
PMNS arithmetic for elliptic curve cryptography

Fangan Yssouf Dosso1, Sylvain Duquesne2, Nadia El Mrabet1, and Emma
Gautier2

1 SAS laboratory, École des Mines de Saint-Étienne, Gardanne, France
{fanganyssouf.dosso,nadia.el-mrabet}@emse.fr

2 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
{sylvain.duquesne,emma.gautier}@univ-rennes.fr

Abstract. We show that using a polynomial representation of prime
field elements (PMNS) can be relevant for real-world cryptographic ap-
plications even in terms of performance. More specifically, we consider
elliptic curves for cryptography when pseudo-Mersenne primes cannot
be used to define the base field (e.g. Brainpool standardized curves, Jub-
Jub curves in the zkSNARK context, pairing-friendly curves). All these
primitives make massive use of the Montgomery reduction algorithm and
well-known libraries such as GMP or OpenSSL for base field arithmetic.
We show how this arithmetic can be replaced by a polynomial repre-
sentation of the number that can be easily parallelized, avoids carry
propagation, and allows randomization process. We provide good PMNS
basis in the cryptographic context mentioned above, together with a
C-implementation that is competitive with GMP and OpenSSL for per-
forming basic operations in the base fields considered. We also integrate
this arithmetic into the Rust reference implementation of elliptic curve
scalar multiplication for Zero-knowledge applications, and achieve better
practical performances for such protocols. This shows that PMNS is an
attractive alternative for the base field arithmetic layer in cryptographic
primitives using elliptic curves or pairings.

Keywords: Polynomial Modular Number System · Cryptography · El-
liptic curves · Pairings · Brainpool · JubJub.

1 Introduction

Elliptic curve cryptography is widely used nowadays: Internet communications
make use of it through TLS [27], and several standards include it since the
2000s [48,51]. Additionally, the NIST (National Institute of Standard and Tech-
nology) has standardized several curves for cryptography. Let Fp be the finite
field of characteristic p. An elliptic curve E(Fp) can be briefly defined by its
Weierstrass equation as E(Fp) := {(x, y) ∈ Fp; y2 = x3 + ax+ b, for a, b ∈ Fp}.
By construction, elliptic curve cryptography involves arithmetic over finite fields
and the most popular ones (NIST curves, Curve25519) were chosen such that
the modular arithmetic over Fp is very efficient.

More generally, modular arithmetic is one of the most important operations
in asymmetric cryptography. Indeed, whether for RSA or ECC but also for more

2 Y. Dosso et al.

recent post-quantum primitives (Kyber, Dilithium, SqiSign for example), the ef-
ficiency of implementations relies on the efficiency of modular operations, and
in particular modular multiplication. When p can be chosen in a specific form,
the modular multiplication can be performed as a classical multiplication fol-
lowed by a modular reduction that is not expensive because of the sparsity of
p. When possible, the shape of p is then constructed as pseudo-Mersenne (or
even Mersenne) primes [53]. This is for example the case of the elliptic curves
standardised by the NIST P-224, P-256, P-384 and P-521. However, after the
discovery of a trapdoor in the elliptic curve used for the DUAL ECB DRBG
standard of the NIST [17,14], the scientific community has proposed other el-
liptic curves for the standards, generated in a more random way and ensuring
the right level of security [11]. Some of these curves are defined on finite fields
whose binary decomposition of the characteristic is not sparse [16,5,41]. Modular
arithmetic is then more expensive and more generic algorithms like Montgomery
multiplication [46] or Barrett reduction [7] must be used in order to ensure effi-
cient implementation.

These methods are based on the classical binary number system; an element
of Fp is an integer between 0 and (p−1) or between −(p−1)

2 and (p−1)
2 . To further

improve modular arithmetic, alternative number systems have been proposed. A
famous one is the Residue Number System (RNS) [29], which has been widely
studied and implemented. It is an efficient number system which has a very high
parallelisation capability. Another one is the Polynomial Modular Number Sys-
tem (PMNS) [2], proposed by Bajard et al. for modular arithmetic modulo a
prime number p. In this system, elements are represented by polynomials with
small coefficients. Like the RNS, it offers a very high parallelisation capability
but also additional properties like the possibility of randomising the arithmetic.
Many works have shown the efficiency of PMNS for both software [20,44,23] and
hardware [50] implementations considering random prime numbers but without
consideration for their cryptographic use. Our purpose in this paper is to show,
and illustrate on concrete examples, that this way to represent numbers is in-
teresting for cryptographic applications, even in term of performance and for
relatively small primes as the ones used in elliptic curve cryptography, which
was not evident a priori.

Cryptographers have been working on developing open source libraries for
finite fields and elliptic curves. There are two mainstream libraries for cryptogra-
phy: GMP and OpenSSL. Since 1991, the GMP library manages large numbers
(among others functionalities) for the C implementation language [31]. GMP
is designed for maximum speed for large operands. Its efficiency comes from
state-of-the-art arithmetic optimizations, fast algorithms, and highly optimized
assembly code. GMP is continuously improved, with a new release every year.
OpenSSL is another free to use software library for general-purpose cryptogra-
phy and secure communication [40]. It includes implementations for standardised
elliptic curves. These two libraries are considered to be a reliable resource and
are used by cryptographers to compare the effectiveness of new software imple-
mentations. That is the reason why we decided to compare our results with these

PMNS arithmetic for elliptic curve cryptography 3

libraries.

Our contributions: in this article we want to answer the question: can
PMNS be advantageously used for real-world cryptography? To do this, we gen-
erate PMNS basis for the base fields of some popular elliptic curves that cannot
be defined over pseudo-Mersenne primes. More precisely we study the Brainpool
elliptic curves, pairing-friendly elliptic curves such as BN, BLS12 and KSS16,
and the JubJub elliptic curve used in the cryptocurrency Zcash. We implement
the PMNS arithmetic for each type of elliptic curve, and compare as fairly as we
can the number of clock cycles for performing a modular multiplication between
our implementation of PMNS without any assembly code and the two state-of-
the-art versions of GMP [31] and OpenSSL [40]. As a result, our implementation
is competitive with the reference ones at the finite field arithmetic level, some-
times better and sometimes slightly worse depending on the context (bit-size,
use of assembly code for example).
Concerning the JubJub elliptic curve, we provide a comparison with the ref-
erence library of Zcash written in Rust both at the finite field level (modular
multiplication) and at the elliptic curve level (scalar multiplication). In both
cases, we show that using a PMNS arithmetic is significantly more efficient than
using the reference arithmetic.
Note that the theoretical complexity in terms of word multiplications is better
for the Montgomery arithmetic but there are many factors that can influence
practical comparisons (carry propagation, impact of the cost of additions and
other ancillary instructions, quality of the implementation and compilation, level
of adaptation to specific field sizes,...). As a consequence, this paper does not
prove that the PMNS always provides better efficiency for elliptic curve based
cryptography but that, despite a higher theoretical complexity in terms of word
multiplications, it is sufficiently competitive to be used in practice (especially if
one could take advantage of its additional properties).

Organization of the paper: in Section 2 we recall elementary definitions
of the PMNS, with the description of efficient algorithms. In particular, in Sec-
tion 2.9, we recall the advantages and drawbacks of PMNS arithmetic. Our
first comparison is made on the Brainpool elliptic curves in Section 3, we com-
pare our implementation with the OpenSSL implementation. We then work on
pairing-friendly elliptic curves in Section 4 and on the JubJub curve for Zcash
in Section 5. We conclude our work and open new perspectives in Section 6.

2 PMNS

Let us first introduce and explain the Polynomial Modular Number System
(PMNS) as well as its advantages and drawbacks in the cryptographic context.
Let us start with some notations that we will be using throughout this paper.

4 Y. Dosso et al.

2.1 Notations

For consistency, we assume that p ⩾ 3 and n ⩾ 2.

• Zn−1[X] is the set of polynomials in Z[X] with degrees lower than or equal
to n− 1:

Zn−1[X] = {C ∈ Z[X] | deg(C) ⩽ n− 1}.

• Let A ∈ Zn−1[X] be a polynomial. We assume that:
– A(X) = a0 + a1X + · · ·+ an−1X

n−1

– A can equivalently be represented as the vector A = (a0, . . . , an−1) ∈ Zn.
• Also, ∥A∥∞ = max

0⩽i⩽n−1
|ai|.

• Let W ∈ Zn×n be a matrix. ∥W∥1 = max
0⩽j⩽n−1

∑n−1
i=0 |wij |.

2.2 Definition and example

The PMNS has been introduced by Bajard et al. [2]. It is a non-positional number
system for modular arithmetic modulo a prime integer p. A PMNS is defined
by a tuple (p, n, γ, ρ, E), where p, n, γ and ρ are positive non-zero integers and
E ∈ Zn[X] is a monic polynomial such that E(γ) ≡ 0 (mod p). In this system,
elements are represented by polynomials. More precisely, we have the following
definition.

Definition 1. A polynomial modular number system (PMNS) is defined by a
tuple B = (p, n, γ, ρ, E), such that for each integer y ∈ Z/pZ there exists a
polynomial V (X) = v0 + v1.X + · · ·+ vn−1.X

n−1 such that:

y = V (γ) (mod p) ,

where |vi| < ρ and 2 ⩽ ρ, γ < p. In this case, we say that V (X) (or equivalently
the vector V = (v0, . . . , vn−1)) is a representation of y in B.
The parameter E is a monic polynomial in Z[X] of degree n, having γ as a root
modulo p, i.e. E(γ) ≡ 0 (mod p).

Remark 1. From the definition above, we say that a polynomial A ∈ Z[X] is in
the PMNS B = (p, n, γ, ρ, E) if and only if:

deg(A) < n and ∥A∥∞ < ρ,

where ∥A∥∞ = max
0⩽i⩽n−1

|ai|.

Example 1. Let us take p = 19. For this prime, we have the PMNS B =
(9, 3, 7, 2, E), with E(X) = X3− 1. Table 1 gives an example of representation
for each elements of Z/19Z. In this table, one can observe that the polynomial
X2 − 1 is a representation of 10, since we have 10 = 72 − 1 (mod 19).

PMNS arithmetic for elliptic curve cryptography 5

Table 1: Example of representations for the elements of Z/19Z in B =
(19, 3, 7, 2, X3 − 1)

0 1 2 3 4
0 1 −X2 −X + 1 X2 −X − 1 X2 −X

5 6 7 8 9
X2 −X + 1 X − 1 X X + 1 −X2 + 1

10 11 12 13 14
X2 − 1 X2 X2 + 1 −X + 1 −X2 +X − 1

15 16 17 18
−X2 +X −X2 +X + 1 X2 +X − 1 −1

2.3 Arithmetic operations in the PMNS

Like most number systems, the main operations in the PMNS are the addition
and the multiplication. Let B = (p, n, γ, ρ, E) be a PMNS, and A,B ∈ B.

The addition is the simple polynomial addition, i.e. C = A+B. However, there
is no guarantee that C ∈ B, since we only have ∥C∥∞ < 2ρ. To guarantee the
result in B, we need to perform an operation called internal reduction. This
operation is equivalent to the modular reduction in the classical representation.
In Section 2.5 we describe it, and in Section 2.6 we explain why it is not in-
teresting to perform this operation after a simple polynomial addition, and we
present the parameter δ which has been introduced to deal with this “problem”.

The multiplication is the polynomial multiplication, i.e. C = A× B. Here also,
there is no guarantee that C ∈ B. In fact, we only have:

deg(C) < 2n− 1 and ∥C∥∞ < nρ2.

Here, we first reduce the degree of C. That is, we compute a polynomial R ∈
Zn−1[X] such that:

R(γ) ≡ C(γ) (mod p) .

This operation is called the external reduction. It is done using the polynomial
E, which is thus called the external reduction polynomial.
The external reduction is the operation:

R = C mod E .

Remember that E is a monic polynomial, with deg(E) = n and E(γ) ≡ 0
(mod p). This thus guarantees that deg(R) < n and R(γ) ≡ C(γ) (mod p).

6 Y. Dosso et al.

In practice, we want this reduction to be very fast. So, the parameter E is chosen
very sparse, with very small coefficients. For example, E(X) = Xn − λ, where
|λ| is a very small non-zero integer.

Let us assume that E(X) = Xn + en−1X
n−1 + · · ·+ e1X + e0. To optimise

the external reduction, the external reduction matrix E in introduced in [23]. It
is the (n− 1)× n matrix defined as follows:

E =

−e0 −e1 . . . −en−1

.
...

...
...

.

← Xn mod E
← Xn+1 mod E

← X2n−2 mod E

. (1)

Let us assume that C = A×B = c0+c1X+ · · ·+c2n−2X
2n−2. With the external

reduction matrix E , the authors show:

R = C mod E = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E (2)

So for very efficient external reduction, we want the external reduction matrix E
to be very sparse with very small coefficients. This is achieved with polynomials
E(X) = Xn − λ having |λ| very small. Moreover, [23, Table 1] gives several
additional polynomials E that achieve this goal.

Let us now look at an example of modular multiplication in the PMNS.

Example 2. Let us consider the PMNS B = (9, 3, 7, 2, X3−1) given in Example
1. Let a = 10 and b = 15. In Table 1, A(X) = X2 − 1 is a representation of 10,
while B(X) = −X2 +X is a representation of 15.
Let us multiply A by B. We have:

C(X) = A(X)×B(X) = −X4 +X3 +X2 −X .

One can verify that: C(7) ≡ 17 (mod 19) and 10× 15 ≡ 17 (mod 19). However,
C /∈ B, since deg(C) > 2. So, we perform the external reduction:

R(X) = C(X) mod E(X) = X2 − 2X + 1 .

We have deg(R) < 3, however R /∈ B, because ∥R∥∞ ≮ ρ.

Now let us consider the polynomial T (X) = 3X−2, which is such that T (γ) ≡ 0
(mod p). Let us compute the polynomial S = R+ T .
We have S(X) = X2 +X − 1. So,

S(γ) ≡ C(γ) (mod p) and S ∈ B.

Thus, the polynomial S is the result of A×B in the PMNS B.
The question then is: given R ∈ Zn−1[X], how does one compute such a polyno-
mial T? This is the internal reduction we present in Section 2.5.
Before presenting the internal reduction, we need to talk about the Euclidean
lattice that comes with every PMNS.

PMNS arithmetic for elliptic curve cryptography 7

2.4 PMNS and euclidean lattices

A PMNS B = (p, n, γ, ρ, E) is associated with the n-dimensional full-rank Eu-
clidean lattice LB, defined as follows:

LB = {A ∈ Zn−1[X] A(γ) ≡ 0 (mod p)}. (3)

This lattice is the set of all the polynomials with degrees strictly less than n
and with γ as a root modulo p. A basis of LB is the n× n matrix B, defined as
follows:

B =

p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1

← p
← X + t1
← X2 + t2

← Xn−2 + tn−2

← Xn−1 + tn−1

, (4)

where ti = (−γi) mod p.

In [21], the following result gives a condition on the parameter ρ for B to be a
PMNS.

Lemma 1. [21] Let L be a sub-lattice of LB, having a matrix G as a basis. A
tuple B = (p, n, γ, ρ, E) defines a PMNS if:

ρ >
1

2
∥G∥1 .

2.5 The internal reduction

Let B = (p, n, γ, ρ, E) be a PMNS. Let R ∈ Zn−1[X] be a polynomial, with
possibly ∥R∥∞ ⩾ ρ. The internal reduction consists in computing a polynomial
S such that ∥S∥∞ < ρ and S(γ) ≡ R(γ) (mod p).
Many approaches have been proposed to perform this operation [2,1,47,44].
In [47], the authors propose a Montgomery-like method. This method has been
proven efficient for both software [20,23] and hardware [50] implementations.
In [21], the authors show that this Montgomery-like method works on a particular
sub-lattice L(M) of LB (see [21, Equation 9] which gives the basisM used). They
then generalise the Montgomery-like method to any basis G of any sub-lattice L
of LB. In this paper, we focus on this extended Montgomery-like method, which
they call GMont-like.

Let L be a sub-lattice of LB. GMont-like requires three parameters: a basis
G of L, an integer ϕ ⩾ 2 such that gcd(ϕ, det(G)) = 1 , and the matrix G′ = −G−1

(mod ϕ). In Section 2.8, we discuss the choice of G and ϕ. Algorithm 1 describes
GMont-like.

Remark 2. Note that GMont-like introduces a factor ϕ−1 on the output. So,
similar to the classical Montgomery method, elements in the PMNS are placed

8 Y. Dosso et al.

Algorithm 1 Coefficients reduction for PMNS (GMont-like) [21]

Require: C ∈ Zn, ϕ ∈ N \ {0, 1}, and the matrices G and G′.
Ensure: S(γ) = C(γ)ϕ−1 (mod p), with S ∈ Zn

1: Q = (c0, . . . , cn−1)G′ (mod ϕ)
2: T = (q0, . . . , qn−1)G
3: S ← (C + T)/ϕ
4: return S

in a Montgomery domain to ensure consistency of operations in the system. That
is, an integer a ∈ Z/pZ is represented in the PMNS B by a polynomial A such
that A(γ) ≡ (aϕ) (mod p). This is done during the integer to PMNS conversion,
as proposed in [20]. In Section 2.7 we recall the conversion processes.

With GMont-like, Algorithm 2 describes the modular multiplication in the
PMNS.

Algorithm 2 Modular multiplication for PMNS (ModMult)[21]

Require: A,B ∈ Zn−1[X], ϕ ∈ N \ {0, 1}, and the matrices G, G′ and E .
Ensure: S(γ) = A(γ)B(γ)ϕ−1 (mod p), with S ∈ Zn−1[X]
1: C = A×B
2: R = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E
3: S ← GMont-like(R)
4: return S

2.6 The parameter δ and bounds

Remember that the addition in the PMNS is the simple polynomial addition,
which is quite simple. In comparison, the internal reduction (Algorithm 1) is very
expensive. Thus, it is not interesting to perform this reduction after an addition
(to guarantee the result in B). To solve this “issue", the authors in [20] introduce
a parameter δ. It is the maximum number of consecutive additions of elements in
B that we want to compute before doing a multiplication (ModMult: Algorithm
2). Its value is chosen according to the target application.

Let A and B each be the result of such successive additions. Then, we have:
∥A∥∞, ∥B∥∞ < (δ + 1)ρ. If S = ModMult(A, B), we want S ∈ B.
This is achieved by taking the parameters ρ and ϕ such that [22]:

ρ = ∥G∥1 − 1 and ϕ ⩾ 2w(ρ− 1)(δ + 1)2 , (5)

where:
w = ∥(1, 2, . . . , n) + (n− 1, n− 2, . . . , 1)E ′∥∞ ,

with E ′ being the (n− 1)× n matrix such that E ′ij = |Eij |.

PMNS arithmetic for elliptic curve cryptography 9

Remark 3. In this paper we are not interested in redundancy control or equality
test within the PMNS. If redundancy control in the PMNS and/or equality
testing within the system is desired, the parameters ρ and ϕ should instead be
chosen as proposed in [21]:

ρ = ∥G∥1 + 1 and ϕ ⩾ 2⌈w(δ + 1)2∥G−1∥1∥G∥21⌉.

2.7 Conversion operations

This section briefly presents the conversion operations to and from the PMNS.
Two methods have been proposed for conversion to PMNS. One is slow (Algo-
rithm 3) and is used for pre-computation. The other one (Algorithm 4), which is
fast, requires pre-computed polynomials. It also performs the conversion to the
Montgomery domain mentioned in Remark 2. The polynomials Pi required by
Algorithm 4 are computed using Algorithm 3.

Algorithm 3 Exact Conversion to PMNS

Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E) and the matrices G, G′.
Ensure: A ∈ B with A(γ) ≡ a (mod p).
1: τ ← a× ϕn−1 (mod p)
2: A← (τ, 0, . . . , 0) # a vector of dimension n
3: for i = 0 . . . (n− 1) do
4: A← GMont-like(A)
5: end for
6: return A

Algorithm 4 Fast Conversion to PMNS

Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E) and the matrices G, G′,
β the smallest power of 2 such that βn > p, and Pi ∈ B such that

Pi(γ) ≡ βiϕ2 (mod p) for i = 0 . . . (n− 1).
Ensure: A ∈ B, such that A ≡ (aϕ)B
1: t = (tn−1, ..., t0)β # radix-β decomposition of a

2: U ←
n−1∑
i=0

tiPi(X)

3: A← GMont-like(U)
4: return A

Conversion from PMNS is a simple polynomial evaluation modulo p. One
must also not forget the conversion from the Montgomery domain. That is,
let A ∈ B, we compute: a = A(γ)ϕ−1 (mod p). An easy way to perform this

10 Y. Dosso et al.

operation is to use the classical Horner’s scheme [39], or it can be done more
efficiently by pre-computing γiϕ−1 (mod p), for i = 0, . . . , n − 1, for very fast
polynomial evaluation modulo p.

2.8 Generating PMNS basis in practice

This section describes the steps to generate PMNS for a given modulus p.
Before generating the PMNS, we need to chose the value of δ according to the
target application (see Section 2.6). Additionally, for GMont-like to be efficient,
the parameter ϕ must be taken as a power of two. Let us assume that the target
hardware is a h-bit architecture. As suggested in [20], a good choice for efficient
internal reduction is to take ϕ = 2h. Thus, implying the parameter n to be such
that:

n ⩾
⌊⌈log2(p)⌉

h

⌋
+ 1 .

Depending on the value of δ, the value of n will be increased as much as nec-
essary in order to find a suitable PMNS. As mentioned in Section 2.3, we want
a polynomial E which allows very efficient external reduction. Table 2 gives
some examples of such polynomials E. Algorithm 5 describes PMNS generation
process.

Table 2: Example of polynomials E for efficient external reduction and small
memory cost.

E(X) n w

Xn − λ, with |λ| very small − 1 + (n− 1)|λ|
Xn ±X

n
2 + 1 even 3n/2

Xn +Xn−2 +Xn−4 + · · ·+X2 + 1 even 2n− 2

Xn −Xn−1 +Xn−2 −Xn−3 + · · · −X + 1 even 2n− 1

Xn −Xn−1 +Xn−2 −Xn−3 + · · ·+X − 1 odd 2n− 1

Xn ±X ± 1 − 2n− 1

Xn +Xn−1 + · · ·+X + 1 − 2n− 1

PMNS arithmetic for elliptic curve cryptography 11

Algorithm 5 PMNS generation

Require: p, δ, ϕ = 2h, and λmax the maximum for |λ| in Table 2.
Ensure: B is a PMNS
1: n =

⌊
⌈log2(p)⌉

h

⌋
+ 1

2: found = False
3: while not found do
4: Randomly (or iteratively) choose a polynomial E in Table 2 having a

root γ modulo p.
5: Compute the basis B of LB (see Equation 4)
6: G ← LLL(B) # or use BKZ, HKZ, ...
7: ρ← ∥G∥1 − 1
8: if ϕ < 2w(ρ− 1)(δ + 1)2 then
9: if all the polynomials E have been checked then

10: n← n+ 1
11: end if
12: Choose another polynomial E (i.e. go back to step 4)
13: end if
14: found = True
15: B ← (p, n, γ, ρ, E, G, ϕ, δ)
16: end while
17: return B

Remark 4. At line 6 of Algorithm 5, a lattice basis reduction is performed using
the LLL algorithm. Here the goal is to have a basis G with the smallest possible
1-norm. Indeed, the parameter ρ, which is the upper bound on the infinity norm
of PMNS elements, is computed with ∥G∥1 (see line 7). Since we want to use
as little memory as possible to represent elements in the PMNS, we want the G
1-norm to be as small as possible. In addition, the smaller ρ is, the more likely it
is that the if statement on line 8 will not be satisfied, thus giving more chance
of finding PMNS with smaller of n, which is better for efficiency.
To sum up, if you have a better basis reduction algorithm/implementation than
LLL (i.e. that leads to a basis G with a smaller 1-norm), you must use it instead.

2.9 Advantages and drawbacks

Elements in PMNS are polynomials. This has many advantages. Here, we high-
light some of them:

• Since polynomial coefficients are independent, there is no carry propaga-
tion to deal with when performing arithmetic operations, unlike the classical
representation where one has to deal with this propagation.

• Arithmetic and conversion operations have no conditional branching. This
property is an advantage for efficiency and is also very helpful against side
channel attacks.

12 Y. Dosso et al.

• As the coefficients are independent, they can be computed simultaneously.
As a consequence, PMNS is well fitted for a parallel implementation.
Note that in this paper we only present results for sequential implemen-
tations. We do not take advantage of the high parallelisation capability of
PMNS, which should lead to much better efficiency. Parallel hardware im-
plementations of PMNS have been studied and compared to classical Mont-
gomery modular multiplication in [50].

• PMNS is a redundant number system. This redundancy can easily be used to
randomise arithmetic and conversion operations. This can be used to protect
some cryptographic protocols against side-channel attacks, as shown in [19].

• Finally, thanks to the parameter δ, it is possible to add PMNS elements
without having to perform an internal reduction (which is in comparison
very expensive). In the classical representation, this is not possible when the
modulus size is h× n (e.g. when ⌈log2(p)⌉ = 256 = 64 ∗ 4, with h = 64).

Compared to the classical representations, PMNS has two main disadvantages:

• The first one is the generation process. For applications where new moduli
need to be generated many times, Algorithm 5 may be too expensive, mainly
because of the lattice basis reduction at line 6. Note, however, that in practice
the modulus size is in most cases small enough to make this reduction very
efficient. This is the case, for example, with ECC moduli and moduli used
in post-quantum cryptographic schemes.

• The second one is the number of coefficients (i.e. the value of n). The PMNS
generation process presented in Section 2.8 requires to take n ⩾

⌊
⌈log2(p)⌉

h

⌋
+

1. In practice, this often results in PMNS having one more coefficient than
the classical representation. However, thanks to the polynomial structure of
its elements, PMNS may still remain very competitive in this case, as will
be shown in the next application sections. Of course, when the modulus size
leads to the same number of coefficients than the classical representation,
PMNS will be more efficient. This is for example the case for the modulus
of the parings KSS16-330 and BN-462 (see Section 4.3).

3 Application to Elliptic Curves defined over random
prime fields

3.1 The Brainpool curves

For efficiency reasons, Mersenne or pseudo-Mersenne primes are very often used
for base fields in classical elliptic curve cryptography. This is for example the
case of the standard NIST curves such as the P256 curve [49] defined over the
prime field of order 2256 − 2224 +2192 +296 − 1 which has been extensively used
in cybersecurity during the last decades. However it is not satisfying for several
reasons :

PMNS arithmetic for elliptic curve cryptography 13

• this parameter is not randomly generated which can be considered as a
potential weakness. In particular, there has been some debate about whether
the NSA introduced a backdoor in the P256 curve because the seed for
generating it has not been published by the NIST,

• this may yield to use patented algorithm for efficient modular arithmetic
specific to these primes (even if these patents have now expired),

• for hardware devices, specific and not flexible designs must be deployed to
benefit of such an efficient modular arithmetic which may be very expen-
sive [52],

• sparse prime field (as well as sparse order of the curve because of the Hasse-
Weil bound) requires larger blinding factors for its randomization to protect
against side-channel attacks [52].

To address these problems, the ECC Brainpool consortium suggested to use only
pseudo-random numbers to generate ECC parameters and introduced rigidity in
the process thanks to the notion of verifiable pseudo-random [16]. For example,
they propose to use natural constants (as the digits of e = exp(1)) in place of
random seeds. Even if the so-called Brainpool curves have not been defined fol-
lowing this procedure, the idea remains the same and is described in an RFC [45].
The Brainpool initiative was the first open work aiming to produce a fully trans-
parent and verifiable pseudo-random elliptic curve generation process.

For example the BrainpoolP256r1 curve is defined by the short Weierstrass
equation

y2 = x3 +Ax+B

over the prime field Fp with

p = 76884956397045344220809746629001649093037950200943055203735601445

031516197751

A = 56698187605326110043627228396178346077120614539475214109386828188

763884139993

B = 17577232497321838841075697789794520262950426058923084567046852300

633325438902

As a consequence of its randomizing, the base field Fp do not have any specificity
so that only generic modular arithmetic can be used. It may then be interesting
to generate a PMNS basis for this prime and compare the PMNS representation
arithmetic in this field with more classical ones such as Montgomery [46] or Bar-
rett [7].

Recently (November 2023), OpenSSL 3.2.0 integrated the Brainpool curves. This
shows that, even if Curve25519 [12] is more and more popular for its efficiency,
the need for randomly generated alternative is still relevant. As OpenSSL is
clearly a recognised reference in cryptographic implementations, we decided to
compared it with our PMNS arithmetic for the 256, 384 and 512-bits prime fields
of Brainpool.

14 Y. Dosso et al.

3.2 PMNS parameters

As mentioned above, we consider the moduli of Brainpool P256r1, P384r1 and
P512r1 curves. This section gives the parameters of the PMNS generated for
these moduli, using Algorithm 5 of Subsection 2.8.

Let us start with brainpoolP256r1 modulus. We get the following parameters:

p = 768849563970453442208097466290016490930379502009430552037356014

45031516197751

n = 5

γ = 694191705764959369512292578272008352751355007511731683381143077

61123131575941

ρ = 5798424837117361

E = X5 − 5

ϕ = 264

δ = 7

The parameters for brainpoolP384r1 modulus are:

p = 216592707701193161730692368423326049797961163870176486000816185

03821089934025961822236561982844534088440708417973331

n = 7

γ = 111227304978670824267037748985863892145549721362390042341626137

22782469803511232111483936084892743587563706779788925

ρ = 92143305512072319

E = X7 − 2

ϕ = 264

δ = 1

The parameters for brainpoolP512r1 modulus are:

p = 894896220765023255165660281515915342216260964409835451134459718

720005701041355243991793430419195694276544653038642734593796389

4309923928536070534607816947

n = 9

γ = 206701406236322412921069021127914443956383563763891371529570739

739140319524113885981338865295875361366693430793692568921374925

0855507845807571118090393337

ρ = 92143305512072319

E = X9 − 2

ϕ = 264

δ = 0

PMNS arithmetic for elliptic curve cryptography 15

3.3 Measurement procedure

Before presenting our comparison results, we first describe our measurement
procedure for C language implementations. Measurements were performed on a
HP EliteBook laptop, with:

– Processor: Intel 11th Gen Intel Core i5-1135G7@2.40GHz × 8
– Memory: 16 GiB of RAM
– OS: Ubuntu 20.04.6 LTS (64 bits)

The compiler is gcc version 9.4.0, the compiler options are as follows: -Wall -O3
-lgmp -lcrypto.
The test procedure is as follows:

– the Turbo-Boost® is deactivated during the tests;
– 1001 runs are executed in order to "heat" the cache memory, i.e. we ensure

that the cache memory (data and instruction) is in an enough stabilized
state in order to avoid untimely cache faults;

– one generates 51 random data sets, and for each data set the minimum of
the execution clock cycle numbers over a batch of 1001 runs is recorded;

– the performance is the average of all these minimums;
– this procedure is run on console mode, to avoid system perturbations, and

obtain the most accurate cycle counts.

The clock cycle number is obtained using the rdtsc instruction which loads the
current value of the processor’s time-stamp counter into a 64-bit register. The
processor monotonically increments the time-stamp counter every clock cycle.
Hence calling this instruction before and just after a sequence of instructions
allows to obtain the number of elapsed cycles.

Our C implementations of PMNS presented in this paper can be found in this
GitHub repository:

https://github.com/PMNS-APPLICATION/C-code-brainpool-pairing

3.4 PMNS Arithmetic vs OpenSSL library

In this section, we compare PMNS to OpenSSL for modular multiplication with
the moduli of the Brainpool curves. We made this choice because Brainpool
curves are now officially included in OpenSSL. Table 3 gives clock cycle num-
bers for PMNS, for the standard modular multiplication provided in OpenSSL
(Std in the table) and for its implementation of Montgomery modular multi-
plication (Bloc-Mont in the table). Note that the latter is the most relevant
element of comparison since PMNS uses a Montgomery-like reduction method,
and both approaches require some pre-computation and conversion in a Mont-
gomery domain. It can be seen that PMNS is faster for brainpoolP256r1 and
brainpoolP384r1, but slower for brainpoolP512r1. For the latter, we checked

https://github.com/PMNS-APPLICATION/C-code-brainpool-pairing

16 Y. Dosso et al.

the OpenSSL library and found that it uses the Karatsuba method of integer mul-
tiplication for this size of integer and above. Due to time constraints, we have
not yet done this for PMNS. This will be done in a future work and we expect
to outperform the OpenSSL implementation again. Also note that, as mentioned
in Section 2.9, we are presenting a sequential implementation here, while PMNS
is well suited for parallel implementation. So these PMNS should be expected
to perform much better with a parallel implementation.

Table 3: Clock cycle number comparisons of Modular Multiplication for brain-
pool curve moduli.

PMNS OpenSSL
Modulus Bloc-Mont Std

brainpoolP256r1 177 181 718

brainpoolP384r1 267 294 1071

brainpoolP512r1 405 347 1385

4 Application to pairing-friendly base fields

4.1 Pairing-friendly Base Fields

Pairings are interesting in cryptography because of the large number of pro-
tocols they can be used for; as identity-based cryptography, multiples signa-
ture schemes, attribute-based cryptography, or hierarchical encryption... [24,25].
Pairing-based cryptography is based on the arithmetic of finite fields Fp, for p
a large prime number, extensions of finite fields Fpk , and the arithmetic of an
elliptic curve defined over these two finite fields [25]. There are different con-
structions of pairing curves [28]. Some are called pairing-friendly elliptic curves
because they allow efficient pairing calculations. Among the pairing-friendly el-
liptic curves, the BN [6], BLS [5], and KSS [41] curves present a good trade off
between the size of Fp and Fpk . The BN and BLS curves are recommended by
the Internet Engineering Task Force [51] at 128 and 194 bit security level.

Such pairing-friendly elliptic curves are determined by a polynomial expres-
sion for the number p defining the finite field Fp. This expression depends on
a parameter often noted u, such that p(u) is a prime of predetermined size
in bits. The size of p depends on the level of security. The most effective dis-
crete logarithm attack for pairing-friendly elliptic fields and curves is Kim and
Barbulescu’s TNFS attack [42]. It has a different impacts on families of pairing-
friendly elliptic curves [3,4]. Construction of pairing-friendly elliptic curve relies
on the Complex Multiplication [25]. The value of p is randomly generated during
the construction. Although the expression of p obtained for a pairing-friendly el-
liptic curve is polynomial in u, the prime numbers allowing correct parameters

PMNS arithmetic for elliptic curve cryptography 17

for pairing-friendly elliptic curve have no structure allowing efficient modular
arithmetic [51]. We recall in Table 4 the parametric definition of the large prime
p for the BN, BLS, and KSS families. The BN-462 curve is standardised at the
128 bits security level [51]; the two others families are the ones that allow effi-
cient pairing computation in terms of operation complexity, arithmetic on finite
fields and elliptic curves, and execution time [51]. The BLS12 curve is imple-
mented in the cryptocurrencies Zcash [56] and Ethereum [26]. The KSS curve
does not seem to be used in practice, but it has good properties for efficient
implementations [3].

Table 4: Expression of p according to the pairing-friendly family of curve
Family Expression of p

BN p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

BLS12 p(u) = 1
3 (u− 1)2(u4 − u2 + 1) + u

KSS16 p(u) = 1
980

(
u10 + 2u9 + 5u8 + 48u6 + 152u5

240u4 + 625u2 + 2398u+ 3125
)

4.2 PMNS parameters

Section 3.4 presents a comparison between PMNS and the GMP library for mod-
ular multiplication with the moduli used in pairing-based cryptography. More
precisely, we consider the moduli of the base fields defining the pairing-friendly
curves BN-462, BLS12-381 and KSS16-330. This section gives the parameters of
the PMNS generated for these moduli.

Let us start with BLS12-381 modulus. Thanks to algorithm 5 given in Subsec-
tion 2.8, we get the following parameters:

p = 40024095552216673934177898257359041565568828199390078853320581

36124031650490837864442687629129015664037894272559787

n = 7

γ = 84395234234863191506380283796570906399813356205673520020016542

3529760641308234629769728794119911771748256064892558

ρ = 68257199819371999

E = X7 +X + 1

ϕ = 264

δ = 2

18 Y. Dosso et al.

The parameters for KSS16-330 modulus are:

p = 21221701344886867791100652850982014911111393711817963402400071

85175870367019142886063847799313988109

n = 6

γ = 60808169966120777972963619891987217547500954332684752541949217

3117781457367889586989647213847885114

ρ = 81242268367433855

E = X6 +X + 1

ϕ = 264

δ = 2

The parameters for BN-462 modulus are:

p = 67018170563130370862489470663105384448820826053081245762304080

38843357549886356779857393369967010764802541005796711440355753

503701056323603

n = 8

γ = 55098291808261871392910158198001852674413573883807121974779235

18196116089573433646450554434397321515192859927217396118149703

736444512082942

ρ = 789727156710839423

E = X8 −X − 1

ϕ = 264

δ = 0

4.3 PMNS Arithmetic vs GMP library

In this section, we compare PMNS to GMP for modular multiplication with the
moduli presented above. We use exactly the same procedure described in Section
3.3 with the same hardware. Table 5 gives clock cycle numbers for PMNS, for
the standard modular multiplication provided in GMP (Std in the table), for
its implementation of Montgomery modular multiplication (Bloc-Mont in the
table). GMP also allows the use of some low-level functions that are slightly faster
than the standard ones. The corresponding function for modular multiplication
is called Low-lvl in Table 5. Similar to the OpenSSL library, note that Bloc-Mont
is the most relevant element of the comparison, since PMNS uses a Montgomery-
like reduction method, and both approaches require some pre-computation and
conversion in a Montgomery domain.
First, one can observe in Table 5 that our PMNS implementation is always
faster than GMP standard and low-level implementations. Regarding GMP im-
plementation of Montgomery modular multiplication (i.e. GMP Bloc-Mont in

PMNS arithmetic for elliptic curve cryptography 19

Table 5: Clock cycle number comparisons of Modular Multiplication for pairing-
friendly base fields

PMNS GMP

Modulus Bloc-Mont Low-lvl Std

KSS16-330 225 248 494 541

BN-462 349 368 709 762

BLS12-381 275 249 496 547

the table), it can be seen that PMNS is also faster, except for BLS12-381. This
is because, for KSS16-330 and BN-462, PMNS and GMP use the same number
of coefficients to represent their elements. As mentioned in section 2.9, PMNS
is faster in this case. For BLS12-381, the corresponding PMNS uses one more
coefficient than GMP (n=7 instead of 6).

Remark 5. As mentioned earlier, we are comparing sequential implementations
here, whereas PMNS is much more suited to parallel implementation. In addition,
GMP uses assembly code to optimise its operations, whereas our implementation
of PMNS is standard C code without any assembly code. With equivalent optimi-
sation (perhaps in future work), we expect our PMNS implementation to always
outperform the GMP implementation of Montgomery modular multiplication.

5 Application to Elliptic Curves for Zero-Knowledge
protocols

Most of today’s digital services use centralized systems, which implies a trusted
authority. For some years now, there has been growing interest in decentralised
systems, such as blockchains, which avoid the need for a central authority to
certify data. However, most existing systems require parties to publish all their
computations and recalculate those published by other parties to ensure that
they are correct. This is expensive, especially in terms of memory storage. For
example, the size of the bitcoin chain reached 600 GigaBytes in September 2024.
To deal with this problem (and not only in the blockchain context), it is con-
venient to use proof systems [32], where a prover convinces a verifier that a
given statement is correct. More specifically, zk-SNARK (zero-knowledge Suc-
cinct Non-interactive ARgument of Knowledge) provides a proof (that is short
and easy to verify) of the correct execution of the computation [8] and is very
useful in decentralised systems. Such systems are not trivial to construct, and
it is not the aim of this paper to describe such construction but the interesting
point for our purpose is that the most efficient ones are using pairing-friendly el-
liptic curves [36,33,37,34,30,35]. Elliptic curves and base fields involved have spe-
cific constraints so that base field providing efficient reduction (such as pseudo-
Mersenne prime) cannot be used in this context. As a consequence, using effi-
cient alternative reduction algorithm as the PMNS must be considered. There

20 Y. Dosso et al.

are many zk-SNARK construction depending on the use-case. For example if
one wants to use proof of proofs (recursive proof systems), it is necessary to
find chains of pairing-friendly elliptic curves such that the prime order of the
first has to be chosen to define the base field of the second one [18]. Indeed, in
pairing-based SNARK, the verification is usually made in the base field while
the proof is made in the scalar field. This illustrate the fact that at least one
of the base field cannot be chosen in a specific form. This is for example used
in the MINA protocol [15] which is a very light blockchain thanks to the use
of zk-SNARK (fixed size of 22 KiloBytes). But there is no need to choose such
advanced protocols to meet a base field that cannot be chosen in the blockchain
context.

5.1 The JubJub elliptic curve

To illustrate the interest of using PMNS arithmetic in the zk-SNARK con-
text, we will focus on Zcash which is a cryptocurrency based on bitcoin and
where anonymity is ensured thanks to zk-SNARK. The zk-SNARK is made on
the BLS12-381 pairing-friendly elliptic curve already introduced in Subsection 4
to prove an Elliptic Curve Diffie-Hellman (ECDH) key exchange following the
CØCØ construction [43]. As the proof is made on the scalar field, the cardi-
nality of the prime subgroup involved in the pairing must be use to define the
base field of the elliptic curve where the ECDH key exchange is performed. As
a consequence, the JubJub curve used in [55] is defined over Fp with

p = 52435875175126190479447740508185965837690552500527637822603658

699938581184513

for which no specific reduction algorithm is known. Indeed, as it comes from the
cardinality of the BLS12-381 curve, it has no specific form. The JubJub curve
is then defined as a twisted Edwards curve in a deterministic way following the
SafeCurve recommendations [13]

EJ : −u2 + v2 = 1 + du2v2 (6)

with d = −(10240/10241)
= 192570380366809493597503126697868779919494354022541202861841

96891950884077233

It has cofactor 8 and we can use G = (8076246640662884909881801758704306714
034609987455869804520522091855516602923, 13262374693698910701929044844
600465831413122818447359594527400194675274060458) as a base point.

5.2 Efficient group law on the JubJub elliptic curve

The most efficient coordinate system for this curve is the extended projective
one [38,9]. In this case, a point on the curve EJ is given by 4 coordinates

PMNS arithmetic for elliptic curve cryptography 21

(U, V, Z, T) in Fp such that u = U
Z , v = V

Z are satisfying the defining equa-
tion of EJ 6 and T = UV

Z .
For doubling a point in this form, the following formulas are used [38]

T2 = V 2 + U2 T ′
2 = V 2 − U2

T1 = (U + V)2 − T2 J = 2Z2 − T ′
2

U = T1J V = T ′
2T2

Z = T ′
2J T = T1T2

These formulas require 4 multiplications and 4 squarings in the base field Fp.
Note that many additions or subtractions are also involved in these formulas,
so that the use of the δ parameter introduced in Subsection 2.6 is crucial in
order to avoid internal reduction after each addition/subtraction operation. More
precisely, there is 1 non-reduced addition in the expressions of T2, T

′
2 so that it

is sufficient to have δ = 1 in order to compute V = T ′
2T2 without intermediate

internal reduction. However T1 = (U + V)2 − T2 and J = 2Z2 − T ′
2 are made of

respectively 2 and 3 additions assuming that T2 and T ′
2 have not been reduced.

As a consequence we need to have a δ value equal to 3 in order to compute
efficiently U and Z.

We do not give the mixed addition formulas for this system of coordinates
here (they can be find in [38] or on [10]) because they do not provide any addi-
tional information or constraint on the choice of δ.

5.3 PMNS parameters for JubJub arithmetic

We then apply the method described in Subsection 2.8 to generate a PMNS
basis for the modulus used to construct the JubJub elliptic curve. In this specific
context, we have to take into account the fact that many addition/subtraction
operations are used for computing arithmetic on this curve and then choose a
parameter δ at least equal to 3 to avoid internal reductions after these operations.
The parameters of the PMNS generated for this modulus are given by:

p = 52435875175126190479447740508185965837690552500527637822603658

699938581184513

n = 5

γ = 17165118212817083565366397558045145856414930757760865323558718

474655557272360

ρ = 5216921637660971

E = X5 − 2

ϕ = 264

δ = 13

5.4 Comparison of efficiency

For safety reasons many cryptocurrency protocols are using Rust libraries. This
is a nice opportunity to compare our PMNS arithmetic with classical ones in

22 Y. Dosso et al.

another language than C. We chose the Zcash official library [54] to make this
comparison. We first compare the cost of basic modular multiplication (which
is classically done using Montgomery reduction in the Zcash library) as in the
other sections of this paper.

All the measurments of this section were performed on a Legion by Lenovo
laptop, with:

– Processor: Intel 7th Gen Intel Core i5-7300HQ@2.50GHz × 4
– Memory: 8 GiB of RAM
– OS: Ubuntu 20.04.5 LTS (64 bits)

The compiler used is cargo version 1.84.1. The test procedure for the Modular
Multiplication is as follows:

– 10000 runs are executed. For each iteration of run execution, the Modular
Multiplication is made with two random elements of the JubJub base field
(the same elements are used in both arithmetic systems for a fair compari-
son),

– the execution time and execution clock cycle numbers required by the modu-
lar multiplication operation are recorded for each iteration, the performance
is the average of those iterations,

– the performance given in Table 6 is the average of 10 times the batch of
10000 iterations.

The execution time is obtained using the std::time::{Duration, Instant} li-
brary surrounding the multiplication. The clock cycle number is obtained using
std::arch::asm; library to create the rdtsc instruction.

Our Rust implementations can be found in this GitHub repository:

https://github.com/PMNS-APPLICATION/Rust-code-jubjub

Table 6: Clock cycle number and execution time comparisons of Modular Mul-
tiplication for JubJub curve base field.

PMNS Classical
Clock cycle Execution Clock cycle Execution

number time (ns) number time (ns)
JubJub 723 313.5 1157 484.1

Thanks to PMNS, we also get in this case an implementation of the base field
arithmetic which is more efficient than the one by default in the targeted library.

To complete the comparison, we also decided to compare the full scalar mul-
tiplication computation at the elliptic curve level. For this, we are of course using

https://github.com/PMNS-APPLICATION/Rust-code-jubjub

PMNS arithmetic for elliptic curve cryptography 23

the Zcash code [54] for the scalar multiplication (a constant-time double-and-
add algorithm in extended projective coordinates [38,9]) on top of both their
and ours base field arithmetic. The group law formulas given in Subsection 5.2
are naturally used but, in practice, in the Zcash implementation, the last line
of the doubling is not performed and the point is stored as (U, V, Z, T1, T2). As
the δ value of the PMNS basis is quite large in this case, we can easily avoid
internal reduction after all the additions/subtraction operations involved in the
group law formulas.

The comparison of the full scalar multiplication between the classical and
PMNS arithmetic has been made in the same environment that the measure-
ments of performance of the Modular Multiplication. The tests are made with a
random multiple of the affine base point G and a random element of the JubJub
scalar field. Of course the same elements are used for both side of the comparison
and new ones are drawn at each iteration. The performance result are given in
Table 7.

Table 7: Clock cycle number and execution time comparisons of Full Scalar
Multiplication on JubJub elliptic curve.

PMNS Classical
Clock cycle Execution Clock cycle Execution

number time (ns) number time (ns)
JubJub 2 992 436 1.1655 3 386 125 1.3185

It is not very surprising that these results confirm the ones obtained on the
base field. But it shows that PMNS arithmetic can be easily used to replace clas-
sical Montgomery arithmetic on the base field and that it remains an interesting
alternative at the elliptic curve level. Moreover, these results do not take into
account the inherent properties of the PMNS arithmetic compared to classical
ones (easy parallelisation, possibility of randomisation).

6 Conclusion

In this article, we illustrate how PMNS can be used for concrete cryptographic
applications. We have chosen to work on cryptography based on elliptic curves
because they are now essential in asymmetric cryptography and because, in
some contexts, they require modular arithmetic modulo primes p that do not
allow efficient specific arithmetic. PMNS arithmetic is an alternative to classical
arithmetic for such primes. We consider the Brainpool curve (standardised and
included in the widely deployed OpenSSL library), pairing-friendly elliptic curves
for security level 128 (used in many advanced protocols), and the Jubjub elliptic
curve (used in the Zcash cryptocurrency).

24 Y. Dosso et al.

We compared our implementation on 64-bits architectures with the two main-
stream libraries for cryptographers, GMP and OpenSSL. Both libraries rely on
assembly code for optimisations. Our PMNS implementation was more naive,
we implemented it in C in a sequential way without any assembly optimisations.
We also compare a Rust version of our approach with the official Zcash library
at both the finite field and elliptic curve levels. These implementations and test
procedures can be checked out the following git:

https://github.com/PMNS-APPLICATION/

Our results are very promising, despite the lack of use of assembly code, and
the extra machine word for the PMNS representation compared to the classical
one. In many cases, our implementation outperformed OpenSSL, GMP and the
Rust library for Zcash. This was not so obvious a priori because the addition
of an extra machine word has an important impact when the total number of
machine words is small, as it is the case for elliptic curve cryptography (n=4
to 8). This study then shows that the advantages of the PMNS representation
(e.g. no carry propagation) compensate this drawback in practice. Note that
this result must be put into perspective because, for our comparisons, we used
general-purpose and widely deployed libraries which are not necessarily highly
optimised for specific use cases (and our implementations either).

As a consequence, this work is the first step towards the introduction of
PMNS arithmetic in cryptography. Further work on the implementation aspects,
such as parallelisation or the introduction of some assembly routines, would be
relevant to improve our PMNS implementation in the context of elliptic curve
cryptography. It would certainly allow much better performances but also pro-
vide new opportunities inherent to PMNS properties, such as randomising the
base field arithmetic against side channel attacks.

It would also be very interesting to complete this study in the context of
post-quantum cryptography. In particular the isogeny-based signature SQiSign
makes intensive use of large prime field arithmetic and some important lattice-
based cryptographic protocols use large prime numbers (e.g. Dilithium or Fully
Homomorphic Encryption).

Acknowledgments. This work was supported in part by French project ANR-11-
LABX-0020-01 "Centre Henri Lebesgue". The authors thank Michael Scott for useful
remarks and comments.

References

1. Bajard, J., Imbert, L., Plantard, T.: Arithmetic operations in the polynomial mod-
ular number system, 206–213, 17th IEEE Symposium on Computer Arithmetic
(ARITH-17 2005), 27-29.

2. Bajard, J.C., Imbert, L., Plantard, T.: Modular number systems: Beyond the
mersenne family. In: Handschuh, H., Hasan, M.A. (eds.) Selected Areas in Cryp-
tography. pp. 159–169. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

https://github.com/PMNS-APPLICATION/

PMNS arithmetic for elliptic curve cryptography 25

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2019). https://doi.org/10.1007/S00145-018-9280-5,
https://doi.org/10.1007/s00145-018-9280-5

4. Barbulescu, R., El Mrabet, N., Ghammam, L.: A taxonomy of pairings, their
security, their complexity. IACR Cryptol. ePrint Arch. p. 485 (2019), https:
//eprint.iacr.org/2019/485

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) Selected Areas in Cryptography, 10th An-
nual International Workshop, SAC 2003, Ottawa, Canada, August 14-15, 2003,
Revised Papers. Lecture Notes in Computer Science, vol. 3006, pp. 17–25. Springer
(2003). https://doi.org/10.1007/978-3-540-24654-1_2, https://doi.org/10.
1007/978-3-540-24654-1_2

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order.
In: Preneel, B., Tavares, S.E. (eds.) Selected Areas in Cryptography, 12th Inter-
national Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 3897, pp. 319–331.
Springer (2005). https://doi.org/10.1007/11693383_22, https://doi.org/10.
1007/11693383_22

7. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) Advances
in Cryptology — CRYPTO’ 86. pp. 311–323. Springer Berlin Heidelberg (1987)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Proceedings of the 23rd USENIX
Conference on Security Symposium. p. 781–796. SEC’14, USENIX Association,
USA (2014)

9. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J Cryptogr Eng 2, 77–89 (2012), https://doi.org/10.1007/
s13389-012-0027-1

10. Bernstein, D.J., Lange, T.: Extended coordinates with a=-1 for twisted edwards
curves, http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.
html

11. Bernstein, D.J., Lange, T.: Explicit-formulas database for elliptic curve cryptogra-
phy. https://hyperelliptic. org/EFD

12. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography - PKC 2006.
pp. 207–228. Springer Berlin Heidelberg (2006)

13. Bernstein, D.J., Lange, T.: Safecurves: choosing safe curves for elliptic-curve cryp-
tography, https://safecurves.cr.yp.to

14. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: A standardized back
door. In: Ryan, P.Y.A., Naccache, D., Quisquater, J. (eds.) The New Codebreak-
ers - Essays Dedicated to David Kahn on the Occasion of His 85th Birthday.
Lecture Notes in Computer Science, vol. 9100, pp. 256–281. Springer (2016).
https://doi.org/10.1007/978-3-662-49301-4_17, https://doi.org/10.1007/
978-3-662-49301-4_17

15. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Paper 2020/352 (2020), https://eprint.
iacr.org/2020/352

16. Brainpool: Ecc brainpool standard curves and curve generation (2005), http://
www.ecc-brainpool.org/download/Domain-parameters.pdf

https://doi.org/10.1007/S00145-018-9280-5
https://doi.org/10.1007/S00145-018-9280-5
https://doi.org/10.1007/s00145-018-9280-5
https://eprint.iacr.org/2019/485
https://eprint.iacr.org/2019/485
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
https://safecurves.cr.yp.to
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

26 Y. Dosso et al.

17. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical
exploitability of dual EC in TLS implementations. In: Fu, K., Jung, J. (eds.) Pro-
ceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014. pp. 319–335. USENIX Association (2014), https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/checkoway

18. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy. pp. 253–270 (2015). https://doi.org/10.
1109/SP.2015.23

19. Didier, L., Dosso, F., El Mrabet, N., Marrez, J., Véron, P.: Randomization of
arithmetic over polynomial modular number system. https://doi.org/10.1109/
ARITH.2019.00048, 26th IEEE Symposium on Computer Arithmetic, ARITH 2019,
199–206

20. Didier, L.S., Dosso, F.Y., Véron, P.: Efficient modular operations using the
Adapted Modular Number System. Journal of Cryptographic Engineering pp. 1–23
(2020)

21. Dosso, F.Y., Berzati, A., El Mrabet, N., Proy, J.: PMNS revisited for consistent
redundancy and equality test. Cryptology ePrint Archive, Paper 2023/1231 (2023),
https://eprint.iacr.org/2023/1231

22. Dosso, F.Y., El Mrabet, N., Méloni, N., Palma, F., Véron, P.: Friendly primes
for efficient modular arithmetic using the polynomial modular number system.
Cryptology ePrint Archive, Paper 2025/090 (2025), https://eprint.iacr.org/
2025/090

23. Dosso, F.Y., Robert, J.M., Véron, P.: PMNS for efficient arithmetic and small
memory cost. IEEE Transactions on Emerging Topics in Computing 10(3), 1263–
1277 (2022), https://hal.science/hal-03768546v1/file/TETC3187786.pdf

24. Dutta, R., Barua, R., Sarkar, P.: Pairing-based cryptographic protocols : A survey.
IACR Cryptol. ePrint Arch. p. 64 (2004), http://eprint.iacr.org/2004/064

25. El Mrabet, N., Joye, M.: Guide to Pairing-Based Cryptography. Chapman & Hal-
l/CRC (2016)

26. Ethereum: https://ethereum.org/en/
27. Force, I.E.T.: Transport layer security. https://datatracker.ietf.org/wg/tls/about/
28. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J.

Cryptol. 23(2), 224–280 (2010). https://doi.org/10.1007/S00145-009-9048-Z,
https://doi.org/10.1007/s00145-009-9048-z

29. Garner, H.L.: The residue number system. IRE Transactions on Electronic Com-
puters EL 8(6), 140–147 (1959)

30. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. pp. 626–645. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

31. GMP: The GNU Multiple Precision Arithmetic library. https://gmplib.org
32. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof systems. SIAM Journal on Computing 18(1), 186–208 (1989). https://doi.
org/10.1137/0218012, https://doi.org/10.1137/0218012

33. Groth, J.: Simulation-sound nizk proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) Advances in Cryptology – ASI-
ACRYPT 2006. pp. 444–459. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/ARITH.2019.00048
https://doi.org/10.1109/ARITH.2019.00048
https://doi.org/10.1109/ARITH.2019.00048
https://doi.org/10.1109/ARITH.2019.00048
https://eprint.iacr.org/2023/1231
https://eprint.iacr.org/2025/090
https://eprint.iacr.org/2025/090
https://hal.science/hal-03768546v1/file/TETC3187786.pdf
http://eprint.iacr.org/2004/064
https://doi.org/10.1007/S00145-009-9048-Z
https://doi.org/10.1007/S00145-009-9048-Z
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012

PMNS arithmetic for elliptic curve cryptography 27

34. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) Advances in Cryptology - ASIACRYPT 2010. pp. 321–340. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

35. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. pp. 305–326.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

36. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
nizk. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006. pp. 97–111.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

37. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) Advances in Cryptology – EUROCRYPT 2008. pp. 415–432.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

38. Hisil, H., Wong, K.K.H., Carter, G., Dawson, E.: Twisted edwards curves revisited.
In: Pieprzyk, J. (ed.) Advances in Cryptology - ASIACRYPT 2008. pp. 326–343.
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

39. Horner, W.G.: A new method of solving numerical equations of all orders, by con-
tinuous approximation. Philosophical Transactions of the Royal Society of London
109, 308–335 (1819)

40. Software Foundation Inc: OpenSSL Library. https://openssl.org
41. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing brezing-weng pairing-friendly

elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Pater-
son, K.G. (eds.) Pairing-Based Cryptography - Pairing 2008, Second International
Conference, Egham, UK, September 1-3, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 5209, pp. 126–135. Springer (2008). https://doi.org/10.1007/
978-3-540-85538-5_9, https://doi.org/10.1007/978-3-540-85538-5_9

42. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity
for the medium prime case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptol-
ogy - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 9814, pp. 543–571. Springer (2016). https://doi.org/10.1007/
978-3-662-53018-4_20, https://doi.org/10.1007/978-3-662-53018-4_20

43. Kosba, A.E., Zhao, Z., Miller, A.K., Qian, Y., Chan, T.H.H., Papamanthou, C.,
Shi, E.: Cøcø: A framework for building composable zero-knowledge proofs (2016),
https://api.semanticscholar.org/CorpusID:17760053

44. Méloni, N.: An Alternative Approach to Polynomial Modular Number System In-
ternal Reduction. IEEE Transactions on Emerging Topics in Computing (Jul 2022).
https://doi.org/10.1109/TETC.2022.3190368

45. Merkle, J., Lochter, M.: Elliptic Curve Cryptography (ECC) Brainpool Standard
Curves and Curve Generation. RFC 5639 (2010). https://doi.org/10.17487/
RFC5639, https://www.rfc-editor.org/info/rfc5639

46. Montgomery, P.: Modular multiplication without trial division. Mathemat-
ics of Computation 44 (170), 519–521 (1985). https://doi.org/10.1090/
S0025-5718-1985-0777282-X

47. Negre, C., Plantard, T.: Efficient modular arithmetic in adapted modular number
system using lagrange representation (2008), 463–477 (Springer Berlin Heidelberg,
2008)

48. NIST: The elliptic curve digital signature algorithm validation system.
https://csrc.nist.gov/presentations/2004/the-elliptic-curve-digital-signature-
algorithm-val

49. NIST: Digital signature standard (dss), nist fips 186-4 (2009), http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-540-85538-5_9
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://api.semanticscholar.org/CorpusID:17760053
https://doi.org/10.1109/TETC.2022.3190368
https://doi.org/10.1109/TETC.2022.3190368
https://doi.org/10.17487/RFC5639
https://doi.org/10.17487/RFC5639
https://doi.org/10.17487/RFC5639
https://doi.org/10.17487/RFC5639
https://www.rfc-editor.org/info/rfc5639
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

28 Y. Dosso et al.

50. Noyez, L., El Mrabet, N., Potin, O., Véron, P.: Modular multiplication in the
AMNS representation : Hardware Implementation. In: Selected Areas in Cryptog-
raphy. Montréal (Québec), France (Aug 2024)

51. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.S.: Pairing-Friendly
Curves. Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-11, Internet En-
gineering Task Force (Nov 2022), https://datatracker.ietf.org/doc/
draft-irtf-cfrg-pairing-friendly-curves/11/, work in Progress

52. Schütze, T.: Requirements for standard elliptic curves position paper of the ecc
brainpool (2014), https://api.semanticscholar.org/CorpusID:16091050

53. Solinas, J.A.: Pseudo-Mersenne Prime, pp. 992–992. Springer US, Boston, MA
(2011). https://doi.org/10.1007/978-1-4419-5906-5_42, https://doi.org/
10.1007/978-1-4419-5906-5_42

54. Zcash: Rust implementation of the jubjub elliptic curve group, https://github.
com/zkcrypto/jubjub/tree/main

55. Zcash: Zcash documentation, https://zcash.readthedocs.io/en/latest/
56. ZcashTeam: Zk snark in zcash. https://z.cash

https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://api.semanticscholar.org/CorpusID:16091050
https://doi.org/10.1007/978-1-4419-5906-5_42
https://doi.org/10.1007/978-1-4419-5906-5_42
https://doi.org/10.1007/978-1-4419-5906-5_42
https://doi.org/10.1007/978-1-4419-5906-5_42
https://github.com/zkcrypto/jubjub/tree/main
https://github.com/zkcrypto/jubjub/tree/main
https://zcash.readthedocs.io/en/latest/

	PMNS arithmetic for elliptic curve cryptography

