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Abstract

Efficient implementation of a pairing-based cryptosystem relies on high-performance arith-
metic in finite fields Fp and their extensions Fpk , where k is the embedding degree. A small
embedding degree is crucial because part of the arithmetic for pairing computation occurs
in Fpk and includes operations such as squaring, multiplication, and Frobenius operations.
In this paper, we present a fast and efficient method for computing the Frobenius endomor-
phism and its complexity. Additionally, we introduce an improvement in the efficiency of
cyclotomic cubing operations for several pairing-friendly elliptic curves, which are essential
for the calculation of Tate pairing and its derivatives.

Keywords— Optimal Ate Pairing Frobenius maps Kronecker products Finite fields
Cyclotomic cubing.

1 Introduction

Bilinear pairing is a mathematical operation that maps a pair of points on an elliptic curve
to an element of a finite field. Pairings have become a cornerstone in modern cryptography
due to their unique properties (bilinearity, non-degeneracy, computability) and applications.
Indeed, they enable the construction of advanced cryptographic protocols that were previously
difficult to achieve. For instance, they are used, among others, in identity-based encryption [9],
attribute-based encryption [19], short digital signatures [11], key exchange [22], broadcast en-
cryption [10], deep package inspection over encrypted traffic [29, 12], and cryptocurrency [30].
However, the efficiency of cryptosystems that rely on bilinear pairings is largely dependent on
the speed of pairing computation. Consequently, over the past decades, researchers have fo-
cused on optimizing this process, particularly by identifying pairing-friendly curves [18, 26].
For example, the BLS (Barreto-Lynn-Scott) curves are known for their simplicity and efficient
implementation, making them popular for applications like digital signatures and identity-based
encryption [30, 15, 20]. Additionally, studies have explored various types of pairings, including
the widely-used Tate pairing and its variants (e.g., Optimal Ate Pairing) [31]. The Tate pairing
computation relies on Miller’s algorithm and a final exponentiation. Therefore, these compo-
nents have also been a focus of optimization efforts [14, 2, 1].
To delve into the specifics of Miller’s algorithm and final exponentiation, we consider E as an
ordinary elliptic curve over the finite field Fp , and let r be a large prime number that divides
the order of the group of points E(Fp). The embedding degree k of E with respect to r and
the prime number p is defined as the smallest integer k such that r divides pk − 1. Miller’s
algorithm is used to compute an intermediate result, a function fs,Q(P ) where P and Q are
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two points on the elliptic curve E , and s an integer related to the order of the points. This in-

termediate value, which is an element in the finite field Fpk , is raised to the power pk−1
r in order

to ensure the unicity of the pairing. This final exponentiation involves raising the intermediate
result to a large power, leading to complex calculations in the finite field Fpk . To secure against
several attacks (e.g., ExTNS [6, 24, 4], subgroup attacks [7]), the size of the two finite fields Fp

and Fpk should follow the recommendations in [5]. Thus, the efficiency of pairing computation
relies mainly on three factors:

- The size of Fp ;
- The size of Fpk , which depends on the embedding degree k of the curve;
- The arithmetic in Fpk , involving squaring, multiplication, and Frobenius evaluation.

Several studies have already been conducted on optimizing arithmetic operations in Fpk , and
the search for suitable embedding degrees k .

In [5], the authors highlight the existence of additional families of elliptic curves with embedding
degrees k = 9 and k = 15 which exhibit competitive performance when compared to the well-
known BN curves and BLS curves with k = 12. However, these elliptic curves with odd
embedding degrees face a significant drawback: the lack of fast squaring, known as cyclotomic
squaring, within the cyclotomic subgroup. In [28], the authors provide the first explicit formula
for performing fast cubing, in cyclotomic subgroup, referred to as cyclotomic cubing. This
method is especially beneficial for elliptic curves with embedding degrees that are multiples
of three. The proposed formulae utilize the cyclotomic structure to reduce the computational
complexity of cubing operations, which are crucial in the final exponentiation step of pairing
computations. However, this method remains less efficient compared to the simple square-and-
multiply technique in the final exponentiation and necessitates further optimization. In [32],
the authors demonstrate that using a ternary representation of the seed u , which is an integer
used in the parameterization of the prime p and the order r of the elliptic curve, can lead
to better performance in the final exponentiation in some particular cases of the seed u . To
evaluate the cost of the final exponentiation for elliptic curves with embedding degrees divisible
by three, they leverage the cyclotomic cubing method described in [28].

Additionally, to provide an accurate complexity of the final exponentiation step, it is essential to
compute the number of operations required to perform the Frobenius morphism. However, com-
puting the Frobenius morphism in various finite fields involves numerous algebraic operations,
with the exact count depending on the specific characteristics of each field. This variability com-
plicates the determination of operation counts and, consequently, the computation of pairing
complexity. Therefore, developing a method to accurately determine the number of operations
required for the Frobenius morphism is considered an important and valuable area of study.

Our contribution. In this paper, we present new methods to enhance the arithmetic in Fpk ,
leading to an easiest way to determine the complexity of the Frobenius evaluation as well as,
a reduction in the operation counts needed to perform the final exponentiation. We also apply
these new results to BLS curves with specific embedding degrees and provide a comparison with
the state-of-the-art. More specifically, our main contributions are as follows:

- Frobenius computation in the finite field Fpk : we introduce a new method utilizing Kro-
necker product of matrices to perform more efficiently the Frobenius operation and sim-
plifies the complexity analysis.

- Squaring: during the final exponentiation computation, squaring can sometimes be sub-
stituted with cubing, more specifically when the embedded degrees k is divisible by 3.
This paper aims to provide an optimized approach for cyclotomic cubing, improving the
results, in terms of operations counts, obtained in [28].
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- Application of fast cubing optimization to the pairing based on the BLS curves for em-
bedding degrees k = 15 and k = 27 cuves.

Organization of the paper. In section 2, we provide an overview of the necessary back-
ground information to comprehend this work. In section 3, we introduce a novel approach
based on the Kronecker product to compute the Frobenius map. In section 4, we focus on the
optimization of the cubing computation. In section 5, we demonstrate the application of the
method explained in the previous section to pairing-based cryptography on BLS (Barreto-Lynn-
Scott) curves and give a comparison of complexity.

Notations. In this paper, we use the following notations to define the operations in the finite
field Fpk : Mk , Sk , Ak , Fk and mk,c denote multiplication, squaring, addition, Frobenius and
multiplication by an element c in Fpk , respectively. To simplify the notations, we denote by
M , S , A , and mc multiplication, squaring, addition, and multiplication by an element c in
Fp , respectively.
In addition, we refer to Ccyck as the cyclotomic cubing and to Icyck as an inversion in the
cyclotomic subgroup of the finite field Fpk .

2 Background

This work is based on various mathematical notions, which we recall in this section to provide
the necessary background to comprehend our results. We focus particularly on pairing-based
cryptography and related notions such as pairings, Frobenius endomorphisms, and the Kro-
necker product.

2.1 Pairings

Let E be an elliptic curve defined over a finite field Fp , where p is a large prime number.
Let r be a large prime divisor of #E(Fp). In practice, (E, p, r) are provided using parametric
families [18]. Let k be the smallest integer such that r divides pk − 1. This k is called the
embedding degree of E relative to r .
Let G1 = E(Fp)[r] be the r -torsion subgroup of E(Fp). Let G2 = E′(Fpk/d)[r]∩Ker(πp − [p]),
where E′ is the twist of E (if it exists) of degree d , πp represents the Frobenius map over E ,
and [p] is the scalar multiplication by p over E . The subgroup of F⋆

pk
, consisting of r -th roots

of unity, is denoted by G3 = µr .
Let s be an integer derived for the optimal Ate pairing [31], depending on r and p . Then the
(optimal) Ate pairing is given by:

Tr : G1 ×G2 −→ G3

(P,Q) 7−→ fs,Q(P )(p
k−1)/r.

The pairing computation is divided into two main steps [17, Chap. 3]. First, we compute
fs,Q(P ) using an iterative algorithm known as the Miller algorithm [27]. As with any algorithm
based on the double-and-add method, the overall computational cost is directly influenced by
both the length and the Hamming weight of the integer s .
The second step in computing the Tate pairing and its variants is the final exponentiation,

which involves raising the final result of the main loop, fs,Q(P ), to the power pk−1
r . The final

exponentiation has become a significant component of the overall computation. Utilizing the
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cyclotomic polynomial, this exponentiation can be efficiently divided into two distinct parts as
follows:

pk − 1

r
=

pk − 1

ϕk(p)
× ϕk(p)

r
.

- The computation of
pk − 1

ϕk(p)
, known as the easy part of the final exponentiation, requires

some Frobenius operations (two if k is even), several multiplications, and an inversion in
Fpk .

- The hard part of the final exponentiation,
ϕk(p)

r
, is expressed in terms of the basis p

using the cyclotomic polynomial. This computation encompasses numerous multiplica-
tions, squarings, cyclotomic squarings or cubings, and several Frobenius operations. The
complexity of this stage is significantly higher compared to the easy part of the final
exponentiation and the Miller loop [5].

In this paper, we aim to optimize operations essential for the computation of the final exponen-
tiation, specifically Frobenius operation and cyclotomic cubing.
Let us first recall the definition of the Frobenius endomorphism that is used at different steps
of the final exponentiation.

2.2 Frobenius endomorphism

Definition 2.1. Let p be a prime number and k ∈ N∗ .
For a field extension Fpk/Fp , the p-Frobenius mapping is the Fp -linear mapping

πp : Fpk/Fp −→ Fpk/Fp

x 7−→ xp.

Observe that πp is in fact an Fp -algebra automorphism of Fpk . In particular,

(x+ y)p = xp + yp,

for all x, y ∈ Fpk .
For i ∈ N∗ , the ith iterate of the Frobenius map, πi := πp ◦ . . . ◦ πp︸ ︷︷ ︸

i times

, is the automorphism

πi : Fpk/Fp −→ Fpk/Fp

x 7−→ xp
i
.

Note that we have πk = IdF
pk
.

In this paper, the new method proposed to improve the Frobenius endomorphism calculation
is based on the use of the Kronecker product of matrices. In the following, we provide some
general details on the Kronecker product.
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2.3 Kronecker Product

The Kronecker product is defined for two matrices of arbitrary size over any ring. However, in
this work, we focus on matrices over finite fields F .

Definition 2.2. Let p, q, r, s ∈ N∗ , the Kronecker product, also known as tensor product, of
matrix A ∈ Mp,q(F) and matrix B ∈ Mr,s(F) is defined as

A⊗B =

a11B . . . a1qB
...

...
ap1B . . . apqB

 ∈ Mpr,qs(F) .

The Kronecker product has interesting properties; many of them are stated and proven in the
basic literature about matrix analysis. We provide the following properties which are needed in
the sequel.

Basic Properties

1. The product of two Kronecker products yields another Kronecker product:

(A⊗B)(C ⊗D) = AC ⊗BD ∀ A ∈ Mp,q, B ∈ Mr,s, C ∈ Mq,k, D ∈ Ms,l.

In particular,
(A⊗B)s = As ⊗Bs ∀s ∈ N, ∀ A ∈ Mp, B ∈ Mr.

2. If A and B are diagonal matrices, then A⊗B is a diagonal matrix.

3. Im ⊗ In = Inm , where Ir is the (r × r) identity matrix.

3 Efficient Frobenius operation in a tower of subfields

The Frobenius operation is an integral part of several steps in the final exponentiation process
in pairing-based cryptography. Therefore, analyzing the number of operations required for the
Frobenius morphism in various finite fields is essential for optimal performance. In this section,
we introduce a method to simplify the complexity analysis of the Frobenius operation using the
matrix representation and the Kronecker product of matrices. This approach offers a structured
and efficient means of determining the operation counts required for the Frobenius morphism.
We also provide examples of this method applied to different pairing-friendly fields.

3.1 Frobenius operation in a simple field extension

We first explain how the Frobenius morphism can be computed in a simple field extension using
a matrix representation, and then provide the operation counts needed to perform the Frobenius
operation.

Lemma 3.1. Let p be a prime number and k ≥ 2 an integer. Let β ∈ Fp be an element such
that k | p− 1 and such that the polynomial Xk − β is irreducible over Fp .
We denote Fpk = Fp(λ) and B = (1, λ, λ2, . . . , λk−1) the standard basis of Fpk/Fp .
Consider the p-Frobenius mapping

πp : Fpk/Fp −→ Fpk/Fp

x 7−→ xp.
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Then,

MatB(πp) =


1 0 . . . 0

0 θ
. . .

...
...

. . .
. . . 0

0 . . . 0 θ(k−1)

 ,

where θ := β(p−1)/k ∈ Fp .
Moreover, for all 1 ≤ i ≤ k , we have

MatB(π
i) = (MatB(πp))

i =


1 0 . . . 0

0 θi
. . .

...
...

. . .
. . . 0

0 . . . 0 θi(k−1)

 .

Proof. We note that

πp(λ) = λp = λλp−1 = λ(λk)(p−1)/k = λβ(p−1)/k = θλ.

Consequently, πp(λ
j) = θjλj for all 0 ≤ j ≤ k − 1.

In particular, for A =
∑k−1

j=0 ajλ
j ∈ Fpk with aj ∈ Fp , we have

Ap = πp(A) = MatB(πp)


a0
a1
...

ak−1

 =


1 0 . . . 0

0 θ
...

...
. . . 0

0 . . . 0 θ(k−1)




a0
a1
...

ak−1

 =
k−1∑
j=0

ajθ
jλj .

This formula is essential for determining the operation counts of a pi -Frobenius map. Indeed, the
complexity of the Frobenius operation is determined by counting the number of multiplications
involving θj ̸= ±2l , for l ∈ N . Multiplication by ±2l can be performed using bitwise shifts,
combined with a negation step in the case of a multiplication by −2l . These operations are
generally very fast and considered computationally inexpensive compared to other arithmetic
operations. Thus, instead of performing the computation for a general A ∈ Fpk , it suffices to

count the occurences of θj ̸= ±2l in the matrix representation of the Frobenius map. From this
observation, we derive the result specified in Proposition 3.2.

Proposition 3.2. Using the same notations as in Lemma 3.1, we have the following

1. Let s1 := Card{0 ≤ j ≤ k − 1 | θj = ±2l; l ∈ N}; then the number of multiplications to
compute the p-Frobenius map is

(k − s1)M.

2. More generally, for 1 ≤ i ≤ k − 1, let si := Card{0 ≤ j ≤ k − 1 | θji = ±2l; l ∈ N}.
Then, for all 1 ≤ i ≤ k − 1, the number of multiplications to compute the pi -Frobenius
map is

(k − si)M.
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3.2 Frobenius operation in a tower field extension

Similar to the approach used for a simple field extension, in this section, a matrix representation
of the Frobenius map is used to calculate the number of operations needed to compute the
Frobenius morphism. Specifically, for a Frobenius map on a tower field extension, we write
a representative matrix of the Frobenius map as a Kronecker product of smaller matrices,
according to the decomposition of the finite field extension.
Let p be a prime number and let k1, k2 ∈ N∗ be two integers such that k1, k2 | p− 1.
Suppose that β1 ∈ Fp and β2 ∈ Fpk1 are two elements such that we have the following tower of
finite fields:

Fpk1 = Fp(λ1); λk1
1 = β1 ∈ Fp

Fpk2k1 = Fpk1 (λ2); λk2
2 = β2 ∈ Fpk1 .

Let B1 := (1, λ1, λ
2
1, . . . , λ

k1−1
1 ) and B2 := (1, λ2, λ

2
2, . . . , λ

k2−1
2 ) be the respective standard

basis of the vector spaces Fpk1/Fp and Fpk2k1/Fpk1 .

Let B := B2 ⊗B1 = (λj
2, λ

j
2λ1, . . . , λ

j
2λ

k1−1
1 )0≤j≤k2−1 . Then it is straightforward to see that B

is a basis of the vector space Fpk2k1/Fp , leading to the result stated in Proposition 3.3.

Proposition 3.3. The representative matrix of the Frobenius map

πp : Fpk2k1/Fp −→ Fpk2k1/Fp

x 7−→ xp

with respect to the basis B := B2 ⊗B1 is given by

MatB(πp) =



1
. . .

θk1−1
1 0

. . .

θj2
. . .

θj2θ
k1−1
1

. . .

0 θk2−1
2

. . .

θk2−1
2 θk1−1

1



=



Mθ1
. . . 0

θj2Mθ1

0 . . .

θk2−1
2 Mθ1


= Mθ2 ⊗Mθ1
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where θ1 := β
(p−1)/k1
1 ∈ Fp , θ2 := β

(p−1)/k2
2 ∈ Fpk1 and

Mθl :=


1 0 . . . 0

0 θl
. . .

...
...

. . .
. . . 0

0 . . . 0 θkl−1
l

 ; l = 1, 2.

Proof. As πp is a Fp -linear map, to determine the representative matrix of the Frobenius map,
it suffices to compute the images of the basis elements

B := B2 ⊗B1 = (λj
2, λ

j
2λ1, . . . , λ

j
2λ

k1−1
1 )0≤j≤k2−1

of the vector space Fpk2k1/Fp .
We have

λp
1 = λ1λ

p−1
1 = λ1(λ

k1
1 )(p−1)/k1 = λ1β

(p−1)/k1
1 = θ1λ1,

and
λp
2 = λ2λ

p−1
2 = λ2(λ

k2
2 )(p−1)/k2 = λ2β

(p−1)/k2
2 = θ2λ2.

Thus,
πp(λ

j
2λ

i
1) = (λj

2)
p(λi

1)
p = θj2θ

i
1λ

j
2λ

i
1.

This completes the proof and provides us with the desired representative matrix of the Frobenius
map πp .

From the representative matrix, we derive the Theorem 3.4 which provides the formula to
determine the operation counts of the Frobenius map πp .

Theorem 3.4. Using the same notations as in Proposition 3.3, the number of operations to
compute the p-Frobenius map is

(k1 − s1)M + k1(k2 − 1)mk1,θ2 ,

where s1 = Card{0 ≤ i ≤ k1 − 1 | θi1 = ±2l; l ∈ N}. More precisely, we can distinguish two
cases:
• If θ2 ∈ Fpk1 \ Fp , then mk1,θ2 = k1M , and the number of multiplications to compute the
p-Frobenius map is

(k1 − s1)M + k21(k2 − 1)M.

• If θ2 ∈ Fp , then mθ2 = M , and the number of multiplications to compute the p-Frobenius
map is

(k1 − s1)M + k1(k2 − 1)M.

Proof. To determine the operation counts of the Frobenius map πp , we need to compute the
number of multiplications required when performing the power xp for x ∈ Fpk2k1/Fp .

Let x ∈ Fpk2k1/Fp , then x =
∑k2−1

j=0 xjλ
j
2 with xj ∈ Fpk1 for 0 ≤ j ≤ k2 − 1.

For all 0 ≤ j ≤ k2 − 1, xj =
∑k1−1

i=0 xj,iλ
i
1 with xj,i ∈ Fp for 0 ≤ i ≤ k1 − 1, then

x =

k2−1∑
j=0

k1−1∑
i=0

xj,iλ
j
2λ

i
1
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with xj,i ∈ Fp for all 0 ≤ i ≤ k1 − 1, 0 ≤ j ≤ k2 − 1.
By Fermat’s Theorem, xpj,i = xj,i for all 0 ≤ i ≤ k1 − 1, 0 ≤ j ≤ k2 − 1, thus

πp(x) = xp =

k2−1∑
j=0

k1−1∑
i=0

xj,i(λ
p
2)

j(λp
1)

i

=

k2−1∑
j=0

k1−1∑
i=0

xj,i(θ2λ2)
j(θ1λ1)

i

=

k2−1∑
j=0

k1−1∑
i=0

xj,iθ
j
2θ

i
1λ

j
2λ

i
1.

This demonstrates that raising x to the power of p requires multiplications involving θj2θ
i
1 in

the finite field Fp . Consequently, the number of operations needed to compute the Frobenius

map πp is determined by the number of the multiplication by θj2θ
i
1 in the finite field Fp .

More precisely, for a simple computation of this complexity, we consider the matrix representa-
tion of πp as the Kronecker product:

MatB(πp) = Mθ2 ⊗Mθ1 .

Thus,

MatB(πp(x)) = Mθ2 ⊗Mθ1



x0,0
...

x0,k1−1
...

xk2−1,0
...

xk2−1,k1−1



=


xp0 =

∑k1−1
i=0 x0,iθ

i
1λ

i
1

θ2x
p
1 = θ2(

∑k1−1
i=0 x1,iθ

i
1λ

i
1)

...

θk2−1
2 xpk2−1 = θk2−1

2 (
∑k1−1

i=0 xk2−1,iθ
i
1λ

i
1)



This implies that the count of the operations of πp is as follows: we count the number of
multiplications by θi1 such that θi1 ̸= ±2l ; l ∈ N . This corresponds to (k1 − s1)M . Then, we
need to perform (k2 − 1)× k1 multiplications by θj2 ; 1 ≤ j ≤ k2 − 1. This completes the proof.

The preceding result can be readily extended to a finite tower of finite fields, as presented in
Proposition 3.5.

Proposition 3.5. Let k = k1 . . . ks be a composite number such that ki | p−1, for all 1 ≤ i ≤ s,
and suppose that

Fpk1 = Fp(λ1); λk1
1 = β1 ∈ Fp;

...
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Fpks...k1 = Fpks−1...k1 (λs); λks
s = βs ∈ Fpks−1...k1

forms a finite tower of finite fields. For 1 ≤ j ≤ s, let Bj denote a standard basis of F
pkj

/F
pkj−1 ,

and πp the p-Frobenius mapping,

πp : Fpks···k1/Fp −→ Fpks···k1/Fp

x 7−→ xp.

Then,
MatB(πp) = Mθs ⊗ · · · ⊗Mθ1

where B = Bs ⊗ · · · ⊗B1 , and for 1 ≤ l ≤ s; θl := β
(p−1)/kl
l , and

Mθl :=


1 0 . . . 0

0 θl
. . .

...
...

. . .
. . . 0

0 . . . 0 θkl−1
l


Remark 3.6. We note that:

1. In the case of a finite tower of finite fields with more than two levels, the operation count
of the p-Frobenius mapping can be computed using a recursive approach.

2. To determine the number of operations needed to compute an iterate of the Frobenius
mapping, we use the fact that MatB(π

i) = (MatB(πp))
i for all i ∈ N.

3.3 Examples of Frobenius Computations in Pairing Friendly Fields

In [25], N. Koblitz and A. Menezes emphasize the importance of using specific finite fields to
optimize the efficiency of cryptographic pairings. These fields, referred to as pairing-friendly,
are chosen to enhance computation within the extension and simplify the analysis of the cost
of multiplications used in pairings. Specifically, the authors define a finite field Fpk as pairing-
friendly if p ≡ 1 mod 12 and k is of the form k = 2i3j , where i, j ∈ N . Under these conditions,
the polynomial Xk − β is irreducible over Fp if β is neither a square nor a cube in Fp . The
extension can be constructed by first adjoining a cube or square root of a small β , followed by
successively adjoining a cube or square root of each newly adjoined root until the tower is fully
constructed.
If j = 0, then it is sufficient that p ≡ 1 mod 4 and that β be a quadratic non-residue in Fp .
This result provides an easy method for constructing towers over pairing-friendly fields: identify
an element β ∈ Fp that is a quadratic non-residue, and, if necessary, a cubic non-residue. Then,
adjoin successive cube and square roots of β , beginning with Fp
We can choose β as a small value in Fp . Then, the multiplications by β can be reduced to a
few additions, making their cost negligible.

3.3.1 Frobenius Computation in Fp12 .

For the finite field Fp12 , with p a prime number such that p ≡ 1 [12], we have the following
tower of extension, as given in [3]:

Fp2 = Fp[u]; where u2 = 2

Fp6 = Fp2 [v]; where v3 = 21/2
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Fp12 = Fp6 [w]; where w2 = 21/6

Let θ1 = (2)(p−1)/2 , θ2 = 2(p−1)/6 and θ3 = 2(p−1)/12 . We note that, as p ≡ 1 [12], we have
θ1, θ2 and θ3 ∈ Fp . Thus, we obtain

MatB(πp) =

(
1 0
0 θ3

)
⊗

1 0 0
0 θ2 0
0 0 θ22

⊗
(
1 0
0 θ1

)
.

Lemma 3.7. In the finite field Fp12 , and supposing that 12 | (p− 1),

1. The computation of the p, p3 , p5 -Frobenius maps costs 11M .

2. The computation of the p2 , p4 -Frobenius maps costs 10M .

3. The computation of the p6 -Frobenius maps costs 6M .

Proof. The result is a consequence of Theorem 3.4 and the fact that θ21 = θ41 = θ61 = 1, θ32 = θ1 ,
θ62 = 1. Thus, we obtain

MatB(π
2) =

(
1 0
0 θ23

)1 0 0
0 θ22 0
0 0 θ42

⊗ I2

and

MatB(π
6) =

(
1 0
0 θ1

)
⊗ I3 ⊗ I2.

3.3.2 Frobenius Computation in Fp15 .

Let p a prime number such that {3, 5}| p − 1. Suppose that we have a tower extension for
Fp15 as follows:

Fp5 = Fp[u]; with u5 = β1 = 7

Fp15 = Fp5 [v]; with v3 = β2 = u ∈ Fp5 .

Let θ1 = 7(p−1)/5 and θ2 = 7(p−1)/15 . Then θ1 ̸= 1, θ1 ∈ Fp and, as 15 | p − 1, θ2 ∈ Fp .
Moreover, θ2 ̸= 1, (θ2)

3 = 7(p−1)/5 = θ1 ̸= 1 and (θ2)
15 = 1. Thus,

MatB(πp) =

1 0 0
0 θ2 0
0 0 θ22

⊗


1 0 0 0 0
0 θ1 0 0 0
0 0 θ21 0 0
0 0 0 θ31 0
0 0 0 0 θ41


Lemma 3.8. In the finite field Fp15 , and supposing that 15 | (p− 1),

1. For 1 ≤ i ≤ 14 and i ̸= 5 or i ̸= 10, the computation of the pi -Frobenius maps costs
14M .

2. The computation of the p5 or p10 -Frobenius map costs 10M .

Proof. The result is a consequence of Theorem 3.4 and the fact that θ51 = θ101 = 1. Thus, we
obtain

MatB(π
5) =

1 0 0
0 θ52 0
0 0 θ102

⊗ I5.
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3.3.3 Frobenius Computation in Fp27 .

For Fp27 , we consider the following tower extensions:

Fp3 = Fp[u]; with u3 = β1 = 7

Fp9 = Fp3 [v]; with v3 = β2 = 71/3

Fp27 = Fp9 [w]; with w3 = β3 = 71/9.

Then

MatB(πp) =

1 0 0
0 θ3 0
0 0 θ23

⊗

1 0 0
0 θ2 0
0 0 θ22

⊗

1 0 0
0 θ1 0
0 0 θ21

 .

where θ1 = 7(p−1)/3 , θ2 = 7(p−1)/9 and θ3 = 7(p−1)/27 .
Since 7 is not a cube in Fp , θ1 = 7(p−1)/3 ̸= 1 and θ31 = 1. Observe that θ1 ∈ Fp .
As 71/3 ∈ Fp3 , we have θ2 = 7(p−1)/9 ∈ Fp3 \Fp (unless p ≡ 1 mod 9 for example). Moreover,

θ2 ̸= 1, (θ2)
3 = 7(p−1)/3 = θ1 ̸= 1 and (θ2)

9 = 1.
Finally, θ3 = 7(p−1)/27 ∈ Fp9 \ Fp (unless p ≡ 1 mod 27 for example). Thus we have θ3 ̸= 1,

(θ3)
3 = 7(p−1)/9 = θ2 ̸= 1 and (θ3)

27 = 1.
The cost of the computation of the iterates of the p-Frobenius map is given in the following
lemma:

Lemma 3.9. 1. In the worst case, the computation of the p; p2 ; p4 ; p5 ; p7 ; p8 -Frobenius
maps costs:

2M + 6Mθ2 + 18m9,θ3 = (2 + 18 + 162)M = 182M.

However, in the case where 27 | (p − 1), which is used for constructing pairing tower
extensions, the cost of the above Frobenius mappings is 26M.

2. In the worst case, the computation of the p3 and p6 -Frobenius maps costs

6M + 18m3,θ2 = (6 + 54)M = 60M.

However, in the case where 9 | (p−1), the cost of the above Frobenius mappings is 24 M.

3. The computation of the p9 -Frobenius maps costs 18M.

Proof. The results are a consequence of the Theorem 3.4 and the fact that:

MatB(π
3) =

1 0 0
0 θ33 0
0 0 θ63

⊗

1 0 0
0 θ32 0
0 0 θ62

⊗

1 0 0
0 θ31 0
0 0 θ61



=

1 0 0
0 θ2 0
0 0 θ22

⊗

1 0 0
0 θ1 0
0 0 θ21

⊗ I3

MatB(π
9) =

1 0 0
0 θ93 0
0 0 θ183

⊗

1 0 0
0 θ92 0
0 0 θ182

⊗

1 0 0
0 θ91 0
0 0 θ191



=

1 0 0
0 θ1 0
0 0 θ21

⊗ I3 ⊗ I3
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Remark 3.10. In this study, we distinguish between the different exponents of p in Frobenius
evaluations, achieving more efficient Frobenius computations. For instance, in Fp15 , Frobenius
evaluation can be reduced to 10 multiplications in specific cases.

4 Cubing computation

Besides the computation of Frobenius morphism in finite fields, efficient methods for computing
cubing can have a significant impact on the performance of pairing-based cryptosystems. As
highlighted by Nanjo et al. [28], while elliptic curves with odd embedding degrees such as k = 9
and 15 can lead to efficient pairings, they face the disadvantage that cyclotomic squaring is
not applicable. This limitation necessitates alternative techniques to optimize computational
efficiency. One of the methods discussed in their paper is fast cubing, referred to by Nanjo et
al. as cyclotomic cubing, which is applicable to elliptic curves where k is divisible by 3. In this
section, we propose other methods to compute the typical cubing and cyclotomic cubing that
result in better complexity.

In the following, let p be a prime number and let k ∈ N∗ , divisible by 3, be such that k | (p−1),
we denote q = pk/3 . The cubic extension field of Fq , Fq3 is defined as Fq[x]/(x

3 − ξ), where ξ
is an element of F∗

q that does not have a cube root in Fq .

4.1 Typical Cubing

In [28], Nanjo et al. present the complexity of computing a typical cubing in Fq . In this section,
we introduce an alternative method that combines the Chung-Hasan technique for squaring and
the Karatsuba algorithm for multiplication in Fq .

Let a be an element in Fq3 represented as a = a0+a1x+a2x
2 , with coefficients a0, a1, a2 ∈ Fq .

Then,
a3 = (a0 + a1x+ a2x

2)3 = (a0 + a1x+ a2x
2)2 · (a0 + a1x+ a2x

2).

For the first part, which involves squaring the polynomial (a0 + a1x + a2x
2), we employ the

Chung-Hasan method as detailed in [13]. According to this method, the computational com-
plexity of performing a squaring in Fq is given by

2Mk/3 + 3Sk/3 + 8Ak/3 + 2mk/3,ξ,

After computing the first part (i.e., the squaring), we need to perform a multiplication. For the
multiplication involving the result of the squaring and the second term (a0+a1x+a2x

2), we use
the Karatsuba method as described in [23]. The computational complexity of this multiplication
in Fq is given by

6Mk/3 + 15Ak/3 + 2mk/3,ξ.

By combining the Chung-Hasan method [13] for squaring calculations, and the Karatsuba
method [23] for multiplication computations, we find that the complexity of computing a typical
cubing in Fq is given by

8Mk/3 + 3Sk/3 + 23Ak/3 + 4mk/3,ξ

Thus, as shown in Table 1, using the Chung-Hasan method combined with the Karatsuba
method reduces the complexity for performing a typical cubing in Fq compared to the method
explained in [28].
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Method Complexity

This work 8Mk/3 + 3Sk/3 + 23Ak/3 + 4mk/3,ξ

Nanjo et al. [28] 7Mk/3 + 5Sk/3 + 18Ak/3 + 4mk/3,ξ

Table 1: Comparaison of operations counts for typical cubing in Fq

4.2 Cyclotomic cubing

In their use of fast cubing for the final exponentiation calculation in the Tate pairing on BLS
curves, Nanjo et al. [28] demonstrate that the cyclotomic cubing calculation is more efficient
than typical cubing but remains less efficient than the squaring even though it is performed
in the cyclotomic subgroup. However, according to [32], incorporating cyclotomic cubing im-
proves the efficiency of final exponentiation in the Tate pairing and its derivatives, especially
when ternary representation is used in the final exponentiation evaluation.
In this section, we introduce a new method for computing cyclotomic cubing, which enhances
the complexity measure obtained in [28], thus improving the efficiency of the final exponentia-
tion in the Tate pairing and its derivatives in specific cases.

Our proposal presents a new approach for decomposing the cube a3 , where a belongs to the
cyclotomic subgroup of Fq , denoted as Gϕ3(q) . The element a ∈ Gϕ3(q) can be represented as
a0 + a1x+ a2x

2 , with coefficients a0, a1, a2 ∈ Fq .
In [28], the authors provide an explicit formula for the cube of a , as detailed in Lemma 4.1.
This formula is derived from the typical cubing equation, by utilizing the specific order of the
element a and the following relation:

aϕ3(q) = a30 + (−3a0a1a2 + a31)ξ + a32ξ
2 = 1.

Lemma 4.1. Let a an element of Gϕ3(q) . The cyclotomic cubing a3 is calculated as follows:

a3 = (a0 + a1x+ a2x
2)3

= 1 + 9a0a1a2ξ + 3

a20a1 + a2(a0a2 + a21)ξ︸ ︷︷ ︸
(1)

x+ 3

a0(a0a2 + a21) + a1a
2
2ξ︸ ︷︷ ︸

(2)

x2

By developing the terms in the brackets (1) and (2), we can establish a relation between them
as given in Lemma 4.2.

Lemma 4.2. Let B1 = a20a1 + a2(a0a2 + a21)ξ and B2 = a0(a0a2 + a21) + a1a
2
2ξ . We obtain the

following equations:{
B1 +B2 = (a1 + a0)(a1 + a2)(ξa2 + a0)− (ξ + 1)a0a1a2
B1 −B2 = (a1 − a0)(a1 − a2)(ξa2 − a0) + (ξ − 1)a0a1a2
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Proof.

B1 +B2 = a20a1 + a2(a0a2 + a21)ξ + a0(a0a2 + a21) + a1a
2
2ξ

= a1(a
2
0 + a22ξ) + (a21 + a0a2)(a0 + a2ξ)

= a1
(
(a0 + a2ξ)(a0 + a2)− a0a2 − a0a2ξ

)
+ (a21 + a0a2)(a0 + a2ξ)

= a1(a0 + a2ξ)(a0 + a2)− a0a1a2(1 + ξ) + (a0 + a2ξ)(a
2
1 + a0a2)

= (a0 + a2ξ)
(
a1(a0 + a2) + a21 + a0a2

)
− (1 + ξ)a0a1a2

= (a0 + a2ξ)(a0a1 + a1a2 + a21 + a0a2)− (1 + ξ)a0a1a2

= (a1 + a0)(a1 + a2)(ξa2 + a0)− (ξ + 1)a0a1a2

For the calculation of B1−B2 , we apply the same approach as for B1+B2 detailed above.

With this presentation of B1 +B2 and B1 −B2 , we can deduce that:
B1 =

1

2

(
(B1 +B2) + (B1 −B2)

)
B2 =

1

2

(
(B1 +B2)− (B1 −B2)

) (1)

To achieve optimal complexity in computing B1 and B2 , both terms B1 + B2 and B1 − B2

should be even. In this case, multiplication by
1

2
is essentially free, as it can be performed

with a simple bitwise shift. This is only possible if ξ is chosen as an odd positive integer as
demonstrated in Lemma 4.3.

Lemma 4.3. Let ξ be an odd positive integer. Then, for all a0, a1, a2 ∈ Fq ,

(a1 + a0)(a1 + a2)(ξa2 + a0) is even,

and
(a1 − a0)(a1 − a2)(ξa2 − a0) is even.

Proof. ξ is an odd positive integer. Let’s assume that the terms (a1 + a0), (a1 + a2) and
(ξa2 + a0) are all odd. Thus, we have:

a1 + a0 = 2s+ 1 (1)
a2 + a1 = 2t+ 1 (2)
a0 + ξa2 = 2l + 1 (3)

; s, l, t ∈ Fq.

We distinguish two possible cases:

1. First case: a2 is even ⇒ ξa2 is even
(3)⇒ a0 is odd

(1)⇒ a1 is even
(2)⇒ a2 is odd which is

not possible.

2. Second case: a2 is odd ⇒ ξa2 is odd
(3)⇒ a0 is even

(1)⇒ a1 is odd
(2)⇒ a2 is even which

is not possible.

Therefore, we can conclude that (a1 + a0), (a1 + a2) and (ξa2 + a0) cannot all be odd simul-
taneously. Consequently, (a1 + a0)(a1 + a2)(ξa2 + a0) is even.
By the same way, we can conclude that (a1 − a0), (a1 − a2) and (ξa2 − a0) cannot all be odd
simultaneously. Consequently, (a1 − a0)(a1 − a2)(ξa2 − a0) is even.
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By expanding Equation 1, we obtain the following formulas.
Let ξ be an odd positive integer, then B1 and B2 are given by:

B1 =
1

2
(a1 + a0)(a1 + a2)(ξa2 + a0) +

1

2
(a1 − a0)(a1 − a2)(ξa2 − a0)− a0a1a2

B2 =
1

2
(a1 + a0)(a1 + a2)(ξa2 + a0)−

1

2
(a1 − a0)(a1 − a2)(ξa2 − a0)− ξa0a1a2

In particular, as proved in Lemma 4.3, the multiplication by
1

2
is essentially free, as it can be

implemented as a right bitwise shift, which is computationally efficient.
From the above formulas, we can count the operations needed to calculate B1 and B2 , and
thus, the cyclotomic cubing in Gϕ3(q) .

Complexity measure. To determine the complexity of the cyclotomic cubing of an element
a ∈ Gϕ3(q) , we first need to calculate the number of operations needed to compute B1 and B2 .

Calculation of B1,B2

1: t0 = a1 + a0
2: t1 = a1 + a2
3: t2 = ξa2
4: t3 = t2 + a0
5: t4 = a0a1a2
6: t5 = ξt4
7: t6 = t0t1t3
8: t6 = 1

2 t6

14: B1 = t6 + t7 − t4

9: t0 = a1 − a0
10: t1 = a1 − a2

11: t3 = t2 − a0

12: t7 = t0t1t3
13: t7 = 1

2 t7

15: B2 = t6 − t7 − t5

In total, the calculation of B1 and B2 takes 6Mk/3 + 10Ak/3 + 2mk/3,ξ .
Moreover, to compute the cube of a (see Lemma 4.1), we have:

1 + 9a0a1a2ξ = 1 + (23 + 1)t5 = 1 + 23t5 + t5,

3B1 = 2B1 +B1 and 3B2 = 2B2 +B2.

A multiplication by 2 is equivalent to a bitwise shift, and thus it is not considered in the
complexity calculation. Then, the above calculations takes 3Ak/3 .
In conclusion, we find that the complexity of a cyclotomic cube is 6Mk/3 + 13Ak/3 + 2mk/3,ξ .
A comparison of the complexity measures between this work and the results presented in [28]
is given in Table 2.

Method Complexity

This work 6Mk/3 + 13Ak/3 + 2mk/3,ξ

Nanjo et al. [28] 5Mk/3 + 4Sk/3 + 9Ak/3 + 3mk/3,ξ

Table 2: Comparaison operation counts for cyclotomic cubing

From the results presented in Table 2, we can conclude that the cyclotomic cubing calculation
proposed in this work is slightly more efficient than the method calculation presented in [28].
Please note that, for the remainder of this paper, we will not consider the additions in our
complexity calculations.
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Example 4.4. Based on the results presented below, we can calculate the number of multiplica-
tions needed to perform a cyclotomic cubing within the cyclotomic subgroups of Fp15 and Fp27 .
Indeed, using the results presented in [28], and considering the costs of multiplications and
squarings in Fpk as detailed in [1], we obtain:

• Ccyc15 = 5M5 + 4S5 + 3m5,ξ = 5× 13M + 4× 13S + 3m5,ξ ≃ 132M.

• Ccyc27 = 5M9 + 4S9 + 3m9,ξ = 5× 36M + 4× (18M + 9S) + 3m9,ξ ≃ 315M

However, using our results, we obtain the following:

• Ccyc15 = 6M5 + 2m5,ξ = 6× 13M + 2m5,ξ ≃ 88M.

• Ccyc27 = 6M9 + 2m9,ξ = 6× 36M + 2m9,ξ ≃ 234M.

Operation Nanjo et al. [28] This work Gain

Ccyc15 132M 88M 33.3 %

Ccyc27 315M 234M 25.7 %

Table 3: Examples of cyclotomic cubing complexity (in terms of multiplications)

In the existing research, multiplication by ξ is often ignored. If we omit it in this analysis, we
derive the results presented in 4.

Operation Nanjo et al. [28] This work Gain

Ccyc15 117M 78M 33.3 %

Ccyc27 288M 216M 25 %

Table 4: Examples of cyclotomic cubing complexity (without multiplications by ξ )

Remark 4.5. In the cyclotomic subgroup of Fpk , where k is odd and divisible by 3, computing
the cube of an element can be achieved through two methods: the cyclotomic cubing or the
square-and-multiply routine. We can utilize our previous results to compare the efficiency of
these methods, as presented in Table 5. We observe that computing a cyclotomic cubing is less
expensive than performing a square-and-multiply routine in the cyclotomic subgroup of Fpk .

Operation Complexity in Fp15 Complexity in Fp27

Ccyck 88M 234M

Sk +Mk 104M + 39S 369M

Table 5: Cyclotomic Cubing vs Multiplication and Squaring

5 Pairing Evaluation

In this section, we leverage the operation counts of cyclotomic cubing obtained in the previous
section to enhance the efficiency of the final exponentiation step in pairing computation.
The Barreto-Lynn-Scott (BLS) curves, a class of elliptic curves, were presented and analyzed in
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[8]. These curves are defined over a finite prime field Fp by the equation E : y2 = x3 + b with
j(E) = 0. In our pairing evaluation, we will focus exclusively on the BLS15 and BLS27 curves,
utilizing the improved cyclotomic cubing method presented in Section 4.

The case of BLS15 elliptic curve: BLS15 is a family of parameterized elliptic curves with
an embedding degree k = 15, defined by the following parameters [16]:

p(u) =
u12 − 2u11 + u10 + u7 − 2u6 + u5 + u2 + u+ 1

3
,

r(u) = u8 − u7 + u5 − u4 + u3 − u+ 1,
t(u) = u+ 1,

The optimal Ate pairing in the context of BLS15 is given by:

e : G2 ×G1 −→ G3

(Q,P ) 7−→ fu,Q(P )
p15−1

r ,

where the groups G1 , G2 ,and G3 are defined as follows:

• G1 = E(Fp)[r] ∩Ker(πp − 1) ⊂ E(Fp),

• G2 = E(Fp)[r] ∩Ker(πp − p) ⊂ E(Fp15),

• G3 = µr ⊂ F∗
p15 .

As explained in Section 2.1, we are primarily interested in calculating the final exponentiation
given by

p15 − 1

r
= (p5 − 1)× p10 + p5 + 1

r
.

The computation of f (p5−1) is referred to as the easy part of the final exponentiation. However,

computing the result of the easy part raised to the power of p10+p5+1
r is known as the hard

part of the final exponentiation. We aim to evaluate the cost of the hard part of the final
exponentiation using the improved results of cyclotomic cubing.
The approach of computing the final exponentiation was presented differently in [21]. In their
method, the easy part of the final exponentiation involves computing the exponent (p5−1)(p2+
p+ 1), while the hard part requires raising this result to the power of

(u− 1)2(u2 + u+ 1) +
7∑

i=0

λi(u)p
i(u) + 3

where:
λ7 = 1, λ6 = uλ7 − 1, λ5 = uλ6 , λ4 = uλ5 + 1,
λ3 = uλ4 − 1, λ2 = uλ3 + 1, λ1 = uλ2 , λ0 = uλ1 − 1.
In the literature, only a few works have evaluated the final exponentiation of the Tate pairing and
its derivatives using cyclotomic cubing. In [28], Nanjo et al. present the execution time of their
method for computing the Optimal Ate pairing on the BLS15 curve, utilizing their optimization
of cyclotomic cubing. More recently, in [32], Haddaji et al. detailed the computation of the
final exponentiation using a ternary basis, which allows for the application of cyclotomic cubing.
Haddaji et al. also referenced the results from [28] to highlight the computational cost of
cyclotomic cubing. To compute the complexity of the final exponentiation of the optimal Ate
pairing, we have combined the findings from [32], specifically the Two Consecutive Active Bits
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(TCAB) method when TCAB is at the end of the seed u , with the results we present in this
paper. The complexity formula is given as follows:

I15 + 53M15 + 803S15 + 12Ccyc15 + 3Icyc15 + 10F15

Using the cost of each operation provided in [1], [32], and in this paper, we find the following:

229M+ 53× (78M) + 803× (65M) + 12× (88M) + 3× (78M) + 8× (14M)

+2× (10M) = 57 980M.

The case of BLS27 elliptic curve BLS27 is a family of parameterized elliptic curves with
an embedding degree of k = 27, defined by the following parameters [16]:

r(u) =
u18 + u9 + 1

3
,

p(u) = (u− 1)2r(u) + u,
t(u) = u+ 1.

The optimal Ate pairing in the context of BLS27 is given by:

e : G2 ×G1 −→ G3

(Q,P ) 7−→ fu,Q(P )
p27−1

r ,

where

• G1 = E(Fp)[r] ∩Ker(πp − 1) ⊂ E(Fp),

• G2 = E(Fp)[r] ∩Ker(πp − p) ⊂ E(Fp27),

• G3 = µr ⊂ F∗
p27 .

As explained above, we are interested in calculating the final exponentiation given by

p27 − 1

r
= (p9 − 1)

p18 + p9 + 1

r
.

The computation of f (p9−1) is referred to as the easy part of the final exponentiation. However,

computing the result of the easy part raised to the power of
p18 + p9 + 1

r
is known as the hard

part of the final exponentiation. We aim to evaluate the cost of the hard part of the final
exponentiation using the improved results of cyclotomic cubing.
The approach of computing the final exponentiation was presented differently in [21]. In their
method, the easy part of the final exponentiation involves computing the exponent (p9 − 1),
while the hard part requires raising this result to the power of:

(u− 1)2(u2 + pu+ p2)(u6 + p3u3 + p6)(u9 + p9 + 1) + 3

As in the case of BLS15, only a few works have evaluated the Optimal Ate pairing using
cyclotomic cubing. We found results presented in [32], where Haddaji et al. detailed their new
method of applying cyclotomic cubing using a ternary basis. As mentioned above, Haddaji
et al. referenced the results presented in [28] for the cost of cyclotomic cubing. To evaluate
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the complexity of the final exponentation, we have integrated the findings from [32] which
utilized the TCAB method for the 192-security level, with the results presented in this paper.
Consequently, the complexity formula is given as follows:

I27 + 86M27 + 399S27 + 20Ccyc27 + 19Icyc27 + 6F27

Using the cost of each operation given in [1], [32], and in this paper, we obtain the following:

536M+ 86× (216M) + 399× (153M) + 20× (234M) + 19× (189M)

+6× (26M) = 88 586M.

In Table 6, we compare our results with the results presented in [32], and we observe a gain
of 536 multiplications in Fp for pairings on the BLS15 curve and 1, 620 multiplications for
pairings on the BLS27 curve.

Pairings in: Haddaji et al. [32] This work

BLS 15 58,516 57,980

BLS 27 90,206 88,586

Table 6: Comparaison of pairing complexity (in terms of multiplication counts) using cyclotomic
cubing

In the case where multiplications by ξ are ignored from cyclotomic cubing, as has been done
for other operations, we obtain the results presented in Table 7.

Pairings in: Haddaji et al. [32] This work

BLS 15 58,336 57,860

BLS 27 89,666 88,266

Table 7: Comparaison of pairing complexity using cyclotomic cubing (omitting multiplications
by ξ )

6 Conclusion

In this article, we introduced two methods to optimize pairing calculations, with a particular
focus on the computationally costly operations involved in the final exponentiation, namely the
Frobenius and cyclotomic cubing in Fpk . Our first method leverages the Kronecker product
of matrices to perform the Frobenius operation, thereby simplifying the complexity analysis
over Fpk . We applied the complexity formula defined to commonly used pairing-friendly elliptic
curves. Whereas for elliptic curves with even embedding degrees, cyclotomic squaring provides
a more efficient approach for the final exponentiation, in the case of curves with odd embedding
degrees divisible by 3, we proposed utilizing cyclotomic cubing to enhance the final exponen-
tiation process. We illustrated this with two examples, computing cyclotomic cubing in the
cyclotomic subgroups of Fp15 and Fp27 . Furthermore, we assessed the computational cost of
the final exponentiation for the Optimal Ate pairing on BLS15 and BLS27 curves. Our results
were compared with recent studies that also employed cyclotomic cubing.
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Wong. Faster pairings on special weierstrass curves. In Hovav Shacham and Brent Waters, editors,
Pairing-Based Cryptography - Pairing 2009, Third International Conference, Palo Alto, CA, USA,
August 12-14, 2009, Proceedings, volume 5671 of Lecture Notes in Computer Science, pages 89–101.
Springer, 2009.

[15] Craig Costello, Kristin E. Lauter, and Michael Naehrig. Attractive subfamilies of BLS curves
for implementing high-security pairings. In Daniel J. Bernstein and Sanjit Chatterjee, editors,
Progress in Cryptology - INDOCRYPT 2011 - 12th International Conference on Cryptology in India,
Chennai, India, December 11-14, 2011. Proceedings, volume 7107 of Lecture Notes in Computer
Science, pages 320–342. Springer, 2011.

21



[16] Pu Duan, Shi Cui, and Choong Wah Chan. Special polynomial families for generating more suitable
elliptic curves for pairing-based cryptosystems. Cryptology ePrint Archive, 2005.

[17] N. El Mrabet and M. Joye. Guide to Pairing-Based Cryptography. Chapman & Hall/CRC Cryp-
tography and Network Security Series. CRC Press, 2017.

[18] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves. J.
Cryptology, 23(2):224–280, 2010.

[19] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006, pages 89–98. ACM,
2006.

[20] Laurian Azebaze Guimagang, Emmanuel Fouotsa, Nadia El Mrabet, and Aminatou Pecha. Faster
beta weil pairing on BLS pairing friendly curves with odd embedding degree. Math. Comput. Sci.,
16(2-3):13, 2022.

[21] Daiki Hayashida, Kenichiro Hayasaka, and Tadanori Teruya. Efficient final exponentiation via
cyclotomic structure for pairings over families of elliptic curves. Cryptology ePrint Archive, 2020.

[22] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number Theory
(ANTS-IV), volume 1838 of Lecture Notes in Computer Science, 2000.

[23] Anatolij A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on automata. Soviet
physics. Doklady, 7:595–596, 1963.

[24] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity for
the medium prime case. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages
543–571. Springer, 2016.

[25] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels. In Nigel P.
Smart, editor, Cryptography and Coding, pages 13–36, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[26] Duc-Phong Le, Nadia El Mrabet, Safia Haloui, and Chik How Tan. On the near prime-order MNT
curves. Appl. Algebra Eng. Commun. Comput., 30(2):107–125, 2019.

[27] Victor S. Miller. Short programs for functions on curves: A STOC rejection. In Andrei Z. Broder
and Tami Tamir, editors, 12th International Conference on Fun with Algorithms, FUN 2024, June
4-8, 2024, Island of La Maddalena, Sardinia, Italy, volume 291 of LIPIcs, pages 34:1–34:4. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[28] Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, and Yasuyuki Nogami. An explicit formula of cyclo-
tomic cubing available for pairings on elliptic curves with embedding degrees of multiple of three.
In 2020 35th International Technical Conference on Circuits/Systems, Computers and Communi-
cations (ITC-CSCC), pages 288–292, 2020.

[29] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox: Deep packet
inspection over encrypted traffic. ACM SIGCOMM Computer communication review, 45(4), 2015.

[30] Zcash team. Zk snark in zcash. https://z.cash.

[31] Frederik Vercauteren. Optimal pairings. IEEE Trans. Information Theory, 56(1):455–461, 2010.

[32] Nadia El Mrabet Walid Haddaji, Loubna Ghammam and Leila Ben Abdelghani. Optimizing final
exponentiation for pairing-friendly elliptic curves with odd embedding degrees divisible by 3. IACR,
2025.

22


	Introduction
	Background
	Pairings
	Frobenius endomorphism 
	Kronecker Product

	Efficient Frobenius operation in a tower of subfields
	Frobenius operation in a simple field extension
	Frobenius operation in a tower field extension
	Examples of Frobenius Computations in Pairing Friendly Fields
	Frobenius Computation in .
	Frobenius Computation in .
	Frobenius Computation in .


	Cubing computation
	Typical Cubing
	Cyclotomic cubing 

	Pairing Evaluation
	Conclusion

