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Abstract. The most fundamental performance metrics of secure multi-party computation
(MPC) protocols are related to the number of messages the parties exchange (i.e., round
complexity), the size of these messages (i.e., communication complexity), and the overall com-
putational resources required to execute the protocol (i.e., computational complexity). Another
quality metric of MPC protocols is related to the black-box or non-black-box use of the un-
derlying cryptographic primitives. Indeed, the design of black-box MPC protocols, other than
being of theoretical interest, usually can lead to protocols that have better computational
complexity.
In this work, we aim to optimize the round and communication complexity of black-box se-
cure multi-party computation in the plain model, by designing a constant-round two-party
computation protocol in the malicious setting, whose communication complexity is only poly-
logarithmic in the size of the function being evaluated. We successfully design such a protocol,
having only black-box access to fully homomorphic encryption, trapdoor permutations, and
hash functions. To the best of our knowledge, our protocol is the first to make black-box use
of standard cryptographic primitives while achieving almost asymptotically optimal commu-
nication and round complexity.

1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87] enables multiple parties to jointly compute
a function over their inputs while keeping those inputs private. In particular, a multi-party compu-
tation protocol ensures that none of the parties learn anything beyond what can already be inferred
from their own inputs and the output of the computation. Since its conception, a prolific area of
research has studied the notion of MPC, in particular with the aim of minimizing the computational
and communication overhead that it incurs in securely evaluating a function. Indeed, in a model
without security requirements, the parties can simply exchange their inputs and locally evaluate the
function, incurring in what is arguably the minimal communication and computational cost. In par-
ticular, the size of the exchanged messages is independent of the complexity of the function/circuit
being evaluated.

This area of research has as such seen significant progress, proposing protocols with better round,
communication, and computational complexity [GMW87, Kil88, IPS08, BMR90, KOS03, KO04,
Pas04, PW10, Wee10, Goy11, COSV17, CCG+21, GMPP16]. In particular, for the case of a ma-
licious adversary that can corrupt a majority of parties3 we now have quite a clear picture of the
(asymptotic) costs of multi-party computation. Notably, either assuming a setup or in the plain
model, we have protocols that provably require a minimal number of interactions from standard
polynomial-time assumptions [GS18, BL18, CCG+20]. Moreover, we have a round-optimal protocol
that sends a minimal amount of information overall [COWZ22, QWW18, MPP20, ABJ+19]. In par-
ticular, the communication complexity of these protocols is almost independent (poly-logarithmic)
from the size of the circuit being evaluated, or dependent only on its depth. The downside of all these

3 A malicious adversary attacks the protocol following an arbitrary probabilistic polynomial-time strategy.
Unless stated differently, when we talk about the security of an MPC protocol against malicious adversaries
we assume that up to n− 1 parties can be corrupted, where n is the number of parties.
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protocols, is that they made non-black-box use of the underlying cryptographic primitives. In this
paper, we will focus on protocols that make only black-box and that are succinct. Following [MPP20],
by succinct we mean that the communication complexity depends only on the length of the inputs
and outputs4, and poly-logarithmically on the size of the circuit representing the function f that
needs to be computed.

Malicious security and succinctness. A common method of obtaining a succinct maliciously secure
protocol is to first design a succinct protocol that is secure only against a weaker form of adversarial
behaviors, like semi-honest or semi-malicious5, and then convert it into a maliciously secure protocol
relying on zero-knowledge [GMR85]. In this new protocol, honest behavior is enforced by requiring
each party to send, along with the MPC protocol message, a zero-knowledge proof attesting that
the MPC message has been generated honestly. While this approach works, it inherently makes
non-black-box use of the succinct semi-honest (or semi-malicious) protocol and, consequently, non-
black-box of the primitives underlying it. This occurs even when the initial protocol does make
black-box use of cryptographic primitives.

Black-box secure computation. Protocols that utilize the underlying primitives in a non-black-box
manner generally incur a considerable efficiency overhead. Therefore, it is intriguing from both the-
oretical and practical angles to explore whether black-box protocols can be constructed. Such proto-
cols would rely solely on oracle access to the input-output behavior of the underlying cryptographic
primitives, without requiring any detailed or explicit representation of the primitives themselves. In
this paper, we focus on protocols proven secure in the plain model and with respect to black-box
simulation.6

Interestingly, recent results have shown how to obtain protocols with very low round complexity
(even optimal in some cases), while making black-box use of standard polynomial-time assumptions,
both in the plain model [IPS08, Wee10, Goy11, IKSS21, IKSS23] and assuming setup [IKSS22a,
GIS18, IKSS22b, PS21, ABG+20]. Notably, for the two-party case [ORS15] proposes a round-optimal
(5-round) black-box protocol, and in [IKSS23] the authors extend this result to the multi-party set-
ting. To the best of our knowledge, none of these prior works that make black-box use of crypto-
graphic primitives (either with optimal or constant round complexity) are also succinct. As such, in
this work, we ask the following natural question.

Is there a round-optimal succinct MPC protocol, maliciously secure against a dishonest ma-
jority in the plain model, that makes black-box use of standard cryptographic assumptions?

1.1 Our Contributions

We give a partial answer to the above question, by designing the first constant-round succinct two-
party protocol that makes only black-box use of fully homomorphic encryption. In particular, we
prove the following claim:

Theorem (informal). Assuming black-box access to fully homomorphic encryption, non-
succinct black-box constant-round 2PC, and collision-resistant hash functions, there exists a
succinct constant-round 2PC protocol that securely computes any function f , in the presence
of malicious adversaries.

4 We recall that the dependence on the output size instead is inherent for any malicious-secure proto-
col [HW15].

5 A semi-malicious adversary acts like a semi-honest adversary, but it can pick arbitrary randomness to
execute the protocol.

6 From now on, to avoid confusion, we will not specify anymore that our results are with respect to black-box
simulation, and only use the terms black-box and non-black-box when referring to the use of cryptographic
primitives.
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Using the results of [ORS15], we can obtain a 5-round (which is optimal due to to [KO04]) 2PC
protocol that makes black-box use of trapdoor permutations, hence we obtain the following corollary.

Corollary (informal). Assuming black-box access to fully homomorphic encryption, trapdoor-
permutations, and collision-resistant hash functions, there exists a succinct 14-round 2PC
protocol that securely computes any function f in the presence of malicious adversaries.

It remains an interesting open question to understand whether it is possible to match the round
complexity of existing non-succinct black-box protocols and to extend our result to the multi-party
setting.

1.2 Technical Overview

We start by recalling the folklore approach to designing a succinct two-party computation protocol
using fully homomorphic encryption (FHE) [LTV12] for the semi-honest case. For simplicity, we
consider the setting where only one party gets the output (a receiver) and denote this party with
Prec. The other party Peval (the evaluator) just provides its input and helps evaluate the function
f . Prec, on input xrec, generates the public-secret key pair (pk, sk) of an FHE scheme, encrypts xrec
thus obtaining ctrec, and sends (pk, ctrec) to Peval. The evaluator encrypts its input xeval using pk,
and homomorphically evaluates f under FHE using ciphertexts that contain the inputs of the two
parties, thus obtaining a new ciphertext cty which contains y ← f(xrec, xeval). P

eval then sends cty
to Prec, who can use the secret key sk to finally obtain y. Turning this protocol into one that is
secure against malicious adversaries and makes only black-box use of the FHE scheme faces multiple
challenges. Let us start by considering the case where Prec is malicious (denoted by Prec⋆).

Security against malicious Prec. The adversarial Prec could generate the public key and the
ciphertext of the FHE scheme in such a way that, for example, no matter what FHE evaluation
Peval performs, cty would always contain the input of the evaluator xEval. Luckily, this problem can
be easily solved using an FHE scheme that prevents exactly this type of attack. Such a scheme
is called circuit private, and is provided in [DD22], where it is constructed by making black-box
use of standard FHE. This, however, does not solve all our problems, as to properly simulate the
behavior of a corrupted receiver, we need to be able to extract its input. To enable that, we modify
the protocol as follows. Prec runs a verifiable secret sharing (VSS) procedure in its head using xrec
as the secret, thus obtaining a set of views (or shares). Prec then encrypts each share individually
and sends these ciphertexts to Peval. Now Prec engages in a cut-and-choose with Peval, who asks Prec

to open (i.e., to see the plaintext and the randomness) a subset of these ciphertexts. Peval checks
that the openings are correct and that the views of the VSS are consistent with each other. If this
is the case, then Peval continues the execution of the protocol as described above. The simulator can
now extract the input of a corrupted Prec⋆ by simply rewinding and asking to open different subsets
of views at each rewind. The cut-and-choose guarantees that if Peval verification is successful, then
sufficiently many views must be consistent with each other (even among the un-opened ciphertexts),
hence, we can rely on the security of VSS to claim that there is a unique value committed. This
allows us to claim that there is no ambiguity about what the simulator will extract. There are some
subtleties that we have overlooked, like the fact that an FHE ciphertext may be non-committing.
We solve this using quite standard techniques, and we refer to the technical part of the paper for
more details.

Security against malicious Peval. The only damage that a corrupted Peval⋆ can do is to evaluate
a function different from f , hence forcing an incorrect output to Prec. The standard way to solve
this problem is by requiring Prec to issue a zero-knowledge proof that cty contains y ← f(xrec, xeval).
Unfortunately, this approach leads to a non-black-box use of the underlying FHE scheme. Our high-
level idea is to instead run a zero-knowledge proof inside FHE, thus proving that y was computed
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Fig. 1: FHEGen and EvalFHE denote respectively the FHE key-generation and evaluation algorithms. EvalFHE takes as input
the function and the set of ciphertexts on which the function should be applied homomorphically. When we write Enc with
an arrow, we mean that the FHE encryption procedure was applied on plaintexts at the tail of the arrow thus generating a
set of ciphertexts that we place at the tip of the arrow. (VSS,VSSRec) denote respectively the VSS sharing and reconstruction
algorithms. PCP denotes the PCP prover algorithm, and Φ represents the decision algorithm of the PCP verifier. Every action
that Peval performs is under FHE ciphertexts encrypted with the key pk, with the exception of the creation of the Merkle trees
(only the leaves of the MT correspond to FHE ciphertexts). Also, the views of the execution of Πg are encrypted. With abuse

of notation, we denote with view1
1, . . . , view

1
n, view

3
1, . . . , view

3
n, the ciphertexts of the view of Πg . In this simple example, the

PCP is queried on only two locations 1, 3, and the challenges for the MPC-in-the-head part are two indices (2, 4). Similar to
the cut-and-choose performed to check the validity of the input of Prec, this check involves a challenge of just two indices.
To compute the output Prec decrypts cty and accepts the plaintext as the output of the computation only if the MT paths

(path12, path
1
4 and path32, path

3
4 in this example) are valid, and the MPC-in-the-head verification succeeds. Here, pathji denotes

the path from root to leaf with value ctji .
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correctly. Prec can verify the zero-knowledge proof in the clear, as it knows the FHE decryption
key. If we use an information-theoretic zero-knowledge proof, we can safely evaluate it under FHE
and still claim black-box use of cryptographic primitives. Unfortunately, such zero-knowledge proofs
do not exist unless a strong form of setup is assumed [Ps05, AH87]. Moreover, we would need the
zero-knowledge proof to be compact to keep the overall communication complexity of our protocol
sublinear in |f |.

Quick detour on PCPs. We still want to follow this idea, but using simpler tools. The main building
block we consider is a special type of information-theoretic proof system called Probabilistic Checkable
Proof (PCP) [AS98]. In a PCP we have a prover and a verifier. The prover, on input a statement x
and a witness w, generates a proof π proving that (x,w) ∈ Rel, where Rel is some NP relation. This
proof can be seen as a sequence of κ locations π1, . . . , πκ, and the size of π depends on the size of x
and w.

To verify the validity of the proof, the verifier can ask to inspect some of the proof locations
by issuing a set of indices (queries) q1, . . . , qτ , thus receiving πq1 , . . . , πqτ . The verifier then decides
whether to accept or reject the proof by running a decision procedure Φ on input the theorem x, the
queries q1, . . . , qτ and the answers πq1 , . . . , πqτ . A PCP proof is sound, in the sense that a verifier will
not accept a proof for a false statement, and moreover the verification complexity, which corresponds
to the number of queries and the complexity of Φ, is only polylogarithmic in the size of π.

As described, PCPs work by assuming that the verifier has access to an oracle that knows π,
and honestly replies to the verifier’s queries. To use PCPs in a real protocol (where such an oracle
does not exist), we would need to replace the oracle with a protocol party, like the prover who
generated the proof itself. However, a malicious prover may be able to cheat by crafting answers of
the PCP adaptively on the queries performed by the verifier. The usual way to solve this problem is
to follow the approach of [Kil92, BG01, Mic00]. In this, the prover first generates the PCP proof π
and then commits to its components via a Merkle tree (MT) [Mer89]. The verifier, upon receiving
the commitment, generates the PCP queries and asks the prover to open the corresponding paths
in the MT.

How to use PCPs in our protocol. After this brief recap on PCPs, we are now ready to show how to
modify our protocol to make sure that Peval can prove that it performed the evaluation f , without
harming the succinctness of the protocol and still making black-box use of the underlying primitives.

The statement that Peval needs to prove via the PCP consists of (y, xrec, xeval), and the witness
simply consists of f . We have that ((y, xrec, xeval), f) ∈ Rel iff f(xrec, xeval) = y. We are now ready to
show a first attempt to modify our protocol.

Peval, using the statement and the witness just defined, generates the PCP proof under FHE,

thus obtaining a list of ciphertexts ct
(π)
i ← Enc(pk, πi) for each i ∈ [κ]. Peval then constructs the

Merkle tree using these ciphertexts, and sends the root to Prec. Prec sends the challenges of the PCP,
and Peval opens the MT paths according to these challenges. Prec checks that the MT paths have
been opened correctly, decrypts the leaves of the MT that it got, and runs the PCP verification
procedure Φ in the clear. This approach makes sure that the output y obtained by decrypting cty
does correspond to y = f(xrec, xeval).

Unfortunately, this approach still has some issues. We recall that the PCP verification Φ requires
the knowledge of the statement which in our case corresponds to (y, xrec, xeval). Note that the state-
ment includes the input of the party xeval that we must protect from Prec⋆ (which we recall is the
PCP verifier). We also note that just giving in the clear some of the components of π may leak
information about the statement (hence the input of Peval).

We first argue how to solve the latter issue: hiding the components of π, while still allowing Prec

to verify the PCP proof. In Fig. 1 we provide a more high-level description of our protocol to help
visualize the components that we will now introduce. The high level idea is to let Peval issue a zero-
knowledge (ZK) proof (non-compact) for the following statement “There exists a reply πq1 , . . . , πqτ
to the queries q1, . . . , qτ that makes the PCP verifier’s decision algorithm Φ accept the statement
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(y, xrec, xeval)”. To make this simple idea work, we need to connect the PCP answers (πq1 , . . . , πqτ )
opened via the MT, with the statement proven by the ZK proof. The idea is to follow an MPC-in-
the-head approach [IKOS07] and combine it with PCPs. In particular, instead of generating the MT
of π, we generate a MT of a secret sharing of π. In more detail, for each element of the proof πi we
run a VSS, thus obtaining n shares, and we construct a MT Ti using these shares. This process leads
to κ different Merkle trees. These κ MTs are then used to construct a final MT, which represents
our commitment Troot to the PCP, that is sent to Prec.

For every j, upon receiving a query qj from Prec, Peval opens a path to the qj-th leaf of Troot (see
Fig. 1 for an example), which corresponds to the MT root Tqj . We recall that Tqj contains in its
leaves a verifiable secret sharing of πqj . Then Peval uses all these shares of πq1 , . . . , πqτ as input of an
information theoretic-MPC protocol Πg that evaluates the following function gxrec,xeval,y,{qj}i∈[τ]

(·).
The function g is parametrized by the input of the parties, the output of the computation y ←
f(xrec, xeval), and by the PCP queries, and takes as input τ sets of VSS shares S1, . . . , Sτ . For each
j ∈ [τ ] the function g runs the VSS reconstruction algorithm on the set of shares Sj , thus obtaining
πqj , and then runs the PCP verification algorithm Φ on input the reconstructed values πq1 , . . . , πqτ ,
the queries {qj}j∈[τ ] and the PCP theorem (y, xrec, xeval).

The party Peval runs Πg in its head and commits to the obtained views using a standard com-
mitment scheme. Then, Prec asks to open a subset of the views of Πg with the corresponding MT
paths, and checks the consistency of the views and the correctness of the MT openings. For example,
if Prec asks to see the view of the first player of Πg, then Peval will send for each j ∈ [τ ]: 1) The path
that goes from the MT root Troot to Tqj ; 2) the Merkle tree path that from the root Tqj leads to the
first VSS share of πqj which we denote with s

qj
1 , and 3) the opening of the first commitment that

contains the view of the first player in Πg (with the inputs s
qj
1 ). Prec will accept y as a valid output

if the following checks succeed (for every query): 1) the path from Tqj to s
qj
1 is valid, 2) the view

of the first party that executed Πg uses s1j and the view of this party is consistent with all other
opened parties’ views for Πg; and 3) The path from Troot to Tqj is valid (we refer to Fig. 1 for an
example).

Now that we have prevented any leakage of xeval from the proof π, we need to fix the other
problem we mentioned. Indeed, recall that in the above approach, g is still parametrized by the
input of Peval. Hence, we are still leaking xeval. To solve this issue, the idea is to turn xeval into an
additional witness of the MPC-in-the-head proof. To extract the witness in the simulation, we can
rely on the existence of an efficient extraction procedure to retrieve the witness and an efficient
sampler to generate queries whose distribution is indistinguishable from that of the PCP verifier.
However, to simplify the simulation, we adopt an alternative approach described below. A similar
method was used in a concurrent work [IOS25] to construct doubly efficient zero-knowledge proofs
for RAM programs.

To do that, we commit to a secret sharing of xeval, and include these shares as inputs of the
MPC-in-the-head proof. Again, we need to somehow connect the fact that the same xeval is used in
both the generation of the PCP proof and as the prover input of the MPC-in-the head protocol.

We can solve this problem easily by relying on a special type of PCP where the statement
has two components: an explicit and an implicit input. The explicit part is read entirely by the
verifier, and the verifier is only given oracle access to the implicit part (the queries to this part are
counted as part of query complexity). In our case, (y, xrec) represents the explicit input, whereas xeval
represents an implicit input. Equipped with this special PCP, we can now just treat xeval exactly
as π to create the connection between the PCP and the MPC-in-the-head. The core technique is
very similar to the one we have just described, and we refer the reader to the technical part of
the paper for all the details. PCPs that enjoy this special property are called PCPs of proximity
(PCPPs) [BGH+05, BGH+06, Din07]. However, PCPPs need to be handled with some care as they
enjoy a weaker form of soundness. In the technical part of the paper, we will show how to deal with
this and other minor subtleties that we need to face.

The reader may have noticed that in our informal theorem, we claimed to need, on top of FHE
and collision-resistant hash functions (needed to construct the Merkle tree), a generic non-compact
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2PC protocol, that we have not mentioned in this high-level overview. We will use this additional
2PC to generate the challenges of the cut-and-choose and the challenges of the MPC-in-the-head
part. This will be needed during the simulation to program the challenge or to rewind and change
the challenges of these sub-protocol executions. More details are provided in the technical part of
the paper.

Finally, our protocol enables black-box cryptography without impacting concrete efficiency. While
the non-black-box solution [COWZ22] achieves function-size-independent communication, our pro-
tocol’s communication still depends only polylogarithmically on the function size due to PCP verifier
complexity. Recent advances in efficient PCP-based proofs (e.g., StarkWare [Sta]) further support
its practical feasibility. In terms of computational cost, our protocol heavily relies on FHE, with the
most expensive part being PCP execution under FHE. Though current FHE constructions are con-
cretely inefficient, there are efforts to develop hardware-based solutions (e.g., DPRIVE by DARPA
[DAR], Duality [BCPR]). Notably, in the malicious secure setting, to the best of our knowledge, even
succinct constant-round non-black-box protocols rely on FHE or other concretely inefficient tools
(e.g., functional encryption [SW05, BSW11], homomorphic secret sharing [BGI16]).

Other related works. Other than the works mentioned previously, a line of research where com-
munication complexity plays an important role is that of input-hiding secure computation [MRK03,
IP07, ADT11]. In this, the goal is to hide the size of the parties’ inputs. The techniques used to de-
sign such protocols are similar to those mentioned earlier in the context of succinct communication.
Indeed, prior approaches on input-hiding computation are based on somehow similar combinations
of fully-homomorphic encryption and proof systems [CV12, LNO13, COV15].

2 Preliminaries

In this section, we define the tools and primitives required for our construction. In addition, see
Appendix A for detailed definitions of commitment schemes and encoding schemes.

Notation. We use λ to denote the computational security parameter. For integers a, b s.t. a ≤ b,
[a, b] denotes set {a, a+1, . . . , b}. For integer m, we use [m] to denote set [1,m]. We use = to denote

equality, ← to denote assignment, and
$←− to denote sampling a uniform distribution. We use ∥ to

denote concatenation.

Encoding schemes. An encoding scheme comprises of two algorithms, Encode and Decode. Encode
maps a message x ∈ Fk

q to codeword X ∈ FK
q . Decode takes as input (possibly corrupted) codeword

X ′ ∈ FK
q and outputs x or ⊥. For any x ̸= x′, the Hamming distance between Encode(x) and

Encode(x′) is ≥ δK. If ∃x ∈ Fk
q such that Hamming distance between X ′ and Encode(x) is < δK/2,

then Decode(X ′) outputs x, else Decode(X ′) outputs ⊥. We use Reed-Muller [Ree54, Mul54] codes
in our paper. See Appendix A.2 for details.

2.1 Secure Multiparty Computation

Here, we provide a formal definition of secure multiparty computation, with emphasis on the two-
party scenario. Much of the following is taken verbatim from [IKSS21], which in turn uses definitions
from [Gol01].

A multiparty protocol is cast by specifying a random process that maps tuples of inputs to
tuples of outputs (one for each party). We refer to such a process as a functionality. The security
of a protocol is defined with respect to a functionality f . In particular, let n denote the number of
parties. A (non-reactive) n-party functionality f is a (possibly randomized) mapping of n inputs to
n outputs. A multiparty protocol with security parameter λ for computing the functionality f is
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a protocol running in time poly(λ) and satisfying the following correctness requirement: if parties
P1, . . . , Pn with inputs x1, . . . , xn respectively, all run an honest execution of the protocol, then the
joint distribution of the outputs y1, . . . , yn of the parties is statistically close to f(x1, . . . , xn).

Defining security. We assume that the reader is familiar with the standard simulation-based
definitions of secure multiparty computation in the standalone setting. We provide a self-contained
definition for completeness and refer to [Gol01] for a more complete description. The security of a
protocol (w.r.t. a functionality f) is defined by comparing the real-world execution of the protocol
with an ideal-world evaluation of f by a trusted party. More concretely, it is required that for every
adversary A, which attacks the real-world execution of the protocol, there exists an adversary S,
also referred to as the simulator, which can achieve the same effect in the ideal-world execution. We
denote x⃗ = (x1, . . . , xn).

The real execution. In the real execution, the n-party protocol Π for computing f is executed
in the presence of an adversary A. The honest parties follow the instructions of Π. The adversary
A takes as input the security parameter λ, the set I ⊂ [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy.

The above interaction of A with a protocolΠ defines a random variable REALΠ,A(z),I(λ, x⃗) whose
value is determined by the coin tosses of the adversary and the honest players. This random variable
contains the output of the adversary (which may be an arbitrary function of its view) as well as the
outputs of the uncorrupted parties.

The ideal execution - security with abort. An ideal execution for a function f proceeds as
follows:

– Send inputs to the trusted party: As before, the parties send their inputs to the trusted
party, and we let x′i denote the value sent by Pi.

– Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.
– Adversary instructs trusted party to abort or continue: This is formalized by having the

adversary send either a continue or abort message to the trusted party. (A semi-honest adversary
never aborts.) In the latter case, the trusted party sends to each uncorrupted party Pi its output
value yi. In the former case, the trusted party sends the special symbol ⊥ to each uncorrupted
party.

– Outputs: S outputs an arbitrary function of its view, and the honest parties output the values
obtained from the trusted party.

In the case of secure two-party computation, where an adversary corrupts only one of the two par-
ties, the above behavior of an ideal-world trusted party is captured by functionality F2PC, described
in Figure 2 below.

Parameters. Description of function f . Let H ∈ {1, 2} andM∈ {1, 2} \ {H} denote the index of
honest party and corrupt party, respectively.
1. F2PC receives input xH from honest party PH and input xM of the corrupt party from simulator S.
2. F2PC computes y ← f(x1, x2) and sends y to S.
3. If F2PC receives abort from S, it sends abort to honest party PH. Otherwise, F2PC sends y to honest

party PH.

Functionality F2PC

Fig. 2: Functionality F2PC for maliciously secure 2PC.
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As before, the interaction of S with the trusted party defines a random variable IDEALf,S(z),I(λ, x⃗).
Having defined the real and the ideal world executions, we can now proceed to define the security
notion.

Definition 1. Let λ be the security parameter, f an n-party randomized functionality, and Π an
n-party protocol for n ∈ N. We say that Π t-securely computes f in the presence of malicious
adversaries if for every PPT adversary A there exists a PPT adversary S such that, for any I ⊂ [n]
with |I| ≤ t, the following quantity is negligible in λ:

|Pr[REALΠ,A(z),I(λ, x⃗) = 1]− Pr[IDEALf,S(z),I(λ, x⃗) = 1]|,

where x⃗ = {xi}I∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

Note that for two-party computation, n = 2 and t = 1 in Definition 1.

Privacy with knowledge of outputs (PKO). Ishai et al. [IKP10] considered a weakening of the
security definition, where the trusted party first delivers the output to the ideal world adversary,
which then provides an output to be delivered to all the honest parties. They called this security
notion privacy with knowledge of outputs (PKO), and showed a transformation from this notion
to security with selective abort using unconditional MACs. Note that the notions of security with
abort and security with selective abort are identical in the case of two-party computation, and
thus the result of [IKP10] equips us with a statistical reduction from PKO to security with abort
(Definition 1).

The behavior of an ideal-world trusted party which guarantees PKO is captured by functionality
F2PC-PKO, described in Figure 3 below.

Parameters. Description of function f . Let H ∈ {1, 2} andM∈ {1, 2} \ {H} denote the index of
honest party and corrupt party, respectively.
1. F2PC-PKO receives input xH from honest party PH and input xM of the corrupt party from

simulator S.
2. F2PC-PKO computes y ← f(x1, x2), and sends y to S.
3. F2PC-PKO receives abort or y′ from S, and sends the same to honest party PH.

Functionality F2PC-PKO

Fig. 3: Functionality F2PC-PKO for 2PC satisfying PKO.

In Section 3.2, we show that our construction securely realizes F2PC-PKO as defined above, and we
defer to the result of [IKP10] for a black-box extension to standard malicious security with abort.

Zero-knowledge from “MPC-in-the-head”. Ishai et al. [IKOS07] proposed the following ap-
proach to constructing zero-knowledge proofs, using secure multiparty computation. For NP relation
R(x,w) and language L = {x : ∃w R(x,w) = accept}, consider a prover P having NP statement x
and witness w, and a verifier V having only x. In order to prove x ∈ L without leaking w, P locally
emulates n(= O(λ)) players p1, . . . , pn, and gives each pi a share wi of the witness w. Then, P runs
“in the head” an execution of an n-party MPC protocol Πg, which takes public input x and private
input wi from each player pi, computes a reconstruction of witness w, and outputs R(x,w) to each
player. Let g(x,w1, . . . , wn) denote this functionality realized by Πg.

In this process, each pi obtains a view Viewi of the protocol execution, which includes x, wi,
and all incoming messages from other players. A pair of views (Viewi,Viewj) is said to be consistent
(w.r.t. Πg and x) if all outgoing messages implicit in Viewi, x are identical to the incoming messages
reported in Viewj , and vice versa. Then, P reveals some random t (= n/c) views to V, and V accepts
if every pair of these views is consistent, and each has output accept. Clearly, if the sharing scheme
guarantees t-privacy, then zero knowledge is ensured.
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Our result makes use of the above approach, and as shown in Theorem 4 (and in [IKOS07]),
soundness holds in the malicious setting if MPC protocol Πg satisfies t-privacy in the semi-honest
setting (obtained by relaxing Definition 1 to semi-honest adversaries), as well as a notion of t-
robustness in the malicious setting, defined as follows.

Definition 2 (t-Robustness). We say that n-party protocol Πg realizes g with perfect t-robustness
if it is perfectly correct in the presence of a semi-honest adversary, and furthermore for any computa-
tionally unbounded malicious adversary corrupting at most t players, and for any inputs (x,w1, . . . , wn),
the following robustness property holds. If there is no (w′

1, . . . , w
′
n) such that g(x,w′

1, . . . , w
′
n) =

accept, then the probability that some uncorrupted player outputs accept in an execution of Πg is
0.

Note that t-robustness is simply a weaker notion of t-security as defined in Definition 1. In our
construction, we execute MPC-in-the-head using the information theoretic MPC protocol of [DN07].
We state their result formally below.

Theorem 1. [DN07, Section 5] Let t < n/3. There exists a perfectly correct, t-private and t-robust
MPC protocol that has a communication cost of Õ(n|C|), where |C| denotes the size of circuit C.

2.2 Verifiable Secret Sharing

A verifiable secret sharing scheme [CGMA85] is a pair of (n + 1)-player MPC protocols, which
implement the following functionality. In the first protocol, referred to as the sharing protocol,
one player called the dealer holds a secret, and it sends shares of this secret to the remaining n
players, called shareholders. In the second protocol, referred to as the reconstruction protocol, the
shareholders reveal their shares to each other, and they reconstruct the secret initially shared by the
dealer.

For any adversary corrupting up to t shareholders, the VSS scheme guarantees the following
security properties. It guarantees privacy, which ensures that if the dealer is honest, then the ad-
versary learns no information about the underlying secret. It also guarantees strong commitment,
which ensures that, even if the dealer is malicious, then either it gets disqualified by all the honest
parties during the sharing protocol, or the honest parties are able to reconstruct a unique secret via
the reconstruction protocol. We now give a formal definition of verifiable secret sharing schemes.

Definition 3 (Verifiable secret sharing scheme). A t-out-of-n perfectly secure verifiable secret
sharing (VSS) scheme is a pair of (n + 1)-party protocols VSS = (Share,Reconstruct), defined as
follows:

– Share. In the sharing protocol, a dealer D runs on input a secret s and randomness r, while
all other players Pi run on randomness ri, for i ∈ [n]. Players exchange messages in multiple
rounds, and each player Pi ultimately receives a share Viewi.

– Reconstruct. In the reconstruction protocol, each player Pi sends its view Viewi to each other
player, and on input the views of all players (including bad views), each player computes the
reconstruction function recons on the received views to output reconstructed secret s, i.e., s ←
recons(View1, . . . ,Viewn).

We require a VSS scheme to satisfy the following three conditions:

– Correctness. If the dealer D runs Share honestly with input secret s, then each honest player
outputs s at the end of Reconstruct.

– Privacy. If the dealer D runs Share honestly with input secret s, then the view of any adversary
corrupting upto t players, before running Reconstruct, is distributed independently of s.
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– Strong Commitment. If the dealer D is dishonest, then either (1) all the honest parties
disqualify D during Share, output ⊥, and refuse to run Reconstruct, or (2) the honest parties do
not disqualify D during Share, in which case they all output a unique secret s∗ ̸= ⊥ at the end
of Reconstruct.

We recall the following result of [GIKR01]. We observe that their VSS construction is information-
theoretic and has a deterministic reconstruction protocol, making it suitable for our purposes.

Theorem 2 (⌊n−1
4 ⌋-out-of-n VSS, [GIKR01]). There exists an efficient 2-round (n, t)-VSS pro-

tocol when n > 4t.

2.3 Extractable Commitments

Informally, a commitment scheme is said to be extractable (with over-extraction) if there exists a
PPT extractor that extracts the committed value conditioned on the commitment being well-formed.
Formally, we report a weaker version of the definition of [PW09]. While the definition of [PW09]
requires an extractor capable of extracting the underlying messages from accepting transcripts, we
only require an extractor to extract underlying messages from well-formed transcripts, as described
below.

Definition 4 (Extractable commitment scheme). Consider a statistically binding, computa-
tionally hiding commitment scheme ΠcomExt = (C,R). Then ΠcomExt is said to be extractable if there
exists an expected PPT algorithm Ext, called the extractor, that given oracle access to any malicious
PPT committer C∗, outputs a transcript τ and a message m such that the following hold:

– τ is identically distributed to the view of C∗ when interacting with an honest receiver R in the
commitment phase.

– The probability that τ is a well-formed transcript and m = ⊥ is negligible.
– If m ̸= ⊥ then Pr[(∃m̃ ̸= m, r̃c) : Dec(τ, m̃, r̃c) = 1] ≤ negl(λ).

We use the construction of an extractable commitment scheme given in [PW09], which is based
on the works of [Ros04, PRS02, DDN00].

2.4 Vector Commitments

Vector commitments [Mer89, LY10, CF13] enable the commitment of a vector of messages in such
a way that the commitment can later be opened with respect to a specific index. We provide its
formal definition below.

Definition 5 (Vector commitment scheme). A vector commitment scheme VC=(Setup, Com,
Open, Verify) is a tuple of protocols between two PPT interactive algorithms, a committer C and a
receiver R, defined as follows:

– ck
$←− Setup(1λ, n): Given λ and the size of the vector n = poly(λ), Setup outputs commitment

key ck. The Setup algorithm is executed by R, who sends ck to C.
– (c, st)

$←− Com(ck,m = (m1, . . . ,mn)): Com takes as input ck and a message vector m of length
n, and outputs commitment c and committer state st. Com is executed by C, who sends the
commitment c to R.

– σi ← Open(ck,m, i, st): On input ck, message m, index i ∈ [n] and st, Open outputs proof σi for
the statement that the message at the ith index of the committed message vector is m. Open is
executed by C, who sends σi to R.
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– b ← Verify(ck, c, i,m, σ): Given ck, c, i ∈ [n], message m and proof σ, Verify validates proof σ
for the statement that c is a commitment on message vector m such that mi = m and outputs
accept/reject. Verify algorithm is executed by R.

We require a vector commitment scheme VC to be complete and concise, and satisfy computa-
tional hiding and index binding. These are defined as follows.

Definition 6 (Completeness). A vector commitment scheme VC is complete if for all λ ∈ N
and n ∈ poly(λ), if ck

$←− Setup(1λ, n), c is a commitment on vector m = (m1, . . . ,mn) ob-
tained on executing Com, and σi is a proof for index i computed using Open, then it holds that
Verify(ck, c, i,mi, σi) = accept.

Definition 7 (Conciseness). A vector commitment scheme VC is concise if for all λ ∈ N and

n ∈ poly(λ), if ck
$←− Setup(1λ, n), c is a commitment on vector m = (m1, . . . ,mn) obtained on

executing Com, and σi is a proof for index i computed using Open, then the sizes of c and σi are
both independent of n.

Definition 8 (Statistical hiding). A vector commitment scheme VC is statistically hiding if for
every λ ∈ N and n ∈ poly(λ), any unbounded adversary A has a success probability ≤ 1

2 + negl(λ) in
the following security game:

– A sends ck, m0 = (m0,1, . . . ,m0,n) and m1 = (m1,1, . . . ,m1,n), such that m0 ̸= m1, but they
agree on some k < n positions.

– The challenger samples b
$←− {0, 1} and computes (c, st)

$←− (ck,mb). Then, for each i such that
m0,i = m1,i, it computes σi ← Open(ck,mb,i, i, st). It sends c and all such σi.

– A outputs b′, and succeeds if b = b′.

Definition 9 (Index binding). A vector commitment scheme VC is index binding if for every
λ ∈ N, n ∈ poly(λ), and PPT adversary A, we have:

Pr

[
Verify(ck, c, i,m, σ) = accept ∧ ck

$←− Setup(1λ); (c, i,m,m′, σ, σ′)
$←− A(ck),

Verify(ck, c, i,m′, σ′) = accept where i ∈ [n] and m ̸= m′

]
≤ negl(λ).

We use ubiquitous Merkle trees [Mer89] to realize vector commitments in our construction, with
ck comprising of a key of length λ. The execution time of Com is Õ(n) and size of commitment is λ.
The computation time of Open and Verify and the size of proof is O(λ log(n)). While Merkle trees
are index binding, we can make our vector commitment scheme statistically hiding by committing
each mi using the statistically hiding scheme of [HM96] (based on collision-resistant hash functions),
and committing the resulting commitments using a Merkle tree.

2.5 Fully Homomorphic Encryption

We recall the notion of fully homomorphic encryption (FHE), defined as follows.

Definition 10 (Fully homomorphic encryption scheme). A (multi-hop) fully homomorphic
encryption (FHE) scheme is a tuple of PPT algorithms (GenFHE, EncFHE, DecFHE, EvalFHE), defined
as follows:

– GenFHE(1λ): The key generation algorithm takes security parameter λ and outputs a key pair
(sk, pk).

– EncFHE(pk,m): The encryption algorithm takes a public key pk and a message m as input, and
it outputs the corresponding ciphertext c.
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– DecFHE(sk, ct): The decryption algorithm takes a secret key sk and a ciphertext c as input, and
it outputs the decrypted message m.

– EvalFHE(pk, (ct1, . . . , ctn), f): The evaluation algorithm takes as input a public key pk, a string
description f of any polynomial-size function, and input ciphertexts (ct1, . . . , ctn), where n is
the number of inputs of f , and it outputs a new ciphertext ct.

LetM denote the space of plaintext messages. An FHE scheme is required to satisfy the standard
notions of correctness and CPA-security fulfilled by any public key encryption scheme, and defined
as follows:

Definition 11 (Correctness). An FHE scheme is correct if ∀λ ∈ N,m ∈ M, if (sk, pk)
$←−

GenFHE(1λ) and c
$←− EncFHE(pk,m), then DecFHE(sk, c) = m.

Definition 12 (CPA-security). An FHE scheme is CPA-secure if for all λ ∈ N and PPT adver-
saries A = (A0,A1), we have:

Pr

[
b = b′ (sk, pk)

$←− GenFHE(1λ); (m0,m1, st)← A0(pk)

b
$←− {0, 1}; c $←− EncFHE(pk,mb); b

′ ← A1(c, st)

]
≤ 1

2
+ negl(λ).

Further, we characterize the correctness of multiple evaluations by an FHE scheme using the
following definition of multi-hop homomorphic correctness.

Definition 13 (Multi-hop homomorphic correctness). An FHE scheme has multi-hop homo-

morphic correctness if for all λ and functions f , if (sk, pk)
$←− GenFHE(1λ) and the set of correctly

generated ciphertexts under pk is defined as:

Cpk = {c |
(
m ∈M ∧ c

$←− EncFHE(pk,m)
)
∨ ∃ f

(
ct1, . . . , ctn ∈ Cpk ∧

c
$←− EvalFHE(pk, (ct1, . . . , ctn), f)

)
},

then for all correctly generated ciphertexts ct1, . . . , ctn ∈ Cpk, we have:

Pr[f(DecFHE(sk, ct1), . . . ,Dec
FHE(sk, ctn)) = DecFHE(sk,EvalFHE(pk, (ct1, . . . , ctn), f))] = 1.

Our result will also make use of an additional property of FHE called malicious circuit-privacy,
which ensures the correctness and privacy of evaluation even with maliciously generated keys and
ciphertexts. To the best of our knowledge, the only known constructions of malicious circuit-private
FHE make non-black-box use of an underlying FHE scheme. Thus, we resort to the following weaker
notion introduced by [DD22].

Definition 14 (Φ-circuit privacy). Let Φ : F → {0, 1}∗ be a (leakage) function. We say an FHE
scheme is Φ-(maliciously) circuit private if for all λ, there exists an unbounded simulator SFHE with
one-time oracle access to f such that for all public keys pk, ciphertexts c = (c1, . . . , cn), and functions

f ∈ F , the distributions SfFHE(pk, c, Φ(f)) and EvalFHE(pk, c, f) are computationally indistinguishable.

The construction given by [DD22] makes only black-box use of an underlying high-rate FHE scheme [GH19,
BDGM19], and it satisfies Φdepth,width-circuit privacy, i.e., it leaks only the depth and width of the
circuit evaluated. As we show in Theorem 4, this is sufficient for our protocol.

2.6 Probabilistically Checkable Proofs of Proximity (PCPPs)

Informally, for an NP relation R, probabilistically checkable proofs (PCPs) [AS98] are proofs that
can be verified by reading only a few bits of the proof. PCPs of Proximity (PCPPs) [BGH+05,
BGH+06, Din07] considers a pair language L in which input is of the form (u, v). The first part of



14 Ciampi et al.

the input u ∈ {0, 1}ℓ is the explicit part that is read entirely by the verifier, and the second part
v ∈ {0, 1}n is the implicit part to which verifier has oracle access (queries to v are counted as part
of query complexity). The explicit input is of the form u = (u′, n), where n is the length of v. Let R
denote the NP relation corresponding to NP Language L.

Definition 15 (PCPPs). A probabilistic proof system (P,V) for an NP relation R((u, v), w) ∈
DTIME(T (n)) with parameters: query complexity of V (Q), runtime of P (tp), runtime of V (tv),
amount of randomness used by V (rv), proof length (ℓp), soundness error (ϵ) and proximity parameter
(δ) is a Probabilistically Checkable Proofs of Proximity (PCPPs) system if the following holds for
every pair (u, v):

– Input: P receives u ∈ {0, 1}ℓ, v ∈ {0, 1}n, and w ∈ {0, 1}µ as input, and V receives u as input.

– Prover’s proof: P generates a proof π with |π| ≤ ℓp(n) in time ≤ tp(n).
– Verifier’s queries: V is decomposed into a pair of algorithms: query algorithm Query and deci-

sion algorithm Φ. V tosses atmost rv = rv(n) many coins; let r denote the randomness ob-
tained as a result of these coin tosses. V computes Query(u, r) to obtain Q = Q(n) many oracle
queries q1, . . . , qQ to v and π. Let b1, . . . , bQ denote the answers to these queries. V computes
Φ(u, r, b1, . . . , bQ) to obtain output ver = accept/reject. The runtime of V is within tv(n).

– Completeness: If R((u, v), w) = accept, then V accepts with probability 1.

– Soundness: Suppose (u, v∗) is such that for every v, for which there exists w s.t. R((u, v), w) =
accept, we have that v∗ is δ-far away from v. Then, V accepts (u, v∗) with probability at most
ϵ = ϵ(n).

Succinctly, we refer to such a system as a (Q, tp, tv, rv, ℓp, ϵ, δ)-PCPP system.

We recall the following result on the existence of “quasi-optimal” PCPP proof system for any
NP relation R, implicit in [BCGT13].7

Theorem 3 (Quasilinear PCPPs, [BCGT13]). Let R(x, w) ∈ DTIME(T (n)) be an NP relation,
where n = |x| and T : Z+ → Z+. Then there exists a PCPP system (P,V) for R, with the following
parameters:

– Query Complexity: Q = polylog(T (n)).

– Prover Complexity: tp = Õ((T (n)).

– Verifier Complexity: tv = polylog(T (n)).

– Verifier Randomness Size: rv = polylog(T (n)).

– Proof Size: ℓp = Õ((T (n))).

– Soundness error: ϵ = negl(n).

– Proximity parameter: δ = 1/polylog(T (n)).

3 Succinct black-box 2PC protocol

In this section, we describe our succinct, constant-round, maliciously secure two-party computation
protocol Π2PC, making only black-box use of cryptographic primitives. This is followed by a formal
proof that our protocol satisfies privacy with knowledge of outputs (PKO). We recall that the
protocol can then be extended to satisfy standard malicious security using the techniques of [IKP10].
Finally, we discuss the round and communication complexity of our protocol.

7 Theorem 1 in [BCGT13] states this for a PCP, but this can be extended to the PCPP case [BC23]. A
similar PCPP with a slightly higher prover complexity appears in [BGH+06].
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3.1 Our Construction

Given parties P1 and P2 with inputs x1 and x2 respectively, our aim is to evaluate a function
y = f(x1, x2), with communication complexity sublinear (in particular, logarithmic) in the size of
the description of f . As explained in Section 1.2, one party (here, P2) will play the role of Peval, i.e.,
perform the actual computation of f and prove, using a PCPP system, that this computation was
performed correctly. The other party (here, P1) will play the role of Prec, i.e., receive the output y,
verify that it was computed correctly, and finally send y in the clear to P2. A high level description
of Π2PC now follows.

Our protocol requires setup for an FHE scheme and for P2 to make vector commitments. The
required keys are sampled by P1 in an initialization phase.

The next phase handles processing of P1’s input x1. Here, we essentially require P1 to commu-
nicate an FHE ciphertext of x1 to P2, but in such a manner that x1 is extractable by an efficient
simulator. To this end, for n = O(λ) and t = ⌊n−1

4 ⌋, P1 locally generates t-out-of-n VSS shares (i.e.,
views) of x1, and sends P2 an FHE ciphertext of each view, along with an extractable commitment
containing that view and the randomness used to encrypt it. P1 then opens a random set of t com-
mitments.8 P2 verifies that the opened views are mutually consistent, and that their corresponding
ciphertexts are generated honestly using the opened randomness. If these checks are successful, P2

uses all n ciphertexts to reconstruct (under FHE) P1’s input x1.

Having obtained an encryption of x1, P2 now encrypts its own input x2 under FHE and homo-
morphically evaluates y = f(x1, x2), thus obtaining an encryption of y, which it sends to P1.

In the next phase, P2 generates a PCPP proof that y was evaluated honestly, as follows. It
first encodes x2 into a codeword X2. It then computes, under FHE, a witness w for the correct
decoding of X2 to x2 and the correct evaluation of y = f(x1, x2). This is followed by an execution
of the PCPP prover P (again, under FHE) to obtain proof π that w is a valid witness for the above
computation of y from x1 and some X ′

2 (which is δ-close to X2, and thus also decodes to x2). To
enable verification by P1 (later in the protocol), and extraction of x2 by an efficient simulator, P2

now generates t-out-of-n VSS views (under FHE) of each location of X2 and π. It finally sends P1

an extractable commitment of the ith set of encrypted views of X2, and a vector commitment of the
ith set of encrypted views of π, for each i ∈ [n].

Next, using randomness received from P1, P2 computes (under FHE) the queries for verification
of π. Each query thus generated asks for either a location of π or a location of X2. In the former
case, P2 selects (under FHE) the views of the corresponding location of π and their proofs of vector
opening. In the latter case, P2 selects (under FHE) the views of the corresponding location of X2.

Now, P2 runs the verifier decision algorithm locally, under FHE, in the MPC-in-the-head paradigm
[IKOS10]. Specifically, P2 locally emulates n players with the above queried views as private inputs
and x1, y, rM as public inputs. Treating the decision algorithm Φ of the PCPP verifier as a relation,
with its “witness” (queried locations of π and X2) shared among the n players by VSS, P2 runs a
robust and secure MPC protocol “in the head” to output as Φ would, on the reconstruction of π
and X2 at the queried locations. P2 commits the views thus generated.

In the final verification phase, for a random set of t indices, P2 opens the corresponding views
of both X2 and the MPC-in-the-head execution, and it sends P1 the proofs of vector opening for
the corresponding (encrypted) views of the queried locations of π. P1 then verifies that all opened
views are mutually consistent and all vector openings are valid. If successful, P1 concludes that the
computation was done correctly. P1 obtains y by decryption and sends it to P2.

We now provide a detailed description of our protocol. We list the parameters used in our
construction in Figure 4. We present our protocol in Figure 5.

8 This random set of indices can be generated by a black-box 2PC protocol [ORS15].
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– n = O(λ) and t = ⌊n−1
4
⌋.

– Description of function f : {0, 1}ℓ1 × {0, 1}ℓ2 → {0, 1}ℓo , where ℓ1, ℓ2 and ℓo denotes the length of
input from party P1, the length of input from party P2, and the output length ℓo respectively.

– Let E be a (k,K, δ′)-Reed-Muller encoding scheme, where k = ℓ2, K = O(k1+α), 0 < δ < 1
2
is a

constant, for any constant α > 0.
– Let (Share,Reconstruct) be an information theoretic t-out-of-n verifiable secret sharing (VSS) scheme

with reconstruction function recons.
– Let Πcom = (C,R) be a standard commitment scheme.
– Let ΠcomExt = (C,R) be an extractable commitment scheme.
– Let VC = (Gen,Com,Open,Verify) be a vector commitment scheme.
– Let (GenFHE,EncFHE,DecFHE,EvalFHE) be a Φdepth,width-circuit private fully homomorphic encryption

(FHE) scheme.
– Let (P,V = (Query, Φ)) be an information-theoretic quasilinear PCPP system for the NP relation
Rf (·), and let this be a (Q, tp, tv, rv, ℓp, ϵ, δ)-PCPP system. The relation Rf (·) takes as input a pair
(u, v), where u = (x1, y, ℓ2), v = X2, and as witness w, the trace of the computation M described
below:
1. On input (x1, y, ℓ2, X2), compute x2 ← E .Decode(X2).
2. Verify that x2 is of length ℓ2.
3. Compute y′ ← f(x1, x2).
4. Output y′ = y.
Rf ((u, v), w) outputs accept if the trace of the computation is consistent with the input pair (u, v),
and the computation outputs accept; otherwise, Rf ((u, v), w) outputs reject.

– Let Πg be an n-player MPC protocol, which takes public input (u, r) and private input (zi,k)k∈Q

from each player pi (i ∈ [n]), and outputs to each player
g(u, r, (z1,k)k∈[Q], . . . , (zn,k)k∈[Q]) = Φ(u, r, (bk ← recons(z1,k, . . . , zn,k))k∈[Q]), where Φ is the decision
algorithm of PCPP verifier V. Let Πg have perfect t-robustness (in the malicious model) and
perfect/statistical t-privacy (in the semi-honest model).

Parameters

Fig. 4: Parameters of succinct black-box protocol Π2PC for 2-party computation.

Inputs. P1 and P2 hold respective inputs x1 ∈ {0, 1}ℓ1 and x2 ∈ {0, 1}ℓ2 .

Initialization Phase.

1. P1 samples ck
$←− VC.Setup(1λ) and (sk, pk)

$←− GenFHE(1λ), and sends (ck, pk) to P2.

Processing input of P1.
2. P1 does the following:
(a) Locally emulate a dealer with input x1, along with n players p1, . . . , pn, and run the VSS

sharing protocol Share “in the head” to obtain n views View
(x1)
1 , . . . ,View

(x1)
n belonging to

p1, . . . , pn respectively.
(b) For each i ∈ [n], sample random ri and compute ct

(x1)
i ← EncFHE(pk,View

(x1)
i ; ri).

(c) Send
(
ct

(x1)
i

)
i∈[n]

to P2, and send an extractable commitment com
(x1)
i of (View

(x1)
i ∥ ri) to P2

for each i ∈ [n], using ΠcomExt.
3. P1 and P2 invoke the F2PC functionality to compute a function that randomly samples indices

i
(2)
1 , . . . , i

(2)
t

$←− [n]. Let I(2) denote the set {i(2)1 , . . . , i
(2)
t }.

4. For each i ∈ I(2), P1 decommits com
(x1)
i to (View

(x1)
i ∥ ri), using ΠcomExt.

5. P2 checks that the views (View
(x1)
i )i∈I(2) of VSS are valid and mutually consistent, and that

cti = EncFHE(pk,View
(x1)
i ; ri) for each i ∈ I(2). If successful, P2 continues to the next step; else it

aborts.
6. P2 locally emulates n players p1, . . . , pn with inputs ct

(x1)
1 , . . . , ct

(x1)
n respectively, and runs (under

FHE, using EvalFHE(pk, ·, ·) for computations) the VSS reconstruction protocol Reconstruct “in the
head” to obtain an FHE ciphertext ct(x1) corresponding to P1’s reconstructed input x1.

Computation of function f .

Protocol Π2PC
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7. P2 encrypts its input x2 under FHE, i.e., ct(x2) $←− Enc(pk, x2), and performs the homomorphic

evaluation of the function f , i.e., ct(y)
$←− EvalFHE(pk, (ct(x1), ct(x2)), f). Let y denote the plaintext

encrypted under ct(y).

Computation of PCPP proof, and its processing.
8. P2 does the following:
(a) Compute X2 = (X2,1, . . . , X2,K)← E .Encode(x2). For each i ∈ [K], compute

ct
(X2)
i

$←− Enc(pk, X2,i). Let CT
(X2) = (ct

(X2)
i )i∈[K] denote a vector of ciphertexts.

(b) Encrypt ℓ2 under FHE, to get ct(ℓ2)
$←− Enc(pk, ℓ2).

(c) Using ciphertexts ct(x1), ct(ℓ2), ct(y), and CT(X2), compute witness w, i.e., the trace of the
computation M (described in Figure 4), under FHE. Let the resultant ciphertext be denoted
by ct(w).

(d) Using ciphertexts ct(x1), ct(ℓ2), ct(y), CT(X2), and ct(w), execute the prover P of PCPP system
under FHE with explicit input u← (x1, y, ℓ2), implicit input v = X2, and witness w, to obtain
PCPP proof π, having length ℓp. In this evaluation, bits of the PCPP proof are encrypted

individually. As a result, P2 obtains a vector of ciphertexts CT(π) =
(
ct

(π)
1 , . . . , ct

(π)
ℓp

)
.

(e) For each j ∈ [K], locally emulate a dealer with input ct
(X2)
j , along with n players p1, . . . , pn,

and run (under FHE) the VSS sharing protocol Share “in the head” to obtain ciphertexts

(ct
(X2)
1,j , . . . , ct

(X2)
n,j ), where ct

(X2)
i,j encrypts the view View

(X2)
i,j , for i ∈ [n]. Let CT

(X2)
i denote the

vector of ciphertexts
(
ct

(X2)
i,1 , . . . , ct

(X2)
i,K

)
, for i ∈ [n].

(f) For each j ∈ [ℓp], locally emulate a dealer with input ct
(π)
j , along with n players p1, . . . , pn, and

run (under FHE) the VSS sharing protocol Share “in the head” to obtain ciphertexts

(ct
(π)
1,j , . . . , ct

(π)
n,j), where ct

(π)
i,j encrypts the view View

(π)
i,j , for i ∈ [n]. Let CT

(π)
i denote the vector

of ciphertexts
(
ct

(π)
i,1 , . . . , ct

(π)
i,ℓp

)
, for i ∈ [n].

(g) For each i ∈ [n], compute (com
(π)
i , st

(π)
i )

$←− VC.Com(ck,CT
(π)
i ).

(h) Send (ct(y),
(
com

(π)
i

)
i∈[n]

) to P1, and send an extractable commitment com
(X2)
i of CT

(X2)
i for

each i ∈ [n], using ΠcomExt.

Generating queries of PCPP Verifier.

9. P1 samples rM
$←− {0, 1}rv , and sends rM to P2.

10. Using ct(x1), ct(y), ct(ℓ2) and ct(rM ) $←− EncFHE(pk, rM ), P2 runs the query algorithm of PCPP
verifier V, i.e., Query(·), under FHE with inputs (u = (x1, y, ℓ2), rM ) to obtain queries
q1, . . . , qQ ∈ [ℓp +K]. For a query q, if q ≤ ℓp, the query refers to the qth bit of π. Otherwise, it
refers to the (q − ℓp)th bit of X2. In the FHE evaluation described above, each query is encrypted

individually. As a result, P2 obtains a vector of ciphertexts CT(q) = (ct
(q)
1 , . . . , ct

(q)
Q ).

Building verifiable responses to queries of PCPP Verifier
11. For each i ∈ [n], P2 does the following:

(a) For each index j ∈ [ℓp], compute proof of vector opening σi,j ← VC.Open(ck, ct
(π)
i,j , j, st

(π)
i ) and

compute ν̂i,j
$←− EncFHE(pk, (ct

(π)
i,j , σi,j)). Prepare a list of tuples Oi ← (ν̂i,j)j∈[ℓp]

.

(b) Consider a selector function which takes as input i and a list Z = (Z1, . . . , Zℓ) of length ℓ, and
outputs Zi if i ∈ [ℓ], otherwise it outputs ⊥. For each k ∈ [Q]:

i. Using ciphertexts ct
(q)
k , CT

(π)
i and CT

(X2)
i , compute selector function under FHE with input

index qk and list
(
View

(π)
i,1 , . . . ,View

(π)
i,ℓp

,View
(X2)
i,1 , . . . ,View

(X2)
i,K

)
to obtain ψi,k. If qk ≤ ℓp,

ψi,k = View
(π)
i,qk

; else ψi,k = View
(X2)
i,qk−ℓp

. Let the resultant ciphertext be denoted by ψ̂i,k.

ii. Similarly, using ciphertexts ct
(q)
k and Oi, compute selector function under FHE with input

index qk and list ((ct
(π)
i,j , σi,j))j∈[ℓp] to obtain ρi,k. If qk ≤ ℓp, ρi,k = (ct

(π)
i,qk

, σi,qk ); else
ρi,k = ⊥. Let the resultant ciphertext be denoted by ρ̂i,k.

(c) Let Ai and Ri denote the lists (ψ̂i,k)k∈[Q] and (ρ̂i,k)k∈[Q] respectively.

MPC-in-the-head emulation of PCPP verifier.
12. Using ciphertexts ct(x1), ct(y), ct(ℓ2), ct(rM ) and Ai, P2 locally emulates n players p1, . . . , pn, and

runs (under FHE) protocol Πg “in the head” with public inputs u = (x1, y, ℓ2) and rM , and
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private input of party pi as (ψi,k)k∈[Q], for i ∈ [n].a P2 obtains ciphertexts (ct
(V )
1 , . . . , ct

(V )
n ), where

ct
(V )
i encrypts the view of party pi, i.e., View

(V )
i , for i ∈ [n].

13. P2 sends a commitment com
(V )
i of ct

(V )
i to P1 for each i ∈ [n], using Πcom.

Verification of MPC-in-the-head emulation of PCPP verifier.
14. P1 and P2 invoke the F2PC functionality to compute a function that randomly samples indices

i
(1)
1 , . . . , i

(1)
t

$←− [n]. Let I(1) denote the set {i(1)1 , . . . , i
(1)
t }.

15. For each i ∈ I(1),
(a) P2 decommits com

(V )
i to ct

(V )
i using Πcom. Also, P2 decommits com

(X2)
i to CT

(X2)
i using ΠcomExt.

(b) P2 sends Ri to P1.
16. P1 decrypts ct(y) to obtain the output y ← DecFHE(sk, ct(y)), and it does the following (if any

check fails, P1 aborts):
(a) For each i ∈ I(1):

i. Execute Query(u = (x1, y, ℓ2), rM ) to obtain queries q1, . . . , qQ.

ii. Parse CT
(X2)
i as (ct

(X2)
i,1 , . . . , ct

(X2)
i,K ). For each j ∈ [K], compute

View
(X2)
i,j ← DecFHE(sk, ct

(X2)
i,j ).

iii. Parse Ri as (ρ̂i,k)k∈[Q]. For each k ∈ [Q], if qk ≤ ℓp, compute

(ct
(π)
i,qk

, σi,qk )← DecFHE(sk, ρ̂i,k) and check if VC.Verify(ck, com
(π)
i , qk, ct

(π)
i,qk

, σi,qk ) = accept.

Compute View
(π)
i,qk
← DecFHE(sk, ct

(π)
i,qk

).

iv. Compute View
(V )
i ← DecFHE(sk, ct

(V )
i ).

v. Check the consistency of individual view View
(V )
i . Also, check consistency of View

(V )
i with

respect to list (View
(X2)
i,j )j∈[K] and (View

(π)
i,k )k∈[ℓp] for each k, where qk ≤ ℓp.

(b) Check the global consistency of the views (View
(V )
i )i∈I(1) .

(c) Check that the output of Πg is accept.
(d) Send y to P2, and output y.

17. P2 outputs y.

a Recall the definition of Πg as given in Figure 4, and observe that, if computed honestly on inputs
u = (x1, y, ℓ2), r = rM , and zi,k = ψi,k for each i ∈ [n], k ∈ [Q], we get, for all k ∈ [Q], bk = πqk if
qk ≤ ℓp; else bk = X2,qk−ℓp as required.

Fig. 5: Succinct black-box protocol Π2PC for 2-party computation.

A note on handling maliciously formed ciphertexts from P1. In step 2(c) of the protocol, P1 sends

ciphertexts ct
(x1)
1 , . . . , ct

(x1)
n to P2. It is possible (with noticeable probability) that a sublinear (in

n) number of these ciphertexts may be maliciously formed, i.e., they may not correspond to any
underlying plaintext. As a result, even though we show in the proof of Theorem 4 that at least n− t
ciphertexts encrypt VSS views that are mutually consistent, we cannot guarantee that the unique
secret x∗1 will be reconstructed in step 6 of the protocol, since the presence of maliciously formed
ciphertexts could cause an execution of EvalFHE to output something else. This creates a difficulty
in simulating the view of a corrupted P ∗

1 . To address this, we augment our protocol.

We consider a circuit CDummy that takes v1, . . . , vn as input and outputs
∑n

i=1(vi − vi). On re-

ceiving ciphertexts ct
(x1)
1 , . . . , ct

(x1)
n , P2 evaluates ctDummy

$←− EvalFHE(pk, (ct
(x1)
i )i∈[n], CDummy). If all

ciphertexts are well-formed, ctDummy will be an encryption of 0ℓ1 . For any ciphertext ct that is com-
puted by P2 and may be sent to P1, where ct encrypts a message of length ℓ, P2 obtains an encryption

of 0ℓ from ctDummy, adds it to ct, and updates the ciphertext ct. If the ciphertexts ct
(x1)
1 , . . . , ct

(x1)
n

are well-formed, then the message encrypted in ct remains the same and the computation remains
unchanged. As we will see in the proof, if any of these ciphertexts are maliciously formed, then the
view of the corrupt P ∗

1 is now simulatable due to the Φ-circuit privacy of the FHE scheme [DD22]
(see Definition 14).
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3.2 Security Analysis

We now provide a proof that our protocol Π2PC satisfies privacy with knowledge of outputs (PKO).

Theorem 4. Assuming the primitives listed in Figure 4, protocol Π2PC securely realizes functionality
F2PC-PKO.

Proof (sketch). Here we provide descriptions of our ideal world simulators for a malicious adversary
corrupting one of the two parties, and we give a high-level sketch of the security proof. The complete
proof can be found in Appendix B.

Case 1: P1 is corrupt. Simulator S1 for malicious party P ∗
1 is described in Figure 6. S1 computes

ctDummy (see Step 8 of S1) and sends updated ciphertexts as described in the note at the end of
Section 3.1. Moreover, S1 also updates the ciphertexts with this procedure in all the intermediate
hybrids.

1. S1 receives a message of the form (ck, pk) from P ∗
1 .

2. S1 receives a message of the form (ct
(x1)
i )i∈[n] from P ∗

1 .
3. For all i ∈ [n], S1 runs the extractor Ext of extractable commitment scheme ΠcomExt, with oracle

access to P ∗
1 , to obtain (com

(x1)
i ,View

(x1)∗
i ∥ r∗i ).

4. S1 simulates F2PC and sends the output i
(2)
1 , . . . , i

(2)
t to P ∗

1 .
5. S1 interacts with P ∗

1 as honest party P2 in step 4 of the protocol. If any of the checks in step 5
fail, S1 sends abort to F2PC-PKO.

6. S1 aborts the simulation if Ext failed on more than t/3 indices i ∈ [n], in step 3 of the simulation.
Else, let the set of indices on which Ext succeeds in extracting be denoted by J . S1 aborts the
simulation if more than t/3 ciphertexts ct

(x1)
i ̸= EncFHE(pk,View

(x1)∗
i ; r∗i ), for i ∈ J . Else, let

J ′ ⊆ J denote the set of indices for which ciphertext ct
(x1)
i = EncFHE(pk,View

(x1)∗
i ; r∗i ). S1 locally

emulates n players p1, . . . , pn with inputs View
(x1)∗
1 , . . . ,View

(x1)∗
n , respectively, and it runs the

VSS reconstruction protocol Reconstruct “in the head” to obtain x∗1. S1 aborts the simulation if
reconstruction fails (which occurs only if there is no set of n− t mutually consistent views

View
(x1)∗
i ).

7. S1 sends x∗1 to F2PC-PKO. S1 receives y from F2PC-PKO.
8. S1 computes ctDummy ← Eval(pk, (ct

(x1)
i )i∈[n], CDummy).

9. S1 does the following:

(a) Compute ct(y)∗
$←− EncFHE(pk, y). Recall that in the FHE construction [DD22] we use,

ciphertexts leak the width and depth of the evaluated circuit. Therefore, we apply an identity
function with the same width and depth as the circuit which reconstructs x∗1 from its views
and evaluates the function f , on the ciphertext ct(y)∗ to obtain an updated ciphertext ct(y). We
prepare all the ciphertexts that are evaluated under FHE in the real world but computed in
the plaintext and then encrypted in the simulation, in this manner.

(b) S1 randomly samples indices i
(1)
1 , . . . , i

(1)
t

$←− [n]. Let I(1) denote the set {i(1)1 , . . . , i
(1)
t }.

(c) Set X2 = (X2,1, . . . , X2,K)← 0K . For j ∈ [K],
i. Locally emulate a dealer with input X2,j , along with n players p1, . . . , pn, and run the VSS

sharing protocol Share “in the head” to obtain n views View
(X2)
1,j , . . . ,View

(X2)
n,j of p1, . . . , pn

respectively.

ii. For each i ∈ [n], compute ct
(X2)
i,j

$←− EncFHE(pk,View
(X2)
i,j ).

(d) Let CT
(X2)
i denote the ciphertext vector

(
ct

(X2)
i,1 , . . . , ct

(X2)
i,K

)
, for i ∈ [n].

(e) Set π = (π1, . . . , πℓp)← 0ℓp . For j ∈ [ℓp],
i. Locally emulate a dealer with input πj , along with n players p1, . . . , pn, and run the VSS

sharing protocol Share “in the head” to obtain n views View
(π)
1,j , . . . ,View

(π)
n,j of p1, . . . , pn

respectively.

ii. For each i ∈ [n], compute ct
(π)
i,j

$←− EncFHE(pk,View
(π)
i,j ).

(f) Let CT
(π)
i denote the ciphertext vector

(
ct

(π)
i,1 , . . . , ct

(π)
i,ℓp

)
, for i ∈ [n].

Simulator S1
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(g) For each i ∈ [n], compute (com
(π)
i , st

(π)
i )

$←− VC.Com(ck,CT
(π)
i ).

(h) Send (ct(y),
(
com

(π)
i

)
i∈[n]

) to P ∗
1 , and send an extractable commitment com

(X2)
i of CT

(X2)
i for

each i ∈ [n], using ΠcomExt.
10. S1 receives rM from P ∗

1 and computes verifier queries

Q = (q1, . . . , qQ)
$←− Query(u = (x∗1, y, ℓ2), rM ).

11. For each i ∈ [n], S1 does the following:
(a) For each k ∈ [Q]:

i. If qk ≤ ℓp, set ψi,k ← View
(π)
i,qk

; otherwise ψi,k ← View
(X2)
i,qk−ℓp

.

ii. If qk ≤ ℓp, set ρi,k ← (ct
(π)
i,qk

,VC.Open(ck, ct
(π)
i,qk

, j, st
(π)
i )); otherwise ρi,k ← ⊥. Compute

ρ̂i,k
$←− EncFHE(pk, ρi,k).

Let Ri denote the list (ρ̂i,k)k∈[Q].
12. Invoke (in the clear) simulator SΠg corresponding to MPC-in-the-head protocol Πg, with set of

indices of parties I(1), public inputs u = (x∗1, y, ℓ2) and rM , and private input of party pi as
(ψi,k)k∈[Q], for i ∈ I(1), and output of the protocol set to accept. S1 obtains

{View(V )
i }i∈I(1) ← SΠg (I(1), (x∗1, y, ℓ2, rM ), (ψi,j)i∈I(1),j∈[Q], accept).

13. For i ∈ [n] \ I(1), generate arbitrary MPC views View
(V )
i .

14. Compute (ct
(V )
i ← EncFHE(pk,View

(V )
i ))i∈[n].

15. S1 sends a commitment com
(V )
i of ct

(V )
i to P ∗

1 for each i ∈ [n], using Πcom.
16. Simulate functionality F2PC with output I(1) and send I(1) to P ∗

1 .
17. Send

(
com

(V )
i

)
i∈[n]

to P ∗
1 .

18. For each i ∈ I(1),
(a) S1 decommits com

(V )
i to ct

(V )
i using Πcom. Also, S1 decommits com

(X2)
i to CT

(X2)
i using ΠcomExt.

(b) S1 sends Ri to P
∗
1 .

19. S1 receives y′ from P ∗
1 , and sends the same to F2PC-PKO.

Fig. 6: Simulator S1 for malicious party P ∗
1 .

Next, we give a high-level description of our hybrid argument. In H1, S1 runs the extractor Ext

of scheme ΠcomExt to obtain View
(x1)∗
i from commitment com

(x1)
i for at least n − t indices in [n].

Through cut-and-choose arguments, the extractability property of scheme ΠcomExt, and the strong
commitment property of the VSS scheme, we show that if all the ciphertexts are well-formed, then
S1 succeeds in extracting input x∗1 of the corrupt P ∗

1 . In H2, we use the extracted input x∗1 in
the simulation and prove indistinguishability from the perspective of P ∗

1 by relying on the circuit
privacy of the FHE scheme (Definition 14). In H3, we perform all computations that are supposed
to be computed under FHE in the clear, and then encrypt them. Indistinguishability follows from
the circuit privacy of the FHE scheme. In H4, S1 simulates F2PC with an output of its choice

from the same distribution. In H5, S1 replaces the views (View
(V )
i )i∈[n]\I(1) that are never opened

with arbitrary MPC-in-the-head views. Indistinguishability follows from the computational hiding of
commitment scheme Πcom. In H6, S1 invokes the simulator SΠg

of the MPC protocol Πg to simulate
the opened views. Indistinguishability follows from the security of Πg. In H7, S1 replaces the VSS
shares of the PCPP proof that will never be opened by P ∗

1 with VSS shares of 0ℓp . Indistinguishability
follows from the computational hiding property of vector commitments. In H8, S1 replaces the VSS
shares of the PCPP proof of each index i ∈ I(1) with VSS shares of 0ℓp . Indistinguishability follows
from the t-privacy of VSS. In H9 and H10, S1 proceeds to replace the VSS shares of the codeword
X2 with VSS shares of 0K in a similar manner as for π. In H11, S2 uses the output obtained from
the F2PC-PKO functionality to simulate the view of P ∗

1 , replacing a local computation of y = f(x∗1, x2)
with an invocation of F2PC-PKO. Observe that, at this point, S1’s behavior coincides exactly with
that in the ideal-world execution, as given in Figure 6. We conclude that the joint distribution of
P ∗
1 ’s view and P2’s output is identical in real and ideal worlds.

Case 2: P2 is corrupt. We construct a simulator S2 for malicious party P ∗
2 , as shown in Figure 7.
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1. S2 samples ck
$←− VC.Setup(1λ) and (sk, pk)

$←− GenFHE(1λ), and sends (ck, pk) to P ∗
2 .

2. S2 randomly samples indices i
(2)∗
1 , . . . , i

(2)∗
t

$←− [n]. Let I(2)∗ denote the set {i(2)∗1 , . . . , i
(2)∗
t }.

3. S2 does the following:
(a) Locally emulate a dealer with input a dummy all-zeros string 0ℓ1 , along with n players

p1, . . . , pn, and run the VSS sharing protocol Share to obtain n views View
(x1)∗
1 , . . . ,View

(x1)∗
n .

(b) Sample sk, pk, (ri)i∈[n] as in Π2PC, and for each i ∈ [n], compute

ct
(x1)∗
i

$←− EncFHE(pk,View
(x1)∗
i ; ri).

(c) Send
(
ct

(x1)∗
i

)
i∈[n]

to P ∗
2 , and send extractable commitments

(
com

(x1)∗
i

)
i∈[n]

of

(View
(x1)∗
i ∥ ri)i∈[n] using ΠcomExt.

4. S2 emulates the F2PC functionality to output I(2)∗ to P ∗
2 .

5. S2 decommits (com
(x1)∗
i )i∈I(2)∗ to (View

(x1)∗
i ∥ ri)i∈I(2)∗ .

6. S2 receives a message of the form (ct(y)∗,
(
com

(π)∗
i

)
i∈[n]

) from P ∗
2 , and for each i ∈ [n], it runs the

extractor Ext of extractable commitment scheme ΠcomExt, with oracle access to P ∗
2 , to obtain

(com
(X2)∗
i ,CT

(X2)∗
i ).

7. S2 interacts with P ∗
2 exactly as party P1 interacts with P2 in Steps 9 to 16(c) of protocol Π2PC.

8. S2 aborts the simulation if Ext failed on more than t/2 indices i ∈ [n], in Step 5 of S2 above.

9. For each i ∈ [n], S2 parses CT
(X2)∗
i as

(
ct

(X2)∗
i,1 , . . . , ct

(X2)∗
i,K

)
, and for each j ∈ [K], computes

View
(X2)∗
i,j ← DecFHE(sk, ct

(X2)∗
i,j ).

10. For each j ∈ [K], S2 locally emulates n players p1, . . . , pn with inputs View
(X2)∗
1,j , . . . ,View

(X2)∗
n,j

respectively, and it runs the VSS reconstruction protocol Reconstruct “in the head” to obtain X∗
2,j .

S2 aborts the simulation if reconstruction fails (which occurs only if there is no set of n− t
mutually consistent views View

(X2)∗
i,j ).

11. S2 decodes X∗
2 ← (X∗

2,1, . . . , X
∗
2,K) to get x∗2 ← E .Decode(X∗

2 ).
12. S2 sends x∗2 to F2PC-PKO and receives y∗ = f(x1, x

∗
2).

13. S2 sends y∗ to P ∗
2 and F2PC-PKO.

Simulator S2

Fig. 7: Simulator S2 for malicious party P ∗
2 .

We now give a high level overview of our hybrid argument. We start with a real-world execu-
tion H0 where S2 runs Π2PC using input x1. In H1, S2 runs extraction, decryption, reconstruction,
and decoding on the committed (encrypted) views of X2, to obtain P ∗

2 ’s input x∗2. This succeeds
with overwhelming probability, since most of the commitments must be well-formed (and thus ex-
tractable), and most of the underlying views must be mutually consistent, or else P ∗

2 would be
caught by cut-and-choose in both H0 and H1. Moreover, P ∗

2 ’s view is indistinguishable by Defini-
tion 4. In H2, instead of outputting y to P ∗

2 in the end as per Π2PC, S2 invokes F2PC-PKO and outputs
y∗ = f(x1, x

∗
2). By the soundness of our PCPP + MPC-in-the-head proof, it can be shown that y

and y∗ are indistinguishable. In H3, S2 simulates F2PC with a uniformly random output I(2). In
H4, using knowledge of I(2)∗, S2 replaces the n − t commitments of views of x1 which will not be
opened with those of 0ℓ1 instead. Due to the hiding property of the commitment scheme, P ∗

2 can-
not distinguish. In H5, S2 replaces the n − t ciphertexts of views of x1, corresponding to the same
unopened views as before, with those of 0ℓ1 instead. Due to the CPA-security of the FHE scheme,
P ∗
2 cannot distinguish, and moreover an honest P2 would now start reconstructing S2’s input (under

FHE) to be 0ℓ1 from its n− t consistent views. Finally, in H6, S2 replaces even the commitments and
ciphertexts that do get opened with those of 0ℓ1 . By the t-privacy of the VSS scheme, the opened
views are indistinguishable from those in H5 for P ∗

2 . Observe that, at this point, S2’s behavior co-
incides exactly with that in the ideal-world execution, as given in Figure 7. We conclude that the
joint distribution of P ∗

2 ’s view and P1’s output (y and y∗, respectively) is identical in the real and
ideal worlds.
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3.3 Complexity Analysis

We instantiate the primitives listed in Figure 4 using the corresponding instantiations discussed
in Section 2, and thus provide the round and communication complexities of our protocol Π2PC.
Step-wise calculations of communication rounds and costs can be found in Appendix C.

Round complexity. The number of rounds of communication required in Π2PC as described in Fig-
ure 5, without any additional parallelization, is 21. However, we are able to compress this to a final
round complexity of 14 rounds, by performing some rounds of F2PC invocations in parallel with
previous rounds of Π2PC (see Appendix C for more details).

Communication complexity. The total asymptotic communication complexity of Π2PC is O
(
(ℓ1 +

ℓ1+α
2 + ℓo + polylog(|f |)) · poly(λ)

)
(see Appendix C). Clearly, Π2PC is succinct, as it achieves a

communication complexity only polylogarithmic in the size of the circuit computing function f .
Moreover, our communication complexity is almost linear in the sizes of the inputs and output of f .

3.4 Conclusion

Note that applying the technique of [IKP10], for extension from PKO to malicious security with
abort, affects neither the round complexity nor the asymptotic communication complexity of Π2PC,
as it only requires computing MACs on the output y, using private MAC keys given as input to
the 2PC, and sending these MACs to the parties along with the output. The following corollary is
immediate from Theorem 4 and the discussion above.

Corollary 1. Assuming high-rate fully homomorphic encryption, enhanced trapdoor permutations,
and collision-resistant hash functions, there exists a black-box 14-round maliciously secure 2PC pro-
tocol that computes any function f (having input sizes ℓ1, ℓ2 and output size ℓo) with communication
complexity O

(
(ℓ1 + ℓ1+α

2 + ℓo + polylog(|f |)) · poly(λ)
)
, where λ is the security parameter and α is

any positive constant.
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A Further Preliminaries

Here we define commitment schemes and encoding schemes, required for our construction.

A.1 Commitment Schemes

We define a commitment scheme as follows.

Definition 16 (Commitment scheme). A commitment scheme Πcom = (C,R) is a two-phase
protocol between two PPT interactive algorithms, a committer C and a receiver R, with the following
two phases:

– Commitment phase. In this first phase, C on input a message m and a randomness rc interacts
with R on input rr. Let τ = ⟨C(m, rc),R(rr)⟩ denote the corresponding commitment transcript.

– Decommitment phase. In this second phase, the committer C reveals m′, and R accepts the
value committed in τ to be m′ if and only if C proves that τ can be produced on input m′.

We only consider commitment schemes where the decommitment phase consists of a single mes-
sage from the committer to the receiver.

Let Dec(τ,m, rc) denote the polynomial-time deterministic algorithm that on input a commit-
ment transcript τ , committer message m, and randomness rc, outputs accept or reject to denote
whether the decommitment was accepted or rejected, respectively. We report the classic definitions
of completeness, binding, and hiding. We refer the reader to [Gol01] for further details.

Definition 17 (Completeness). A commitment scheme (C,R) is said to be complete if for any
message m, committer randomness rc, and receiver randomness rr, Dec(τ,m, rc) outputs accept,
where τ = ⟨C(m, rc),R(rr)⟩.

Definition 18 (Binding). A commitment scheme (C,R) is said to be statistically (resp., com-
putationally) binding if for every unbounded (resp., PPT) malicious committer C∗, there exists a
negligible function ν, such that C∗ succeeds in the following game with probability at most ν(λ):

– On input the security parameter λ, C∗ interacts with honest receiver R in the commitment phase,
and R obtains the commitment τ .

– C∗ outputs pairs (m0, r0) and (m1, r1).
– C∗ succeeds if Dec(τ,m0, r0) = Dec(τ,m1, r1) = accept and m0 ̸= m1.

If ν(λ) = 0, we refer to the above as a perfectly binding commitment scheme.

Definition 19 (Hiding). A commitment scheme (C,R) is said to be computationally (resp., statis-
tically) hiding if for every malicious PPT (resp., unbounded) receiver R∗, and every pair of messages
(m0,m1), the view of R∗ after a commitment phase where C commits to m0 is computationally (resp.,
statistically) indistinguishable from the view of R∗ after a commitment phase where C commits to
m1.
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A.2 Encoding Schemes

We define an encoding scheme as follows.

Definition 20 (Encoding Scheme). An encoding scheme over the field Fq with message length
k, codeword length K, relative distance δ, and relative decoding radius ρ is defined by a pair of
algorithms (Encode,Decode) as follows:

1. Encode : Fk
q → FK

q . The algorithm Encode maps a message x ∈ Fk
q to a codeword X ∈ FK

q such
that for any x ̸= x′, the Hamming distance between Encode(x) and Encode(x′) is at least δK.

2. Decode : FK
q → Fk

q . The algorithm Decode takes as input a possibly corrupted codeword X′ ∈ FK
q .

For x ∈ Fk
q , if the Hamming distance between X′ and Encode(x) is at most ρK, where ρ < δ/2,

then Decode outputs x.

A family of encoding schemes (Encodek,Decodek) with q = polylog(k), K = K(k) for some
polynomial K(·), and a fixed δ > 0, is said to be efficiently encodable (resp. decodable) if Encode
(resp. Decode) runs in probabilistic polynomial time (PPT) in k. We denote E = (Encode,Decode) as
a (k,K, δ)-encoding scheme with relative decoding radius ρ. Let C = {E .Encode(x) | ∀x ∈ Fk

q} ⊆ FK
q

represent the codeword space of E.

For any α > 0 and 0 < δ < 1
2 , there exists a Reed-Muller code [Ree54, Mul54] with codeword

size K = O(k1+α) [HOWW19].

B Proof of Theorem 4

Here we provide a complete formal proof of Theorem 4, i.e., Π2PC securely realizes F2PC-PKO. We
use hybrid arguments to argue security against a malicious adversary corrupting any one of the two
parties.

Case 1: P1 is corrupt. Simulator S1 for malicious party P ∗
1 is described in Figure 6. S1 computes

ctDummy (see Step 8 of S1) and sends updated ciphertexts as described in the note at the end of
Section 3.1. Moreover, S1 also updates the ciphertexts with this procedure in all the intermediate
hybrids.

Let DR and DI denote the joint distribution of view of malicious party P1 and output of P2

in the real and ideal world executions, respectively. Similarly, let Di denote the joint distribution
of view of malicious party P1 and output of P2 when Si runs experiment Hi. We then have the
following sequence of hybrid experiments.

Experiment H0. In this experiment, S1 interacts with P ∗
1 by following the computation prescribed

in protocol Π2pc with input x2 ∈ {0, 1}ℓ2 . As honest party’s output S1 outputs whatever P2 outputs
in the protocol. Note that this experiment corresponds to a real world execution, i.e., DR ≡ D0.

Experiment H1. In this experiment, S1 interacts with P ∗
1 identically to H0, except it also tries to

extract input x∗1. In more detail, S1 does the following:

– For each i ∈ [n], instead of interacting as receiver R in the commit phase of ΠcomExt with P
∗
1 to

receive commitment com
(x1)
i , S1 runs the extractor Ext of ΠcomExt, with oracle access to P ∗

1 , to

obtain (com
(x1)∗
i , (View

(x1)∗
i ∥ r∗i )). S1 aborts the simulation if Ext fails on more than t/3 indices

i ∈ [n]. Define J = {i ∈ [n] : Ext succeeds on i}.
– After executing step 5 of the protocol, if all the checks passed, S1 aborts the simulation if
|J | < n− t

3 .
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– S1 aborts the simulation if more than t
3 indices are there in J such that ct

(x1)
i ̸= EncFHE(pk,View

(x1)∗
i ;

r∗i ). Let J ′ = {i ∈ J : cti=EncFHE(pk, View
(x1)∗
i ; r∗i )}.

– S1 locally emulates n players p1, . . . , pn, with input View
(x1)∗
i of pi if i ∈ J ′, and input ⊥ of pi

otherwise. It then runs the VSS reconstruction protocol Reconstruct “in the head” to obtain x∗1.
S1 aborts the simulation if reconstruction failed (which occurs only if there is no set of n − t
mutually consistent views among {View(x1)∗

i }i∈J ′).

There are two differences in view of P ∗
1 in hybrid H0 and H1. Namely, view of P ∗

1 in the commit
phase, and simulation abort.

By Definition 4, the extracted commitment com
(xi)∗
i is identically distributed to the commitment

that would have otherwise been received from P ∗
1 , implying the view of P ∗

1 ’s in commitment phase
is identically distributed in both cases.

Next, let us analyze the probability of simulation abort. S1 aborts in either of the following cases
(we use the fact that t is at least a constant multiple of n; in particular, t = ⌊n−1

4 ⌋ >
n
5 ):

– Extractor Ext fails on more than t/3 commitments com
(x1)∗
i . From Definition 4, we know that if

com
(x2)∗
i is a well-formed commitment, then Ext yields a valid opening (View

(x1)∗
i , r∗i ) ̸= ⊥ with

overwhelming probability. By contrapositive, if Ext fails on some com
(x1)∗
i , then with overwhelm-

ing probability, it is an ill-formed commitment. Moreover, if P ∗
1 sends more than t/3 ill-formed

commitments, then the probability that all opened commitments (com
(x1)∗
i )i∈I(2) in step 4 of the

protocol are well-formed is <
(
n− t

3
t

)
/
(
n
t

)
= negl(n). We conclude that, if S1 has not already sent

abort to P ∗
2 after opening (com

(x1)∗
i )i∈I(2) , then there is a negligible probability of more than t/3

commitments being ill-formed, and thus of Ext failing on more than t/3 commitments.

– If P ∗
1 sends more than t/3 ciphertexts such that ct

(x1)
i ̸= EncFHE( pk, View

(x1)∗
i ; r∗i ), then the

probability that in step 5 of the protocol, ct
(x1)
i =EncFHE( pk, View

(x1)∗
i ; r∗i ), for i ∈ I(2) (condi-

tioned on successful decommitments) is <
(J− t

3
t

)
/
(J
t

)
= negl(n), since J ≥ n− t

3 .

– Reconstruct fails if there is no set of n − t views among {View(x1)∗
i,j }i∈J ′ which are all mutually

consistent. In this case, the probability that views (View
(x1)∗
i )i∈I(2) opened in step 5 of the pro-

tocol are all mutually consistent (conditioned on successful decommitments and well-formedness

of ciphertexts) is <
(
n−t
t

)
/
(|J ′|

t

)
= negl(n), since |J ′| ≥ n− 2t

3 . We conclude that, if S1 has not
already sent abort to P ∗

1 in step 5 of the protocol, then the probability that S1 fails to extract
x∗i is negligible.

Therefore, S1 aborts the simulation with negligible probability, and D0 ≈ D1.

Experiment H2. In this experiment, S proceeds identically to H1, except that it does the following:

S1 computes ct(x1)∗ $←− EncFHE(pk, x∗1) and applies an identity circuit of width and depth equal to
the circuit in the computation in step 6 of the protocol and uses it in the computation instead of
the ciphertext reconstructed in step 6 of the protocol, i.e., ct(x1). In hybrid H1, let Ĵ = {j1, . . . , jp}
denote a set of indices of size p ≥ n − t, such that ciphertexts ct

(x1)∗
jk

= EncFHE(pk,View
(x1)∗
jk

, r∗jk),

for each k ∈ [p] and {View(x1)∗
jk
}k∈[p] are mutually consistent. Now, there are two cases:

1. Case 1: If all the ciphertexts ct
(x1)
1 , . . . , ct

(x1)
n are well-formed then ct(x1)∗ and ct(x1) encrypt the

same value, i.e., x∗1. The view of P ∗
1 is computationally indistinguishable from its view in H1

due to circuit-privacy of FHE scheme (Definition 14).

2. Case 2: If there exists a ciphertext in ct
(x1)
1 , . . . , ct

(x1)
n that is malformed, then due to circuit-

privacy of FHE scheme, the view of P ∗
1 in this case too is computationally indistinguishable from

its view in H1.

Therefore, D1 ≈ D2.
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Experiment H3. In this experiment S1, after extracting x∗1, S1 proceeds identically to H2, except
that S1 computes everything in the clear and encrypts it before committing or sending it to P ∗

1 . In
more detail, S1 does the following:

1. Performs all the computation steps in line 7 - 8.(f) in the clear.
2. In step 8.(g) of the protocol, for each j ∈ [ℓp],

(a) Let (Viewπ
i,j)i∈[n] denote the VSS share of bit j of the PCPP proof π obtained in clear

execution in step 8.(f) of the protocol.

(b) For each i ∈ [n], encrypt ct
(π)
i,j

$←− EncFHE(pk,View
(π)
i,j ) and apply identity circuit of width and

depth equivalent to the circuit corresponding to computation to obtain View
(π)
i,j . Let CT

(π)
i

denote the vector of ciphertexts
(
ct

(π)
i,1 , . . . , ct

(π)
i,ℓp

)
, for i ∈ [n].

3. Now, commitments as per step 8.(g) of the protocol.
4. Similarly, for each j ∈ [K],

(a) Let (ViewX2
i,j )i∈[n] denote the VSS share of bit j encoding X2 obtained in clear execution in

step 8.(e) of the protocol.

(b) For each i ∈ [n], encrypt ct
(X2)
i,j

$←− EncFHE(pk,View
(X2)
i,j ) and apply identity circuit of width

and depth equivalent to the circuit corresponding to computation to obtain View
(X2)
i,j . Let

CT
(X2)
i denote the vector of ciphertexts

(
ct

(X2)
i,1 , . . . , ct

(X2)
i,K

)
, for i ∈ [n].

5. Compute ct(y)
$←− EncFHE(pk, y) and apply identity circuit of appropriate width and depth.

6. Now, make commitments as per step 8.(h) in the protocol.
7. Execute steps 10, 11.(a)-(b), 12 in the clear.

8. Now, given views (View
(V )
i )i∈[n], compute ciphertexts (ct

(V )
i )i∈[n] by following similar process as

above.
9. Proceed following steps 13,14,15.(a) of the protocol.
10. In step 15.(b), for each j ∈ [n], given (ρi,k)k∈[Q] proceed as above to obtain ciphertext list Ri

and send it to P ∗
1 .

The view of P ∗
1 is computationally indistinguishable in Hybrids H2 and H3 is due to the circuit-

privacy of FHE scheme. Thus, D2 ≈ D3.

Experiment H4. In hybridH4, S1 proceeds identically toH3 except that it samples i
(1)
1 , . . . , i

(1)
t

$←− [n]
before step 8 of the actual protocol. Let the set be denoted by I(1). It then simulates F2pc with output
set I(1) in step 14 of the actual protocol. Since, the distribution of set I(1) in H4 is identical to that
in H3, we have D3 ≡ D4.

Experiment H5. In this hybrid, after executing the MPC-in-the-head emulation of protocol Πg, for

all i ∈ [n] \ I(1), S1 replaces View
(V )
i with an arbitrary MPC view. The only difference in the view

of P ∗
1 are the commitments com

(V )
i , for i ∈ [n] \ I(1) as these commitments are never opened to P ∗

1 .
Due to the computational hiding property of commitment scheme Πcom (see Definition 19), we have
D4 ≈ D5.

Experiment H6. In this hybrid, S1 doesn’t emulate Πg with parties p1, . . . , pn in the head. Instead,
S1 invokes simulator SΠg

corresponding to protocol Πg, with set of indices of parties I(1), public
inputs u = (x∗1, y, ℓ2) and rM , and private input of party pi as (ψi,k)k∈[Q], for i ∈ I(1), and output of

the protocol set to accept. S1 obtains {View(V )
i }i∈I(1) ← SΠg

(I(1), (x∗1, y, ℓ2, rM ), (ψi,j)i∈I(1),j∈[Q],

accept). The only change in view of P ∗
1 in H6 from H5 is the views {View(V )

i }i∈I(1) opened to

P ∗
1 . Since, Πg is a perfectly t-private, the distribution of views {View(V )

i }i∈I(1) output in emulating
Πg “in-the-head” in H5 is identical to the distribution of views output by SΠg

in H6. Therefore
D5 ≡ D6.
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Experiment H7. In this hybrid, S1 behaves identical to H6, except

1. For j ∈ [ℓp], S1 locally emulates a dealer with input 0 along with n players p1, . . . , pn and it runs

the VSS sharing protocol Share “in the head” to obtain n views View
(π)∗
1,j , . . . ,View

(π)∗
n,j .

2. With views (View
(π)∗
i,j )i∈[n],j∈[ℓp], S1 computes as in step 2.(b) in H3 to obtain vector of cipher-

texts CT
(π)∗
i , for each i ∈ [n]. For i ∈ [n] \ I(1), instead of committing to CT

(π)
i using vector

commitment to obtain commitments com
(π)
i , S1 sends commitment to CT

(π)∗
i to P ∗

1 .

In brief, in this hybrid, for the commitments com
(π)
i for i ∈ [n] \ I(1), that are never opened by

P ∗
1 , S1 replaces the vector commitments to encryptions of VSS shares of actual bits of the PCPP

proof π with encryptions of VSS shares of 0.

The only difference in the view of P ∗
1 are the commitments com

(π)
i for i ∈ [n] \ I(1) as no index

of these vector commitments are ever opened to P ∗
1 . Due to the computational hiding property of

vector commitment scheme (see Definition 5 and Definition 8), the view of P1 in H6 and H7 is
computationally indistinguishable.

Experiment H8. In this hybrid, S1 proceeds identically to H7, except that

For each i ∈ [I(1)],

1. S1 commits to CT
(π)∗
i .

2. In the simulation, for each k ∈ [Q], where qk ≤ ℓp, S1 sets ψi,k ← View
(π)∗
i,qk

and ρi,k ←
(ctπ∗i,qk ,VC.Open(ck, ct

(π∗)
i,qk

, qk, st
(π∗)
i )), for all i ∈ [n].

In effect, S1 replaces VSS shares of actual bits of PCPP proof π with VSS shares of 0. This
causes the following changes in view of P ∗

1 : for i ∈ I(1),

1. Commitments com
(π)
i ,

2. Values ψi,k used in the MPC-in-the-head simulation, for k ∈ [Q] such that qk ≤ ℓp.
3. Entry at index k in vectors of ciphertexts Ri, where qk ≤ ℓp.

From the privacy property of VSS shares (Definition 3), the distrbution of view of P ∗
1 in hybrids

H8 and H7 are identical. Thus, D8 ≡ D7.

Experiment H9. S1 proceeds almost identically as in H8, except for the following change.

1. For j ∈ [K], S1 locally emulates a dealer with input 0 along with n players p1, . . . , pn and it runs

the VSS sharing protocol Share “in the head” to obtain n views View
(X2)∗
1,j , . . . ,View

(X2)∗
n,j .

2. With views (View
(X2)∗
i,j )i∈[n],j∈[K], S1 computes as in step 4.(b) in H3 to obtain vector of cipher-

texts CT
(X2)∗
i , for each i ∈ [n]. For i ∈ [n] \ I(1), instead of committing to CT

(X2)
i in commit

phase of ΠcomExt to obtain commitments com
(X2)
i , S1 commits to CT

(X2)∗
i .

In brief, in this hybrid, for the commitments com
(X2)
i for i ∈ [n] \ I(1), that are never opened

by P ∗
1 , S1 replaces the commitments to encryptions of codeword X2 (encoding of input x2) with

encryptions of VSS shares of 0.

The only difference in the view of P ∗
1 are the commitments com

(X2)
i for i ∈ [n] \ I(1) as these

commitments are never opened to P ∗
1 . Due to the computational hiding property of ΠcomExt (see

Definition 19), the view of P1 in H8 and H9 is computationally indistinguishable.
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Experiment H10. In this hybrid, S1 proceeds identically to H9, except that for each i ∈ [I(1)],

1. S1 commits to CT
(X2)∗
i .

2. In the simulation, for each k ∈ [Q], where qk > ℓp, S1 sets ψi,k ← View
(X2)∗
i,qk−ℓp

, for all i ∈ [n].

In effect, S1 replaces VSS shares of actual bits of codeword X2 with VSS shares of 0. This causes
the following changes in view of P ∗

1 : for i ∈ I(1),

1. Commitments com
(X2)
i ,

2. Values ψi,k used in the MPC-in-the-head simulation, for k ∈ [Q] such that qk > ℓp.

From the privacy property of VSS shares (Definition 3), the distrbution of view of P ∗
1 in hybrids

H9 and H10 are identical. Thus, D9 ≡ D10.

Experiment H11. Observe that, we have made the simulation independent of input of x2, except for
the step in which we compute y. In this hybrid, S1 sends extracted x∗1 to F2PC-PKO. F2PC-PKO sends
y = f(x∗1, x2) to S1. If S1 has not aborted until the penultimate step of the protocol and receives
y from S1, S1 forwards y to F2PC-PKO. In this hybrid S1 doesn’t need input of honest party P2 in
any step of the simulation. Thus, we do not provide x2 to S1. This hybrid corresponds to the ideal
world as the simulator S1 interacts with ideal functionality F2PC-PKO with the description provided
in Figure 6. The view of P ∗

1 and output of honest party P2 is identically distributed in both the
hybrids. Thus, D10 ≡ DI .

Combining the hybrids. By a combination of the above hybrid arguments, we get DR ≈ DI , i.e., the
joint distribution of view of malicious party P ∗

1 and output of honest party P2 is computationally
indistinguishable in the real and ideal worlds. Therefore, we conclude that Π2PC securely realizes
F2PC-PKO in the presence of a malicious adversary corrupting P1.

Case 2: P2 is corrupt. We construct a simulator S2 for malicious party P ∗
2 , as shown in Figure 7.

Let DR and DI denote the joint distribution of view of malicious party P ∗
2 and output of honest

party P1, in the real and ideal world executions, respectively. Similarly, let Di denote the joint
distribution of view of malicious party P1 and output of honest party P2 when S2 runs experiment
Hi. We then have the following sequence of hybrid experiments.

Experiment H0. In this experiment, input x1 is given to S2 and it runs an honest execution of Π2PC

with P ∗
2 , acting as party P1 with input x1. As the honest party’s output, S2 outputs y. Note that

this experiment corresponds to the real world execution, i.e., DR ≡ D0.

Experiment H1. In this experiment, S2 executes the protocol identically to H0, except it also tries
to extract P ∗

2 ’s input x
∗
2. In more detail, S2 does the following:

– For each i ∈ [n], instead of simply receiving commitment com
(X2)
i , S2 runs the extractor Ext of

extractable commitment scheme ΠcomExt, with oracle access to P ∗
2 , to obtain (com

(X2)∗
i ,CT

(X2)∗
i ).

S2 aborts the simulation if Ext fails on more than t/2 indices i ∈ [n]. Define J = {i ∈ [n] :
Ext succeeds on i}.

– After completing the rest of Π2PC honestly, S2 aborts the simulation if |J | < n − t
2 in the

previous step.

– For each i ∈ J , S2 parses CT
(X2)∗
i as

(
ct

(X2)∗
i,1 , . . . , ct

(X2)∗
i,K

)
, and for each j ∈ [K], computes

View
(X2)∗
i,j ← DecFHE(sk, ct

(X2)∗
i,j ).
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– For each j ∈ [K], S2 locally emulates n players p1, . . . , pn, with input View
(X2)∗
i,j of pi if i ∈ J ,

and input ⊥ of pi otherwise. It then runs the VSS reconstruction protocol Reconstruct “in the
head” to obtain X∗

2,j . S2 aborts the simulation if reconstruction fails for some j ∈ [K] (which

occurs only if there is no set of n− t mutually consistent views among {View(X2)∗
i,j }i∈J ).

– S2 decodes X∗
2 ← (X∗

2,1, . . . , X
∗
2,K) to get x∗2 ← E .Decode(X∗

2 ).

By Definition 4, the extracted commitment com
(X2)∗
i is identically distributed to the commitment

that would have otherwise been received from P ∗
2 , implying P ∗

2 ’s view is identically distributed in
both cases. The only other difference between the views of P ∗

2 in H0 and H1 comes from a potential
simulation abort in either of the following cases (we use the fact that t is at least a constant multiple
of n; in particular, t = ⌊n−1

4 ⌋ >
n
5 ):

– Extractor Ext fails on more than t/2 commitments com
(X2)∗
i . From Definition 4, we know that if

com
(X2)∗
i is a well-formed commitment, then Ext yields a valid opening CT

(X2)∗
i ̸= ⊥ with over-

whelming probability. By contrapositive, if Ext fails on some com
(X2)∗
i , then with overwhelming

probability, it is an ill-formed commitment. Moreover, if P ∗
2 sends more than t/2 ill-formed com-

mitments, then the probability that all earlier-opened commitments (com
(X2)∗
i )i∈I(1) are well-

formed is <
(
n− t

2
t

)
/
(
n
t

)
= negl(n). We conclude that, if S2 has not already sent abort to P ∗

2 after

opening (com
(X2)∗
i )i∈I(1) , then there is a negligible probability of more than t/2 commitments

being ill-formed, and thus of Ext failing on more than t/2 commitments.
– Reconstruct fails for some j ∈ [K], which occurs only if there is no set of n − t views among

{View(X2)∗
i,j }i∈J which are all mutually consistent. In this case, the probability that views

(View
(X2)∗
i,j )i∈I(1) opened to S2 earlier are all mutually consistent (conditioned on these views

being decommitted successfully) is <
(
n−t
t

)
/
(|J |

t

)
= negl(n), since |J | ≥ n− t

2 . We conclude that,

if S2 has not already sent abort to P ∗
2 after checking (View

(X2)∗
i,j )i∈I(1) , then there is a negligible

probability of Reconstruct failing.

Therefore, S2 aborts the simulation with negligible probability, and D0 ≈ D1.

Experiment H2. In this experiment, S2 executes the protocol identically to H1, except in the end it
does not send y ← DecFHE(sk, ct(y)∗) to P ∗

2 . Instead, it invokes F2PC-PKO with P ∗
2 ’s extracted input

x∗2, and sends the output y∗ = f(x1, x
∗
2) to both P ∗

2 and F2PC-PKO. F2PC-PKO then sends output y∗

to honest P1.

We now show that y and y∗, as defined above, are computationally indistinguishable. Our ar-
gument, as shown below, relies on the soundness of MPC-in-the-head with protocol Πg and of the
PCPP system (P,V), as well as the correctness and strong commitment properties of VSS.

– Firstly, if the views (View
(V )∗
i )i∈I(1) received from P ∗

2 are all mutually consistent and con-
tain output accept, then there exists (ψi,k)i∈[n],k∈[Q] such that Φ(u = (x1, y, ℓ2), rM , (bk ←
recons(ψ1,k, . . . , ψn,k))k∈[Q]) = accept, with overwhelming probability. We follow the reasoning

of [IKOS07] to justify this. If all inconsistencies in the complete set of views (View
(V )∗
i )i∈[n]

can be resolved by eliminating at most t views, then the corresponding execution of Πg can be
achieved by an adversary corrupting at most t players. By the perfect t-robustness of Πg, if there
is no (ψi,k)i∈[n],k∈[Q] satisfying the above relation Φ, then all the uncorrupted (≥ n− t) players
output reject in Πg. Since t is at least a constant fraction of n, the probability that none of

the opened views (View
(V )∗
i )i∈I(1) contains output reject is negl(n). On the other hand, if there

is no set of n− t consistent views, then (View
(V )∗
i )i∈I(1) reveals at least one inconsistency with

overwhelming probability.

– Next, if for each i ∈ I(1), the view View
(V )
i is consistent with (View

(X2)
i,j )j∈[K], and also with

View
(π)
i,k for each k (where qk ≤ ℓp), then for each i ∈ [n], with overwhelming probability,



Black-Box Constant-Round Secure 2PC with Succinct Communication 33

(ψi,k)k∈[Q] from above contains views (View
(π)
i,qk

)qk≤ℓp and (View
(X2)
i,qk−ℓp

)qk>ℓp , which are all con-

sistent across indices i ∈ [n], except on at most t indices. (If more than t indices are inconsistent,
the random choice of I(1) reveals at least one inconsistency with overwhelming probability.) By
the strong commitment property of Definition 3, there must exist (πqk)qk≤ℓp and (X2,qk−ℓp)qk>ℓp ,

for k ∈ [Q], such that these are VSS-shared in the views (View
(π)
i,qk

)qk≤ℓp and (View
(X2)
i,qk−ℓp

)qk>ℓp

respectively, and Φ accepts as above.
– Finally, if queries (qk)k∈[Q] have been generated honestly using Query(u = (x1, y, ℓ2), rM ), then

by the soundness property of PCPP given by Definition 15, since Φ outputs accept as above, it
must be the case (w.h.p.) that R((u = (x1, y, ℓ2), X

′
2), w) = accept, for some witness w and X ′

2

which is δ-close to X2 = (X2,1, . . . , X2,K). In other words, by the definition of R(·) in Figure 4,
there exists (w.h.p., by Theorem 3) X ′

2 such that x2 ← E .Decode(X ′
2), x2 is of length ℓ2, and

y = f(x1, x2).
– Since δ < 1/2, we have E .Decode(X2) = E .Decode(X ′

2) = x2. Moreover, by the correctness and
strong commitment of VSS (Definition 3), we have with overwhelming probability, x2 = x∗2, the

input extracted by S2. This follows because S2 extracted x∗2 using the same (View
(X2)
i,j )j∈[K] in

the soundness proof above, of which ≥ n− t views must be consistent as argued earlier.

Overall, we find that if all required consistency checks are successful, then with overwhelming prob-
ability, there exists x2 of length ℓ2 such that y = f(x1, x2), and moreover x2 = x∗2. Therefore, y and
y∗ = f(x1, x

∗
2) are computationally indistinguishable to both P ∗

2 and P1, and we conclude D1 ≈ D2.

Experiment H3. In this experiment, S2 executes the protocol identically to H2, except instead of

invoking F2PC with P ∗
2 to get I(2), it randomly samples indices i

(2)∗
1 , . . . , i

(2)∗
t

$←− [n] on its own.

Let I(2)∗ denote the set {i(2)∗1 , . . . , i
(2)∗
t }. S2 then emulates the F2PC functionality itself to output

I(2)∗, and thus P ∗
2 receives I(2)∗ instead of I(2). Next, S2 decommits (com

(x1)
i )i∈I(2)∗ instead of

(com
(x1)
i )i∈I(2) . Since both are uniformly random subsets of [n], P ∗

2 ’s view distribution in H3 is
clearly identical with that in H2, i.e., D2 ≡ D3.

Experiment H4. In this experiment, S2 executes the protocol identically toH3, except that it samples
I(2)∗ at the very beginning, and on the indices of views which do not get decommitted (i.e., i ̸∈ I(2)∗),
it replaces the commitment to a view of x1 with another commitment to a view of a dummy all-zeros
string 0ℓ1 of the same length. Since these replaced commitments are never opened, correctness is
preserved. In more detail, S2 does the following:

– S2 locally emulates a dealer with input a dummy all-zeros string 0ℓ1 , along with n players

p1, . . . , pn, and it runs the VSS sharing protocol Share to obtain n views View
(x1)∗
1 , . . . ,View(x1)∗

n .

– For each i ∈ I(2), S2 sends (as before in H3) an extractable commitment com
(x1)
i of (View

(x1)
i ∥ri),

for view View
(x1)
i of x1.

– For each i ∈ [n] \ I(2), S2 sends an extractable commitment com
(x1)∗
i of (View

(x1)∗
i ∥ ri), for view

View
(x1)∗
i of 0ℓ1 , instead of com

(x1)
i .

– S2 sends (as before in H2) (ct
(x1)
i )i∈[n] to P

∗
2 .

S2 executes the rest of the protocol identically to H3. Since commitments are performed indepen-

dently of each other, it suffices to show that P ∗
2 cannot distinguish between com

(x1)
i and com

(x1)∗
i for

any i ∈ [n] \ I(2)∗. This follows directly from Definition 19; com
(x1)
i and com

(x1)∗
i are generated by

the commitment phase of the computationally hiding scheme ΠcomExt, on inputs (View
(x1)
i ∥ ri) and

(View
(x1)∗
i ∥ ri) respectively, and are thus computationally indistinguishable for P ∗

2 , a PPT receiver.
We thus have D3 ≈ D4.

Experiment H5. In this experiment, S2 executes the protocol identically to H4, except that, on the
indices of views which do not get decommitted (i.e., i ̸∈ I(2)∗), it replaces the ciphertext of the view
of x1 with another ciphertext of the view of 0ℓ1 . In more detail, S2 does the following:
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– S2 computes ciphertext ct
(x1)∗
i

$←− EncFHE(pk,View
(x1)∗
i ) for each i ∈ [n].

– S2 sends the same commitments to P ∗
2 as before in H3.

– For each i ∈ I(2), S2 sends (as in H4) ct
(x1)
i , which encrypts View

(x1)
i of x1.

– For each i ∈ [n] \ I(2), S2 sends ct
(x1)∗
i , which encrypts View

(x1)∗
i of 0ℓ1 .

S2 executes the rest of the protocol identically to H4. Since encryptions are performed independently

of each other, it suffices to show that P ∗
2 cannot distinguish between ct

(x1)
i and ct

(x1)∗
i for any

i ∈ [n]\I(2). Towards a contradiction, suppose there exists i ∈ [n]\I(2) such that P ∗
2 can distinguish

between ct
(x1)
i and ct

(x1)∗
i , which are obtained by encrypting View

(x1)
i and View

(x1)∗
i respectively,

with noticeable probability (over the randomness of GenFHE and EncFHE). Then, we can construct
an adversary A for the CPA-security game of the FHE scheme as follows: On receiving pk from

the challenger, A sends back (m0 = View
(x1)
i ,m1 = View

(x1)∗
i ). On receiving ctb

$←− EncFHE(pk,mb)

for b
$←− {0, 1} from the challenger, A sends ctb to P ∗

2 , and forwards P ∗
2 ’s output to the challenger.

Then, A succeeds in this game with noticeable probability, and this contradicts the CPA-security
assumption of the FHE scheme. Hence, if the FHE scheme is CPA-secure, we have D4 ≈ D5.

Experiment H6. In this experiment, S2 executes the protocol identically to H5, except that even on
indices of views to be decommitted (i.e., i ∈ I(2)∗), it replaces the commitments and ciphertexts of

the views of x1 with those of 0ℓ1 . Formally, for each i ∈ I(2)∗, S2 sends ct
(x1)∗
i and com

(x1)∗
i to P ∗

2 ,

instead of ct
(x1)
i and com

(x1)
i respectively. After emulating F2PC which outputs I(2)∗, S2 decommits

(com
(x1)∗
i )i∈I(2)∗ (instead of (com

(x1)
i )i∈I(2)∗) to (View

(x1)∗
i )i∈I(2)∗ .

We first argue that the distributions of (View
(x1)
i )i∈I(2)∗ , which are VSS shares of x1, and

(View
(x1)∗
i )i∈I(2)∗ , which are VSS shares of 0ℓ1 , are identical. This follows directly from the pri-

vacy condition of Definition 3; since |I(2)| = t, the joint view of these t indices is distributed
independently of the underlying secret (x1 or 0ℓ1), which is the only input to computing these

views. Moreover, since (ct
(x1)∗
i )i∈I(2)∗ and (ct

(x1)
i )i∈I(2)∗ each take as input only (View

(x1)∗
i )i∈I(2)∗

and (View
(x1)
i )i∈I(2)∗ respectively, the former two must be identically distributed as well. By the

same argument, (com
(x1)∗
i )i∈I(2)∗ and (com

(x1)
i )i∈I(2)∗ are also identically distributed. Thus, we have

D5 ≡ D6. Further, note that experiment H6 exactly corresponds to the ideal world execution in
Figure 7, i.e., D6 ≡ DI .

Combining the hybrids. By a combination of the above hybrid arguments, we get DR ≈ DI , i.e., the
joint distribution of view of malicious party P ∗

2 and output of honest party P1 is computationally
indistinguishable in the real and ideal worlds. Therefore, we conclude that Π2PC securely realizes
F2PC-PKO in the presence of a malicious adversary corrupting P2. □

C Complexity Analysis of Π2PC

Round complexity. We first enumerate the number of rounds of communication required in Π2PC

as described in Figure 5, without any additional parallelization. The steps of Π2PC which involve
communication and the corresponding number of rounds are as follows:

– Steps 1 and 2(c): 3 rounds for extractable commitment [PW09].
– Step 3: 5 rounds for F2PC invocation [ORS15].
– Step 4: 1 round for decommitment.
– Step 8(h): 3 rounds for extractable commitment.
– Step 9: 1 round.
– Step 13: 1 round for standard non-interactive commitment.
– Step 14: 5 rounds for F2PC invocation.
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– Steps 15(a)–(b): 1 round for decommitment.
– Step 16(d): 1 round.

This implies a total of 21 rounds. However, note that we can further compress the number of rounds,
by performing some rounds of the F2PC invocation in parallel with previous rounds of Π2PC.

A key observation here is that, given any 2PC protocol, we can apply the following (information
theoretic) transformation to ensure that neither party learns any information about the output until
the last round of the protocol.

– In addition to inputs x1 and x2 to the 2PC, each party Pi (i ∈ {1, 2}) also supplies (as private
inputs) uniformly random one-time pads ki,0 and ki,i, and information theoretic MAC [BDOZ11]
key ∆i.

– The 2PC protocol does the following:

• Compute y = f(x1, x2).
• Compute MACs M1 and M2 of y, using keys ∆1 and ∆2 respectively.
• For (c0, c1, c2)← (y ⊕ k1,0 ⊕ k2,0,M1 ⊕ k2,2,M2 ⊕ k1,1), output (c0, c1) to P1 and (c0, c2) to
P2.

– In parallel with the last round of the 2PC protocol, P1 and P2 send their keys k1,0, k1,1 and
k2,0, k2,2, respectively, to each other.

– Locally, each party Pi (i ∈ {1, 2}) decrypts the 2PC output to obtain y and Mi (as y ←
c0 ⊕ k1,0 ⊕ k2,0 and Mi ← ci ⊕ k3−i,3−i), and verifies that Mi is a valid MAC on y. If successful,
it outputs y; otherwise ⊥.

It is clear that the output of the underlying 2PC reveals nothing to either party Pi, as both c0 and ci
contain the other party’s one-time pads, which are only revealed to Pi in parallel with the last round
of 2PC. And thus, we may assume without loss of generality that a 2PC protocol (in particular, the
one we use in Π2PC to generate random indices) leaks no information to the parties about its output
until the last round of the protocol.

Then, Π2PC remains secure if all rounds, except for the last one, of each F2PC invocation (Steps
3 and 14) are performed in parallel with previous rounds of Π2PC. This brings the round cost down
by 3 in Step 3 (since Π2PC only has 3 rounds before this step), and 4 in Step 14. Therefore, instead
of 21, we are able to compress the round complexity of Π2PC to 14.

Communication complexity. We now calculate the amount of communication required between
the two parties in Π2PC. The steps of Π2PC which involve communication and the corresponding
amount of communication are as follows (recall that n = O(λ)):

– Step 1: The keys communicated have size O(poly(λ)).
– Step 2(c): The views of x1 have size O(ℓ1 · poly(λ)) [GIKR01], and thus the ciphertexts and

extractable commitments [PW09] communicated have size O(ℓ1 · poly(λ)).
– Step 3: The F2PC invocation simply samples O(poly(λ)) amount of randomness, and thus involves
O(poly(λ)) amount of communication.

– Step 4: The views of x1 have size O(ℓ1 · poly(λ)) [GIKR01], and thus the decommitments com-
municated have size O(ℓ1 · poly(λ)).

– Step 8(h): The ciphertext of y has size O(ℓo · poly(λ)). Each vector commitment has size
O(poly(λ)) (due to conciseness; see Definition 7). Each view of X2 has size O(K · poly(λ)),
and thus each extractable commitment of an encrypted view of X2 also has size O(K · poly(λ)),
where K = ℓ1+α

2 . The total communication in this step is thus O((ℓo + ℓ1+α
2 ) · poly(λ)).

– Step 9: The runtime of Rf ((u, v), w) as defined in Figure 4 is O(K · polylog(K)) (for decoding
X2) + O(|f |) (for evaluating f). Plugging in K = ℓ1+α

2 , this is O(ℓ1+α
2 · polylog(ℓ2) + |f |). By

Theorem 3, for the PCPP on NP relation Rf , the size of verifier randomness rM communicated
in this step is given by O(polylog(ℓ1+α

2 · polylog(ℓ2) + |f |)) = O(polylog(ℓ2 + |f |)).
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– Step 13: By Theorem 3, the PCPP verifier complexity is O(polylog(ℓ2+|f |)) as above. Thus, each
view of the MPC-in-the-head execution of the PCPP verifier has size O(polylog(ℓ2+|f |)·poly(λ)),
which implies each commitment of such an encrypted view also has size O(polylog(ℓ2 + |f |) ·
poly(λ)).

– Step 14: This step has O(poly(λ)) communication, as in Step 3.
– Step 15(a): Decommitments of encrypted MPC views have size O(polylog(ℓ2 + |f |) · poly(λ)).

Decommitments of encrypted views of X2 have size O(K · poly(λ)). The total communication in
this step is thus O((polylog(|f |) + ℓ1+α

2 ) · poly(λ)).
– Step 15(b): By Theorem 3, the PCPP query complexity is O(polylog(ℓ2 + |f |)) as above. Thus,

the encrypted views of all queried locations of the proof have size O(polylog(ℓ2 + |f |) · poly(λ)).
This is also the size of the encrypted proofs of vector openings for all queried locations of the
proof (due to conciseness; see Definition 7), and thus the total communication in this step is
O(polylog(ℓ2 + |f |) · poly(λ)).

– Step 16(d): The communicated output has size ℓo.

Collecting the above calculations, we conclude that the total communication complexity of Π2PC is
O
(
(ℓ1 + ℓ1+α

2 + ℓo + polylog(|f |)) · poly(λ)
)
.
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