
zkAML: Zero-knowledge Anti Money Laundering in Smart Contracts with
whitelist approach

Donghwan Oh
Hanyang University

Semin Han
Hanyang University

Jihye Kim
Kookmin University, Zkrypto

Hyunok Oh
Hanyang University, Zkrypto

Jiyeal Chung
Hanyang University

Jieun Lee
Bank of Korea

Hee-Jun Yoo
Bank of Korea

Tae wan Kim
Bank of Korea

Abstract
In the interconnected global financial system, anti-money
laundering (AML) and combating the financing of terrorism
(CFT) regulations are indispensable for safeguarding finan-
cial integrity. However, while illicit transactions constitute
only a small fraction of overall financial activities, traditional
AML/CFT frameworks impose uniform compliance burdens
on all users, resulting in inefficiencies, transaction delays,
and privacy concerns. These issues stem from the institution-
centric model, where financial entities independently con-
duct compliance checks, resulting in repeated exposure of
personally identifiable information (PII) and operational bot-
tlenecks. To address these challenges, we introduce zkAML,
a cryptographic framework that offers a novel approach to
AML/CFT compliance. By leveraging zero-knowledge Suc-
cinct Non-Interactive Argument of Knowledge (zk-SNARK)
proofs, zkAML enables users to cryptographically demonstrate
their regulatory compliance without revealing sensitive per-
sonal information. This approach eliminates redundant iden-
tity checks, streamlines compliance procedures, and enhances
transaction efficiency while preserving user privacy. We im-
plement and evaluate zkAML on a blockchain network to
demonstrate its practicality. Our experimental results show
that zkAML achieves 55 transactions per second (TPS) on
a public network and 324 TPS on a private network. The
zk-SNARK proof generation times are 226.59ms for senders
and 215.76ms for receivers, with a constant verification time
of 1.47ms per transaction. These findings highlight zkAML’s
potential as a privacy-preserving and regulation-compliant
solution for modern financial systems.

1 Introduction

In the global financial system, anti-money laundering (AML)
and combating the financing of terrorism (CFT) measures
have been pivotal in preventing illicit financial activities [2].
In particular, AML/CFT compliance has gained renewed
prominence in the context of Central Bank Digital Currencies

(CBDCs), given the decline in physical cash usage and the
rise of digital economies [1].

Traditional AML/CFT compliance in cross-border scenar-
ios often requires users to submit personal information mul-
tiple times for verification. For example, consider a cross-
border transfer in which Alice, located in the United States,
initiates a funds transfer to Bob in the EU. Upon receiving the
request, the originating bank performs comprehensive know
your customer (KYC) checks, verifies her identity, and con-
ducts customer due diligence (CDD) to assess any AML/CFT
risks. This initial verification process requires the bank to
validate various details about Alice, such as her personal iden-
tification and transaction history. Once Alice’s identity and
transaction are approved, the originating bank prepares a pay-
ment message containing essential information such as Al-
ice’s reference, Bob’s beneficiary details, and the transaction
amount. Despite this initial verification, intermediary finan-
cial institutions––such as correspondent banks or financial
market infrastructures (FMIs)–– conduct their own redundant
compliance checks before passing the transaction along. Fi-
nally, when the payment message reaches Bob’s bank (the
beneficiary bank in the EU), yet another layer of AML/CFT
compliance is applied. Bob’s bank again conducts identity
checks and KYC procedures, verifying Bob’s account details
and ensuring that the transaction complies with both inter-
nal policies and the relevant EU regulatory frameworks. The
funds are credited to Bob’s account only after all verifications
are completed. This repetitive compliance process creates two
major challenges:

• Transaction delays: Multiple layers of verification sig-
nificantly slow down international money transfers, re-
ducing operational efficiency.

• Privacy risks: Users must repeatedly provide personal
identifiable information (PII) across multiple institutions,
increasing the risk of data breaches and the complexity
of meeting regulations such as the EU General Data
Protection Regulation (GDPR)1.

1While the GDPR permits the processing of personal data when necessary

1

Figure 1: Comparison between zkAML and traditional AML/CFT

Despite these challenges, statistics indicate that regulatory
compliance remains indispensable. According to the United
States Sentencing Commission (USSC), the median loss in
money laundering cases was $ 554,353 [14]. Nevertheless,
USSC data also suggest that money laundering accounts for
only a minuscule fraction of all transactions. Consequently, to
regulate the illicit activities of a small minority, the vast major-
ity of ordinary transactions––including those by creditworthy
individuals––must also endure the aforementioned delays and
privacy concerns. Thus, in addition to traditional AML/CFT
measures, there is a need to establish a tailored transaction
process for this wide range of ordinary transfers––one that
improves structural efficiency and minimizes privacy expo-
sure.

In light of these challenges, a new compliance framework
must ensure AML/CFT enforcement while minimizing redun-
dant verification. An ideal solution would enable financial
institutions to verify compliance status without continuously
collecting and processing sensitive personal data. This re-
quires a shift from an institution-centric compliance model to
a proof-based model that can guarantee regulatory adherence
without excessive identity exposure.

for legal compliance, it still requires that only the minimum amount of data
be used for narrowly defined purposes. Institutions enforcing AML/CFT
regulations must also adopt additional data protection measures, for example
through standard contractual clauses or binding corporate rules.

1.1 Our work

We propose zkAML, a cryptographic framework designed
to provide frictionless AML/CFT compliance while pre-
serving user privacy. zkAML fundamentally transforms the
AML/CFT compliance model by eliminating redundant iden-
tity checks through zk-SNARK proof. This mechanism
allows users to cryptographically prove that they belong
to a whitelist––comprising individuals deemed very low
risk––without disclosing their underlying personal informa-
tion, thereby introducing a novel approach to balancing pri-
vacy and compliance. Instead of requiring users to repeatedly
submit personal data to multiple institutions, zkAML enables
them to prove their compliance status just once through a
cryptographic proof.

zkAML introduces a trust-enabled compliance model that
complements traditional AML/CFT frameworks by offer-
ing efficiency benefits to low risk users. Under the current
institution-centric paradigm, each financial entity operates as
an isolated compliance unit (as depicted in Figure 1), often
leading to redundant identity checks. In contrast, zkAML al-
lows one-time demonstration of compliance through veri-
fiable cryptographic proofs, eliminating the need to repeat-
edly disclose personal information. By offering a streamlined
and privacy-preserving pathway for low-risk (i.e., whitelisted)
users, this approach coexists with the established regulatory

2

system while challenging its siloed structure and opening the
way toward verifiable yet private compliance.

Specifically, zkAML enables users to generate a zk-SNARK
proof demonstrating inclusion in a whitelist, which is main-
tained by a trusted authority and consists of creditworthy
users2. This whitelist status, proven via zk-SNARK, serves as
a cryptographic attestation of the user’s pre-verified compli-
ance. The remittance is transmitted via an anonymous transfer
protocol (e.g., Blockmaze [18] or Azeroth [19]) to ensure pri-
vacy, i.e., transaction is encrypted and zk-SNARK proof is
submitted to demonstrate the validity of transaction3.

As illustrated in Figure 1, compared to traditional
AML/CFT approaches, zkAML introduces two key distinc-
tions: 1) Regulatory compliance is verified proactively,
whereas traditional approaches require multiple verifications,
and 2) zkAML requires users to submit a zk-SNARK proof
instead of disclosing personal information. As a result, cred-
itworthy users utilizing zkAML can reduce the unnecessary
burdens imposed by traditional AML/CFT approaches and
benefit two key aspects: 1) a streamlined transaction process,
reducing delays, and 2) enhanced privacy protection by mini-
mizing data exposure.

We emphasize that zkAML is designed to complement rather
than replace existing AML/CFT compliance frameworks. Fur-
thermore, it serves as an incentive mechanism for the majority
of honest users (i.e., those with high creditworthiness). By
offering such positive reinforcement, zkAML motivates users
to improve their credit standing and compliance behavior.

Our contributions are summarized as follows:

• A novel privacy-preserving AML/CFT compliance
framework: We address the conflict between regulatory
compliance and user privacy by integrating compliance
verification into zk-SNARKs. Creditworthy users no
longer need to prove their identity repeatedly, improving
overall transaction efficiency. Additionally, since they
submit a zk-SNARK proof and the personal data is han-
dled as a witness instead of submitting personal data
itself, their privacy is significantly enhanced.

• Security proof: A privacy-preserving regulatory com-
pliance framework must ensure both user privacy and
regulatory compliant transactions. We define two key
security notions as transaction permission restrictness
and compliance enforcement. Transaction permission
restrictness ensures that users retain control over their
transactions, preventing unauthorized actions by bank or
other entities, even when transaction authority is dele-

2Checking inclusion in a whitelist in zkAML is related to the traditional
blacklist approach. In zkAML, whitelist inclusion implies the user would
not be on a blacklist in a traditional system, representing a similar level of
compliance assurance.

3For brevity, we provide only a high-level overview of the zkAML transfer.
The details of the anonymous transfer mechanisms are discussed in Sec-
tion 2.6 and their integration within zkAML is described in Section 3.

gated. Compliance enforcement guarantees that all trans-
actions adhere to AML/CFT regulations by verifying
that both the sender and receiver fulfill the required con-
ditions, thereby preventing illicit activities. We formally
prove that zkAML satisfies these security properties under
the assumptions of its underlying cryptographic primi-
tives, demonstrating that it is secure, privacy-preserving
regulatory compliance framework.

• Implementation and evaluation: We implement
zkAML and empirically validate its practicality
through experiments. Experimental results show that
zkAML achieves 55 TPS on a public test network and
324 TPS on a private test network. Under a whitelist
of 220 users, proving times for the sender and receiver
are 226.59ms and 215.76ms respectively (including
regulatory checks), while verification time remains
constant at about 1.47ms per transaction.

1.2 Related work

Privacy-preserving transfer. After Chaum [12] introduced
anonymous payments, research on anonymous transfer grew
significantly. In particular, with the emergence of blockchain,
studies on anonymous transfer have been catalyzed. One of
the earliest prominent protocols, Zerocash [7] , introduced
anonymous transfer under the Unspent Transaction Output
(UTXO) model by leveraging Zero-Knowledge Proofs (ZKPs)
to ensure transaction validity. Subsequently, account-based
protocols for anonymous transfers, such as Zether [9] and
Blockmaze [18], were proposed. However, because these ap-
proaches rely on anonymous transfers, potential concerns
remain regarding illicit financial activities.
Regulatory compliance through auditing. In response to
the growing demand for compliance with regulations on illicit
financial activities, various protocols have been proposed to
support regulatory compliance. Camenisch et al. [10] sought
to balance privacy and auditability by limiting how much
a user can spend per transaction. Driven by advances in
blockchain technology, additional auditable blockchain solu-
tions have been introduced [4, 11, 13, 19, 20]. Although these
approaches provide auditing and anonymous transfer to pro-
vide regulatory-compliant and user privacy simultaneously,
there is still room for improvement: some do not support pub-
lic blockchains [4, 20], others are feasible only for restricted
environment (e.g., the number of users should be small) [13],
or auditable only if whole keys and transaction details are
revealed to auditor. Jeong et al. [19] propose and auditable
anonymous transfer protocl that addresses these limitations
by leveraging zk-SNARKs. However, it still does not prevent
illicit financial activities in advance.
CBDCs. In a slightly different domain, research on regulatory-
compliant CBDCs has recently gained momentum, spurred
by the heightened emphasis on meeting AML/CFT require-

3

ments [1, 15]. This line of research focuses on embedding
compliance mechanisms directly into CBDC architectures.
Auer and Böhme [6] propose a “CBDC pyramid structure”
that organizes design elements into hierarchical layers, al-
lowing CBDCs to be tailored to consumer needs. They ad-
vocate choosing between a token-based model, emphasizing
privacy and security, and an account-based model, which is
more conducive to AML/CFT compliance. Although either
option can be effective, each often requires regulatory ad-
justments. Pocher and Veneris [22] propose a regulation-by-
design framework in Distributed Ledger Technology (DLT)
to address privacy and transparency within CBDCs. They
introduce a layered CBDC architecture that employs vari-
ous Privacy-Enhancing Technologies (PETs)–such as ZKPs,
Homomorphic encryption, and transaction-mixing–to vali-
date transaction legitimacy without exposing sensitive details,
meeting AML/CFT standards while preserving privacy.

Platypus [23] and PEReDi [21] each propose privacy-
preserving, regulatory compliant CBDC frameworks that illus-
trates centralized and decentralized approaches, respectively.
Both leverage ZKPs to enhance privacy and comply with
AML/CFT regulations. Platypus, a centralized model, is gov-
erned by a single authority that enforces compliance, but this
structure creates a single point of failure and increases depen-
dency on central authorities. Conversely, PEReDi employs
a decentralized structure that eliminates this vulnerability
and ensures continuity even if the central authority becomes
unavailable. However, both models rely on interactive transac-
tion protocols––meaning that both sender and receiver must
be online to complete a transaction. In PEReDi, for example,
only the receiver’s presence for zero-knowledge proof submis-
sion to claim funds. This online requirement limits usability
for scenarios that demand non-interactive, asynchronous trans-
actions.

1.3 Structure of the paper
After presenting the necessary notations and cryptographic
primitives in Section 2, we introduce zkAML, our solution,
in Section 3. We then provide the security notion underly-
ing our construction in Section 4. In Section 5, we present
the experimental evaluation of our construction. Finally, we
summarize and conclude our work in Section 6.

2 Preliminaries

In this section, we provide some notations and (informal)
definitions of cryptographic primitives used throughout this
paper.

2.1 Notations
Let λ be the security parameter, with the standard notation
←$ indicating random selection. We denote by F a finite field

and by G a group.
Given the security parameter 1λ, a relation generatorRG

outputs a polynomial-time decidable relationR←RG(1λ).
For a pair (x,w) ∈R, we refer to w as a witness for the state-
ment x, indicating that x (an input/output statement) is in the
relation.

Additionally, we employ a collision-resistant hash function
(CRH) and a commitment scheme (COM). For any input x,
we denote the output of the hash function by y← CRH(x).
For the commitment scheme, a commitment cm to a message
u with an opening value o is defined as cm← COM(u;o).

Throughout the construction, the subscripts r, s, b, and t will
denote the receiver, sender, bank, and transfer, respectively.

2.2 zk-SNARKs
As described in [16, 17] given a relation R, a zero-
knowledge Succinct Non-interactive Arguments of Knowl-
edge (zk-SNARKs) consists of a set of algorithms Πsnark =
(Setup,Prove,Verify,Sim) defined as follows:

• Setup(λ,R)→ crs := (ek,vk), td: This algorithm takes a
security parameter λ and a relationR as inputs, returning
a common reference string crs comprising an evaluation
key ek and a verification key vk, along with a simulation
trapdoor td.

• Prove(ek,x,w)→ π: Given an evaluation key ek, a state-
ment x, and a witness w such that (x,w)∈R, this algorithm
outputs a proof π.

• Verify(vk,x,π)→ true/false: Using a verification key vk, a
statement x, and a proof π as inputs, this algorithm outputs
true if the proof is valid and false otherwise.

• Sim(ek, td,x)→ πsim: This simulation algorithm, given an
evaluation key ek, a simulation trapdoor td, and a statement
x, generates a simulated proof πsim that is indistinguishable
from a real proof such that Verify(vk,x,πsim)→ true.

This zk-SNARKs scheme satisfies the following properties:
completeness, knowledge soundness, zero-knowledge, and
succinctness.

Completeness. For any valid statement-witness pair (x,w)
that satisfies the relationR, the honest verifier always accepts
the proof. Formally, for any security parameter λ∈N, relation
Rλ, and any (x,w) ∈Rλ, it holds that:

Pr
[

true← Verify(vk,x,π)
∣∣(ek,vk,td)← Setup(R);

π← Prove(ek,x,w)

]
= 1

Knowledge Soundness. Knowledge soundness ensures that
if a prover outputs a valid proof π, then they must “know”
a witness w for the statement x such that (x,w) ∈ R. This
knowledge is guaranteed by a knowledge extractor E , which

4

can retrieve w from the prover’s interaction in polyno-
mial time. Formally, if there exists an extractor E for any
probabilistic polynomial-time (PPT) adversary A such that:
Pr
[
GameKSRG,A,E = true

]
= negl(λ) then Πsnark has knowl-

edge soundness. The following describes this game:

GameKSRG,A,E → res

(R,auxR)←RG(1λ);(crs := (ek,vk),td)← Setup(R);

(x,π)←A(R,auxR,crs);w← E(transcriptA);

Return res← (Verify(vk,x,π)∧ (x,π) /∈R)

Zero-Knowledge. Zero-knowledge ensures that a proof π

reveals no additional information about the witness w be-
yond the validity of the statement x. For Πsnark to be zero-
knowledge, there must exist a simulator such that for any
adversary A, the following holds:

Pr

[
(R,auxR)←RG(1λ);(crs := (ek,vk),td)← Π.Setup(R)

: π← Prove(ek,x,w);true←A(crs,auxR,π)

]
≡

Pr

[
(R,auxR)←RG(1λ);(crs := (ek,vk),td)← Setup(R)

: πsim← Sim(ek,td,x);true←A(crs,auxR,πsim)

]

Succinctness. A zk-SNARKs argument system Πsnark is suc-
cinct if the proof size is small and verification is efficient.
Specifically:

|π| ≤ Poly(λ)(λ+ log|w|)
TimeVerify ≤ Poly(λ)(λ+ log|w|+ |x|)

2.3 Commitment Schemes
A commitment scheme for some message m in message space
M, the triple of probabilistic polynomial time (PPT) algo-
rithms (KeyGen,Commit,Open) are defined as follows:

• KeyGen(λ)→ (ck) : The algorithm takes a security pa-
rameter λ as input and returns a commitment key ck.

• Commit(ck,m)→ (C,o) : The algorithm takes the com-
mitment key ck and the message as input and outputs
commitment C and opening o.

• Open(ck;C,m,o)→ true/false : The algorithm takes
the commitment, opening and claimed message to decide
whether to accept claimed message as a valid opening
of the commitment. The algorithm returns true with
acceptance, and false otherwise.

Computational binding. A triple of three algorithms
(KeyGen,Commit,Open) provides computational binding
property if for any PPT adversary A having knowledge of ck:

Pr

 Open(ck,C,m,o)
∧ Open(ck,C,m′,o′)
∧m ̸= m′

∣∣∣∣∣∣ (C,m,o,m′,o′)
←A(ck)

≤ negl(1λ).

Perfect hiding. A triple of three algorithms (KeyGen,Commit,
Open) provides perfect hiding property if for all unbounded
adversary A= (A0,A1):

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣
ck← KeyGen(1λ)
∧ (a0,a1,st) =A0(ck)
∧ b←$ {0,1}
∧ (C,o)← Commit(ck,ab)
∧ b′←A1(C,st)

=
1
2
.

Perfect hiding ensures that no information about the com-
mitted value is revealed until the opening. In our construc-
tion, these properties allow us to commit to user balances or
whitelist membership credentials without revealing the under-
lying data, ensuring privacy while still enabling compliance
checks.

2.4 Signature schemes
A signature scheme is a triple of PPT algorithms
KeyGen,Sign,Verify invoked as follows

• KeyGen(λ)→ (pk,sk) : The algorithm takes a security pa-
rameter λ as input and returns a key pair containing a public
verification key pk and a signing key sk.

• Sign(sk,m)→ σ : The algorithm takes a signing key sk and
a message m as inputs and returns a signature σ.

• Verify(pk,m,σ)→ true/false : The algorithm takes a pub-
lic verification key pk, a message m, and a signature σ as
inputs, and returns true if the message and signature form
a valid pair, or false otherwise.

Correctness. A triple of three algorithms
(Keygen,Sign,Verify) is correct if honestly generated
signatures verify correctly with following probability:

Pr

[
true← Verify(pk,m,σ)

: (pk,sk)← KeyGen(λ),(m,σ)← Sign(pk,m)

]
= 1

Strongly Unforgeable. A triple of three algorithms
(Keygen,Sign,Verify) is strongly unforgeable if the following
adversary A has negligible advantage:

Pr
[

true← Verify(pk,m,σ)
(m,σ) /∈ (mi,σi)

q
i=1

:
(pk,sk)← KeyGen(λ)

(m,σ)←ASign(·)(pk)

]
where Sign(mi) returns σi← Sign(sk,mi) for i = 1, . . . ,q.

The strong unforgeability property ensures that no adver-
sary can produce a valid new signature on a message not
previously signed. In our framework, this guarantees the au-
thenticity and integrity of compliance proofs and transactions,
preventing malicious entities from injecting unauthorized
transactions.

5

2.5 Membership Proofs

A membership proof scheme [8] is a cryptographic proof
that allows one to demonstrate that a particular element is
a member of a predefined set without revealing the entire
set. A membership proof scheme can be seen as a triple of
algorithms Acc,Prove,Verify with the following functionality:

• Acc(S)→ A : The algorithm compresses a set S into a short
accumulator A.

• Prove(S,x)→ πx : The algorithm takes a set S and a mem-
ber x such that x ∈ S as inputs and returns a membership
proof πx.

• Verify(A,x,πx)→ true/false : The algorithm returns true
if the membership proof πx is valid or false otherwise.

We will utilize membership proofs to confirm that a user’s
credentials (e.g., whitelist inclusion) are valid without reveal-
ing the entire set of valid users or transferring PII, thereby
preserving user privacy while maintaining compliance.

2.6 Anonymous transfer protocol

On blockchains like Ethereum, transactions are fully transpar-
ent, meaning that transaction details, such as payment infor-
mation, are visible to anyone. This implies that, to maintain
anonymity in transactions, such details must be concealed
from unrelated third parties. To ensure user privacy on a pub-
lic blockchain, we employ anonymous transfer protocols such
as Azeroth [19], zeroCash [7], zether [9] and blockMaze [18].
In this paper, we apply Azeroth due to its auditability while
safeguarding user privacy, which aligns with our framework’s
requirement, i.e., ensuring both privacy and regulatory com-
pliance. Moreover, Azeroth is optimized for gas consumption,
making it more efficient compared to other anonymous trans-
fer protocols. We stress that the efficiency of Azeroth enables
privacy-preserving transactions to be executed with minimal
computational overhead in zkAML.

Revisit Azeroth. Azeroth utilizes two account types: Exter-
nally Owned Accounts (EOAs), similar to standard Ethereum
accounts, and Encrypted Accounts (ENAs), which conceal
the account balance using symmetric-key encryption. The
core transaction, zkTransfer, leverages zk-SNARKs to en-
able anonymous transfers between ENAs, while allowing for
deposits and withdrawals to and from EOAs. Importantly,
zkTransfer ensures that transaction details related to ENAs,
such as the amount, sender, and receiver, remain hidden during
the verification process. We chose Azeroth for its auditable
property, aligning with our framework’s need for both privacy
and regulatory compliance.

3 zkAML

This section describes the data structures used in our proposed
scheme zkAML, referring to the notions defined in Section 2.
Subsequently, we present an overview of the zkAML system,
detailing its core techniques and providing a concrete de-
scription of its construction. The overview comprehensively
explains the core functions’ overall structure and functional-
ity.

3.1 Overview
Before delving into zkAML, we provide an outline of its over-
all design. zkAMLis designed to facilitate privacy-preserving,
regulatory-compliant cross-border transactions by integrat-
ing advanced cryptographic techniques. More specifically,
zkAMLaddresses the tension between privacy and regulatory
compliance by combining a whitelist-based compliance veri-
fication with zk-SNARKs, thereby enabling proactive verifi-
cation.

3.1.1 Whitelist-based compliance verification

zkAML leverages a whitelist maintained by authorized institu-
tions to pre-validate users’ eligibility to perform transactions.
By embedding compliance verification directly into the trans-
action protocol, zkAML ensures that only users who meet
AML/CFT requirements can initiate transactions, thereby re-
moving the need for subsequent audits.

zkAMLentrusts whitelist management to authorized national
credit assessment institutions–such as public credit bureaus
or private credit rating agencies–recognized by regulatory au-
thorities. While each institution may use different methodolo-
gies to determine creditworthiness, zkAMLremains agnostic
to these specifics and focuses on cryptographically verifying
the legitimacy of an institution’s claims. When a user initiates
a cross-border transactions, the sending country’s assessment
institution generates a proof that certifies the user’s accept-
able credit standing and transaction eligibility. This proof is
then submitted to the sending country’s remittance institution
(e.g., the user’s bank), which verifies its authenticity to ensure
compliance with both sending and receiving jurisdictions’
AML/CFT standards. All verification steps employ crypto-
graphic techniques to confirm the proof’s validity without
revealing sensitive personal information.

3.1.2 Privacy preservation

zkAML prioritizes user privacy while ensuring compli-
ance with regulations. Instead of transmitting PII across
borders, zkAML employs zk-SNARKs to generate crypto-
graphic proofs. These proofs demonstrates that AML/CFT
requirements–such as whitelist membership, sufficient credit-
worthiness, and adherence to transaction limits–are met, all
without disclosing underlying sensitive data. This approach

6

helps satisfy regulations like GDPR and CCPA, which enforce
strict controls over data processing. By confining PII within
the user’s home jurisdiction and using cryptographic proofs
for cross-border validation, zkAML effectively mitigates pri-
vacy risks associated with international data transfers.

Furthermore, the use of smart contracts enhances the sys-
tem by facilitating automated transaction execution once reg-
ulatory requirements are met. These contracts minimize the
need for intermediaries, thereby reducing both delays and op-
erational costs while improving the efficiency of cross-border
financial transactions. This automated process, combined with
the scalability and flexibility of zkAML, broadens the frame-
work’s applicability beyond CBDCs to include international
remittances, inter-bank settlements, and decentralized finance
(DeFi).

3.2 Data Structures

Ledger. All users can access the ledger denoted as L, which
contains the information of all blocks. Each block in L in-
cludes:

• A list of transactions.

• A timestamp indicating when the block was created.

• A reference to the previous block, forming a chain.

• A Merkle root for verifying the integrity of transactions
within the block.

Additionally, L is sequentially expanded by appending new
transactions to the previous blocks (i.e., for any T′ < T, LT
always incorporates LT′).

Commitment. We employ a commitment scheme to construct
privacy-preserving AML/CFT transactions. A commitment
scheme allows a user to commit to a chosen value (or a cho-
sen statement) while keeping it hidden from others, with the
ability to reveal the committed value later. Commitments are
utilized in zkAML to hide sensitive information such as credit
limits (vlim) and addresses (addr).

Specifically, a commitment cm is created using the user’s
credit limit vlim, address addr, and a randomly chosen opening
value o as follows:

cm= COM(vlim,addr;o)

Note that the opening value o is known only to the user who
owns the account, leading to ensure that sensitive information
remains private.

Signature. Our zkAML protocol employs two distinct signa-
tures:

• σbank: Issued by the bank, this signature guarantees that the
user’s ID and account address form a valid pair through the
KYC process.

• σsend: Issued by the sender, this signature authorizes the
bank to execute the transfer and generate the zkAML proof.
It contains the sender’s address, the recipient’s address, and
the transfer amount, ensuring that only authorized transac-
tions are processed by the bank.

Our signatures are defined as follows:

σbank = Sign(skb,(addr, ID))

σsend = Sign(sks,(addrs,addrr,v))

3.3 Construction
Here we present the construction of zkAML. The details of the
client algorithm and smart contract algorithm are available
in Figure 2 and Figure 3, respectively. The relations for zk-
SNARKs are depicted in Figure 4.

3.3.1 System Setup

Before transactions can occur, the system must be initialized
by generating cryptographic keys, deploying the smart con-
tract, and establishing the whitelist.

• Setup: A trusted authority runs SetupClient to generate
the evaluation key ek and verification key vk, forming
the public parameters pp := (ek,vk,G,1λ).

• Smart Contract Deployment: The zkAML smart con-
tract is deployed using SetupSC, which stores vk and
initializes a Merkle Tree for managing the whitelist
whitelist.

• User Registration: Each user must register with their
respective bank before initiating transactions. During
registration, the user provides their identity ID along with
their account address addr. The bank verifies the user’s
provided identity against the existing whitelist whitelist.
Upon successful verification, the bank issues a signature
σbank over (ID,addr). This signature ensures that the
provided identity and account address correspond to a
verified entity within the system and will be required in
later transaction processes.

3.3.2 Transaction Initiation and Receiver Proof Genera-
tion

A transaction begins when a sender requests a cross-border
transfer. The sender must be pre-verified against the whitelist
managed by the authorized national credit assessment institu-
tion before proceeding.

1. Transaction Intent Notification: The sender commu-
nicates the transaction details (recipient address and
amount v) to the receiver.

7

SetupClient(1λ,RzkAML)

(ek,vk)← Πsnark.Setup(RzkAML)

G←$ G // Choose a generator

return pp := (ek,vk,G,1λ)

SignClient(sk)

σb← Signb(skb,(addr, ID))

return σb

DelegateClient(sk)

σs← Signs(sks,(addrs,addrr,v))

return σs

zkAMLTransferClient(pp, note, apk, usksend, upksend,recv, vprivout , vpubin , vpubout , EOArecv, AML)

parse usksend as (ksendENA,sk
send
own ,sk

send
enc)

parse upk{send,recv} as (addr{send,recv},pk{send,recv}own ,pk
{send,recv}
enc)

parse AML as (rts,cmr,pkb,pks,σb,σs, IDs,vlimr,vlims,γr,Paths)

if note ̸=⊥ then

parse note as (cmold,oold,v
priv
in)

else

vprivin ← 0;oold←$ F

cmold← COM(vprivin ,addrsend;oold)

endif

sctold← ENA[addrsend];vENAold ← SE.DecksendENA
(sctold)

nf← PRFsksendown
(cmold)

rtt ← Listrt.Top

Path← ComputePathMT(cmold)

cmnew← COM(vprivout ,addr
recv;onew)

pctnew,auxnew← PE.Encpkrecvenc ,apk
(onew||vprivout ||addrrecv)

vENAnew ← vENAold +vprivin −vprivout +vpubin −vpubout

sctnew← SE.EncksendENA
(vENAnew)

x⃗s =
{
apk, rtt , rts,nf,upk

send,cmnew,cmr,pkb,pksend,sctold,sctnew,v
pub
in ,vpubout ,pctnew

}
w⃗s =

{
usksend,cmold,oold,v

priv
in ,upkrecv,onew,v

priv
out ,auxnew,Patht ,Paths,σb,σs, IDs,vlimr,s,γr

}
πs← Πsnark.Prove(ek, x⃗s, w⃗s)

TxZKT := (πs,r, r⃗t,nf,addr
send,pkr,s,cmnew,cmr,sctnew,v

pub
in ,vpubout ,pctnew,EOA

recv)

return TxZKT

Figure 2: zkAML client (Client) Algorithms

8

SetupSC(vk)

// Deploy an zkAML’s smart contract

Store a zk-SNARK verification key vk

Initialize a Merkle Tree for whitelist whitelist

zkAMLTransferSC(TxZKT)

parse TxZKT :=

πs,r, r⃗t,nf,addr
send,pks,r,cmnew,cmrecv,

sctnew,v
pub
in ,vpubout ,pctnew,EOA

recv

parse r⃗t := (rttransfer, rtsend, rtrecv)

assert rttransfer ∈ Listrt

assert nf ̸∈ Listnf

assert addrsend ∈ Listaddr

assert cmnew ̸∈ Listcm

Get APK and sctold

x⃗send =

APK, rtsend,transfer,nf,upk
send,pks,cmr,cmnew,

sctold,sctnew,v
pub
in ,vpubout ,pctnew

x⃗recv = {rtrecv,cmr,pkr}

assert ΠsnarkVerProof(vk,πsend, x⃗send) = true

assert ΠsnarkVerProof(vk,πrecv, x⃗recv) = true

ENA[addrsend]← sctnew; rtnew← TreeUpdateMT(cmnew)

Listrt.append(rtnew);Listnf .append(nf)

if vpubin > 0 then TransferFrom(EOAsend, this,vpubin)

if vpubout > 0 then TransferFrom(this,EOArecv,vpubout)

Figure 3: zkAML’s Smart Contract Algorithms

2. Receiver Eligibility Verification: The receiver uses the
relation Rrecv to generate a zk-SNARK proof (πrecv)
demonstrating that:

• Whitelist Membership: The receiver’s commit-
ment (cmr) exists in the receiver’s whitelist Merkle
Tree (whitelistr, with root rtr), proving their mem-
bership.

• Identity Verification: The receiver’s address
(addrr) and ID (IDr) match, as verified by the
bank’s signature (σb).

• Valid Signature: σb is a valid signature on
(addrr, IDr) with the bank’s public key pkb.

zkAMLrecv relationR(⃗x; w⃗)

x⃗ = {rtr,cmr,pkb}

w⃗ = {σb,addrr, IDr,vlimr,γr,Pathr}

assert true=Membershipwhitelist(rt,COM,Pathr)

assert true= SIG.verify(pkb,(addrr, IDr),σb)

assert cmr = COM(addrr,vlimr;γr)

zkAMLsend relationR(⃗x; w⃗)

x⃗ = {rtsend,cmr,pkb,pks}

w⃗ =
{

σb,σs,addrr,s, IDs,vlimr,s,v,γr,Paths
}

assert true=Membershipwhitelist(rt,COM,Paths)

assert vlimr ≥ v∧vlims ≥ v

assert true= SIG.verify(pkb,(addrs, IDs),σb)

assert true= SIG.verify(pks,(addrs,addrr,v),σs)

assert cmr = COM(addrr,vlimr;γr)

Figure 4: zkAML Relation

• Valid Commitment: cmr is a valid commitment
to the receiver’s address (addrr) and credit limit
(vlimr) with randomness γr.

• Sufficient Credit Limit: The receiver’s commit-
ted credit limit (vlimr) is sufficient to accept the
specified transfer amount v.

3. Proof Transmission: The receiver sends the proof πrecv

to the sender as authorization to proceed with the trans-
action.

3.3.3 Sender Proof Generation and Transaction Genera-
tion

Once the receiver’s proof is validated, the sender must gener-
ate their own compliance proof before executing the transfer.

1. Sender Proof Generation: The sender constructs the zk-
SNARKs proof (πsend) using zkAMLTransferClient with
the extended relation RzkAMLTransfer. The statement x⃗
and witness w⃗ for this relation are as follows:

x⃗ =

(
apk, rtsend,transfer,nf,upk

send,pks,cmr,

cmnew,sctold,sctnew,v
pub
in ,vpubout ,pctnew

)

9

zkAMLTransfer relationR(⃗x; w⃗)

x⃗ =

apk, rtsend,transfer,nf,upk
send,pks,cmr,cmnew,

sctold,sctnew,v
pub
in ,vpubout ,pctnew

w⃗ =

usksend, cmold,oold,v
priv
in ,upkrecv,onew,v

priv
out ,auxnew,

Patht ,Paths,σb,σs, IDs,vlimr,s,γr

parse usksend as

(
ksendENA,sk

send
own ,sk

send
enc

)
parse upk{send,recv}

as
(
addr{send,recv},pk

{send,recv}
own ,pk

{send,recv}
enc

)
if vprivin > 0 then

assert true=Membershipwhitelist(rt,cmold,Path)

endif

assert pksendown = CRH(sksendown)

assert addrsend = CRH(pksendown ||pksendenc)

assert cmold = COM(vprivin ,addrsend;oold)

assert nf = PRFsksendown
(cmold)

assert pctnew,auxnew = PE.Encpkrecvenc ,apk
(onew||vprivout ||addrrecv)

assert addrrecv = CRH(pkrecvown ||πrecv
enc)

assert cmnew = COM(vprivout ,addr
recv;onew)

if sctold = 0 then vENAold ← 0

else vENAold ← SE.DecksendENA
(sctold) endif

assert vENAnew ← SE.DecksendENA
(sctnew)

assert vENAnew = vENAold +vprivin −vprivout +vpubin −vpubout

assert vprivout ≥ 0;vprivin ≥ 0;vpubin ≥ 0;vpubout ≥ 0

assert vENAnew ≥ 0;vENAold ≥ 0

assert vlimr ≥ vprivout ∧vlims ≥ vprivout

assert true= SIG.verify(pks,(addr
send,addrrecv,vprivout),σsend)

Figure 5: zkAMLTransfer Relation

w⃗ =

(
usksend, cmold,oold,v

priv
in ,upkrecv,onew,v

priv
out ,

auxnew,Patht ,Paths,σb,σs, IDs,vlimr,s,γr

)

The relation RzkAMLTransfer extends the receiver’s rela-
tionRrecv and is considered valid if and only if the fol-
lowing conditions hold:

The relationRzkAMLTransfer extends the sender’s relation
Rsend and is considered valid if and only if the following
conditions hold:

• Receiver Verification: The receiver’s commitment
(cmr) is valid, and the receiver is eligible to receive
the transaction (as verified in the receiver’s proof).

• Sender Delegation Signature: σs is a valid signa-
ture on (addrs,addrr,v) with the sender’s public
key pks, authorizing the transaction.

• Transaction Amount Check: The transaction
amount (v, implicitly included in vprivout) is non-
negative and does not exceed the sender’s com-
mitted credit limit (vlims).

• Privacy preserving Transfer: The proof must also
satisfy all the constraints of underlying privacy-
preserving transfer relation (zkTransfer [19]), in-
cluding:

– Correct computation of the new commitment
(cmnew).

– Correct encryption of the new ENA balance
(sctnew).

– Correct derivation of the nullifier (nf) from the
old commitment (cmold) and the sender’s secret
key.

– Non-negativity of all amounts (vprivout , vprivin , vpubin ,
vpubout , vENAold , vENAnew).

– Balance equation: vENAnew = vENAold +vprivin −vprivout +

vpubin −vpubout .

3.3.4 Transaction Execution and Completion

Once the sender’s and receiver’s proofs are generated, the
transaction proceeds through the following steps, ensuring
compliance and privacy:

1. Smart Contract Execution: The sender (or the sender’s
bank on behalf of the sender) interacts with the
zkAML smart contract. The zkAML smart contract
zkAMLTransferSC performs the following checks:

• Verifies the sender’s zk-SNARK proof (πsend),
which encapsulates both the compliance checks
and the underlying anonymous transfer protocol’s
requirements.

10

2. State Update: Upon successful verification of the proof,
the smart contract updates the on-chain state, including:

• Adding the nullifier (nf) to the list of spent nulli-
fiers.

• Updating the Merkle Tree root to reflect the new
commitment and updating the recipient’s encrypted
balance in the ENA.

3. Notification: Both the sender and the receiver are noti-
fied of the successful transaction completion.

This proactive and privacy-preserving approach not only
ensures compliance with AML/CFT requirements but also
streamlines cross-border financial interactions by leveraging
pre-verified whitelist mechanisms and reducing reliance on
redundant post-transaction audits.

4 Security

Following the similar model defined in [7, 19], we define the
security properties of zkAML including ledger indistinguisha-
bility, transaction non-malleability, balance, and auditability,
and define transaction permission restrictness and complience
enforcement as a new property.

Since zkAML transactions are encapsulated with
zkTransfer transaction of [19]. Thus ledger indistinguishabil-
ity, transaction non-malleability, balance, and auditability
properties are inherited.

4.0.1 Transaction permission restrictness

We define the transaction permission restrictness property
of zkAML. Transaction permission restrictness refers to the
property that ensures a bank or any other entity cannot ini-
tiate or alter a user’s transaction without the user’s explicit
permission, even if the authority to create transactions has
been delegated to the bank.

Intuitively, a transaction follows the transaction permission
restrictness property, no transaction can be created or executed
by the bank without the user’s authorization. This means the
bank cannot independently modify or transfer the user’s funds
unless the transaction is explicitly approved by the user.

Definition 4.1 Let ΠzkAML = (Setup, SIGN, Delegate,
zkAMLTransfer) be a zkAML scheme in Figure 2. We say
for every A and security parameter λ, ΠzkAML is TPR secure
if the following equations holds:

Pr
[
zkAML.GTPRA (λ) = 1

]
≤ negl(λ)

4.0.2 Compliance enforcement

Compliance enforcement refers to the property that guaran-
tees any transaction generated through zkAML adheres to

AML/CFT regulations, ensuring that both the sender and the
receiver are eligible and compliant with these standards.

More precisely, a transaction satisfies the compliance en-
forcement property, it can only be generated when both the
sender and the receiver meet AML/CFT eligibility require-
ments, ensuring the transaction is lawful and compliant with
regulatory standards. This property ensures that transactions
are adhere to legal frameworks, preventing illicit activities.

Definition 4.2 Let ΠzkAML = (Setup, SIGN, Delegate,
zkAMLTransfer) be a zkAML scheme in Figure 2. We say
for every A and security parameter λ, ΠzkAML is CE secure if
the following equations holds:

Pr
[
zkAML.GCEA (λ) = 1

]
≤ negl(λ)

Theorem 4.1 Let ΠzkAML = (Setup, SIGN, Delegate,
zkAMLTransfer) be a zkAML scheme in Figure 2. ΠzkAML

satisfies ledger indistinguishability, transaction non-
malleability, balance, auditability, transaction permission
restrictness and Compliance enforcement.

4.1 Security Proofs
We now formally prove Theorem 4.1 by showing that zkAML
construction satisfies ledger indistinguishability, transaction
non-malleability, balance, auditability, transaction permission
restrictness and compliance enforcement.

4.1.1 Transaction permission restrictness

Let ε := AdvzkAML,A
TPR (λ), where AdvzkAML,A

TPR (λ) is the advan-
tage that adversary A has in breaking TPR security.

We now construct an algorithm B that uses A’s success
in violating TPR to either break transaction non-malleability
(TR−NM) or the unforgeability of the signature scheme.

Algorithm B:

1. Run A: Simulate the interaction between A and the
challenger C. Let Tx′ be the transaction output by A:

Tx′ = (π,σbank,σsend, . . .)

2. Check σsend: Verify if σsend is a valid signature from the
user for the transaction parameters, including addresses
and values. If the signature is invalid, A has failed, and
B outputs 0.

If σsend is valid, proceed to step 3.

3. Run zk-SNARKs Extractor E: Extract a valid witness
w⃗ from A’s zk-SNARKs proof π for Tx′.

4. Verify zk-SNARKs Witness: If w⃗ does not match the
correct parameters (i.e., if the proof π is invalid), A has
failed, and B outputs 0.

11

zkAML.GTPR
A (λ) :

pp← Setup(λ)

L←AOAzeroth
(pp,ask)

Tx′←AOAzeroth
(L)

σsend,m←AOSign
(Tx′)

b← VerifyTx(Tx′,L′)∧Tx /∈ L′ ∧VerifySign(pks,σsend,m)

return b∧ (∃Tx ∈ L : Tx ̸= Tx′ ∧Tx.nf = Tx′.nf)

zkAML.GCE
A (λ) :

pp← Setup(λ)

L←AOAzeroth
(pp,ask)

Tx′←AOAzeroth
(L)

b← VerifyTx(Tx′,L′)∧Tx /∈ L′

return b∧ (∃Tx ∈ L : Tx ̸= Tx′ ∧Tx.nf = Tx′.nf)

Figure 6: The experiments to transaction permission restrictness (TPR) and compliance enforcement (CE).

5. Check for Signature Forgery: If σsend is valid and A
has succeeded in producing a valid transaction Tx′, then
B has found a forgery for the user’s signature. This
would violate the unforgeability of the signature scheme.

6. Check for Transaction Non-Malleability Violation: If
A has modified the transaction without authorization, B
has found a violation of TR-NM, as a transaction was
created with altered parameters (e.g., changed amounts
or addresses) while still passing verification.

Since the transaction permission restrictness relies on valid
user signatures and zk-SNARKs proofs, any successful attack
on TPR implies a break in either the unforgeability of the
signature scheme or the zk-SNARKs properties that uphold
transaction non-malleability.

Thus, the probability that A wins the TPR experiment is
bounded by the advantage in breaking TR-NM or the signa-
ture scheme, both of which are negligible:

Pr[zkAML.GTPR
A A(λ) = 1]≤ negl(λ)

4.1.2 Compliance enforcement

Let ε := AdvzkAML,A
CE (λ), where AdvzkAML,A

CE (λ) is the advan-
tage that adversary A has in breaking the Compliance En-
forcement (CE) security of zkAML.

Since Compliance Enforcement relies on the same zk-
SNARKs proof that guarantees transaction non-malleability
(TR−NM), we can directly reduce breaking CE to breaking
TR-NM.

We define an adversary A that attempts to break the CE
property by generating a transaction that violates AML/CFT
compliance, i.e., either the sender or receiver does not meet
the eligibility criteria.

Algorithm B:

1. Simulate zkAML Interaction: B simulates the interac-
tion with the zkAML system, including the setup and
execution of zk-SNARKs proofs for both sender and
receiver.

2. Extract zk-SNARKs Witness: Let Tx′ be the adversar-
ial transaction output by A that claims to violate CE:

Tx′ = (πs,r · · ·)

Run the zk-SNARKs extractor E to extract the witness
w⃗ corresponding to π.

3. Verify zk-SNARKs Witness: Verify that w⃗ is valid for
both sender and receiver compliance checks (i.e., both
parties meet AML/CFT requirements). If the proof π is
valid but A succeeded in breaking CE, then B has found
a contradiction.

4. Reduction to TR-NM: Since CE and TR-NM are both
enforced by the same zk-SNARKs proof, breaking CE
implies that A has successfully generated a transaction
that bypasses the zk-SNARKs compliance check. This
directly implies a violation of TR-NM as well, as a non-
compliant transaction (i.e., with an ineligible sender or
receiver) has been accepted.

Therefore, if A successfully breaks CE, B can break
TR−NM.

The probability that A breaks CE is negligible, as it would
require breaking the same zk-SNARKs proof that guarantees
TR−NM. Thus, we have:

Pr[zkAML.GCE
A (λ) = 1]≤ Pr[Azeroth.GTR-NM

A (λ) = 1]≤ negl(λ)

5 Implementation and Experiment

5.1 Implementation
Our zkAML implementation coded in rust, typescript and So-
lidity languages consists of two parts; the client and the smart
contract. The client interacts with the blockchain network
using Ethers library4 from TypeScript. We implement zk-
SNARKs in zkAMLusing the Arkworks library [5] based on
Gro16 [16]. We use the curve BN254 for our instantiation.

4https://github.com/ethers-io/ethers.js

12

 https://github.com/ethers-io/ethers.js

Table 1: Benchmark of zkAML

(a) Evaluation of zk-SNARKs in zkAML

whitelist depth constraint number Πsnark.Prove(ms) Πsnark.Verify(ms) Πsnark.Setup(ms)

Receiver
10 16,389 179.50 1.47 158.02
15 18,224 200.90 1.46 168.82
20 20,059 215.76 1.47 190.22

Sender
10 20,359 197.84 1.47 178.20
15 22,194 212.06 1.46 190.64
20 24,029 226.59 1.47 210.01

(b) Throughput and gas consumption of zkAMLSC with MiMC732

local test network (public) in-process hardhat network local test network (private)

zkAML
TPS 55.44 431.22 324.53

Gas(k) 638

The smart contract is deployed on the Ethereum test network
using Hardhat5.

In terms of COM and CRH, we instantiate the commitment
using a hash function CRH as follows.

COM(v,addr;o) := CRH(v||addr||o)

We use MiMC7 [3], SNARK-friendly hash function for CRH.
All the benchmarks presented in Section 5.2.1 were evalu-

ated on a laptop with Apple M1 Pro processor and 32GB of
RAM. The benchmarks in Section 5.2.2 are evaluated on vari-
ous testing environments–local public test network, in-process
hardhat network, and local private test network.

5.2 Experiment
5.2.1 Performance evaluation of zk-SNARK of zkAML

As demonstrated in Table 1a, the constraint number increases
as the depth of the whitelist (whitelist) grows, leading to a
corresponding increase in proving time. Specifically, the prov-
ing time grows from 179.50 ms to 226.59 ms as the depth
increases from 10 to 20, reflecting the greater complexity as-
sociated with deeper whitelists. Unlike the proving time, the
verification time remains constant approximately at 1.47ms,
implying that it is independent of the whitelist depth and
thereby making it efficient.

5.2.2 Performance evaluation of zkAML smart contract

We analyze the performance of smart contract zkAMLSC in
terms of throughput (transactions per second, TPS) and gas
consumption. As illustrated in Table 1b, zkAML achieves
55.44 TPS on the public network, and it is increased to
324.53 TPS when it is run on the private network. In an
in-process hardhat network, which provides an isolated and

5https://hardhat.org/

efficient testing environment, the system demonstrates a sig-
nificantly higher throughput of 431.22 TPS. These results
indicate that zkAML is capable of high performance across
different blockchain environments, with the in-process hard-
hat network showing the best-case performance.

The smart contract consistently consumes around 638,000
gas units across all three networks. The result shows that the
gas consumption is manageable even though it accompanies
the most time-consuming operation, Πsnark.Verify in the smart
contract. It implies that zkAMLis feasible on Ethereum or
similar blockchains.

6 Conclusion

In this paper, we have presented a novel transaction protocol
designed to address the significant challenges faced by tradi-
tional AML/CFT frameworks in combating financial crime.
By leveraging advanced cryptographic techniques such as
zero-knowledge proofs, signature schemes, and membership
proofs, our protocol effectively balances the need for strict
compliance with AML/CFT regulations while preserving user
privacy.

The introduction of a whitelist mechanism, combined with
zk-SNARKs, ensures that only legitimate users are able to per-
form transactions, dramatically reducing false negative rates
and enhancing the overall efficiency of the system. Our ap-
proach significantly cuts down the costly and time-consuming
investigations typically associated with traditional AML meth-
ods, offering a more scalable and flexible solution for financial
institutions.

Moreover, the ability to verify user legitimacy without dis-
closing sensitive information positions our protocol as a criti-
cal innovation in the ongoing battle against financial economic
crime. By minimizing the need for centralized authorities and
enabling secure collaboration across financial institutions, our
protocol supports both privacy and regulatory compliance,

13

https://hardhat.org/

making it a robust and practical solution for the modern finan-
cial landscape.

The security and efficiency of our protocol have been val-
idated through formal analysis and implementation on the
Ethereum testnet. The experimental results affirm that our sys-
tem is not only theoretically sound but also practical enough
for real-world deployment. Moving forward, this work lays
the groundwork for future advancements in the prevention
of financial crimes, offering a forward-thinking approach to
AML/CFT compliance in an increasingly digital world.

While the current work primarily focuses on preserving
privacy through cryptographic techniques, future research
will explore how incorporating additional transaction data
in the proof can further enhance compliance. By leveraging
the whitelist-based approach, we anticipate that these future
developments will address the challenges of scalability and
cross-border transactions, ensuring more robust compliance
without compromising user privacy. This expanded approach
will allow for real-time transaction validation and contribute
to solving many of the limitations that traditional AML/CFT
systems face today.

Additionally, although our protocol is designed with
CBDCs in mind, the underlying framework and privacy-
preserving techniques can be extended to other financial trans-
actions beyond CBDCs. This flexibility highlights the broader
applicability of our system to various financial use cases, such
as international remittances or inter-bank transactions, further
strengthening its utility across the financial ecosystem.

References

[1] Technical evaluation for a u.s. central bank digital cur-
rency system. Technical report, The White House, 2022.

[2] Noura Ahmed Al-Suwaidi and Haitham Nobanee. Anti-
money laundering and anti-terrorism financing: a survey
of the existing literature and a future research agenda.
Journal of Money Laundering Control, 24(2):396–426,
2021.

[3] Martin R. Albrecht, Lorenzo Grassi, Christian Rech-
berger, Arnab Roy, and Tyge Tiessen. Mimc: Efficient
encryption and cryptographic hashing with minimal mul-
tiplicative complexity. In ASIACRYPT, pages 191–219,
2016.

[4] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria
Dubovitskaya, Kaoutar Elkhiyaoui, and Björn Tack-
mann. Privacy-preserving auditable token payments
in a permissioned blockchain system. In Proceedings
of the 2nd ACM Conference on Advances in Financial
Technologies, pages 255–267, 2020.

[5] arkworks contributors. arkworks zksnark ecosystem,
2022.

[6] Raphael Auer and Rainer Böhme. The technology of re-
tail central bank digital currency. BIS Quarterly Review,
March, 2020.

[7] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474, 2014.

[8] Josh Benaloh and Michael de Mare. One-way accumula-
tors: A decentralized alternative to digital signatures. In
Tor Helleseth, editor, Advances in Cryptology — EURO-
CRYPT ’93, pages 274–285, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

[9] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and
Dan Boneh. Zether: Towards privacy in a smart contract
world. In Joseph Bonneau and Nadia Heninger, edi-
tors, Financial Cryptography and Data Security - 24th
International Conference, pages 423–443, 2020.

[10] Jan Camenisch, Susan Hohenberger, and Anna Lysyan-
skaya. Balancing accountability and privacy using e-
cash. In International conference on security and cryp-
tography for networks, pages 141–155. Springer, 2006.

[11] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari
Juels, and Elaine Shi. Solidus: Confidential distributed
ledger transactions via pvorm. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 701–717, 2017.

[12] David Chaum. Blind signatures for untraceable pay-
ments. In Advances in Cryptology: Proceedings of
Crypto 82, pages 199–203. Springer, 1983.

[13] Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au.
Pgc: Decentralized confidential payment system with au-
ditability. In Computer Security–ESORICS 2020: 25th
European Symposium on Research in Computer Secu-
rity, ESORICS 2020, Guildford, UK, September 14–18,
2020, Proceedings, Part I 25, pages 591–610. Springer,
2020.

[14] United States Sentencing Commission. https:
//www.ussc.gov/sites/default/files/pdf/
research-and-publications/quick-facts/
Money_Laundering_FY23.pdf, 2024.

[15] Yaya J Fanusie. Central bank digital currencies: the
threat from money launderers and how to stop them.
The Digital Social Contract: A Lawfare Paper Series,
pages 1–23, 2020.

[16] Jens Groth. On the size of Pairing-Based non-interactive
arguments. In Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the

14

https://www.ussc.gov/sites/default/files/pdf/research-and-publications/quick-facts/Money_Laundering_FY23.pdf
https://www.ussc.gov/sites/default/files/pdf/research-and-publications/quick-facts/Money_Laundering_FY23.pdf
https://www.ussc.gov/sites/default/files/pdf/research-and-publications/quick-facts/Money_Laundering_FY23.pdf
https://www.ussc.gov/sites/default/files/pdf/research-and-publications/quick-facts/Money_Laundering_FY23.pdf

Theory and Applications of Cryptographic Techniques,
pages 305–326, 2016.

[17] Jens Groth and Mary Maller. Snarky signatures:
Minimal signatures of knowledge from Simulation-
Extractable SNARKs. In Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology
Conference, pages 581–612, 2017.

[18] Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou,
and Butian Huang. Blockmaze: An efficient privacy-
preserving account-model blockchain based on zk-
snarks. IEEE Transactions on Dependable and Secure
Computing, 2020.

[19] Gweonho Jeong, Nuri Lee, Jihye Kim, and Hyunok
Oh. Azeroth: Auditable zero-knowledge transactions in
smart contracts. IEEE Access, 11:56463–56480, 2023.

[20] Hui Kang, Ting Dai, Nerla Jean-Louis, Shu Tao, and
Xiaohui Gu. Fabzk: Supporting privacy-preserving, au-
ditable smart contracts in hyperledger fabric. In 2019
49th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 543–555.
IEEE, 2019.

[21] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza
Sarencheh. Peredi: Privacy-enhanced, regulated and
distributed central bank digital currencies. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 1739–1752, 2022.

[22] Nadia Pocher and Andreas Veneris. Privacy and
transparency in cbdcs: A regulation-by-design aml/cft
scheme. IEEE Transactions on Network and Service
Management, 19(2):1776–1788, 2021.

[23] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan
Capkun. Platypus: A central bank digital currency with
unlinkable transactions and privacy-preserving regula-
tion. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
2947–2960, 2022.

15

	Introduction
	Our work
	Related work
	Structure of the paper

	Preliminaries
	Notations
	zk-SNARKs
	Commitment Schemes
	Signature schemes
	Membership Proofs
	Anonymous transfer protocol

	zkAML
	Overview
	Whitelist-based compliance verification
	Privacy preservation

	Data Structures
	Construction
	System Setup
	Transaction Initiation and Receiver Proof Generation
	Sender Proof Generation and Transaction Generation
	Transaction Execution and Completion

	Security
	Transaction permission restrictness
	Compliance enforcement

	Security Proofs
	Transaction permission restrictness
	Compliance enforcement

	Implementation and Experiment
	Implementation
	Experiment
	Performance evaluation of zk-SNARK of zkAML
	Performance evaluation of zkAML smart contract

	Conclusion

