
Algebraic Cryptanalysis of Small-Scale Variants of Stream Cipher E0

Jan Dolejš a and Martin Jureček b

Department of Information Security, Czech Technical University in Prague, Czech Republic
{dolejj13, martin.jurecek}@fit.cvut.cz

Keywords: E0, small-scale variants, stream cipher, algebraic cryptanalysis, Gröbner bases, SAT

Abstract: This study explores the algebraic cryptanalysis of small-scale variants of the E0 stream cipher, a legacy ci-
pher used in the Bluetooth protocol. By systematically reducing the size of the linear feedback shift registers
(LFSRs) while preserving the cipher’s core structure, we investigate the relationship between the number of
unknowns and the number of consecutive keystream bits required to recover the internal states of the LFSRs.
Our work demonstrates an approximately linear relationship between the number of consecutive keystream
bits and the size of small-scale E0 variants, as indicated by our experimental results. To this end, we uti-
lize two approaches: the computation of Gröbner bases using Magma’s F4 algorithm and the application of
CryptoMiniSat’s SAT solver. Our experimental results show that increasing the number of keystream bits sig-
nificantly improves computational efficiency, with the F4 algorithm achieving a speedup of up to 733× when
additional equations are supplied. Furthermore, we verify the non-existence of equations of degree four or
lower for up to seven consecutive keystream bits, and the non-existence of equations of degree three or lower
for up to eight consecutive keystream bits, extending prior results on the algebraic properties of E0.

1 Introduction

The Bluetooth technology (Marie-Madeleine Re-
nauld, 2023) was officially launched in 1998 to con-
nect computers and mobile devices (Bluetooth SIG,
2023). The Bluetooth standard has changed through-
out its existence (Bluetooth SIG, 2021). The first ci-
pher used within the Bluetooth Basic Rate/Enhanced
Data Rate was the stream cipher E0, which is now
considered a legacy cipher1. However, the E0 stream
cipher is still relevant, as if one of the communicating
devices does not support the newer Bluetooth stan-
dard, the encryption cipher used withing the protocol
is downgraded to E0.

E0 is a combination generator (Anne Canteaut,
2016) and uses a non-linear combination of four lin-
ear feedback shift registers together with four mem-
ory bits. Many analyses (Yi Lu and Serge Vau-
denay, 2004; Frederik Armknecht, 2002; Frederik
Armknecht and Matthias Krause, 2003; Shaked and
Wool, 2006; Roberto La Scala et al., 2022) of E0 were
conducted together with various attack techniques,
and have demonstrated that its security does not align

a https://orcid.org/0009-0003-4396-3026
b https://orcid.org/0000-0002-6546-8953
1The newer version of the Bluetooth standard utilizes

the Advanced Encryption Standard (AES).

with the size of its encryption key.
The complexity of known attacks on E0 is sig-

nificantly lower than 2128; for instance, the attack
by Scala et al. (Roberto La Scala et al., 2022) has a
complexity of 283. This research on E0 is based on
the guess-and-determine technique, and the authors
use 14 special variables, which, after evaluation, led
to linear relations among the variables. Then, with
83 more bits guessed, they performed an algebraic
cryptanalysis, employing both Gröbner basis and SAT
solvers. Scala et al. estimated the complexity of the
attack to 279 seconds on modern Intel processors.

Algebraic attacks on E0 using linearization were
performed in the work (Frederik Armknecht, 2002).
The memory bits were removed from the equations,
and this work presents an estimate that the total num-
ber of distinct monomials would be approximately
224.056. The linearization attack would require the
same number of keystream bits to solve the equa-
tions. Armknecht improved this estimate to 223.07

in his follow-up research (Frederik Armknecht and
Matthias Krause, 2003), while using an improved ver-
sion of Courtois algebraic attacks, called fast alge-
braic attacks (Nicolas T. Courtois and Willi Meier,
2003). Armknecht showed that no algebraic rep-
resentation of the cipher via polynomials of degree
lower than four exists for four and five consecutive

keystream bits by using the FindRelation algorithm
(see Section 4).

A different way to attack E0 is by employing the
Ordered Binary Decision Diagram (OBDD) (Shaked
and Wool, 2006), together with a short keystream at-
tack (in case of E0, only 128 bits are sufficient). Us-
ing Binary Decision Diagrams (BDDs), we can rep-
resent a boolean function as an acyclic graph, where
the terminal nodes are unique for each assignment of
the boolean function. The estimated time complexity
is 287, and the authors of (Shaked and Wool, 2006)
claim the task is massively parallelizable with low
memory requirements (223).

Lu et al. (Yi Lu and Serge Vaudenay, 2004) per-
formed a correlation attack, which assumes that E0
would be used outside of the Bluetooth environment
(see Section 2). The attack uses some weak statistical
properties of the Finite State Machine (FSM) used in
E0, resulting in an attack of complexity 239 with 239

keystream bits required.
In this work, we propose and analyze small-scale

versions of the E0 cipher. We employ two different
methods, the F4 algorithm from the Magma (BOSMA
et al., 1997) software and CryptoMiniSat’s SAT
solver (Soos et al., 2009). We analyze the relationship
between the number of unknown variables and the
number of keystream bits required to find a unique so-
lution. Additionally, in Section 4, we extend previous
work by verifying the non-existence of lower-degree
equations for up to eight consecutive keystream bits,
further analyzing the algebraic properties of E0.

This work is structured as follows. In Section 2,
we describe the stream cipher E0, propose its small-
scale variants, and show how to convert the cipher
into a set of polynomial equations. Section 3 briefly
reviews the experimental setup, analyzes the relation-
ship between the number of keystream bits and the
number of unknown variables and discusses the re-
sults. In Section 4, we investigate the existence of
lower-degree equations by applying the FindRelation
algorithm and verifying whether new polynomials of
degree four or lower can be derived for up to 8 con-
secutive keystream bits. Finally, we summarize our
findings and discuss potential directions for future re-
search in Section 5.

2 Description of E0

E0 is a legacy stream cipher described by the Blue-
tooth standard (Bluetooth SIG, 2021). E0 uses a
non-linear combination of four regularly clocker lin-
ear feedback shift registers (LFSRs) and four internal
memory bits. The work (Anne Canteaut, 2016) pro-

vides the theoretical background of the LFSRs and
refers to E0 as a combination or a summation genera-
tor.

In this section, we describe the cipher in math-
ematical terms, propose its small-scale variants, and
represent it using polynomial equations over F2.

The E0 stream cipher can be divided into three
parts:

• initialization of the four LFSRs,

• keystream generating,

• encryption/decryption.
This section focuses on the second part, which is
keystream generation. We can visualize E0 using Fig-
ure 1, where the input variables are the Bluetooth
device address B, the central device’s clock CLK
and the encryption key Kenc, which is the output of
a hash function E3 described by the Bluetooth stan-
dard (Bluetooth SIG, 2021). The input variables are
used to initialize the four LFSRs. After the initial-
ization, the LFSRs are reinitialized by applying the
encryption scheme described below. After the reini-
tialization, E0 starts producing keystream bits used
for the encryption. Note that the maximum number
of keystream bits generated is 2745. Then, the LF-
SRs must be initialized again. In this text, we focus
on recovering the configuration of the LFSRs after the
reinitialization phase.

Figure 1: E0 with initialization

In this text we will denote the sum in Z by +, and the
sum in F2 by ⊕.

2.1 Generating the Keystream

The four LFSRs used in E0 have lengths L1 = 25,
L2 = 31, L3 = 33, and L4 = 39, that is, their total
length is 128. Their feedback polynomials are

P1(x) = x25 + x20 + x12 + x8 +1

P3(x) = x31 + x24 + x16 + x12 +1

P3(x) = x33 + x28 + x24 + x4 +1

P4(x) = x39 + x36 + x28 + x4 +1,

where all Pi(x) are primitive polynomials. The output
bit of the i-th LFSR, where i ∈ {1,2,3,4}, is denoted
by x(i)t . The outputs of the LFSRs are combined using

an FSM with 24 states. The outline of the encryption
used in E0 is shown in Figure 2.

Figure 2: Outline of E0 encryption

As a first step, a 3-bit value yt ∈ Z is computed

yt = x(1)t + x(2)t + x(3)t + x(4)t . (1)

yt is then used as an input for the FSM, and its least
significant bit y(0)t is XORed with output from the
FSM. The FSM uses an internal memory that con-
sists of four bits, ct = (qt , pt) ∈ {0,1}2 and ct−1 =
(qt−1, pt−1) ∈ {0,1}2. The memory bits are first set
in the initialization part of the algorithm. Inside of
the FSM, values yt and ct are combined as follows:

st+1 =

⌊
yt + ct

2

⌋
, (2)

where st+1 ∈ {0,1,2,3}. Next, the update of the
memory bits contains two linear bijections T1 and T2:

T1 : (x1,x0) 7→ (x1,x0),

T2 : (x1,x0) 7→ (x0,x1 ⊕ x0).

Finally, the update of the memory bits is:

ct+1 = (qt+1, pt+1) = st+1 ⊕T1(ct)⊕T2(ct−1). (3)

In Figure 3, Z is a lag operator

Zct+1 = ct ,∀t > 0. (4)

Finally, the generated keystream is the combination
of the outputs of the LFSRs and the FSM:

zt = x(1)t ⊕ x(2)t ⊕ x(3)t ⊕ x(4)t ⊕ pt = y(0)t ⊕ pt . (5)

2.2 Small-Scale Variants of E0

Since solving the system of polynomial equations ex-
tracted from the original size of E0 is not feasible us-
ing our computational resources, we work with small-
scale variants of E0. In this section, we propose the
small-scale variants of E0 based on reducing the sizes

Figure 3: E0 Finite State Machine

of the LFSRs used within the cipher. We do not
change the FSM, as it is the main source of the unique
behavior of E0.

To reduce the size of the LFSRs, we focus on their
feedback polynomials, which are, by the Bluetooth
standard (Bluetooth SIG, 2021), required to be prim-
itive; otherwise, the period of the output sequence of
the LFSRs would not be maximal. The authors of
E0 have decided to use such polynomials whose ham-
ming weight (HW) is equal to 5. HW of a polynomial
is defined as the number of non-zero coefficients of
the polynomial. The choice of HW equal to 5 is rea-
soned by good statistical properties and better hard-
ware design (Bluetooth SIG, 2021). However, having
HW equal to 5 is impossible for lower-degree polyno-
mials. Thus, if it is not possible to follow the require-
ments, we choose polynomials with HW equal to 3,
and this choice is then kept the same among all of the
four polynomials2.

The calculation of HW can be seen from the bi-
nary representation of a polynomial. For example,
the primitive polynomial x4 + x3 + 1 has binary rep-
resentation 11001, and its HW is equal to 3. In gen-
eral, every primitive polynomial includes the constant
1; thus, we can simplify the binary representation
to 1100. The hexadecimal form of this polynomial
is then 0xC. We represent all primitive and feedback
polynomials using the hexadecimal notation.

We use the following notation for small-scale E0
variants:

E0(A,B,C,D), (6)

where A,B,C,D are primitive polynomials of LFSR1,
LFSR2, LFSR3, and LFSR4 respectively. For exam-
ple, in E0(0x3, 0x6, 0xC, 0x14), LFSR1 uses primi-
tive polynomial 0x3, i.e. x2+x+1, LFSR2 uses prim-
itive polynomial 0x6, i.e. x3+x2+1, and so on. From
now on, we assume that only hexadecimal representa-
tion is used when referring to the small-scale variants;

2There is no primitive polynomial with HW equal to 2
or 4.

thus, using the example above, we write E0(3, 6, C,
14).

We do not change the initialization, as the exper-
iments are carried out only after the reinitialization
phase of the LFSRs. The small-scale variants of E0
that keep the ratio of the original sizes will be denoted
E0∗. We calculate the respective lengths of the new
LFSRs L′

i, where i ∈ {1,2,3,4} as

L′
i =


⌊

L′ Li
L

⌋
, if i = 1

L′
i−1 +max

(
1,
⌊

Li−Li−1
L L′

⌋)
, otherwise,

(7)
where L′ is the total length of the LFSRs in the small-
scale version of E0, and L is the original length of the
full-scale version of E0 (L = 128). For example, for
L′ = 18 we get L′

1 =
⌊
18 · 25

128

⌋
= 3, for L′

2 we get

L′
2 = L′

1+max
(

1,
⌊

31−25
128

·18
⌋)

= 3+1= 4. (8)

Similarly, for L′
3 = 5 and for L′

4 = 6. Note, that Equa-
tion (7) also holds for L′ = L = 128.

2.3 Representing E0 Encryption Using
Polynomial Equations

To algebraically represent the whole encryption algo-
rithm, we need to convert the FSM from Section 2.1.
The FSM updates the memory bits, for which we need
the equations. By representing the FSM with a truth
table and using, for example, Sage (SageMath Devel-
opers, 2022) mathematical software, we can extract
its algebraical normal form (ANF). The work (Fred-
erik Armknecht and Matthias Krause, 2003) provides
more details on the transformation of the E0 cipher to
its algebraic form. Before writing down the equations
for the memory bits, let us first define a symmetric
polynomial.
Definition 1 (Symmetric Polynomial). A symmetric
polynomial is defined by

π
n
t,N =

⊕
1≤i1<i2<...<in≤N

x(i1)t x(i2)t · · ·x(in)t , (9)

where x(i)t ∈ F2.
Since E0 uses N = 4, we denote πn

t,4 = πn
t . Further-

more, xi
t is the output of the i-th LFSR. Using Defini-

tion 1 of a symmetric polynomial, we can rewrite the
Equation (5) for the keystream bit zt :

zt = π
1
t ⊕ pt . (10)

The memory bits qt+1 and pt+1 are updated with the
following equations:

qt+1 = π
4
t ⊕π

3
t pt ⊕π

2
t qt ⊕π

1
t ptqt ⊕qt ⊕ pt−1

pt+1 = π
2
t ⊕π

1
t pt ⊕qt ⊕qt−1 ⊕ pt−1 ⊕ pt

(11)

This way, we get a tool for generating equations for
each bit of the keystream zt . However, the equations
for qt+1 and pt+1 will grow quickly in size while in-
creasing their degree. We can express the equations
differently by following Armknecht’s approach (Fred-
erik Armknecht and Matthias Krause, 2003). The
main idea behind the transformation is based on the
fact that the output of the FSM and the LFSRs is lin-
early combined (see Equation (10)). We can elim-
inate the memory bits one by one and get the fol-
lowing equation that applies to every four subsequent
keystream bits:

0 = zt+3(zt+1π
1
t+1 ⊕π

2
t+1 ⊕π

1
t+1 ⊕1) ⊕

zt+2(zt+1π
1
t+2π

1
t+1 ⊕ zt+1π

1
t+1 ⊕π

2
t+1π

1
t+2⊕

π
2
t+1 ⊕π

1
t+2π

1
t+1 ⊕π

1
t+2 ⊕π

1
t+1 ⊕1) ⊕

zt+1(ztπ
1
t+1 ⊕π

3
t+1 ⊕π

2
t+2π

1
t+1 ⊕π

2
t+1⊕

π
1
t+3π

1
t+1 ⊕π

1
t+1π

1
t ⊕π

1
t+1 ⊕1) ⊕

zt(π
2
t+1 ⊕π

1
t+1 ⊕1) ⊕

π
4
t+1 ⊕π

2
t+2(π

2
t+1 ⊕π

1
t+1 ⊕1) ⊕

π
2
t+1(π

1
t+3 ⊕π

1
t) ⊕

π
1
t+3(π

1
t+1 ⊕1) ⊕π

1
t+1π

1
t ⊕π

1
t

(12)

Note, that the Equation (12) has degree four, specif-
ically given by π2

t+1π2
t+2 and π4

t+1. Based on
Armknecht’s results, we know that this is the lowest
degree for four and five subsequent keystream bits.

3 Experiments

In this section, we describe our experimental ap-
proach to attacking small-scale variants of E0. We
assume the knowledge of both the plaintext and the ci-
phertext, thus allowing us to work with the keystream
only. The experiments were run on a single computer
platform with two processors (Intel Xeon Gold 6136
CPU @ 3.00 GHz), with 755 GiB of DDR4 RAM
running the Ubuntu 20.04.5 LTS operating system.
We utilized Sage v9.0 & v10.1 (SageMath Devel-
opers, 2022) to generate random keystreams, create
equations for the small-scale E0 variants, and analyze
their properties, while Magma 2.25-5 (BOSMA et al.,
1997) was used to solve the resulting polynomial sys-
tem using the F4 algorithm.

In each experiment, we use different versions
of the small-scale variants of E0 (see Section 2.2).
For each small-scale variant, we generate 15 differ-
ent keystreams. The keystreams are generated with
randomly initialized LFSRs after the reinitialization
phase following the E0 algorithm (see Section 2.1).

All of the LFSRs are initialized with a non-zero ini-
tial state.

We compare two approaches, the computation of
Gröbner basis using Magma’s (BOSMA et al., 1997)
implementation of the F4 algorithm and CryptoMin-
iSat’s SAT solver (Soos et al., 2009). The theory
of Gröbner basis was described by (David A. Cox
et al., 2015; Roberto La Scala et al., 2022). The work
(Berušková et al., 2024) contains a basic theory based
on which we can convert a given cipher into a system
of polynomial equations and calculate the Groebner
basis from it, which always exists and is finite. The
input of the F4 algorithm and the SAT solver is a poly-
nomial system of equations over F2. In this work, the
number of equations equals the number of keystream
bits. The output of the F4 algorithm is a new polyno-
mial system, which is significantly easier to solve than
the original one. To find the solution to the system,
we search for the variety of the ideal described by the
new polynomial system, or in this case, the Gröbner
basis. The output of the SAT solver is the evaluation
of possible configurations of the input unknowns.

CryptoMiniSat allows parallelizing the computa-
tion, but since Magma 2.25-5 runs on a single thread
only, we use one thread for the SAT solver, too. In
both cases, we search for all possible solutions; thus,
the output of both methods is the same. Note that
the computational times of the SAT solver include the
conversion to the conjunctive normal form (CNF). We
use the reverse-graded lex ordering (grevlex) for the
F4 algorithm.

We use Armknecht’s formulation of the E0 cipher
(see Section 2.3), and for each keystream, we substi-
tute the keystream bits into the equations. In Table 1,
we use the same number of equations as the number of
unknowns. For the full-scale version of E0, we would
use 128 equations (and thus the keystream bits). In the
table, we show the average computational times and
average memory consumption with the standard de-
viation. The computational times of both algorithms
increase exponentially. The SAT solver outperformed
the F4 algorithm for all small-scale variants, and its
computational time increase is stable. The compu-
tational time of the F4 algorithm is connected to the
increasing use of the memory, which, for the small-
scale variant with 20 unknowns, is 224.3 GiB.

The Bluetooth standard (Bluetooth SIG, 2021)
sets the maximum number of keystream bits for the
full-scale version of the E0 cipher to 2745. It is un-
clear how this number would scale for small-scale ci-
pher variants.

Ars gives an estimate on the minimum number
of bits required to solve the system, 2n − 2 (Frederik
Armknecht and Gwenolé Ars, 2009).

If the keystream bits were generated using a lin-
ear combination of the LFSRs, we would require at
most n keystream bits, where n is the number of un-
knowns. In this case, we assume that the primitive
polynomials used for the LFSRs are known. With-
out the knowledge of the polynomials, the number of
the keystream bits required to find the initial config-
uration and the polynomials is 2n and can be found
using the Berlekamp–Massey algorithm (Anne Can-
teaut, 2016).

Table 2 shows the minimum number of consecu-
tive keystream bits given by the small-scale E0 vari-
ants required to find a unique solution to the poly-
nomial system. On average, the number of consec-
utive keystream bits required to uniquely determine
the internal state does not surpass 4n, where n is the
number of unknowns. By increasing the number of
keystream bits, we improved the computational times
of both methods. Figure 4 and Table 2 suggest a lin-
ear relationship between the number of consecutive
keystream bits and the number of unknowns.

Figure 4: Minimum number of bits required to find one so-
lution

In Table 3 we focus on the small-scale version of
E0 with 20 unknowns – E0(6, C, 30, 60). We in-
creased the number of keystream bits by multiples of
10 up to 100 keystream bits. The improvement of the
computational times of the F4 algorithm stops after
60 bits but still uses less memory if more keystream
bits are supplied. The computational times of the SAT
solver increase after adding more than 40 keystream
bits. CryptoMiniSat does not, by default, do any pre-
processing of the equations3. Table 4 displays the
degrees of the polynomials in the resulting Gröbner

3One can specify that Gauss-Jordan Elimination (Mate
Soot, 2024) should be employed during the compilation.
We did not test the performance of this option.

Table 1: Initial experiments with keystream bits equal to the number of unknowns

F4 SAT

Kba G. Basis Variety
E0 type Ucb Time (s) Time (s) Mem (GiB) Time (s)

E0∗(3, 6, c, 14) 14 4.9±0.1 2.1±0.1 0.3±0.0 3.1±0.1
E0(3, 6, c, 30) 15 12.0±0.1 6.2±0.6 0.5±0.0 6.6±0.2
E0(3, 6, c, 60) 16 47.7±1.1 27.5±8.5 2.1±0.0 12.0±0.2
E0(3, 6, 12, 60) 17 196.6±2.6 79.5±50.4 8.1±0.3 32.9±0.5
E0∗(6, c, 14, 30) 18 1283.9±29.2 253.6±162.0 28.1±1.3 120.1±2.1
E0(6, c, 14, 60) 19 3465.5±49.3 494.3±41.9 53.7±2.3 230.0±5.2
E0(6, c, 30, 60) 20 26400.3±324.9 2077.6±756.1 224.3±2.5 624.7±28.3

a Keystream bits
b Unknowns count

Table 2: Determining the minimum number of consecutive keystream bits to find one solution

F4 SAT

Keystream G. Basis
E0 type Uca bits Time (s) Mem (GiB) Time (s)

E0∗(3, 6, c, 14) 14 50.5±6.9 1.4±0.3 0.1±0.0 2.6±0.4
E0(3, 6, c, 30) 15 58.7±5.2 3.0±0.3 0.2±0.0 5.7±0.4
E0(3, 6, c, 60) 16 60.5±7.7 7.2±1.9 0.5±0.1 10.1±0.8
E0(3, 6, 12, 60) 17 60.9±4.7 27.5±8.5 2.5±0.9 27.5±1.4
E0∗(6, c, 14, 30) 18 65.2±10.1 137.2±45.1 6.8±2.3 79.9±14.0
E0(6, c, 14, 60) 19 67.1±5.5 402.4±35.5 15.1±4.6 215.1±31.1
E0(6, c, 30, 60) 20 73.5±9.4 1208.2±108.1 33.9±7.8 487.2±97.1

a Unknowns count

Table 3: Increasing the number of keystream bits for E0(6, C, 30, 60)

F4 SAT

G. Basis Variety
E0 type Kba Time (s) Time (s) Mem (GiB) Time (s)

E0(6, c, 30, 60) 20 26400.3±324.9 2077.6±756.1 224.3±2.5 624.7±28.3
E0(6, c, 30, 60) 30 13503.2±460.1 406.3±1337.9 138.3±0.1 522.2±22.2
E0(6, c, 30, 60) 40 6757.9±206.5 2.8±3.2 87.2±0.0 508.5±18.1
E0(6, c, 30, 60) 50 6499.1±205.1 0.1±0.1 100.0±0.0 549.9±24.4
E0(6, c, 30, 60) 60 1376.7±7.8 0.0±0.0 43.1±0.0 627.3±59.4
E0(6, c, 30, 60) 70 1285.2±16.1 0.0±0.0 38.8±0.0 566.1±32.0
E0(6, c, 30, 60) 80 1041.6±6.6 0.0±0.0 26.8±0.0 623.7±55.2
E0(6, c, 30, 60) 90 1225.7±33.5 0.0±0.0 37.4±0.0 697.5±79.3
E0(6, c, 30, 60) 100 1078.9±36.2 0.0±0.0 15.4±0.0 729.7±90.9

a Keystream bits

Table 4: Degrees of polynomials in the resulting Gröbner bases for E0(6, c, 30, 60)

Kba deg 1 deg 2 deg 3 deg 4 deg 5 deg 6 number of solutions

20 - - - 0.13% 31.79% 68.08% 16374.2±505.4
30 - - - 99.94% 0.06% - 2200.1±473.0
40 - - 100.00% - - - 256.9±21.1
50 0.04% 99.63% 0.33% - - - 30.5±5.2
60 70.97% 29.03% - - - - 4.9±1.5
70 99.66% 0.34% - - - - 1.7±0.6
80 100.00% - - - - - 1.1±0.3
90 100.00% - - - - - 1.1±0.2
100 100.00% - - - - - 1.1±0.2

a Keystream bits

basis. The percentage of the degrees is calculated
across all polynomials of all of the Gröbner bases with
the given number of keystream bits. The last column
shows the average number of found solutions. Note
that for 20 unknowns, there are 220 possible initial
configurations of the LFSRs.

We will assume that the number of keystream bits
required to find one unique solution is linearly de-
pendent on the number of unknowns. We set the
maximum number of keystream bits generated by the
small-scale variants to ⌊Uc · 2745

128 ⌋, where Uc is the
number of unknowns. Table 5 shows that the F4 algo-
rithm efficiently utilized the new equations and signif-
icantly reduced the computational times. For E0(6, C,
30, 60) with 20 unknowns, the computation required
around 7 hours on average when only 20 keystream
bits were used (see Table 1). With 428 keystream
bits, the F4 algorithm requires around 36 seconds on
average (approximately 733x faster). We added three
more small-scale versions of E0 to see whether using
more keystream bits would resolve in lower computa-
tional times for different small-scale E0 variants with
more unknowns. Although the versions with 21 and
22 unknowns benefit from the additional keystream
bits, the version with 23 unknowns has a more sig-
nificant increase when compared to the versions with
fewer unknowns. The SAT solver’s time increased
compared to the results in Table 1, which may be re-
lated to the missing preprocessing we discussed ear-
lier in this section.

Figure 5 compares the computational times of the
F4 algorithm and the SAT solver based on the number
of keystream bits. We illustrate exponential growth
by setting an upper bound based on the maximum
computational time observed for 14 unknowns. This
bound serves as a reference to compare the growth
observed in the different solution approaches. As we
have already indicated, the F4 algorithm can use more
keystream bits (hence equations) to speed up the com-

(a) Gröbner basis – F4 algorithm

(b) CryptoMiniSat’s SAT solver
Figure 5: Comparison of computational times required
based on the number of keystream bits (Kb)

putation. On the other hand, the SAT solver does not
seem to benefit from the larger portion of the data
without any preprocessing.

Table 5: Using a linear relationship between the number of keystream bits and the number of unknowns

F4 SAT

G. Basis
E0 type Uca Kbb Time (s) Mem (MiB) Time (s)

E0∗(3, 6, c, 14) 14 300 0.1±0.0 32.1±0.0 1.7±0.2
E0(3, 6, c, 30) 15 321 0.3±0.0 64.1±0.0 3.7±1.2
E0(3, 6, c, 60) 16 343 1.6±0.0 64.1±0.0 17.5±1.6
E0(3, 6, 12, 60) 17 364 3.0±0.0 192.2±0.0 58.3±4.4
E0∗(6, c, 14, 30) 18 386 10.3±0.1 1257.3±0.0 140.9±14.3
E0(6, c, 14, 60) 19 407 20.0±0.2 2091.3±0.0 453.1±30.8
E0(6, c, 30, 60) 20 428 36.7±0.3 4302.8±0.0 653.8±71.8
E0(6, 14, 30, 60) 21 450 79.8±0.3 7539.4±0.0 1334.8±110.7
E0∗(c, 14, 30, 60) 22 471 178.5±1.2 9462.8±0.0 3678.7±281.5
E0(6, 14, 30, 110) 23 493 1320.6±73.2 12012.4±0.0 7257.0±1022.4

a Unknowns count
b Keystream bits

4 Reviewing The Existence Of
Lower Degree Equations

In (Frederik Armknecht and Matthias Krause, 2003),
the authors demonstrated that no equations of degree
4 or lower exist for E0 up to 5 consecutive keystream
bits. This work introduced the FindRelation algo-
rithm, which was used to derive these results. In this
section, we apply this algorithm to extend these re-
sults and discuss the specific properties of E0 in re-
gards to using the algorithm.

Before outlining the algorithm, we introduce two
terms, the Critical and Non-Critical set (Frederik
Armknecht and Matthias Krause, 2003).

Definition 2. Let z ∈ {0,1}r be a sequence of r ≥ 1
keystream bits, and let x = (x1,x2, . . . ,xr) be the set
of all possible internal state sequences. The system
processes x with an additional memory state c using a
transformation function f (x,c), which produces z. We
define Crit(z) and NCrit(z), for which the following
holds:

Crit(z) = {x | ∀c ∈ {0,1}l , f (x,c) ̸= z}, (13)

and

NCrit(z) = {x | ∃c ∈ {0,1}l , f (x,c) = z}, (14)

where l is the number of memory bits.

In other words, the set Crit(z) contains sequences
x such that it is impossible to generate keystream bit
sequence z given any state c. Note that l = 4 for E0,
and we can derive at least one equation of degree 4
for r ≥ 4 (Frederik Armknecht and Matthias Krause,
2003).

We define matrix M as the matrix that contains all
monomial combinations of x ∈ NCrit(z) up to degree
d. By monomial combinations of x, we refer to all
possible products of elements from the vector x up
to a given degree, where each element of x repre-
sents an individual variable in the polynomial system.
The algorithm FindRelation (Frederik Armknecht and
Matthias Krause, 2003) consists of two steps:

• Compute Crit(z) and NCrit(z).
• If Crit(z) ̸= /0, then find nullspace of M .

Using this algorithm, we can derive whether or not
equations of a given degree d exist for r consecutive
keystream bits. Using this algorithm we verified the
non-existence of new equations of degree d = 3, resp.
d = 4 for up to r = 8, resp. r = 7 keystream bits. Note
that each sequence of keystream bits requires its own
matrix M .

To better show the computational limitations, we
compute the maximum amount of memory required
for matrix M for E0, which holds for r ≥ 4. Since
we are working over F2, we can also assume that the
resulting value is in bits. The number of all monomial
combinations in M is ∑

d
i=0

(4r
i

)
. Based on our experi-

ments, we have empirically determined the maximum
size of NCrit(z) to be 23r+4. Thus, the maximum size
of M is

d

∑
i=0

(
4r
i

)
|NCrit(z)| ≤

d

∑
i=0

(
4r
i

)
23r+4 (15)

bits. The estimates are shown in Table 6. As M re-
quires approximately 1.26 TiB of memory for d = 4
and r = 8, we were not able to run the FindRelation
algorithm due to the memory limitation of the server
(755 GiB).

Table 6: Memory estimates for the FindRelation algorithm

The required memory (RAM) for matrix M is determined by Equation 15. We calculated the real size of
|NCrit(z)| comparing it to its empirically determined maximum size (ratio = real size/maximum size).

M – required memory |NCrit(z)| ∑
d
i=0

(4r
i
)

r d = 3 d = 4 23r+4 real size ratio d = 3 d = 4

4 5.44 MiB 19.66 MiB 65 536 53 248 81.25 % 697 2 517
5 84.43 MiB 387.25 MiB 524 288 487 424 92.96 % 1 351 6 196
6 1.13 GiB 6.32 GiB 4 194 304 4 083 712 97.36 % 2 325 12 951
7 14.38 GiB 94.36 GiB 33 554 432 33 230 848 99.03 % 3 683 24 158
8 171.53 GiB 1.26 TiB 268 435 456 267 440 128 99.62 % 5 489 41 449

By comparing the number of states and the num-
ber of monomial combinations in Table 6, it is less
likely for the FindRelation algorithm to find new
equations since the system of equations becomes in-
creasingly underdetermined. This, however, does not
prove that it is not possible to find new equations.
Armknecht (Armknecht, 2004) pointed out it is pos-
sible to obtain an equation of degree d = 3. However,
such system requires approximately 223.44 consecu-
tive keystream bits, being not practically usable in the
case of E0, as the number of keystream bits is limited
to 2745 between initializations.

5 Conclusion

In this study, we conducted an algebraic cryptanal-
ysis of small-scale variants of the E0 stream cipher,
focusing on the relationship between the number of
unknown variables and the number of keystream bits
required to uniquely determine the cipher’s internal
state. Using two computational approaches — the F4
algorithm from Magma and the CryptoMiniSat SAT
solver — we demonstrated that increasing the num-
ber of keystream bits significantly improves compu-
tational efficiency. The F4 algorithm, in particular,
achieved up to a 733× speedup when more equations
were available, highlighting the impact of additional
keystream bits on solving time.

We also explored the algebraic structure of E0
by verifying the existence of lower-degree equations.
Our results confirm that no equations of degree four
or lower exist for up to seven consecutive keystream
bits, and that no equations of degree three or lower
exist for up to eight consecutive keystream bits, rein-
forcing previous findings on E0’s algebraic resistance.
However, due to memory limitations, further verifica-
tion for longer keystream sequences was not feasible,
suggesting that future work could explore alternative
computational techniques or optimizations to extend
these results.

While our analysis focused on small-scale variants
of E0, the observed linear relationship between the
number of unknowns and the required keystream bits
suggests potential implications for the full-scale ver-
sion of the cipher. Future research should investigate
whether these findings hold for larger instances of E0
and assess the effectiveness of additional algebraic at-
tack strategies, including preprocessing techniques to
optimize, for example, SAT solver’s performance.

ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS23/211/OHK3/3T/18 funded by the MEYS of the
Czech Republic.

REFERENCES

Anne Canteaut (2016). LFSR-based Stream Ciphers.
Armknecht, F. (2004). Algebraic attacks on stream ci-

phers. In Neittaanmäki, P., editor, Proceedings / EC-
COMAS 2004, 4th European Congress on Computa-
tional Methods in Applied Sciences and Engineering
: Jyväskylä, Finland, 24 - 28 July 2004, Jyväskylä.
Univ. of Jyväskylä. CD-ROM. - Vol. 1: Plenary ses-
sions, invited parallel sessions, contributed sessions
and posters. - Vol. 2: Minisymposia and special tech-
nology sessions.

Berušková, J., Jureček, M., and Jurečková, O. (2024). Re-
ducing overdefined systems of polynomial equations
derived from small scale variants of the aes via data
mining methods. Journal of Computer Virology and
Hacking Techniques, 20(4):885–900.

Bluetooth SIG (2021). Bluetooth Core Specification.
Bluetooth SIG (2023). Origin of the Bluetooth name.
BOSMA, W., CANNON, J., and PLAYOUST, C. (1997).

The magma algebra system i: The user language.
Journal of Symbolic Computation, 24(3):235–265.

David A. Cox, John Little, and Donal O’Shea (2015). Ide-
als, Varieties, and Algorithms. Number 666 in Under-
graduate Texts in Mathematics. Springer.

Frederik Armknecht (2002). A Linearization Attack on the
Bluetooth Key Stream Generator.

Frederik Armknecht and Gwenolé Ars (2009). Alge-
braic Attacks on Stream Ciphers with Gröbner Bases.
Springer, Berlin.

Frederik Armknecht and Matthias Krause (2003). Alge-
braic Attacks on Combiners with Memory. In Ad-
vances in Cryptology - CRYPTO 2003, pages 162–
175. SPRINGER.

Marie-Madeleine Renauld (2023). The Collector.
Mate Soot (2024). CryptoMiniSat FAQ.
Nicolas T. Courtois and Willi Meier (2003). Algebraic

Attacks on Stream Ciphers with Linear Feedback.
Springer.

Roberto La Scala, Sergio Polese, Sharwan K. Tiwari, and
Andrea Viscnoti (2022). An algebraic attack to the
Bluetooth stream cipher E0.

SageMath Developers (2022). sagemath/sage: 9.7.
Shaked, Y. and Wool, A. (2006). Cryptanalysis of the blue-

tooth e0 cipher using OBDD’s. Cryptology ePrint
Archive, Paper 2006/072.

Soos, M., Nohl, K., and Castelluccia, C. (2009). Extending
sat solvers to cryptographic problems. In Kullmann,
O., editor, Theory and Applications of Satisfiability
Testing - SAT 2009, pages 244–257, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Yi Lu and Serge Vaudenay (2004). Faster Correlation
Attack on Bluetooth Keystream Generator E0. In
CRYPTO 2004, Berlin. Springer.

