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Abstract. In this paper, we introduce HammR, a generic Zero-Knowledge
Proof (ZKP) protocol demonstrating knowledge of a secret vector that
has a fixed Hamming weight with entries taken from a shifted multiplica-
tive group. As special cases, we are able to directly apply this protocol to
restricted vectors and to rank-1 vectors, which are vectors with entries
that lie in a dimension one subspace of Fq. We show that these proofs can
be batched with low computational overhead, and further prove that this
general framework is complete, sound, and zero-knowledge, thus truly a
genuine ZKP. Finally, we present applications of HammR to various Syn-
drome Decoding Problems, including the Regular and Restricted SDPs,
as well as other implementations such as lookup instances, proof of prox-
imity, and electronic voting protocols.

1 Introduction

The history of ZKPs is rich and complex, full of profound and compelling results.
The first zero-knowledge identification scheme (ZKID) was introduced in [56],
demonstrating knowledge of quadratic residuosity without revealing any other
information about the value. Later, [22] defined the concept of a non-interactive
zero-knowledge protocol in the common reference string model [29], which has
since become a standard framework. Similarly, ZKID’s can be turned into non-
interactive signature schemes via the Fiat-Shamir heuristic [48,68,42], which has
also become standard practice. [69] proposed the first sumcheck protocol, which
permitted users to reduce a sum of multivariate polynomial evaluations into just
a single evaluation at a randomly selected point. The GKR protocol [55] leverages
the sumcheck protocol so that a user can prove knowledge of the output of an
arithmetic circuit. In 2010, the KZG scheme [64] was introduced to commit
to polynomials using bilinear pairings and formed a building block for many
important protocols like Pinocchio [79], Groth16 [57], and Plonk [49]. However,
a drawback of the KZG scheme was that it required a trusted setup - this was
addressed in Bulletproofs [27], in which a user proves knowledge of an opening
to a Pedersen commitment that satisfies a certain inner product relation. Other
ways around trusted setup were introduced in Marlin [33] and Sonic [70]. As one
can see, there has been shocking growth in the number of zero-knowledge proof
protocols, with Ben-Sasson even going so far as to describe it as a Cambrian
explosion [85].



The first code-based zero-knowledge scheme was Stern’s work [87], which was
soon after improved [86], and introduced the idea of a ZKID from a code-based
cryptographic framework. Many code-based zero-knowledge schemes, which en-
joy protection against a quantum adversary using Shor’s algorithm [84,83] or
Grover’s algorithm [59], inherent this protection from McEliece [72], which was
the earliest code-based cryptosystem. McEliece has been improved upon in var-
ious ways through the decades [31,51,89], including being the root of many
modern cryptographic proposals. For instance, Classic McEliece [1] was a NIST
post-quantum standardization [76] candidate, BIKE [2] and HQC [73] are both
modern examples of code-based key encapsulation methods, and CROSS [9] is a
contemporary code-based digital signature scheme.
Two other code-based signature schemes based on the Hamming metric include
Wave [41] and McEliece [38], though Hamming is not the only suitable choice.
Signature schemes from other metrics include proposals like [50,3] which use
the rank metric, and also [10,9] under the restricted metric. There has been a
flurry of recent works introducing and improving signature schemes, with some
notable examples that include more novel problems, such as [8,34,82]. For a more
in-depth history of code-based cryptography, we reference [78,43,65].
Our motivation for this paper is to explore the productive intersection between
the strict privacy of zero-knowledge protocols and the errors in coding theory,
specifically focusing on vectors with a certain Hamming weight and bounded
entries.
The paper is organized as follows: Section 3 opens this paper by introducing some
notation and presenting the Hamming and rank weights, the two most common
choices of metrics in code-based cryptography, which we employ in the HammR
protocol. Subsection 3.1 defines sets of bounded vectors and then shows that
rank-1 vectors and restricted vectors are special cases of these sets. Subsection
3.2 introduces probabilistic arguments to characterize when an inner product is
0 for random input vectors, which will be used in the HammR protocol to argue
probabilistically that a vector is in one of the bounded sets defined earlier.
Section 4 presents the HammR protocol, which is a zero-knowledge proof protocol
demonstrating that a vector is contained in one of the previous bounded sets.
Subsection 4.1 outlines the necessary pieces of the protocol, showcasing how
each one is relevant to the protocol as a whole. Subsection 4.2 then displays how
these pieces are arranged together to give a single round of HammR, as well as
introduces subprotocols for precomputation and commitments. Subsection 4.3
shows how to batch multiple instances of HammR into a single round, resulting
in increased efficiency and lower computational overhead. Subsection 4.4 proves
that the aggregated protocol is a ZKP: that it is complete, sound, and zero-
knowledge. This then shows that the single round HammR is itself a ZKP. Finally,
Subsection 4.5 applies the Fiat-Shamir heuristic to HammR to obtain a non-
interactive ZKP, where we are careful to avoid subtle pitfalls such as the weak
Fiat-Shamir transform.
Section 5 presents important applications of the HammR ZKP protocol. Subsec-
tion 5.1 introduces some well-known syndrome decoding problems which we use
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to illustrate HammR, such as the Restricted and Regular, as well as two novel
NP-Complete problems: the Generic-Error Regular Syndrome Decoding Prob-
lem and the Rank-1 Regular Syndrome Decoding Problem. We demonstrate how
HammR can be used to zero-knowledge prove that a vector satisfies the Hamming
weight and entry conditions of these problems. Subsection 5.2 highlights other
implementations in which HammR may be utilized, such as lookup instances,
proof of proximity, and electronic voting protocols. Finally, Section 6 includes
concluding remarks.

2 Technical Overview

We introduce HammR, a sigma protocol zero-knowledge proof for demonstrat-
ing that a committed vector v ∈ Fn

q has Hamming weight t and entries in a
bounded subset B. We leverage a Bulletproofs-style verification technique with
inner product arguments to demonstrate a proof of the relation

K = hγgt and v ∈ B,

where γ ∈ F∗
q is the blinding factor for commitment K. Our proof takes advan-

tage of the fact that there exists a projection π : B → {0, 1}n, which will preserve
the Hamming weight of v, which is essential for our proof. As an example, to
demonstrate in a zero-knowledge manner that wt(v) = t, it is enough to show
that

⟨1, π(v)⟩ = t,

reducing the weight condition to an inner product proof without revealing the
entries of v. We prove that this scheme can be efficiently batched, providing
the simultaneous proof of multiple instances, then that the batched protocol
is a ZKP - that it is complete, sound, and zero-knowledge. Furthermore, this
protocol can be applied to a number of syndrome decoding problems, exhibiting
knowledge of a valid vector adhering to the weight and entry conditions while
remaining independent of the specific syndrome equations.

3 Sets of Bounded Vectors and Their Characterization

In this section, we recall multiple standard weights used in code-based cryptog-
raphy and computationally characterize sets of bounded vectors, which will be
the starting point of our protocols. We begin by introducing some notation and
well-known weights.

Definition 1. Let Fp denote the field of p elements, where p is prime. We also
denote Fq to be the field of q = pℓ elements, where q is a prime power. Fn

q

denotes the set of all n-length vectors with entries in Fq. We also write F∗
q to

denote Fq \ {0}.

Definition 2. Let 1 denote the vector of all 1’s. Similarly, we let 0 denote the
vector of all 0’s. The length should be clear, but when needed, we write 1n.
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Though the HammR protocol relies on some the existence of a group of order pℓ,
where p is prime. We note here the existence, then defer the rest of the group
theory to Appendix B.

Definition 3. Let Gp denote a cyclic group with prime p order, and let G be a
cyclic group of prime power order pℓ. If G1 is a subgroup of G2, we will denote
this with G1 ≤ G2.

Let us introduce is two weights: the Hamming weight and the rank weight.

Definition 4 (Hamming weight). Given x = (x1, . . . , xn) ∈ Fn
q , the Ham-

ming weight of x is

wt(x) = |{i = 1, . . . , n | xi ̸= 0}|.

We now introduce the rank weight over a subfield of Fq. Let Fpi be a subfield
of Fq, r = ℓ

i , and {y1, . . . , yr} ⊆ Fq be a basis of Fq over Fpi , then there exists
an isomorphism between Fq and Fpr that lifts an x ∈ Fq to (x1, . . . , xr)

⊤ ∈ Fpr .
This isomorphism can be generalized to elements of Fn

q to obtain a matrix over
Fpi , meaning that x ∈ Fn

q lifts to the matrix
x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

...
xr,1 xr,2 · · · xr,n

 ∈ Fr×n
pi .

Definition 5 (Rank weight). Given a vector x = (x1, . . . , xn) ∈ Fn
q , the rank

weight of x over Fpi is

rankFpi
(x) = rank


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

...
xr,1 xr,2 · · · xr,n

 ,

where we say that a vector x ∈ Fn
q is rank-1 if rankFpi

(x) = 1.

The definition of rankFpi
(x) uses the matrix representation of x, which requires

the choice of a basis for Fq. Nonetheless, the rankFpi
(x) is an invariant indepen-

dent of the choice of the basis.

3.1 Sets of Bounded Vectors

We are now ready to define and computationally characterize the sets of bounded
and restricted vectors of interest in our research. The general set of vectors
we consider are vectors with fixed Hamming weight and restricted entries that
belong to a translated subgroup of F∗

q .
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Definition 6. Let G be a subgroup of F∗
q of order ω, and λ ∈ F∗

q , we define the
set of fixed Hamming weight t and restricted entries as

Btλ,ω =
{
x = (x1, . . . , xn) ∈ Fn

q | wt(x) = t, λxi ∈ G ∪ {0} for i ∈ {1, . . . , n}
}
.

This definition is generic and allows us to represent vectors used as errors in
different Syndrome Decoding Problems as elements of Btλ,ω for a specific choice
of parameters λ and ω, which uniquely define G.

Rank-1 Vectors. It is possible to show the relation with rank weights, meaning
that all sets of rank-1 vectors are Btλ,ω sets.

Lemma 1. Let Fpi be a subfield of Fq and x ∈ Fn
q , Then

rankFpi
(x) = 1 if and only if x ∈ Btλ,pi−1 for some λ ∈ F∗

q .

Proof. From [81, Lemma 10], we have that a vector x ∈ Fn
q with rankFpi

(x) = t

has a decomposition into x = ηy, where η ∈ (F∗
q)

t and y ∈ Ft×n
pi . Since by

hypothesis x is a rank-1 vector over Fpi , then t = 1, and we have that η ∈ F∗
q

and y ∈ Fn
pi . Then x ∈ Btλ,pi−1, with λ = η−1, using G = F∗

pi .
Conversely, if x ∈ Btλ,pi−1, then for λ being the inverse of the first non-zero entry
of x, we have that λx ∈ (G ∪ {0})n where G has order pi − 1. As a consequence,
G corresponds to F∗

pi , meaning that rankFpi
(x) = 1 by [81, Lemma 10].

Restricted Vectors. Restricted vectors were defined in [10], and a modification
of these vectors was implemented in CROSS [9] as error vectors.

Lemma 2. Let G be a subgroup of F∗
q with order ω and v ∈ Fn

q with wt(v) = t.
Then

v ∈ (G ∪ {0})n if and only if v ∈ Btλ,ω with λ ∈ G.

This lemma is a direct consequence of the fact that if λ ∈ G, then all the
operations are restricted to the subgroup.

Remark 1. It is important to note that restricted vectors and rank-1 vectors do
not coincide; indeed, it can be proven that rank-1 vectors and restricted vectors
are equivalent if and only if G = F∗

pi for a subfield Fpi in Fq and λ ∈ G.

We are ready to computationally characterize the sets Btλ,ω. Before proceeding,
we need to introduce some notation: we denote by ⋆ the Schur (or Hadamard)
product over Fn

q . Precisely, we mean that the product is taken entrywise, so for
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn

q ,

x ⋆ y = (x1y1, x2y2, . . . , xnyn) ∈ Fn
q .

To take the Schur product of x with itself s times, we write xs = (xs
1, . . . , x

s
n).
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Definition 7. We denote the (weight-preserving) projection of Btλ,ω on {0, 1}
with the following map

π : Btλ,ω → {0, 1}n

v 7→ (λv)ω.

Theorem 1. Given a vector v ∈ Fn
q , let w = (λv)ω. Then

v ∈ Btλ,ω if and only if w ∈ {0, 1}n.

Furthermore, wt(w) = wt(v).

Proof. The theorem follows from the fact that

v ∈ G if and only if v|G| = vω = 1.

Consequently, the order ω uniquely defines the subgroup G of F∗
q .

In the next section we focus on providing probabilistic arguments that will allow
us to create the protocols.

3.2 Probabilistic Arguments for Sets of Bounded Vectors

Theorem 1 characterizes the set of bounded vectors, but it does not permit
us to build a ZKP just yet. In this section we introduce some probabilistic
arguments that allow us to motivate the challenges of the protocols. Traditionally
for inner product arguments, one applies the Schwartz-Zippel lemma to obtain a
probabilistic bound, then works backwards to determine how many test vectors y
are sufficient to be convinced of an inner product relation below some probability
threshold. In our case, we can in fact speak with exactitude using the following
probabilistic argument.
We start with some preliminaries. We denote by x

$←− X when an element x ∈ X
is selected uniformly at random from the set X.

Definition 8. A function f : N→ R is a negligible function if for every n ∈ N
there exists an N ∈ N such that for all x > N we have

|f(x)| < x−n.

Equivalently, |f(x)| is bounded by the reciprocal of any polynomial in x, for x
large enough.

Definition 9. Given a random variable E and events E, (Es)s∈N ⊆ E such that
lims→∞ Es = E, we say the event E occurs with high probability (w.h.p) when
lims→∞ Pr[Es] = 1.
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Let Xy denote ⟨u,y⟩ for u,y ∈ Fn
q . We aim to characterize when the event E =

{u = 0} occurs for any given u from an analysis of the events Es = {Xys
= 0}

where ys ∈ Fn
q is chosen uniformly at random for s ∈ N. Using the law of total

probability with no restrictions on u, we have for a randomly selected y that

Pr[Xy = 0] = Pr[Xy = 0 | u = 0] · Pr[u = 0] + Pr[Xy = 0 | u ̸= 0] · Pr[u ̸= 0]

=
1

qn
+

1

q

(
1− 1

qn

)
≈ 1

q
.

Hence, we apply Bayes theorem to see that

Pr[u = 0 | Xy = 0] =
Pr[Xy = 0 | u = 0] · Pr[u = 0]

Pr[Xy = 0]

=
1

qn−1 + q−1
q

≈ 1

qn−1
.

This tells us that for an arbitrary u ∈ Fn
q , if ⟨u,y⟩ = 0 for a randomly chosen y,

then we can say that u is actually the zero vector 0 with only a small probability.
If this holds for a number of different yi vectors which are selected uniformly
at random, then one can argue that the probability u = 0 should increase
exponentially. The following lemmas make more rigorous this informal heuristic.

Lemma 3. Let u,y1, . . . ,yn ∈ Fn
q , then u = 0 if and only if y1, . . . ,yn are

Fq-linearly independent and ⟨u,yi⟩ = 0 for 1 ≤ i ≤ n.

Lemma 4. Let u,y1, . . . ,yn ∈ Fn
q and let k = dimFq

⟨y1, . . . ,yn⟩ then the

Pr[u = 0 | Xy1 = 0, . . . , Xyn = 0] ≈ 1

qn−k
.

Proof. If Xy1 = 0, . . . , Xyn = 0, then u belongs to a subspace of dimension

n− dimFq
⟨y1, . . . ,yn⟩ = n− k

over Fq, so then the probability follows from the argument above and simple
counting.

Let (yi)i∈N ⊆ Fn
q be a sequence of of vectors chosen uniformly at random.

Then, by Lemma 3, one would be certain that u = 0 as soon as ⟨u,yi⟩ = 0
for a sufficiently large amount of vectors yi. Worse-case scenario, one needs
qn−1 + 1 this amount will ensure the existence of n Fq-linearly independent
vectors. From a probabilistic perspective though, for q large enough and s ≤ n,
if y1, . . . , ys

$←− Fn
q then, with high probability, the vectors form a Fq-linearly

independent set.
Since we want to ensure the use of linearly independent vectors, we are not
choosing the vectors uniformly at random over the whole space Fn

q , but we will
restrict the choice to vectors of the form

y = (y, y2, . . . , yn) ∈ Fn
q (1)
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for a given y ∈ F∗
q . At this point, the choice of linearly independent vectors

reduces to the choice of distinct elements. The following result follows from
standard results of the Vandermonde matrix.

Lemma 5. Let s ≤ n and y1, . . . , ys ∈ F∗
q , then the vectors yi = (yi, y

2
i , . . . , y

n
i )

for 1 ≤ i ≤ s are Fq-linear independent if and only if y1, . . . , ys are distinct.

Remark 2. For the remainder of the manuscript, when we write y, we intend the
vector defined as in (1).

4 The HammR Protocol

We now present our generic framework that permits us to prove a number of
important characteristics about a vector over Fq. We present this protocol as a
ZKP interactive protocol, where a prover wishes to demonstrate that a secret
vector v is in Btλ,ω, which will be done using w = (λv)ω from Theorem 1. The
verifier is allowed to pick challenges y, x ∈ F∗

q , which are incorporated into the
prover’s calculations in order to demonstrate that they are being done honestly.

4.1 Key Components of the HammR Protocol

Now we want to characterize probabilistically whether a vector w ∈ Fn
q has

entries only in {0, 1} using the arguments from Section 3.2. This will permit us
to verify that w is indeed a projection.

Lemma 6. Let y1, . . . , ys ∈ F∗
q be distinct, and let y1, . . . ,ys ∈ Fn

q be the vectors
defined by (1). Given w ∈ Fn

q , if

⟨w ⋆ (1−w),yi⟩ = 0

for 1 ≤ i ≤ s, then with high probability w ∈ {0, 1}n. Once s = n, then w ∈
{0, 1}n with certainty.

This is a consequence of the probabilistic argument from Section 3.2.
Thus, we introduce the following three equations which will serve as the building
blocks for HammR.

⟨1−w,1⟩ = n− t (2)
⟨(1−w) + (λv)ω,y⟩ = ⟨1,y⟩ (3)
⟨(1−w) ⋆ (λv)ω,y⟩ = 0 (4)

Theorem 2. For λ and ω from Theorem 1, if a vector v ∈ Btλ,ω, then it satisfies
the above conditions (2), (3), and (4) for any choice of y. Conversely, if v
satisfies these conditions for enough randomly selected y, then w.h.p. v ∈ Btλ,ω.
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Proof. The forward direction is immediately verifiable. For the other direction,
by Theorem 1, then (2) is equivalent to wt(v) = t. If (3) holds, then w.h.p.
w = (λv)ω, demonstrating that the projection was taken honestly. With this in
mind, finally (4) shows that w.h.p. w ∈ {0, 1}n, so the verifier can be confident
that w is actually a projection.

We remark that the above theorem holds for y taken uniformly at random,
even though for our protocol we specify y = (y, y2, . . . , yn) ∈ Fn

q using y ∈ F∗
q .

Additionally, the w.h.p. can be improved by taking n test vectors, by appealing
to the probabilistic argument from Section 3.2.
Instead of proving that conditions (2), (3), and (4) hold separately to demon-
strate that v ∈ Btλ,ω, they can be packaged into a single inner product condition.
Using the indeterminate z, where z is selected by the verifier to ensure that the
calculations are done honestly, we form

z2⟨1−w,1⟩+z⟨(1−w) + (λv)ω,y⟩+ ⟨(1−w) ⋆ (λv)ω,y⟩ = z2(n− t)+z⟨1,y⟩

which we can then package. Akin to Bulletproofs [27], we add z2⟨1,y⟩+ z3⟨1,1⟩
to both sides, then conglomerate the conditions to obtain

⟨(1−w) + z1, y ⋆ ((λv)ω + z1) + z21⟩ = d0,

where d0 = (z2+z3)n−z2t+(z+z2)⟨1,y⟩. Define ε := (z2+z3)n+(z+z2)⟨1,y⟩
so that d0 = ε−z2t. These values will be used in the protocol to assist the verifier
in confirming the veracity of committed values using verifier-chosen information,
in specific: y, z ∈ F∗

q in the precomputation step.
To turn this single inner product into the HammR protocol, the prover selects
random obfuscating vectors s1, s2 ∈ Fn

q and fixes the following two polynomials
in the indeterminate x:

p1(x) = (1−w) + z1 + s1x (5)

p2(x) = y ⋆ ((λv)ω + z1 + s2x) + z21. (6)

These polynomials serve to exhibit conditions (2), (3), and (4) from earlier, while
ensuring that no information about v is leaked. Later, after these polynomials
have been committed to, the verifier will communicate a bit x0 ∈ F∗

q in the main
portion of the protocol, and the prover will evaluate p1(x) and p2(x) at x0,
which will permit the verifier’s calculations on the commitments to work out as
purported.

4.2 Assembling HammR

We now define the following commitment subprotocols which will build up to
HammR.
The scalar commit protocol in Algorithm 1 is simply the standard Pedersen
commitment. The vector commit protocol is the vector version of the Peder-
sen commitment, the security of which we discuss in Appendix B. As both are

9



Scalar commit, vector commit, and commity−1 protocols
Public: g, h ∈ G, g,h ∈ Gn

Private: v ∈ Fq, a,b ∈ Fn
q

Commit to v by sampling γ
$←− Fq,

then we define commit(γ, v) = hγgv.

Commit to a and b by sampling γ
$←− Fq,

then we define commit(γ,a,b) = hγgahb.
For y−1 ∈ Fn

q , we set commity−1(γ,a,b) = hγgahy−1⋆b.

Algorithm 1: The commitment protocols

Pedersen commitments, but it will be clear from the input which one is being
referenced, we use the same name with no ambiguity. The instance commity−1 is
equivalent to commit, and will be used solely to improve readability; while not
strictly necessary, it compresses the protocol. We note that in the commity−1

protocol, y−1 = (y−1, y−2, y−3, . . . , y−n) ∈ Fn
q .

HammR setup Protocol
Public: g, h ∈ G, g,h ∈ Gn, t ∈ N
Private: w,v ∈ Fn

q , λ ∈ F∗
q , ω ∈ N

PROVER VERIFIER

Sample α, ρ, γ
$←− Fq

Sample s1, s2
$←− Fn

q

C1 = commit(α,1−w, (λv)ω)
C2 = commit(ρ, s1, s2)

K = commit(γ, t)
C1, C2, K−−−−−−−−−−→

y, z←−−−−−− Sample y, z
$←− F⋆

q

Set ε = (z2 + z3)n+ (z + z2)⟨1,y⟩
Algorithm 2: the setup algorithm for HammR

Algorithm 2 is the HammR setup protocol, and serves to precompute the values
that will be used in the initial steps of Algorithm 3, such as commitments to the
secret vectors.
We now present in Algorithm 3 the HammR protocol for bounded vectors, but
defer the security proofs until after introducing the batching protocol, as proving
the security of the aggregation is sufficient.

4.3 Aggregating Proofs

We prove here that batching m proofs can be done more efficiently than simply
repeating the protocol m times. We begin by batching these instances, then in
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The HammR ZKP Protocol
Public: q, n ∈ N, g, h ∈ G, g,h ∈ Gn

Private: v,w, s1, s2 ∈ Fn
q , λ ∈ F∗

q , ω ∈ N
PROVER VERIFIER
p1(x) = (1−w) + z1 + s1x
v̂ = (λv)ω + z1 + s2x
p2(x) = y ⋆ v̂ + z21
d(x) = ⟨p1(x),p2(x)⟩
d(x) := d2x

2 + d1x+ d0

Sample δ1, δ2
$←− Fq

Di = commit(δi, di)
Di−−−−−→
x0←−−−−− Sample x0

$←− F⋆
q

p̂i = pi(x0)

d̂ = ⟨p̂1, p̂2⟩
δx0 = δ2x

2
0 + δ1x0 − z2γ

µ = ρx0 + α
d̂, δx0

, p̂i, µ
−−−−−−−−−−−−→ commit(δx0 , d̂)

?
= D

x2
0

2 ·D
x0
1 ·K−z2 · gε

P := commity−1(µ, p̂1, p̂2)

P
?
= Cx0

2 · C1 · gz1 · hz1+z2y−1

d̂
?
= ⟨p̂1, p̂2⟩

Algorithm 3: the main portion of the HammR protocol

the next section we demonstrate that the aggregate protocol is a ZKP. This is
sufficient to demonstrate that the protocol as presented is a ZKP, by taking
m = 1.
Suppose we have m vectors vi ∈ Fn

q , and we aim to prove that vi ∈ Btλ,ω for
i = 1, . . . ,m, where Btλ,ω is taken from Theorem 1.
We form the weight distribution vector t ∈ Nm from the individual ti’s, and the
binding vector γ ∈ Fm

q from the individual binding factors γi. Similarly, let g
and h denote the vectors formed from the group elements g and h respectively.
Let K ∈ Gm be the vector formed from the individual commitments, so that
Ki = hγigti for randomly selected blinding factors γi

$←− F∗
q . We also let v =

(v1 || . . . ||vm) ∈ Fnm
q denote the concatenation of the vectors for each individual

proof.
So concretely, this framework admits a general proof protocol for the relation

K = hγgt and vi ∈ Btλ,ω for i = 1, . . . ,m (7)

Similarly, the vectors p1(x), p2(x) ∈ Fnm
q [x] will also be changed:

p1(x) = (1nm −w) + z1nm + s1x

p2(x) = ynm ⋆ ((λv)ω + z1nm + s2x) +

m∑
i=1

zi+1
(
0n(i−1) || 1n || 0n(m−i)

)
.
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We must also adjust the values for δx0
and ε to include the cross terms

δx0 = δ2x
2
0 + δ1x0 −

m∑
i=1

zi+1γi

ε = (z + z2)⟨1nm,ynm⟩+ (1 + z)n

m∑
i=1

zi+1.

Thus,

d0 = ε−
m∑
i=1

zi+1ti = (z + z2)⟨1nm,ynm⟩+
m∑
i=1

zi+1((1 + z)n− ti),

where the m = 1 case collapses to the values we saw previously in the single
round HammR protocol: d0 = (z2 + z3)n− z2t+ (z + z2)⟨1,y⟩.
Then the verifier’s checks take the form

commit(δx0
, d̂)

?
= D

x2
0

2 ·D
x0
1 ·K−zzm

· gε,

commity−1(µ, p̂1, p̂2)
?
= Cx0

2 · C1 · (g · h)z
m∏
i=1

hzi+1y−1

[n(i−1)+1, ni]

where a[i, j] represents taking a slice of the vector a from indices i to j inclusive,
so a[i, j] = (ai, ai+1, . . . , aj−1, aj).

4.4 Proof that Batched HammR is a ZKP

Here, we present a security proof of the batched protocol, which implies the same
properties for the unbatched version. In order to be a full-fledged ZK scheme,
Algorithm 3 is required that satisfy the following informal properties:

– Completeness: if a prover knows a valid vector, then they will always pass
the verifier’s checks.

– Soundness: if a prover does not know a valid vector, then they can only pass
the verifier’s checks with small probability.

– Zero-Knowledge: no party learns any pertinent information about the vector
except that it is valid.

To see a more formal treatment of the definitions for these zero-knowledge terms
we use here, we refer to Appendix C.
We begin by showing completeness:

Theorem 3. Algorithm 3 is complete.

Proof. Completeness follows from Theorem 2, since if an honest prover knows a
valid vector v, then they will successfully pass each of the checks (2), (3), and
(4) in the protocol.
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We now prove that Algorithm 3 enjoys witness extended emulation, which is a
more robust notion of the traditional soundness. See Appendix C for a more
complete treatment of these terms.

Theorem 4. Algorithm 3 enjoys witness extended emulation.

Proof. To demonstrate that this protocol achieves witness extended emulation,
we construct an extractor algorithm EHammR that accepts mn distinct challenges
for y, m+2 values for challenge z, then 3 values for x. Additionally this algorithm
is able to call an efficient inner product extractor algorithm Eip, which runs in
time poly(n), and is required by Lemma 7, from Appendix C. At the end, it
then produces either a valid witness or an instance that violates the discrete log
assumption (Assumption 1 in Appendix A).
To start, EHammR will call Eip, which accepts input P = hµgp1hp2 and ⟨p1,p2⟩ =
d, then returns witnesses p1 and p2. Using these witnesses, along with two
valid transcripts obtained from the x challenges, we can compute linear com-
binations of the check for P and calculate α, 1 − w, and (λv)ω such that
C1 = hαg1−wh(λv)ω , then also ρ, s1, and s2 such that C2 = hρgs1hs2 . If the
extractor ends up with a different set of presentations for C1 or C2, then they
can violate the discrete logarithm assumption, so the values seen here must be
the ones obtained under Assumption 1.
From this presentation, one can see that for all challenges (x, y, z), the following
equality is true:

p1(x) = (1nm −w) + z1nm + s1x

p2(x) = ynm ⋆ ((λv)ω + z1nm + s2x) +

m∑
i=1

zi+1bi,m,n

where we introduce the notation bi,m,n = (0n(i−1) || 1n || 0n(m−i)) for brevity.
Additionally, from now on, we write y to mean ynm and 1 instead of 1nm. If
there exists a challenge set where these do not hold, then a violation of the
discrete logarithm assumption has been found.
For a fixed pair of y and z, we take three distinct values of x and use linear
algebra to determine d1 and δ1 such that D1 = hδ1gd1 , then also d2 and δ2 such
that D2 = hδ2gd2 . This can be done via linear algebra in the exponents.
We can also, from the m distinct values of the z challenges, find ti and γi such
that hγigti = Ki for i = 1, . . . ,m. If any transcript doesn’t have equality between
⟨p1(xj),p2(xj)⟩ and d2x

2
j + d1xj + d0 for any of j = 1, 2, 3, then the binding

property of Pedersen commitments (see Appendix B) has been violated, contrary
to our assumptions.
Assuming all the previously mentioned equalities hold, then for all challenges y
and z and three distinct challenges xj , we have that α(xj) − β(xj) = 0, where
α(xj) = ⟨p1(xj),p2(xj)⟩ = α2x

2
j + α1xj + α0 and β(xj) = d2x

2
j + d1xj + d0, for

j = 1, 2, 3. Since the difference of these polynomials has degree 2, but three xj

roots, we get that it must be the 0 polynomial - hence, each of the terms are equal.
In particular, the constant terms for both polynomials must be equal, hence α0
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and d0 are equal. Since α0 is the constant term of ⟨p1(xj),p2(xj)⟩, we can expand
this inner product and subtract d0 to get 0. Recalling that d0 = ε−

∑m
i=1 z

i+1ti
and ε = (z + z2)⟨1,y⟩+ (1 + z)n

∑m
i=1 z

i+1, we find that

0 = α0 − d0 = α0 −

(
ε−

m∑
i=1

zi+1ti

)

= ⟨(1−w) + z1,y ⋆ ((λv)ω + z1) +
m∑
i=1

zi+1bi,m,n⟩

−

(
(z + z2)⟨1,y⟩+ (1 + z)n

m∑
i=1

zi+1 −
m∑
i=1

zi+1ti

)
= ⟨(1−w) ⋆ (λv)ω,y⟩ − z⟨w − (λv)ω,y⟩

+

m∑
i=1

zi+1⟨1−w,bi,m,n⟩+
m∑
i=1

zi+2⟨1,bi,m,n⟩

−

(
m∑
i=1

zi+1n(1− ti) +

m∑
i=1

zi+2n

)
= ⟨(1−w) ⋆ (λv)ω,y⟩ − z⟨w − (λv)ω,y⟩

+

m∑
i=1

zi+1(ti − ⟨w,bi,m,n⟩) +
m∑
i=1

zi+2(⟨1,bi,m,n⟩ − n)

= ⟨(1−w) ⋆ (λv)ω,y⟩ − z⟨w − (λv)ω,y⟩+
m∑
i=1

zi+1(ti − ⟨wi,1
n⟩)

which follows since, recalling that bi,m,n = (0n(i−1) || 1n || 0n(m−i)), we have
⟨w,bi,m,n⟩ = ⟨wi,1n⟩.
Since this holds for m+2 challenges for z, but the above is a polynomial of degree
m+ 1 in z, it must be identically the 0 polynomial, so each term is individually
equal to 0. We can split up the above equality into three different equalities:

0 = ⟨(1−w) ⋆ (λv)ω,y⟩ (constant term) (8)
0 = ⟨w − (λv)ω,y⟩ (linear term) (9)
ti = ⟨wi,1

n⟩ for i = 1, . . . ,m, (higher terms) (10)

where we point out that these are exactly the batching of the conditions from
Equations (2), (3), and (4). Therefore vi ∈ Btλ,ω for i = 1, . . . ,m, as claimed in
the relation (7).
Thus, since Ki = hγigti for i = 1, . . . ,m, we have that K = hγgt, and the algo-
rithm EHammR has extracted a list of valid witnesses (γ, t) for Relation (7). This
extractor algorithm has runtime 3mn(m+ 2)poly(n) times, which is polynomial
in m and n. It will either output a valid witness or it will violate the discrete log-
arithm assumption, which we assume happens with negligible probability. Thus
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we can apply the general forking lemma, Lemma 7 from Appendix C, and thusly
Algorithm 3 obtains witness extended emulation.

Finally, we finish the proof by demonstrating zero-knowledge.

Theorem 5. Algorithm 3 achieves the zero-knowledge property.

Proof. To demonstrate zero-knowledge, we show that there exists a simulator
algorithm S that can generate proofs which are indistinguishable from a genuine
interaction. This simulator S computes the two values D̂1 and Ĉ2 as defined
below:

D̂1 =
(
K−zzm

· gε−d̂ · h−δx0 ·Dx2
0

2

)−x−1
0

,

Ĉ2 =

(
C1 · h−µ · g−p̂1+z1nm

· h−p̂2+z1nm
m∏
i=1

hzi+1y−nm

[n(i−1)+1, ni]

)−x−1
0

,

but then selects all other values as uniformly at random.
To highlight that this algorithm will appear to honestly produce a valid tran-
script, we show that these two values are sufficient to pass the verifier’s checks.

commit(d̂, δx0
)

?
= D

x2
0

2 · D̂
x0
1 ·K−zzm

· gε = gd̂ · hδx0

and

commit(µ, p̂1, p̂2)
?
= Ĉx0

2 · C1 · (g · h)z
m∏
i=1

hzi+1y−1

[n(i−1)+1, ni] = hµ · gp̂1 · hp̂2

thus S can appear to successfully pass a verifier’s challenges by selecting random
values for d̂, δx0

, and µ, and picking random vectors p̂1 and p̂2. This means that
a third party who’s privy to the interaction of a prover and verifier can never be
certain that what they’re listening to isn’t just a simulator algorithm S. Hence
Algorithm 3 obtains the zero-knowledge property, as any eavesdropping third
party can never be certain that the prover in the interaction truly knows a valid
vector, since they could always be simply emulating S.

4.5 Turning HammR Non-Interactive

In order to turn this protocol non-interactive, we hash transcripts and apply the
Fiat-Shamir heuristic [48,6], so we define the following values:

y := Hash (q, n, g, h,g,h, C1, C2,K) and z := Hash (q, n, g, h,g,h, y, C1, C2,K).

There are certain issues with Fiat-Shamir that we aim to avoid [54], such as the
so-called Frozen Heart vulnerability; this comes from FoRging Of ZEro kNowl-
edge proofs along with Fiat-Shamir, which is the heart of turning a sigma proto-
col non-interactive [62]. For more details on the practicality of this vulnerability,
we refer to [37,75,20,40,74].
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We strive to avoid this vulnerability which stems from the weak Fiat-Shamir
heuristic [17], so to this end, we hash public data, the generators, and all three
commitments into the challenge y, then include y into the hash digest of z.

5 Applications of HammR

In this section we introduce a number of problems based on the standard syn-
drome decoding problem (SDP) that forms the basis for much of code-based
cryptography. The purpose for these problems will become apparent in the next
section, where we apply HammR to these problems.

5.1 Application to Syndrome Decoding Problems

GE-SDP

SDP

RestrictedBinary

GE-Regular

Rank-1 Regular Template

Regular

block

block

E = Hamming ball

{0,±1}n{0, 1}n

{0, 1}nE = V

ti = 1

block restriction on E weight restrictionLegend

Fig. 1: Dependency diagram for SDPs. The squared orange boxes are problems
introduced in this paper.

Problem 1 (Syndrome Decoding Problem). This problem asks upon input of full-
rank parity-check matrix H ∈ F(n−k)×n

q , syndrome vector s ∈ Fn−k
q , and t ∈ N,

to recover the error vector e ∈ Fn
q such that s = He and wt(e) = t.

A few things to note: there is an inferred if such a solution exists at the end of the
above definition. We suppress this addendum for readability, but the above and
all subsequent problems should be read as still containing it. We also point out
that many authors prefer the wt(e) ≤ t variant of the SDP - clearly, the equality
condition is stronger. Finally, we present these problems as search problems, but
will abuse notation and refer to them as NP-complete, even though this term is
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reserved for decisional problems. This is not an issue, as there exists a canonical
search-to-decision reduction.
Problem 1 was shown to be NP-complete over a binary alphabet in [16], then
later over any finite field by [11].
In [71], the authors introduce a generic version of the SDP, which is presented
here in the language of this paper.

Problem 2 (Generic Error Syndrome Decoding Problem (GE-SDP)). This prob-
lem asks upon input of full-rank parity-check matrix H ∈ F(n−k)×n

q , syndrome
vector s ∈ Fn−k

q , and a set E ⊆ Fn
q , to recover the error vector e ∈ Fn

q such that
s = He and e ∈ E.

Taking E to be a Hamming ball recovers the traditional SDP, hence this problem
is NP-Complete. One could also set E to be a rank ball [12], a Lee ball [90], or
really any set one pleases. In particular, selecting a multiplicative group gives
the following problem.

Problem 3 (Restricted Syndrome Decoding Problem, [10]). This problem asks
upon input of full-rank parity-check matrix H ∈ F(n−k)×n

q , syndrome vector
s ∈ Fn−k

q , and a multiplicative group G ≤ F∗
q , to recover the error vector e ∈ Fn

q

such that s = He and e ∈ (G ∪ {0})n.

This problem was shown to be NP-Complete in [10], and has since become the
motivation for the CROSS signature scheme [9].

Problem 4 (Regular Syndrome Decoding Problem [7]). This problem asks upon
input of full-rank parity-check matrix H ∈ F(n−k)×n

q and syndrome vector s ∈
Fn−k
q , to recover the error vector e = (e1|| . . . ||er) ∈ Fn

q such that s = He and
wt(ei) = 1, with each non-zero entry equal to 1 for i = 1, . . . , r.

Problem 4, though originally over F2, was introduced in [7] for the purpose of
creating provably secure cryptographic hash functions, where they subsequently
prove that the Regular SDP is NP-complete. Additionally, this primitive has
been used with Multi Party Computation from [61] to design a novel signature
scheme in [26]; for more background, see the citations in [26, Section 2.2]. In
[47,30], the authors show that pairing the Regular SDP with the in the head
paradigm leads to increased efficiency. Note that in [47], the Regular SDP is
referred to as the d-split syndrome decoding problem - this title can be found in
other references too, such as [53]. This problem has also found use in oblivious
linear-function evaluation, in the field of functional secret sharing [24]. Mixing
Regular SDP with the vector oblivious linear evaluation or VOLE framework
from [14] has lead to further efficiency gains [18,77]. The practical difficulty of
solving Problem 4 is discussed in [39,25], and different parameter regimes for
the Regular SDP have been studied in [44,60,67], supporting the notion that the
choice of parameters are of critical importance regarding the problem’s difficulty.
There exists a generalization of this problem where each ei that forms the vector
e = (e1|| . . . ||er) is required to have wt(ei) = ti such that wt(e) =

∑r
i=1 ti
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instead of wt(ei) = 1, but the entries still in {0, 1}. It can also be viewed as a
blocking of the Binary SDP, which is simply Problem 1 over F2. This has been
called the Template Syndrome Decoding Problem in [19], though the authors
focus on side-channel attacks and make no claims about the hardness. This
problem clearly is at least as difficult as the SDP, because setting r = n collapses
to Problem 1, with each ti ∈ {0, 1}. We present it here over Fq, instead of the
usual F2.

Problem 5 (Template Syndrome Decoding Problem). This problem asks upon
input of full-rank parity-check matrix H ∈ F(n−k)×n

q , syndrome vector s ∈ Fn−k
q ,

and t ∈ N, to recover the error vector e = (e1|| . . . ||er) ∈ Fn
q such that s = He,

where wt(ei) = ti with t =
∑r

i=1 ti, such that each non-zero entry of ei is equal
to 1.

Another clear direction for generalizing the Regular SDP and Template SDP
is permitting the entries of e to be taken from a more arbitrary space, instead
of {0, 1}. This can also be viewed as a block version of the GE-SDP, where
e = (e1|| . . . ||er) and each ei is an instance of Problem 2. To the best of our
knowledge, this problem remains unnamed, so we identify it here:

Problem 6 (Generic-Error Regular Syndrome Decoding Problem (GE-Regular
SDP)). This problem asks upon input of full-rank parity-check matrix H ∈
F(n−k)×n
q , syndrome vector s ∈ Fn−k

q , weight distribution vector (t1, . . . , tr), and
error sets Ei ⊆ Fq, to recover the error vector e = (e1|| . . . ||er) ∈ Fn

q such that
s = He, where the non-zero entries of ei are taken from Ei and wt(ei) = ti for
i = 1, . . . , r.

Corollary 1. The GE-Regular SDP is NP-Complete.

This can be readily seen, as specifying Ei = {0, 1} and ti = 1 for i = 1, . . . , r in
the GE-SDP returns exactly the Regular SDP.
Below, we formalize a novel special case of the GE-Regular SDP. This represents
a generalization of the Regular SDP, where the blocks are permitted to take
entries in some subspace V satisfying dimFi

p
(V ) = 1.

Problem 7 (Rank-1 Regular Syndrome Decoding Problem). This problem asks
upon input of full-rank parity-check matrix H ∈ F(n−k)×n

q , syndrome vector
s ∈ Fn−k

q , and weight distribution vector (t1, . . . , tr), to recover the error vector
e = (e1|| . . . ||er) ∈ Fn

q such that s = He and ei is rank-1 satisfying wt(ei) = ti
for i = 1, . . . , r.

This problem is clearly at least as hard as Problem 4, because it contains the
instance when e ∈ {0, 1}n, which devolves into the Regular SDP, hence:

Corollary 2. The Rank-1 Regular SDP is NP-Complete.
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We now shift towards applying HammR to these problems by demonstrating
the validity of the Hamming weight and entry restrictions, zero-knowledge prov-
ing that a vector represents a valid instance of its corresponding cryptographic
primitive, agnostic of the syndrome requirement. One example where this func-
tionality could be helpful is where a user holds a number of CROSS keys, and
wants to demonstrate in a zero-knowledge fashion that they are indeed valid
restricted vectors.
First, suppose that v ∈ Fn

q is a restricted vector, meaning that it satisfies wt(v) =
t with entries from G ∪ {0}, where G is a multiplicative subgroup of F∗

q . That
is, it meets the Hamming weight and entry requirements of the Restricted SDP
from [10]. To prove this validity, one can employ HammR to show that v ∈ Btλ,ω,
which is exactly the necessary condition, as a consequence of Lemma 2. Indeed,
this can be utilized to show that vector v is a valid instance of CROSS from [9],
which requires it to be full-weight with elements from a subgroup of F∗

q .
Similarly, let v ∈ Fn

q be an instance of the Regular SDP, meaning that v =
(v1|| . . . ||vr) with wt(vi) = 1 where the non-zero entry of vi takes value 1 for
i = 1, . . . , r. Since we have demonstrated that HammR can be batched efficiently,
this protocol can be applied to prove that vi ∈ B11,1 for i = 1, . . . , r, thus v
represents a valid instance of the Regular SDP.
In fact, HammR is capable of handling an even stronger statement, showing that
v satisfies wt(vi) = ti for i = 1, . . . , r. That is, that each vi is a valid Template
SDP instance. Or even more generally, that it meets the novel GE-Regular SDP
criteria for a suitable error set E = Btλ,ω.
Similarly, HammR can showcase that v is a valid instance of the Rank-1 Regular
SDP, a novel NP-Complete problem. The statement of this problem demands
that v = (v1|| . . . ||vr) be such that each vi is a weight-t rank-1 vector for
i = 1, . . . , r, or equivalently, that vi ∈ Btλ,pi−1.

5.2 Further Applications

We now present a number of additional potential applications for the HammR
ZKP protocol framework.

Lookup instances. We showcase this first application from [52], which presents
a lookup instance protocol. Let n ≤ N , and suppose we wish to determine if all
the entries of a small vector a ∈ Fn

q are also entries in a large vector t ∈ FN
q .

This is in fact equivalent to the existence of a matrix M ∈ Fn×N
q such that

a) M · t = a,
b) The rows of M are standard basis vectors, ie: assuming N < char(Fq), that

M ⋆M = M and M · 1N = 1n.

Our protocol HammR can be used in this formulation of lookup instances, as all
the matrix products above can be turned into inner product calculations with
vectors in B11,1.

19



Proximity proofs. This second application involves a Hamming proof of prox-
imity, similar to [4] which is concerned with bounded one-sided error. HammR
can be used to demonstrate that v1,v2 ∈ Fn

q are proximal as vectors in a zero-
knowledge fashion, by implementing the protocol on the difference.

Electronic voting. Finally, HammR has applications to electronic voting, where
citizens can vote securely over the Internet instead of traveling to a polling
location and voting via paper ballot, which could conceivably be damaged in
transit, tampered with, or outright lost. Electronic voting has been implemented
in Estonia for almost 20 years [45], and remains secure due to the use of digital
signatures. A recent protocol was proposed in [46], which takes the form of a
ternary lattice adaptation of the Stern protocol [87], requiring a check that a
vector s satisfies s ⋆ (s+ 1) ⋆ (s− 1) = 0. HammR handles this check in a more
concise manner, by checking that v ∈ Bt1,2.

6 Conclusions

In this paper, we have presented HammR, a proof protocol demonstrating knowl-
edge of a vector that has Hamming weight t and has entries taken from a shifted
subgroup. We have proven that proofs can be efficiently batched, then that this
batched protocol is complete, sound, and zero-knowledge - thus a ZKP. We have
presented applications of this work to a number of well-known syndrome decod-
ing problems, including introducing two novel problems to showcase HammR.
Additionally, we showed how HammR can be leveraged to solve other problems
as well, including lookup instances, vector proximity, and electronic voting pro-
tocols.
Overall, HammR represents a significant advancement in the field of zero-knowledge
proofs. It offers a concise and efficient solution for proving the properties of vec-
tors with bounded entries. Future work may explore optimizing the protocol
further and extending its applications to other cryptographic problems.

Appendix A Security Assumptions

In this Appendix we define our security assumptions.
Recall that 1λ denotes the length-λ vector of all ones. We write GGen to mean a
group generation algorithm that takes input 1λ with security parameter λ, and
outputs the description of group G. As usual, we reserve g to be a generator of
G. The following problem is perhaps the most famous problem to come out of
classical cryptography:

Problem 8 (Discrete Logarithm Problem). The discrete logarithm problem is:

given input {(g, gα) | (G, q, g)← GGen(1λ), α
$←− Fq}, recover α.
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Assumption 1 (Discrete Logarithm Assumption) We say that the discrete
logarithm assumption holds if the following advantage is bounded by some negli-
gible function for all probabilistic, polynomial-time adversaries A:

Pr[A(g, gα) = α | (G, q, g)← GGen(1λ), α
$←− Fq] ≤ negl(λ)

Clearly, the hardness of the Problem 8 relies on Assumption 1, ie: that an ad-
versary’s advantage is negligible.
The next two problems form the basis for the famous Diffie-Hellman key ex-
change.

Problem 9 (Computational Diffie-Hellman Problem). The computational Diffie-
Hellman problem is:

given input {(g, gα, gβ)
∣∣ (G, q, g)← GGen(1λ), α, β

$←− Fq}, compute gαβ .

Problem 10 (Decisional Diffie-Hellman Problem). The decisional Diffie-Hellman
problem is:

given input {(g, gα, gβ , gγ)
∣∣ (G, q, g)← GGen(1λ), α, β, γ

$←− Fq}, determine if γ = αβ.

Both Problem 9 and Problem 10 rely on the following assumption:

Assumption 2 (Diffie-Hellman Assumption) We say that the (decisional)
Diffie-Hellman assumption holds if for all probabilistic, polynomial-time adver-
saries A, the following advantage is negligible:

∣∣∣∣∣Pr
[
A(g, gα, gβ , gαβ) = 1

∣∣∣ (G, q, g)← GGen(1λ), α, β
$←− Fq

]
− Pr

[
A(g, gα, gβ , gγ) = 1

∣∣∣ (G, q, g)← GGen(1λ), α, β, γ
$←− Fq

]∣∣∣∣∣ ≤ negl(λ)

If an adversary can efficiently solve the discrete logarithm problem, then they
can also solve the computational Diffie-Hellman problem. If they can efficiently
solve the computational Diffie-Hellman problem, then they can also solve the
decisional variant. From this, we surmise that the discrete logarithm problem
is at least as hard as the computational Diffie-Hellman problem, which is at
least as hard as the decisional Diffie-Hellman problem. For this document, we
suppose that Assumption 1 and Assumption 2 both hold, ie: that Problem 8 and
Problems 9, 10 cannot be solved efficiently by a probabilistic, polynomial-time
adversary.
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Appendix B Pedersen Commitments

Let Gp denote a group with prime p order. We write g = (g1, . . . , gℓ), where
each gi ∈ Gp generates a copy of Gp, and use this to define g ∈ G. In general, we
will assume that p is a large enough prime, so that p >> ℓ.

For v ∈ Fpℓ , we know that there exists an isomorphism φ : Fpℓ → Fℓ
p, so we’re

justified in writing v = (v1, . . . , vℓ) with each vi ∈ Fp, up to a choice of basis.

Using these, we define gv for g ∈ G and v ∈ Fpℓ by gv := (gv11 , . . . , gvℓℓ ), where
each individual gi ∈ Gp and vi ∈ Fp. This definition is constructed to behave
well with Pedersen commitments: for g,h ∈ G and v,w ∈ Fpℓ , then

gv · hw = (gv1
1 , . . . , gvℓℓ ) ⋆ (hw1

1 , . . . , hwℓ

ℓ ) = (gv11 hw1
1 , . . . , gvℓℓ hwℓ

ℓ ).

Note that this Pedersen commitment over G looks like a vector of ℓ commitments
over Gp.

When considering vectors of commitments, let g ∈ Gn and v ∈ Fn
pℓ . Swapping

to a pair of indices, where the first denotes its index in Gn and the second its

index in
ℓ∏

i=1

Gp we define

gv = (g1, . . . , gn)
(v1, ..., vn)

=
(
(g1,1, . . . , g1,ℓ)

(v1,1, ..., v1,ℓ) , . . . , (gn,1, . . . , gn,ℓ)
(vn,1, ..., vn,ℓ)

)
=
((

g
v1,1
1,1 , . . . , g

v1,ℓ
1,ℓ

)
, . . . ,

(
g
vn,1

n,1 , . . . , g
vn,ℓ

n,ℓ

))
.

Not only does this generalize constructing Pedersen commitments over Gp using
Fp, it formalizes taking commitments over G using Fpℓ . This is necessary to
standardize, as if we consider F4 = {0, 1, α, α + 1}, then computing gα for a
group element g may not make immediate sense.

The idea of committing to values was introduced by Blum in [21] for the purpose
of coin flipping by telephone, where an individual must be able to commit to a
value, then unwrap it. For an extensive overview of zero knowledge basics, we
refer the interested reader to [63]. Formally, a commitment scheme as defined
by [23] is two parts: the first is an efficient randomized algorithm CGen, and
the second an efficient deterministic function Com. The setup algorithm CGen
generates a commitment c, which defines a message space M, a sample space
R, and a commitment space C. We let pp denote public parameters, generated
from CGen(1λ), where λ is some security parameter. The commitment function
Com :M×R→ C uses a message and randomness to formulate a commitment.
For a message x ∈ M, the sender selects r

$←− R uniformly at random, then
forms c := Com(r, x).

Definition 10 (Hiding). We say that a commitment scheme (CGen, Com) is
computationally hiding if the commitment c doesn’t reveal the secret x. This is,
for every probabilistic, polynomial-time adversary A, the following holds:
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∣∣∣∣∣∣∣∣∣∣∣
Pr


pp← CGen(1λ)
x0, x1 ←M

A(c) = b b
$←− {0, 1}

r
$←− R

c := Com(r, xb)

− 1
2

∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

If this probability is 1
2 for all A, then we say the scheme is perfectly hiding.

Definition 11 (Binding). We say that a commitment scheme (CGen, Com) is
computationally binding if the commitment c can only be opened to its secret x.
This is, for all polynomial-time adversaries A:

Pr


pp← CGen(1λ)

c0 = c1 (r0, x0, r1, x1)← A(pp)
x0 ̸= x1

ci = Com(ri, xi) for i = 0, 1

 ≤ negl(λ)

If this probability is 0 for all A, then we say the scheme is perfectly binding.

Both of the above definitions are computational; if we remove the polynomial-
time condition on the adversary, then the definitions are statistical hiding and
binding.

Definition 12. We say that a commitment scheme is homomorphic if for all
x0, x1 ∈M and r0, r1 ∈ R, have that

Com(r0, x0) · Com(r1, x1) = Com(r0 + r1, x0 + x1).

The most common commitment scheme used for zero-knowledge protocols is the
Pedersen commitment, which relies on Problem 8. The Pedersen commitment
takes the form c = hrgx, where g and h are group elements specified in CGen.
Pedersen commitments are perfectly hiding, due to the fact that r is taken as
a uniformly random; on the other hand, if an adversary is capable of breaking
the binding property, then they must be able to extract discrete logarithms - in
violation of Assumption 1. Since this Pedersen commitment is exactly the scalar
commit protocol of Algorithm 1, we see that this protocol achieves advantageous
security properties such as hiding and binding. For the vector commit protocol of
Algorithm 1, we use a variant of Pedersen commitment which, for x = (x1, x2),
takes the form Com(r,x) = hrgx = hrgx1

1 gx2
2 , which allows us to commit to mul-

tiple values at once while still maintaining desirable properties, such as perfect
hiding and computational binding under the discrete logarithm assumption.
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Appendix C Zero-Knowledge Basics

A zero knowledge proof (ZKP) is a primitive that permits a prover to convince
a verifier about the veracity of some statement without disclosing any other
information surrounding their claim. One method of constructing ZKPs is in the
Common Reference String model, which is what we use here - this is not the
only option though, and other papers prefer the Random Oracle Model.

Let L be a language in NP, and let R be a relation that can be verified efficiently
(ie: polynomial time) such that a statement s is in L if and only if there exists
a witness w satisfying (s;w) ∈ R.

A ZKP can then be thought of as a triple of algorithms Π = (Gen, P, V),
all of which are probabilistic, polynomial time algorithms. These represent a
generator for a common reference string Gen, the prover P, and the verifier V.
Gen accepts an input of 1λ with security parameter λ and outputs a common
reference string σ. The prover’s algorithm P(σ, (s;w)) = π accepts input of the
common reference string σ, a public statement s, and a secret witness w, then
produces proof π. The verifier’s algorithm V(σ, s, π) takes in common reference
string σ, statement s, and proof π, then outputs b ∈ {0, 1}, where b = 1 indicates
that the proof has been accepted, and rejected else. When the prover and verifier
act on their respective inputs p and v, the transcript they produce will be denoted
τ ← ⟨P(p),V(v)⟩. When this transcript is accepting, we will write τ = 1.

A ZKP has three major security properties that it must satisfy: zero-knowledge,
completeness, and soundness. We take these definitions from references such as
[63,35,36,58,28,32,88]

Definition 13 (Public Coin Protocol). A proof Π is called a public coin
protocol if the verifier’s challenges are selected uniformly at random, independent
of any values that appeared previously in the transcript.

Definition 14 (Honest-verifier Zero-Knowledge). Let ρ be the verifier’s
random public coin. A public coin protocol is said to obtain honest-verifier zero-
knowledge for relation R if there exists a probabilistic, polynomial-time simulator
S such that for all polynomial time adversary A, the following holds for some
negligible function:

∣∣∣∣∣Pr

 σ ← Gen(1λ)
A(τ) = 1 ((s;w), ρ) = A(σ)
(s;w) ∈ R τ ← ⟨P(σ, (s;w)),V(σ, s, ρ)⟩


− Pr

 σ′ ← Gen(1λ)
A(τ ′) = 1 ((s;w), ρ) = A(σ′)
(s;w) ∈ R τ ′ ← S(s, ρ)

 ∣∣∣∣∣ ≤ negl(λ)

When the negligible function is outright 0, this is called perfect zero knowledge.
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Definition 15 (Completeness). A proof Π for relation R is called complete
if, given security parameter λ, for all (s;w) ∈ R, the probability a valid proof is
wrongly rejected is negligible:

Pr

 σ ← Gen(1λ)
b = 0 but (s;w) ∈ R π = P(σ, (s;w))

b = V(σ, s, π)

 ≤ negl(λ)

Definition 16 (Soundness). A proof Π for relation R is called sound if for
all polynomial-time adversaries A, the probability that their proof get wrongly
accepted is negligible:

Pr

 σ ← Gen(1λ)
b = 1 but (s;w) ̸∈ R π ← A(σ, (s;w))

b = V(σ, s, π)

 ≤ negl(λ)

Note that this definition pertains specifically to long-term scenarios. The negli-
gible function bounding above could, in a single round, take a form like q+1

2q , as
found in the CROSS signature scheme from [9]. However, this is not in opposition
to the definition though, as after r rounds, this value decreases exponentially in
r, thereby is indeed negligible.

Witness extended emulation is a more robust version of knowledge soundness
that tries to avoid certain subtle pitfalls where the expected polynomial-time
simulator S gets called too often, and in total might not actually be polynomial-
time! For a concrete example, see [66, Section 3.3]. In this citation, it is also
shown that if one obtains knowledge soundness, then one has witness extended
emulation as well. [58] adapted this framework from Proof of Knowledge to a
more generic model, while [23] uses witness extended emulation as their definition
for soundness.

We demonstrate witness extended emulation, as it’s more convenient in our
setting. Informally, this says that if an adversary A can generate an argument in
polynomial time that has probability p of convincing the verifier, then there exists
an emulator algorithm E that can also convince the verifier with probability p,
but that moreover generates a witness.

Definition 17 (Witness Extended Emulation).
A proof Π has witness extended emulation if for all deterministic polynomial-
time provers P ′, there exists a polynomial-time simulator S such that for all
interactive adversaries A, the following is negligible:

∣∣∣∣∣Pr

 σ ← Gen(1λ)
A(τ) = 1 (s;u)← A(σ)

τ ← ⟨P ′(σ, (s;u)),V(σ, s)⟩


− Pr

 σ ← Gen(1λ)
A(τ ′) = 1 (s;u)← A(σ)
τ ′ = 1⇒ (s;w) ∈ R (τ ′, w)← EO(σ, s)

 ∣∣∣∣∣ ≤ negl(λ)
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where u is another witness for statement s, and where the oracle O is given
by transcripts ⟨P ′(σ, (s;u)),V(σ, s)⟩ which also allows rewinding the protocol
to a certain point, introducing fresh verifier randomness, then continuing the
protocol to create a new branch with the same initial values.

Finally, we recall the general forking lemma that acts as a extension for special
soundness, as given in [80,15,23,27,36]. Suppose we have a public coin protocol
that has 2m+1 interactions between P and V, which thusly generates challenges
x1, . . . , xm in order. For i ∈ [1, . . . , m], let ni ≥ 1, and consider N :=

∏m
i=1 ni

accepting transcripts, with their corresponding challenges arranged in a tree:
we initialize by generating a tree with depth m where each node of depth i
has exactly ni children, then we label the topmost root with the statement s
in question. We label each node with a distinct value for the ith challenge xi,
for each of the N total leaves. This N also corresponds to the number of paths
from the root statement to the bottommost leaves; ie: the number of accepting
transcripts. We will call this tree a (n1, . . . , nm)-tree of transcripts.

Lemma 7. Let Π be a 2m + 1 interaction public coin protocol, and suppose
there exists a polynomial-time extraction algorithm E that can extract a witness
w for statement s from a (n1, . . . , nm)-tree of accepting transcripts with success
probability 1 − negl(λ), where negl(λ) is a negligible function. If N ≤ p(λ) for
some polynomial p in security parameter λ, then Π obtains witness extended
emulation.

We note that taking m = 1 and n = 2 recovers the standard definition of special
soundness, and refer to [6,5,13] for a formal definition of this concept.
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