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Abstract—Chat groups in secure messaging applications such
as Signal, Telegram, and Whatsapp are nowadays used for
rapid and widespread dissemination of information to large
groups of people. This is common even in sensitive contexts,
associated with the organisation of protests, activist groups,
and internal company dialogues. Manual administration of
who has access to such groups quickly becomes infeasible, in
the presence of hundreds or thousands of members.

We construct a practical, privacy-preserving reputation
system, that automates the approval of new group members
based on their reputation amongst the existing membership.
We demonstrate security against malicious adversaries in
a single-server model, with no further trust assumptions
required. Furthermore, our protocol supports arbitrary
reputation calculations while almost all group members
are offline (as is likely). In addition, we demonstrate
the practicality of the approach via an open-source
implementation. For groups of size 50 (resp. 200), an admission
process on a user that received 40 (resp. 80) scores requires
1312.2 KiB (resp. 5239.4 KiB) of communication, and 3.3 s
(resp. 16.3 s) of overall computation on a single core.
While our protocol design matches existing secure messaging
applications, we believe it can have value in distributed
reputation computation beyond this problem setting.

1. Introduction

The point-to-point communication model of the Diffie-
Hellman era is rapidly losing relevance relative to modern
wide-scale message dissemination models. Today, secure
messaging groups provide town squares for wide-scale
organising and information dispersal. Generally, messaging
services allow group chats to be formed by direct
invite by one or more administrators (closed groups),
or by generating and openly sharing an invite link that
automatically grants access to anybody that receives it (open
groups). However, as groups grow into hundreds, or even
thousands of members, manual administration of who has
access to potentially sensitive content becomes infeasible to
maintain — even when such responsibility is split across
multiple individuals. In protest/active organisation [1] and
internal company dialogues, the management of such access
is pivotal to ensuring that outsiders/competitors cannot take
advantage of learning sensitive information.

When deciding whether to give access to a secure
channel to a new party, an alternative to manual access

control is to automatically poll already-trusted parties, to
compute a reputation score for the potential new member.
In such scenarios, we assume that anyone who has a
positive reputation score with current group members is
likely someone who would be admitted under a manual
administration framework. Clearly, canvassing such opinions
directly exposes the voters to leaking their (preferential)
social network. Therefore, such reputation systems must
provide meaningful privacy guarantees for individual scores.

General-purpose multi-party computation [32] (MPC)
or e-voting [7] protocols appear as potential solutions.
However, current incarnations of such protocols are at
best cumbersome, and at worst completely unviable. For
instance, in many real-world systems voters are frequently
offline and under strict bandwidth and power constraints.
Furthermore, MPC and e-voting designs often rely on
strong trust assumptions over the non-collusion of protocol
entities, which cannot be meaningfully attained in real-
world deployments (where such entities have explicit co-
dependencies). Even in more targeted reputation systems,
such trust assumptions remain present (e.g. in the form of
utilising mixnets of non-colluding nodes) [18].

Our work. We formalise, construct, and implement
reputable group formation systems for secure messaging
applications, that allow for practical semi-open groups. A
semi-open group allows joining via URLs, but admission
is managed automatically, rather than manually. The
admission process depends on the joining user’s perceived
reputation within the group, based on past votes issued
by group members. At all times, it is guaranteed that the
confidentiality of votes (either counted or not counted)
is maintained, as well as the anonymity of the voters
themselves. The protocol takes place between a single online
device in the group, the application server (e.g. run by
Signal), and the target user. After completion, the admitted
user joins the standard continuous group-key agreement
protocol used by contemporary messaging applications [28].

In terms of the design, we define a new protocol
(Section 6) that relies on minimal cryptography, based only
on standard cryptographic groups (e.g. Ristretto255 [13]).
Along the way, we build novel shuffled exponentiation
interactions (Section 3) that may be of independent
interest. With these building blocks, we characterise
system (Section 4) and security models (Section 5) that
such protocols must satisfy. Ultimately, we show that
our construction maintains security against a malicious



adversary that corrupts multiple group-affiliated individuals
in parallel. We implement our construction (Section 7)
and show that it can handle groups of hundreds of
members with low and linearly scaling communication
and computation overheads (e.g. 5239.4 KiB, and 16.3 s
of overall computation for a group of 200). Note that
performance is completely independent of the size of the
universe of users,1 and only depends on the size of the
group admitting the Ui∗ . We discuss remaining limitations
and avenues for future work in Section 9, and note that
our protocol is amenable to adaptations that guarantee more
advanced functionality and security properties, in the face
of stronger collusion models (Section 8).
Formal contributions.
• A novel and practical verifiable permuted

exponentiation (VEP) protocol, based on the hardness
of Decisional Diffie-Hellman (DDH) problem. Such a
protocol takes a list A = (a1, . . . , an) ∈ Gn of group
elements, and produces a list B = (akσ(1), . . . , a

k
σ(n))

for some secret exponent k ∈ Fp, and secret
permutation σ : [n] 7→ [n].

• An ideal system and security model for constructing
practical reputation tallying protocols, and proving
security against malicious adversaries.

• A practical construction of such a tallying system,
based on DDH, said VEP interaction and NIZK proofs
of discrete log relations. We also provide adaptations
that handle more complex collusion scenarios, such as
those involving the server and any user, and additional
functionality requirements.

• An open-source implementation and benchmarks2

demonstrating the real-world viability of our system.

1.1. Technical Overview

We now introduce the reader to the technical heart of our
work. During design, our starting point was functionality.
Ideally, we wanted a system where the reputation of any
user Ui∗ could be computed by a group G of individuals.
While this could be done using a generic e-voting scheme,
such a solution would require the group members being
online during the voting phase for their vote to be counted.
It would also mean that any individual Ui ∈ G may have to
vote multiple times for the same user, if Ui∗ tried to access
multiple groups where Ui was a member of.

Our approach permits any individual Ui to vote on a
target Ui∗ at any point during their lifetime, even before
group formation. These votes are encrypted into ballots, that
are delivered to the server, and collected under Ui∗’s identity.
Our core contribution is building intersection functionality
that allows, at a later stage, to fetch ballots under Ui∗
identity, detect which belong to members of a given group
G that Ui∗ is trying to access, and decrypt them, without
linking any ballot to a specific group member. Notably, we
do not discuss a specific measure of reputation. Rather, we

1. As opposed to solutions based on ring signatures.
2. https://github.com/luizabrs/semi-open-messaging-groups
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Figure 1. User registration phase.

view our protocol to be essentially a very specific multi-
party computation (MPC) scheme, that instantiates this
“intersection” functionality, and returns the decrypted votes
“belonging” to a group. This allows significant flexibility in
the choice of reputation function to compute.

To illustrate the overall approach, we will describe
here a simpler variant of our scheme that is secure only
in an honest-but-curious setting, that allows a single vote
to be expressed by Ui on Ui∗ , and that assumes an
adversary corrupting the server does not corrupt any other
entity associated (or who becomes associated) with G.
Ultimately, we give a protocol that satisfies malicious
security (Section 6), and we show that the other limitations
can also be overcome, as described in Sections 8.1 and 8.2.
Overall design. Throughout the following protocol phases,
g generates a group of prime-order p, where discrete log
and decisional Diffie-Hellman (Definition 2.1) are hard
problems. In the following description, we will describe the
protocol steps, in conjunction with figs. 1 to 5. Each figure
defines a set of algorithms that are later defined formally in
Section 6.

The first phase of the protocol is user registration, see
fig. 1. Here, a user Ui generates two secret exponents vi, ui,
and a public group element upkui = gui . The element upki
acts as a public key in the system, allowing other users to
vote on Ui, while vi can be seen as a voting secret key,
allowing Ui to vote on different users.

At any point in time after registration, user Ui may
decide to express a vote on a target user Uj , see fig. 2. Ui
may choose a score xi,j from a polynomial-sized domain D,
and deterministically encrypt it in the exponent as a ballot
yi,j = (upkuj )

vi · gxi,j . This vote can then be sent via an
anonymous channel (e.g. Tor [15] or Oblivious HTTP [31])
to the server S and U.3 It should be noted that since gvi is
never published, Uj cannot recover the vote from the ballot.

At any time, a small number of users can create a
“semi-open” group G (see fig. 3). Here, enough users
should be present that an automatic reputation value could
be meaningfully estimated. In this initial phase, all users
are considered trustworthy, and are automatically included.
During group creation, the server generates a group-specific
private exponent sG and a corresponding public key spkG =
gsG , which is provided to every group member (or possibly

3. Note that protocol variants may choose to not send such ballots to the
user themselves, see Section 8.2.

https://github.com/luizabrs/semi-open-messaging-groups
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Figure 2. Voting process.
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Figure 3. Initial group creation.

to a specific “admin” member that created the group, and
that distributes it to the other members). Every group
member uses ther private exponent vi to generate a group-
specific “intersection tags” zi,G = (spkG)−vi , that they share
with the other group members. These tags will allow ballots
generated by Ui to be detected during reputation tallying of
an external user, even if Ui is offline.

Finally, a user Ui∗ requests to join the group G, see
fig. 4. Here, we work under the assumption that the group
members have a way of coordinating, so that all operations
performed by them can be considered to happen under a
“Group” identity. For example, this can be obtained by
having an administrator user that is required to be online
to process a join request (though this role can change hands
arbitrarily). We assume all group members share the view
of the “Group” identity.

Our main objective is to be able to intersect the set
of ballots received by Ui∗ , Wi∗ = {gui∗vj+xj,i∗}j , with
the intersection tags zi,G = (spkG)−vi . Mathematically, this
would be possible by getting the ui∗ exponent on the tags,
and the sG exponent on the ballots, and then checking for
whether the resulting product falls in the set {gx | x ∈ D}.

In practice, a few extra steps are required to achieve
the unlinkability of tags and ballots to group members
within the join request, and across different join requests. In
particular, this is achieved by having the tags be randomly
shuffled before intersection with the ballots, via a novel
verifiable permuted exponentiation protocol (Section 3).
Furthermore, we have the server use an ephemeral group
exponent specific to the “join” request by Ui∗ . After picking
random shuffles ρi∗,G, σi∗,G and ephemeral exponent si∗,G
(and corresponding public key spki∗,G), the group sends
the list of intersection tags, obfuscated with an exponent

Group G User Ui∗ Server S
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Figure 4. Join request, utilising verifiable permuted exponentiations.

α. Server and external user will then shuffle and add their
exponents to the tags.

Finally, the server will provide a copy of the ballots
received by user Ui∗ , with the ephemeral server exponent
added. The group can then intersect the ballots and
recover the votes, by computing a discrete logarithm of
the gsi∗,G·xj,i∗ with respect to spki∗,G, which is possible
in polynomial O(|D|) time due to the polynomial-sized
vote domain. The plaintext votes are then used to determine
whether the external user should be automatically admitted
to the group. If that’s the case, the newly admitted user Ui∗
will provide their intersection tag and receive the ones from
the other group members.

1.2. Wider Discussion and Limitations

Design choices. We observe a few interesting properties
of this design. Firstly, it allows the reputation score of any
user to be relative to the group computing it. Differently
than for schemes like AnonRep [33], where reputation is
global, this provides the benefit of better matching our
intuition of reputation (a person can have good and bad
reputation, depending on whom one asks). This also protects
from trivial sybil attacks, such as creating thousands of
“fake” accounts to negatively vote on someone: even if this
happened, unless the sybil accounts were in the group, their
votes would cause no effect on the user’s reputation.

The use of secret shuffles to provide anonymity, and
the requirement of matching ballots with the group also
remove the need for ring or group signature schemes,
otherwise popular with reputation systems. While such
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Z←{zi,G|Ui∈V|G}
Z

G.AddUser

Figure 5. Ballot intersection and tally.

schemes provide a good interface, they require the signing
party to have access to all the public keys in the group.
As we aim to be able to vote before group creation, as
to reduce the burden on the voting party, this would mean
holding every public key in the messaging system. With
Signal, WhatsApp, and related services having hundreds of
millions of active users, this would not be a realistic option.

Intrinsic limitations. Our design goal is that of producing
a “practical” design. In our view, practicality requires the
ability of voting once and having the resulting ballot count in
multiple intersections and allowing ballot intersections while
group members are being offline. Group members should not
be required to come online to manually vote on an external
user when someone wants to join the semi-open group. The
base protocol in Section 6 satisfies these constraints in the
presence of malicious adversaries, by having parties to prove
they performed their steps correctly, and having them check
that the other parties also performed their steps correctly.
These practicality constraints imply some limitations of the
resulting protocol.

First, allowing intersections while (some) group
members are offline means that these users cannott check
in real time the correctness of the intersection performed
(from their point of view), meaning that their ballots may
not be included during it. Instead, since all parties publish
a transcript of the intersection, users can check a posteriori
that the intersection was performed correctly, and will blow
the whistle on the malicious party otherwise. Of course,
in the meantime an external user that should not have
been admitted, may have been admitted to the group, and
compromised some of the communication. This seems to be
an inherent trade-off caused by the lower strictness of the
admission procedure. Something similar may happen with
the reputation computation: it could be that the intersection
is performed correctly, but the function used to compute
a final “score” for the external user is not adequate to
determining security. This is a similar intrinsic risk in
automating group admission.

Second, there is also the possibility that an external
user to the group has not accumulated enough ballots on
themselves, and a score cannot meaningfully be computed
because the intersection of ballots is empty. Again, this is an
intrinsic limitation to automating a reputation computation.
We believe the safe approach here would be to fail-close:
notify the group admin(s) that an external user has requested
to join but does not have a computable reputation, and
delegate to them the decision of admitting them or not,
akin to the closed group setting. The problem of having
no history as a user is intrinsic to any reputation system,
not just our design. Yet, we still believe semi-open groups
may help reducing administrator burden within tight-knit
communities, such as universities or work environments,
where people do connect.

Lastly, there is the issue of the multifaceted nature of
people’s identities. Alice may think that Bob is a decent
person and should be allowed automatically into their
workplace’s social events. However, she may disagree with
his political views, and would rather not vote to have
him automatically admitted into activism chat groups she
belongs to. How should she vote? A technological solution
could be that of having Alice (and any other user) hold
different identities, say Alicew for work, and Alicep for
politics. She could then vote twice on Bob, with a high score
under Alicew and a low one under Alicep. When joining a
group she could hand over intersection tags from either one
of her identities, depending on the nature of the group (or
provide a random group element, if she does not want to
hand over any tags useful to intersecting her ballots). This
would allow her to express a more fine-grained opinion on
Bob as a person. However, this may be overkill for most
users in practice: we suspect that messaging groups on non-
sensitive topics may not require a semi-open policy. Instead
users may be happy holding just one identity regarding some
sensitive topic of their interest, such as politics, and hand
over random group elements as intersection tags otherwise.

1.3. Related Work

The problem of ascertaining reputation within localised
communities has received significant attention.

Cryptographic reputation systems. Recent developments
in so-called privacy-preserving reputation systems provide
the closest approximation to the required functionality.
Referring to the excellent survey of [18, Table 1], we see
a dearth of existing protocols that provide strong privacy
guarantees. In particular, the stand-out options appear to
be AnonRep [33], ARM4FS [30], and pRate [26]. In the
case of ARM4FS a voting system for file sharing use-
cases, a trusted third-party TTP is used to faciliate voting,
and all ballots are linkable to voters by said TTP. In
AnonRep, linkable ring signatures [27] are used to cast
single votes in forum setting. Here, a mixnet (of non-
colluding parties) is used to verifiably shuffle said votes, so
that they can be used to perform elections without linking
back to voter identities. Security guarantees for AnonRep



are not proven, and the linkable ring signature approach
requires knowing every public key in the sytsem. pRate
is configured to providing trust in a system where ratings
are produced on various entities, who can later choose
to engage in dialogue. pRate utilises a TTP to handle
the ballots produced by each entity — voter anonymity
is not provided, but confidentiality is maintained — and
the construction utilises pairing-based cryptography and
various non-standard zero-knowledge proofs. In all cases,
the presence of a TTP, or non-colluding parties, makes
such systems hard to deploy. The more recent work of
PRSONA [19] builds on top of similar ideas to AnonRep,
but requires tight-knit communities, and the security of the
system still relies on non-collusion assumptions, and the
cryptographic properties of the system are never proven.
Finally, Bell and Eskandarian [4] recently demonstrated an
anonymous complaint aggregation system, that allows for
tallying scores produced by multiple users in an anonymous
way. As in previous works, this requires at least two non-
colluding servers to distribute the opening and verification
of reputation scores.

Webs-of-Trust. Adjacent to cryptography, but not providing
formal cryptographic guarantees, two popular solutions are
using Certificate Authorities (CA) [29] and Webs-of-Trust
(WoT) [25]. The first is the most popular solution used in
conjunction with authenticated key-exchange (usually TLS),
and relies on CAs, essentially trusted third-parties that attest
for the reputation of users within a Public Key Infrastructure
(PKI). Someone retrieving a public key would check for a
signature by a CA as a signifier of validity of the key. The
WoT model replaces the hierarchical model of CAs, with a
distributed horizontal one, where users within the PKI all
act as CA on each other, by only signing public keys they
consider reputable. Someone retrieving a public key would
check for signatures by other holders of public keys that
they trust, using the number and origin of the signatures as
a signifier of validity of the key.

Trust systems. The problem of reputation within more
general dynamic systems of entities has also been treated
within the literature on trust systems, where the issue of
messaging group formation finds a parallel in the literature
on Virtual Organizations (VO). Here, security properties
are often derived from economic incentives [24], albeit
cryptographic designs have also been proposed [23].

2. Notation and Preliminaries

Sets and permutations. We write [n] = {1, . . . , n}, and
denote Perm[n] as the set of all permutations defined over
[n]. We denote by Id the permutation such that Id([n]) =
[n]. For a set X , we write X ′ ← Shuffle(X) to denote
a randomly permuted version of X . For a probability
distribution D over a set S, we write Z ← D` to denote
the sampling of δ elements from S, to create the set Z.

Algorithms. We use PPT to refer to algorithms that
terminate with a result in probabilistic polynomial-time.

2.1. Cryptographic Groups

We make use of cyclic groups G = G(λ), where
the order of the group q = poly(λ) is prime (using
multiplicative notation). The scalar field associated with G
will be written as F(G) (sometimes simply as F when the
context is obvious), where the order of F is defined to be
p = poly(λ). We assume that the groups we use admit hard
instances of the discrete log and decisional Diffie-Hellman
(Definition 2.1 below) problems.

Definition 2.1 (Decisional Diffie-Hellman). The Decisional
Diffie-Hellman (DDH) problem is defined with respect
to a PPT algorithm B and a group G. B is tasked
with distinguishing the distributions (g, ga, gb, gab) and
(g, ga, gb, r), where g is a fixed generator of G,
a, b←$F(G), and r←$G.

It is widely assumed that the DDH problem is hard to
solve in practical instantiations of groups. In other words,
Advddh

G,B(λ) < negl(λ) for all PPT algorithms B.

2.2. NIZK Proof Systems

We recall standard definitions about non-interactive
proof systems.

Definition 2.2 (Non-interactive proof system). LetR ⊂ X×
Y be a relation with witness space X and statement space
Y . We say that Π = (Prove,Verify) is a non-interactive
proof system for R with proof space PS if:
• Prove is an efficient probabilistic algorithm that on

input a witness-statement pair (x, y) ∈ R, returns a
proof π ← Prove(x, y), π ∈ PS,

• Verify is an efficient deterministic algorithm that,
invoked on a statement y and a proof π, returns a bit
b← Verify(y, π), where b = 1 denotes acceptance and
b = 0 rejection. If b = 1, then π is a valid proof for y.

Definition 2.3 (Completeness). Let Π = (Prove,Verify)
be a non-interactive proof system for some relation R ⊂
X × Y . We say Π is complete, if for any (x, y) ∈ R,
Pr[Verify(y,Prove(x, y)) = 1] = 1.

Definition 2.4 (Non-interactive knowledge soundness). Let
Π = (Prove,Verify) be a non-interactive proof system for
some relation R ⊂ X × Y , with proof space PS. Let LR
be the language of true statements of R. Then knowledge
soundness specifies that, for any statement (x, y) /∈ R,
an adversary A cannot produce a valid proof except for
negligible probability, or Advnisnd

Π,A(λ) < negl(λ).
Knowledge soundness implies equivalently that there is

a PPT algorithm Extract, such that:

Pr

[
z 6= x

∣∣∣∣ π∗←Prove(x,y)
1←Verify(y∗,π∗)
z←π∗.Extract(y∗)

]
< negl(λ).

In other words, Extract extracts the witness x ∈ X , with all
but negligible probability.

Definition 2.5 (Non-interactive zero knowledge). Let Π be
a non-interactive proof system for some relationR ⊂ X×Y ,



Prove(z, (g, a ), (Z := gz, A := az ))

t←$F(G)

D ← gt

E ← at

c← RO(g, Z,D , a,A,E )

s← t+ cz

return π = (s, c)

Verify((g, a ), (Z, A ), π)

(c, s)← π

D′ ← gsZ−c

E′ ← asA−c

c′ ← RO(g, Z,D′ , a, A,E′ )

return c
?
= c′

Figure 6. Basic description of Schnorr-like proofs for non-interactive
DLog [16] and DLEQ [9] proof systems.

with proof space PS. We say that Π provides non-interactive
zero-knowledge if there exists an efficient simulator Sim for
Π, such that Sim can produce indistinguishable statements
y ∈ Y , even without knowledge of a valid witness x ∈
X . We denote the advantage of an adversary attempting to
distinguish such statements by Advnizk

Π,A,Sim(λ).

2.3. Discrete-log Proofs

Proof of Knowledge of Discrete Log (DLog). We use
standard Schnorr proof formulation for constructing NIZKs
that prove knowledge of a discrete logarithm value, or so-
called discrete log identification systems (denoted DLog),
as described by Fiat and Shamir [16]. In other words,
after computing (z ∈ F(G), gz ∈ G), an entity can prove
knowledge of z without revealing it. For ensuring self-
containment of this work, we give a formal construction
of the proof and verification steps for DLog in fig. 6, where
the fact that DLog satisfies completeness, soundness, and
non-interactive zero-knowledge follows from [16].
Proof of Discrete Log Equivalence (DLEQ). We give
a basic formulation of a DLEQ protocol in fig. 6
(including the additional steps in grey). This formulation
is based on the simple formulation given by Chaum and
Pedersen [8], that has been used in previous verifiable
pseudorandom function protocols [11], [17], [22]. The fact
that it satisfies completeness, soundness, and non-interactive
zero-knowledge follows immediately from [9]. Note that,
henceforth we abuse notation throughout, and write π ←
DLEQ.Prove(z, Z, {(ai, Ai)}i∈[`]) to be ` invocations of
the standard single-input proof system shown, where π
is then a set of ` individual DLEQ proofs, and π[i] ←
DLEQ.Prove(z, Z, ai, Ai). However, it is worth noting that
such proofs can also be batched into a single element, in
cases where shuffle-compatibility is not required [12], [21].
Shuffled DLEQ. In Section 3, we also require a non-
interactive zero-knowledge proof of exponentiation-and-
shuffle, so that given a key pair (g, h), and tuples
(g1, . . . , gn) and (h1, . . . , hn), the prover can argue that
it knows a secret exponent x and secret permutation σ,
such that h = gx, and hi = gxσ(i). To achieve this,
we use the generic compiler of Haines and Müller [20]
for turning a “shuffle-compatible” sigma protocol (SCSP)
for a relation R into a (standard) sigma protocol for a

“shuffled” combined relation RShuffle. We can then apply
the compiler to a a shuffle-compatible version of the
Chaum-Pedersen protocol [8] for proving discrete logarithm
equivalence (DLEQ), and compile the resulting sigma
protocol into a non-interactive proof system using the Fiat-
Shamir transform [16]. Note that we can instantiate a
standard DLEQ proof system (without shuffle) from this
same formulation, by applying an identity permutation.
However, for performance reasons, instantiating a standard
DLEQ from the Schnorr variant shown in fig. 6 is usually
more efficient. In the full version of this work, we formally
spell out the shuffle-variant of DLEQ.

2.4. Malicious Security in Protocols

For a protocol Π, we consider participants P1, . . . , Pn
and an adversary A that can corrupt up to l < n parties.
We will assume corruptions are performed selectively, which
means that A will choose which parties to corrupt before the
protocol starts. Since we consider A to be malicious, any
corruption of Pi will give A access to the entire internal
state of Pi, and will allow A to pick the inputs of Pi during
the protocol. Furthermore, A may deviate from the protocol
specification arbitrarily: for example, by using malformed
inputs, or triggering aborts arbitrarily. From a notational
perspective, for an adversary that corrupts l > 1 parties, we
will write A = (APi1 , . . . ,APil ) for ij ∈ [n], to refer to the
individual algorithms that run for each of the participants.

For proving security of Π against all adversaries A,
we use the real/ideal-world paradigm for proving security
in the standalone model. Therefore, let F be an ideal
functionality that implements the core functionality of Π.
Then we consider Π secure if the view of A in Π is
computationally indistinguishable from a view constructed
by some PPT simulator algorithm Sim, that only has access
to F .

Input extraction and step verification. In practice, in order
for Sim to interact with F , it must derive some input
xij ← APij for each Pij that A corrupts. These inputs
are then submitted to F , and then Sim learns the output
y ← F(xi1 , . . . , xil), where y is calculated using the
implicit inputs of honest parties in the protocol. Since A
may deviate arbitrarily, we must use tools that allow Sim
extract such inputs in polynomial-time. In principle, our
primary tools for doing this will be the usage of zero-
knowledge proof systems that satisfy knowledge soundness,
and the extractability of random oracles (that are managed
by Sim). Such mechanisms will also be used to ensure
that adversarial parties continue to abide by the protocol
specification throughout.

Handling aborts. The Sim must abort the protocol whenever
it receives a request from A to abort. As such, while
we guarantee the confidentiality of the protocol on all
executions, as well as correctness for full executions, we
will assume that the adversary can simply terminate any
protocol execution.



Verif. Expon. (VE / VEP )

Public Parameters

G, F(G), g ∈ G

Γ.Gen()

z ←$F(G)

Z ← gz

πz ← DLog.Prove(z, g, Z)

return (z, Z, πz)

Γ.Eval((z, Z), (ai)i∈[`] , σ )

for i ∈ [`] :

if σ : Ai ← azσ(i)

else : Ai ← azi
s← (g, (ai)i∈[`])

S ← (Z, (Ai)i∈[`])

π ← DLEQ.Prove(z, s, S , σ )

return ((Ai)i∈[`], π)

Simulation

Γ.SGen()

Z ←$G
πz ← DLog.SProve(g, Z)

return (Z, πz)

Γ.SEval(Z, (ai)i∈[`])

return Γ.PEval(Z, (ai)i∈[`],⊥)

Γ.PEval(Z, (ai)i∈[`], {(ij , A∗j )}j∈[m])

S1, S2 = []

for i ∈ [`] :

S1.push(ai)

if ∃ j ∈ [m] s.t. i = ij

S2.push(A∗j )

else :

Ai ←$G
S2.push(Ai)

π ← DLEQ.SProve((g, S1), (Z, S2))

return (S2, π)

Security game Exp
ve/vep
Γ (A, `, λ)

(ai)i∈[`] ←$G`

b←$ {0, 1}

if b
?
= 0 :

(z, Z, πz)← Γ.Gen()

σ←$ Perm[`]

((Ai)i, π)← Γ.Eval((z, Z), (ai)i , σ )

else :

(Z, πz)← Γ.SGen()

((Ai)i, π)← Γ.SEval(Z, (ai)i)

b′
recv←−− A(g, Z, πz, (ai)i, (Ai)i, π)

return b
?
= b′

Figure 7. Verifiable exponentiation protocol and security model. Grey backgrounds denote steps used for instantiating the permuted variant, for σ 6= Id.

3. Verifiable Permuted Exponentiation

In this section, we discuss concrete protocols for
instantiating simple verifiable exponentiation protocols,
that essentially perform exponentiations as-a-service that
receivers can verify are correct with respect to previously
committed public keys. In effect, such protocols consider a
client that holds some group element a ∈ G, a server that
holds a scalar value z ∈ F(G), and a public generator g ∈ G
known to both parties. The client eventually learns az , and
is provided a proof that az has been computed correctly.

We give a formal construction of two such protocols in
fig. 7. The first, VE, that follows this exact framework, and
second, VEP, that allows the server to introduce a hidden
shuffle/permutation when returning the elements, that the
client cannot discern. Intuitively, the security property that
we require is that the server-side exponentiation service can
be simulated without knowledge of the private exponent
or permutation. This leverages the non-interactive zero-
knowledge properties of DLog and DLEQ proof systems
(Section 2.2) that are used for proving the exponentiations.
The constructions themselves bear similarities to practical
verifiable pseudorandom function protocols defined in
prime-order groups (such as 2HashDH [11], [17], [22]).
Correctness. The correctness requirement for a VE (VEP)
protocol is given in definition 3.1.

Definition 3.1 (VE/VEP Correctness). Let Γ be a protocol
consisting of algorithms (Gen,Eval), let ` = poly(λ), and
let σ ∈ Perm[`]. We say that Γ is a correct VEP protocol if
the following inequality is satisfied:

Pr

[
Aσ−1(i) 6= azi

∣∣∣∣∣
(z,Z,πz)←Γ.Gen()
1←DLog.Verify(Z,πz)
((Aσ(i))i,π)←Γ.Eval((z,Z),(ai)i,σ)

DLEQ.Verify((z,(ai)i),(Z,(Aσ−1(i)
)i),π)

]
< negl(λ).

Note that, when σ = Id, then Γ is a correct VE protocol.

Security model. We now give the formal definition
of security for a VE (VEP) protocol, which essentially
amounts to showing that the protocol can be simulated
in computational zero-knowledge, with respect to the
evaluation server’s secret data. Intuitively, this gives us the
guarantee that the protocol computationally hides the server
secret exponent used to evaluate the function. This security
property is formalised in Expx

Γ(A, `, λ) for x ∈ {VE,VEP}
in fig. 7, and Definition 3.2 captures the associated security
condition.

Definition 3.2 (VE/VEP Simulation Security). Let Γ be a
protocol consisting of algorithms (Gen,Eval). We say that
Γ is a secure x ∈ {VE,VEP} protocol if, for all PPT
algorithms A, then Advx

Γ,A(λ, `) < negl(λ) is satisfied, for
all ` ∈ poly(λ).

Protocol guarantees. We now justify the correctness and
security of the construction given in fig. 7.

Lemma 3.1 (Correctness of Γ). The protocol Γ defined in
fig. 7 is correct, according to Definition 3.1.

Proof. It’s clear that Aσ−1(i) = azi by the definition
of ((Ai)i∈[`], π) ← Γ.Eval(((z, Z), (ai)i∈[`])). Therefore,
by the completeness of DLEQ, we know that π will
verify correctly with probability 1. Furthermore, by the
perfect completeness of DLog, we know that 1 ←
DLog.Verify(Z, πz) with probability 1. As a result, the
correctness of Γ follows. Clearly, this also holds in the case
of VE, where σ = Id.

Lemma 3.2 (Security of Γ). The protocol Γ defined in fig. 7
is a secure VE (VEP) protocol, according to Definition 3.2,
for ` ∈ O(poly(λ)).

Proof. The proof of Lemma 3.2 follows in Appendix A.



3.1. Handling Malicious Inputs

Programmable evaluation. During our eventual oblivious
tally construction, we make use of a programmed evaluation
mechanism for a VE/VEP protocol Γ. In essence, we require
this to account for adversaries who have the ability to check
that certain malicious entries are included in the tally result.
In such cases, a standard simulation that randomises all
outputs would not preserve the intersection result. We handle
this functionality in the Γ.PEval function.

The Γ.PEval function is used internally during SEval,
but in this case all inputs are sampled at randomly. However,
the PEval provides the capability to provide a specific set of
inputs I = {(ij , A∗j )}ij , where Γ is programmed to output
Ai on input ai, for any index (i, Ai) ∈ I . Note that, when
we program m out of ` inputs, we essentially find ourselves
in H3,m of the proof of Claim A.0.3 during the proof of
Lemma 3.2. As a result, as long as the programmed inputs
A∗j are indistinguishable from random group elements, it is
clear that programmed evaluation is indistinguishable from
fully-simulated evaluation.
Non-random inputs. The protocol shown in fig. 7
deliberately does not consider “client-side” guarantees,
since we assume that the inputs (ai)i∈[`] to the protocol
are always sampled i.i.d. uniformly randomly in G. In real
protocols, clearly the client could cheat by providing non-
random values to the protocol, and then checking whether
the relationships are preserved. In the simulated case,
because the secret exponent is not used such relationships
are highly likely to be disturbed.

In our eventual protocol in Section 6, we target malicious
security, which means that VE clients can deviate from
the desired functionality in this way. However, we get
around this by adding protocol-level checks and proofs of
computation, that allow us to guarantee the inputs to the VE
(VEP) protocols are always eventually sampled randomly.
In the case where the client may attempt to deviate from
the exchange, we simply instruct the protocol-level proof
simulation to abort, which mirrors the checks that honest
observers of the protocol can perform in the real-world. See
Section 5.1 for further discussion on how we handle this in
the protocol layer.

4. System Model

Assumed architecture. As discussed previously, our
scenario and system model is motivated by the Signal
protocol and the associated Signal E2EE messaging
application [10]. As such we build reputation systems only
assuming the existence of participants that are currently
supported by Signal. Within this framework, we then
would like to develop a minimal protocol (based on
believable assumptions, practical cryptographic primitives
and constructions), that enable our reputation framework to
augment the existing application.

In the Signal protocol, there is a universe of users
(U), and a single application server (S). While this server

could obviously be distributed across many geographically
disparate nodes, the use of “single” here simply denotes
that we do not make any non-collusion assumptions about
the entity controlling the server (in this case, Signal). In
this universe, users may communicate with each other
directly over E2EE channels (via the server), or they may
form groups of communicating individuals. In the existing
protocol, such groups are either private — in which each
access to the group (via a hyperlink) is managed by a
specific administrator who must personally approve each
request — or public — where anybody with a link can
access the group. Clearly, all such requests (public or
private) are routed through the application server. While
Signal does not explicitly know the membership of each
group, there are no actual guarantees that such information
is not leaked during the protocol execution (including
individual user contact graphs).

Voting overlay. Our first modification to the existing system,
is to build a voting overlay that allows assigning reputation
to any given user in the system. Each user can vote on any
other user in the system. For this purpose, we can think of a
user as divided into both a voter and votee entity, each with
their own voter/votee key material. Voters create ballots on
users corresponding to a plaintext vote, using their voting
key, and the target user’s votee key pair. These ballots must
maintain the confidentiality of the vote itself, and are sent
to and held by the server. In our main voting system in
Section 6, we allow each Ui to vote on Uj once. Once a
vote is cast, it remains permanently. In Section 9, we discuss
an approach for allowing multiple votes to be cast by Ui on
Uj , where only the most recent vote is counted. Our main
voting system also assumes that the user themselves will
store ballots cast on them by other users.

Semi-open groups. Our second modification is to introduce
the concept of a semi-open messaging group. Such groups
are useful in contexts where there is a desire to ensure
that group membership is monitored beyond simply the
sending of a link, but where individual manual vetting of
all join requests is considered infeasible. The desire for
groups appears to be very common, especially in activism,
resistance, and organising contexts. Our solution involves
using the previous voting overlay to build a reputation
system by which to monitor entries into such groups. The
following paragraph summarises the functionality of said
groups.

The group (G) is made up of a collection of initial
users (V|G). These initial members are assumed to be hand-
picked, and manually admitted into the group. Subsequent
join requests made by users Ui∗ are approved based on the
reputation of Ui∗ amongst the users Uj ∈ V|G (i.e. derived
from the ballot cast by each Uj on Ui∗ , if one exists).
The reputation score for an external user Ui∗ attempting
to join G is calculated by a single user who is deemed to
be the group administrator (we abuse notation, and refer to
this user as G). We assume that there is a function (Tally)
that, given plaintext votes, calculates a value k ∈ Z that
corresponds to a user’s reputation. As such, we also assume



that there is a protocol Π that, given the ballots cast on
Ui∗ , allows G to calculate k. A positive reputation score
(e.g. k > τ , for some threshold τ ) can be admitted to G
automatically, or be subject to subsequent steps. A negative
reputation score (e.g. k ≤ τ ) may be rejected automatically,
or optionally manually handled subsequently. Actions of G
are monitored by each Uj ∈ V|G. Communication between
entities is performed online via the application server S,
but it is assumed that non-admin members in V|G may be
offline. Therefore, their assistance during the protocol is not
assumed. The only online parties are therefore G, Ui∗ , and
S.

In the following, we simplify this model slightly,
and assume that a Ui∗ with high enough reputation is
automatically admitted into the group if the reputation score
is high enough. In this case, Ui∗ → V|G, and learns all group
parameters that existing group members have access to.4

Reputation score calculation. We leave the construction of
an optimal choice for Tally for calculating the reputation
scores as an open question, as well as the explicit strategy
for choosing the threshold τ . In particular, our protocol can
handle a Tally function that calculates sums of votes x ∈
D, where |D| = poly(λ). Alternative solutions may make
more sense, depending on the context and application, and
further research on such functions (and how they could be
embedded in such protocols) would be highly valuable.

5. Security Model

We now discuss the overall security model for protocols
automating admissions into semi-open groups. In fact, our
approach models security in any reputation system/e-voting
scenario, given the system design assumed in Section 4.

Ideal functionality. As discussed in Section 2.4, we prove
security in the standalone MPC real-/ideal-world paradigm,
for ensuring security against any corrupted (malicious)
entity in the protocol. We define the ideal functionality
available to the simulation in the security proof in fig. 8.
The strong-variant of the ideal functionality F computes
the ideal tally function (Tally) over the provided honest
input votes from all users Vj ∈ V|G, on the target user
Ui∗ . In the weak variant of F , the set of all collected
votes is released to the simulator directly, who can then
calculate Tally themselves. During the simulated protocol,
the simulator will attempt to extract a valid vote from any
malicious voter, and then run F including this vote, or ⊥ if
no vote is provided (or if all voters are honest).

We provide the strong variant for context and future
work, while we use the weak variant when writing the
security proof. Intuitively, the reason why the strong variant
cannot be satisfied in the eventual protocol (Section 6) is due
to the fact that the real protocol intentionally unmasks each
individual element in the intersection. A stronger protocol

4. This is an important consideration for security: we need to ensure that
group-specific parameters cannot be used by a malicious Ui∗ , who gains
access to the group, to open individual ballots that they hold.

Ideal Tally Functionality (F({x ∈ D}x←Sim, idG ∈ {0, 1}λ))

C
∣∣

G
= corrupted members of V

∣∣
G

.
{x ∈ D}x←Sim = adversarial votes input by simulator.

Honest participant inputs

{Vj({xj,l}Ul∈U )}Vj∈(V|G\C|G) // jth voter in group

Ui∗ (V
∣∣
G

) // user asking to join group

G(V
∣∣
G

) // group that user wants to join

S(V
∣∣
G

) // facilitation server

Function

Y ← {x}x←Sim ∪ {xj,l} Vj∈(V|G\C|G)

Ul∈U

b← Tally (Y )

Participant outputs{
Vj

(
X = {xη(j),Ui∗

} Vj∈V|G,
η∈Perm[|V|G|]

, b

)}
Vj∈V|G

Ui∗ (b)

G

(
X = {xη(j),Ui∗

} Vj∈V|G,
η∈Perm[|V|G|]

, b

)
S(b)

Figure 8. (Weak/Strong) Ideal Functionalities

would perform the intersection blindly and the computation
of Tally blindly, before revealing the result b.

Corruptions, simulations, aborts. To prove security, we
must construct a series of corruption models, whereby A
corrupts some subset of the entities in the protocol, and
then show that there exists a PPT simulator for each such
corruption model. In all cases, we assume corruptions by
a malicious adversary, that are selectively defined apriori
to the functioning of the protocol. We note that the types
of corruptions we permit strengthen or weaken the security
model. For example, proving security against an adversary
that only corrupts one of {Ui∗ ,G,S, C|G ⊂ V|G} is weaker
than one that corrupts combinations of these entities at
once. In the base version of the protocol in Section 6,
we prove security against an adversary that either corrupts
the set {Ui∗ ,G, C|G ⊂ V|G} or S alone. In the former,
we essentially show that a malicious combination of the
group admin, some subset of group members, and the target
user cannot successfully subvert the protocol, beyond simply
submitting enough votes to impact the intersection. In other
words, we show that the protocol remains demonstrably
secure for honest group members who witness the protocol
transcript. Note that proving security in this case transitively
demonstrates security for an adversary that corrupts only
subsets of these individuals (e.g. in the case where Ui∗ is
honest). In the latter case, we demonstrate security against
a malicious server alone. Note that in Section 8.1, we
demonstrate a protocol adaptation that allows us to prove
security against an adversary that corrupts both S, and one
other protocol entity.

To guarantee security, we then prove that the real
protocol is indistinguishable from an ideal-world simulation,



for each corruption model that is considered. Note that
the protocol at any point can be aborted arbitrarily by the
adversary, who sends a message to the simulator, and thus
we in fact prove malicious security in the presence of aborts.
Random oracles. Throughout the protocol, we assume
that all adversarial random oracle calls (via the function
RO : {0, 1}`in 7→ {0, 1}`out ) are simulated internally by the
simulator. For new queries q seen by the simulator, they
sample a random response as r←$ {0, 1}`out , where `out is
the bit-length of the output, and then add (q, r) to a table,
and return r to the adversary. For already observed queries,
the simulator recovers the pair (q, r), and returns r to the
adversary. We denote such interactions by r← RO(q).

5.1. Assumptions

With the system and security models covered, we
now clarify a number of assumptions that we make for
simplifying the security argument of the protocol. We
believe all such assumptions to be realistic, given real-world
implementations of secure messaging systems.
Internal group transcript. During the protocol defined in
fig. 9, it’s clear that parties send and receive messages from
each other. In the case of the group admin G, messages
received from other (honest) parties are assumed to be
directly written to the internal transcript of the group. This
is important, since the honest voters in the group use the
internal group transcript to decide whether the protocol is
executing as expected. This assumption therefore excludes
malicious groups that can arbitrarily modify this transcript.
We argue that this assumption is believable in settings where
honest external parties sign their network messages with
long-term public keys. Such a system would require an
internal PKI, and so we avoid describing such a network
to maintain the simplicity of the overall protocol design.
Retrospective aborts. During the protocol execution, we
must allow for users inside the group to be offline. This
matches the real-world scenario, where a user (Ui∗) may
request to join, be reviewed, and finally be added to the
group, all while a voter within the group remains offline.
Any vote that Uj ∈ V|G produced on Ui∗ would still be
counted. However, in the case of an adversarial G, there
are various steps in the protocol that require honest users
in the group to ratify the actions of G. If G deviates from
the protocol specification, then it is assumed that such
users will call abort and the protocol will be aborted.
During the security proof, we assume that such voters are
online at the moment of aborting. However, in the real-
world implementation, users that return online must replay
executed protocol steps and check that everything matches
their view of the group. If they find that G acted incorrectly,
then said user must trigger such aborts retrospectively, and
effectively act as a whistleblower on G.

Formally speaking, we maintain eventually malicious
security. In essence, the protocol may be abused by a
malicious party, and may continue for some amount of time
afterwards. However, once an honest party that verifies the

malicious behaviour comes online, the protocol instance will
be abandoned (either during, or afterwards). We note that
in the time between malicious behaviour occurring and an
abort being triggered, no guarantees are given about the real
and simulated worlds being indistinguishable.

Ballot ordering. The protocol in Section 6 assumes that
ballots cast on Ui∗ are collected and held by both Ui∗
and S. It is assumed that both parties hold ballots in some
random, independent ordering. While in the real-world, such
orderings are likely to be dictated by the order that votes are
received, this is merely a simplifying assumption to make
the simulation more streamlined.

Polynomial-sized vote domain. Our proposed scheme relies
on encryption “in the exponent” technique, where a vote xi,j
from voter Vi to user Uj is encrypted as c = gviuj · gxi,j .
To decrypt, one needs to compute the discrete logarithm
logg(c · g−viuj ) = logg(g

xi,j ). This is possible because
we constrain the space of valid votes to a small set D of
polynomial size, so that the logarithm can be efficiently
computed by exhaustive search in {gx | x ∈ D}. More
advanced “blind intersection” techniques could potentially
allow circumventing this limitation, while achieving the
stronger ideal functionality in Figure 8. A possible idea
would be that of identifying an efficient encoding εG(·) for
fully-homomorphic ciphertexts into a large group G, so that
gxi,j is replaced by εG(FHE.Enc(xi,j)). This however would
likely require very large groups and key material, and a
slow intersection algorithm. For this reason, we leave blind
intersection techniques to potential future work (Section 9).

6. Protocol Design

We recall crucial notation and conventions. Algorithms and
entity identifiers are written in camel-case sans-serif font.
Protocol entities are: S (Server), G (Group admin), Ui (ith
user in system), Ui∗ (user attempting to join group). Sets
of entities are written in calligraphic font, such as: U (all
users in ecosystem), V|G (all voting users belonging to the
group), V|i (all users voting on Ui). For arrays of group
elements, we use capital-case (e.g. Z in G.AddUser is the
set of tags submitted to G). We write Votesi∗ to denote the
set
{
gui∗vj+xĵ,i∗

∣∣Uj ∈ V|i∗} of anonymised votes received
by Ui∗ . This is held both by Ui∗ and S. Additionally, we
assume that all NIZK proofs are assumed to be verified
by parties who receive them. For a set of group elements,
Y ∈ G`, we write Y s (for s ∈ F(G)) to denote the set
{ys}y∈Y .

Protocol specification. In fig. 9, we give the formal
description of each of the algorithms used in the protocol
that was detailed across Figures 1 to 5. In particular, the
steps of the protocol are identical to the explanation in
Section 1.1, except for the added zero-knowledge proofs that
enable us to achieve security against malicious adversaries
by forcing parties to prove they performed their role
correctly. We add annotations to indicate explicitly where
an algorithm may impact the view of another entity in the



Group (G) functions

G.AddUser(i∗)

// View of V
∣∣
G
, Ui∗

Z ←
{
zi,G

∣∣Ui ∈ V∣∣G}
Z

send−−→ Ui∗

G.InitExp()

Z ←
{
zi,G

∣∣Ui ∈ V∣∣G}
α← RO(Z, upki∗ )

T ← Zα

G.IntersectVotes(T ′′,W,W (s))

// View of V
∣∣
G

// (G,Uj ∈ V
∣∣
G

) check: W = Wi∗.

T ′′′ ← T ′′1/α

X = []

for y ∈ T ′′′ :

for w ∈W (s) :

for x ∈ D :

if (gsi∗,G )x = y · w :

X.push(x)

G.TallyVotes(X)

// View of V
∣∣
G
, Ui∗, S

// Uj ∈ V
∣∣
G
check: X ← G.IntersectVotes

bi∗,G ← Tally(X)

bi∗,G
send−−→ ({Ui∗}, S)

Common Parameters

` =
∣∣V∣∣

G

∣∣
γ =

∣∣V∣∣
i∗
∣∣

Server (S) functions

S.CreateGroup(V|G)

// View of G, V
∣∣
G

(sG, spkG, πS,G)← ΓVE.Gen(g)

idG ←$ {0, 1}λ

(idG, spkG, πspkG
)

send−−→ (G,U)

S.InitCount(i∗, idG)

// View of G, V
∣∣
G

// S check: Ui∗ ∈ V
∣∣
G

(si∗,G, spki∗,G, πi∗,G)← ΓVE.Gen(g)

ρi∗,G ←$ Perm[`]

∆i∗,G ← si∗,G/sG

spki∗,G ← g∆i∗

πi∗,G ← DLog.Prove(∆i∗,G, g, spki∗,G)

((spki∗,G, πi∗,G), (spki∗,G, πi∗,G))
send−−→ G

S.SendVotes(i∗, si∗,G, spki∗,G, idG)

// View of G, V
∣∣
G

W ← Votesi∗ =
{
g
ui∗vj+xĵ,i∗

∣∣∣Uj ∈ V∣∣i∗}
(W (s), π

(S)
VE )← ΓVE.Eval((si∗,G, spki∗,G),W )

(W,W (s), π
(S)
VE )

send−−→ G

S.ShuffleExp(T
recv←−− G, (∆i∗,G, spki∗,G), ρi∗,G)

// View of G, V
∣∣
G

// Uj ∈ V
∣∣
G
check: T = Zα

(T ′, π
(S)
VEP)← ΓVEP.Eval((∆i∗,G, spk∆,i∗,G), T, ρi∗,G)

(T ′, π
(S)
VEP)

send−−→ G

User (Ui / Ui∗) functions

Ui.Register()

// View of G, U, S

(ui, upkui , πupki
)← ΓVE.Gen(g)

vi ← F(G)

(upki, πupki
)

send−−→ (G,U , S)

Ui.Vote(Uj ∈ U , xi,j ∈ D)

// View of Uj, S

wi,j ← upkj
vi · gxi,j

wi,j
send−−→ (S,Uj)

Ui.JoinGroup(spkG)

// View of G, V
∣∣
G

zi,G ← (spkG)−vi

πi,G ← DLog.Prove(−vi, spkG, zi,G)

(zi,G, πi,G)
send−−→ G

Ui∗ .InitCount(idG)

// View of G, V
∣∣
G

σi∗,G ←$ Perm[`]

Ui∗ .ShuffleExp(T ′
recv←−− G, (ui∗ , upki∗), σi∗,G)

// View of G, V
∣∣
G

// Uj ∈ V
∣∣
G
check: T ′ ← S.ShuffleExp

(T ′′, π
(Ui∗ )
VEP )← ΓVEP.Eval((ui∗ , upki∗ ), T ′, σi∗,G)

(T ′′, π
(Ui∗ )
VEP )

send−−→ G

Ui∗ .SendVotes(idG)

// View of G, V
∣∣
G

Wi∗ ← Votesi∗ =
{
g
ui∗vj+xĵ,i∗

∣∣∣Uj ∈ V∣∣i∗}
Wi∗

send−−→ G

Figure 9. Full list of functions used in base protocol (Section 1.1).

protocol, which is pertinent for the simulation in the security
proof.

6.1. Security Guarantees

We consider a target group G, where Ui∗ is attempting to
join. As mentioned in Section 5, we provide security against
malicious adversaries corrupting various subsets of entities.
In particular, we show that this protocol maintains security
against A = (AG,AUĵ

,AUi∗ ) — i.e. an adversary that
corrupts group admin, a subset of internal group members,
and the target user — and A = AS — a corrupted server.
The main security guarantee and required cryptographic
assumptions are elucidated in Theorem 6.1 below.

Theorem 6.1. The base protocol described in Figure 9 is
secure against a malicious adversary that corrupts either
any subset of entities associated with a given group G
(Lemma B.7), or the facilitation server (Lemma B.8). This
follows under the existence of a secure VEP protocol
(Definition 3.2), the hardness of DDH, and a NIZK proof of
knowledge system for discrete log relations.

Proof. For the full formal security proof of each corruption
case, we refer the reader to Appendix B.

Remark 6.1. For handling stronger corruption models
(including server collusion), Section 8.1 describes an
adapted protocol sharing group admin responsibilities
amongst n > 1 non-colluding group admins. This allows
for the handling of corruptions of the form A = (AS,AX),
for X ∈ {G,Uĵ ,Ui∗}, where a malicious server colludes
with either the external user, or a group admin or member.
The security argument follows naturally after splitting the
responsibilities of the group admin amongst non-colluding
members, as we sketch in Section 8.1.

Intuitive guarantees. Regarding the corruption cases in
Theorem 6.1, the first shows that the base protocol is robust
to a malicious subset of group members (G ∪ (C|G ⊂ V|G))
and the target user (Ui∗) attempting to subvert the reputation
calculation, to either force unwanted group entries, or
deanonymise votes. Note that this immediately implies
security against an adversary that corrupts only a subset of
these entities as well. In the case of the server, corruptions
are harder to handle, and thus we assume no further
collusion with other entities in the group (or who may join
the group). We discuss the reasons for this in the following,
where we highlight a series of intuitive security properties
that are maintained by virtue of our proof technique.
Vote confidentiality. Our protocol ensures vote
confidentiality for all votes. That is, for any given ballot in



the system on Ui∗ , an adversary cannot discern the value of
said vote apart from based on the information that is leaked
by F (as in all MPC protocols). Intuitively, this follows as
a consequence of the fact that for any user Uj voting on
Ui∗ , the ballot takes the form: guivj+xj,i . Meanwhile, in
the group, the voter tag takes the form zj = g−sGvj . For
any A that does not involve S, then we have an effective
DDH relation of the form (g, g1/sG , zj , g

vj ) (in fact, g1/sG

is never actually known), and thus this ensures that gvj is
essentially indistinguishable from uniform, which masks
the vote xj,i. Note that this does not take into account votes
that are eventually learned in the intersection of voting
users in G on Ui∗ , but the combination of VEP protocols
means that the exponentiated tags in T ′′′ are sufficiently
shuffled to prevent leaking the identity-vote correlation. In
the setting where S is corrupted alongside some entity in
(or that eventually joins G), this problem becomes easy to
solve, as A is able to send zj to the server, who can then
remove sG from the voter tag to learn gvj , and thus xj,i.
Ballot unlinkability. For the reasons described above, it is
worth noting that ballots themselves are actually unlinkable
from the identities of the users casting them. In particular,
this is since each ballot is distributed uniformly in G, even
given the voter tags held by the group. Therefore, assuming
there is an anonymous channel for submitting such ballots,
the identities of the users themselves are also hidden (again,
accepting the leakage of F with respect to the group G).
Tally integrity. We maintain the integrity of the tally
computed by G by allowing access to all internal group
parameters to entities in V|G. Since we assume that all
communications between group admin, external user and
the server are written to the internal group transcript,
internal users can then follow the protocol, verify the
various zero-knowledge proofs, and recompute the output of
Tally(X) themselves (where X is the set of votes learned in
the inetrsection function). Transitively, by maintaining the
integrity of the tally, we also maintain the guarantee that
any G that admits/does not admit a user incorrectly will be
caught by honest group members.

7. Implementation and Benchmarking

In order to verify the practical viability of our protocol,
we implemented the DLog and DLEQ proof systems
in Section 2.3, the verifiable exponentiation protocols in
Section 3, and the base protocol from Section 6 (including
all algorithms from fig. 9). To instantiate the protocol,
we use the Ristretto255 prime-order group [13]. Random
oracles within proof systems are implemented using SHA2-
256, with the exception of the shuffled DLEQ proof system
that uses SHAKE128.5 We separate the oracles across proof
creations by pre-pending a 256-bit random prefix to the
input, independently sampled during each proof.

Our implementation is written in C++, and is available
at https://github.com/luizabrs/semi-open-messaging-groups.

5. This is for simplicity, as a challenge longer than 256 bits is used.

Parameters Phase Runtime (s) Bandwidth
mean st. dev. (KiB)

total 3.3 0.2 1312.2
n = 50 VE.Eval & check < 0.1 < 0.1 2.6
t = 40 VEP.Eval & check (U) 1.2 0.1 653.2
|D| = 10 VEP.Eval & check (S) 1.2 0.1 653.2

ballot intersection 0.9 0.1 1.2

total 6.4 0.4 2620.1
n = 100 VE.Eval & check < 0.1 < 0.1 2.6
t = 40 VEP.Eval & check (U) 2.2 < 0.1 1306.3
|D| = 10 VEP.Eval & check (S) 2.3 0.4 1306.3

ballot intersection 1.9 0.0 1.2

total 12.7 0.2 5235.7
n = 200 VE.Eval & check < 0.1 < 0.1 2.6
t = 40 VEP.Eval & check (U) 4.5 0.1 2612.5
|D| = 10 VEP.Eval & check (S) 4.5 0.2 2612.5

ballot intersection 3.7 0.0 1.2

total 16.3 0.2 5239.4
n = 200 VE.Eval & check < 0.1 < 0.1 5.1
t = 80 VEP.Eval & check (U) 4.5 0.1 2612.5
|D| = 10 VEP.Eval & check (S) 4.4 0.1 2612.5

ballot intersection 7.4 0.1 2.5

TABLE 1. COSTS OF VARIOUS PHASES OF THE BASE PROTOCOL
BETWEEN A GROUP OF n USERS AND AN EXTERNAL USER THAT

RECEIVED t VOTES, AVERAGED OVER 10 RUNS OF THE PROTOCOL.

We use Ristretto and SHA2 implementations from
libsodium [14] (v1.0.20), and the SHAKE
implementation from the “compact” FIPS202 code in
the XKCP library [5]. Our code models a scenario where
n + t/2 + 1 users Ui and one group G are registered with
the server, and users U1, . . . ,Un are manually added to
G. Then, t users, half inside the group and half outside of
it, send votes from a domain D on Un+t/2+1. Finally, a
request from Un+t/2+1 to join G is simulated, where the
t ballots are intersected with the n tokens held by G. We
recall that performance is independent of the size of the
entire universe of users, so our experiments focus only on
varying group sizes.

Within the protocol, most of the time is spent either
during VEP evaluation and verification or during ballot
intersection. While both VE and VEP run in time O(n),
VEP requires many more group operations due to the
generic compiler [20] used to prove a correct shuffle. Ballot
intersection runs in time O(n · t · |D|). These operations
are amenable to trivial parallelisation speedups. In Table 1,
we report clock times on evaluations of the protocol and
its components, for various group sizes n and numbers
of ballots t, and ephemeral communication costs.6 All
measurements are performed on a Macbook Air M3 CPU on
a single core. Overall, we see that a naïve implementation
achieves acceptable runtimes for relatively large values of
n and t, and shuffled DLEQ soundness error 2−128.

6. We don’t count costs for transferring long-term public keys that are
generated only once, or single ballots cast on a user before the join request.

https://github.com/luizabrs/semi-open-messaging-groups
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Figure 10. Modified algorithms for adapted (collusion-resistant) protocol.

8. Protocol Adaptations

We now present two adaptations of the base protocol,
that handle limitations regarding a colluding adversary that
corrupts the server and one other entity (Section 8.1), as
well as removing the restriction that any user can only vote
once on another user (Section 8.2).

8.1. Handling a Colluding Server

When the adversary corrupts the server in the main
protocol (Section 6), we cannot tolerate corruption of any
other entity associated with the group. Otherwise, this leads
to the possibility of trivially deanonymising votes made on
the corrupted user. This is a fundamental problem with the
protocol’s system model: Voter tags are generated without
knowledge of Ui∗ , ballots without knowledge of G, and
the only always-known shared object is S’s public key.
Therefore a colluding server is hugely damaging.

To rectify this issue, we consider an adapted protocol
that can handle corruptions that involve S and some entity
X ∈ {G,Ui∗ , C|G ⊂ V|G}. The adapted protocol considers
two group admins (G1,G2). In this case, we assume that
at least one of the admins is honest.7 Furthermore, each
group member secret-shares their voter tag (in the exponent)
amongst both admins, and finally each member is assigned
to the view of only one single admin (i.e. Uĵ belongs to one
of V|Gβ for β ∈ 1, 2). This means that each member only
learns “half” of the tag for each other group member.

Let G refer to the group as a whole, while Gβ refers to
a specific admin. We give the modified protocol algorithms
in Figure 10. The main differences to highlight are that
both group admins essentially execute the same protocol
as before, but interacting with S and Ui∗ separately (using
αβ ← RO(Zβ , upki∗) as the blind for their share of the
voter tags). Finally, in the G.Combine algorithm, both group

7. We allow n admins with one honest, but consider two for simplicity.

admins share the sets of exponentiated shuffled tags with
each other (noting that both sets are shuffled identically).
Finally, the rest of the intersection protocol advances in the
same manner as before.
Sketch security argument. Without loss of generality we
focus on the case where some elements in G1 are corrupted.
Specifically, consider an adversary A that corrupts S, and
one of G1, C|G1

⊂ V|G1
, or Ui∗ . Security will essentially

follow because no entity associated with G1 (either the
admin themselves, the voters assigned to V|G1

, or Ui∗ if they
are admitted) will ever see a full voter tag for any honest
group member. Therefore, the secret voting exponents used
by such members will only be exposed in the votes they cast,
and in the shuffled exponentiated lists of tags after Combine.
By definition, since we assume that A = (AS,AX), then
there will always be at least one party honest in at least
one ShuffleExp exchange (in particular, either G or Ui∗).
This primarily allows simulation of the ShuffleExp exchange
for the adversary, without exposing the voting exponent.
After, it’s simple to show that the votes alone are distributed
uniformly, and thus hide the exponent. Lastly, we note that
while AG1

can choose to send an incorrect T ′′′1 to G2, our
assumption that at least one entity in both V|Gβ is honest
prevents this from leading to incorrect results in the protocol.

8.2. Updating votes

As noted previously, our protocol only tolerates a voter
casting a single vote on any given user. This is due to the fact
that, for votes x(1)

j,i and x
(2)
j,i , then guivj+x

(1)
j,i /guivj+x

(2)
j,i =

gx
(1)
j,i−x

(2)
j,i , i.e. the difference of the plaintext votes. This

restriction may not be a problem for many applications,
since a voter that wants to update votes can simply create
new voter parameters (i.e. secret exponents by rerunning
Register), and then vote again. However, if we want to
be able to update individual votes without re-registration,
we must consider changes to the protocol. In order to
handle multiple votes, we believe an alternative protocol
where votes are constructed as 2-tuples of the form
(guivj , gH(vj ,l)+x

(l)
j,i) (where H is modelled as a random

oracle in F(G)) gives us the required security guarantee.
Notice here that the counter l ∈ N is used to domain separate
the hashes of each vote, where l is incremented for each vote
update. In practice, l must be bounded by some B ∈ N so
that attempted intersection of the votes can be performed
by the group. In principle, this scheme actually requires the
voters to upload the tags Zj = {gsGH(vj ,l)}l∈[B] to each
group that they joins. By modifying VEP to operate over and
shuffle sets of tags, we can still perform the intersection, and
we also can ensure that only the most recent vote is counted.

In terms of a brief security analysis, the first element of
the vote (guivj ) guarantees that each ballot (and its updates)
are linkable, as in the linkable ring signature approach of
AnonRep [33]. Secondly, ratios of the second element still
hide the plaintext vote. However, one thing to notes is that
each of the entire sets Zj must be exponentiated by S and
Ui∗ during the VEP interactions. We do not require that



these sets maintain their order, and so after these interactions
it is assumed that all of the tags are shuffled together. In
any case, since the original protocol permits vote updates
via reregistration, we stop short of offering a full analysis
of this variant, which we leave to future work.

9. Limitations and Future Work

We focus on some open problems associated with our
work, that could be the focus of valuable future work.
Note that addressing the limitations described in Section 1.2
would appear to violate the practicality constraints that we
enforce in the system model (Section 4).

Currently, we lack an obvious path to building a post-
quantum (PQ) version of the protocol. The main hurdle
would appear to be finding practical solutions to the
problems of building VEP protocols, and the development
of linkable ring signature-like primitives for casting votes.
While recent works on OPRFs match the format of the
2HashDH exponentiation interface that we use [22], none
of them appear remotely close to practical deployment [2],
[3], [6]. Any innovations in this space would design
a clearer path to a PQ alternative of our protocol. A
second limitation is that we only satisfy security with
respect to the weak formulation of the ideal functionality
in fig. 8, since all (shuffled) votes are revealed in the
clear. A protocol that reveals only the tally result would
be a welcome improvement, as noted in [18] where it is
highlighted that only revealing thresholds on reputations is
an obvious privacy enhancement. Such a protocol would
likely require usage of heavier primitives (such as FHE)
or more interaction, and so research into practical solutions
to this problem would be highly welcome. Finally, further
investigation into more complex tallies and how they interact
with the overall system would be useful. This would
potentially allow building generic reputation systems that
permit more nuanced operations and calculations.
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Appendix A.
Proof of Lemma 3.2

To prove Lemma 3.2, we show that the case of b =
0 in the security model of fig. 7 can be transformed
into something computationally indistinguishable from the
case of b = 1, via a sequence of computationally
indistinguishable hybrid steps. We detail the hybrid steps
below, and then prove each of them individually in the
sequence of claims that follow. Note that the proof applies in
either the case of VE or VEP using the shuffled DLEQ proof
construction mentioned in Section 2.3. This is because we
eventually prove indistinguishability with a simulator that
has no knowledge of the random permutation used in the
VEP case. Therefore, without loss of generality, we prove
the following hybrid transitions are indistinguishable with
respect to VE.

Hybrid transitions
H0: This is the case standard security game (fig. 7).
H1: The case of b = 0 is modified to replace DLEQ.Prove

with DLEQ.SProve.
H2: We replace DLog.Prove with DLog.SProve in Γ.Gen.
H3: We replace Ai ← azi in Γ.Eval with Ai←$G.

H4: We replace Z ← gz with Z ←$G in Γ.Gen.

Note that in H4, the case of b = 0 is exactly equivalent
to the case of b = 1, and we are done. We now proceed
to prove the indistinguishability of the transitions between
H0 and H4, in Claims A.0.1 to A.0.4. We use Advc

D(λ) to
denote the advantage of a PPT distinguishing algorithm D
distinguishing between Hc−1 and Hc, for c ∈ {1, 2, 3, 4}.
Claim A.0.1. Adv1

D(λ) < Advnizk
DLEQ,B(λ)

Proof. Let B be a PPT adversary against the NIZK property
of DLEQ. Assume that B simulates VE by instantiating
DLEQ.Prove by sending all queries to the instances of the
oracles Pb′ , Rb′ that they have access to, for b′ ∈ {0, 1}.
In the case of b′ = 0, this is exactly the same as in H0,
because P0 simply outputs the same as DLEQ.Prove. In
the case of b′ = 1, P1 outputs DLEQ.SProve, which is the
same as H1. Therefore, if D distinguishes between H0 and
H1 with advantage ε, this can be turned into an immediate
distinguisher for Expnizk

DLEQ(B).

Claim A.0.2. Adv2
D(λ) < Advnizk

DLog,B(λ)

Proof. Let B be a PPT adversary against the NIZK property
of DLog. Assume that B simulates VE by instantiating the
usage of DLog.Prove by sending all queries to the instances
of the oracles Pb′ , Rb′ that they have access to in the NIZK
security game, for b′ ∈ {0, 1}. Note that this leads to
bounding the advantage of D by the advantage of B in
Expnizk

DLog(B) in the same manner as Claim A.0.1.

Claim A.0.3. Adv3
D(λ) < negl(λ).

Proof. The cases of H2 and H3 differ only in that the Ai
are sampled uniformly from G. In order to upper bound
Adv3

D(λ), we perform a sequence of ` hybrid steps H3,i.
On step i we replace (A`−i+1, . . . , A`) = (az`−i+1, . . . , a

z
` )

with (A`−i+1←$G, . . . , A`←$G) (if σ 6= id, then we
replace each {Aj = azσ(j)}j≥`−i). With this notation,
H3,0 = H2 and H3,` = H3. Without loss of generality,
we analyse the distance between H3,t and H3,t+1. We
can bound the advantage of an adversary distinguishing
these two games, by constructing a PPT adversary B that
sees the following challenge (g, gx, g1, . . . , g`, G1, . . . , G`)
where the gi are random group elements, G1, . . . , Gn−t−1

are set as gx1 , . . . , g
x
n−t−1, Gn−t+1, . . . , G` are random

group elements, and Gn−t is either gxn−t or a random group
element. B is then constructed as a simulator of H2, that
also replaces z with x and the (Ai)

`
i=1 with (Gi)

`
i=1 from

the given challenge, and returns b′ as returned by A. By
application of a hybrid argument over this challenge, given
that gxi is distributed uniformly in G, then we can bound
the advantage of B by a negligible function. Therefore, if
` ∈ O(poly(λ)), then Adv3

D(λ) < negl(λ).

Claim A.0.4. Adv4
D(λ) = 0

Proof. At this point, z is only being used to define Z = gz .
Since z ∼ F(G) and G is a prime order group, then
Z ∼ U(G). Therefore replacing gz with a uniformly
sampled group element is indistinguishable.



Sim.ExtCreateGroup(spkG, πspkG
)

sG ← πspkG
.Extract(g, spkG)

return sG

Sim.ExtInitCount(spki∗,G, πi∗,G, spki∗,G, πi∗,G)

∆i∗,G ← πi∗,G.Extract(g, spki∗,G)

si∗,G ← πi∗,G.Extract(g, spki∗,G)

return ∆i∗,G, si∗,G

Sim.ExtRegister(upkĵ , πupkĵ
)

uĵ ← πupk
ĵ
.Extract(g, upkĵ)

return uĵ

Sim.ExtJoinGroup(zĵ,G, πĵ,G)

vĵ ←, πĵ,G.Extract(g, zĵ,G)

return vĵ

Sim.ExtVote(g, wi∗ ,̂j , yi∗ ,̂j)

d← wi∗,ĵ · yi∗,ĵ
for x ∈ D :

if gx = d :

return x

return ⊥

Figure 11. Simulator algorithms extracting adversarial secrets and inputs.

After proving Claim A.0.4, the algorithms Γ.Eval and
Γ.SEval, as well as Γ.Gen and Γ.SGen, are identical.
Therefore, the cases of b = 0 and b = 1 are
computationally indistinguishable in Expve

Γ (A, `, λ), and as
such Advve

Γ,A(λ, `) ≤ negl(λ). Thus, Lemma 3.2 holds.

Appendix B.
Protocol Security Proofs

We now argue the security of the protocol against
adversaries that corrupt either {G, C|G ⊂ V|G,Ui∗} or S.
In the following, we construct a simulator that provides an
indistinguishable protocol view for such adversaries, using
the security model and framework discussed in Section 5.
These simulator will simulate each of the algorithms defined
in fig. 9 that impact the view of the given adversarial entity.
Notation. For a real-world algorithm Alg run by
entity B, the simulated version SimB.SAlg produces an
indistinguishable view for some adversarial entity AC,
where the view of C in the real protocol is impacted by
the results of Alg. In each case, we write Advsalg

B (λ) to
denote the advantage of some PPT algorithm D attempting
to distinguish between the real and simulated variants.

B.1. Simulation Extraction Algorithms

In fig. 11, we define mechanisms that extract adversarial
secrets throughout the protocol, depending on the corrupted
entity that is being interacted with. These procedures rely
on extracting secret exponents from DLog-like knowledge-
extractable NIZK proofs. In Lemma B.1 we prove that each
of the DLog extraction algorithms in fig. 11 is PPT, with all
but negligible correctness error.

Lemma B.1 (DLog extraction functions). The Sim
algorithms (ExtCreateGroup, ExtInitCount, ExtRegister,
ExtJoinGroup) are PPT with negligible correctness error,
assuming the non-interactive knowledge soundness of DLog.

Proof. In each case, the same logic applies, so we
will consider the case of ExtJoinGroup without loss of
generality. The simulator receives (zĵ,G = g−sGvĵ , πĵ,G)
when AUĵ

runs JoinGroup to join G. As long as the

SimUi .SRegister()

(upkui , πupki)← ΓVE.SGen(g)

(upki, πupki)
send−−→ A

SimUi .SJoinGroup(spkG)

(zi,G, πi,G)← ΓVE.SGen(spkG)

(zi,G, πi,G)
send−−→ A

SimUi .SVote(Uj)

wi,j ←$G

wi,j
send−−→ A

SimS.SCreateGroup(V|G)

(spkG, πS,G)← ΓVE.SGen(g)

idG ←$ {0, 1}λ

(spkG, πspkG
)

send−−→ A

SimS.SInitCount(i∗, idG)

// Sim check: Ui∗ ∈ V
∣∣

G

(spki∗,G, πi∗,G)← ΓVE.SGen(g)

(spki∗,G, πi∗,G)← ΓVE.SGen(g)

((spki∗,G, πi∗,G), (spki∗,G, πi∗,G))
send−−→ A

SimS.SShuffleExp(T, spki∗,G)

// Sim check: T = Zα

(T ′, π
(S)
VEP)← ΓVEP.SEval(spk∆,i∗,G, T )

(T ′, π
(S)
VEP)

send−−→ G

SimS.SSendVotes(vĵ , {xĵ,i∗}, spki∗,G, T
′′′)

// Recall: γ =
∣∣V∣∣

i∗

∣∣, ` =
∣∣V∣∣

G

∣∣
W ← Votesi∗

X ← F(xĵ,i∗ , idG)

I, J ′, J ′′ = []

for xĵ,i∗ ∈ {xĵ,i∗}U
ĵ
∈C|G :

Find tĵ ∈ [γ] s.t. W [tĵ ] = upk
v
ĵ

i∗ · g
x
ĵ,i

J ′′.push(tĵ)

for x ∈ X \ {xĵ,i∗}U
ĵ
∈C|G :

i←$ [`] \ J ′

t←$ [γ] \ J ′′

J ′.push(i)

J ′′.push(t)

I.push((t, T ′′′[i]
−1 · (spki∗,G)x))

for xĵ,i∗ ∈ {xĵ,i∗}U
ĵ
∈C|G :

if xĵ,i∗ 6= ⊥ :

iĵ ←$ [`] \ J ′

I.push((tĵ , T
′′[iĵ ] · (spki∗,G)

x
ĵ,i∗ ))

(W (s), π
(S)
VE )← ΓVE.PEval(spki∗,G,W, I)

(W,W (s), π
(S)
VE )

send−−→ AG

Figure 12. Simulated algorithms for A = (AG,AUĵ
∈ C|G,Ui∗ ).

proof verifies (DLog.Verify(zĵ,G, πĵ,G)) then, by the non-
interactive knowledge soundness of DLog (Definition 2.4),
there is a polynomial-time extraction algorithm Extract
that extracts the witness (discrete log) vĵ from the known
pair (gsG , (gsG)−vĵ ) with all but non-negligible error. In
particular, it is trivial to construct a winning adversary
against Expnisnd

DLog, based on an algorithm that does not output
correctly with all but negligible probability.

Finally, we prove the following short lemma
(Lemma B.2) regarding adversarial vote extraction
(ExtVote(g, w, y)) returns x ∈ D, such that w = gx · y−1.

Lemma B.2 (Vote extraction). Assuming that |D| =
poly(λ), Sim.ExtVote(g, w, y) returns x ∈ D such that
w = gx · y−1 in PPT, or returns ⊥ otherwise.

Proof. The proof is trivial based on the construction of
ExtVote in fig. 11. Note that the possibility of two different
values x and x′ satisfying the algorithm is 0, and therefore
returning the first satisfying x ∈ D is correct.

B.2. Corruption of G, Ui∗ , and C|G ⊂ V|G

In the (G,Ui∗ , C|G) corruption model, we consider a PPT
malicious adversary A = (AG,AUi∗ ,AUĵ

) that corrupts
the group admin conducting the tally (G), the target user
(Ui∗), along with a subset (C|G ⊂ V|G) of group members
(who may or may not have voted on the target user). This
means that some number of group members (voters) and
the facilitation server S remain honest. In order to prove
security of the protocol, we demonstrate a simulator Sim
that provides a view to A that is indistinguishable from that



of the real protocol, while only interacting with the ideal
functionality F demonstrated in fig. 8.

Given this corruption model, the simulator must simulate
the algorithms shown in fig. 12, since these algorithms all
modify or impact the view of the corrupted parties. Our
security argument is given and proven in Lemma B.7. First,
we prove a number of lemmas that are useful for the eventual
security proof. In particular, each lemma proves that the
simulated equivalents of functions typically run by either
the honest S or an honest Ui (either in the group, or out),
are indistinguishable from their real-world counterparts.

Lemma B.3. Advx
D(λ) < Advnizk

B (λ) for x ∈
{SCreateGroup,SRegister,SJoinGroup} for PPT B.

Proof. Since the simulation of each of the functions in the
set {SCreateGroup,SRegister,SJoinGroup} are essentially
identical, we give a proof for the case of SCreateGroup,
without loss of generality, that covers all of them.

An algorithm B attempting to violate the non-interactive
zero-knowledge property of DLog receives a challenge of
the form (spk, πspk), where when b = 0, we have that
(s, spk = gs, π) ← ΓVE.Gen(g), and when b = 1,
(spk, π) ← ΓVE.SGen(g). In both cases, it is assumed that
π verifies correctly. To simulate the distinguishing game in
Expscreategroup
D , B simply samples idG←$ {0, 1}λ, and then

sends (idG, spk, π) to D. If D can distinguish the two cases
with non-negligible advantage, then this transitively implies
a non-negligible winning strategy for B.

The case of SInitCount is slightly more involved, and
the proof argument is given in Lemma B.4, below.

Lemma B.4. Advsinitcount
D (λ) < Advddh

G,B′(λ) + 2 ·Advnizk
B (λ)

for any algorithms (B,B′).

Proof. In the case of SInitCount, we note that we instantiate
a two-step hybrid argument to cover the pair of proven
public keys that the adversary receives. In the first step, we
replace sampling of πi∗,G ← DLog.Prove(∆i∗,G, g, spki∗,G)
with (spki∗,G, πi∗,G)← ΓVE.SGen(g), by the same argument
as in the proof of Lemma B.3. The second step involves
noting that the steps that construct ∆i∗,G ← si∗,G/sG and
results in the following set of public keys:

(g, spki∗,G = gsi∗,G , spkG = gsG , g∆i∗,G),

that mirror a Decisional Diffie-Hellman (DDH) challenge
(Definition 2.1). Clearly, we can transition to a world where
we replace g∆i∗,G with u←$G (where ∆i∗,G is unknown)
via an adversary B′ against DDH.

The final step involves simulating the keypair
(spki∗,G, πi∗,G), via the argument used in Lemma B.3.

We now prove the cases of ShuffleExp, which apply
when S and/or Ui∗ are honest.

Lemma B.5 (Simulation of SShuffleExp).
Advsshuffleexp

D (λ) < Advvep
ΓVEP,B(λ) for any PPT algorithm B.

Proof. Note that the ShuffleExp is a simple wrapper around
the ΓVEP.eval algorithm, the only difference being that there

is a check on the input T (in the case of S.ShuffleExp,
or T ′ in the case of Ui∗). These checks are performed
by honest voters Uj ∈ V|G, who observe the transcript of
communications initiated by G. As noted in Section 5, we
make the assumption that the material sent and received by
G is written directly to the internal tape of all voters in the
group. When G is honest, these checks always pass. In the
case where it is not, anyone with knowledge of the set Z
can check that T = Zα, since α← RO(Z, upki∗).

Let B be an adversary attempting to break the security
of ΓVEP, then as long as B is given access to Z, they simply
forward the response they get from the VEP experiment to
the function caller. Any caller than can distinguish with non-
negligible probability translates directly to a non-negligible
attack on the underlying VEP scheme.

Finally, we prove the following lemma, relating to the
indistinguishability of Vote and SVote.

Lemma B.6. Advsvote
D (λ) = 0 for any algorithm B.

Proof. To prove the valid simulation of the Vote function,
we consider an honest Ui voting on a user Uj (who is
potentially malicious) but where upkj is generated honestly
(as guaranteed in Uj .Register). Such a vote is constructed
as wi,j ← upkvij ·gxi,j , where xi,j ∈ D. For any g ∈ G, then
gv is distributed uniformly in G, assuming that v←$F(G).
Therefore, given that vi is sampled uniformly, and unknown
to Uj , it is trivial to see that wi,j is indistinguishable from
being sampled at random from G.

We now proceed to proving the main security guarantee.

Lemma B.7 (Security against malicious group). Assume
the existence of a secure VEP protocol (Definition 3.2), the
hardness of solving DDH (Definition 2.1), and a NIZK proof
of knowledge system for discrete log relations (Section 2.3).
Then the protocol in fig. 9 is secure against corruption of
G, Ui∗ and a subset C|G ⊂ V|G, by a malicious adversary
A.

Proof. We detail the hybrid argument below that proves that
the real-world protocol and simulation are indistinguishable,
where the final step (H11) is equivalent to the simulation.
After, follows a series of proven claims that each of
the hybrid steps results in two views that are at least
computationally infeasible to distinguish.

Hybrid transitions
H0: This is the real protocol.
H1: For all Uĵ ∈ C|G: runs the extraction algorithm

vĵ ← Sim.ExtJoinGroup(zĵ,G, πĵ,G) to extract the
voter exponent used by AUĵ

.
H2: For all Uĵ ∈ C|G: runs the extraction algorithm

uĵ ← Sim.ExtRegister(upkĵ , πupkĵ
) to extract the user

exponent used by AUĵ
. Furthermore, runs ui∗ ←

Sim.ExtRegister(upki∗ , πupki∗ ) to extract the user
exponent used by AUi∗ .

H3: For all Uĵ ∈ C|G: runs the extraction algorithm xĵ,i ←
Sim.ExtVote(yi,̂j , spki,G, upki, vĵ) to extract the vote



made by AUĵ
on any user Ui ∈ U (including Ui∗), (or

xĵ,i = ⊥ if Uĵ didn’t vote on Ui).
H4: Construct the set {xĵ,i∗}Uĵ∈C|G of votes cast on Ui∗

by a corrupted group member, and send it to F , and
then receive the total (shuffled) set of votes X made
on Ui∗ (including votes by honest voters).

H5: Replace calls to S.SendVotes with SimS.SSendVotes.
H6: Replace calls to S.ShuffleExp with SimS.SShuffleExp.
H7: Replace S.InitCount with SimS.SInitCount.
H8: Replace S.CreateGroup with SimS.SCreateGroup.
H9: Replace calls to Ui.Register with SimUi .SRegister.
H10: Replace calls to Ui.JoinGroup with

SimUi .SJoinGroup.
H11: Replace calls to Ui.Vote with SimUi .SVote.

In the following, we write AdvιD(λ) to indicate
the advantage of a PPT distinguishing algorithm D in
distinguishing between Hι−1 and Hι. Furthermore, let N =
|V|G| and NC = |C|G|, be the total number of voters and
corrupted voters, respectively. We write Uĵ when referring
to a member of C|G, where ĵ ∈ [N ].

Claim B.7.1.
∑2

ι=1 AdvιD(λ) < 2(NC + 1) · Advnisnd
DLog,B(λ)

for any PPT algorithm B.

Proof of Claim B.7.1. For any Uĵ ∈ C|G, both the
JoinGroup and Register function outputs are sent to all
voters in the group and therefore written internally to the
immutable transcript seen by honest voters. Thus, crucially,
these outputs are observed by the simulator, which allows
Sim to run the extraction algorithms on these outputs. More
formally, for each Uĵ ∈ C|G, the indistinguishability of both
hybrid steps follows from Lemma B.1. Note that the actual
view of the adversary does not change in either case —
unless soundness of DLog is violated — since the results of
the extraction are not exposed. If soundness is violated, the
simulation fails further down the line.

In the case of the transition between H1 and H2, we
must also take into account extracting the secret exponents
of Ui∗ in Register, and in JoinGroup (if they are admitted to
the group in the end of the protocol). The explicit extraction
steps are exactly the same as in the case of Uĵ .

Claim B.7.2. Adv3
D(λ) = 0.

Proof of Claim B.7.2. Firstly, as in Claim B.7.1, Sim
observes all calls to Vote since all votes are sent via
the (honest) server. Secondly, since the server has already
extracted vĵ for each Uĵ ∈ C|G, it can The simulator Sim
extracts xĵ,i ∈ D (or xĵ,i = ⊥, if the vote is malformed)
using the argument given in Lemma B.2, for all Ui ∈ U .

Claim B.7.3. Adv4
D(λ) = 0.

Proof of Claim B.7.3. Sim constructs the set {xĵ,i∗}
supplies xĵ,i∗ to F , and learns the set X of shuffled plaintext
votes via the weak formulation of F (fig. 8). Note that this
happens in the background, and thus does not change the

view of the adversary (this will be handled explicitly in
Claim B.7.4).

Claim B.7.4. Adv5
D(λ) < Advve

ΓVE,B(λ) + δ · Advnisnd
DLEQ,B(λ)

for any PPT algorithm B.

Proof of Claim B.7.4. We show that W (s), as computed in
Sim.SSendVotes, is computationally indistinguishable from
W (s) calculated in H4. Recall that, in H4, we compute:

(W (s), π
(s)
VE )← ΓVE.Eval((si∗,G, spki∗,G),W ),

where W = Votesi∗ . In H5, we compute:

(W (s), π
(s)
VE )← ΓVE.PEval(spki∗,G,W, I),

where I = {(t, T ′′[i] · (spki∗,G)x)}, for each x ∈ X . We
note that, since the simulator has vĵ and xĵ,i∗ , they are able
to locate the anonymised vote, wĵ,i∗ , in position iĵ of W
that was made by AUĵ

on Ui∗ . Analysing the set I , we
sample random entries (i, t) from W and T ′′′, respectively,
and then program VE to output T ′′′[t]−1 · spki∗,G

x
for W [i].

The output on W [iĵ ], is programmed also.
Firstly, note that T ′′′[t] = g−si∗,Gui∗vσρ(j) for some

Vj ∈ V|G, as long asA is unable to subvert the protocol. The
probability of subversion (Pr[Subvert]) is calculated based
on the actions of AG.InitExp, the inputs T, T ′ sent by AG

to both instances of ShuffleExp, and the response of Ui∗
in ShuffleExp. In the first case, any group member that has
access to Z can check that AG calculates T = Zα properly,
where α← RO(Z, upki∗). In the case of the Sim, since all
calls to RO are managed by the simulator themselves, this is
also checkable. In the cases of sending T and T ′ we rely on
the assumption that all inputs to function calls made by G
are written to the internal group transcript, which means that
the simulator can check that the group provides the correct
inputs to both ShuffleExp invocations. This happens since
all calls are routed via the server, which is run internally by
Sim. In the case of the response of Ui∗ , the simulator can
check explicitly that T ′′ = (T ′)ui∗ for some polynomial-
time checkable shuffle of T ′, since it already extracted
the target user exponent. Note that, however, if Ui∗ can
violate the soundness of π(u)

VEP, it could go undetected in
H4. In essence, this would allow Ui∗ to use a different
exponent when exponentiating the votes. Finally, T ′′′ is
simply calculated by Sim as (T ′′)1/o. All things considered,
Pr[Subvert] = δ · Advnisnd

DLEQ,B(λ). Therefore, we note that:

T ′′′[t]
−1 · (spki∗,G)x = gsi∗,Gui∗vσρ(j) · gsi∗,Gx

= (gui∗vσρ(j)+x)si∗,G

= ΓVE.Eval((si∗,G, spki∗,G),W ).

Therefore, we conclude that for intersecting votes, we
are calculating the corresponding entries in W (s) in H5

identically. Finally, we must address the ordering of W (s),
and the usage of PEval, as opposed to SEval. By assumption,
we assume that Votesi∗ is received in random order by both
Ui∗ and S. Therefore, by selecting random elements of W
to make part of the eventual intersection, the two situations



Sim(AS)

ExtCreateGroup

ExtInitCount

ExtRegister

SimUi .SRegister

SimUi .SJoinGroup

SimUi .SVote

SimG.STallyVotes()

X ← F(idG)

bi∗,G ← Tally(X)

SimUi∗ .SShuffleExp(T ′, upki∗)

// Sim check: T ′ ← S.ShuffleExp

(T ′′, π
(Ui∗ )
VEP )← ΓVEP.SEval(upki∗ , T

′)

(T ′′, π
(Ui∗ )
VEP )

send−−→ A

Figure 13. Algorithms to simulate, and additional simulations for A = AS.

are identical. Finally, by Lemma 3.2, the outputs of ΓVE.eval
and ΓVE.PEval are also indistinguishable. In summary, we
conclude that the distinguishing advantage between H4 and
H5 is bounded by Advve

ΓVE,B(λ) + δ · Advnisnd
DLEQ,B(λ).

Claim B.7.5. Adv6
D(λ) < Advvep

ΓVEP,B(λ)

Proof of Claim B.7.5. This step admits a distinguishing
advantage bounded by the statement of Lemma B.5. Note
that Sim has access to Z, as highlighted in Claim B.7.4,
and thus they can carry out the checks necessary to ensure
that the VEP protocol is carried out correctlt. Notice that,
after this change, the VEP interaction with S is simulated
without using the secret exponents of S.

Claim B.7.6. Adv7
D(λ) < Advddh

G,B′(λ) + 2 · Advnizk
B (λ) for

any PPT algorithms (B,B′).

Proof of Claim B.7.6. Follows directly from Lemma B.4.
After this step, the server’s ephemeral exponents are no
longer known to the simulator. Note that they are already
not used anywhere, due to the simulation of the VE and
VEP interactions in H5 and H6, respectively.

Claim B.7.7.
∑10

ι=8 AdvιD(λ) < 3 · Advddh
G,B(λ) for PPT B.

Proof of Claim B.7.7. The distinguishing advantage in each
step is bounded by Lemma B.3. Afterwards, all secret
exponents of S are unknown. Moreover, all honest users
joining the group will send random group elements, and thus
their voter tag is unknown. Intuitively, this follows because
the voter tags are computed as spk

−vj
G for each Vj ∈ G. The

only other place the tags arise is in the computation of votes
by Vj on any Uĵ ∈ C|G. However, since the base of the votes
is the generator g, the tags are independently distributed.
Therefore, the argument from Lemma B.3 applies.

Claim B.7.8. Adv11
D (λ) = 0 for any algorithm B.

Proof of Claim B.7.8. This follows from Lemma B.6. After
this change, the secret exponents for honest voters are no
longer exposed at all in the protocol.

As noted previously, since H11 is identical to the
simulation, we can consider the proof of Lemma B.7
complete, given that each of the distinguishing advantages
for the hybrid steps is at most negl(λ).

B.3. Server (S) Corruption

In this corruption model, we consider an adversary
A = AS that corrupts the server. Recall from the discussion
in Section 5 that modelling corruptions of the server is much
more difficult, and thus we are unable to prove security
for S + A for A ∈ {Ui∗ ,Uĵ ,G} with respect to the base
protocol. In Section 8.1, we give an adapted protocol that
ensures security in such scenarios. In the base protocol,
however, where there is a single group admin, we can still
prove security against a malicious server, as long as no
further collaboration occurs with any entity associated with
the group in question. This means that all internal group
members Uĵ ∈ V|G, the group admin itself G, and the
target user Ui∗ remain honest. As before, fig. 13 details
the simulated functions. In Lemma B.8, we summarise the
security argument for this corruption model.

Lemma B.8. Assume the existence of a secure VEP
protocol (Definition 3.2), the hardness of solving DDH
(Definition 2.1), and a NIZK proof of knowledge system
for discrete log relations (Section 2.3). Then the protocol
in fig. 9 is secure against corruption of S, by a malicious
adversary A.

Proof. The proof follows the hybrid argument below.
Hybrid transitions

H0: This is the real protocol.
H1: Run sG ← Sim.ExtCreateGroup(spkG, πspkG

) to
extract the group exponent used by AS.

H2: Run Sim.ExtInitCount(spki∗,G, πi∗,G, spki∗,G, πi∗,G)
to extract the secret exponents used by AS.

H3: Replace the call to G.TallyVotes with calls to
SimG.STallyVotes.

H4: Replace Ui∗ .ShuffleExp with SimUi∗ .SShuffleExp.
H5: Replace Ui.Register with SimUi .SRegister.
H6: Replace Ui.JoinGroup with SimUi .SJoinGroup.
H7: Replace Ui.Vote with SimUi .SVote.
H8: Replace T sent by G in S.ShuffleExp with T ←$Gδ .

We focus on the indistinguishability of H2 and H3,
which is the only step that differs significantly from those
proven in Lemma B.7. Once we reach H8, this is identical
to the ideal-world simulation, and the proof is complete.
Claim B.8.1.

∑2
ι=1 AdvιD(λ) < 3 · Advnisnd

DLog,B(λ) +

Advddh
G,B′(λ) for any PPT algorithms (B,B′).

Proof of Claim B.8.1. The indistinguishability of each
hybrid step follows directly from Lemma B.1.

Claim B.8.2. Adv3
D(λ) < 3 · Advnisnd

DLEQ,B(λ) for PPT B.

Proof of Claim B.8.2. In SimG.STallyVotes, the main
difference is that the votes considered X are recovered
directly from the ideal functionality X , whereas in H3

they are recovered from the G.IntersectVotes function. An
algorithm can distinguish between both hybrids if they can
force G.IntersectVotes to output an incorrect set X ′. To



perform the analysis of whether such subversion can occur
(i.e. Pr[Subvert]), we consider the structure of the sets
T ′′,W,W (s) provided to the function.

Firstly, in the case of T ′′, note that the simulator can
check that AS and AUi∗ are carrying out the VEP interaction
properly, via verification of the proofs π(S)

VEP, respectively.
In particular, by extracting ∆i∗,G and ui∗ the simulator can
check that the returned exponentiated values correspond to
a shuffling of the sets T∆i∗,G and (T∆i∗,G)ui∗ , respectively.
Therefore, we conclude that the probability of subversion
relative to T ′′ is bounded by Advnisnd

DLEQ,B(λ), corresponding
the proof issued by AS during the VEP interaction.

Secondly, in the case of W , each of the individual honest
voters in the group (and thus Sim as well) can check that
their vote on Ui∗ is included. If it is not, they can trigger
an abort if it is not included in W received from G.

Thirdly, in the case of W (s), the propensity for A to
subvert the protocol amounts to violating the proof π(S)

VE

output by ΓVE on W and spki∗,G. Note that this can be
verified and checked by the simulator, who has already
extracted the secret exponent si∗,G.

Following this analysis, we conclude that the probability
of subversion is calculated as follows:

Pr[Subvert] < 3 · Advnisnd
DLEQ,B(λ).

Finally, assuming that no subversion has occurred,
then T ′′′ = {g−si∗,Gui∗vj}Uj∈V|G , while W (s) =

{gsi∗,G(vj′ui∗+xj′,i∗ )}U′j∈V|i∗ . Let wj ∈ T ′′′, when
conputing the intersection, we have that:

wj · y = g−si∗,Gui∗vj · gsi∗,G(vj′ui∗+xj′,i∗ )

= gsi∗,G((vj−vj′ )ui∗+xj′,i∗ ).

Therefore, wj ·y ·g−si∗,Gx = 0 for any x ∈ D if vj−vj′ = 0
and x = xĵ,i∗ , or x 6= x = xĵ,i∗ and gsi∗,Gx = wj · y. The
latter case occurs with negligible probability, since the value
is essentially distributed independently in G. Therefore, this
only occurs if both Vj ∈ V|G and Vj ∈ V|i∗ .

This condition guarantees that the correct votes are
counted, it is then clear that by the fact that each of
(T ′′,W,W (s)) are computed correctly, and the fact that
IntersectVotes loops through each element in sequence, this
exhaustively counts all such voters satisfying the condition.
By the construction of F therefore, the methods in H4 and
H5 give equivaleent results except for the occurrence of
event Subvert, where Pr[Subvert] < 3 · Advnisnd

DLEQ,B(λ).

This concludes the proof of Lemma B.8
Claim B.8.3. Adv4

D(λ) < Advvep
ΓVEP,B(λ)

Proof of Claim B.8.3. Noting that all entities in the group
are honest, it is trivial to see that this follows immediately
from the proof of Lemma B.5.

Claim B.8.4.
∑7

ι=5 AdvιD(λ) < 2 ·Advddh
G,B(λ) for any PPT

algorithm B.

Proof of Claim B.8.4. This argument follows the same as
those used in the proofs of Claim B.7.7 and Claim B.7.8.

Claim B.8.5. Adv8
D(λ) = 0

Proof. We conclude by showing that the set T sent by G to
S can be iteratively (δ times) replaced with fresh samples
from G. The reason for this is because T = Zα, where
α← RO(Z, upki∗), where Z = {zsG

j } for zj never revealed
to S. As such, α is a uniformly distributed element of F(G)
from the perspective of AS, and therefore so is the set T . In
other words, we can replace it with T ←$Gδ . Notice now
that none of the voter tags are ever exposed to the server.

As noted previously, since H8 is identical to the
simulation. We can consider the proof of Lemma B.8
complete, given that each of the distinguishing advantages
for the hybrid steps is at most negl(λ).


	Introduction
	Technical Overview
	Wider Discussion and Limitations
	Related Work

	Notation and Preliminaries
	Cryptographic Groups
	NIZK Proof Systems
	Discrete-log Proofs
	Malicious Security in Protocols

	Verifiable Permuted Exponentiation
	Handling Malicious Inputs

	System Model
	Security Model
	Assumptions

	Protocol Design
	Security Guarantees

	Implementation and Benchmarking
	Protocol Adaptations
	Handling a Colluding Server
	Updating votes

	Limitations and Future Work
	References
	Appendix A: Proof of lem:ve-security
	Appendix B: Protocol Security Proofs
	Simulation Extraction Algorithms
	Corruption of G, Ui*, and .C |G .V |G 
	Server (S) Corruption


