
Cross-Platform Benchmarking of the FHE
Libraries: Novel Insights into SEAL and

OpenFHE

Faneela1, Jawad Ahmad2, Baraq Ghaleb1, Sana Ullah Jan1, and William J.
Buchanan1

1 Blockpass ID Lab, Edinburgh Napier University, UK
2 Cybersecurity Center, Prince Mohammad Bin Fahd University, Alkhobar, Saudi

Arabia

Abstract. The rapid growth of cloud computing and data-driven ap-
plications has amplified privacy concerns, driven by the increasing de-
mand to process sensitive data securely. Homomorphic encryption (HE)
has become a vital solution for addressing these concerns by enabling
computations on encrypted data without revealing its contents. This pa-
per provides a comprehensive evaluation of two leading HE libraries,
SEAL and OpenFHE, examining their performance, usability, and sup-
port for prominent HE schemes such as BGV and CKKS. Our analysis
highlights computational efficiency, memory usage, and scalability across
Linux and Windows platforms, emphasizing their applicability in real-
world scenarios. Results reveal that Linux outperforms Windows in com-
putation efficiency, with OpenFHE emerging as the optimal choice across
diverse cryptographic settings. This paper provides valuable insights for
researchers and practitioners to advance privacy-preserving applications
using FHE.

Keywords: Homomorphic encryption, HE libraries, cross-platform, resource
utilization, privacy-preserving

1 Introduction

Cloud computing has revolutionized modern computing by providing network
access through cloud servers, which are remote storage systems that facilitate
data processing and reduce the computational burden on local networks. While
cloud servers offer significant advantages in terms of efficiency and scalability,
their involvement also introduces critical security concerns, as sensitive data is
entrusted to third-party entities. [1]. To address the security concerns associ-
ated with cloud computing, encryption techniques are employed to transform
sensitive data into an unreadable form, ensuring its protection during trans-
mission and storage. While essential for securing data during transmission and
storage, traditional encryption techniques do not not fully address the privacy
concerns in cloud computing as they typically require data to be decrypted

2 Faneela, Ahmad, Ghaleb, Jan, and Buchanan

before any computation can occur, exposing sensitive information to potential
vulnerabilities during processing. This limitation underscores the need for more
advanced encryption methods, such as Homomorphic Encryption (HE), which
enables computations to be performed directly on encrypted data without the
need for decryption. HE resolves the privacy challenges by allowing data to re-
main confidential throughout its lifecycle, from storage to computation. Figure 1
illustrates the distinction between conventional cloud computing and HE-based
computing, emphasizing the enhanced security and privacy protection provided
by HE.

Plaintext
Input

Computation

Plaintext
Output

Encrypted
Input

Plaintext
Input

Encryption

Computation

Encrypted
Output

Plaintext
Output

Decryption

HE-based ComputingCloud Computing

Fig. 1. Architectural Difference between Cloud and HE-based Computing

Homomorphic Encryption (HE) has made significant progress since its incep-
tion, evolving from a concept that allowed only simple arithmetic operations on
encrypted data to a powerful tool for secure computations on large-scale data.
Initially, HE was limited to performing either addition or multiplication on en-
crypted data, restricting its practical applicability. However, the field underwent
a major breakthrough with Gentry’s introduction of Fully Homomorphic Encryp-
tion (FHE) in 2009, which enabled both addition and multiplication operations
on encrypted data simultaneously. This advancement opened the door to more
complex and scalable computations, making HE suitable for a broader range of
real-world applications [2]. In his research, he addressed the limitation of initial
HE by introducing both types of homomorphic operations on encrypted data.
Despite its theoretical promise, FHE faced challenges in practical implementa-

Cross-Platform Benchmarking of the FHE 3

tion due to its high computational complexity. In response, several specialized
libraries, such as Microsoft SEAL and OpenFHE, were developed, each offer-
ing efficient implementations of different FHE schemes, including the BGV and
CKKS schemes. These libraries have made it possible to perform precise integer
computations (BGV) or approximate floating-point operations (CKKS), further
expanding the versatility and feasibility of HE in privacy-preserving computing.
As the adoption of Homomorphic Encryption (HE) grows, it becomes essential
to thoroughly analyze and evaluate the available HE libraries. Indeed, each li-
brary, such as Microsoft SEAL and OpenFHE, offers different trade-offs in terms
of computational efficiency, ease of use, and support for various HE schemes.
Therefore, a comprehensive evaluation is necessary to identify the strengths and
limitations of these libraries in real-world scenarios. This evaluation will help
researchers, developers, and organizations make informed decisions about which
library best meets their specific needs, whether it be for secure data processing
in cloud environments or for implementing scalable privacy-preserving systems.
Furthermore, analyzing these libraries will provide valuable insights into their
optimization and potential areas for improvement, ensuring that HE can be ef-
fectively deployed in practical, large-scale applications.

1. How do FHE libraries perform across different configuration settings?
2. How do varying HE parameters impact the performance of FHE libraries?
3. How does the choice of platform (Linux vs. Windows) influence the perfor-

mance of FHE libraries?
4. How do different FHE schemes (e.g., BGV vs. CKKS) perform across various

FHE libraries and OS platforms?

Hence, our study introduces a novel benchmark for evaluating the performance
of Microsoft SEAL and OpenFHE, focusing on the BGV and CKKS schemes.
We specifically examine two key FHE operations—homomorphic addition and
multiplication. Additionally, we conduct a cross-platform analysis to assess the
performance of these libraries in various environments.

2 Background

Practical implementations of Homomorphic Encryption (HE) have faced several
challenges, including mathematical complexity and increased resource demands.
To address these limitations, various encryption schemes have been proposed,
such as RSA, ElGamal, and Paillier. In 1977, Rivest-Shamir-Adleman (RSA)
proposed a practical method of HE using multiplication functions on encrypted
messages, m1, and m2, such as:

Enc(m1) · Enc(m2) = Enc(m1 ·m2) (1)

Similarly, Paillier introduced an additive version of RSA’s scheme where the
operation is:

Enc(m1) + Enc(m2) = Enc(m1 +m2) (2)

4 Faneela, Ahmad, Ghaleb, Jan, and Buchanan

However, both RSA and Paillier schemes were limited to performing only
one type of homomorphic operation—either addition or multiplication [3], [4].
This single-operation behavior of the aforementioned schemes is known as partial
homomorphic encryption (PHE) and has limited their applications in practical
scenarios [5]. To overcome the limitations of PHE, Craig Gentry introduced
the first fully homomorphic encryption (FHE) scheme [6], which allowed both
addition and multiplication operations on encrypted messages. For example, it
enabled expressions like:

Enc(m1),Enc(m2) = Enc(m2
1 +m2 ·m1) (3)

Gentry’s FHE scheme is based on lattice-based cryptography and bootstrap-
ping procedures. Lattice-based cryptography ensures data privacy by using com-
plex mathematical problems such as Learning with Errors (LWE) whereas Boot-
strapping is a procedure that refreshes ciphertexts (encrypted messages) to min-
imize the noise growth during encryption.

Table 1. Focused Comparison of BGV and CKKS

Aspect BGV CKKS

Primary Use Case Integer values Floating-point values
Arithmetic Type Modular arithmetics Approximate arithmetics
Key Features Batching technique Scaling factor
Applications Financial systems, cryptographic protocols. Machine learning, data analytics.

2.1 FHE parameters

The adoption and effectiveness of Fully Homomorphic Encryption (FHE) in cryp-
tographic applications depend significantly on the choice and optimization of
several key parameters. These parameters directly influence the performance,
security, and practicality of FHE schemes. Crucial parameters include the poly-
modulus degree, ciphertext modulus, plaintext modulus, scaling factor, and op-
eration depth, all of which must be carefully chosen to balance security require-
ments and computational efficiency in FHE implementations [7], [8].

Polymodulus Degree. The polymodulus degree, denoted by n, determines the
size of the polynomial ring used in the encryption process. It is critical in defining
the complexity and security of the encryption scheme. The choice of n impacts
both the computational overhead and the level of security against attacks. In
ring theory, a polynomial ring R is constructed using polynomials f(X), where
the coefficients belong to certain rings, and is defined as:

R = Z[X]/(Xn + 1) (4)

Cross-Platform Benchmarking of the FHE 5

The degree n determines the number of coefficients involved in the polyno-
mial, thus influencing the size of the encryption parameters and the computa-
tional resources required for encryption and decryption.

Ciphertext Modulus. The ciphertext modulus q is a key parameter that in-
fluences the noise growth during homomorphic operations. Larger ciphertext
moduli enable greater noise tolerance, allowing more operations to be performed
on encrypted data before the ciphertext becomes corrupted.

Plaintext Modulus. The plaintext modulus t determines the size of the values
that can be encrypted, directly impacting the range of data that can be securely
handled by the encryption scheme.

Scaling Factor. The scaling factor ∆ plays a vital role in controlling the noise
growth during homomorphic operations, affecting the number of operations that
can be performed on the ciphertext before it becomes too noisy for accurate
decryption.

Operation Depth. The depth of operations L refers to the number of homo-
morphic operations that can be performed on the ciphertext before the noise
grows to an irreparable level. This parameter is crucial in determining how
many layers of computation are feasible within the encryption framework. These
parameters—n, q, t, ∆, and L—must be carefully optimized to balance perfor-
mance and security in FHE schemes.

2.2 FHE schemes: BGV and CKKS

Following Gentry’s foundational approach, several Fully Homomorphic Encryp-
tion (FHE) schemes have been developed, with BGV and CKKS being two
of the most widely used for practical applications [9]. The Brakerski-Gentry-
Vaikuntanathan (BGV) scheme, introduced in 2012, is designed for efficient
arithmetic operations, making it particularly suitable for exact computations,
such as in cryptographic applications [10]. In 2017, the Cheon-Kim-Kim-Song
(CKKS) scheme was introduced, which supports homomorphic computations
on real numbers. CKKS employs approximation arithmetic, converting floating-
point values into large integers to facilitate efficient homomorphic operations.
[11], [12]. A key feature of CKKS is the scaling factor which ensures the preci-
sion of approximate calculations. This makes CKKS particularly well-suited for
applications involving machine learning and other approximate computations,
where exact precision is not always required. Table 1 highlights the key differ-
ences between the BGV and CKKS schemes.

2.3 FHE libraries: Microsoft SEAL and OpenFHE

To enable the practical deployment of Fully Homomorphic Encryption (FHE)
schemes, several libraries have been introduced, with Microsoft SEAL and OpenFHE
being among the most widely used. Microsoft SEAL is developed by Microsoft
Research and is known for its user-friendly features and predefined FHE param-
eters, making it accessible to both researchers and practitioners [13].The library
incorporates advanced techniques like memory pooling and multi-threading to

6 Faneela, Ahmad, Ghaleb, Jan, and Buchanan

Algorithm 1: BGVadd(m, pk, sk, c1, c2)

Require: m ∈ ℝq, pk ← (b, a), sk ← s,

c1 ← (c10, c11), c2 ← (c20, c21).

considering

m: plaintext, pk: public key, sk: secret key,

c1, c2: ciphertexts

Ensure: c ← (c0, c1), m ∈ ℝ

where

c: encrypted output, m: decrypted plaintext

Encryption:

1. u ← Random (ℝq);

2. e ← Noise (ℝq);

3. c0 ← b * u + m + e;

4. c1 ← a * u + e;

5. return c = (c0, c1);

Computation:

6. c0 ← (c10 + c20) mod q;

7. c1 ← (c11 + c21) mod q;

8. return c = (c0, c1);

Decryption:

9. m ← (c0 + c1 * s) mod q;

10. return m;

Algorithm 2: CKKSadd(m, pk, sk, c1, c2, Δ)

Require: m ∈ ℝq, pk ← (b, a), sk ← s,

c1 ← (c10, c11), c2 ← (c20, c21), Δ.

considering

m: plaintext, pk: public key, sk: secret key,

c1, c2: ciphertexts

Ensure: c ← (c0, c1), m ∈ ℝ

where

c: encrypted output, m: decrypted plaintext

Encryption:

1. u ← Random (ℝq);

2. e ← Noise (ℝq);

3. c0 ← b * u + Δ * m + e;

4. c1 ← a * u + e;

5. return c = (c0, c1);

Computation:

6. c0 ← (c10 + c20) mod q;

7. c1 ← (c11 + c21) mod q;

8. return c = (c0, c1);

Decryption:

9. m ← ((c0 + c1 * s) / Δ) * mod q;

10. return m;

optimize resource utilization and performance. SEAL also supports cross-platform
deployment, ensuring interoperability across various operating systems, includ-
ing Windows, Linux, and macOS, which enhances its versatility in real-world
applications. OpenFHE, on the other hand, is a research-driven library that
also supports FHE implementations across multiple platforms. [14]. While both
libraries differ in their design and architecture, they share a common goal: to fa-
cilitate the practical implementation of FHE schemes in real-world applications.
Microsoft SEAL is well-suited for straightforward use cases, while OpenFHE pro-
vides more flexibility for cutting-edge research and complex application designs.
This comparison provided valuable insights into the efficiency of these libraries
under different conditions.

3 Related Work

Different studies have analyzed the performance of FHE libraries across differ-
ent FHE schemes. The authors in [15] compared different FHE libraries such
as HElib, SEAL, and FV-NFLlib and analyzed their performance with large
plaintext moduli. Similarly, Jiang et. al evaluated these libraries under various
FHE operations and provided a detailed analysis of their computational per-
formance [16]. In another study, Gouert et al. examined the performance and
usability of various FHE libraries, offering a comprehensive overview of their
strengths and limitations [17].While these studies provide valuable insights into

Cross-Platform Benchmarking of the FHE 7

the computational performance of FHE libraries, they do not address critical
aspects such as memory usage and scalability across different platforms. These
factors are essential for understanding the overall efficiency and adaptability
of FHE libraries in diverse real-world environments. Recently, various research
studies have also discussed the performance of specific FHE schemes to better
understand FHE libraries. Chillotti et al. analysed the TFHE scheme to improve
the performance of homomorphic operations [18]. The authors in [19] reviewed
different FHE schemes such as BFV, CKKS, and TFHE schemes, and evaluated
neural networks based on requirements. Ma et al. compared PyTFHE which is
a Python wrapper of TFHE scheme, with other frameworks to highlight im-
provements in HE computations [20]. However, these studies did not explore
the cross-platform performance of FHE schemes, especially in edge-cutting FHE
libraries such as OpenFHE and SEAL. Several studies have also compared the
performance of FHE libraries across various applications. Suzuki et al. analyzed
the performance of SEAL and OpenFHE for convolutional neural networks, fo-
cusing on the trade-offs between processing latency and model accuracy [21].
Moreover, Zhai et al. presented GPU acceleration for encrypted computation us-
ing SEAL, focusing on hardware-specific optimizations [22]. While these studies
provide valuable benchmarks for different FHE libraries, they fall short in ad-
dressing the cross-platform performance, memory usage, and operational depth
of these libraries. The present study seeks to address these gaps by analyzing the
SEAL and OpenFHE libraries across multiple platforms, focusing on both com-
putation time and memory consumption. By providing new insights into these
critical aspects, our work contributes to a deeper understanding of the perfor-
mance of FHE libraries and promotes more efficient solutions for real-world FHE
applications.

4 Proposed Methodology

This section outlines a benchmarking methodology designed to compare the per-
formance of two FHE libraries: SEAL and OpenFHE. The study evaluates two
key performance metrics—execution time and memory usage—across two oper-
ating systems, Windows and Linux. The analysis focuses on two widely adopted
FHE schemes, BGV and CKKS, ensuring a comprehensive comparison. All ex-
periments were conducted on a a laptop featuring an Intel Core i7-8550U pro-
cessor, 16 GB of RAM, and a 512 GB SSD. To ensure uniformity and reliability
of results, identical parameter settings were applied across all platforms. Perfor-
mance evaluation was based on two fundamental FHE operations: addition and
multiplication. The experiments explored various configurations parameters, in-
cluding polymodulus degree, coefficient modulus, plaintext modulus, and scaling
factor. The evaluation of the addition operations was conducted using a fixed
set of operation depths (50, 100, 150, 200, 250, and 300) across polymodulus
degrees of 13, 14, and 15. In contrast, the multiplication operations required
dynamic parameter configurations due to their significantly higher computa-
tional complexity. As the operation depth increased, the polymodulus degree was

8 Faneela, Ahmad, Ghaleb, Jan, and Buchanan

scaled accordingly to maintain computational accuracy and ensure correctness.
Table 2 illustrates the correlation between operation depth and polymodulus de-
gree, highlighting the adjustments necessary to accommodate deeper operations.
Moreover, the coefficient modulus chain and scaling factor were also updated to
accommodate the increasing computational complexity that resulted from the
approximation arithmetic technique inherent in the CKKS scheme.

Table 2. Correlation between operation depth and polymodulus degree.

Operation
Depth (L)

Polymodulus Degree (q)

SEAL OpenFHE

BGV CKKS BGV CKKS

2 12 13 14 14
3 13 13 14 14
4 13 14 14 14
5 13 14 14 15
6 13 14 14 15
7 14 14 14 15
8 14 14 14 15
9 14 15 14 15
10 14 15 14 15
11 14 15 14 16
12 14 15 14 16
13 15 15 15 16
14 15 15 15 16
15 15 15 15 16
16 15 15 15 16
17 15 15 15 16
18 15 15 15 16
19 15 15 15 16
20 15 15 15 16

5 Results and Discussion

This section presents a detailed benchmarking analysis of the SEAL and OpenFHE
libraries, focusing on their performance under the BGV and CKKS schemes. The
discussion is structured into two subsections, each dedicated to evaluating the
performance of core homomorphic operations: FHE addition and FHE multipli-
cation.

Cross-Platform Benchmarking of the FHE 9

5.1 FHE-Addition Performance

This section presents a detailed benchmarking analysis of the SEAL and OpenFHE
libraries, focusing on their performance under the BGV and CKKS schemes. The
discussion is structured into two subsections, each dedicated to evaluating the
performance of core homomorphic operations: FHE addition and FHE multipli-
cation, outlined in Figures 2 to 5.

Fig. 2. Execution Time for FHE-
addition in BGV.

Fig. 3. Execution Time for FHE-
addition in CKKS.

Fig. 4. Memory Utilization for FHE-
addition in BGV.

Fig. 5. Memory Utilization for FHE-
addition in CKKS.

Figure 2 shows the execution time of FHE addition under the BGV scheme
as a function of operation depth. Execution time increased gradually with opera-
tion depth for both libraries. SEAL initially performed well but exhibited a sharp
rise in execution time on Windows as the operation depth grew. At a depth of
300, SEAL’s execution time on Windows reached 182 seconds, highlighting sig-
nificant scalability challenges. In contrast, OpenFHE demonstrated consistently
faster execution times on both Windows and Linux, with Linux outperforming
Windows in all cases, further emphasizing OpenFHE’s optimized performance.
Similarly, the execution times in CKKS were consistently higher than in BGV
due to the further computational complexity introduced by the approximation
technique. However, OpenFHE on Linux still has the additional benefit of com-
pleting 300 FHE additions in almost 4 seconds, compared to SEAL’s 7 seconds
(approx.) on the same platform. Figure 3 presents the execution time of the
FHE-addition operation in CKKS across all configurations.

Moreover, 4 outlines a similar pattern for memory usage. In the BGV, SEAL
performed slightly better on Linux compared to Windows. For instance, the

10 Faneela, Ahmad, Ghaleb, Jan, and Buchanan

memory usage at depth 300 was 690 MB on Linux and 715 MB on Windows.
In contrast, OpenFHE demonstrated considerably better memory usage across
all configurations with 240 MB utilized for the same operation depth. Simi-
larly, the CKKS consumed more memory than BGV for both libraries across all
platforms, as shown in 5. SEAL demanded the highest memory on Windows,
whereas OpenFHE remained memory efficient even at larger operation depths.
This highlights its potential to effectively manage resource demands for CKKS.

5.2 FHE-Multiplication Performance

The FHE-multiplication analysis offers a comprehensive overview of the compu-
tational efficiency and memory usage of the aforementioned FHE libraries shown
in Figures 6 to 9. The execution time for multiplication operations in BGV has
risen continuously with operation depth across both libraries. The details are
outlined in Figure 6. Overall, SEAL took significantly longer execution times
on Windows. For instance, at operation depth 20, SEAL took more than 530
seconds to execute on Windows, which indicates the future challenges for scal-
ability. Meanwhile, OpenFHE outperformed across each configuration, execut-
ing 20 multiplications in approximately 7 seconds on Linux, which significantly
overtook SEAL on both platforms. Similarly, the execution time for CKKS was
generally higher than in BG as described in FHE-addition. The details are shown
in Figure 7. SEAL on Windows took about 300 seconds for depth 20, whereas
OpenFHE on Linux exhibited the same operations in 12 seconds, which shows
a clear performance efficiency.

Fig. 6. Execution Time for FHE-
multiplication in BGV.

Fig. 7. Execution Time for FHE-
multiplication in CKKS.

Moreover, the memory usage in BGV and CKKS is highlighted in Figures 7
and 8, respectively. It is observed that the memory demand for SEAL in BGV
increased dramatically, such as for 20 FHE multiplications, which required 850
MB on Windows. However, while Linux showed slightly better performance,
OpenFHE was found to be more memory efficient, requiring less than half of
SEAL. For example, at depth 20, OpenFHE showcases its optimized resource
management by consuming 400MB on the Linux platform, as shown in Figure 8.
Similarly, for the memory usage in CKKS, SEAL exceeded 1200 MB at depth 20
on Windows, making it the most resource-intensive configuration, as illustrated

Cross-Platform Benchmarking of the FHE 11

in Figure 9. Whereas, OpenFHE has again proven its efficiency by requiring
under 800 MB on Linux for the same operation depth.

Fig. 8. Memory Utilization for FHE-
multiplication in BGV.

Fig. 9. Memory Utilization for FHE-
multiplication in CKKS.

Furthermore, a significant increase in execution time and memory usage was
observed with each transition to a higher polymodulus degree (n) to manage
higher depths of multiplication operations. For each transition, SEAL showed
more resource growth while OpenFHE demonstrated fewer fluctuations. For in-
stance, in BGV, at operation depth 9, for transitioning from polymodulus degree
213 to 214, SEAL on Windows consumed 5x more execution time than the reg-
ular pattern. Whereas, at depth 13, transitioning from polymodulus degree 214

to 215 in OpenFHE resulted in only a 2x increase on Linux, which confirms its
improved scalability.

5.3 Comparative Insights

Overall, OpenFHE continuously outperformed SEAL in terms of execution time
and memory usage. This outperforming behavior of OpenFHE became more
evident at higher operation depths, particularly in CKKS to handle the scaling
factors in managing computational overhead. However, the higher computational
demand of SEAL may limit its scalability in advanced applications. The perfor-
mance of SEAL was also greatly affected by the platform choice such as Linux
consistently performed better than Windows. Hence, OpenFHE is an optimal
choice for improved resource utilization which makes it suitable for cryptographic
applications.

6 Conclusion

Our study benchmarks two widely used FHE libraries, SEAL and OpenFHE
under BGV and CKKS schemes. This benchmarking provides new insights into
computation overhead and the scalability of these libraries in a cross-platform
approach. Our findings reveal that OpenFHE consistently outperformed SEAL
in all configurations, where Linux appeared to be a more efficient platform for
each operation setting. In the future, this study can be extended to include
more libraries using different FHE schemes that would help researchers gain

12 Faneela, Ahmad, Ghaleb, Jan, and Buchanan

comprehensive insights into FHE advancements. Moreover, different hardware
settings, such as GPUs or specialized accelerators, can be involved to highlight
the performance of homomorphic operations. Furthermore, the evaluation of
multiple FHE schemes in neural networks using different libraries would offer
new research directions in implementing privacy-preserving applications.

References

1. K. Munjal and R. Bhatia, “A systematic review of homomorphic encryption and
its contributions in healthcare industry,” Complex & Intelligent Systems, vol. 9,
no. 4, pp. 3759–3786, 2023.

2. C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek, and N. Aaraj,
“Survey on fully homomorphic encryption, theory, and applications,” Proceedings
of the IEEE, vol. 110, no. 10, pp. 1572–1609, 2022.

3. S. J. Mohammed and D. B. Taha, “Performance evaluation of rsa, elgamal, and
paillier partial homomorphic encryption algorithms,” in 2022 International Con-
ference on Computer Science and Software Engineering (CSASE). IEEE, 2022,
pp. 89–94.

4. P. V. Parmar, S. B. Padhar, S. N. Patel, N. I. Bhatt, and R. H. Jhaveri, “Survey of
various homomorphic encryption algorithms and schemes,” International Journal
of Computer Applications, vol. 91, no. 8, 2014.

5. S. S. Reddy, S. Sinha, and W. Zhang, “Design and analysis of rsa and paillier
homomorphic cryptosystems using pso-based evolutionary computation,” IEEE
Transactions on Computers, vol. 72, no. 7, pp. 1886–1900, 2023.

6. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic
encryption over the integers,” in Advances in Cryptology–EUROCRYPT 2010: 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29. Springer, 2010,
pp. 24–43.

7. J.-P. Bossuat, R. Cammarota, I. Chillotti, B. R. Curtis, W. Dai, H. Gong, E. Hales,
D. Kim, B. Kumara, C. Lee et al., “Security guidelines for implementing homo-
morphic encryption,” Cryptology ePrint Archive, 2024.

8. M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi,
J. Hoffstein, K. Laine, K. Lauter et al., “Homomorphic encryption standard,”
Protecting privacy through homomorphic encryption, pp. 31–62, 2021.

9. A. Kim, M. Deryabin, J. Eom, R. Choi, Y. Lee, W. Ghang, and D. Yoo, “General
bootstrapping approach for rlwe-based homomorphic encryption,” IEEE Transac-
tions on Computers, 2023.

10. A. Putra, Prasetiyo, Y. Chen, J. Kim, and J.-Y. Kim, “Strix: An end-to-end
streaming architecture with two-level ciphertext batching for fully homomorphic
encryption with programmable bootstrapping,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023, pp. 1319–1331.

11. P. Sathishkumar, K. Pugalarasan, C. Ponnparamaguru, and M. Vasanthkumar,
“Improving healthcare data security using cheon-kim-kim-song (ckks) homomor-
phic encryption,” in 2024 International Conference on Knowledge Engineering and
Communication Systems (ICKECS), vol. 1. IEEE, 2024, pp. 1–6.

12. Y. Pan, Z. Chao, W. He, Y. Jing, L. Hongjia, and W. Liming, “Fedshe: privacy
preserving and efficient federated learning with adaptive segmented ckks homo-
morphic encryption,” Cybersecurity, vol. 7, no. 1, p. 40, 2024.

Cross-Platform Benchmarking of the FHE 13

13. F.-J. Valera-Rodriguez, P. Manzanares-Lopez, and M.-D. Cano, “Empirical study
of fully homomorphic encryption using microsoft seal,” Applied Sciences, vol. 14,
no. 10, p. 4047, 2024.

14. A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,
S. Halevi, H. Hunt, A. Kim, Y. Lee et al., “Openfhe: Open-source fully homo-
morphic encryption library,” in proceedings of the 10th workshop on encrypted
computing & applied homomorphic cryptography, 2022, pp. 53–63.

15. C. Aguilar Melchor, M.-O. Kilijian, C. Lefebvre, and T. Ricosset, “A comparison of
the homomorphic encryption libraries helib, seal and fv-nfllib,” in Innovative Secu-
rity Solutions for Information Technology and Communications: 11th International
Conference, SecITC 2018, Bucharest, Romania, November 8–9, 2018, Revised Se-
lected Papers 11. Springer, 2019, pp. 425–442.

16. L. Jiang and L. Ju, “Fhebench: Benchmarking fully homomorphic encryption
schemes,” arXiv preprint arXiv:2203.00728, 2022.

17. C. Gouert, D. Mouris, and N. Tsoutsos, “Sok: New insights into fully homomor-
phic encryption libraries via standardized benchmarks,” Proceedings on privacy
enhancing technologies, 2023.

18. I. Iliashenko and V. Zucca, “Faster homomorphic comparison operations for bgv
and bfv,” Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3, pp.
246–264, 2021.

19. P.-E. Clet, O. Stan, and M. Zuber, “Bfv, ckks, tfhe: Which one is the best for
a secure neural network evaluation in the cloud?” in Applied Cryptography and
Network Security Workshops: ACNS 2021 Satellite Workshops, AIBlock, AIHWS,
AIoTS, CIMSS, Cloud S&P, SCI, SecMT, and SiMLA, Kamakura, Japan, June
21–24, 2021, Proceedings. Springer, 2021, pp. 279–300.

20. J. Ma, C. Xu, and L. W. Wills, “Pytfhe: An end-to-end compilation and execution
framework for fully homomorphic encryption applications,” in 2023 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 24–34.

21. H. Zhu, T. Suzuki, and H. Yamana, “Performance comparison of homomorphic
encrypted convolutional neural network inference among helib, microsoft seal and
openfhe,” in 2023 IEEE Asia-Pacific Conference on Computer Science and Data
Engineering (CSDE). IEEE, 2023, pp. 1–7.

22. Y. Zhai, M. Ibrahim, Y. Qiu, F. Boemer, Z. Chen, A. Titov, and A. Lyashevsky,
“Accelerating encrypted computing on intel gpus,” in 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2022, pp. 705–
716.

