JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

A Practical Tutorial on Deep Learning-based
Side-channel Analysis

Sengim Karayal¢in, Marina Krcek, Stjepan Picek, Senior Member, IEEE

Abstract—This tutorial provides a practical introduction to
Deep Learning-based Side-Channel Analysis (DLSCA), a pow-
erful approach for evaluating the security of cryptographic
implementations. Leveraging publicly available datasets and a
Google Colab service, we guide readers through the fundamental
steps of DLSCA, offering clear explanations and code snippets.
We focus on the core DLSCA framework, providing references for
more advanced techniques, and address the growing interest in
this field driven by emerging standardization efforts like AIS 46.
This tutorial is designed to be accessible to researchers, students,
and practitioners seeking to learn practical DLSCA techniques
and improve the security of cryptographic systems.

Index Terms—Deep Learning, Side-channel Analysis, Evalua-
tion

I. INTRODUCTION

Cryptographic algorithms are essential in data communication
systems across various applications, ensuring the secrecy of
sensitive and classified information. Cryptography employs
mathematical principles to enable data confidentiality, in-
tegrity, and authenticity (among other goals), with numerous
algorithms designed to be mathematically secure [1], [2].
However, these algorithms must be implemented on a certain
software or hardware platform. This implementation process
introduces specific characteristics and vulnerabilities. While
classical cryptoanalysis focuses on identifying theoretical
weaknesses within cryptographic algorithms, physical attacks
focus on the implementation of the algorithm [3], [4], [5].
Implementation attacks aim to retrieve secret information or
bypass security measures by exploiting vulnerabilities specific
to how cryptographic algorithms are implemented in practice.
Such attacks are powerful and represent a critical concern for
cryptographic system developers. Consequently, these threats
are explicitly addressed within the Common Criteria (CC) [6]
for evaluating the security of cryptographic systems.

Implementation attacks can be categorized based on their
level of invasiveness on the device, ranging from invasive,
semi-invasive, to non-invasive, and their impact on the device’s
operation, classified as either active or passive attacks. This
tutorial focuses on passive and typically non-invasive attacks,
known as side-channel analysis (SCA). Moreover, we concen-
trate on attacks on cryptographic algorithms, where the goal
is to extract the secret information (key).

S. Karayalgin is with Leiden University, the Netherlands

M. Kréek and S. Picek are with Radboud University, Nijmegen, The
Netherlands.

S. Picek is the corresponding author (stjepan.picek @ru.nl)

Side-channel analysis exploits unintended side-channel
leakage that occurs during the execution of cryptographic algo-
rithms on targeted devices. This side-channel information in-
cludes power consumption [7], electromagnetic emissions [8],
execution time [3], or even acoustic signals [9]. By analyzing
these side channels, attackers can potentially extract sensitive
information such as cryptographic keys.

Depending on the attacker’s ability and resources, SCA
can be divided into non-profiling (direct) and profiling (two-
stage) SCA. Non-profiling SCA analyzes traces (depending
on the specific attack, it can be from one trace to millions
of traces) from a target device directly, relying on statistical
methods (e.g., Pearson correlation, difference-of-means, or
mutual information) to reveal correlations between observed
side-channel information and secret data. Examples include
techniques such as Simple Power Analysis (SPA) [3] and
Differential Power Analysis (DPA) [7]. On the other hand,
a two-stage or profiling SCA assumes a more powerful ad-
versary with access to an open device identical (or at least
similar) to the target, allowing a detailed profiling model to be
created. These attacks are performed in two phases: the first
phase builds a model using the clone device under control,
and the second phase utilizes the model to obtain the secret
from the actual target device. One such attack called template
attack (TA) [S] creates a statistical model or ‘template’ that
describes the side-channel leakage and noise of the open
(clone) device under control. During the attack phase, the
adversary or security analyst uses the created template to
analyze the measurements collected from the target device,
which should be (at least) similar to the clone device, and
determines the most likely key used on the target device.

Template attacks, known for their effectiveness from an
information theoretical perspective [5], require significant fea-
ture engineering and numerous traces to model device leak-
age accurately. As such, researchers are increasingly looking
toward advanced methods such as Machine Learning (ML)
to enhance side-channel analysis. Initial explorations utilized
traditional machine learning techniques such as Support Vector
Machines (SVM) [10], [11] and Random Forest [12], followed
by the application of Multilayer Perceptron (MLP) [13], [14].
The introduction of deep learning-based profiling SCA marked
a significant development, employing various architectures like
MLP, Stacked Autoencoder, Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN) to analyze side-
channel data [15]. Since 2016 [15], deep learning methods
have been extensively studied for side-channel analysis ap-
plications and enhancements [16]. These efforts culminated
when the German Federal Office for Information Security



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(BSI) published an updated version of the Application Notes
and Interpretation of the Scheme (AIS) 46 in February 2024,
which provides guidelines for evaluating machine learning-
based side-channel attack resistance [17]. Given these recent
developments, this tutorial provides a timely and relevant
introduction to the execution of deep learning-based side-
channel analysis (DLSCA), adhering to the AIS 46 guidelines.
More precisely, we analyze the literature for the period 2016-
2024 for the best practices in DLSCA.

To our knowledge, there are no published tutorials on deep
learning-based SCA. On the other hand, we note several
surveys [18], [19], [20], [21], [22], [23], one systematization of
knowledge [16], and a number of publicly available tools for
DLSCA [24], [25], [26]. Moreover, the authors in [27] provide
a tutorial on several physical attacks, including classical side-
channel analysis.

A. Motivation

Up to now, there are a few hundred papers dealing with
DLSCA [16]. Most of those works aim to improve the
attack performance by concentrating on more powerful Al
approaches, for instance, by improving hyperparameter tun-
ing [28] or data augmentation [29]. Some, on the other hand,
go in the direction of considering different threat models [30],
[31] or developing new types of attacks [32]. While such
developments push state-of-the-art forward, they also make
it more difficult for novices in the SCA domain to start their
research. Indeed, to be an independent DLSCA researcher, one
needs to have good knowledge of both side-channel analysis
and deep learning. Moreover, proficiency in Python and some
deep learning frameworks like PyTorch, TensorFlow,
or Keras is necessary. As such, it is difficult to expect
such knowledge even from more experienced researchers, let
alone beginners. This tutorial aims to provide all foundational
(practical) information for beginners to be able to conduct deep
learning-based side-channel analysis.

For the tutorial, we use Google Colab [33]. Colab is a hosted
Jupyter Notebook [34] service that requires no setup to use and
provides free access to computing resources, including GPUs
and TPUs. Therefore, it should be possible to run the notebook
as provided. The tutorial notebook can also be downloaded as
a Jupyter Notebook and used in a local Python environment.
Still, due to the ease of use, we implement our DLSCA
framework in Colab and provide it in the GitHub repository.'
Note that the code snippets within this work might rely on
some existing code in the Colab notebook, and thus copy-
pasting every code snippet into a new Colab or local Jupyter
notebook will not be fully executable unless the additional
code from the Colab notebook itself is also used.

B. Prior Knowledge

We do not assume that the reader has previous familiarity
with side-channel analysis or deep learning. We briefly explain
all the relevant concepts in this work. More precisely, we cover

Ihttps://github.com/marinakrcek/DLSCA-tutorial

the main concepts while leaving more advanced methods and
techniques for interested readers to explore.

For the practical part of the tutorial, we assume the reader
has a basic understanding of Python. This includes the ability
to read and write Python code, including fundamental con-
structs such as loops, functions, and classes. Familiarity with
Numpy library is also expected. While prior experience with
deep learning frameworks (such as Keras, TensorFlow,
or PyTorch) is helpful, it is not strictly required. Our ex-
planations will clarify the functionality of the TensorFlow
library used in this tutorial, including tasks such as training a
model and performing inference, ensuring that readers without
prior deep learning experience can comprehend the tutorial.
However, for details, we refer the reader to the official library
documentation.”.

C. Information on Google Colab Service

We provide an executable tutorial using Google Colab, a
free online platform that requires a Google account (easily
created at no cost). Google Colab allows users to run code
using CPU, GPU, or TPU units. The platform includes a pre-
configured Python environment with many commonly used
libraries already installed. If any required libraries are missing,
they can be installed within the notebook. However, note that
while the libraries are immediately available without installing
them, they must be explicitly imported into the Python code
to be used. The Colab notebook contains three types of cells:
code cells, text cells, and header cells (also a text cell). To
insert new text or code cells, use the options provided in the
Insert tab. To execute a cell, click the “Run” button on the
top left side of the cell or press Ctrl+Enter when the cell
is selected. Additional execution options are available in the
notebook’s header under the Runtime tab. To utilize GPU
or TPU units for training and running deep learning models,
check the option Change runtime type. Note that, with the
free account, there are time and memory limits to using these
computational units.

D. Outline

This paper is organized as follows. Section II provides a rel-
evant introduction to side-channel analysis and deep learning,
emphasizing deep neural networks. Next, Section III provides
information about deep learning-based SCA, common threat
models, and a visual flowchart of the DLSCA analysis. Each
part of the flowchart is discussed and explained in a separate
section. As such, this paper can be studied fully in the order
given, or readers can go into separate sections, depending
on their goals. Section IV discusses relevant preprocessing
steps, such as normalization and standardization. Section [V-A
elaborates on common feature engineering options. Section V
discusses commonly used neural network types, data augmen-
tation, and hyperparameter tuning options. Section VI presents
options when mounting the attack phase and results evaluation.
Section VII discusses common options for Al interpretability/-
explainability in the context of DLSCA. Finally, Section VIII

Zhttps://www.tensorflow.org/api_docs


https://github.com/marinakrcek/DLSCA-tutorial
https://www.tensorflow.org/api_docs

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

concludes the paper. We note that every section is accompanied
by relevant source code snippets, and we explain the basic
approaches used in DLSCA. Moreover, we briefly list more
advanced options for interested readers to explore.

II. BACKGROUND
A. Side-channel Analysis

SCA poses a major threat to devices handling sensitive data
like keys, private certificates, and intellectual property. More
precisely, and in the context of cryptographic implementations,
in (physical) SCA, we attempt to extract secret information
from side-channel traces, e.g., power/electromagnetic (EM)
measurements [7], [8], during the computation of a crypto-
graphic algorithm. There, for n encryptions® we collect n
traces of m samples (features/points of interest) resulting in
traces X = {27,1 < j < n} where z; is a vector with m
points. Then, for each of these traces, key(s) k7 and plaintexts
p’ allow us to generate a set of measurement labels.

In the rest of this work, we will consider the NIST
Advanced Encryption Standard (AES) cipher [35], which is
the algorithm of choice for most settings when encrypting
information and is also the common target to explore in
the SCA literature [16]. AES is a byte-oriented cipher that
operates in a number of rounds and where each of the rounds
contains several operations. A common place to attack is
after the S—-box part, making the function of interest IV =
S-box(plaintext ® key). We can use the divide-and-conquer
approach and consider attacking every key byte separately (as
AES is byte-oriented); we denote the i-th byte of the key and
plaintext as k] and p], respectively. The intermediate value
then equals IV7 = S-box[p! & k7]. Finally, when modeling
leakage, it is common to assume a certain behavior of how
the device leaks, a concept known as the leakage model.
Common leakage models include the Hamming weight (HW)
leakage model*, which assumes the leakage is proportional to
the number of ones in a byte, the least/most significant bit
(LSB/MSB) that assumes the leakage happens in a single bit
only, and the identity (ID) model that assumes that the leakage
is proportional to the value at the output of the S-box. Note
that since AES is byte-oriented, the S—-box output contains
256 values, and the Hamming weight (distance) of those
values can be between 0 and 8 (making a total of 9 values).
While the ID leakage model is bijective, the HW/HD leakage
models follow a binomial distribution. To assess the attack’s
effectiveness, it is common to consider how many guesses one
needs to make before finding the correct key. As such, the
fewer guesses, the better the attack [16]. Thus, the simplest
metric, key rank (KR), states in what position in the key
guessing vector (a vector of all possible keys sorted from
the most likely to the least likely guess) is the correct key.
A somewhat more complex metric is the guessing entropy
(GE) [36], which is the average key rank. The averaging is
done to improve the statistical quality (i.e., to reduce the effect

3For simplicity, we mention only encryption; the process is analogous for
decryption.

40r the Hamming Distance (HD) leakage model that assumes the leakage
is proportional to the number of transitions from zero to one and one to zero.

of specific traces used) of the attack. Finally, the success rate
(SR) of order o is a metric indicating whether in the first o
guesses is the correct key.

Some metrics aim to quantify how much information is
extracted by neural networks. Perceived Information [37] is a
lower bound for mutual information which can be easily com-
puted from model predictions. Several works have explored
theoretical properties [18] and proposed enhancements [38],
[39]. Note that the goal of an SCA attack is to minimize
the key rank and guessing entropy values and maximize the
success rate and perceived information metric.

Recall that a common SCA division is into direct and profil-
ing attacks [16]. Direct attacks assume a single device where
the attacker uses statistical techniques (called distinguishers)
to find the most likely keys. A common approach is the
Correlation Power Analysis (CPA) [40].

In profiled attacks, one assumes the attacker can access
a copy of a device to be attacked. This copy is under the
complete control of the attacker and is used to build a model
of the device. Then, the attacker uses that model to attack a
different (but similar) device. While the profiled attack is more
complex due to the assumption of access to a copy of a device,
it can be significantly more powerful than direct attacks.
Indeed, provided that the model is well-built, one could need
as little as a single trace from the device under attack to obtain
the secret key. Direct attacks may need millions of traces
to break a real-world target [16]. One can easily observe a
similarity between profiled attacks and the supervised machine
learning paradigm (where building a model is training, and the
attack is testing). Consequently, in the last decade and more,
many machine (deep) learning algorithms have been tested in
SCA.

One commonly uses countermeasures to protect against
SCA, which can be either hiding or masking. In both cases, the
goal is to remove the correlation between the observed quality
(traces) and secret information. Hiding countermeasures can
happen in the amplitude domain by randomizing/smoothing
the signal or by adding desynchronization/random delays in
the time domain. Masking [41], on the other hand, divides a
secret variable into a number of shares such that to obtain the
secret information, an attacker needs to combine all the shares.
For further information about SCA, refer to [42].

B. Deep Learning

Deep learning, a subfield of machine learning, is charac-
terized by its ability to construct models that learn increas-
ingly abstract representations of data compared to traditional
machine learning approaches [43]. This capability to perform
advanced feature extraction and transformation allows for
more effective high-dimensional data processing to discover
complex patterns. Traditional machine learning models, such
as linear regression, logistic regression, naive Bayes, and deci-
sion trees, are designed to learn from data in a straightforward
manner, often requiring manual feature selection and data
preprocessing [44], [45]. Artificial Neural Networks (ANNs)
originate from the domain of traditional machine learning,
beginning with the fundamental concept of the Perceptron.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

This simple model, representing a single neuron, enabled the
development of more complex structures such as the multilayer
perceptron, which consists of multiple interconnected neurons
organized in layers. There is no consensus about how much
depth (layers and neurons) a model requires to be considered a
deep learning model. However, deep learning extends ANNs
to Deep Neural Networks (DNNs), which include different
architectures, such as the mentioned MLP, but also the con-
volutional neural network, the recurrent neural network and
more. These architectures enable automatic extraction and
learning of complex patterns in data.

Depending on what kind of setting is assumed during
the learning process of the machine learning algorithms, we
can divide them into supervised learning, semi-supervised
learning, reinforcement learning, and unsupervised learning.
Unsupervised learning commonly has access to an unlabeled
dataset and aims to learn useful properties of the structure or
relationships within the data. On the other hand, supervised
learning has a dataset with the associated labels and aims to
learn a mapping function that accurately predicts the output
for new, unseen data. This setting is common for classification
and regression tasks. Classification is a type of task where
the algorithm is required to specify to which category (class)
some input belongs, while in regression, the algorithm pre-
dicts a numerical value given some input. Semi-supervised
learning assumes only a small number of measurements with
associated labels, making this setting come between supervised
and unsupervised learning. Reinforcement learning consists of
intelligent agents that interact with an environment and learn
through feedback in the form of rewards or penalties associated
with taken actions. In the context of deep learning-based SCA,
it is common to use a supervised learning paradigm with the
classification task, and as such, we will concentrate on it in
the rest of this work.

1) Supervised learning: To understand DLSCA, we explain
the supervised learning process with neural networks. Given
a labeled training set of inputs x and labels y, a supervised
learning algorithm aims to learn a function f that maps from
z to corresponding y. The goal of the learning algorithm is
that the final model can generalize from the training data to
unseen data in predicting output y. In classification tasks, the
output y is a category given to the input x. Classification tasks
can be binary, i.e., two possible categories, or multi-class with
an arbitrary number of categories.

Given a set of N training examples of form
{(z1,91),.--,(xN,yn)} such that x; is the feature vector
of the i-th example and y; its corresponding label (class),
a learning algorithm tries to learn a function f : X — Y,
with X as the input space, and Y as the output space.
To measure how well the function fits the training data, a
loss function L is defined. The loss of predicting value gy
for input example (x;,y;) is L(y;,9). The model is then
trained through a learning process to minimize the error (loss
function) by adjusting its parameters (commonly denoted by
0) using optimization methods like gradient descent [46],
[43]. The model is tested on unseen labeled data (test data) to
measure how well it generalizes using metrics like accuracy
(for classification) or mean squared error (for regression).

Lastly, with a well-working model on test data, we can use
the trained model to make predictions on new, unseen data
without the labels.

2) Neural Networks: Neural networks consist of an input
layer, one or more hidden layers, and an output layer. The input
layer receives data, which is a set of numbers representing
images or signals. Hidden layers process the data to extract
patterns and features and create a hierarchy of abstractions.
The output layer provides the result, which in regression will
be a specific value, and, in classification, will be (most often)
a probability distribution over the possible classes. Layers
are made up of neurons, which are the basic computational
units of the network. During the learning process, the network
takes in the numerical representation of the input data; in
SCA, this would be the traces, which are a list of numbers
representing, e.g., the power measurements during the en-
cryption/decryption. The input data goes through the neurons,
where each neuron applies a weight to the input, and these
weights determine how important each input is. The bias term
enables a neuron to activate even when the weighted sum
of inputs is zero, providing crucial flexibility in the model’s
ability to learn complex patterns. We can represent the neuron
operation with Eq. (1):

z=(wy X x1)+ (wo X x2) + ...+ b, (D

where wy,ws,... are weights, b is bias, and z1,z9,... are
inputs. Note that weights and bias are trainable parameters
of the network. As one can notice, neuron computation is
a linear transformation, and therefore, the learning process
is limited to linear functions. To resolve this, nonlinearity
can be added with activation functions. The output of the
neuron z goes through an activation function where common

functions are ReLU (defined as ReLU(z) = maz(0,2))
and sigmoid (defined as o(z) = 1-&-%)‘ The output of the

activation function from one layer becomes the input for
the following layer. Lastly, the output layer for classification
tasks has one neuron per class, and the output values are
converted into probabilities using a function like softmax

(defined as softmaz(x;) = ﬁ, where K is the number

of classes x; is the output ojf71th6 i’th neuron). Then, the
prediction of the network would be the class with the highest
probability. With regression, the prediction of the network
would be the output of the single neuron of the last output
layer. For the learning process to occur, we train the network
to minimize the difference between the predicted output and
the true values (labels) present in our data in a supervised
setting. The difference is measured using the loss function. For
classification tasks, that is usually cross-entropy. Note that this
process, including the loss calculation, is called the forward
pass of the network, as the input data is processed from the
input layer to the output layer.

Once the loss function is calculated, the network learns
by adjusting the trainable parameters (weights and biases).
Backpropagation is an efficient algorithm used to train most ar-
tificial neural networks. It consists of the previously mentioned
forward pass and a backward pass. The backward pass consists
of computing the gradient of the loss with respect to a trainable
parameter in the neural network. This is done by taking partial



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

derivatives for trainable parameters in the output layer, and
then iteratively using the chain rule to compute gradients for
parameters in earlier layers. Using this gradient, we can then
update the weights and biases to lower the error the network
is making in its predictions. Gradient descent is used as an
optimization algorithm that minimizes the loss by adjusting the
trainable parameters in the direction of decreasing error. There
are several optimization methods that can be used, a popular
choice is the Adam optimizer [47]. Training of a neural
network is done for a number of epochs, i.e., full iterations
over all the samples in the training dataset. As computing
gradients for the full dataset is challenging computationally,
training is done by repeatedly sampling small subsets of the
dataset, which we refer to as batches.

Code sample. Here, we consider a simple multilayer per-
ceptron, which is a neural network in which all the neurons
in each layer are connected to all the neurons in the following
layer throughout the whole network. Listing 1 shows how
the architecture of an MLP model can be created using the
TensorFlow library. Sequential class groups a stack of
layers into a model. In this example, we arrange a list of
our layers in the order we want the model to be. To use
the fully connected layers, we use the Dense class. Thus,
in our example, we have an input with 100 features that are
passed to the first hidden layer with 64 neurons, while the
second hidden layer has 32 neurons. Both hidden layers are
defined with the ReLU activation function. The output layer
has three neurons, corresponding to the three possible classes
in this example. As mentioned before, we use softmax to
transform the output values of the neurons in the last layer to
a probability distribution.

Listing 1. Creating the architecture of a simple MLP.
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

input_dim = 100
model = Sequential ([
# hidden layers
Dense (64, activation=’relu’,
input_dim ,) ),

input_shape=(

Dense (32, activation="relu’),
#output layer
Dense (3, activation="softmax’)

D

Once the architecture is created, we call the compile
function on the model to configure the model for training. We
need to define other hyperparameters for the training, such
as the optimizer, learning rate, and loss function. Listing 2
shows setting the popular Adam optimizer with learning rate
le—3, categorical cross-entropy as loss function, and the last
argument sets a list of metrics to be evaluated by the model
during training and testing, which in this example is only the
accuracy of the model’s predictions.

Listing 2. Compiling the model.
from tensorflow.keras.optimizers import Adam

model . compile (optimizer=Adam(learning_rate=1e-3),
loss="categorical_crossentropy’, metrics=["
accuracy ' ])

Finally, we can train the model with the code shown in
Listing 3. The whole training process using explained back-
propagation is abstracted in the function £it on the model
class. The £it function takes in the data X_t¢rain with the
corresponding labels y_train. We set the number of epochs
to 10 and the batch size to 32, meaning that the training will
iterate the whole training set 10 times in batches of 32 samples.

Listing 3. Training the model.
model. fit (X_train, y_train,
=32)

epochs=10, batch_size

The trained model is evaluated on data not used in the train-
ing process with a function predict as shown in Listing 4.
The predictions will hold an array of probability values for
each label for each sample in X_test. Thus, to obtain the
predicted label, we take the index of the class with the highest
predicted probability.

Listing 4. Model preditions (inference).

predictions = model. predict (X _test)

predicted_classes = predictions.argmax(axis=1)

The function evaluate can return the loss and accuracy
metrics on the given dataset (X _test, y_test) as shown in
Listing 5.

Listing 5. Model evalaution.

loss , accuracy = model.evaluate (X_test, y_test)

For more information on the TensorFlow library, we refer
the reader to the TensorF1low documentation [48].

3) Difference Between Unsupervised and Non-profiled Set-
tings: While it may seem that the unsupervised learning in
ML is the same as the non-profiled setting in SCA, there are
some differences. An unsupervised setting means the training
dataset has no associated labels. On the other hand, in a non-
profiled setting, we assume the attacker does not have a priori
knowledge about the labels but instead guesses them. In that
way, the attacker still uses the supervised learning paradigm.
On the other hand, supervised machine learning and profiled
SCA follow the same scenario.

III. DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS
(DLSCA)

This section outlines the main characteristics of the profiled
DLSCA framework and provides supporting code snippets
to ensure a practical tutorial. Note that non-profiled DLSCA
is not considered here, as it represents a less explored (at
least at the moment) scenario and a separate tutorial for the
non-profiled case would be more appropriate. However, the
principles are similar, where models are trained in the same
way as for profiling DLSCA, but instead of a labeled training
data set with a known correct key, key hypotheses are used to
assign labels [49]. This work trains the model 256 times (for
each possible 8-bit key hypothesis), while later works propose
methods to decrease the expensive computational costs of
training multiple neural networks [50], [51], [52], [53].

Figure III represents the DLSCA flowchart with relevant
steps, from raw measurements acquisition and profiling phase
to the attack evaluation. Each step is described in the following
sections.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1) Data Acquisition

- —
vitale
‘

4) Profiling phase

Raw Data

‘ [
- WHM — UJ\ J\“( JJJLJ’

2) Data Preprocessing 3) Feature Engineering

rqorq rq
Ly -
1 ,}l 1 '
[ T
TR
n‘hjvy.\‘\‘\‘lﬂ [11hh
Ll I HilL]
| 1 } l ' ‘ SR
| — T T
A R
KRN
! H (| i
TR
LU UL
,JW:J]II‘WJ:WJ-WJHJVJ.WJWJIJ»‘:
1 : 1 : ! :
'S s s,

[ Dataset Spliting and Labeling

4a) Model Training

......................

4b) Model Validation

Fig. 1. Deep Learning-based Side-channel Analysis (DLSCA) flowchart.

A. Threat Model(s)

In the DLSCA literature, the profiling step is done on a pro-
filing device. In the classical threat model with the worst-case
assumptions [5], an attacker has full control over the profiling
device, which allows the attacker to disable countermeasures
(e.g., random delays or access to masking randomness). While
this setting may be impractical, it simplifies the creation
of a profiling model. For masking countermeasures, feature
selection becomes relatively straightforward (see the RPOI
scenario in Section IV-A), while for hiding countermeasures, it
allows for more effective preprocessing to remove the effects
of the countermeasures [54].

In general, there are three common threat models in
DLSCA. The first, “classical” model assumes that the profiling
device and the device under attack are the same. Then, the
evaluator measures all measurements from a single device
only. Next, the evaluator uses one part of the measurements
(commonly consisting of most of the measurements) to build
a model (thus, we assume the knowledge of keys, masks,
etc.) and the rest of the measurements to simulate the device
under attack. Note that this model assumes the worst-case
assumptions on the security of the device since it does not
account for differences between devices, making the attack
simpler. As such, this model is the most commonly used one
in both academia and industry [55]. The second model is
also known as the “portability” model, which uses different

Key Hyptothesis Scoring

(NN

Top key-candidates
Key Score
B2 043
134 0.35
6 0.33
19 0.29
234 0.27

devices for profiling and attack. This model is more difficult
but more realistic [56]. Since most of the publicly available
datasets do not provide measurements from different devices,
not many research works use it. Finally, there is the non-
profiled setting [49], where we again work with a single
device but do not assume knowledge of keys. This model
aims to connect the practicality of direct attacks with the
power of deep learning. There are also more advanced threat
models used with DLSCA, e.g., weakly profiling [57], scheme-
aware [30], blind [58], and collision-based [32].

B. Data Acquisition

As we focus on profiled side-channel analysis, we assume
the attacker has access to a clone device of the targeted
device. Once the attacker is in possession of a device with full
control over it, the first step is to collect the measurements
of the side-channel information. Depending on which side-
channel information we want to collect, different acquisition
equipment might be necessary. Timing attacks exploit the
device’s running time, power analysis attacks focus on the
electric consumption of the device, while electromagnetic
(EM) analysis measures the electromagnetic field surrounding
the device during its processing.

We depict an acquisition setup in Figure 2, where one
can see a target, an EM probe, and an oscilloscope. The
topic of data acquisition is complex and constitutes its own



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Fig. 2. SCA acquisition setup.

research field. For more information about this topic, we point
interested readers to [59], [4], [60]. In the rest of this tutorial,
we rely on publicly available datasets, as this is common
practice in the DLSCA literature.

Generally, in DLSCA literature, attacks are benchmarked
against public targets. This research practice is taken from
DL literature where benchmark datasets like CIFAR [61]
and ImageNet [62] are convenient tools to drive progress
and enable objective assessment of novel methods. The most
common target considered in DLSCA literature is the ASCAD
dataset [55], and in this tutorial, we will focus on it. While
it is currently considered relatively easy to attack with state-
of-the-art methods, it is still one of the main targets used in
literature. As such, it represents an appropriate target for this
tutorial since we do not need to use more complex techniques
than the basic DLSCA setup that we aim to showcase. For a
relatively recent categorization of public targets, we refer the
reader to [16, Section 4.1].

The ASCAD dataset consists of electromagnetic (EM) side-
channel measurements from a software implementation of
the AES-128 algorithm with Boolean masking protection on
ATMEGAS8515. The authors [55] provide SCA datasets, with
a fixed secret key and variable keys for training. For the
attack phase, the traces are correlated with a fixed key in
both cases. Moreover, the authors provide raw traces, but also
versions of datasets with fewer samples per trace.> Raw traces
have 100000 (fixed) or 250000 (variable) measured samples
per trace, while for fixed key version the window of the
leaky operation is 700 samples per trace, and for variable key
version it is 1400 samples per trace. There are 50 000 profiling
(training), 10 000 attack (test) traces for fixed key version, and
200000 and 100000 traces for variable key version. We will
use the described datasets throughout the tutorial, but the same
authors provide desynchronized datasets as well and a newer

5These are NOPOI and OPOI scenarios, respectively, as discussed in [63],
and later in Section IV-A.

dataset with affine masking and shuffling instead of Boolean
masking as countermeasure [64].

In Listing 6, we show how to download the ASCAD
dataset. Note that this will download the dataset in Colab’s
temporary disk space allocated per session. Colab provides
an environment with temporary storage for packages, model
checkpoints, and other data that will be deleted once the
session is terminated. Each session can last up to 12 hours
(for free accounts), after which the resources are recycled and
the disk space is cleared. It is not designed to store files long-
term.

Listing 6. Downloading ASCAD dataset for tutorial.

!wget https:// static.data.gouv.fr/resources/ascad—
atmega—8515—-variable —key/20190903-083349/ascad —
variable .h5

If we want to avoid downloading the dataset with every
session, we can store the dataset in the personal Google Drive
service. To use the data stored in Drive, one has to mount it,
and Listing 7 shows the code for that. Note also that the data
paths might need to be updated.

Listing 7. Mounting the Drive for access to data in your Drive account.
from google.colab import drive
drive .mount(’/content/drive’)

Once the data is in our Drive or downloaded directly to the
temporary disk space, we can load the datasets. Datasets can
be stored in different formats, but a well-accepted one is the
Hierarchical Data Formats (HDF) format with file extension
.h5. The code snippet for loading the ASCAD dataset is
shown in Listing 8. Note that this is part of the 1oad_ascad
function in the tutorial. The function load_ascad takes
ascad_database_file asthe argument, which is the path
to the ASCAD dataset.

Listing 8. Loading the ASCAD dataset stored in HS format.

check_file_exists(ascad_database_file)

# Open the ASCAD database HDF5 for reading

in_file = hS5py.File(ascad_database_file, "r”)

# Load profiling traces

X _profiling = np.array(in_file[ Profiling_traces/
traces’], dtype=np.int8)

# Load profiling labels

Y _profiling = np.array(in_file[  Profiling_traces/
labels’])

# Load attacking traces

X_attack = np.array(in_file[  Attack_traces/traces’],
dtype=np.int8)

# Load attacking labels

Y_attack = np.array(in_file[  Attack_traces/labels’])

if load_metadata == False:

return (X_profiling , Y_profiling), (X_attack,
Y _attack)
else:
return (X_profiling, Y_profiling), (X_attack,
Y _attack), (in_file[ Profiling_traces/

metadata’], in_file[  Attack_traces/metadata’

D

The code snippet shows that the function begins by verifying
the dataset file’s existence, after which it opens it for reading.
The code extracts profiling (file entry ‘Profiling_traces/traces’)
and attack traces (file entry ‘Attack_traces/traces’), along
with their corresponding labels (‘Profiling_traces/labels’ and



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

‘Attack_traces/labels’), which are cryptographic intermedi-
ate values. Optionally, it also loads metadata associated
with the traces. The ‘metadata’ contains the plaintexts,
keys, and masking randomness used during each encryption.
The function returns the extracted traces and labels (pairs
(X_profiling,Y _profiling), (X_attack,Y _attack)), and
optionally, the metadata, structured as tuples for further pro-
cessing.

The ASCAD dataset had the labels for corresponding traces
already stored as part of the dataset, and therefore, they are
easy to load. However, for a better understanding, we also
show how the labels can be created from the other information
in the dataset. In Listing 9, we show how, by using the
metadata information on the plaintexts and the keys, we can
generate the correct labels. The same can be done to generate
the /attack set labels (see the tutorial notebook).

Thus, plaintext and key information are part of the metadata
property. It is common to perform side-channel analysis to
retrieve a single key byte and repeat the process to recover
the whole key, following a divide-and-conquer approach [7],
[4], [42]. The ‘target_byte’ in the ASCAD case is commonly
the third byte (in 0-index arrays, we write target_byte = 2) as
it is the first masked key byte. The labels are the intermediate
values in the execution of the algorithm, so the labels are
calculated as S-box[p; @ key_byte;], where the AES S-box
is a table of fixed and known values (see variable AES_Sbox
in the tutorial), and p; represents the plaintext corresponding
to the -th trace, while key_byte is the correct key_byte for
that ¢-th trace. In our case, we use fixed-key ASCAD, so the
key byte value is the same for all training data, but there is
another version of the dataset where that is not the case, and
the key varies between the traces. Thus, this code can also be
used in that case without specific changes.

IV. SIDE-CHANNEL TRACES PREPROCESSING

Once the side-channel measurements are loaded, standard
preprocessing is usually performed before the training/profil-
ing phase starts. Common preprocessing performed for deep
learning in other domains is standardization and normalization.

Listing 10 performs standardization on our loaded input data
(X_profiling and X _attack), and we need to make sure
that the same transformation is done on both the profiling and
attack traces, otherwise the trained model might have issues
with the generalization. As this procedure is common, the
scikit-learn (sklearn) library has the implementation
of this method. Thus, we use the StandardScaler class
to perform standardization, with £it_transform using the
given data to first fit the parameters of the standardization, and
then transforming it accordingly. On the other hand, we use a
transform function on the attack dataset, as we no longer fit
the data, but use the previous parameters to perform the same
transformation on the attack set.

Listing 10. Performing standardizaion on loaded dataset.

scaler = StandardScaler ()

X _profiling = scaler.fit_transform (X_profiling)
X_attack = scaler.transform (X_attack)

Similarly, scikit—-learn has the MinMaxScaler that
can be used for normalization as shown in Listing 11

Listing 11. Performing normalization on loaded dataset.

scaler = MinMaxScaler(feature_range=(0, 1))
X _profiling = scaler.fit_transform (X_profiling)
X _attack = scaler.transform (X_attack)

A. Feature Selection and Resampling

In SCA, crucial parts of the classical analysis are point of
interest (POI) selection and feature engineering [65]. When
traces contain many samples (for instance, already having
50 samples is computationally expensive when dealing with
techniques that have cube complexity with respect to the
number of features, as is the case of the template attack),
running attacks directly on the full traces using classical (ma-
chine learning) methods becomes computationally prohibitive.
Additionally, including many uninformative points can harm
the performance of these methods significantly [66]. Thus,
feature selection and feature engineering methods aim to
extract features that hold more information for a more efficient
or successful attack. With the use of deep learning algorithms,
this step can be omitted, as DL is used to find representative
features to learn a generalizable model for predictions on
unseen data. However, while neural networks can be used to
attack raw traces [67], using inputs with fewer features helps
both in computation time and in the difficulty of finding ap-
propriate parameters. These methods enable the use of smaller
networks, faster attacks, and enable better explainability of the
models. As such, in [63], the authors proposed to categorize
POI selection into three distinct scenarios.

As we mentioned, in the ASCAD dataset that we use in
the tutorial, while the raw traces are available, we use only
a smaller subset of the samples from the traces. Namely, we
use the time window of the raw traces that correspond to the
leaking operation. We can do this as we have the full control
over the profiling device. This is what is called Optimized
Points of Interest (OPOI), a setting that has been used most
often in DLSCA research. Here, an attacker analyses traces
and uses some knowledge about the implementation to select
a range of points that they expect to contain the relevant
leakage. The main benefits here are that the computational load
and the number of uninformative points are more manageable.
For ASCAD(, this range contains 700 points over the 100000
points in the raw traces (1400 vs. 250000 for ASCADr). In
Listing 12, we show how to select the window for each trace.

Listing 12. OPOI window selection.
def load_ascad_window (ascad_database_file ,
load_metadata=False , target_byte=2, start_index
=45400, end_index=46100):
check_file_exists(ascad_database_file)
# Open the ASCAD database HDF5 for reading
in_file =
)
window_traces = in_file[ traces |[:50000][
start_index :end_index ]
window_attack = in_file[’ ’traces
start_index :end_index ]

”

hSpy. File (ascad_database_file , ”r

*1[50000: ][

In Non-Optimized Points of Interest (NOPOI) setting,
an attacker directly mounts an end-to-end attack against raw
traces. The first works targeting such long traces directly
without preprocessing are [68], [67]. A key benefit over OPOI



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Listing 9. Creating the labels for the ASCAD dataset.
(X_profiling , Y_profiling), (X_attack,
ascad_dataset , load_metadata=True,

Y _attack),

# Load the plaintexts traces
profiling_plaintexts =
# Load the
profiling_keys =
# Calculate the correct
created_Y _profiling = AES_Sbox[profiling_plaintexts

of the profiling

profiling_metadata[ key’ ][:,

is that additional leakage points may be outside of the consid-
ered interval, resulting in more efficient key extraction [67].
However, using 100000 sample traces is still difficult and
requires specialized architectures [67], [69]. To avoid dealing
with such extremely long traces, we can resample each trace
to include fewer points while still retaining important signal
information. As shown in [63], models trained on resampled
traces can often perform similarly efficient attacks to models
trained on raw traces. In Listing 13, we provide an example of
how to do the resampling. To resample, we take windows of
20 points, skipping 10 points between each point. This results
in 10 times fewer samples, significantly improving both the
memory requirements and the training time.

Listing 13. NOPOI trace-resampling.

# Resampling function

def winres(trace, window=20,
trace_winres = []

overlap=0.5):

step = int(window % overlap)
max = len(trace)
for i in range(0, max, step):

# Take average over ’'window’ sample points
trace_winres .append(np.mean(trace[i:i +
window ]) )
return np.array (trace_winres)

window = 20
overlap = 0.5

original_trace_len = 100000

n_traces = 50000

new_trace_len = int(original_trace_len /(window:
overlap))

resampled_traces = np.zeros ((n_traces, new_trace_len
))

# Loop over traces to resample
for i in range(n_traces):
resampled_traces[i] =
window, overlap)

winres (raw_traces[i],

Refined Points of Interest (RPOI) is a setting where an
attacker selects only samples that contain relevant leakage
information. Notably, when targeting masked implementations
this requires access to masking randomness, which is not
always a realistic assumption even in evaluation contexts with
collaboration from developers [30]. Using this access, an
evaluator can compute the first-order leakage of secret shares
directly and select only the most relevant samples for further
analysis. In Listing 14, we can see that we first define the
function to compute Signal-to-Noise Ratio (SNR). This is a
common function to measure the amount of leakage for a
specific intermediate value at each point in the trace.

Listing 14. Signal-to-Noise Ratio computation.

(profiling_metadata ,
target_byte=target_byte)

of the corresponding
profiling_metadata[’ plaintext’][:,
target_byte value of the key of the corresponding profiling
target_byte ]. astype(np.uint8)

label using the plaintext and key byte of the profiling set
profiling_keys]

attack_metadata) = load_ascad/(

target byte
target_byte ].astype(np.uint8)
traces

# Function that calculates
(SNR) .

def snr_fast(x, y):
ns = x.shape[1l]
unique = np.unique(y)
means = np.zeros ((len(unique), ns))
variances = np.zeros ((len(unique), ns))

the Signal-to—Noise ratio

# For each class, compute the mean and the
variance at each index of trace

for i, u in enumerate(unique):
new_x = x[np.argwhere(y == int(u))]
means[i] = np.mean(new_x, axis=0)
variances[i] = np.var(new_x, axis=0)

return np.var(means, axis=0) / np.mean(variances
, axis=0)

Then, in Listing 15, we define a function that returns the
indices with the n highest SNRs for a specific intermediate
value. We utilize these to get the POIs for the two shares r;
and S*bOX[p,‘ S5 k‘l] D ’r‘,‘.6

Listing 15. RPOI feature selection.

masks = profiling_metadata[”masks”][:,
—2].astype(np.uint8)

masked_sbox_out = AES_Sbox[ profiling_metadatal[”
plaintext”][:, target_byte].astype(np.uint8)
profiling_metadata[”key” ][:, target_byte].astype
(np.uint8)] ~ masks

target_byte

poi_sbox_out_masked =

masked_sbox_out)
poi_masks = get_poi_share(X_profiling ,
poi_full = np.append(poi_sbox_out_masked,

get_poi_share (X_profiling ,

masks)
poi_masks)

poi_full]
poi_full]

selected_features = X_profiling[:,
selected_features_attack = X_attack][:,

V. PROFILING PHASE

Profiling is the first phase of the profiling SCA, and the
objective of this phase is to learn the mapping between
the side-channel information and the correct key(s) of the
cryptographic algorithm using the clone device of our target.
Since the target is a clone, the assumption is that the model
can generalize and be used to retrieve the correct key for the
target device using the corresponding measurement and the
obtained model from this phase.

A. Leakage Models and Label Preparation

The process for profiling is to collect a (large) set of
profiling traces from the profiling device. We refer to this

6In the mask line, we have target_byte — 2 as the first two masks are
always zero and the ASCAD database authors did not include those in the
fixed key version. This is not necessary for the variable key version, as these
are included.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

set of profiling traces as A},. This set A}, is an n x m array
where n is the number of traces and m is the number of
samples per trace. Each trace X;,0 < 7 < n represents the
side-channel measurement during one encryption/decryption.
As for this profiling device, the key(s) is/are known, and a set
of labels representing the targeted intermediate value(s) can
be generated from the plaintexts and keys. Then, we can pick
any specific intermediate value to attack.

For the ASCAD dataset we consider in this tutorial, the
cipher is AES-128, and we generally target the output of the
first round Substitution Box (S—-box). This target is chosen as
the output value depends on only one key byte and allows for
efficient differential attacks during the attack phase [4]. The
intermediate value for byte j for trace X is represented by:

IV; = s-box[p! @ K]

Then, the labels for the profiling set )/ can be generated.

For the i-th trace, the label Y; is generated by using a leakage
model that represents how we expect the intermediate value
to physically leak in the side-channel trace. Common leakage
models are the Hamming Weight (HW), i.e., the number of
bits equal to 1 in the IV, the Identity (ID), i.e., directly using
the IV, Hamming distance (HD), and a bitwise leakage model
where we select a specific bit from the IV.

Depending on the selected leakage model, we have a dif-
ferent number of possible labels for each trace, and therefore
a number of classes, which dictate the number of neurons
in the last output layer of the neural networks. Specifically,
for the ID leakage model, we have a 256 possible label,
while for Hamming Weight (or distance), we have nine
classes. Note that if we want to use Hamming weight or
other leakage models, we need to convert labels. The code
that converts the ID values to HW is shown in Listing 16.
The function calculate_HW takes the array of labels
(data) as the input argument. The bin (x) .count ("1")
calculates the Hamming weight by counting the number of
ones in the string binary format of the given number z.
Each label from the data array is then converted to the
Hamming weight value. We can call this function on our
loaded Y_profiling and Y_attack arrays like this:
Y profiling = calculate_HW(Y_profiling).

Listing 16. Convert ID values to Hamming Weight.

def calculate_HW (data):
hw = [bin(x).count(”1”) for x in range(256)]
return [hw[int(s)] for s in data]

Once we have the labels in the desired leakage model,
as we use classification, we convert the labels in one-hot
encoded arrays, where depending on the number of labels, we
have an array of that size with every value set to 0 except
for the index with the correct label that is set to 1. For
example, if we have Hamming weight, and therefore 9 classes
(0 — 8), the categorical one-hot encoded array of the class
4 that will be used by the neural network will be an array
[0,0,0,0,1,0,0,0,0]. TensorFlow library has a function to

7C0mmon1y, the Most/Least Significant Bits, (M/L)SB, are used in litera-
ture.

convert the numerical values into the categorical classes and
its use is shown in Listing 17.

Listing 17. Convert labels to categorical one-hot encoded arrays.

from tensorflow.keras.utils import to_categorical

Y _profiling = to_categorical (Y_profiling ,
num_classes=nb_classes)

Y_attack = to_categorical (Y_attack,
nb_classes)

num_classes=

B. Model Training

Once the data and labels are prepared, we can perform the
model training as part of the profiling phase of SCA. The
model is trained to learn the mapping between side-channel
information (traces) and the correct intermediate values within
the selected leakage model. We have already shown how mod-
els can be created with the TensorFlow library, specifically
a simple MLP model. In the tutorial, there are several models
one can test. These are models with fixed hyperparameters
taken from other works, namely, mlp_best from [55], while
the rest are from [63].

The functions already compile the model with given hyper-
parameters, so we can call the function to create and compile
the model by using the functions as shown in Listing 18. Next,
for the training, we use the fit function, which takes in the input
z and the corresponding labels y arguments. Moreover, we can
define the number of epochs and batch size we want to use
for training. The batch size comes from the related work and
is a return variable of the model function, while the number
of epochs is set directly. Additionally, common practice is to
shuffle the input pairs before each epoch, so the fit function
offers the shuffle argument to the function as a Boolean flag.

Listing 18. Creating a model and training it.

model, batch_size = best_mlp_id_opoi_1400_ascadr (
nb_classes , input_size)
nb_epochs = 100

history = model. fit(x=X_profiling, y=Y_profiling ,
shuffle=True, batch_size=batch_size , verbose=1,
epochs=nb_epochs)

C. Model Validation

Recommended practice is to use a validation set to monitor
over-fitting or utilize early-stopping. The validation set is a
subset of the training data that is not used directly for training,
making it the unseen data for the purpose of objective and
unbiased evaluation of the model’s performance. The library
can again do this quite straightforwardly with the argument to
the fit (training) function as shown in Listing 19. We can set
the validation_split as a float value between 0 and
1 representing the fraction of the training data to be used
as validation data. Instead of a fraction number, a separate
dataset can be given to the fit function as the argument
validation_data for the same purpose.

Listing 19. Use validation set.

history = model. fit(x=X_profiling, y=Y_profiling,
validation_split=validation_split, shuffle=True,
batch_size=batch_size , verbose=1, epochs=
nb_epochs)



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

The history variable will hold a History object, where
the History.history attribute is a record of training
loss values and metrics values at successive epochs, as well
as validation loss values and validation metrics values if
applicable. The argument verbose is used to set how much
information should be displayed during training (0 = silent, 1 =
progress bar, 2 = one line per epoch). We set it to the progress
bar, which displays additional information and can be used to
track the training of the model. For more information or issues,
the TensorFlow being a well-documented and maintained
library, we direct the readers to the official documentation [48].
For the DLSCA purpose, the validation can also include the
SCA metrics, such as guessing entropy/success rate, as visible
in Figure III. For this, one can follow the steps we show in
Section VI using the validation set and the known correct key.

D. Data augmentation

Data augmentation is a commonly used technique in DL that
can be used to transform training examples using some pre-
defined transformations to generate 'new’ training examples.
For example, in the image domain, we can zoom in, rotate,
or crop images to generate additional training examples [70].
In SCA, the role of data augmentation is mainly to emulate
the effects of hiding countermeasures to induce the neural
network to be invariant to these transformations. Cagli et
al. [29] first used custom data augmentations to attack traces
that are distorted (i.e., misaligned) due to clock jitter dur-
ing measurements. Overall, the two main data augmentation
techniques used in practice are random shifts and additive
noise [71]. In Listing 20, we show examples of implementing
these techniques to generate new traces. For both functions,
we first generate a copy of the original traces. Then, we use
the np.tile function to repeat the data n times. Finally,
we take the repeated traces and transform them using either
additive noise or random shifts. For the additive noise, it
is straightforward to generate and add noise using standard
numpy functionality to generate noise according to a normal
distribution. For random shifts, we need to shift traces for
a random number of samples. For each trace to augment,
we first generate a random integer in [-max_shift, max_shift].
Subsequently, we use the numpy roll function to shift the trace
by the number of points we generated. Note that when points
are shifted past the end/start of the trace, they roll around to
the start/end.

Listing 20. Data Augmentation functions
# Adding Gaussian noise
def data_augmentation_noise (orig_x_prof,
=2, std=0.01):
# create copy of original
new_x_prof = orig_x_prof.copy()
nb_orig_traces = len(orig_x_prof)

num_repeats

# repeat it n times

new_x_prof = np.tile (new_x_prof, (num_repeats, 1))

# add gaussian noise to added traces (original
traces remain without additional noise)

new_x_prof[nb_orig_traces:] += np.random.normal (0,
std, new_x_prof[nb_orig_traces :].shape)

return new_x_prof

# Adding random shifts
def data_augmentation_shift(orig_x_prof,
=2, max_shift=10):
# create copy of original
new_x_prof = orig_x_prof.copy()
nb_orig_traces = len(orig_x_prof)

num_repeats

# repeat it n times

new_x_prof = np.tile (new_x_prof, (num_repeats, 1))

# shift each trace randomly using np roll function
for i in range(len(new_x_prof[nb_orig_traces:])):
shift = random.randint(-max_shift, max_shift)
new_x_prof[nb_orig_traces+i] = np.roll(

new_x_prof[nb_orig_traces+i], shift)
return new_x_prof

In Listing 21, we show how to use the functions described
in Listing 20 to train a model. We first limit the number of
(original) profiling traces to 50000 to emulate settings where
we have insufficient data to fit a neural network. Then, we
define the number of repeats as 2 to generate an additional
50000 traces every epoch. We use the tile function for the
labels Y_prof to match the number of training examples
in the augmented training set. Finally, in every epoch, we
randomly generate the additional traces using the data aug-
mentation function for random shifts and fit the model for
one epoch on this augmented dataset.

Listing 21. Data Augmentation training.
nb_epochs = 100

n_repeats = 2

nb_prof_traces = 50000

X_prof X _profiling [: nb_prof_traces ]
Y _prof Y _profiling [: nb_prof_traces ]

# Define model
model, batch_size =
nb_classes ,

best_mlp_id_opoi_1400_ascadr (
input_size)

# Repeat the data n times using tile
Y_prof = np.tile (Y_prof, (n_repeats, 1))

for i in range(nb_epochs):
new_x = data_augmentation_shift(X_prof,
num_repeats=n_repeats)
model . fit (x=new_x, y=Y_prof, shuffle=True,
batch_size=batch_size , verbose=1, epochs=1)

E. Hyperparameter Tuning

In the previous step, we used fixed neural network archi-
tectures from related work. However, finding an appropriate
model architecture for a specific target is often difficult.
While in other deep learning domains, pretrained models with
relatively standard training recipes are the norm, in DLSCA,
every target has different characteristics requiring target-
specific adaptations. Methodologies or general architectures
have been proposed [72], [69], but directly applying these to
novel datasets often still requires tuning of hyperparameters.
Automated hyperparameter tuning is one common approach
for avoiding reliance on human expertise in finding appropriate
model configurations. The key idea is to train a large number
of models and to evaluate these on a validation set to assess
their effectiveness. In Listing 22, we show an example of
running a random search strategy to train multiple models.
The mlp_random function generates a random MLP model



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

from a pre-defined range of hyperparameters. Each model is
then trained and subsequently evaluated using the validation
set. We will explain the evaluation in Section VI in detail, but
we mention it here, as the evaluation results and corresponding
hyperparameter configurations and model weights are then
stored in a list such that we can later retrieve the best
model. Note that while in this example we run the model
trainings/attacks consecutively, these can also be run in parallel
on separate machines as the individual model trainings are
independent. In the tutorial notebook, we also provide code
for generating random CNN model configurations.

Listing 22. Hyperparameter tuning.
for i in range(nb_models):
model, hp = mlp_random(classes=nb_classes ,
input_size=input_size)
model . fit (x=X_profiling [: nb_prof_traces], y=
Y _profiling [: nb_prof_traces ], batch_size=hp][
"batch_size”], verbose=0, epochs=
nb_epochs_per_model , shuffle=True)
predictions = model. predict(X_val)
ge_median, ge_avg = guessing_entropy (predictions
, validation_pt, correct_key_val, 200)
avg_ge_list.append(ge_avg)
model_list.append(model. get_weights())
hp_list.append (hp)

Note that the function mlp_random randomly selects the hy-
perparameters from the range defined similarly to Listing 23.
While creating the model, the function will perform steps as
shown in Listing 24. Note that both of these listings show
only parts of what is in the tutorial notebook and the full
implementation in the notebook.

Listing 23. Setting the random search for hyperparameter tuning.
"batch_size”: random.randrange (100, 1100, 100),

“layers”: random.randrange (1, max_dense_layers + 1,
D,

“neurons”: random.choice([10, 20, 50, 100, 200, 300,
400, 500]),

“activation”: random.choice ([”relu”, ”selu”])

Listing 24. Creating a random MLP using randomly selected hyperparame-

ters.
for layer_index in range(hp[”layers”]):

x = Dense(hp[”neurons”], activation=hp[”
activation”], kernel_initializer=hp[”
kernel_initializer”], name="dense_{} .format
(layer_index)) (inputs if layer_index == 0
else x)

For the current public targets, random search (with ap-
propriate hyperparameter ranges) provides satisfactory perfor-
mance [63]. However, its performance relies on the presence
of successful models in the pre-defined search space. As
such, several works have proposed more complex neural
architecture search techniques that can find successful models
without relying on restricted ranges. The main examples use
reinforcement learning [28], Bayesian optimization [73], and
neuroevolution [74].

F. Ensembles

Another option for optimizing attack performance is to
use ensembles [75]. Ensemble learning trains two or more
machine learning algorithms on a specific task and combines
these models into a better-performing model. In our ensemble

example, we combine the outputs of several models from the
hyperparameter search as shown in Listing 25. We first define
the number of models to use and sort the models from the
hyperparameter search based on their validation performance.
Then, for each of the top models, we recreate the trained
model using the stored hyperparameters and trained weights.
We then add the predictions of each of the top models and
finally divide by the number of models to find the average.
This is a simple and straightforward way to combine the results
of different models. However, ensembles can, in some cases,
dictate how the training is done as well (e.g., Bootstrap aggre-
gation (bagging), boosting), and how the models are combined
(e.g., voting majority, averaging) [76]. For instance, in [77],
the authors explore more advanced combination methods to
improve ensemble learning for profiling SCA.

Listing 25. Ensemble.
# The number of models to
nb_models_ensemble = 5

use for the ensemble

# Sort model indices based on GE
sorted_model_indices = np.argsort(avg_ge_list)

# Take predictions from top N models
predictions_tot = np.zeros (( X_attack.shape[0],
nb_classes))

for i in range(nb_models_ensemble):
model_num = sorted_model_indices[1i]
# Recreate model based on hyperparameters
hp = hp_list[model_num]
model, _ = mlp_random(classes=nb_classes ,
input_size=input_size , hp=hp)

# Restore trained weights
model . set_weights (model_list[ model_num])

# Add to total predictions
predictions_tot += model. predict(X_attack)

predictions_tot = predictions_tot/nb_models_ensemble

VI. ATTACK AND EVALUATION

During model training, we rely on optimization procedures
for standard loss functions in machine learning. However, we
want to evaluate the profiling phase with metrics that measure
how well attacks perform in practice. We already show that the
SCA metrics can be used on the validation set to evaluate the
performance of the model. Our next step will be performing
the attack and evaluating how well the trained model works
on the attack dataset. Note that the attack set is different from
the validation set.

The main reason for using SCA-specific metrics is that
common ML metrics like accuracy and loss are not good
predictors of attack performance [78]. While models that
achieve very high accuracies lead to efficient key retrieval,
model accuracies close to random guessing do not imply we
cannot retrieve the key. Indeed, by accumulating predictions
across a larger number of traces, we can score key candidates
and rank them to extract the most likely candidate. If the model
is trained well, the estimated most likely key will then be (one
of) the top candidates(s). In the tutorial, we provide the code
for calculating the guessing entropy, a common metric that



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

estimates the average rank of the correct key candidate by
conducting several simulated attacks on the attack set. The
success rate can be implemented similarly.

First, we do not use the top predicted label but the pre-
dictions that hold a probability distribution over all possible
classes for each attack trace. Thus, the predictions variable
from Listing 4 has dimension (V,nb_classes), where N is
the number of traces in the dataset (in this case, the attack
dataset), and nb_classes is the number of possible classes
(neurons in the output layer). Since we will have to accumulate
the probabilities across a large number of traces, we use the log
of the probability values, as multiplying probabilities across
several traces can be problematic. Additionally, we add a
small value to the original predicted probabilities for numerical
stability while taking the log of values close to zero. This is
shown in Listing 26.

Listing 26. Calculate the log probabilities.
predictions_log = np.log(predictions + 1le-36)

Given the predictions in log values and plaintexts corre-
sponding to each trace in the attack dataset, we calculate
the probability for all key byte hypotheses of how likely
that key byte hypothesis is to be the correct key. As we are
trying to retrieve one byte of the first round key, which is
a value of 8 bits, we have 256 possible key values (for an
S-box of 8 bits). For each key hypothesis, we calculate the
hypothetical labels if the correct key would be that specific
key hypothesis. We calculate it using the public AES S-box
and known plaintexts. Depending on the leakage model, we
use the value directly or apply the appropriate conversion to
the desired leakage model. This process is shown in the first
part of Listing 27. Since we have the hypothetical labels for
each key, we can now score each key hypothesis by summing
the log predictions of the hypothetical labels over the whole
attack set, which is shown in the second part of Listing 27. In
the tutorial, this is enclosed in the function called score_keys.

Listing 27. Calculate the probabilities for all key byte hypotheses.
scores_keys = np.zeros(256)
for k in range(256):
#Generate Hypothetical labels for a key candidate
k

hypothetical_labels = AES_Sbox[plaintexts
if leakage_model == "HW”:
hypothetical_labels = calculate_HW (
hypothetical_labels)

K]

for i in range(predictions.shape[0]):
scores_keys[k] += predictions[i,
hypothetical_labels[i]]

In the case of an actual attack, this is where the attacker
would use the most likely key byte from the calculations to
attack and try to encrypt/decrypt the information. Concretely,
an attacker would attack each key byte separately to obtain
rankings and then use this information to enumerate keys
more efficiently. In the case of AES with 16 key bytes, if the
correct candidate is always in the top-10 for each byte, the full
correct key will be in the first 1016 guesses. This significantly
improves over enumeration without incorporating SCA where
we have 28416 possible keys.

In the context of research on DLSCA, we use public datasets
where the correct key is known, even for the attack set. Since
our goal is to evaluate the performance of the models and
proposed methods, we assess the attack using SCA metrics
and the known correct key byte. Moreover, in the context of
a security evaluation, we will know the correct key even for
the device(s) that are being ‘attacked’. Using the information
about the correct key, key rank is calculated as shown in
Listing 28. The key_scores are the log probabilities for each
key hypothesis obtained with the explained score_keys func-
tion. The key rank is calculated by sorting the key hypotheses
in descending order based on their scores and retrieving the
index of the correct key. Similarly, for success rate, we can
check whether the key rank is within the first o key candidates
in sorted keys and return 1 if it is or O when it is not.
As mentioned above in Section V-C, we can perform this
evaluation on the validation set, which is part of the training
set (profiling device) for which we know the key(s). Here, the
evaluation is used for the selection of the best model to use for
the actual attack, where the most likely key will be selected
based on the key hypothesis scoring (function score_keys).

Listing 28. Key rank.

key_scores = score_keys(predictions_log ,
order_keys = np.argsort(key_scores)[::—1]
key_rank, = np.where(order_keys == correct_key)

plaintexts)

Using the code in Listing 28, we can compute the rank of
the correct key. However, guessing entropy is the average key
rank, so we need to simulate multiple attacks and evaluate the
average key rank empirically. The function guessing_entropy
in the tutorial notebook implements this process and is shown
in Listing 29. Instead of using the complete attack dataset,
we use a random subset of traces to calculate the key rank.
The key ranks for each attack are then averaged to obtain the
guessing entropy. The median can also be used [79], so the
function returns both. The same process can be followed to
simulate a number of attacks and compute the success rate,
i.e., the percentage of attacks where the key rank is 0.

Listing 29. Guessing entropy.
def guessing_entropy (predictions , plaintexts ,
correct_key , nb_traces, nb_attacks=100):
ranks = np.zeros(nb_attacks)
# Take the log of probabilities to sum later with
a small addition for numeric stability
predictions_log = np.log(predictions + le-36)

for attack in range(nb_attacks):
# Take random subset of traces
r = np.random. choice (
range(predictions_log.shape[0]),
nb_traces , replace=False)

key_scores = score_keys(predictions_log[r],
plaintexts[r])

order_keys = np.argsort(key_scores)[::—-1]

ranks[attack], = np.where(order_keys ==
correct_key)
return np.median(ranks), np.average(ranks)

In SCA, we also care about the number of attack traces
that are needed to extract the correct key, which is when



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

250
GE of 0.0 with 505 traces.

200

150+

1001

Guessing Entropy

501

400 600 800 1000

Number of Traces

0 200

Fig. 3. GE results for increasing number of traces using the model trained
above.

the guessing entropy equals 0, indicating that the correct
key candidate is always ranked first. Thus, we can call the
function guessing_entropy with argument nb_traces set to 1,
then 2, etc. Running that function multiple times with an
increasing number of attacks would be quite expensive. Thus,
we provide a more common implementation of GE where this
is already done within the function itself for more optimized
computation (see function guessing_entropy_convergence and
score_keys_convergence in the tutorial notebook). As is com-
mon in the related literature, we show the progression of GE
using increasing traces in Figure 3. This plot showcases that
the GE decreases as predictions from additional traces are
included in the key scoring.

VII. EXPLAINABILITY

When a model is found that can successfully retrieve the

key, it might be useful to understand what leakage the model
is exploiting. Furthermore, a better understanding of how
models break a target might enable future improvements to
attack methods or defense mechanisms. With this in mind, the
research community is interested in explainability approaches
in SCA.
In Listing 30, we show an example of an input visualization
technique that shows what samples in the input impact the
model predictions. The gradient-based technique uses back-
propagation to differentiate the loss with respect to each of the
sample points and was introduced for SCA in [80]. In Figure 4,
we show how the resulting graph relates to the SNRs of various
secret shares and the influence of each trace point on the model
outputs. Overall, we can see that higher gradient values align
with samples that show leakage in the SNR plot. These plots
can then be used to determine which shares contribute to the
leakage the model exploits and the corresponding locations in
the trace where those shares leak.

Listing 30. Gradient Visualization.
def gradient_vis(traces, labels):
x_tf = tf.Variable(traces)
with tf.GradientTape () as
tape . watch (x_tf)

tape:

T Tin — Tout — SBox[pz @ k2] ® rout

P2 ®ky ®rip — n —— SBox[px @ k2] ® 2
o
G2
014 h . A
0 200 400 600 800 1000 1200 1400
Samples
1.0
4] —— Gradient
3
g
€ 0.5
[
2
o
(6]
0.0 1 : : : T , T
0 200 400 600 800 1000 1200 1400
Samples

Fig. 4. SNR and gradient visualization for network trained in Section V-B.

pred = model(x_tf, training=False)
loss = tf.keras.losses.CategoricalCrossentropy ()
(labels , pred)

grads =
dgrad_abs =

tape . gradient (loss , x_tf)
tf . math.abs(grads)

return np.average (dgrad_abs.numpy(), axis=0)

Several other input attribution techniques have been used in

the SCA context. An overview of these can be found in [81].
Furthermore, occlusion-based methods that mask out certain
parts of the input to determine which parts are necessary for
model performance can also be used for this purpose [82],
[83].
Some approaches have also attempted to gain a better under-
standing of the internal behavior of trained networks. In [84],
the similarity of networks trained in multi-device settings and
across different datasets. In [85], the authors proposed using
a more interpretable type of network architecture. Finally,
in [86], the authors used ablations to evaluate which layers
in the model are most important to defeat certain countermea-
sures.

VIII. CONCLUSIONS

This tutorial examines deep learning-based side-channel
analysis and provides steps for performing such analysis using
publicly available datasets. The tutorial is supported by the
provided Colab notebook, and explanations of the code are
given in this article, accompanied by the relevant code snip-
pets. We cover the fundamental DLSCA methods. Moreover,
we point the interested readers to the more advanced methods
with references within the corresponding step of the DLSCA
approach.

As the AIS 46 makes a step toward standardization of
DLSCA, there might be more interest in DLSCA, making this
tutorial a relevant introduction to the field. We consider this
tutorial helpful for anyone interested in understanding how
deep learning can exploit side-channel leakages, learn practical
techniques to perform DLSCA, and improve the security of
hardware and cryptographic implementations.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

ACKNOWLEDGMENT

This work was (in part) supported by the Dutch Research
Council (NWO) through the Challenges in Cyber Security
(CiCS) project of the Gravitation research program under the
grant 024.006.037.

[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

C. Paar and J. Pelzl, Understanding cryptography.
vol. 1.

J. Katz and Y. Lindell, Introduction to modern cryptography: principles
and protocols. Chapman and hall/CRC, 2007.

P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104-113.

S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer Science & Business Media, 2008,
vol. 31.

S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, ser. Lecture Notes in Computer Science, B. S. K. Jr., C. K.
Kog, and C. Paar, Eds., vol. 2523. Springer, 2002, pp. 13-28. [Online].
Available: https://doi.org/10.1007/3-540-36400-5_3

I J. S. 27. (2022) Isofiec 15408-1:2022: Information security,
cybersecurity and privacy protection - evaluation criteria for it security.
[Online]. Available: https://www.iso.org/standard/72891.html

P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, ser. Lecture Notes in Computer Science, M. J.
Wiener, Ed., vol. 1666. Springer, 1999, pp. 388-397. [Online].
Available: https://doi.org/10.1007/3-540-48405-1_25

J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Mea-
sures and counter-measures for smart cards,” in International Conference
on Research in Smart Cards. Springer, 2001, pp. 200-210.

D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,” Journal
of Cryptology, vol. 30, pp. 392-443, 2017.

G. Hospodar, B. Gierlichs, E. D. Mulder, 1. Verbauwhede, and
J. Vandewalle, “Machine learning in side-channel analysis: a first
study,” J. Cryptogr. Eng., vol. 1, no. 4, pp. 293-302, 2011. [Online].
Available: https://doi.org/10.1007/s13389-011-0023-x

A. Heuser and M. Zohner, “Intelligent Machine Homicide - Breaking
Cryptographic Devices Using Support Vector Machines,” in COSADE,
ser. LNCS, W. Schindler and S. A. Huss, Eds., vol. 7275.  Springer,
2012, pp. 249-264.

L. Lerman, G. Bontempi, and O. Markowitch, “Side channel attack:
an approach based on machine learning,” Center for Advanced Security
Research Darmstadt, vol. 29, pp. 29-41, 2011.

Z. Martinasek and V. Zeman, “Innovative method of the power analysis,”
Radioengineering, vol. 22, no. 2, pp. 586-594, 2013.

Z. Martinasek, P. Dzurenda, and L. Malina, “Profiling power analysis
attack based on mlp in dpa contest v4. 2,” in 2016 39th International
Conference on Telecommunications and Signal Processing (TSP). 1EEE,
2016, pp. 223-226.

H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Security, Privacy,
and Applied Cryptography Engineering - 6th International Conference,
SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings,
ser. Lecture Notes in Computer Science, C. Carlet, M. A. Hasan, and
V. Saraswat, Eds., vol. 10076. Springer, 2016, pp. 3-26. [Online].
Available: https://doi.org/10.1007/978-3-319-49445-6_1

S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “Sok: Deep learning-
based physical side-channel analysis,” ACM Comput. Surv., vol. 55,
no. 11, Feb. 2023. [Online]. Available: https://doi.org/10.1145/3569577
Federal Office for Information Security (BSI), “Guidelines for
Evaluating Machine-Learning based Side-Channel Attack Resistance,”
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/
Interpretationen/AIS_46_AI_guide.pdf?__blob=publicationFile&v=6,
02 2024, technical Report AIS 46.

L. Masure, C. Dumas, and E. Prouff, “A comprehensive study
of deep learning for side-channel analysis,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, no. 1, pp.
348-375, Nov. 2019. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/8402

Springer, 2010,

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]
[34]
[35]

[36]

(371

S. Picek, “Challenges in deep learning-based profiled side-channel
analysis,” in Security, Privacy, and Applied Cryptography Engineering
- 9th International Conference, SPACE 2019, Gandhinagar, India,
December 3-7, 2019, Proceedings, ser. Lecture Notes in Computer
Science, S. Bhasin, A. Mendelson, and M. Nandi, Eds., vol.
11947.  Springer, 2019, pp. 9-12. [Online]. Available: https:
//doi.org/10.1007/978-3-030-35869-3_3

B. Hettwer, S. Gehrer, and T. Gilineysu, “Applications of machine
learning techniques in side-channel attacks: a survey,” J. Cryptogr.
Eng., vol. 10, no. 2, pp. 135-162, 2020. [Online]. Available:
https://doi.org/10.1007/s13389-019-00212-8

S. Jin, S. Kim, H. Kim, and S. Hong, “Recent advances in deep learning-
based side-channel analysis,” Etri Journal, vol. 42, no. 2, pp. 292-304,
2020.

L. Batina, M. Djukanovic, A. Heuser, and S. Picek, “It started with
templates: The future of profiling in side-channel analysis,” in Security
of Ubiquitous Computing Systems, G. Avoine and J. Hernandez-Castro,
Eds. Springer International Publishing, 2021, pp. 133-145. [Online].
Available: https://doi.org/10.1007/978-3-030-10591-4_8

M. Kreek, H. Li, S. Paguada, U. Rioja, L. Wu, G. Perin, and
L. Chmielewski, “Deep learning on side-channel analysis,” in Security
and Artificial Intelligence, 2022, pp. 48-71. [Online]. Available:
https://doi.org/10.1007/978-3-030-98795-4_3

G. Perin, L. Wu, and S. Picek, “Aisy-deep learning-based framework
for side-channel analysis,” Cryptology ePrint Archive, 2021.

E. Bursztein, L. Invernizzi, K. Krél, and J.-M. Picod, “SCAAML: Side
Channel Attacks Assisted with Machine Learning,” 2019. [Online].
Available: https://github.com/google/scaaml

M. Brisfors and S. Forsmark, “DLSCA: a tool for deep learning side
channel analysis,” Cryptology ePrint Archive, Paper 2019/1071, 2019.
[Online]. Available: https://eprint.iacr.org/2019/1071

F. Koeune and F.-X. Standaert, “A Tutorial on Physical Security and
Side-Channel Attacks,” in Foundations of Security Analysis and Design
III: FOSAD 2004/2005 Tutorial Lectures, A. Aldini, R. Gorrieri, and
F. Martinelli, Eds. Berlin, Heidelberg: Springer, 2005, pp. 78-108.
[Online]. Available: https://doi.org/10.1007/11554578_3

J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement
learning for hyperparameter tuning in deep learning-based side-
channel analysis,” IACR Trans. Cryptogr. Hardw. Embed. Syst.,
vol. 2021, no. 3, pp. 677-707, 2021. [Online]. Available: https:
//doi.org/10.46586/tches.v2021.i3.677-707

E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks
with data augmentation against jitter-based countermeasures - profiling
attacks without pre-processing,” in Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, ser. Lecture
Notes in Computer Science, W. Fischer and N. Homma, Eds.,
vol. 10529. Springer, 2017, pp. 45-68. [Online]. Available: https:
//doi.org/10.1007/978-3-319-66787-4_3

L. Masure, V. Cristiani, M. Lecomte, and F. Standaert, “Don’t
learn what you already know scheme-aware modeling for profiling
side-channel analysis against masking,” JACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2023, no. 1, pp. 32-59, 2023. [Online]. Available:
https://doi.org/10.46586/tches.v2023.i11.32-59

S. Karayalcin, M. Krcek, L. Wu, S. Picek, and G. Perin, “It’s a kind
of magic: A novel conditional GAN framework for efficient profiling
side-channel analysis,” in Advances in Cryptology - ASIACRYPT 2024
- 30th International Conference on the Theory and Application of
Cryptology and Information Security, Kolkata, India, December 9-13,
2024, Proceedings, Part VIII, ser. Lecture Notes in Computer Science,
K. Chung and Y. Sasaki, Eds., vol. 15491. Springer, 2024, pp. 99-131.
[Online]. Available: https://doi.org/10.1007/978-981-96-0944-4_4

M. Staib and A. Moradi, “Deep learning side-channel collision
attack,” JACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2023, no. 3, p. 422-444, Jun. 2023. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/10969

“Google Colab.” [Online]. Available: https://colab.research.google.com/
“Project Jupyter.” [Online]. Available: https://jupyter.org

J. Daemen and V. Rijmen, “Reijndael: The advanced encryption stan-
dard.” Dr. Dobb’s Journal: Software Tools for the Professional Program-
mer, vol. 26, no. 3, pp. 137-139, 2001.

F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in Advances in
Cryptology - EUROCRYPT 2009, A. Joux, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 443-461.

O. Bronchain, J. M. Hendrickx, C. Massart, A. Olshevsky, and
F. Standaert, “Leakage certification revisited: Bounding model errors in


https://doi.org/10.1007/3-540-36400-5_3
https://www.iso.org/standard/72891.html
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1145/3569577
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_AI_guide.pdf?__blob=publicationFile&v=6
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_AI_guide.pdf?__blob=publicationFile&v=6
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://doi.org/10.1007/978-3-030-35869-3_3
https://doi.org/10.1007/978-3-030-35869-3_3
https://doi.org/10.1007/s13389-019-00212-8
https://doi.org/10.1007/978-3-030-10591-4_8
https://doi.org/10.1007/978-3-030-98795-4_3
https://github.com/google/scaaml
https://eprint.iacr.org/2019/1071
https://doi.org/10.1007/11554578_3
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.46586/tches.v2023.i1.32-59
https://doi.org/10.1007/978-981-96-0944-4_4
https://tches.iacr.org/index.php/TCHES/article/view/10969
https://colab.research.google.com/
https://jupyter.org

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

side-channel security evaluations,” JACR Cryptol. ePrint Arch., p. 132,
2019. [Online]. Available: https://eprint.iacr.org/2019/132

A. Tto, R. Ueno, and N. Homma, “Perceived information revisited:
New metrics to evaluate success rate of side-channel attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2022, no. 4, p. 228-254, Aug. 2022. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/9819

“Perceived information revisited ii: Information-theoretical
analysis of deep-learning based side-channel attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2025, no. 1, p. 450-474, Dec. 2024. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/11936

E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, ser. Lecture Notes in Computer Science,
M. Joye and J. Quisquater, Eds., vol. 3156. Springer, 2004, pp. 16-29.
[Online]. Available: https://doi.org/10.1007/978-3-540-28632-5_2

Y. Ishai, A. Sahai, and D. A. Wagner, “Private circuits: Securing
hardware against probing attacks,” in Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, ser. Lecture Notes in
Computer Science, D. Boneh, Ed., vol. 2729. Springer, 2003, pp. 463—
481. [Online]. Available: https://doi.org/10.1007/978-3-540-45146-4_27
F.-X. Standaert, Side-Channel Analysis and Leakage-Resistance. Ver-
sion 1.2, September 2024.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

S. Sra, S. Nowozin, and S. J. Wright, Optimization for machine learning.
MIT press, 2011.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

B. Timon, “Non-profiled deep learning-based side-channel attacks
with sensitivity analysis,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2019, no. 2, pp. 107-131, 2019. [Online]. Available:
https://doi.org/10.13154/tches.v2019.i2.107-131

V.-P. Hoang, N.-T. Do, and V. S. Doan, “Efficient non-profiled side
channel attack using multi-output classification neural network,” IEEE
Embedded Systems Letters, pp. 1-1, 2022.

N.-T. Do, P--C. Le, V.-P. Hoang, V.-S. Doan, H. G. Nguyen, and C.-
K. Pham, “Mo-dlsca: Deep learning based non-profiled side channel
analysis using multi-output neural networks,” in 2022 International Con-
ference on Advanced Technologies for Communications (ATC), 2022, pp.
245-250.

N.-T. Do, V.-P. Hoang, and V. S. Doan, “A novel non-profiled side
channel attack based on multi-output regression neural network,” Journal
of Cryptographic Engineering, pp. 1-13, 2023.

I. Savu, M. Krcek, G. Perin, L. Wu, and S. Picek, “The need for
more: unsupervised side-channel analysis with single network training
and multi-output regression,” in International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 2024, pp. 113—
132.

L. Wu and S. Picek, “Remove some noise: On pre-processing of
side-channel measurements with autoencoders,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, no. 4, pp.
389-415, Aug. 2020. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/8688

R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas,
“Deep learning for side-channel analysis and introduction to ASCAD

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

database,” J. Cryptographic Engineering, vol. 10, no. 2, pp. 163-188,
2020. [Online]. Available: https://doi.org/10.1007/s13389-019-00220-8
S. Bhasin, A. Chattopadhyay, A. Heuser, D. Jap, S. Picek, and R. R.
Shrivastwa, “Mind the portability: A warriors guide through realistic
profiled side-channel analysis,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020. [Online]. Available:
https://www.ndss-symposium.org/ndss2020/

L. Wu, G. Perin, and S. Picek, “Weakly profiling side-channel
analysis,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2024, no. 3, p. 707-730, Nov. 2024. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/11901

A. Rezaeezade, T. Yap, D. Jap, S. Bhasin, and S. Picek, “Breaking
the blindfold: Deep learning-based blind side-channel analysis,”
Cryptology ePrint Archive, Paper 2025/157, 2025. [Online]. Available:
https://eprint.iacr.org/2025/157

J. Van Woudenberg and C. O’Flynn, The hardware hacking handbook:
breaking embedded security with hardware attacks. No Starch Press,
2021.

F.-X. Standaert, “Introduction to side-channel attacks,” Secure integrated
circuits and systems, pp. 27-42, 2010.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
pp- 32-33, 2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.
G. Perin, L. Wu, and S. Picek, “Exploring feature selection scenarios
for deep learning-based side-channel analysis,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2022, no. 4, pp. 828-861, 2022. [Online].
Available: https://doi.org/10.46586/tches.v2022.i4.828-861

L. Masure and R. Strullu, “Side-channel analysis against anssi’s
protected AES implementation on ARM: end-to-end attacks with
multi-task learning,” J. Cryptogr. Eng., vol. 13, no. 2, pp. 129-147,
2023. [Online]. Available: https://doi.org/10.1007/s13389-023-00311-7
E. Cagli, “Feature extraction for side-channel attacks. (extraction
de caractéristiques pour les attaques par canaux auxiliaires),” Ph.D.
dissertation, Sorbonne University, France, 2018. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-02494260

L. Lerman, R. Poussier, O. Markowitch, and F. Standaert, “Template
attacks versus machine learning revisited and the curse of dimensionality
in side-channel analysis: extended version,” J. Cryptogr. Eng.,
vol. 8, no. 4, pp. 301-313, 2018. [Online]. Available: https:
//doi.org/10.1007/s13389-017-0162-9

X. Lu, C. Zhang, P. Cao, D. Gu, and H. Lu, “Pay attention
to raw traces: A deep learning architecture for end-to-end profiling
attacks,” JACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2021, no. 3, p. 235-274, Jul. 2021. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8974

L. Masure, N. Belleville, E. Cagli, M. Cornelie, D. Couroussé,
C. Dumas, and L. Maingault, “Deep learning side-channel analysis
on large-scale traces - A case study on a polymorphic AES,” in
Computer Security - ESORICS 2020 - 25th European Symposium
on Research in Computer Security, ESORICS 2020, Guildford, UK,
September 14-18, 2020, Proceedings, Part I, ser. Lecture Notes in
Computer Science, L. Chen, N. Li, K. Liang, and S. A. Schneider,
Eds., vol. 12308. Springer, 2020, pp. 440-460. [Online]. Available:
https://doi.org/10.1007/978-3-030-58951-6_22

E. Bursztein, L. Invernizzi, K. Krdl, D. Moghimi, J. Picod, and
M. Zhang, “Generalized power attacks against crypto hardware using
long-range deep learning,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2024, no. 3, pp. 472-499, 2024. [Online]. Available:
https://doi.org/10.46586/tches.v2024.i3.472-499

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1-48,
2019.

H. Li and G. Perin, “A systematic study of data augmentation
for protected AES implementations,” J. Cryptogr. Eng., vol. 14,
no. 4, pp. 649-666, 2024. [Online]. Available: https://doi.org/10.1007/
$13389-024-00363-3

G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for
efficient CNN architectures in profiling attacks,” JACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2020, no. 1, pp. 1-36, 2020. [Online].
Available: https://doi.org/10.13154/tches.v2020.i1.1-36

L. Wu, G. Perin, and S. Picek, “I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis,”


https://eprint.iacr.org/2019/132
https://tches.iacr.org/index.php/TCHES/article/view/9819
https://tches.iacr.org/index.php/TCHES/article/view/11936
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-45146-4_27
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6980
https://www.tensorflow.org/
https://doi.org/10.13154/tches.v2019.i2.107-131
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://doi.org/10.1007/s13389-019-00220-8
https://www.ndss-symposium.org/ndss2020/
https://tches.iacr.org/index.php/TCHES/article/view/11901
https://eprint.iacr.org/2025/157
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.46586/tches.v2022.i4.828-861
https://doi.org/10.1007/s13389-023-00311-7
https://tel.archives-ouvertes.fr/tel-02494260
https://doi.org/10.1007/s13389-017-0162-9
https://doi.org/10.1007/s13389-017-0162-9
https://tches.iacr.org/index.php/TCHES/article/view/8974
https://doi.org/10.1007/978-3-030-58951-6_22
https://doi.org/10.46586/tches.v2024.i3.472-499
https://doi.org/10.1007/s13389-024-00363-3
https://doi.org/10.1007/s13389-024-00363-3
https://doi.org/10.13154/tches.v2020.i1.1-36

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

IEEE Trans. Emerg. Top. Comput., vol. 12, no. 2, pp. 546-557, 2024.
[Online]. Available: https://doi.org/10.1109/TETC.2022.3218372

R. Y. Acharya, F. Ganji, and D. Forte, “Information theory-based
evolution of neural networks for side-channel analysis,” JACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2023, no. 1, pp. 401-437, 2023.
[Online]. Available: https://doi.org/10.46586/tches.v2023.i1.401-437

G. Perin, L. Chmielewski, and S. Picek, “Strength in numbers:
Improving generalization with ensembles in machine learning-based
profiled side-channel analysis,” JACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, no. 4, pp. 337-364,
Aug. 2020. [Online]. Available: https:/tches.iacr.org/index.php/TCHES/
article/view/8686

Y. Yang, H. Lv, and N. Chen, “A survey on ensemble learning under the
era of deep learning,” Artif. Intell. Rev., vol. 56, no. 6, pp. 5545-5589,
2023. [Online]. Available: https://doi.org/10.1007/s10462-022-10283-5
D. Llavata, E. Cagli, R. Eyraud, V. Grosso, and L. Bossuet,
“Deep stacking ensemble learning applied to profiling side-channel
attacks,” in Smart Card Research and Advanced Applications -
22nd International Conference, CARDIS 2023, Amsterdam, The
Netherlands, November 14-16, 2023, Revised Selected Papers, ser.
Lecture Notes in Computer Science, S. Bhasin and T. Roche,
Eds., vol. 14530. Springer, 2023, pp. 235-255. [Online]. Available:
https://doi.org/10.1007/978-3-031-54409-5_12

S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse of
class imbalance and conflicting metrics with machine learning for side-
channel evaluations,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, no. 1, pp. 1-29, 2019.

L. Wu, G. Perin, and S. Picek, “On the evaluation of deep
learning-based side-channel analysis,” in Constructive Side-Channel
Analysis and Secure Design - 13th International Workshop, COSADE
2022, Leuven, Belgium, April 11-12, 2022, Proceedings, ser. Lecture
Notes in Computer Science, J. Balasch and C. O’Flynn, Eds.,
vol. 13211. Springer, 2022, pp. 49-71. [Online]. Available: https:
//doi.org/10.1007/978-3-030-99766-3_3

L. Masure, C. Dumas, and E. Prouff, “Gradient visualization for
general characterization in profiling attacks,” in Constructive Side-
Channel Analysis and Secure Design - 10th International Workshop,
COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceedings,
ser. Lecture Notes in Computer Science, I. Polian and M. Stottinger,
Eds., vol. 11421. Springer, 2019, pp. 145-167. [Online]. Available:
https://doi.org/10.1007/978-3-030-16350-1_9

B. Hettwer, S. Gehrer, and T. Giineysu, “Deep neural network attribution
methods for leakage analysis and symmetric key recovery,” in Selected
Areas in Cryptography - SAC 2019 - 26th International Conference,
Waterloo, ON, Canada, August 12-16, 2019, Revised Selected Papers,
ser. Lecture Notes in Computer Science, K. G. Paterson and D. Stebila,
Eds., vol. 11959. Springer, 2019, pp. 645-666. [Online]. Available:
https://doi.org/10.1007/978-3-030-38471-5_26

T. Schamberger, M. Egger, and L. Tebelmann, “Hide and seek: Using
occlusion techniques for side-channel leakage attribution in cnns -
an evaluation of the ASCAD databases,” in Applied Cryptography
and Network Security Workshops - ACNS 2023 Satellite Workshops,
ADSC, AlBlock, AIHWS, AloTS, CIMSS, Cloud S&P, SCI, SecMT,
SiMLA, Kyoto, Japan, June 19-22, 2023, Proceedings, ser. Lecture
Notes in Computer Science, J. Zhou, L. Batina, Z. Li, J. Lin,
E. Losiouk, S. Majumdar, D. Mashima, W. Meng, S. Picek, M. A.
Rahman, J. Shao, M. Shimaoka, E. O. Soremekun, C. Su, J. S.
Teh, A. Udovenko, C. Wang, L. Y. Zhang, and Y. Zhauniarovich,
Eds., vol. 13907. Springer, 2023, pp. 139-158. [Online]. Available:
https://doi.org/10.1007/978-3-031-41181-6_8

T. Yap, S. Bhasin, and S. Picek, “Occpois: Points of interest based
on neural network’s key recovery in side-channel analysis through
occlusion,” TACR Cryptol. ePrint Arch., p. 1055, 2023. [Online].
Available: https://eprint.iacr.org/2023/1055

D. van der Valk, S. Picek, and S. Bhasin, “Kilroy was here:
The first step towards explainability of neural networks in profiled
side-channel analysis,” in Constructive Side-Channel Analysis and
Secure Design - 11th International Workshop, COSADE 2020, Lugano,
Switzerland, April 1-3, 2020, Revised Selected Papers, ser. Lecture
Notes in Computer Science, G. M. Bertoni and F. Regazzoni,
Eds., vol. 12244. Springer, 2020, pp. 175-199. [Online]. Available:
https://doi.org/10.1007/978-3-030-68773-1_9

T. Yap, A. Benamira, S. Bhasin, and T. Peyrin, “Peek into
the black-box: Interpretable neural network using SAT equations
in side-channel analysis,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2023, no. 2, pp. 24-53, 2023. [Online]. Available:
https://doi.org/10.46586/tches.v2023.i2.24-53

[86] L. Wu, Y. Won, D. Jap, G. Perin, S. Bhasin, and S. Picek,

“Ablation analysis for multi-device deep learning-based physical
side-channel analysis,” [EEE Trans. Dependable Secur. Comput.,
vol. 21, no. 3, pp. 1331-1341, 2024. [Online]. Available: https:
//doi.org/10.1109/TDSC.2023.3278857


https://doi.org/10.1109/TETC.2022.3218372
https://doi.org/10.46586/tches.v2023.i1.401-437
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.1007/s10462-022-10283-5
https://doi.org/10.1007/978-3-031-54409-5_12
https://doi.org/10.1007/978-3-030-99766-3_3
https://doi.org/10.1007/978-3-030-99766-3_3
https://doi.org/10.1007/978-3-030-16350-1_9
https://doi.org/10.1007/978-3-030-38471-5_26
https://doi.org/10.1007/978-3-031-41181-6_8
https://eprint.iacr.org/2023/1055
https://doi.org/10.1007/978-3-030-68773-1_9
https://doi.org/10.46586/tches.v2023.i2.24-53
https://doi.org/10.1109/TDSC.2023.3278857
https://doi.org/10.1109/TDSC.2023.3278857

	Introduction
	Motivation
	Prior Knowledge
	Information on Google Colab Service
	Outline

	Background
	Side-channel Analysis
	Deep Learning
	Supervised learning
	Neural Networks
	Difference Between Unsupervised and Non-profiled Settings


	Deep Learning-based Side-channel Analysis (DLSCA)
	Threat Model(s)
	Data Acquisition

	Side-channel Traces Preprocessing
	Feature Selection and Resampling

	Profiling Phase
	Leakage Models and Label Preparation
	Model Training
	Model Validation
	Data augmentation
	Hyperparameter Tuning
	Ensembles

	Attack and Evaluation
	Explainability
	Conclusions
	References

