
On Deniable Authentication against Malicious
Verifiers

Rune Fiedler1 and Roman Langrehr 2

1 Technische Universität Darmstadt
rune.fiedler@cryptoplexity.de

2 ETH Zurich
roman.langrehr@inf.ethz.ch

Abstract. Deniable authentication allows Alice to authenticate a mes-
sage to Bob, while retaining deniability towards third parties. In particular,
not even Bob can convince a third party that Alice authenticated that
message. Clearly, in this setting Bob should not be considered trust-
worthy. Furthermore, deniable authentication is necessary for deniable
key exchange, as explicitly desired by Signal and off-the-record (OTR)
messaging.
In this work we focus on (publicly verifiable) designated verifier sig-
natures (DVS), which are a widely used primitive to achieve deniable
authentication. We propose a definition of deniability against malicious
verifiers for DVS. We give a construction that achieves this notion in the
random oracle (RO) model. Moreover, we show that our notion is not
achievable in the standard model with a concrete attack; thereby giving
a non-contrived example of the RO heuristic failing.
All previous protocols that claim to achieve deniable authentication
against malicious verifiers (like Signal’s initial handshake protocols X3DH
and PQXDH) rely on the Extended Knowledge of Diffie–Hellman (EKDH)
assumption. We show that this assumption is broken and that these
protocols do not achieve deniability against malicious verifiers.
Keywords. Deniability, Random oracle model, Rogue key attacks

1 Introduction

In an offline world, speaking convinces the immediate listener of the authenticity
of the spoken word but not necessarily a third party, to whom the listener relays
the conversation later. In fact, this can be the reason why somebody dares to
speak in the first place, e.g., in case of health issues, whistleblowing, or moral but
illegal protests. We call this property deniable authentication, where one party
can authenticate a message to the intended recipient and deny its contents to all
other parties.

Formalizing deniable authentication in the digital realm has been a subject
of research for more than three decades, e.g., see works by Dolev, Dwork, and
Naor [19], Dwork, Naor, and Sahai [20], and Di Raimondo and Gennaro [16].
Several primitives provide deniable authentication, including: 1) designated

https://orcid.org/0000-0002-4083-8073
mailto:rune.fiedler@cryptoplexity.de,roman.langrehr@inf.ethz.ch
mailto:rune.fiedler@cryptoplexity.de,roman.langrehr@inf.ethz.ch

2 R. Fiedler, R. Langrehr

verifier signatures, introduced by Jakobsson, Sako, and Impagliazzo [30], where
a signer designates a signature to a specific verifier, who cannot transfer this
authentication to a third party; 2) ring signatures, introduced by Rivest, Shamir,
and Tauman [43], which guarantee that 1 out of n ring members authenticates a
message; 3) split KEMs, introduced by Brendel, Fischlin, Günther, Janson, and
Stebila [9], dubbed authenticated KEMs (AKEMs) by Alwen, Blanchet, Hauck,
Kiltz, Lipp, and Riepel [1], which allow decapsulation of an encapsulated shared
secret in a manner that deniably authenticates the encapsulator.

Deniable authentication has since been transferred to the protocol layer. In
particular, Di Raimondo, Gennaro, and Krawczyk [17] have introduced deniability
for key exchange. Chat applications and messaging protocols are particularly
interested in deniability. Off-the-record (OTR) messaging prominently discussed
deniability [6, 54, 55]. Signal, inspired by OTR, also aims for deniability of its
initial handshake protocol. Previously, they deployed X3DH [39], which Vatandas,
Gennaro, Ithurburn, and Krawczyk [56] showed to be deniable under their novel
Extended Knowledge of Diffie-Hellman Assumption (EKDHA). Looking ahead,
in Section 5.2 we show that the EKDHA is broken. For the post-quantum
replacement protocol PQXDH [33], Fiedler and Janson [23] have proven slightly
worse deniability properties that additionally require plaintext awareness of
the used KEM. Several post-quantum replacement protocols for Signal’s initial
handshake were proposed [24, 8, 18, 12] and all proved some form of deniability.
We refer the reader to [23, Appendix A] for a more detailed discussion of different
notions of deniability for key exchange.

1.1 Malicious verifier keys
In the setting of deniable authentication, Alice wants to convince Bob, without
Bob being able to convey his conviction to Charlie. If Alice was able to trust
Bob not to transfer his belief to Charlie (and if Alice was assured that Bob
cannot be coerced into cooperating with Charlie), then we would not need special
precautions to ensure deniability in the first place. Hence, while Alice wants to
authenticate a message to Bob, she does not trust him. As a logical consequence,
Alice should not trust Bob to generate his keys honestly. We apply this idea to
designated verifier signatures (DVS), which we consider to be the most basic
primitive out of those mentioned above3.

A DVS that retains unforgeability and deniability4 against malicious verifier
keys has several uses. A whistleblower can deniably authenticate her message,
even if the receiving journalist is malicious, compromised, or negligent. In more
extreme cases, law enforcement might pose as a journalist to gather incriminating
material on a whistleblower for a court trial. Given that regimes around the
world are prosecuting whistleblowers, this does not appear far-fetched. Hence,
we cannot trust a verifier to generate keys honestly.
3 Split KEMs and AKEMs additionally ensure confidentiality of the shared secret, and

ring signatures are more generic since they can deal with more than two users.
4 In the rest of the paper we refer to the deniability property as “source hiding”, cp.

Definition 17.

On Deniable Authentication against Malicious Verifiers 3

Furthermore, in a chat application users interact with many other users to
which they have different levels of trust. And even if one of the chat partners
turns out to be malicious, users expect deniability in all chats, including the chat
with the malicious peer, and confidentiality in all remaining chats. We study
security notions for DVS that provide these assurances.

1.2 Related concepts and works

The concept of verifier keys being maliciously generated has already appeared
several times in the literature. Closest to our field of study, Shim [48] and
Zhang, Au, Yang, and Susilo [58] have studied multi-DVS against malicious
verifier keys, dubbed rogue key attacks. An unforgeable signature scheme can
exhibit unexpected behavior against maliciously generated keys, such as one
signature verifying messages under two distinct public keys, one signature verifying
two distinct messages, or a signature not guaranteeing that the signer knows
the message. These Beyond UnForgeability Features (BUFF) were defined and
compiled by Cremers, Düzlü, Fiedler, Fischlin, and Janson [14]. Looking at KEMs,
Cremers, Dax, and Medinger [13] studied whether shared secrets, public keys, and
ciphertexts may be bound to each other (e.g. a shared secret may only stem from
decapsulating one particular ciphertext). One of their settings allows maliciously
generated public keys as well.

1.3 Our contributions

We propose new security definitions for DVS that provide unforgeability and
deniability against malicious verifiers. Similar notions for unforgeability were
already considered by previous works [48, 58], but the notion for deniability is
novel. We also propose a construction satisfying our new definitions in the random
oracle model. Furthermore, we show that our new deniability notion cannot be
achieved in the standard model by giving a concrete attack. In particular, this
shows that instantiating our random oracle construction with a concrete hash
function results in an insecure scheme. To the best of our knowledge, the only
way to achieve a similar security notion so far relied on the EKDH assumption5,
which we show to be broken.

Model. Recall that the standard notion of deniability for DVS guarantees that
a valid signature generated with the signer’s secret key (and the verifier’s public
key) is indistinguishable from a simulated signature, that was generated with the
signer’s public key and the verifier’s secret key.

To capture that verifiers might generate their keys maliciously, we aim for
a security notion where the adversary chooses the verifier’s public key. In this
setting, there might not be a matching secret key for the verifier’s public key.
5 The deniability of Signal’s initial handshake protocols X3DH and PQXDH rely on the

EKDH assumption.

4 R. Fiedler, R. Langrehr

Thus, we need a different approach to simulate signatures. Clearly, the simulation
should require some secret that only the (potentially malicious) verifier possesses,
since otherwise unforgeability could no longer hold. Moreover, everybody should
be convinced that the verifier actually possesses this secret: Otherwise, if the
verifier could convince a judge of not possessing the secret, the judge would be
convinced that a signature must have been generated by the purported signer. In
this work, we propose to use the random coins used to generate the verifier’s public
key (without making any restrictions on how the verifier generated this public
key) as such a secret. Clearly, a classical verifier (without quantum capabilities)
must have known these random coins when generating the public key and it is
impossible to convince a third party that he deleted these random coins, since
the verifier can always keep a copy of the random coins.

More concretely, we propose an extractor-based definition where the simulated
signature is generated by an extractor that can depend on the adversary and
is given the adversary’s random coins. Following [41], the extractor should only
have capabilities that a verifier actually has in the real world. In particular,
this excludes knowing the trapdoor to a common reference string (crs) or the
ability to program a random oracle (RO). The extractor might still simulate the
adversary in its head and change the crs or program the RO in these simulations,
but it has to output a signature that is indistinguishable in the real world, where
the extractor does not posses these capabilities.

The security notion guarantees that no adversary can tell apart real signatures
from those generated by the extractor for an honestly generated signer public
key and a verifier public key and message chosen by the adversary.

Identities. Unfortunately, the model described so far is very unrealistic, because
in the real world it is fairly easy to generate a public key without knowing the
random coins used to generate it. One way to achieve this is to copy the public
key of another user.

We avoid this attack by introducing identities, which are meaningful unique
identifiers of each user, e.g., an e-mail address, a phone number, or a username
in a chat application. Verifier keys are generated with respect to an identity
and the signer signs messages with respect to a verifier public key and a verifier
identity. Signing only has to output valid signatures (for which correctness and
unforgeability hold) if the verifier identity matches the one used to generate the
verifier public key.

Looking ahead, our ROM construction prevents these key copying attacks by
outputting a dummy value when the identity the signer intended to sign for does
not match the identity used for generating the verifier public key.

Auxiliary input. Of course, there might be different ways to obtain random
data without knowing the random coins in the real world. For example, in the
real world a verifier has access to public keys or signatures of other, unrelated
deployed cryptosystems. A malicious verifier could use such data to generate his
own public key.

On Deniable Authentication against Malicious Verifiers 5

If the adversary sampled this data on its own, it would know the random
coins and therefore also the extractor would get access to these random coins,
which is not realistic. Therefore, we have to provide the adversary (and thus also
the extractor) with auxiliary input (common auxiliary input model6).

Of course, we now have to avoid that the auxiliary input just contains a
verifier public key for our DVS. Otherwise, a malicious verifier could just use the
public key from the auxiliary input. An extractor would then have to forge a
signature for a signer and verifier public key for which it knows no secret. The
existence of such an extractor would contradict the unforgeability of the signature
scheme.

We avoid this by using a (trusted) setup for our DVS that generates public
parameters that are given as input to all other algorithms of the DVS. The
auxiliary input is not allowed to depend on the public parameters. This also
shows that our security notion cannot be achieved in the plain model (without
trusted setup) and requires at least the uniform random string (urs) model, where
the public parameters are uniformly random bits.

Finally, an adversary can realistically also get some inputs depending on the
public parameters, such as signer public keys, verifier public keys for different
identities (and possibly also the corresponding secret keys, modeling users who
are negligent in keeping their secret keys safe), and signatures. As a first step
in this line of research we keep this to a minimum and propose a notion we call
simplified malicious source hiding where the adversary gets access to an oracle
for generating verifier public keys.

Prior work [17] (and subsequently [56, 23]) use auxiliary inputs to model data
that a receiver is able to obtain that is helpful to simulate a protocol transcript.
This is very different to our use of auxiliary inputs, where the auxiliary input is
only to the disadvantage of the simulator. Formally, the difference is that our
security game asks for security to hold for all auxiliary inputs aux ∈ {0, 1}∗.
In particular, this includes the case where aux is the empty string and thus
our security notion is stronger than the version without any auxiliary input. In
contrast, e.g. [17], only demand security for some auxiliary inputs (all auxiliary
inputs that form a valid protocol transcript) and this can be weaker than the
variant without any auxiliary input.

We discuss possible restrictions on the auxiliary input in Section 1.4.

Limitations. The approach of using the random coins as the verifier’s secret still
has a few limitations.
1. The verifier might not know the random coins if he generated the key with

the help of someone else (for example with multi-party computation). In this
6 Here, “common” refers to the adversary and the extractor getting the same auxiliary

input. If we allow the extractor to get a different (existentially quantified) auxiliary
input, it would be much easier to achieve our security notion, but that model is not
realistic: For example, if the adversary’s auxiliary input contains a public key of a
different cryptosystem, the simulator’s auxiliary input can contain the secret key.
This is not realistic, because it is not feasible for the real receiver to retrieve the
secret key and the simulator should model the real receiver’s capabilities.

6 R. Fiedler, R. Langrehr

case the knowledge of the random coins might be spread among several people
(or devices). On the one hand, this seems unavoidable (unless we assume a
trusted party or trusted device generating the verifier’s key). On the other
hand, we think this is not a severe limitation: If several users collaborate to
generate the verifier public key, it might be hard to convince a judge that
they did not also collaborate to produce the randomness.

2. Quantum capabilities (or other physical processes) might enable the verifier
to produce a verifier key and prove that he does not know the corresponding
random coins.

New security definitions. We present our new security notions in Section 3 and
show separations from existing security notions (that do not capture maliciously
generated keys) in Appendix A.

Non-solutions. Before describing our solutions, we describe a few natural
approaches that fail to achieve deniability against malicious verifiers.

Knowledge-type assumptions. Since our security notion involves an extractor,
one might be tempted to use knowledge-type assumptions like the knowledge of
exponent assumption [15]. However, most of these assumptions imply extractable
one-way functions (EOWF), which cannot be secure in the common auxiliary
input model [5].

Vatandas et al. [56] propose the Knowledge of Diffie-Hellman (KDH) and
extended KDH (EKDH) assumption, which are knowledge-type assumptions
that do not imply EOWF. They conjecture that these assumptions are hard
in the common auxiliary input model. Vatandas et al. and Fiedler and Janson
[56, 23] use this assumption to achieve deniability notions for the Signal’s initial
handshake protocols X3DH and PQXDH. We show that this assumption is broken
by giving a relatively simple attack in Section 5.2. Moreover, the attack can also
be extended to these protocols, showing that that they do not achieve deniability
in a model that allows maliciously generated public keys. We give more details
on this attack in Appendix B.

NIZKPoKs. A standard technique to deal with maliciously generated public keys
is to equip them with a proof of knowledge of the secret key. Informally speaking,
this restricts an adversary to public keys from the image of the key generation
algorithm7 and allows the reduction to extract a secret key for adversarially
generated public keys.

To see why this approach does not work in our setting, we have to dig into
the definitions of knowledge soundness for non-interactive zero-knowledge proofs
of knowledge (NIZKPoKs). There are two incomparable notions in the literature.
7 Note that such a NIZKPoK does not guarantee anything about the distribution of

the public key, thus it might still follow a very different distribution than honestly
generated public keys.

On Deniable Authentication against Malicious Verifiers 7

The first variant of knowledge soundness allows for extraction of a witness
with a trapdoor to the common reference string (crs) of the NIZKPoK. Such an
extraction is not helpful for our security notion, because giving the extractor
such a trapdoor is unrealistic (as explained in the section on the model).

Another variant of knowledge soundness allows for extraction of a witness
from the randomness used to generate the NIZKPoK. This notion is typically
considered for succinct non-interactive arguments of knowledge (SNARKs), where
the previous notion is unachievable. This form of extraction would work well
with our simplified malicious source hiding notion, but since SNARKs (or any
NIZKPoK satisfying this type of extractability) cannot be secure in the common
auxiliary input model [5], we cannot use them.

A solution in the ROM. The starting point of our solution is to equip the
public key with a NIZKPoK of the secret key, where the NIZKPoK satisfies the
crs trapdoor based extraction. Assume a regular DVS in which we equip all public
keys with a NIZKPoK of the secret key. As explained above, this solution alone
will not work, because the extractor has no access to a trapdoor for the crs.

However, the extractor can generate its own crs along with a trapdoor and
simulate internally the adversary on this new crs. Assume for the moment the
adversary generates the DVS verifier public key independently of the crs of the
NIZKPoK. The extractor could then use the trapdoor to extract the verifier’s
secret key and use it to simulate the signature.

The missing ingredient for this approach is a tool to enforce that the adversary
generates the DVS verifier public key independently of the crs. Our solution for
this problem is to pick the crs as the hash of the public key, the verifier’s identity
and a random string s that is part of the public parameters of the scheme. Clearly,
the adversary then has to query the ROM on these values to generate a valid
NIZKPoK for the verifier public key. We include s in the hash, because then this
ROM query cannot be made during the generation of the auxiliary input – which
happens independently of s – and has to be done by the adversary. Since we
model identities, this query cannot be made during the generation of any of the
verifier keys we provide to the adversary (since they use a different identity).

This idea is reminiscent of the Fiat–Shamir transform [22], that compiles a
Σ-protocol to a NIZK by choosing the challenge as a hash of the commit message.
This ensures a random challenge generated independently of the commit message.

Finally, the underlying DVS has to satisfy source hiding for all valid verifier
public/secret key pairs (instead of an honestly generated one), since the NIZKPoK
does not give us any guarantees about the distribution of the public keys. We
show that a DVS satisfying this notion can be built from OR-proofs.

Impossibility result. We also show in this work that our simplified malicious
source hiding definition cannot be achieved by DVS in the standard model,
assuming that indistinguishability obfuscation (iO) [4] exists. With the recent
progress on constructing iO [29, 28, 42], it seems very plausible that iO exists. The
result is reminiscent of [5]. However, we cannot use their result directly, because

8 R. Fiedler, R. Langrehr

our simplified malicious source hiding definition does not imply extractable
one-way functions (as far as we know).

Recall that if the auxiliary input would contain a valid verifier public key
(without the secret key or any hints on how it was generated), the adversary
could simply use this public key in the security game. The extractor, who gets
the adversary’s random coins, then gets no useful information how that public
key was generated. Hence, simulating a signature is as hard for the extractor as
breaking unforgeability of the DVS.

However, verifier public keys can depend on the public parameters, which are
not available during generation of the auxiliary input. Hence, we cannot directly
include a valid verifier public key in the auxiliary input. Though, we can include
an obfuscated program that takes the public parameters as input and outputs a
valid verifier public key for the public parameters, which yields essentially the
same problem as before. We present this argument in detail in Section 5.1.

This attack also applies to our ROM based construction, when we replace the
random oracle with a concrete hash function. Thus, the wide-spread heuristic
of replacing a random oracle with a suitable hash function fails here. To see
where exactly the heuristic fails, note that in our ROM based construction it
is necessary to make a random oracle query to generate a verifier public key
(to obtain the crs for the NIZKPoK). However, an obfuscated circuit cannot
access the random oracle, therefore this attack does not work for our ROM based
scheme. However, if we replace the ROM with an efficiently computable function,
the obfuscated circuit can evaluate this function, therefore the attack works.

There have been examples of constructions in the random oracle that become
insecure when we replace the random oracle by any concrete hash function
prior to this work [11]. However, these constructions have been criticized for
being “contrived counter-examples” and they did not stop cryptographers from
instantiating ROM schemes with concrete hash functions in practice. Our example
for a failure of the ROM heuristic is not contrived. In fact, the authors of this
work had the idea for the ROM based construction before becoming aware of
this impossibility result and realized the failing of the ROM heuristic only when
they tried to resolve the alleged contradiction between the construction and the
impossibility result. The authors did not intend to construct a scheme where the
ROM heuristic fails.

Concurrently to this work, Khovratovich, Rothblum, and Soukhanov also
present a non-contrived counter-example of the random oracle heuristic [32]. Their
counter-example works very different to ours on a technical level. Previous works
obtained non-contrived counter examples only for the ideal cipher model [7].

Our impossibility result also rules out the existence of ring signatures that
retain anonymity (among the entire ring) if at least one public key in the ring
was generated maliciously, since such a ring signature would imply a simplified
malicious source hiding DVS. Moreover, our impossibility result makes no use of
the oracle returning verifier public keys, and therefore applies also to a weaker
notion of security which can be achieved without identities.

On Deniable Authentication against Malicious Verifiers 9

We want to emphasize here that this impossibility result crucially relies
on the public verifiability of DVS. In a privately verifiable DVS, the extractor
could generate a signature that does not verify (and therefore does not contradict
unforgeability), but is still indistinguishable from a real signature to the adversary.

1.4 Open problems

A compelling question is whether deniability against malicious verifiers can be
achieved in a weaker model, that circumvents our impossibility result while
still being realistic. A natural restriction is to allow only efficiently sampleable
auxiliary inputs. However, this does not help to circumvent our impossibility
result, because the auxiliary input for our result is efficiently sampleable. Another
realistic variant would be to restrict the auxiliary input to contain at least certain
information that a receiver can realistically obtain (for example data that is
published in a public bulletin board) and that can help the simulator. However,
that also does not help to circumvent our impossibility result, since this result
holds as long as the auxiliary input can also contain a suitable obfuscated circuit.

The authors of this work are convinced that restricting the auxiliary input
to circumvent our impossibility result does not result in a security notion that
meaningfully captures deniability with malicious verifiers: The reason is that
such a result would have to restrict the auxiliary input to not contain a suitable
obfuscated circuit. However, a saboteur (e.g. a government that wants to make
end-to-end encrypted messaging less attractive) might sample a bit string aux
such that the DVS is not malicious source hiding with respect to this aux. Assume
the saboteur publishes aux on her website and deletes the random coins used.
Now deniability for every other user (except the saboteur herself) is lost, because
the verifier could retrieve aux from the saboteur’s website and use it to generate
his key. Even worse, such an auxiliary input might be generated and published
without any malicious intent. In fact, there are proposed schemes that require as
setup to generate an obfuscated circuit that is suitable for our impossibility result
and to delete the random coins used to generate it (for example, the constructions
from selectively secure universal samplers in [25]).

A more promising approach to circumvent our impossibility result is to
consider privately verifiable DVS, since our impossibility result crucially relies
on the public verifiability of the DVS. Privately verifiable DVS are sufficient for
many applications that require deniable authentication, for example messaging.
If this can be answered positively, it would also be desirable to achieve a more
realistic notion that gives the adversary all values it can realistically obtain
without generating them itself, such as signer public keys and signatures.

An interesting new research direction is to find new ways of deploying random
oracle based schemes, that also work for our DVS in the ROM. For example, an
approach could be to use trusted hardware that implements a pseudo-random
function with a hard-coded key. Every user of the system then needs such a
device with the same key, while the key is not publicly known.

10 R. Fiedler, R. Langrehr

Furthermore, our simplified malicious source hiding definition is not mean-
ingful against quantum adversaries. We leave it as an open question to model
source hiding against malicious verifiers in a (post-)quantum setting.

Finally, we leave open to transfer our notion (or a stronger, more realistic
version) of deniability against malicious verifiers to more complex primitives and
the protocol level, e.g., for authenticated KEMs and key exchange.

2 Preliminaries

2.1 Notation

We denote the output y of a deterministic algorithm A on input x as y ←
A(x), and y $← A(x) for a probabilistic algorithm or y ← A(x; r) with explicit
randomness r. We write x $← X for (uniformly) sampling from a set or distribution
X, and Img(A) for the image of an algorithm A. We write E

x
$←X

f(x) for the
expected value of the random variable f(x) with x $← X. We append an element
e to an ordered list L with L

+←− e. To evaluate a boolean expression e to 1 or 0
we write JeK.

2.2 Rényi entropy

The collision entropy (Rényi entropy of order α = 2) of a discrete random variable
X, that can take n different values, each with probability pi for i ∈ [n], is defined
as H2(X) := − log

(∑n
i=1 p2

i

)
. The min-entropy (the limit of the Rényi entropy

for α→∞) is H∞(X) := − log maxi∈[n] pi.

Fact 1. H2(X) ≤ 2H∞(X).

Proof.

H2(X) = − log
(

n∑
i=1

p2
i

)
≥ − log(max

i∈[n]
p2

i) = −2 log(max
i∈[n]

pi) = 2H∞(X)

⊓⊔

2.3 NP relations

For an NP-relation R we define the associated language as LR := {x | ∃w : (x,
w) ∈ R}.

Definition 1 (Hard on average). We say that the search problem for an
NP-relation R is (t, ε)-hard on average if there exists an efficient sampler Samp
that outputs statements x ∈ LR such that for any adversary A running in time at
most t we have Pr[(x, w) ∈ R] ≤ ε where the probability is taken over x $← Samp()
and w $← A(x).

On Deniable Authentication against Malicious Verifiers 11

2.4 NIZKs

We recall the definition of non-interactive zero knowledge (NIZK) proofs and
NIZK proofs of knowledge (NIZKPoKs).

Definition 2. A NIZK NIZK = (GenNIZK, Prove, VrfyNIZK) for a NP-relation R
with associated language LR = {x | ∃w : (x, w) ∈ R} consists of three algorithms:

– GenNIZK() $→ crs: outputs at common reference string (crs) crs. We say that
the NIZK is in the uniform random string (urs) model, if GenNIZK only outputs
its random coins. In this case we call the output urs.

– Prove(crs, x, w) $→ π: receives a crs crs and a statement witness pair (x,
w) ∈ R as input, and outputs a proof π.

– VrfyNIZK(crs, x, π) → true/false: receives a common references string crs, a
statement x, and a proof π as input and outputs true or false, indicating a
valid or invalid proof.

We require the following properties from the NIZK:

Definition 3 (Completeness). A NIZK NIZK = (GenNIZK, Prove, VrfyNIZK) is
δ-complete if for all (x, w) ∈ R, crs $← GenNIZK(), and π $← Prove(crs, x, w) it
holds that

Pr[VrfyNIZK(crs, x, π)] ≥ 1− δ,

where the probability is taken over the randomness used to sample crs and π.

Definition 4 (Zero-knowledge). A NIZK NIZK = (GenNIZK, Prove, VrfyNIZK)
is (t, tSimzk , q, ε)-zero-knowledge if there exist algorithms

– TDGenzk() $→ (crs, tdzk): outputs a crs crs and a trapdoor tdzk and
– Simzk(crs, tdzk, x) $→ π: that receives a crs crs with the corresponding trapdoor

tdzk and a statement x as input and outputs a proof π
with combined runtime tSimzk such that for all adversaries A running in time t
and making at most q queries to the Prove oracle we have

Advzk
NIZK(A) :=

∣∣∣∣Pr[Gzk
NIZK(A) = 1]− 1

2

∣∣∣∣ ≤ ε

where the experiment Gzk
NIZK(A) is defined in Figure 1.

Definition 5 (Soundness). A NIZK NIZK = (GenNIZK, Prove, VrfyNIZK) is (ts,
εs)-sound iff for all adversaries A running in time ts, for crs← GenNIZK() and
(x, π) $← A(crs)

Pr[VrfyNIZK(crs, x, π) = 1 ∧ x /∈ LR] ≤ εs.

The probability is taken over the random coins of GenNIZK and A.

If a NIZK fulfills the following property, which is a strengthening of regular
soundness, we call it a NIZKPoK.

12 R. Fiedler, R. Langrehr

Gzk
NIZK(A):

1 b $← {0, 1}
2 if b = 0 then
3 crs $← GenNIZK()
4 else
5 (crs, tdzk) $← TDGenzk()
6 b′ $← AProve(crs)
7 return Jb′ = bK

Prove(x, w):
8 if (x, w) /∈ R then
9 return ⊥

10 else if b = 0
11 return Prove(crs, x, w)
12 else
13 return Simzk(crs, td, x)

Fig. 1. The zero-knowledge experiment for a NIZK NIZK = (GenNIZK, Prove, VrfyNIZK).

Gpok
NIZKPoK(A):

1 (crs, tdks) $← TDGenks()
2 (x⋆, π⋆) $← A(crs)
3 w⋆ $← Extr(crs, tdks, x⋆, π⋆)
4 return JVrfyNIZK(crs, x, π) ∧ (x, w) /∈ RK

Fig. 2. The proof of knowledge experiment for NIZKPoK with TDGenks and Extr.

Definition 6 (Knowledge soundness). A NIZK NIZK = (GenNIZK, Prove,
VrfyNIZK) is (ttd, εtd, tks, εks)-knowledge sound iff there exists algorithms TDGenks
and Extr where

– TDGenks() $→ (crs, tdks): outputs a crs crs and an extraction trapdoor tdks
and

– Extr(crs, tdks, x, Prove) $→ w: receives a crs crs with the corresponding extrac-
tion trapdoor tdks and a statement x with a proof Prove as input and outputs
a witness w.

We also require for all adversaries A running in time tks

Advpok
NIZKPoK(A) := Pr[Gpok

NIZKPoK(A) = 1] ≤ εks.

where Gpok
NIZKPoK(A) is defined in Figure 2, and that for all adversaries B running

in time ttd we have∣∣∣∣∣ Pr
crs $←GenNIZK()

[B(crs) = 1]− Pr
(crs,tdks)

$←TDGenks()
[B(crs) = 1]

∣∣∣∣∣ ≤ εtd.

We also recall the notion of witness indistinguishability [21], which is a
relaxation of zero-knowledge. A NIZK or NIZKPoK, that does not satisfy zero-
knowledge but witness indistinguishability, is called a NIWI or NIWIPoK, re-
spectively.

Definition 7 (Witness indistinguishable). A NIWI NIWI = (GenNIZK, Prove,
VrfyNIZK) for relation R is (t, ε)-witness indistinguishable if for every crs $←
GenNIZK() and every adversary running in time at most t and for all (x, w), (x,
w′) ∈ R

|Pr[A(crs, Prove(crs, x, w))⇒ 1]− Pr[A(crs, Prove(crs, x, w′))⇒ 1]| ≤ ε

On Deniable Authentication against Malicious Verifiers 13

where the probability is taken over crs $← GenNIZK() and the randomness of A and
Prove.

2.5 Signatures

Definition 8 (Signature scheme). A signature scheme Σ = (KeyGen, Sign,
Ver) for a message space M and signature space S consists of three algorithms
(KeyGen, Sign, Ver) with the following syntax

KeyGen() $→ (vk, sk): outputs a verification key vk and a signing key sk.
Sign(sk, m) $→ σ: receives a signing key sk and a message m ∈M as input, and

outputs a signature σ ∈ S.
Ver(vk, m, σ)→ true/false: receives a verification key vk, a message m ∈M and

a signature σ ∈ S as input, and outputs true (indicating a valid signature)
or false (indicating an invalid signature).

A signature scheme Σ = (KeyGen, Sign, Ver) is δ-correct, if for every message
m ∈M, we have

|Pr[Ver(vk, m, σ) | (vk, sk) $← KeyGen(), σ $← Sign(sk, m)]| ≥ 1− δ.

Definition 9 (EUF-CMA). We call a signature scheme Σ = (KeyGen, Sign,
Ver) (t, ε, q)-EUF-CMA secure, if for every adversary A running in time at most
t making at most q queries to the Sign oracle we have that

Pr[Geuf-cma
Σ (A) = 1] ≤ ε,

where Geuf-cma
Σ (A) is given in Figure 3.

Geuf-cma
Σ (A):
1 Q← ∅
2 (vk, sk) $← KeyGen()
3 (m⋆, σ⋆) $← ASign(vk)
4 return Jm⋆ /∈ Q ∧ Ver(vk, m⋆, σ⋆)K

Sign(m):

5 σ $← Sign(sk, m)
6 Q← Q ∪ {m}
7 return σ

Fig. 3. Game for EUF-CMA security of a signature scheme Σ = (KeyGen, Sign, Ver).

2.6 Puncturable PRFs

We recall the definition of puncturable pseudorandom functions (puncturable
PRFs) from [46].

Definition 10 (Puncturable PRF). A puncturable PRF for domain D and
co-domain C consists of three polynomial time algorithms PPRF = (KeyGen,
Puncture, Eval) where

14 R. Fiedler, R. Langrehr

– KeyGen() $→K: returns a PRF key K.
– Puncture(K, x) $→Kx: takes an unpunctured PRF key K and a puncturing

point x ∈ D as input and outputs a punctured PRF key Kx.
– Eval(K, x) → y: takes a PRF key K and x as input, and outputs a value

y ∈ C.

Definition 11 (Functionality preserving). A puncturable PRF PPRF is (tfp,
εfp)-functionality preserving iff for every adversary A running in time at most
tfp,

– for x $← A() with x ∈ D,
– K $← KeyGen(), and
– Kx

$← Puncture(K, x), we have

Pr[∀x′ ∈ D \ {x} : Eval(K, x′) = Eval(Kx, x′)] ≥ 1− εfp.

Definition 12 (Pseudorandomness at punctured points). A puncturable
PRF PPRF is (tpr, εpr)-pseudorandom at punctured points iff for every adversary
A = (A1,A2) running in time at most tpr

– for (x, st) $← A1() with x ∈ D
– K $← KeyGen(),
– Kx

$← Puncture(K, x), and
– y $← C, we have

Advpprf
PPRF(A) := |Pr[A2(Kx, Eval(K, x), st)]− Pr[A2(Kx, y, st)]| ≤ εpr,

where the probability is taken over the randomness used to sample K, Kx, y, and
the randomness of A1 and A2.

2.7 Indistinguishability obfuscation

We also recall the definition of indistinguishability obfuscation (iO), first conceived
by [4]. We use the definition of [25].

Definition 13 (iO). An indistinguishability obfuscator is a PPT algorithm iO
where

– iO(C) $→ C ′: receives as input a circuit C and outputs another circuit C ′.
An indistinguishability obfuscator iO is δ-correct iff for every circuit C with n
input bits and every x ∈ {0, 1}n, for C ′ $← iO(C) we have Pr[C ′(x) = C(x)] ≥
1− δ.

Every indistinguishability obfuscator should satisfy the following property:

Definition 14 (Security). An indistinguishability obfuscator iO is (tio, εio)-
secure iff for every adversary A = (A1,A2) with combined runtime at most
tio, where A1 takes no input and outputs (C0, C1, st) such that there exists an
ε ∈ [0, 1] with

Pr[|C0| = |C1| ∧ ∀x : C0(x) = C1(x)] ≥ 1− ε,

On Deniable Authentication against Malicious Verifiers 15

where the probability is taken over the randomness of A1, and for b $← {0, 1} it
holds that

Advio
iO(A) := 2

∣∣∣∣Pr[A2(st, iO(Cb)) = b]− 1
2

∣∣∣∣ ≤ εio + ε,

where the probability is taken over the randomness of b, A1, and A2.

3 Designated verifier signatures

Designated Verifier Signature (DVS) were introduced by Jakobsson, Sako, and
Impagliazzo [30]. In contrast to plain signatures, here a signature is computed
for a designated verifier. The signature convinces only the designated verifier of
the authenticity of the message but no third party. To this end, we require that
the designated verifier can simulate a signature. Hence, a third party cannot tell
if the signer authenticated the message or if the designated verifier simulated the
signature.

In this work we consider only publicly verifiable DVS. If the verifier’s secret
key is needed for verification, the scheme is called privately verifiable [38] or a
strong DVS [36, 37]8.

Definition 15 (DVS). A designated verifier signature scheme (DVS) is a tuple
of algorithms DVS = (Setup, SKGen, VKGen, Sign, Vrfy, Sim) along with a message
space M and identity space IDS.

– Setup() $→ pp: A probabilistic setup algorithm that outputs public parameters.
– SKGen(pp) $→ (pkS , skS): A probabilistic key generation algorithm that out-

puts a public-/secret-key pair for the signer.
– VKGen(pp, idD) $→ (pkD, skD): A probabilistic key generation algorithm that

takes as input an identity and outputs a public-/secret-key pair for the verifier.
– Sign(pp, skS , pkD, idD, m) $→ σ/⊥: A probabilistic signing algorithm that takes

as input a signer secret key skS, a designated verifier public key pkD and an
identity idD ∈ IDS, and a message m ∈M, and produces a signature σ or a
dedicated error symbol ⊥.

– Vrfy(pp, pkS , pkD, idD, m, σ)→ true/false: A deterministic verification algo-
rithm that checks a message m and signature σ against a signer public key
pkS and verifier public key pkD with identity idD.

– Sim(pp, pkS , skD, idD, m) $→ σ/⊥: A probabilistic signature simulation algo-
rithm that takes as input a signer public key pkS, a designated verifier secret
key skD and identity idD ∈ IDS, and a message m ∈ M, and produces a
signature σ or a dedicated error symbol ⊥.

8 Other work considers a scheme strong if it achieves privacy of signer’s identity [35],
formalizing prose definitions of prior work [30, 45]. This property is only achievable
for privately verifiable schemes.

16 R. Fiedler, R. Langrehr

A DVS scheme DVS is δ-correct, if, for any pp $← Setup(), any idD ∈ IDS, and
honestly generated key pairs (pkS , skS) $← SKGen(pp), (pkD, skD) $← VKGen(pp,
idD) and every message m ∈M, it holds that

Pr[Vrfy(pkS , pkD, idD, m, Sign(skS , pkD, m))] = 1− δ.

We add the concept of identities (associated with verifier keys but not with
signer keys) to achieve our novel security notions against malicious verifiers. Note
that we allow several key pairs per identity. Looking ahead, in Section 3.2 we argue
why verifier identities are necessary to achieve our novel security notions. Hence,
we require separate algorithms to generate signer and verifier keys, following
Laguillaumie and Vergnaud [35] and Brendel, Fiedler, Günther, Janson, and
Stebila [8].

We consider two security notions: Unforgeability (conceptually similar to
unforgeability of (standard) signature schemes) and source hiding (a signature
does not divulge if it was created by the signer or the designated verifier).
In the following, we adapt these properties to our syntax including identities
and introduce new, stronger versions allowing verifiers to generate their keys
maliciously.

3.1 Unforgeability

Similar to unforgeability of (standard) signatures, the adversary has to create
a signature for a fresh message while having access to a signing oracle. The
challenger generates the sender key pair, whereas the adversary can obtain
verifier public keys and verifier key pairs for identities of its choice with the
VKeys oracle, accounting for the introduction of identities. Note that we allow
the adversary to decide which one of the verifier public keys to challenge, further
strengthening the definition. The adversary can query for signatures designated
for any honestly generated verifier public key and identity (including the lines
with gray background) as previously done by [34, 8]; or, for our novel notion
malicious unforgeability, designated for any verifier public key and identity without
restriction. In particular, this models a designated verifier possibly not knowing
its own secret key (“suicide attack” [30]). A similar notion has been discussed
by [48, 58] for multi-designated verifier signatures under the name unforgeability
under rogue key attacks. Prior work [27, 40, 2, 3] provides the adversary with a
simulation oracle as well; we opt against it do keep a clearer distinction between
unforgeability and source hiding.

Our novel malicious unforgeability is important in a setting where a signer
cannot assume that verifier keys were honestly generated. Looking ahead, Theo-
rem 13 shows that signing for a maliciously generated verifier key may even leak
the signer secret key if the scheme does not achieve malicious unforgeability.

Definition 16 (Unforgeability of DVS). A designated verifier signature
scheme DVS is (t, ε, qS , qVK)-malicious unforgeable (resp. unforgeable) if, for any

On Deniable Authentication against Malicious Verifiers 17

Gmal-uf uf
DVS (A):

1 QS ,LV , QR ← ∅
2 pp $← Setup()
3 (pkS , skS) $← SKGen(pp)
4 (m∗, σ∗, id∗, pk∗

D) $← ASign,VKeys(pp, pkS)
5 if ∃sk∗

D : (id∗, pk∗
D, sk∗

D) ∈ LV

6 d1 ← Vrfy(pp, pkS , sk∗
D, id∗, m∗, σ∗)

7 d2 ← (id∗, pk∗
D, m∗) /∈ QS

8 d3 ← (id∗, pk∗
D) /∈ QR

9 return Jd1 ∧ d2 ∧ d3K
10 else
11 return 0

Sign(pk, id, m):

12 if ¬∃sk : (id, pk, sk) ∈ LV

//only accept honestly generated verifier keys

13 return ⊥
14 QS ← QS ∪ {(id, pk, m)}
15 σ $← Sign(pp, skS , pk, id, m)
16 return σ

VKeys(id, s):

17 (pk, sk) $← VKGen(pp, id)
18 LV ← LV ∪ {(id, pk, sk)}
19 if s = true
20 QR ← QR ∪ {(id, pk)}
21 return (pk, sk)
22 else
23 return pk

Fig. 4. Unforgeability limited to honestly generated verifier keys (including the parts
with gray background) or allowing malicious verifier keys (without gray background) of
a designated verifier signature (cp. Definition 16).

adversary A with running time at most t, making at most qS queries to the Sign
oracle and at most qVK queries to the VKeys oracle we have that

Advmal-uf uf
DVS (A) := Pr

[
Gmal-uf uf

DVS (A) = 1
]
≤ ε,

where Gmal-uf uf
DVS (A) is as defined in Figure 4 and lines with gray background are

considered only for (honest) unforgeability.

Remark 1. Note that (t, ε, qS , 1)-malicious unforgeability implies (t, ε · qVK , qS ,
qVK)-malicious unforgeability with a reduction that guesses the adversary’s
output verifier key and generates the remaining verifier keys itself. For (honest)
unforgeability, this reduction additionally requires the scheme to be source hiding
so that the reduction can answer the Sign queries to other designated verifiers
with Sim.

3.2 Source hiding

Furthermore, we require that the DVS scheme is source hiding, i.e. an adversary
cannot tell whether a signature was created by the sender (with Sign) or the
designated verifier (with Sim). We follow the formalization of Brendel et al. [8],
who discuss that the same property has been around with different names
(designated verifier property, non-transferability, untransferability, source deniable,
off-the-record). We incorporate verifier identities into the notion of [8]: The
adversary chooses the verifier identity and the game honestly generates the
verifier key pair and gives it to the adversary. Prior work has proposed definitions

18 R. Fiedler, R. Langrehr

which are in some aspects weaker: The adversary does not get the secret keys
[38, 37, 44, 10, 57, 50, 52] (but instead a signing oracle [10, 57]), the adversary is
limited to a single challenge [38, 53, 37, 10, 57, 51, 35], or the challenge message
is randomly chosen [38, 53, 37, 51].

While this provides a guarantee against a third party who can coerce users
into giving up their secret keys, it does not protect against verifiers who generate
their keys maliciously.

Definition 17 (Source hiding of DVS). A designated verifier signature
scheme DVS is (t, ε, qC)-source hiding if, for any adversary A with running time
at most t and making at most qC queries to the Chall oracle, we have that

Advsh
DVS(A) := 2 ·

∣∣∣∣Pr
[
Gsh

DVS(A) = 1
]
− 1

2

∣∣∣∣ ≤ ε,

where Gsh
DVS(A) is defined in Figure 5.

We define the following strengthening of source hiding that all-quantifies over
the verifier key pairs instead of generating them honestly. Looking ahead, we will
use this notion as a tool for building a simplified malicious source hiding DVS in
the ROM in Section 4. Note that this notion is still too weak to meaningfully
capture security against maliciously generated verifier keys, since it does not
enforce that verifiers know their secret keys.

Definition 18 (All verifier key source hiding of DVS). A designated
verifier signature scheme DVS (with associated identity space IDS) is (t, ε, qC)-
all verifier key source hiding for the NP-relation R (where ((id, pkD), skD) ∈ R
for all pp ∈ Img(Setup()), id ∈ IDS, (pkD, skD) ∈ Img(VKGen(pp, id))) iff, for
all adversaries A with running time at most t that make at most qC queries
to the Chall oracle, we have for all auxiliary input aux ∈ {0, 1} and for all
((idD, pkD), skD) ∈ R

Advall-sh
DVS,idD,pkD,skD,aux(A) := 2 ·

∣∣∣∣Pr
[
Gall-sh

DVS,idD,pkD,skD,aux(A) = 1
]
− 1

2

∣∣∣∣ ≤ ε,

where Gall-sh
DVS,idD,pkD,skD,aux(A) is defined in Figure 5.

Remark 2. In the definition of all verifier key source hiding, the auxiliary input
can be omitted when the adversary is non-uniform, because it can have the
auxiliary input hard-coded. Since we use in this work the concrete security model
(and not the asymptotic security model), all adversaries are automatically non-
uniform. We make the auxiliary input nevertheless explicit in our definitions, so
that they can be translated easily to the asymptotic security model.

Finally, we introduce our novel simplified malicious source hiding definition.
Intuitively, this notion models that the source of a signature remains hidden,
even if the verifier generated his keys maliciously. We prefix it simplified since
this notion alone is not yet practically meaningful, but already unachievable in

On Deniable Authentication against Malicious Verifiers 19

Gsh
DVS(A):

1 pp $← Setup()
2 idD ← ⊥
3 (pkS , skS) $← SKGen(pp)
4 b $← {0, 1}
5 b′ $← AChall,VKey(pp, pkS , skS)
6 return Jb′ = bK

VKey(id):
7 if idD ̸= ⊥

//one-time oracle: set verifier identity at first query

8 return ⊥
9 (pkD, skD) $← VKGen(pp, id)

10 idD ← id
11 return (pkD, skD)

Chall(m):
12 if idD = ⊥
13 return ⊥
14 if b = 0
15 σ $← Sign(pp, skS , pkD, idD, m)
16 else
17 σ $← Sim(pp, pkS , skD, idD, m)
18 return σ

Gall-sh
DVS,idD,pkD,skD,aux(A):

1 pp $← Setup()
2 (pkS , skS) $← SKGen(pp)
3 b $← {0, 1}
4 b′ $← AChall(pp, pkS , skS , aux)
5 return Jb′ = bK

Chall(m):
6 if b = 0
7 σ $← Sign(pp, skS , pkD, idD, m)
8 else
9 σ $← Sim(pp, pkS , skD, idD, m)

10 return σ

Gs-mal-sh
DVS,aux(A,D):

1 pp $← Setup()
2 (pk∗

S , sk∗
S) $← SKGen(pp)

3 LV , R← ε
//save adversary’s verifier keys and randomness

4 b $← {0, 1}
5 st← AChall,VKeys,Random(pp, pk∗

S , aux)
6 b′ $← D(st, sk∗

S)
7 return Jb′ = bK

VKeys(id):

8 (pkD, skD) $← VKGen(pp, id)
9 LV

+←− (pk, id) //append

10 return pkD

Chall(pk, id, m): //only one query

11 if (pk, id) ∈ LV //ensure malicious verifier

12 return ⊥
13 if b = 0
14 σ $← Sign(pp, sk∗

S , pk, id, m)
15 else
16 σ $← EA(pp, pk∗

S , aux, R,LV , pk, id, m)
17 return σ

Random(n):

18 r $← {0, 1}n

19 R
+←− r //append

20 return r

Fig. 5. Source hiding (top), all-verifier source hiding (middle), and simplified malicious
source hiding (bottom) of a designated verifier signature (cp. Definitions 17 to 19).

20 R. Fiedler, R. Langrehr

the standard model as we will show in Section 5.1. In the big picture, we have
an adversary A who can choose verifier identity and public key arbitrarily, the
challenge oracle which executes Sign or extracts a signature from the adversary
(thereby modeling that some malicious verifier could have produced a signature),
and a distinguisher, who has to make a guess based on the adversary’s output.
This also addresses discussions of prior work [30, 58] of a designated verifier
generating his public key in a way that he arguably does not know his own secret
key and thereby undermines source hiding.

Let us go through the design choices that led to this definition. The adversary
gets access to some auxiliary data aux, modeling that the adversary has access to
arbitrary data generated independently of the public parameters of the scheme.
Note that the auxiliary input is sampled independently of the public parameters;
otherwise, the auxiliary input could include a public verifier key without the
secret key or any hint how it has been generated. Simulating a signature for
that key is then as hard as breaking the unforgeability of the signature. Hence,
a scheme without public parameters cannot satisfy simplified malicious source
hiding. Furthermore, the public parameters for this scheme must not be reused
for another scheme (without re-proving security), because this might give an
adversary additional auxiliary input that depends on the public parameters.

Design choices for identities. Without verifier identities, an adversary can copy
any verifier public key off the internet, pass it off as its own, and then argue that
it could not have generated the signature itself, thereby undermining simplified
malicious source hiding. To defend against this type of attack we add the concept
of identities to verifier keys. A DVS scheme has to ensure that a verifier public
key cannot be used with a different identity, thus precluding this attack.

Design choices for the adversary. Unlike for (honest) source hiding the adversary
A does not get the challenge signer secret key; otherwise, the extractor would
get it as input as well and could trivially execute Sign, rendering the notion
meaningless. We model the randomness of the adversary explicitly with the
Random oracle. We limit the adversary to one query to the Chall oracle. We
allow the adversary to obtain verifier public keys of other users via the VKeys
oracle. For a more realistic notion the adversary should have access to more key
(pairs) and honestly generated signatures. Looking ahead, in Section 5.1 we show
that this notion is already unachievable in the standard model.

Design choices for the challenge oracle. The challenge oracle answers for verifier
keys controlled by the adversary with the extractor. The extractor gets the
same arguments as the adversary, and additionally all oracle responses that the
adversary has obtained so far.

Design choices for the distinguisher. The distinguisher cannot get access to the
challenge oracle since it learns the challenge signer secret key.

Definition 19 (Simplified malicious source hiding of DVS). A designated
verifier signature scheme DVS is (tA, tE , tD, ε, qVK)-simplified malicious source

On Deniable Authentication against Malicious Verifiers 21

hiding iff for all adversaries A with running time at most tA and making at most
qVK queries to the VKeys oracle there exists an extractor EA running in time
at most tE such that for any distinguisher running in time at most tD and for
all auxiliary inputs aux ∈ {0, 1}∗ we have

Advs-mal-sh
DVS,aux(A,D) := 2 ·

∣∣∣∣Pr
[
Gs-mal-sh

DVS,aux(A,D) = 1
]
− 1

2

∣∣∣∣ ≤ ε,

where Gs-mal-sh
DVS,aux(A,D) is defined in Figure 5.

Remark 3. In the definition of simplified malicious source hiding, the auxiliary
input cannot be omitted, even for non-uniform adversaries. The reason is that the
extractor can depend in an arbitrary way on the adversary (and thus everything
that is hardcoded in the adversary), but the extractor cannot depend on the
auxiliary input. For example, if A has a hardcoded public key, the extractor EA
is allowed to have a corresponding secret key hardcoded (if it exists). However, if
A gets a public key as part of the auxiliary input, the extractor only gets access
to the public key (since it gets the same auxiliary input), but no corresponding
secret key.

4 Candidate construction

4.1 A DVS from NIWIPoKs

The starting point for our construction is the following simple construction of a
DVS satisfying all verifier key source hiding for an arbitrary relation RV

9 with a
(t, ε)-hard on average search problem for instance sampler Samp (c.f. Definition 1).

The construction makes use of an ordinary signature scheme Σ = (KeyGen,
Sign, Ver) and a NIWIPoK NIWI for the relation

RN = {((id, vk, m, x), (σ, w)) | Ver(vk, id||m, σ) ∨ (x, w) ∈ RV }

and is given in Figure 6.

Theorem 2 (Correctness). If Σ is δ1-correct and NIWI is δ2-correct, then
DVS[Samp, Σ, NIWI] as given in Figure 6 is δ1 + δ2-correct.

Proof. The signature σ $← Sign(sk, idD||m) verifies with probability at least 1−δ1
and in this case (σ,⊥) is a valid witness for the statement (idD, vk, m, pkD) in
RN . Since NIWI is δ2-correct, this results in DVS[Samp, Σ, NIWI] being δ1 + δ2-
correct. ⊓⊔

Theorem 3 (Malicious unforgeability). If Σ is (t, qS , εΣ)-EUF-CMA secure,
the search problem with instance sampler Samp for RV is (t, εRV

)-hard on average,
and NIWI is (t, εtd, t, εks)-knowledge sound with algorithms TDGenks and Extr, then
DVS[Samp, Σ, NIWI] as given in Figure 6 is (t′, ε, qS , qVK)-malicious unforgeable
for arbitrary qVK , t′ ≈ t, and ε ≤ εtd + εks + εΣ + εRV

· qVK .
9 Since we are aiming for all verifier key source hiding we can ignore identities for this

scheme.

22 R. Fiedler, R. Langrehr

Setup():

1 return crs $← GenNIWI()
SKGen(crs):

2 (vk, sk) $← KeyGen()
3 return (vk, (vk, sk))

VKGen(crs, idD):

4 return (x, w) $← Samp()

Sign(crs, skS = (vk, sk), idD, pkD, m):

5 σ $← Sign(sk, idD||m)
6 return π $← Prove(crs, (idD, vk, m, pkD), (σ,⊥))

Sim(pp, pkS , skD, idD, m):

7 return π $← Prove(crs, (idD, vk, m, pkD), (⊥, skD))
Vrfy(crs, pkS , idD, pkD, m, π):
8 return VrfyNIWI(crs, (idD, pkS , m, pkD), π)

Fig. 6. Our construction of a DVS DVS[Samp, Σ, NIWI] = (Setup, SKGen, VKGen, Sign,
Sim, Vrfy) that satisfies all verifier key source hiding built from an instance sampler
Samp for an NP relation, an ordinary signature scheme Σ = (KeyGen, Sign, Ver), and a
NIWIPoK NIWI = (GenNIWI, Prove, VrfyNIWI).

Proof. The proof uses a hybrid argument. Let G0 be the real malicious un-
forgeability game for DVS[Samp, Σ, NIWI] and let G1 be the same game, except
that the crs for NIWI is sampled as (crs, tdks) $← TDGenks() instead of using
crs $← GenNIWI().

Lemma 1 (G0 ⇝ G1).
∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ εtd

The proof is a straightforward reduction to the first condition of knowledge
soundness.

Lemma 2 (G1). Pr[GA1 ⇒ 1] ≤ εks + εΣ + εRV
· qVK

Proof. We give a reduction to the EUF-CMA security of Σ. The reduction
generates (crs, tdks) $← TDGenks() and sends crs along with the public key pkS

obtained from the signature scheme to the verifier. The reduction simulates all
VKeys(id, s) queries as in the real game. It simulates Sign(pk, id, m) queries by
querying Sign(id||m) for the underlying signature scheme to get σ, computing
π $← Prove(crs, (idD, vk, m, pkD), (σ,⊥)) and sending π to the adversary. We omit
Vrfy oracle queries here, because they are unnecessary for a DVS, since the
adversary can verify the signatures itself. This simulates the view of the adversary
in the malicious unforgeability game perfectly.

When the adversary outputs (m∗, π∗, id∗) where id∗ has been queried to
VKeys before and answered with pk∗D and VrfyNIWI(crs, (id∗, pkS , m∗, pk∗D), π∗) =
true, the reduction runs (σ, w) $← Extr(crs, tdks, (id∗, pkS , m∗, pk∗D), π∗) and sub-
mits σ as signature for id∗||m∗ for the underlying signature scheme. When
(id∗, m∗) /∈ Q, the reduction did not query for a signature for id∗||m∗ before.

The signature produced by the reduction is guaranteed to verify if the adver-
sary was successful and none of the following two bad events occurred:

– Bad1 := (σ, w) /∈ RN

– Bad2 := (σ, w) ∈ RN ∧ Ver(pkS , id∗||m∗, σ) = false
We next bound the probability of these two bad events.

Claim 4. Pr[Bad1] ≤ εks

On Deniable Authentication against Malicious Verifiers 23

Proof. We describe a simple reduction that wins the second part of the knowledge
soundness game if Bad1 occurs. The reduction receives crs and simulates all other
parts of the malicious unforgeability game itself. When the adversary outputs
(m∗, π∗, id∗), it submits ((id∗, pkS , m∗, pk∗D), π∗) (where pkS is the signer public
key generate initially and pk∗D is the verifier public key generated for id∗) to the
unforgeability game. Clearly, the adversary’s view is exactly as in G1 and the
reduction wins the knowledge soundness game if Bad1 occurs. ⊓⊔

Claim 5. Pr[Bad2] ≤ εRV
· qVK

Proof. We give a simple reduction that solves the search problem for RV on
average, if Bad2 occurs. The reduction is given a random instance x and simulates
the game G1 for the adversary honestly, except that it answers the i-th query to
the VKeys oracle (where i $← [qVK]) with x as public key.

When the adversary outputs (m∗, π∗, id∗) and id∗ has been queried in the i-th
VKeys query before (which happens with probability 1/qVK) and VrfyNIWI(crs,
(id∗, pkS , m∗, x), π∗) = true, the reduction runs (σ, w) $← Extr(crs, tdks, (id∗, pkS ,
m∗, x), π∗) and sends w to its game.

Clearly, the adversary’s view is exactly as in G1 and the reduction solves the
search problem game if Bad2 occurs, since Bad2 implies (x, w) ∈ RV . ⊓⊔

Combining Claims 4 and 5 with the analysis of the reduction to the EUF-CMA
security of Σ yields Lemma 2. ⊓⊔
Theorem 3 follows from combining Lemmata 1 and 2. ⊓⊔

Theorem 6 (All verifier key source hiding). If NIWI is (t, ε)-witness in-
distinguishable, then DVS[Samp, Σ, NIWI] as given in Figure 6 is (t′, ε′, qC)-all
verifier key source hiding for arbitrary qC , t′ ≈ t, and ε′ ≤ qC · ε.

Proof. We describe a reduction for one Chall query. The argument can be
extended to many Chall queries with a standard hybrid argument.

The reduction has the game parameters idD, pkD, skD, aux hardcoded. It
gets crs from the witness indistinguishability game and samples (pkS , skS) $←
SKGen(crs) and runs the adversary on pp, pkS , skS , aux. When the adversary
makes a challenge query on message m, the reduction answers this with a proof
for the statement (idD, vk, m, pkD) generated via the witness indistinguishability
game with witnesses (σ,⊥) and (⊥, skD), where σ $← Sign(sk, idD||m). The
reduction outputs the same bit that the adversary outputs.

If the witness indistinguishability game uses the witness (σ,⊥), the reduction
perfectly simulates the all verifier key source hiding game for b = 0. If the witness
(⊥, skD) is used, the reduction perfectly simulates the game for b = 1.

Hence, we get ε′ ≤ ε for a single Chall query, or ε′ ≤ qC · ε for multiple
challenge queries with a hybrid argument. ⊓⊔

4.2 Construction in the random oracle model.

In the random oracle model each algorithm (including the adversary and the
extractor) has oracle access to a uniformly random function f : {0, 1}∗ → {0, 1}ℓ

24 R. Fiedler, R. Langrehr

that models a cryptographic hash function. For our definitions with auxiliary
input, we allow the auxiliary input to depend on qH,aux function values of f .

In this section we present a generic transformation of an all verifier key source
hiding DVS DVS = (Setup, SKGen, VKGen, Sign, Vrfy) and a NIZKPoK in the
uniform random string (urs) model for the relation

R = {((pp, idD, pkD), r) | ∃skD : (pkD, skD)← VKGen(pp, idD; r)}

to a simplified malicious source hiding DVS in the random oracle model (ROM).
The result is in contrast to our impossibility result presented in Section 5 which
works for any construction in the standard model. This shows that replacing the
random oracle with any concrete hash functions (which has to be done to deploy
such a scheme in the real world, where a random oracle is not available) yields
an insecure construction.

If the underlying DVS is unforgeable or malicious unforgeable, then the
resulting DVS achieves the same notion of unforgeability. The construction is
given in Figure 7.

Setup′():

1 pp $← Setup()
2 s $← {0, 1}λ

3 return pp′ = (pp, s)
SKGen′(pp′ = (pp, s)):
4 return SKGen(pp)

VKGen′(pp′ = (pp, s), idD):
5 (pkD, skD)← VKGen(pp, idD; r)
6 urs← H(s, idD, pkD)
7 π $← Prove(urs, (pp, idD, pkD), r)
8 return (pk′

D = (pkD, π), (pkD, skD))
Vrfy′(pp, pkS , pk′

D = (pkD, π), idD, m, σ):
9 return Vrfy(pp, pkS , pkD, idD, m, σ)

Sign′(pp′ = (pp, s), skS , idD, pk′
D, m):

10 (pkD, π)← pk′
D

11 urs← H(s, idD, pkD)
12 if VrfyNIZK(urs, (pp, idD, pkD), π)
13 return Sign(pp, skS , idD, pkD, m)
14 else
15 return ⊥
Sim′(pp, pkS , sk′

D = (pkD, skD), idD, m):
16 urs← H(s, idD, pkD)
17 if VrfyNIZK(urs, (pp, idD, pkD), π)
18 return Sim(pp, pkS , skD, idD, m)
19 else
20 return ⊥

Fig. 7. Our construction of a simplified malicious source hiding DVS DVS′[DVS, NIZK] =
(Setup′, SKGen′, VKGen′, Sign′, Sim′, Vrfy′) built from an all verifier key source hiding
DVS DVS = (Setup, SKGen, VKGen, Sign, Sim, Vrfy), a NIZKPOK NIZK = (GenNIZK,
Prove, VrfyNIZK) in the urs model with a uniform reference string of length ℓ and a hash
function H : {0, 1}λ × IDS × VPKS → {0, 1}ℓ, where IDS is the identity space and
VPKS the public key space of the verifiers, modeled as a random oracle.

Theorem 7 (Correctness). If DVS is δ-correct and NIZK is δ′-correct, then
DVS′[DVS, NIZK] as given in Figure 7 is (δ + δ′)-correct.

Proof. Let idD ∈ IDS and pp $← Setup(), (pkS , skS) $← SKGen(pp), (pkD, skD)←
VKGen(pp, idD; r), and π $← Prove(urs, (pp, idD, pkD), r). Since NIZK is δ′-correct,

On Deniable Authentication against Malicious Verifiers 25

with probability 1− δ′ we have VrfyNIZK(urs, (pp, idD, pkD), π) = true and in this
case Sign′(pp, skS , idD, pk′D = (pkD, π), m) returns σ $← Sign(pp, skS , idD, pkD,
m). Since DVS is δ-correct, Vrfy′(pp, pkS , pk′D = (pkD, π), m, σ) = Vrfy(pp, pkS ,
pkD, m, σ) = true with probability 1− δ. ⊓⊔

Theorem 8 ((Malicious) unforgeability). If DVS is δ-correct, (t, ε, qS , qVK)-
(malicious) unforgeable with ε < 1/2, and (t, εsh, 1)-source hiding with 4εsh +2δ ≤
1− ε and NIZK is (tzk, tSimzk , εzk)-zero-knowledge, then DVS′[DVS, NIZK] as given
in Figure 7 is (t′, ε′, qS , qVK)-(malicious) unforgeable against adversaries making
at most qH ROM queries with t′ ≈ t and ε′ ≤ ε + qVKεzk + qH

√
2ε + 4εsh + 2δ.

Proof. Assume there is an adversary A that breaks the (t′, ε′, qS , qV , qVK)-
(malicious) unforgeability of DVS′[DVS, NIZK]. Let TDGenzk and Extr be the
algorithms for the zero-knowledge property of NIZK. The proof proceeds via
a hybrid argument. Let G0 be the real (malicious) unforgeability game for
DVS′[DVS, NIZK] and G1 the same game with the following modification: If the
adversary makes a VKeys query on id and that query is answered with (pk, π)
and the adversary has made a ROM query on (s, id, pk) before, the game aborts
and outputs a random bit.

Lemma 3 (G0 ⇝ G1).
∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ qH
√

2ε + 4εsh + 2δ

Proof. Consider the reduction B against the (malicious) unforgeability of DVS
that proceeds as follows: The adversary gets (pp, pkS) and makes VKeys query
on identities, that are chosen exactly how A chooses the identities for its VKeys
queries, to get for each query a public key pk and then sample (pk′, sk′) $←
VKGen(pp, id). If pk′ ̸= pk for all queries, the adversary aborts. Otherwise, it
computes a signature via σ $← Sim(pp, pkS , sk′, id, m) for any fixed message m.
The reduction then outputs (m, σ, idD, pk).

We will show next that Pr[Vrfy(pp, pkS , pk, id, m, σ) = true] ≥ 1/2− 2εsh − δ.
Consider for this the reduction B′ that plays the source hiding game for DVS
as follows: B′ receives pp, pkS (and skS which is ignored by B′) and makes one
VKeys query on id to obtain pkD (and skD, which is again ignored) and then a
Chall query on m to obtain σ. The inputs id and m are chosen exactly how B
chooses them. B′ outputs b′ = 0 if Vrfy(pp, pkS , pkD, id, m, σ) = true and b′ = 1
otherwise. The reduction B′ only fails when Sign produced a signature that
does not verify or if Sim produced a signature that did verify. The first event
occurs with probability at most δ. Let E be the second event, i.e., the signature
computed by Sim verifies. Then 1− δ − Pr[E] ≤ 1/2 + 2εsh. Rearranging gives
the desired lower bound on Pr[E].

This shows that the reduction B wins the (malicious) unforgeability game
with probability Pr[pk = pk′] · (1/2− 2εsh − δ) ≤ ε which shows Pr[pk = pk′] ≤
ε/(1/2 − 2εsh − δ) = 2ε/(1 − 4εsh − 2δ) ≤ 2ε + 4εsh + 2δ. See Lemma 11 in
Appendix C for an explanation of the last inequality.

Thus we have 2ε + 4εsh + 2δ ≥ Pr[pk = pk′] = 2−H2(pk) which can be
rearranged to H2(pk) ≥ − log(2ε + 4εsh + 2δ). Thus we also have H∞(pk) ≥

26 R. Fiedler, R. Langrehr

−1
2 log(2ε + 4εsh + 2δ) by Fact 1, which implies that any public key pk′ used by
A in a ROM query matches a public key pk generated in a VKeys oracle query
at most with probability 2−H∞(pk) ≤ 2 1

2 log(2ε+4εsh+2δ) =
√

2ε + 4εsh + 2δ. ⊓⊔
The next game, G2, is defined like G1, except that all VKeys(id) queries are

now answered by generating the urs with known trapdoor and simulating the
random oracle accordingly. In particular, by

– sampling (pk, sk) $← VKGen(pp, id), programming the random oracle query on
(s, id, pk) with urs sampled via (urs, tdzk) $← TDGenzk() (or, as in G1, aborting
if the adversary already queried the random oracle on (s, id, pk)),

– sampling π $← Simzk(urs, tdzk, (pp, idD, pkD)), and
– returning ((pk, π), sk).

Lemma 4 (G1 ⇝ G2).
∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ qVKεzk

Proof. We give a reduction to the zero-knowledge property of NIZK for the i-
th query. The transition from G1 to G2 follows then from a standard hybrid
argument. The reduction samples pp′ = (pp, s) and (pkS , skS) $← SKGen(pp) and
sends them to A. When the adversary makes its i-th VKeys query on id, the
reduction samples (pk, sk) $← VKGen(pp, id). If the adversary has already made a
random oracle query on (s, id, pk), the reduction aborts and outputs a random
bit. Otherwise, the reduction uses urs from the zero-knowledge game (i.e., its
original input) and programs the random oracle to return urs on (s, id, pk). The
reduction queries the Prove oracle on ((pp, id, pk), sk) to retrieve π and sends
(pk, π) to the adversary. The reduction answers Sign and Vrfy queries as in G1.

When the reduction does not abort, the reduction simulates the game G1
if the zero-knowledge game for NIZK is played with b = 0 and otherwise the
reduction simulates G2. If the reduction does abort, the game G1 and G2 both
abort, too, and thus the reduction has simulated them correctly. ⊓⊔

Lemma 5 (G2). Pr[GA2 ⇒ 1] ≤ ε

Proof. For this proof we assume without loss of generality that A queries the
ROM on (s, id, pk) before making a sign query on Sign(pk, id, ·).

We give a reduction to the (malicious) unforgeability of DVS. Initially, the
reduction receives (pp, pkS), samples s $← {0, 1}λ and sends (pp′ := (pp, s), pkS) to
the adversary. If the adversary makes a VKeys(id) query, the reduction forwards
the query to obtain pk, aborts if the adversary already made a ROM query on
(s, id, pk) and otherwise programs this query to urs sampled via (urs, tdzk) $←
TDGenzk() and computes π $← Simzk(urs, tdzk, (pp, idD, pkD)). The reduction sends
the answer (pk, π) to the adversary.

The reduction perfectly simulates the game G2 for the adversary and thus
wins the (malicious) unforgeability game for DVS exactly when the adversary
wins G2. ⊓⊔

Combining Lemma 3 – Lemma 5 yields Theorem 8. ⊓⊔

Remark 4. The argument in Lemma 3 for the min-entropy in the verifier public
keys makes our reduction quite loose. However, we can obtain a tight reduction by
appending random bits to the verifier public keys to increase their min-entropy.

On Deniable Authentication against Malicious Verifiers 27

A():

1 X $← D
2 repeat
3 X ′ $← D | [h(·) = h(X)]
4 until g(X ′) = g(X)
5 return X ′

Fig. 8. Algorithm for the split resampling Lemma.

The simplified malicious source hiding proof makes use of the following Lemma,
which is a special case of [26, Lemma 6], which in turn relies on the “Bucket
Lemma” by [31].

Let D be a distribution on a set X and g : X → Y and h : X → Z functions
where Y is a finite set and Z is any set. Moreover, for X ∈ X let D | [h(·) = h(X)]
be the distribution that samples X ′ $← D conditioned on h(X ′) = h(X).

Lemma 6 (Split resampling Lemma [26, Lemma 6]). Let T rep be the
number of iterations of the loop in lines 2–4 of algorithm A() given in Figure 8.
Then for all γ ∈ (0, 1] we have

Pr
[
T rep ≤ 2 ln

(
2
γ

)
|Y|
γ

]
≥ 1− γ.

Theorem 9 (Simplified malicious source hiding). If DVS is (t, εsh, 1)-all
verifier key source hiding and NIZK is (ttd, εtd, tks, εks)-knowledge sound, then
DVS′[DVS, NIZK] as given in Figure 7 is (tA, tE , tD, ε, qVK)-simplified malicious
source hiding with tE ≈ 2 ln(2/γ)(qH + 1)/γ · tA, ttd ≈ tks ≈ t ≈ tA + tD, and
ε ≤ εks + 2 ln(2/γ)(qH + 1)εtd + qH,aux/2λ, where qH,aux is the number of random
oracle queries that aux depends on. The parameters λ ∈ N and γ ∈ (0, 1] can be
selected arbitrarily to achieve the desired security properties.

Proof. Let A be an adversary against the simplified malicious source hiding
property of DVS′[DVS, NIZK]. We first observe that aux does not depend on any
random oracle query that starts with s, where s is part of the public parameters,
except with probability qH,aux/2λ, because s is a uniformly random λ bit string
generated independently of aux. We assume in the following that aux does not
depend on such a query.

We next describe the extractor EA. The extractor is given pp′ = (pp, s), pk∗S ,
aux, R,LV , pk′ = (pk, π), id, m, where R are the random coins consumed by the
adversary so far. If VrfyNIZK(urs, (pp, id, pk), π) = false for urs← H(s, id, pk), the
extractor outputs ⊥.

Otherwise, the extractor runs A several times, while changing some query
answers. We assume without loss of generality that A queries the RO for each
value at most once and makes a query on (s, ĩd, p̃k) before the Chall(p̃k

′
= (p̃k,

π̃), ĩd, m̃) query. We also assume without loss of generality that the number of
random coins consumed and the number of random oracle queries by A until a
Chall query are fixed values.

28 R. Fiedler, R. Langrehr

The extractor runs A using the random coins R and answers all queries as
described before, except when A makes the random oracle query on (s, id, pk).
This ROM query is answered by sampling (urs, tdks) $← TDGenks() and returning
urs. We call this the programmed ROM query. After that query, all further ROM
queries are answered with fresh uniformly random bitstrings.

Note that the run of A until the programmed ROM query is exactly as the
run in the real world, but after the programmed ROM query it can differ.

If this results in a run where A makes the Chall query on arguments
p̃k
′

= (pk, π̃), id, m̃ with VrfyNIZK(urs, (pp, id, pk), π̃) = true, we call the run
successful and the extractor computes

– r $← Extr(urs, tdks, (pp, id, pk), π̃),
– (p̂k, ŝk)← VKGen(pp, id; r),
– σ $← Sim(pp, pkS , id, ŝk, m),

and returns σ. Otherwise, the adversary runs A again, up to a maximum of
κ := 2 ln(2/γ)(qH+ 1)/γ runs. Here, γ ∈ (0, 1] is a parameter we can choose for a
trade-off between runtime and advantage of the reduction. If none of these runs
leads to the above case, the extractor outputs ⊥.

We analyze next the probability that the adversary does not receive a valid
proof for pk in all κ runs. For this analysis we consider an extractor E ′A that uses
in the programmed ROM query a uniformly random sampled urs (instead of urs
being sampled via (urs, tdks) $← TDGenks()). The knowledge soundness of NIZK
guarantees that the probability of a run being successful can change at most with
probability εtd.

Next, we describe another, hypothetical extractor E ′′A that also runs A several
times, but simulates these runs less efficiently. Then, we use Lemma 6 to bound
the number of runs the hypothetical extractor needs. Finally, we show that the
extractor E ′A needs at most as many runs as the hypothetical extractor E ′′A.

The hypothetical extractor E ′′A works exactly like the extractor E ′A, except
that the modified random oracle query is not always the query on (s, id, pk), but
always the query on (s, ĩd, p̃k) where p̃k

′
= (p̃k, π̃), ĩd, m̃ are the arguments of the

Chall query of A in the simulated run. Of course, it might not be known at the
time when A makes the ROM query on (s, ĩd, p̃k) that this is the ROM query
used for the Chall query, but the hypothetical extractor can guess the correct
query and run A again when that guess was incorrect.

Now, let us use Lemma 6 to bound the number of runs the hypothetical
extractor needs. Here, we count as runs only those where the hypothetical
extractor programmed the correct random oracle query. Therefore, we set D
to be the distribution that outputs a transcript of a single run of A. That
transcript includes the random coins used by A and all oracle calls with their
respective inputs and outputs and the output of A. Let X be the transcript of
the real-world run of the adversary. The function h maps such a transcript to
a truncated transcript that includes all of the randomness and all queries that
happen before the ROM query on (s, ĩd, p̃k), where p̃k

′
= (p̃k, π̃), ĩd, m̃ are the

arguments of the Chall query, (excluding this ROM query). Now in each run

On Deniable Authentication against Malicious Verifiers 29

of A by the hypothetical extractor, the resulting transcript X ′ is distributed
like a fresh transcript conditioned on h(X) = h(X ′). The function g maps a
such a transcript to the index (among all ROM queries) of the ROM query on
(s, ĩd, p̃k), where p̃k

′
= (p̃k, π̃), ĩd, m̃ are the arguments of the Chall query if

VrfyNIZK(urs, (pp, ĩd, p̃k), π̃) = true. Otherwise, g maps the transcript to a special
failure symbol. Note that if a run produces a transcript X ′ with g(X) = g(X ′),
the extractor successfully obtains a valid proof under a urs where it knows
the extraction trapdoor. Now Lemma 6 tells us that with probability at least
1− γ, the hypothetical extractor obtains such a successful run among the first
κ = 2 ln(2/γ)(qH + 1)/γ runs.

Next, we show that the probability of being successful for a run of the
adversary performed by the extractor E ′A is at least as high as for runs performed
by the hypothetical extractor E ′′A. Let X ′ be a transcript of a run of A by E ′′A
with g(X) = g(X ′). Then, the programmed ROM query has the same index
as in the real run X. Since all queries before the programmed ROM query are
identical and the same randomness is used, the programmed ROM query must be
on (s, id, pk). Since this is also the ROM query that E ′A programs, the probability
that a run by E ′A results in the transcript X ′ is at least as high as for a run by
E ′′A.

If one of the runs of A by the real extractor EA is successful, the extractor
will be able to extract with probability at least 1− εks a random string r such
that (p̂k, ŝk) ← VKGen(pp, id; r) satisfies p̂k = pk, because otherwise we can
use the extractor to win the knowledge soundness game of NIZK. In particular,
((id, pk), ŝk) ∈ RV , where RV is the relation for the all verifier key source hiding
game.

The all verifier key source hiding notion guarantees now that the adversary
A and the distinguisher D cannot distinguish between a signature generated via
Sign(pp, skS , pk, id, m) and a signature generated via Sim(pp, pkS , id, ŝk, m) (as
produced by EA). ⊓⊔

5 Impossibility results

In this section we show that it is impossible to achieve simplified malicious source
hiding in the standard model and that the EKDH assumption is broken. We
apply a similar technique to disprove deniability of X3DH in Appendix B. For
these results we give an efficiently sampleable distribution AuxPrep of auxiliary
inputs such that security does not hold for a randomly sampled auxiliary input.
This trivially rules out security in our stronger model with all-quantified auxiliary
inputs by taking the auxiliary input from the image of AuxPrep that maximizes
the advantage of the adversary.

5.1 Impossibility of simplified malicious source hiding DVS

We show that a DVS can not be simultaneously unforgeable and simplified
malicious source hiding in the common auxiliary-input model, where the adversary

30 R. Fiedler, R. Langrehr

CK(pp, id ∈ IDS):
1 (pk, sk)← VKGen(pp, id; Eval(K, id))

//where K is a PPRF key

2 return pk
AuxPrep():

3 K $← KeyGen()
4 return iO(CK)

AChall,Random,VKeys(pp, pk∗
S , aux = C′):

5 m $←M
6 pk← C′(pp, id⋆)
7 σ $← Chall(pk, id⋆, m)
8 return st := (pp, pk∗

S , pk, m, σ)
D(st = (pp, pk∗

S , pk, m, σ), sk∗
S):

9 if Vrfy(pp, pk∗
S , pk, m, σ)

10 return 0
11 else
12 return 1

Fig. 9. On the left-hand side, the circuit CK and AuxPrep, which obfuscates this circuit.
On the right-hand side, the adversary (A,D) that breaks simplified malicious source
hiding using auxiliary input. The identity id⋆ ∈ IDS is a fixed identity.

and the extractor get access to the same common auxiliary input. The result
assumes the existence of an indistinguishability obfuscator and a puncturable
PRF and is on a high level similar to [5].

However, we cannot use the result of [5] in a black-box way, because it is
unclear if simplified malicious source hiding DVS imply extractable one-way
function. This is in contrast to other “extractable primitives” like SNARKs and,
e.g., the knowledge of exponent assumption, which all imply extractable one-way
functions [5].

The result does not extend to privately verifiable DVS, because it crucially
relies on being able to verify a signature without a secret key.

Theorem 10. Assume there exist a (tio, εio)-secure and δ-correct iO scheme iO
and a (tfp, εfp)-functionality preserving and (tpr, εpr)-pseudorandom puncturable
PRF, then there exists no DVS (in the standard model) that is simultaneously
(tunf , εunf , 0, 0)-unforgeable and (tmsh, tE , tD, εmsh, 0)-simplified malicious source
hiding with εunf + εmsh + εio + εpr + δ + εfp < 1 when tmsh and tD are large enough
for the simple adversary in Figure 9 and tunf , tio, tfp, tpr ≈ tE .

Proof. Assume a DVS that is simplified malicious source hiding in the common
auxiliary input model. We show how to break unforgeability for such a DVS. Let
id⋆ ∈ IDS be a fixed identity throughout this proof.

Consider the adversary A given in Figure 9 and let EA be an extractor for this
adversary such that Advs-mal-sh

DVS (A,D) is negligible. We now use the extractor to
construct an adversary B that wins the unforgeability game with overwhelming
probability. The adversary B is given in Figure 10. Since the adversary B uses
the extractor on differently distributed inputs compared to how the extractor
is called in the simplified malicious source hiding game, we define a sequence
of games to argue that the extractor on inputs generated by B is almost as
successful as in the simplified malicious source hiding game.

On Deniable Authentication against Malicious Verifiers 31

Cid⋆,pk⋆,Kid⋆ (pp, id ∈ IDS):

1 if id = id⋆

2 return pk⋆

3 else
4 (pk, sk) $← VKGen(pp, id; Eval(Kid⋆ , id))
5 return pk

BSign,VKeys(pp, pkS):

1 aux $← AuxPrep()
2 pk⋆ $← VKeys(id⋆)
3 K $← KeyGen() //PPRF

4 Kid⋆
$← Puncture(K, id⋆)

5 C′ $← iO(Cid⋆,pk⋆,Kid⋆)
6 m⋆ $←M
7 σ⋆ $← EA(pp, pkS , aux, ∅, id⋆, m⋆, R)
8 return (m⋆, σ⋆, id⋆)

Fig. 10. On the left-hand side, the circuit Cid⋆,pk⋆,Kid⋆ , which gets obfuscated and then
used as auxiliary input from hybrid G1 onwards. On the right-hand side, the adversary
B that breaks unforgeability. The identity id⋆ ∈ IDS is a fixed identity and R is the
randomness used to sample m⋆.

To argue that the adversary B wins the unforgeability game with overwhelming
probability, we need to argue that EA produces a valid signature with overwhelm-
ing probability. For this, we introduce two hybrid games.

Let AuxPrep be the auxiliary input sampler described in Figure 9. The first
hybrid game G0 invokes the extractor exactly as it is invoked in the simplified
malicious source hiding game with adversary A and a (random) auxiliary input
aux $← AuxPrep(). The game outputs 1 iff the signature of the extractor verifies.
Lemma 7 (G0). Pr[G0 ⇒ 1] = 1 − Eaux $←AuxPrep()Advs-mal-sh

DVS,aux(A,D) − δ ≥ 1 −
εmsh − δ

Proof. Assume that evaluation of the obfuscated circuit gives the correct result.
This happens with probability 1− δ.

Furthermore, when the game Gs-mal-sh
DVS,aux(A,D) is played with b = 0 (where the

adversary gets an honest signature), the distinguisher always outputs 0 and thus
wins the game due to the correctness of DVS. However, if the game is played with
b = 1, the adversary can win at most with probability Advs-mal-sh

DVS (A,D), since the
advantage of A is Advs-mal-sh

DVS (A,D). Hence, in the case b = 1 the adversary has
to output 0 with probability at least 1 − Advs-mal-sh

DVS (A,D) and in this case the
signature of the extractor did verify. ⊓⊔

In the next hybrid game G1, the auxiliary input is changed to an obfuscation
of the circuit Cid⋆,pk⋆,Kid⋆ given in Figure 10 with the following constants:

– Kid⋆
$← Puncture(K, id⋆) where K $← KeyGen()

– pk⋆ where (pk⋆, sk⋆)← VKGen(pp, id⋆; Eval(K, id⋆))

Lemma 8 (G0 ⇝ G1). |Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ εio + εfp.

Proof. The obfuscated circuits in in G0 and G1 are functionally equivalent, be-
cause:

– The keys for all users except id⋆ are generated in the same way, except
that the punctured key Kid⋆ is used instead of K. Since the PPRF is not
evaluated on id⋆ here, this is functionally equivalent (except with probability
εfp) because the PPRF is (tfp, εfp)-functionality preserving.

32 R. Fiedler, R. Langrehr

– The key for user id⋆ is computed in the same way as before, but the result is
hard-coded in the obfuscated program.

With this, the reduction to iO is straightforward. ⊓⊔
In the next hybrid G2, we compute pk⋆ as (pk⋆, sk⋆) $← VKGen(pp, id⋆) (with

true randomness) instead of as (pk⋆, sk⋆)← VKGen(pp, id⋆; Eval(K, id⋆)).

Lemma 9 (G1 ⇝ G2). There exists a PPT adversary D with

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Advpprf
PPRF(D) ≤ εpr.

Proof. This is a straightforward reduction to the security of PPRF. This security
game gives us the punctured key Kid⋆ , which gets hard-coded in the obfuscated
program. The public key pk⋆ is generated with the challenge value obtained from
the PPRF security game, which is either Eval(K, id⋆) (corresponding to game
G1) or uniformly random (corresponding to game G2) ⊓⊔

Lemma 10 (G2). Pr[G2 ⇒ 1] = Advuf
DVS(B) ≤ εunf

Proof. The adversary B and the game G2 invoke the extractor EA on identically
distributed values. In particular, in both invocations pp, pkS and pk⋆ (hard-coded
in the obfuscated program) are honestly generated. The game G2 outputs 1 if
the signature returned by the obfuscated program verifies, which is exactly when
B wins the unforgeability game. ⊓⊔

Combining Lemmata 7 – 10 yields εunf ≥ 1− εmsh − εio − εpr − δ − εfp. ⊓⊔

Remark 5. In our impossibility result, the auxiliary input depends on the specific
scheme (concretely, the VKGen algorithm). This dependency on the specific
scheme can be easily avoided by obfuscating a universal circuit of sufficient size
instead.

Remark 6. This result shows that a publicly verifiable DVS cannot be unforgeable
and simplified malicious source hiding in the standard model. Since ring signatures
imply publicly verifiable DVS, our impossibility result also rules out unforgeable
and simplified malicious source hiding ring signatures in the standard model.

5.2 Disproving the (E)KDH assumption

In this section we show that the (E)KDH assumption with arbitrary auxiliary
input does not hold under very mild conditions on the group, that are satisfied
by all groups interesting for cryptography (e.g. elliptic curves). The result also
implies that the KDH assumption (which is stronger, since the adversary gets
more information) is not true.

In the following, let G = (G, g, q) be a description of a group G of prime-order
q with generator g and function DH : G × G → G with (ga, gb) 7→ gab.

Definition 20 (Hinted CDH problem). Let G be a cyclic group with gen-
erator g. We say that the (t, ε, η)-hinted computational Diffie-Hellman (CDH)
assumption holds over group G if for every adversary A running in time at most
t it holds that Pr

a,b
$←Zq

[A(G, ga, gb, ⌊b/η⌋) = DH(ga, gb)] ≤ ε.

On Deniable Authentication against Malicious Verifiers 33

The hinted CDH problem with η = 1 is trivially efficiently solvable in any
group where the group operation is efficiently computable. On the other hand,
for η = q the problem is equivalent to the regular CDH problem, which is hard
in groups used in cryptography. Informally speaking, our attack requires that
the hardness of the hinted CDH problem increases continuously with increasing
η, which is a very mild assumption as we explain below.

Definition 21 (KDH and EKDH Assumptions [56]). Let G be a cyclic
group with generator g. Let A be any algorithm running in time tA which runs
on input G, U ∈ G, and aux ∈ {0, 1}∗ and outputs Z ∈ G. We denote with
Z ← A(G, U, aux; r) the output of running A on input G, U, aux with random
coins r.

We say that the (tA , tE , tD , εD)-Knowledge of DH (KDH) assumption holds
over group G iff for every A, there exists an extractor EA such that for all auxiliary
inputs aux ∈ {0, 1}∗ and uniformly random U $← G

– EA runs on input G, U, aux, and r in time tE and outputs Ẑ ∈ G or ⊥
– If EA(G, U, aux, r) ̸= ⊥ then Ẑ = DH(U, Z)
– For every algorithm C running in time tD , we have that Pr[C(G, U, r, aux) =

DH(U, Z) | EA(G, U, aux, r) = ⊥] ≤ εD , where Z ← A(G, aux; r) and the
probability is taken over the coins of C and the randomness used to sample r.

We say that the (tA , tE , tD , εD)-Extended Knowledge of DH (EKDH) assump-
tion holds over group G if the same holds for an algorithm A that does not receive
U as input.

The original definition of [56] is ambiguous in two aspects, but our attack
breaks this assumption in all meaningful interpretations. First, they define security
with respect to a class of auxiliary inputs AUX, but never specify for which classes
AUX they conjecture this assumption to hold. For simplicity we have stated the
definition for AUX = {0, 1}∗, but in our attack the auxiliary input is extremely
simple. It can be described by less than 2⌈log q⌉ bits, where q is the order of G.

Secondly, it is not clear in their definition what aux is and what is allowed
to depend on aux, apart from the condition aux ∈ AUX. We interpret this as
security has to hold for all aux ∈ AUX and that the extractor (and thus also the
adversary) is not allowed to depend on aux. If instead the extractor is allowed to
depend on aux, then the auxiliary input would be meaningless because it can be
replaced by a string hard-coded in the description of A. The version where aux is
sampled uniformly at random from AUX and AUX is an arbitrary set is equivalent
to the version where aux is all-quantified, since AUX can be the singleton set
that just contains the value aux that maximizes the success probability for the
adversary. Finally, the version where aux is sampled uniformly at random from a
fixed set AUX is a weaker assumption, but our attack can still break it for a very
simple set AUX (in particular from a set we can very efficiently sample from).

The work [56] justifies the KDH assumption by reducing it to the knowledge
of exponent assumption (KEA) and another novel assumption called knowledge
of discrete logarithm in the common auxiliary input model. That result is

34 R. Fiedler, R. Langrehr

meaningless, because the KEA assumption does not hold in the common auxiliary
input model [5]. Curiously, the authors of [56] explicitly mention [5] in their work
and claim to bypass their impossibility result with the (E)KDH assumption.

Our proof uses the following general lower bound for a conditional probability.

Fact 11. Let A and C be events with Pr[C] > 0. Then Pr[A | C] ≥ 1− 1−Pr[A]
Pr[C] .

Proof. Pr[A | C] = Pr[A∧C]
Pr[C] = Pr[A]−Pr[A∧¬C]

Pr[C] ≥ Pr[A]−Pr[¬C]
Pr[C] = Pr[A]−1+Pr[C]

Pr[C] =
1− 1−Pr[A]

Pr[C] ⊓⊔
In the following attack we use the auxiliary input to give a group element

and a hint about the corresponding exponent to the adversary, who outputs this
group element as its public key. Now, both the extractor and the distinguisher
(the algorithm C in case the extractor fails) need to solve the same hinted CDH
challenge, but with different runtime and advantage.

Theorem 12. If G = (G, g, q) is a group where the (t, ε, η)-hinted CDH assump-
tion holds for ε < 1, but the (t′, ε′, η)-hinted CDH assumption (for some t < t′)
does not hold, then the (tA , t, t′, 1− (1− ε′)/(1− ε))-EKDH assumption does not
hold in G.

Proof. Consider the variant where the auxiliary input is generated by sampling
b $← Zq and returning aux = (gb, ⌊b/η⌋); and the adversary A playing against the
EKDH assumption on input (G, aux = (Z = gb, b′ = ⌊b/η⌋)) outputs Z.

The extractor EA for this adversary then has to solve the hinted CDH problem
on U and Z with parameter η and has time t. Since we assume the (t, ε, η)-hinted
CDH assumption, the extractor can output DH(U, Z) with probability at most ε.

On the other hand, since we assume (t′, ε′, η)-hinted CDH to not hold, there
exists an algorithm AHCDH with Pr[AHCDH(G, U, Z, b′) = DH(U, Z)] > ε′. Let
C(G, U, r, aux = (Z, b′)) be the circuit that ignores r and runs AHCDH(G, U, Z, b′).

Then, we get by applying Fact 11

Pr[C(G, U, r, aux = (Z, b′)) = DH(U, Z) | EA(G, U, aux, r) = ⊥]

≥ 1− 1− Pr[C(G, U, r, aux) = DH(U, Z)]
Pr[EA(G, U, aux, r) = ⊥] ≥ 1− 1− ε′

1− ε
,

where the probability is taken over sampling U, r, aux and the random coins of C
and EA.

This implies that there exists an auxiliary input aux such that

Pr[C(G, U, r, aux = (Z, b′)) = DH(U, Z) | EA(G, U, aux, r) = ⊥] ≥ 1− 1− ε′

1− ε
,

where the probability is taken over sampling U, r and the random coins of C and
EA. ⊓⊔

Note that the result of Theorem 12 is meaningful if ε < ε′. We next argue
that in groups typically used in cryptography we find for arbitrary t and t′ with

On Deniable Authentication against Malicious Verifiers 35

t < t′ a suitable hint size η such that the (t, ε, η)-hinted CDH assumption holds,
but the (t′, ε′, η)-hinted CDH assumption does not hold.

For concreteness, consider generic groups (or any group where the best known
algorithm to solve the hinted CDH assumption is generic, such as elliptic curves).
In these groups it is easy to see that the best algorithm to solve the hinted
CDH assumption is to compute the discrete log of the second group element by
searching through the space of possible exponents with the baby-step-giant-step
algorithm [47, 49], which takes c

√
q/h steps for some constant c. By setting

t′ = c
√

h, we ensure that the (t′, ε′, η)-hinted CDH assumption does not hold for
any ε′ < 1, but the (t, ε, η)-hinted CDH assumption holds for any t < t′ for a
suitable ε < 1 which leads to an attack on the EKDH assumption with advantage
εD = 1.

This analysis also works for groups where faster algorithms than generic ones
are available, as long as we can find a hint size η such that time t is just enough
to solve the hinted CDH problem with probability 1. In particular, the argument
fails if the time t is enough to break CDH without any hint, but this setting is
not interesting for cryptography anyway.

Acknowledgments. We thank Nils Fleischhacker and Guilherme Rito for dis-
cussions on an early version of this work. R.F. was supported by the German
Federal Ministry of Education and Research and the Hessian Ministry of Higher
Education, Research, Science and the Arts within their joint support of the
National Research Center for Applied Cybersecurity ATHENE.

References

[1] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and
Doreen Riepel. “Analysing the HPKE Standard”. In: EUROCRYPT 2021, Part I.
Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12696. LNCS. Springer,
Cham, Oct. 2021, pp. 87–116. doi: 10.1007/978-3-030-77870-5_4.

[2] Maryam Rajabzadeh Asaar, Mahmoud Salmasizadeh, and Mohammad Reza
Aref. Code-based Strong Designated Verifier Signatures: Security Analysis and
a New Construction. Cryptology ePrint Archive, Report 2016/779. 2016. url:
https://eprint.iacr.org/2016/779.

[3] Hafsa Assidi and El Mamoun Souidi. “Strong Designated Verifier Signature
Based on the Rank Metric”. In: Information Security Theory and Practice - 13th
IFIP WG 11.2 International Conference, WISTP 2019, Paris, France, December
11-12, 2019, Proceedings. Ed. by Maryline Laurent and Thanassis Giannetsos.
Vol. 12024. Lecture Notes in Computer Science. Springer, 2019, pp. 85–102. doi:
10.1007/978-3-030-41702-4_6.

[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. “On the (Im)possibility of Obfuscating Pro-
grams”. In: CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. LNCS. Springer, Berlin,
Heidelberg, Aug. 2001, pp. 1–18. doi: 10.1007/3-540-44647-8_1.

[5] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. “On the existence of
extractable one-way functions”. In: 46th ACM STOC. Ed. by David B. Shmoys.
ACM Press, 2014, pp. 505–514. doi: 10.1145/2591796.2591859.

https://doi.org/10.1007/978-3-030-77870-5_4
https://eprint.iacr.org/2016/779
https://doi.org/10.1007/978-3-030-41702-4_6
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/2591796.2591859

36 R. Fiedler, R. Langrehr

[6] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. “Off-the-record communication,
or, why not to use PGP”. In: Proceedings of the 2004 ACM Workshop on Privacy
in the Electronic Society, WPES 2004, Washington, DC, USA, October 28, 2004.
Ed. by Vijay Atluri, Paul F. Syverson, and Sabrina De Capitani di Vimercati.
ACM, 2004, pp. 77–84. doi: 10.1145/1029179.1029200.

[7] Pedro Branco, Nico Döttling, and Jesko Dujmovic. “Rate-1 Incompressible En-
cryption from Standard Assumptions”. In: TCC 2022, Part II. Ed. by Eike
Kiltz and Vinod Vaikuntanathan. Vol. 13748. LNCS. Springer, Cham, Nov. 2022,
pp. 33–69. doi: 10.1007/978-3-031-22365-5_2.

[8] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas
Stebila. “Post-quantum Asynchronous Deniable Key Exchange and the Signal
Handshake”. In: PKC 2022, Part II. Ed. by Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe. Vol. 13178. LNCS. Springer, Cham, Mar. 2022, pp. 3–34.
doi: 10.1007/978-3-030-97131-1_1.

[9] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Dou-
glas Stebila. “Towards Post-Quantum Security for Signal’s X3DH Handshake”.
In: SAC 2020. Ed. by Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn. Vol. 12804. LNCS. Springer, Cham, Oct. 2020, pp. 404–430. doi:
10.1007/978-3-030-81652-0_16.

[10] Jie Cai, Han Jiang, Pingyuan Zhang, Zhihua Zheng, Hao Wang, Guangshi Lü,
and Qiuliang Xu. “ID-Based Strong Designated Verifier Signature over R-SIS
Assumption”. In: Security and Communication Networks 2019 (2019), 9678095:1–
9678095:8. doi: 10.1155/2019/9678095.

[11] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle Methodology,
Revisited (Preliminary Version)”. In: 30th ACM STOC. ACM Press, May 1998,
pp. 209–218. doi: 10.1145/276698.276741.

[12] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin,
and Serge Vaudenay. “K-Waay: Fast and Deniable Post-Quantum X3DH without
Ring Signatures”. In: USENIX Security 2024. Ed. by Davide Balzarotti and
Wenyuan Xu. USENIX Association, Aug. 2024.

[13] Cas Cremers, Alexander Dax, and Aurora Naska. “Formal Analysis of SPDM:
Security Protocol and Data Model version 1.2”. In: USENIX Security 2023. Ed. by
Joseph A. Calandrino and Carmela Troncoso. USENIX Association, Aug. 2023,
pp. 6611–6628.

[14] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson.
“BUFFing signature schemes beyond unforgeability and the case of post-quantum
signatures”. In: 2021 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2021, pp. 1696–1714. doi: 10.1109/SP40001.2021.00093.

[15] Ivan Damgård. “Towards Practical Public Key Systems Secure Against Cho-
sen Ciphertext Attacks”. In: CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576.
LNCS. Springer, Berlin, Heidelberg, Aug. 1992, pp. 445–456. doi: 10.1007/
3-540-46766-1_36.

[16] Mario Di Raimondo and Rosario Gennaro. “New Approaches for Deniable Authen-
tication”. In: ACM CCS 2005. Ed. by Vijayalakshmi Atluri, Catherine Meadows,
and Ari Juels. ACM Press, Nov. 2005, pp. 112–121. doi: 10.1145/1102120.
1102137.

[17] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Deniable authen-
tication and key exchange”. In: ACM CCS 2006. Ed. by Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati. ACM Press, 2006, pp. 400–409.
doi: 10.1145/1180405.1180454.

https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1007/978-3-031-22365-5_2
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1155/2019/9678095
https://doi.org/10.1145/276698.276741
https://doi.org/10.1109/SP40001.2021.00093
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1145/1102120.1102137
https://doi.org/10.1145/1102120.1102137
https://doi.org/10.1145/1180405.1180454

On Deniable Authentication against Malicious Verifiers 37

[18] Samuel Dobson and Steven D. Galbraith. “Post-Quantum Signal Key Agreement
from SIDH”. In: Post-Quantum Cryptography - 13th International Workshop,
PQCrypto 2022. Ed. by Jung Hee Cheon and Thomas Johansson. Springer, Cham,
Sept. 2022, pp. 422–450. doi: 10.1007/978-3-031-17234-2_20.

[19] Danny Dolev, Cynthia Dwork, and Moni Naor. “Non-Malleable Cryptography
(Extended Abstract)”. In: 23rd ACM STOC. ACM Press, May 1991, pp. 542–552.
doi: 10.1145/103418.103474.

[20] Cynthia Dwork, Moni Naor, and Amit Sahai. “Concurrent Zero-Knowledge”. In:
30th ACM STOC. ACM Press, May 1998, pp. 409–418. doi: 10.1145/276698.
276853.

[21] Uriel Feige and Adi Shamir. “Zero Knowledge Proofs of Knowledge in Two
Rounds”. In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer,
New York, Aug. 1990, pp. 526–544. doi: 10.1007/0-387-34805-0_46.

[22] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to
Identification and Signature Problems”. In: CRYPTO’86. Ed. by Andrew M.
Odlyzko. Vol. 263. LNCS. Springer, Berlin, Heidelberg, Aug. 1987, pp. 186–194.
doi: 10.1007/3-540-47721-7_12.

[23] Rune Fiedler and Christian Janson. “A Deniability Analysis of Signal’s Initial
Handshake PQXDH”. In: PoPETs 2024.4 (Oct. 2024), pp. 907–928. doi: 10.
56553/popets-2024-0148.

[24] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest.
“An Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-
Quantum, State Leakage Secure, and Deniable”. In: PKC 2021, Part II. Ed. by
Juan Garay. Vol. 12711. LNCS. Springer, Cham, May 2021, pp. 410–440. doi:
10.1007/978-3-030-75248-4_15.

[25] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Wa-
ters, and Mark Zhandry. “How to Generate and Use Universal Samplers”. In:
ASIACRYPT 2016, Part II. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Vol. 10032. LNCS. Springer, Berlin, Heidelberg, Dec. 2016, pp. 715–744. doi:
10.1007/978-3-662-53890-6_24.

[26] Dennis Hofheinz, Julia Kastner, and Karen Klein. “The Power of Undirected
Rewindings for Adaptive Security”. In: CRYPTO 2023, Part II. Ed. by Helena
Handschuh and Anna Lysyanskaya. Vol. 14082. LNCS. Springer, Cham, Aug.
2023, pp. 725–758. doi: 10.1007/978-3-031-38545-2_24.

[27] Qiong Huang, Guomin Yang, Duncan S. Wong, and Willy Susilo. Efficient Strong
Designated Verifier Signature Schemes without Random Oracles or Delegatability.
Cryptology ePrint Archive, Report 2009/518. 2009. url: https://eprint.iacr.
org/2009/518.

[28] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability Obfuscation from
LPN over Fp, DLIN, and PRGs in NC0”. In: EUROCRYPT 2022, Part I. Ed. by
Orr Dunkelman and Stefan Dziembowski. Vol. 13275. LNCS. Springer, Cham,
2022, pp. 670–699. doi: 10.1007/978-3-031-06944-4_23.

[29] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability obfuscation from
well-founded assumptions”. In: 53rd ACM STOC. Ed. by Samir Khuller and
Virginia Vassilevska Williams. ACM Press, June 2021, pp. 60–73. doi: 10.1145/
3406325.3451093.

[30] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated Verifier
Proofs and Their Applications”. In: EUROCRYPT’96. Ed. by Ueli M. Maurer.
Vol. 1070. LNCS. Springer, Berlin, Heidelberg, May 1996, pp. 143–154. doi:
10.1007/3-540-68339-9_13.

https://doi.org/10.1007/978-3-031-17234-2_20
https://doi.org/10.1145/103418.103474
https://doi.org/10.1145/276698.276853
https://doi.org/10.1145/276698.276853
https://doi.org/10.1007/0-387-34805-0_46
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.56553/popets-2024-0148
https://doi.org/10.56553/popets-2024-0148
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-031-38545-2_24
https://eprint.iacr.org/2009/518
https://eprint.iacr.org/2009/518
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/3-540-68339-9_13

38 R. Fiedler, R. Langrehr

[31] Julia Kastner, Julian Loss, and Jiayu Xu. “The Abe-Okamoto Partially Blind
Signature Scheme Revisited”. In: ASIACRYPT 2022, Part IV. Ed. by Shweta
Agrawal and Dongdai Lin. Vol. 13794. LNCS. Springer, Cham, Dec. 2022, pp. 279–
309. doi: 10.1007/978-3-031-22972-5_10.

[32] Dmitry Khovratovich, Ron D. Rothblum, and Lev Soukhanov. How to Prove
False Statements: Practical Attacks on Fiat-Shamir. Cryptology ePrint Archive,
Paper 2025/118. 2025. url: https://eprint.iacr.org/2025/118.

[33] Ehren Kret and Rolfe Schmidt. The PQXDH key agreement protocol. https:
//signal.org/docs/specifications/pqxdh/. September 2023.

[34] Caroline Kudla and Kenneth G. Paterson. “Non-interactive Designated Verifier
Proofs and Undeniable Signatures”. In: 10th IMA International Conference on
Cryptography and Coding. Ed. by Nigel P. Smart. Vol. 3796. LNCS. Springer,
Berlin, Heidelberg, Dec. 2005, pp. 136–154. doi: 10.1007/11586821_10.

[35] Fabien Laguillaumie and Damien Vergnaud. “Designated Verifier Signatures:
Anonymity and Efficient Construction from Any Bilinear Map”. In: SCN 04.
Ed. by Carlo Blundo and Stelvio Cimato. Vol. 3352. LNCS. Springer, Berlin,
Heidelberg, Sept. 2005, pp. 105–119. doi: 10.1007/978-3-540-30598-9_8.

[36] Yong Li, Helger Lipmaa, and Dingyi Pei. “On Delegatability of Four Designated
Verifier Signatures”. In: ICICS 05. Ed. by Sihan Qing, Wenbo Mao, Javier López,
and Guilin Wang. Vol. 3783. LNCS. Springer, Berlin, Heidelberg, Dec. 2005,
pp. 61–71. doi: 10.1007/11602897_6.

[37] Yong Li, Willy Susilo, Yi Mu, and Dingyi Pei. “Designated Verifier Signature:
Definition, Framework and New Constructions”. In: Ubiquitous Intelligence and
Computing, 4th International Conference, UIC 2007, Hong Kong, China, July
11-13, 2007, Proceedings. Ed. by Jadwiga Indulska, Jianhua Ma, Laurence Tianruo
Yang, Theo Ungerer, and Jiannong Cao. Vol. 4611. Lecture Notes in Computer
Science. Springer, 2007, pp. 1191–1200. doi: 10.1007/978-3-540-73549-6_116.

[38] Helger Lipmaa, Guilin Wang, and Feng Bao. “Designated Verifier Signature
Schemes: Attacks, New Security Notions and a New Construction”. In: ICALP
2005. Ed. by Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia
Palamidessi, and Moti Yung. Vol. 3580. LNCS. Springer, Berlin, Heidelberg,
July 2005, pp. 459–471. doi: 10.1007/11523468_38.

[39] Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol. https:
//signal.org/docs/specifications/x3dh/. November 2016.

[40] Geontae Noh and Ik Rae Jeong. “Strong designated verifier signature scheme
from lattices in the standard model”. In: Security and Communication Networks
9.18 (2016), pp. 6202–6214. doi: 10.1002/SEC.1766.

[41] Rafael Pass. “On Deniability in the Common Reference String and Random Oracle
Model”. In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, Berlin,
Heidelberg, Aug. 2003, pp. 316–337. doi: 10.1007/978-3-540-45146-4_19.

[42] Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. “Indistinguishability
Obfuscation from Bilinear Maps and LPN Variants”. In: TCC 2024, Part IV.
Ed. by Elette Boyle and Mohammad Mahmoody. Vol. 15367. LNCS. Springer,
Cham, Dec. 2024, pp. 3–36. doi: 10.1007/978-3-031-78023-3_1.

[43] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret”.
In: ASIACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. LNCS. Springer, Berlin,
Heidelberg, Dec. 2001, pp. 552–565. doi: 10.1007/3-540-45682-1_32.

[44] Michal Rjaško and Martin Stanek. On Designated Verifier Signature Schemes.
Cryptology ePrint Archive, Report 2010/191. 2010. url: https://eprint.iacr.
org/2010/191.

https://doi.org/10.1007/978-3-031-22972-5_10
https://eprint.iacr.org/2025/118
https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/pqxdh/
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/11602897_6
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/11523468_38
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1002/SEC.1766
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-031-78023-3_1
https://doi.org/10.1007/3-540-45682-1_32
https://eprint.iacr.org/2010/191
https://eprint.iacr.org/2010/191

On Deniable Authentication against Malicious Verifiers 39

[45] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch. “An Efficient Strong
Designated Verifier Signature Scheme”. In: ICISC 03. Ed. by Jong In Lim and
Dong Hoon Lee. Vol. 2971. LNCS. Springer, Berlin, Heidelberg, Nov. 2004, pp. 40–
54. doi: 10.1007/978-3-540-24691-6_4.

[46] Amit Sahai and Brent Waters. “How to use indistinguishability obfuscation:
deniable encryption, and more”. In: 46th ACM STOC. Ed. by David B. Shmoys.
ACM Press, 2014, pp. 475–484. doi: 10.1145/2591796.2591825.

[47] Daniel Shanks. “Class number, a theory of factorization, and genera”. In: 1969
Number Theory Institute. Ed. by Donald J. Lewis. Vol. 20. Proceedings of Symposia
in Pure Mathematics. Providence, Rhode Island: American Mathematical Society,
1971, pp. 415–440. isbn: 0–8218–1420–6. doi: 10.1090/pspum/020/0316385.

[48] Kyung-Ah Shim. “Rogue-key attacks on the multi-designated verifiers signature
scheme”. In: Inf. Process. Lett. 107.2 (2008), pp. 83–86. doi: 10.1016/J.IPL.
2007.11.021.

[49] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”.
In: EUROCRYPT’97. Ed. by Walter Fumy. Vol. 1233. LNCS. Springer, Berlin,
Heidelberg, May 1997, pp. 256–266. doi: 10.1007/3-540-69053-0_18.

[50] Xi Sun, Haibo Tian, and Yumin Wang. “Toward Quantum-Resistant Strong
Designated Verifier Signature from Isogenies”. In: 2012 Fourth International
Conference on Intelligent Networking and Collaborative Systems, INCoS 2012,
Bucharest, Romania, September 19-21, 2012. Ed. by Fatos Xhafa, Leonard Barolli,
Florin Pop, Xiaofeng Chen, and Valentin Cristea. IEEE, 2012, pp. 292–296. doi:
10.1109/INCOS.2012.70.

[51] P. Thanalakshmi, R. Anitha, N. Anbazhagan, Chulho Park, Gyanendra Prasad
Joshi, and Changho Seo. “A Hash-Based Quantum-Resistant Designated Verifier
Signature Scheme”. In: Mathematics 10.10 (2022). issn: 2227-7390. doi: 10.3390/
math10101642.

[52] Haibo Tian, Xiaofeng Chen, and Jin Li. “A Short Non-delegatable Strong Desig-
nated Verifier Signature”. In: ACISP 12. Ed. by Willy Susilo, Yi Mu, and Jennifer
Seberry. Vol. 7372. LNCS. Springer, Berlin, Heidelberg, July 2012, pp. 261–279.
doi: 10.1007/978-3-642-31448-3_20.

[53] Raylin Tso, Takeshi Okamoto, and Eiji Okamoto. “Practical Strong Designated
Verifier Signature Schemes Based on Double Discrete Logarithms”. In: Information
Security and Cryptology, First SKLOIS Conference, CISC 2005, Beijing, China,
December 15-17, 2005, Proceedings. Ed. by Dengguo Feng, Dongdai Lin, and Moti
Yung. Vol. 3822. Lecture Notes in Computer Science. Springer, 2005, pp. 113–127.
doi: 10.1007/11599548_10.

[54] Nik Unger and Ian Goldberg. “Deniable Key Exchanges for Secure Messaging”.
In: ACM CCS 2015. Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel.
ACM Press, Oct. 2015, pp. 1211–1223. doi: 10.1145/2810103.2813616.

[55] Nik Unger and Ian Goldberg. “Improved Strongly Deniable Authenticated Key
Exchanges for Secure Messaging”. In: PoPETs 2018.1 (Jan. 2018), pp. 21–66. doi:
10.1515/popets-2018-0003.

[56] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk.
“On the Cryptographic Deniability of the Signal Protocol”. In: ACNS 20Inter-
national Conference on Applied Cryptography and Network Security, Part II.
Ed. by Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spog-
nardi. Vol. 12147. LNCS. Springer, Cham, Oct. 2020, pp. 188–209. doi: 10.1007/
978-3-030-57878-7_10.

https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1090/pspum/020/0316385
https://doi.org/10.1016/J.IPL.2007.11.021
https://doi.org/10.1016/J.IPL.2007.11.021
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1109/INCOS.2012.70
https://doi.org/10.3390/math10101642
https://doi.org/10.3390/math10101642
https://doi.org/10.1007/978-3-642-31448-3_20
https://doi.org/10.1007/11599548_10
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/978-3-030-57878-7_10

40 R. Fiedler, R. Langrehr

[57] Fenghe Wang, Yupu Hu, and Baocang Wang. “Lattice-based strong designate
verifier signature and its applications”. In: Malaysian Journal of Computer Science
25 (1 2012), pp. 11–22.

[58] Yunmei Zhang, Man Ho Au, Guomin Yang, and Willy Susilo. “(Strong) Multi-
Designated Verifiers Signatures Secure against Rogue Key Attack”. In: Network
and System Security - 6th International Conference, NSS 2012, Wuyishan, Fujian,
China, November 21-23, 2012. Proceedings. Ed. by Li Xu, Elisa Bertino, and Yi
Mu. Vol. 7645. Lecture Notes in Computer Science. Springer, 2012, pp. 334–347.
doi: 10.1007/978-3-642-34601-9_25.

https://doi.org/10.1007/978-3-642-34601-9_25

On Deniable Authentication against Malicious Verifiers 41

Setup′():
1 return Setup()

SKGen′(pp):
2 return SKGen(pp)

VKGen′(pp, idD):

3 (pkD, skD) $← VKGen(pp, idD)
4 return (pkD||0, skD)

Sign′(pp, skS , pkD||a, idD, m):

5 σ $← Sign(pp, skS , pkD, idD, m)
6 if a = 1 then return σ||skS

7 return σ

Sim′(pp, pkS , skD, idD, m):
8 return Sim(pp, pkS , skD, idD, m)

Vrfy′(pp, pkS , pkD, idD, m, σ||b):
9 return Vrfy(pp, pkS , pkD, idD, m, σ)

Fig. 11. A DVS scheme DVS′ = (Setup′, SKGen′, VKGen′, Sign′, Sim′, Vrfy′) based on
a DVS scheme DVS = (Setup, SKGen, VKGen, Sign, Sim, Vrfy) that is unforgeable and
source hiding. Separates uf and mal-uf (see Theorem 13), as well as sh and s-mal-sh
(see Theorem 14).

A Separations of security notions for DVS

Here, we separate our new security notions for DVS against malicious verifiers
from the existing ones against honest verifiers. While malicious unforgeability
is strictly stronger than (honest) unforgeability), source hiding and simplified
malicious source hiding are actually incomparable.

DVS unforgeability. We begin with separating unforgeability from malicious
unforgeability.

Theorem 13. Assume an (t, ε, qS , qV , qVK)-unforgeable DVS scheme exists, then
there exists a DVS scheme that is (t, ε, qS , qV , qVK)-unforgeable and not (t′, ε′, q′S ,
q′V , q′VK)-malicious unforgeable for arbitrary t′, q′V , q′VK , and q′S ≥ 1 and ε′ < 1.

Proof. Given an unforgeable DVS scheme DVS, we build DVS′ as shown in
Figure 11: VKGen′ appends a zero bit to the public key. Sign′ checks the extra
bit of the verifier’s public key: If it is 1, it appends skS to the signature. All other
algorithms ignore the extra bit and work the same way as DVS.

This scheme retains unforgeability of DVS since the adversary cannot trigger
the special condition in Sign′ within the Sign oracle with honestly generated
verifier keys.

However, this scheme is not malicious unforgeable: The adversary can run
VKGen′(pp, idD) (for some idD ∈ IDS) to obtain (pkD||0, skD) and query the
signing oracle on the public key and identity pkD||1, idD for any message. Thereby
it learns the signer’s secret key and can sign any message from the challenge
signer designated for the challenge verifier. ⊓⊔

On the other hand, malicious unforgeability implies (honest) unforgeability
since any adversary that breaks (honest) unforgeability also breaks malicious
unforgeability.

42 R. Fiedler, R. Langrehr

DVS source hiding. Next, we show that source hiding and simplified malicious
source hiding are incomparable. On a technical note, we additionally need to
assume that it is not feasible to compute secret keys from public keys (and other
public information) in the first separation. Observe that this is a reasonable
assumption since otherwise anybody can forge signatures.

Theorem 14. Assume a (t, ε, qC)-source hiding DVS scheme exists for which it
is not feasible to compute the secret key from public information (including the
public key), then there exists a DVS scheme that is (t, ε, qC)-source hiding and not
(tA, tE , tD, ε′, qVK)-simplified malicious source hiding for arbitrary tA, tE , tD, qR,
and ε′ < 1.

Proof. Once more, we use the scheme shown in Figure 11, which appends a 0 to
honestly generated public keys and where signing designated for verifier public
keys with a trailing 1 leaks the signer secret key.

The scheme retains source hiding of DVS since the adversary cannot trigger
the special condition in Sign′ within the Chall oracle with honestly generated
verifier keys.

However, the scheme is not simplified malicious source hiding: The adversary
can run VKGen′(pp, idD) (for some idD ∈ IDS) to obtain (pkD||0, skD) and query
the challenge oracle on the public key and identity pkD||1, idD for any message.
Due to the trailing 1 bit of the public key, the signature now has the signer secret
key appended. For b = 1, the extractor needs to produce a signature with skS

appended, even though the adversary does not know skS . Hence, if the extractor
succeeds, it must be able to compute the secret key skS from public information,
contradicting our assumption. ⊓⊔

The perhaps surprising separation from simplified malicious source hiding
to source hiding can intuitively be explained with the source hiding adversary
having access to the challenge signer secret key skS and the challenge oracle
Chall at the same time, which neither the adversary nor the distinguisher in
the s-mal-sh game have.

Theorem 15. Assume a (tA, tE , tD, ε, qVK)-simplified malicious source hiding
DVS scheme exists, then there exists a DVS scheme that is (tA, tE , tD, ε− 2−λ,
qVK)-simplified malicious source hiding and for all possible choices of Sim′ not
(t, 3/4, 1)-source hiding for arbitrary t and for any λ ∈ N.

Proof. Given a simplified malicious source hiding DVS scheme DVS we construct
a new DVS scheme DVS′ as described in Figure 12: Key generation appends a
randomly sampled bit string r of length λ to the secret key and when calling
Sign′ with the signer secret key as message the algorithm appends a 1 bit to the
signature and otherwise a 0 bit and Vrfy′ ignores the extra bit.

The scheme DVS′ retains simplified malicious source hiding of DVS. The
extractor for DVS′ runs the extractor for DVS on its own input and returns the
resulting signature with an appended 0 bit. Since the view of the adversary is
independent of r, the probability that it made a query where Sign′ would append
a 1 bit is at most 2−λ.

On Deniable Authentication against Malicious Verifiers 43

Setup′():
1 return Setup()

SKGen′(pp):

2 (pkS , skS) $← SKGen(pp)
3 r $← {0, 1}λ

4 return (pkS , (skS , r))
VKGen′(pp, idD):
5 return VKGen(pp, idD)

Sign′(pp, sk′
S = (skS , r), pkD, idD, m):

6 σ $← Sign(pp, skS , pkD, idD, m)
7 if m = sk′

S then return σ||1
8 return σ||0

Vrfy′(pp, pkS , skD, idD, m, σ||b):
9 return Vrfy(pp, pkS , skD, idD, m, σ)

Fig. 12. A DVS scheme DVS′ = (Setup′, SKGen′, VKGen′, Sign′, Vrfy′) that is simplified
malicious source hiding but not source hiding, based on a DVS scheme DVS = (Setup,
SKGen, VKGen, Sign, Sim, Vrfy) that is simplified malicious source hiding (see Theo-
rem 15). In Theorem 15 we show that no algorithm Sim′ can exist.

However, the scheme DVS′ is not source hiding: The adversary first obtains
a verifier key with the VKey oracle10. Next, it parses the signer secret key
as (skS , r) ← sk′S , samples r∗ $← {0, 1}λ, and sets sk∗S ← (skS , r∗). Now, the
adversary flips a bit b′′ $← {0, 1} and queries the Chall oracle on the messages
sk′S if b′′ = 1 or sk∗S if b′′ = 0. The adversary outputs the guess 0 if the last bit of
the signature received from Chall matches b′′ and 1 otherwise.

If the game is played with b = 0 (where Chall uses DVS′.Sign′), the adversary
always outputs the correct bit. If the game is played with b = 1, the inputs to
the Sim′ algorithm are statistically independent of r and thus sk′S and sk∗ are
identically distributed given only the inputs of Sim′. Thus, the last bit of the
signature it outputs is statistically independent of b′′ and the adversary guesses
b′′ correctly with probability 3/4. ⊓⊔

B On the deniability of Signal’s initial handshake X3DH

In Section 5.2 we show that the EKDH assumption is broken. Here, we use the
same strategy to show that Signal’s (former) initial handshake protocol X3DH is
not deniable if the auxiliary input contains a hint on a public key, and the hinted
CDH problem is hard for an algorithm bound to the runtime of the simulator
(roughly corresponding to the extractor in our simplified malicious source hiding
definition), but not for an algorithm bound to the runtime of the distinguisher.

Let us briefly review the X3DH handshake with the help of Figure 13. All
parties have a long-term DH key pair, several semi-static DH key pairs (which
are used for several sessions each), and ephemeral DH key pairs (each used only
once). Furthermore, parties have a long-term signing key, which they use to
authenticate their semi-static public keys. First, Bob builds a so-called pre-key
bundle, which is peer independent, and consists of his long-term public keys, his
10 Keep in mind that this oracle is provided by the sh game, whereas the s-mal-sh game

provides a VKeys oracle.

44 R. Fiedler, R. Langrehr

KGenLT:
1 (ltpkDH

U , ltskDH
U) $← DH.KGen()

2 (ltpkΣ
U , ltskΣ

U) $← Σ.KeyGen()
3 return

(
(ltpkDH

U , ltpkΣ
U), (ltskDH

U , ltskΣ
U)
)

KGenSS:
4 (sspkDH

U , ssskDH
U) $← DH.KGen()

5 (sspkKEM
U , ssskKEM

U) $← KEM.KGen()

6 return
(

(sspkDH
U , sspkKEM

U), (ssskDH
U , ssskKEM

U)
)

Alice Bob

Run(ltskB , ltpk, ssskB, sspk, πB , m0)
(create, (ssid, eDH, eKEM))← m0
πB .pid← ⋆
(sspkDH

B , sspkKEM
B)← sspkssid

B

if σssid
DH = ⊥ //saved from a previous run?

σssid
DH

$← Sign(ltskB , sspkDH
B)

if eDH = true
(epkDH

B , eskDH
B) $← DH.KeyGen()

else
epkDH

B ← ⊥
if eKEM = true

(epkKEM
B , eskKEM

B) $← KEM.KeyGen()
σKEM

$← Sign(ltskB , epkKEM
B)

else
if σssid

KEM = ⊥ //saved from a previous run?

σssid
KEM

$← Sign(ltskB , sspkKEM
B)

σKEM ← σssid
KEM

epkKEM
B ← ⊥

epkB ← (epkDH
B , epkKEM

B)
m1 ← (B, ssid, σssid

DH , epkB , σKEM)
return (πB , m1)

m1

Run(ltskA, ssskA, ltpk, sspk, πA, m1)
(epkDH

A , eskDH
A) $← DH.KGen()

(B, ssid, σssid
DH , epkB , σKEM)← m1

(sspkDH
B , sspkKEM

B)← sspkssid
B

(epkDH
B , epkKEM

B)← epkB

if Σ.Ver(ltpkB , sspkDH
B , σssid

DH) = false
return (πA, ε, ε)

DH1 ← DH(ltskA, sspkDH
B)

DH2 ← DH(eskDH
A , ltpkB)

DH3 ← DH(eskDH
A , sspkDH

B)
if epkDH

B ̸= ⊥ //ephemeral DH key present

DH4 ← DH(eskDH
A , epkDH

B)
else

DH4 ← ε
if epkKEM

B ̸= ⊥ //ephemeral KEM key present

if Σ.Ver(ltpkB , epkKEM
B , σKEM) = false

return (πA, ε, ε)
(ct, ss) $← KEM.Encaps(epkKEM

B)
else //no ephemeral KEM key present

if Σ.Ver(ltpkB , sspkKEM
B , σKEM) = false

return (πA, ε, ε)
(ct, ss) $← KEM.Encaps(sspkKEM

B)
ms← DH1||DH2||DH3||DH4||ss
πA.K← KDF(ms)
πA.pid← B
m2 ← (A, epkDH

A , ct)
return (πA, m2)

m2

Run(ltskB , ssskB, ltpk, sspk, πB , m2)
(ssskDH

B , ssskKEM
B)← ssskssid

B

(A, epkDH
A , ct)← m2

DH1 ← DH(ltpkA, ssskDH
B)

DH2 ← DH(epkDH
A , ltskB)

DH3 ← DH(epkDH
A , ssskDH

B)
if epkDH

B ̸= ⊥ //ephemeral DH key present

DH4 ← DH(epkDH
A , eskDH

B)
else

DH4 ← ε
if epkKEM

B ̸= ⊥ //ephemeral KEM key

presentss← KEM.Decaps(eskKEM
B , ct)

else //no ephemeral KEM key present

ss← KEM.Decaps(ssskKEM
B , ct)

ms← KDF(DH1||DH2||DH3||DH4||ss)
πB .K← KDF(ms)
πB .pid← A
return (πB , ε)

Fig. 13. Signal’s initial handshake protocols X3DH and PQXDH, following the
presentation of [23, Figure 3] (but without the AEAD and user messages). The
KEM with gray background is exclusive to PQXDH.

On Deniable Authentication against Malicious Verifiers 45

semi-static public key including the signature, and, optionally, his ephemeral
public key. Upon receiving Bob’s pre-key bundle, Alice verifies the signature
and computes several DH combinations: long-term–semi-static, ephemeral–long-
term, ephemeral–semi-static, and, if Bob’s pre-key bundle contains an ephemeral
key, ephemeral–ephemeral. She uses KDF to derive the session key from these
four DH shared secrets and sends her ephemeral public key to Bob, who can
compute the session key in the same way. Alice’s message can be combined with
an AEAD ciphertext of her first user message (such as “Hi Bob, how’re you
doing?”) encrypted under the session key11. In this case, Bob decrypts the AEAD
ciphertext and aborts if decryption fails. Whether this AEAD ciphertext is part
of the initial handshake is ambiguous [39, 33]. Vatandas et al. [56] did not model
the AEAD ciphertext as part of the initial handshake12, while [23] did. We do
not consider the AEAD as part of the initial handshake.

Our result contrasts the result of [56], which shows deniability assuming the
EKDH assumption without restricting the admissible auxiliary inputs. We embed
a hinted CDH challenge as auxiliary input and leverage the difference in runtime
between simulator and distinguisher to exclude and ensure breaking the hinted
CDH assumption with different parameters. Though, this does not invalidate the
results of [23], since they use a specific class of auxiliary inputs, i.e., one pre-key
bundle per user and semi-static key13. This does not include a hint on a public
key and therefore we cannot reduce deniability of X3DH to breaking the hinted
CDH assumption for this class of auxiliary inputs.

Our attack relies on embedding a hinted CDH challenge and not on the
presence or absence of the AEAD ciphertext in Alice’s message. Hence, we expect
our attack to transfer even if one considers the AEAD ciphertext as part of
Alice’s message, assuming the AEAD scheme achieves INT-CTXT.

Our attack also applies to the deniability of PQXDH if the auxiliary inputs
lend themselves to building a hinted CDH challenge. For auxiliary inputs that
do not facilitate forming a hinted CDH challenge our results do not rule out
deniability, as discussed above.

We borrow the deniability definition of Vatandas et al. [56, Definition 5], which
adapts the definition of Di Raimondo et al. [17, Definition 2] to concrete security,
and we adapt it further for syntactical differences and more detailed treatment of
auxiliary inputs. In particular, both prior definitions have quantified the auxiliary
input before the simulator. This allows the simulator to arbitrarily depend on the
auxiliary input, including on all secret keys corresponding to public keys used in
the auxiliary input. Furthermore, both definitions first quantify auxiliary inputs
and then sample keys. However, inspection of their proofs suggests that the

11 More specifically, encrypted under a key derived from the session key. But the details
of Signal’s key scheduling do not affect our results.

12 They consider only two different lifetimes for Bob as well; it is not immediately
obvious if they dropped semi-static or ephemeral keys, as discussed in [23].

13 They use the auxiliary input to ensure that a signature is available when faking a
transcript. They also have a second setting in which the Fake algorithm learns the
signature from an oracle. In this second setting they do not rely on auxiliary inputs.

46 R. Fiedler, R. Langrehr

auxiliary input depends on the sampled keys. Hence, we use a sampling algorithm
for auxiliary inputs AuxPrep that depends on the sampled keys. This auxiliary
input sampled with AuxPrep, called aux1 below, can be used to help the simulator.
In contrast, we add a second auxiliary input that can help the adversary to the
disadvantage of the simulator. This second input, called aux2, models arbitrary
data that the adversary may have access to, following our approach for simplified
malicious source hiding of DVS (cp. Definition 19). We will use this aux2 to
embed a public key for the hinted CDH challenge that, allowing us to disprove
deniability of X3DH. Though, the basic idea, including that the adversary’s view
from interacting with an oracle is compared to a simulated view, remains the
same.

Definition 22 (Deniable Key Exchange (adapted from [17, 56])). An
AKE protocol Π = (KGenLT, KGenSS, Run) is a (tA, tS , tD, εD)–concurrently
deniable key exchange protocol wrt. auxiliary input sampler AuxPrep if for any
adversary A running in time tA,there exists a simulator SIM running in time
tS ,such that for the two distributions
Real():

1 Lpk ← ∅;Lsk ← ∅
2 for U ∈ [np]
3 (ltpkU , ltskU) $← KGenLT()
4 for ssid ∈ [nss]
5 (sspkssid

U , ssskssid
U) $← KGenSS()

6 Lpk ← Lpk∪{ltpkU , {sspkssid
U }ssid∈[nss]}

7 Lsk ← Lsk ∪ {ltskU , {ssskssid
U }ssid∈[nss]}

8 aux1
$← AuxPrep(Lpk,Lsk)

9 aux ← (aux1, aux2)
10 return (aux,Lpk, V iew(A(Lpk, aux)))

Sim():
11 Lpk ← ∅;Lsk ← ∅
12 for U ∈ [np]
13 (ltpkU , ltskU) $← KGenLT()
14 for ssid ∈ [nss]
15 (sspkssid

U , ssskssid
U) $← KGenSS()

16 Lpk ← Lpk∪{ltpkU , {sspkssid
U }ssid∈[nss]}

17 Lsk ← Lsk ∪ {ltskU , {ssskssid
U }ssid∈[nss]}

18 aux1
$← AuxPrep(Lpk,Lsk)

19 aux ← (aux1, aux2)
20 return (aux,Lpk, SIM(Lpk, aux))

we have for all probabilistic polynomial time D and all aux2 ∈ {0, 1}∗∣∣∣∣ Pr
x∈Real()

[D(x) = 1]− Pr
x∈Sim()

[D(x) = 1]
∣∣∣∣ ≤ εD.

Equipped with this definition we proceed to show that deniability of X3DH
does not hold under our Definition 22 if we leverage the auxiliary input to pass a
hinted CDH challenge to the adversary and appropriate parameters.

Theorem 16. If G = (G, g, q) is a group where the (t, ε, η)-hinted CDH assump-
tion holds for ε < 1, but the (t′, ε′, η)-hinted CDH assumption (for some t < t′)
does not hold, and we model KDF as random oracle, then the X3DH protocol over
G as described in Figure 13 is not (tA, tS , tD, εD)-deniable wrt. auxiliary inputs
sampled with any AuxPrep for tA small, tS ≈ t, tD ≈ t′ and εD ≤ ε′ − ε/2.

Proof. For the real distribution, the adversary A(Lpk, aux = (aux1, (gz, ⌊z/η⌋))
can set gz as long-term public key for some party Alice, sample eskA = x $← G,
and compute epkA ← gx as an ephemeral public key. Next, it runs a session
between Alice with ephemeral public key epkA and some party Bob, where the

On Deniable Authentication against Malicious Verifiers 47

adversary controls Alice and accesses its oracle for Bob. After this one session,
the adversary terminates. In the simulated distribution, the simulator has to
produce indistinguishable output upon receiving the same input and without
oracle access.

The distinguisher now gets the auxiliary input aux, the list of public keys
Lpk, the transcript of messages, the session key(s) computed by the oracle, and
the randomness of the adversary. The distinguisher can first run the adversary
AHCDH′ against the (t′, ε′, η)-hinted CDH assumption on input auxHCDH = (sspkB ,
gz, ⌊z/η⌋), where sspkB is Bob’s semi-static public key in the session above. The
hinted CDH adversary AHCDH′ outputs D̃H1, and the distinguisher can compute
DH2, DH3, DH4 with the knowledge of Alice’s ephemeral secret key eskA, which it
obtains from the adversary’s randomness. Finally, the distinguisher recomputes
the session key as K̃ ← KDF(D̃H1, DH2, DH3, DH4). If K̃ is identical to the session
key provided to the distinguisher as input, it outputs 0, otherwise 1.

The runtime of the distinguisher is dominated by the runtime of the hinted
CDH adversary t′, since all it otherwise does is getting eskA from the randomness
of A as well as computing DH and KDF.

If the distinguisher got a sample from the real distribution, it answers correctly
iff the hinted CDH adversary AHCDH′ succeeds, i.e., with probability > ε′. Next,
observe that the simulator runs in time tS ≈ t and, by the (t, ε, η)-hinted CDH
assumption, can compute D̃H1 with probability ≤ ε. If the distinguisher got a
sample from the simulated distribution, it answers correctly iff AHCDH′ succeeds
and the simulator fails to compute D̃H1: If both the simulator and AHCDH′ succeed,
then the distinguisher falsely classifies the sample as real, which happens with
a probability ≤ ε. If only AHCDH′ succeeds, the distinguisher correctly classifies
the sample as simulated: Since the simulator does not know D̃H1 it cannot learn
the session key, which is a random oracle output on values including D̃H1. This
happens with probability > ε′ − ε All in all, the distinguisher succeeds with
probability > ε′ − ε/2.

The same proof strategy works for a malicious Bob: Embed the hinted CDH
challenge as ephemeral, semi-static, or long-term key and sample the other two
key pairs honestly (so that the distinguisher can learn those two secrets). If the
challenge is embedded as Alice’s ephemeral key (or as Bob’s semi-static key,
respectively), the distinguisher needs to solve three (or two, respectively) hinted
CDH challenges, since these keys are used for more than one DH operation. In
that case the distinguisher would need to run the hinted CDH adversary AHCDH′

two or three times. We can account for that with tD ≈ 3t′. Similarly, the winning
probability now needs to take into account that the hinted CDH adversary is
run more than once. To put it in a nutshell, we can embed the hinted public
key as any key of Alice or Bob. Embedding the key in Alice’s long-term, Bob’s
long-term, or Bob’s ephemeral key results in an attack with the given parameters.
When embedding the key in Alice’s ephemeral or Bob’s semi-static key, we may
need to allow for a longer runtime of the distinguisher or worse advantage. ⊓⊔

48 R. Fiedler, R. Langrehr

C Omitted lemma

Lemma 11. For ε ∈ [0, 1), δ ∈ [0, 1− ε] we have ε/(1− δ) ≤ ε + δ.

Proof. The inequality ε/(1− δ) ≤ ε + δ can be rearranged to 0 ≤ δ − εδ − δ2 =
δ(1− ε− δ). Clearly the inequality holds in the edge cases δ = 0 and δ = 1− ε.
It also holds for all δ ∈ (0, 1− ε): because the function

f : R→ R
δ 7→ δ − εδ − δ2

is continuous, there exists a δ ∈ (0, 1− ε) such that f(δ) > 0 (this can be seen
for example by observing that the derivative f ′(δ) = 1 − ε − 2δ is positive for
δ = 0), and δ ∈ {0, 1 − ε} are the only roots of f . Under these conditions the
intermediate value theorem guarantees f(δ) > 0 for δ ∈ (0, 1− ε). ⊓⊔

	 On deniable authentication against malicious verifiers

