̂(Q) /∈ kerφ = ⟨P ⟩. We find that P /∈ φ̂(E′(Fp)), as required.

Example 3. Let p = 23 and A = 10 then EA : y2 = x3 + Ax2 + x has 2-torsion
points T0 = (0, 0), T17 = (17, 0) and T19 = (19, 0). We then compute the self-
pairing as

t2(Ti, Ti) = t2(Ti, Ti + Tj)/t2(Ti, Tj),

so that we can use the simple expression t2(Ti, Tj) = (xTj
− xTi

)
p−1
2 . We get

t2(T0, T0) = t2(T0, T17)/t2(T0, T19) = (17/19))
p−1
2 = 1,

t2(T17, T17) = t2(T17, T0)/t2(T17, T19) = (−17/2)
p−1
2 = 1,

t2(T19, T19) = t2(T19, T0)/t2(T19, T17) = (−19/− 2)
p−1
2 = −1.

Hence, the vertical isogeny is given by T19, whereas the other two points generate
horizontal isogenies. Indeed, the corresponding isogenies are given by

φ0 : E10 → E13, with E13[2] = {(0, 0), (4, 0), (6, 0),∞},
φ17 : E10 → E−4, with E−4[2] = {(0, 0), (9, 0), (18, 0),∞},
φ19 : E10 → E7, with E7[2] = {(0, 0),∞}.
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In general, we find that E[2∞](Fp) ∼= Z4 × Z2 on the surface, and as T0 is
the double of the point (1,−) ∈ EA(Fp) of order 4, its profile must be trivial.
The two other points Tα, Tα have non-trivial profiles, but their profiles must be
equal, as t[2](Tα) = t[2](Tα)·t[2](T0), giving a more general proof that one of these
points must have a trivial self-pairing, and the other a non-trivial self-pairing.
For more information, see [13] and Section 5 of [16].

5.3 Sampling specific points of order 2f

When using Scholten’s construction [17] on supersingular elliptic curves over
Fp2 , the resulting Jacobians one works with have Fp-torsion structure

J (Fp) ∼= Z p+1
2
× Z p+1

2
× Z2 × Z2

as used by Costello [8]. In [7], we needed to sample points with order divisible
by 2f in the rather precise subgroup of J isomorphic to Z p+1

2
× Z p+1

2
. This is

precisely an application where we need the full profile information of the 2-Tate
pairing: there are three profiles, out of the sixteen in total, that are ‘good’, i.e.,
points P with such a profile t[2](P ) have precisely the property we need. Nine
other profiles are ‘ok’, as they require us only to add the correct one of three
2-torsion points Dij to P to obtain a point P ′ = P +Dij with a ‘good’ profile.
The last four profiles are ‘bad’, the three profiles indicate points in the subgroup
isomorphic to Z2×Z2, and the last profile is the trivial profile indicating points
in [2]J . For more information, see Section 3 of [7].

5.4 Generalized entangled basis generation

We now also have enough understanding to generalize entangled basis generation
(Lemma 1) to any Weierstrass curve over Fq

E : y2 = (x− λ1)(x− λ2)(x− λ3), λi ∈ Fq.

We need to find a transformation xP 7→ xQ that ensures we get two different
non-trivial profiles t[2](P ) ̸= t[2](Q). Thus, we need to sample xP in such a way
that we keep the value of the first Tate pairing xP − λ1 = u2(xQ − λ1) for some
u ∈ Fq, and permute the second and third Tate pairing using xQ = −xP+λ2+λ3,
as this ensures

(xQ − λ2) = −(xP − λ3), (xQ − λ3) = −(xP − λ2).

This gives us two equations in terms of xP and xQ and solving these gives us

xP =
λ2 + λ3 − 2 · λ1

1 + u2
, u ∈ Fq.

Thus, if we precompute two lists with values 1
1+u2 either squares or non-squares,

then by the quadratic character of λ2 + λ3 − 2 · λ1, we can ensure we sample
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xP as a non-square. By the above equations, any such xP defining a point on E
similarly defines a point Q ∈ E by xQ = −xP +λ2+λ3, such that P and Q have
different non-trivial 2-profiles, and hence generate the Sylow-2 subgroup for E.
Summarizing, we get the following.

Lemma 4. Let E : y2 = (x−λ1)(x−λ2)(x−λ3), with λi ∈ Fq. Let P ∈ E(Fp2)

with non-square xP = λ2+λ3−2·λ1

1+u2 for some u ∈ Fp2 . Then, xQ = −xP + λ2 + λ3

defines a second point Q on E such that [h]P and [h]Q generate the Sylow-2

subgroup S2,Fq (E) ∼= Z2f × Z2g , with f ≥ g, for h =
#E(Fq)
2f+g .

Remark 2. One may wonder about the practicality of Lemma 4: given only the
curve equation, we know −(λ1 + λ2 + λ3) from the coefficient of x2. Hence, we
need to know at least one point of order 2 to compute the value λ2+λ3−2 ·λ1 to
apply the basis generation method. The elegance of Lemma 1 is that Montgomery
curves have such a point of order 2 always at (0, 0), and so, Lemma 4 is efficient
when a 2-torsion point is known a priori on the curve model. On the Montgomery
model, Lemma 4 slightly generalizes Lemma 1, as we can now choose more freely
which torsion point we take for λ1, instead of the fixed choice λ1 = 0.6

5.5 And many more7

The recent work PEGASIS [10] works with supersingular curves over Fp with
Sylow-2 subgroup S2,Fp

(E) ∼= Z2f−1 × Z2, where 2f | p + 1. By a clever use
generalized Tate pairings, PEGASIS uses only a single pairing computation per
point to find a basis ⟨P,Q⟩ = E(Fp2)[2f ] with P ∈ E(Fp) and Q ∈ Et(Fp). This
combines several of the previous ideas, such as pairing the volcano and sampling
points with specific profiles, into an optimized and fast sampling of such bases.
Furthermore, [10, Alg. 1] cleverly uses the decomposition of points T ∈ E[n] in
terms of bases of E[n] to evaluate endomorphisms without division points!

The geometric interpretation of the Tate pairing allows Robert [16] to prove
conjectures regarding (multi-)radical isogenies [4, 5]. Such conjectures also have
an interpretation as studying the fiber f−1(P ) for isogenies f , hence shows why
the Tate pairing appears. Similarly, Robert shows that testing supersingularity
using Doliskani’s test [1, 11] can be understood as studying such fibers.8

Furthermore, work on subgroup membership testing for elliptic curves can
performed using Tate pairings [9, 14], cleverly combining several subprofiles to
efficiently test membership of [n]E(Fq) for points Q ∈ E(Fq).

Lastly, several of the algorithms in [15] to verify supersingularity and to verify
the orders of certain points on supersingular elliptic curves use a Tate pairing
between E(Fp) and its twist over Fp. This can be understood as a generalized
Tate pairing for the endomorphism π−1 for the curve over Fp2 , which has kernel
precisely E(Fp).

6One can also permute the profiles in any other permutation of S3, beyond this
involution (1, 2, 3) 7→ (1, 3, 2), using the same techniques.

7I intend to keep this document up to date with innovative use of the Tate pairing.
8In fact, this note is mostly an exposition of examples in [16].
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