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Abstract

Shuffles are used in electronic voting in much the same way physical
ballot boxes are used in paper systems: (encrypted) ballots are input into
the shuffle and (encrypted) ballots are output in a random order, thereby
breaking the link between voter identities and ballots. To guarantee that
no ballots are added, omitted or altered, zero-knowledge proofs, called
proofs of shuffle, are used to provide publicly verifiable transcripts that
prove that the outputs are a re-encrypted permutation of the inputs. The
most prominent proofs of shuffle, in practice, are those due to Terelius and
Wikström (TW), and Bayer and Groth (BG). TW is simpler whereas BG
is more efficient, both in terms of bandwidth and computation. Security
for the simpler (TW) proof of shuffle has already been machine-checked
but several prominent vendors insist on using the more complicated BG
proof of shuffle. Here, we machine-check the security of the Bayer-Groth
proof of shuffle via the Coq proof-assistant. We then extract the verifier
(software) required to check the transcripts produced by Bayer-Groth im-
plementations and use it to check transcripts from the Swiss Post evoting
system under development for national elections in Switzerland.

1 Introduction

Two fundamental principles of any free and fair election are the privacy of
the voter and the integrity of the ballot. Paper-based elections support voter
privacy by ensuring that a cast ballot contains no identifying link back to the
voter. They support ballot integrity by ensuring that ballot-boxes are locked and
placed under scrutiny at all times prior to their being opened for counting. As
many jurisdictions around the world move to electronic voting (evoting), these
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two properties have to be guaranteed using different means, and cryptographic
techniques play a prominent role. But even the most sophisticated cryptographic
techniques are useless if their software implementation contains bugs, and so
evoting also requires “software independence”:

“A voting system is software-independent if an (undetected) change
or error in its software cannot cause an undetectable change or error
in an election outcome.” [37]

Therefore, many modern evoting systems implement “end to end verifiable
voting” via a cascade of three notions:

Cast as intended: voters receive verifiable evidence that the electronic ballot
correctly captures their intended ballot;

Collected as cast: the election authority publishes verifiable evidence that these
electronic ballots are received by the election authority without tampering;

Counted as collected: the election authority publishes verifiable evidence that
the result is obtained by correctly counting only and all these collected
ballots.

A voter or scrutineers can then inspect this public evidence and accept the
results of the election only if all the published evidence can be verified as correct.

The shuffling of the ballots before decryption falls within the purview of
counted-as-collected. The most common way to produce publicly verifiable evi-
dence is via so-called “zero-knowledge proofs” (ZKP) [25], which are computer-
based protocols in which the “prover” (evoting software) and the “verifier” (scru-
tineering software) interact with each other with the statement claimed by the
ZKP being accepted by the verifier only if their interaction passes previously
published correctness criteria. The appellation “zero-knowledge” indicates that
the protocol leaks no information other than the truth of the claimed statement.

One crucial use of such ZKPs is to provide publicly checkable evidence of
voter privacy and ballot integrity. Typically, the electronic ballots cast (as in-
tended) by the voters are encrypted and transmitted to the election authority.
Before counting, the link between the voter and the encrypted ballot is bro-
ken by stripping off the voter-identification and passing the initial sequence of
encrypted ballots through a “mixnet”: a sequence of computers known as “mix-
ers” [16]. As the name suggests, each mixer receives a sequence of encrypted
ballots, re-encrypts them and then “shuffles” their order to produce a different
sequence of re-encrypted ballots. Each mixer also produces a ZKP (publicly ver-
ifiable evidence) that proves the statement “my new sequence contains all and
only the encrypted ballots from my initial sequence without tampering”. Given
at least one honest mixer, it is infeasible to invert the final sequence to learn
the initial link to the list of voters. If all published ZKPs are accepted by the
(public) scrutineering verifier software then we can guarantee the voter privacy
and ballot integrity are preserved in this process.
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The ZKPs, called “proofs of shuffle”, proving the mixnet’s statement are
normally the most complicated pieces of cryptography in an evoting system
and are prone to both design and implementation bugs. For example, the Scytl-
Swiss Post system intended for extended use in national elections in Switzerland
was pulled from use because it contained an appalling collection of errors [32].
Virtually every ZKP in the system had some degree of vulnerability. The only
errors found in the proof of shuffle ZKP related to incorrect parameter gener-
ation; however, given the complexity of that ZKP, it was unclear whether it
was secure or simply too complex to analyse properly. Similar issues have been
found in Australia [34] and Estonia [40] to which must be added many more
general issues [12, 13, 17].

Thus, it is vital to guarantee that the cryptographic theory underlying proofs
of shuffle is itself correct and correctly implemented. Only then can we utilise
this theory to implement verifiers that check these proofs of shuffle. Since the
software required to verify the evidence is much simpler than the entire system,
“software independence” is a very valuable feature. But the attacks listed above
highlight the crucial fact that “software independence” is vulnerable to design or
implementation errors in the verification software. Guaranteeing the correctness
of the verifier specification and code is the main aim of our work, and the line
of work which we extend.

Here, we assume that the election authority uses mixnets to shuffle the bal-
lots which accurately correspond to the intention of the eligible voters who voted.
We therefore use shuffles and mixnets interchangeably. Moreover, we will use
the term “proofs of shuffle” even when the protocols we refer to are a strictly
weaker beast called “zero-knowledge arguments” (because a computationally
unbounded adversary can fake their “proofs.”). We recommend Justin Thaler’s
excellent survey [44] on area of Interactive Proofs for background reading if
desired.

Specifically, we use a state-of-the-art interactive proof-assistant called Coq
to mathematically analyse the cryptographic theory and practice of the Bayer-
Groth proof of shuffle which is used by Scytl and Swiss Post, among others, to
provide anonymity in their evoting software. We first encoded the detailed cryp-
tographic design of the Bayer-Groth mixnet, which consists of the steps taken
by the prover and verifier, and its security definitions into the logical language
of Coq. We then used Coq to produce a machine-checked, and hence formally
verified, mathematical proof that the design meets the security definitions. We
then utilised Coq’s “extraction facility” to obtain an actual OCaml implemen-
tation of the verifier (software) and used it to verify test-vectors produced by
the Swiss Post’s implementation of Bayer-Groth.

Thus, our principal contribution is an executable encoding of the Bayer-
Groth proof of shuffle into Coq and machine-checked mathematical proofs of
completeness, soundness and zero-knowledge (defined shortly). We have also
checked that our encoding produces an OCaml verifier that is compatible with
a deployed implementation of the Bayer-Groth mixnet.
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Outline Having now introduced our work, we will provide more details in
Sec. 1.1, summarise our contributions in 1.2 and limitations in 1.3. We will
provide formal definitions in Sec. 2 and summarise our proofs in Sec. 3. Sec. 4
summarises the applications of our work before we conclude in Sec. 5. Sec. 5.1
details future work, particularly around proving the correctness of how the Fiat-
Shamir transform is used.

1.1 Background

Having elaborated on the crucial role that zero-knowledge proofs play in produc-
ing verifiable evidence for electronic voting schemes, we will now go into detail
on the required background for sections 2 and 3 of this paper. Specifically we
will introduce in more detail: zero-knowledge proofs and sigma protocols (Sec.
1.1.1), mixnets and proofs of shuffle (Sec.1.1.2), and machine-aided proving and
machine-checked proofs (Sec. 1.1.3).

1.1.1 Zero-knowledge proofs and sigma protocols

Zero-knowledge proofs are possible for all languages in the complexity class
NP: that is, for all languages which have non-interactive proofs of membership.
Recall that one way of looking at NP is to make explicit the polynomial length
witness w which, if given, allows efficient (polynomial time) verification that a
given statement s is in the language. We can use a binary relation R ⊆ S ×W
over the set S of all statements and the set W of all witnesses with (s, w) ∈ R
iff witness w ∈W demonstrates that statement s ∈ S is in the language.

Sigma protocols were first defined by Ronald Cramer [18], they are a par-
ticularly simple and efficient kind of zero-knowledge proof and have seen wide
deployment; they remain a leading kind of proof both in terms of simplicity and
deployment but recent advances in succinct zero-knowledge proofs [26] offer
greater efficiency. The first efficient sigma protocol was introduced by Schnorr
in [38], several years before the class was defined.

A sigma protocol is a 3-round interactive proof between two parties (a prover
P and a verifier V ) where P convinces V that she knows a witness for a state-
ment. More concretely, P convinces V that she knows a (private) witness w for
a public NP-relation R and a public input statement s such that (s, w) ∈ R;
we will formally define a sigma protocol in Sec. 2.1.

Zero-knowledge proofs must satisfy three properties:

Completeness: the protocol will accept with overwhelmingly probability on in-
puts (s, w) which belong to the relation R. Perfect completeness is used
in cases, such as ours, where acceptance is guaranteed.

Zero-knowledge: no information, other than the truth of the statement s, is
leaked. For sigma-protocols, a weaker property called honest-verifier zero-
knowledge (defined shortly) is sufficient because of the way they are used;

Soundness: the adversary should be caught with at least a certain probability
if the claimed statement s is not in the language. Sigma-protocols use the
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stronger property of special soundness (defined shortly) which requires
that a witness w must be efficiently computable if the adversary is able to
produce accepting proofs for different challenges.

The three properties are adjusted for sigma protocols as follows:

Completeness: when P and V follow the protocol, V always accepts the proof.

Special soundness: when given two valid proofs forR of a particular form (which
we will define in Sec. 2.1), then w can be extracted efficiently.

Honest verifier zero-knowledge proof: there exists an efficient simulator that pro-
duces valid proofs without using the secret input w with the same proba-
bility distribution as the transcripts of the real protocol that involves the
secret input w.

A key observation in [31] was that only the last property above involves
probabilities; even this property can be rendered without explicitly mentioning
probabilities by showing a bijection between the output of runs of the honest
protocol and the runs of the simulator. This is useful as it allows us to avoid
the significant complications that arise in machine-checked proofs when handling
probabilities.

To give the reader some insight into sigma protocols, we briefly discuss the
most famous sigma protocol, the Schnorr protocol [38]. Given some public
input (G, g, q, h) where G is a cyclic group of prime order q, and g and h are
two generators of the group G, the prover claims that she knows a witness w
for the statement h = gw; the existence of such a w is immediate because g
generates the group. However, does the prover know the witness w? In order
to convince the verifier, the prover and the verifier do the following:

• the prover picks a random number u, computes c = gu, and sends c to the
verifier

• the verifier picks a random challenge e and sends it to the prover

• the prover computes t = u+ e ∗ w and sends t to the verifier

The verifier accepts if gt = c ∗ he, otherwise rejects.
A sigma protocol of this kinds underpins many of the deployed digital sig-

nature schemes. In such schemes g is normally some canonical group generator,
h is the user’s public key, and the w is the user’s signing key.

1.1.2 Mixnets and proofs of shuffle

Since mixnets were introduced, numerous techniques have been proposed for ver-
ifying that the mixers followed the protocol, as without this guarantee, mixnets
do not provide privacy or ballot integrity: see Haines and Müller [33] for a sum-
mary. The most common technique, in practice, is zero-knowledge proofs which
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provide the highest level of security, require the weakest trust assumptions, and
provide good efficiency (at least for discrete log based systems).

The earliest zero-knowledge proof proposal for mixnets still in common use
is due to Terelius-Wikström [43]; the interactive variant of this proof of shuf-
fle takes 5 rounds of interaction between the prover and verifier. The proof
is constructed by taking an underlying sigma-protocol and adding two extra
rounds.

Since the work of Terelius and Wikström, many alternative proposals for
(mixnet) proofs of shuffle have been presented with better communication or
computational efficiency. The most used of these is that due to Bayer and
Groth [8] which achieves sublinear complexity in the proof size and reduces
the verifier’s computation. But the increased efficiency comes at a cost, the
interactive version of the Bayer-Groth proof requires 9 rounds (compared to the
5 of Terelius-Wikström) and the overall proof is constructed from 6 subproofs
(compared to the 2 of Terelius-Wikström).

Both proofs of shuffle are normally used in non-interactive variants in which
the actions of the verifier are replaced by the outputs of a hash function. These
variants are obtained by applying the Fiat-Shamir transform [20] to the inter-
active version of the proof; care is required in implementing the transform [13]
or the soundness of the proof may be compromised. We discuss how to prove
the correct use of this transform in our future work Section 5.1.

1.1.3 Background on our approach

As should be clear, all of this sophisticated mathematics must cohere if it is
to provide security. But the history of cryptography is littered with proposals
whose claims are soon made void by another paper of the form “A new attack
on ...” because pen-and-paper mathematics is notoriously prone to errors which
are only found after publication. Formalised mathematics [45] allows us to en-
code the mathematical statements of the definitions, theorems and the proofs
of the theorems into a computer-based “proof assistant” which checks all three
artefacts for correctness. For example, the Coq interactive proof-assistant [14]
has been developed for decades and is now trusted by the formal methods com-
munity.

The relationship between pen-and-paper proofs and machine-aided proofs
depends greatly on the kinds of machine-aided techniques applied and the rigour
of the initial pen-and-paper proof. Generally the machine-aided techniques can
be broken into two categories: symbolic and computational (see [5] for details).
In the former—which is used in tools such as Tamarin, Proverif, and Verifpal—
there are rarely, if ever, pen-and-paper equivalents to the machine-aided proofs
because these tools are intended as automatic tools that produce such proofs.
These tools tend to exploit large computational resources to generate the proofs
themselves, but may not always succeed. In the computational case—which is
used in tools such as Coq and EasyCrypt— the aim is for the user to interact
with the proof-assistant until the proof-assistant accepts the user’s proof. Thus
these proofs tend to follow the same structure as the user’s pen-and-paper proofs

6



but with additional details as needed to make rigorous the argument in the
pen-and-paper proof. The challenge in constructing machine-aided proofs in
the computational model often boils down to working through how to formalise
the gaps in the pen-and-paper proofs; our work is no exception.

A significant body of work has been completed on cryptography in Coq,
principally in the CertiCrypt project [6]. CertiCrypt has now been largely aban-
doned in favour of EasyCrypt which is a separate tool for verifying cryptography.

Verifying sigma protocols and extracting efficient implementations has a sig-
nificant history due to their simplicity, efficiency, and wide deployment; one
prominent early example is by Barthe et al. [7]. Almeida et al. [2] developed a
compiler which accepts an abstract description of the statement to be proved
and produces a sigma protocol for that statement along with an Isabelle/HOL
proof that the sigma protocol is correct. Both of these works form the back-
ground and basis for Almeida et al. [3]. There are two salient differences between
the approach we follow and that of Almeida et al. [3]. Firstly, their approach
is more general while ours is more specific which allows us to define and prove
combinations of sigma protocols which are not otherwise available. Secondly,
in their own words, the “catch is that our verification component is highly spe-
cialised for (a specific class of) ZK-PoK and relies on in-depth knowledge on
how the protocol was constructed.” However, since we aim at verifying exist-
ing deployed implementations we need to prove that the deployed protocol is
correct, and extract a correct verifier for it. Almeida et al’s work would give
us a correct sigma protocol for the statement but not a verifier for the existing
system.

The line of work we follow is by Haines, Goré, Tiwari, and Sharma [31, 30]
machine-checking various proof protocols and their associated cryptography us-
ing Coq, directly, while avoiding explicitly reasoning about probabilities. Their
first work [31] focused on proving the properties of sigma-protocols which un-
derlie verifiable election voting schemes; it’s main contribution was a (formally)
verified verifier for the Helios scheme which they used to verify the 2018 elec-
tion for director of the International Association for Cryptological Research.
They achieved this by formalising in Coq several well-known methods to derive
more complicated (three round) sigma protocols from simpler (three round)
sigma protocols; we give several examples in Fig. 1, we note that all the exam-
ples are fairly direct logical combinations which contrasts with the structural
formalisations presented in our work. They also showed that their approach
of avoiding explicitly reasoning about probabilities extends to the verifiable
mixnets (proofs of shuffle), specifically, the Terelius-Wikström proof of shuffle,
although their work had significant limitations. More recently, Haines et al. [30]
improved their previous work [31] to produce a much more general result which
they used to produce a verified verifier for the CHVote [41] and Verificatum [47]
mixnets. Actually, they machine-checked [30] only the soundness of the TW
mixnet and also machine-checked the conditions which were generally accepted
by the community as being sufficient for correctness and zero-knowledge without
machine-checking these latter two requirements per se.
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Combiner Statement Witness Relation

And S × S ′ W ×W ′ (s1, s2), (w1, w2) are related iff
(s1, w1) ∈ R and (s2, w2) ∈ R′

Or S × S ′ W ×W ′ (s1, s2), (w1, w2) are related iff
(s1, w1) ∈ R or (s2, w2) ∈ R′

Equality S × S ′ W (s1, s2), (w) are related iff
(s1, w) ∈ R and (s2, w) ∈ R′

Figure 1: Combined sigma-protocols derived automatically using Haines et
al [31] when given two sigma-protocols with statement sets S and S ′, relation-
ships R and R′, and witness sets W and W ′, respectively, with W = W ′ for
Equality.

1.1.4 Other machine-assisted approaches to zero-knowledge proofs

The application of machine-assisted proof approaches to zero-knowledge proofs
remains a relatively niche area. For example, in the excellent systematisation of
knowledge of computer-aided cryptography [5] published at S&P in 2021 only
a handful of the 190 cited works pertain to zero-knowledge proofs .

Recent work by Firsov and Unruh [21] has progressed the issues of rewind-
ing which we mention in this paper but it does not impact the issue of the
Fiat-Shamir transform which remains an open problem. Much of the research
focus on zero-knowledge proofs has switched to a direction called MPC-in-the-
Head [35], where MPC stands for Multi-party Party Computation. MPC is a
well developed field which allows, as the name suggests, secure computation
distributed across multiple parties. The key observation in MPC-in-the-Head
is that a single party can simulate an MPC protocol and reveal the views of
some of the “participants” to establish the correctness of the computation. The
full benefits of this technique are too many to be detailed here but much of the
machine-assisted work has pivoted to support this approach. For example, the
recent work by Almeida et al. [4] provides the first machine-checked implemen-
tations of MPC-in-the-Head using Easycrypt and Jasmin. This work is similar
to ours in some respects because it also builds the fully-fledged protocol of inter-
est from its components. However, in their work the components are normally
other kinds of cryptography such as secret sharing schemes and MPC protocols
whereas ours are mainly simpler zero-knowledge proofs. We do have in common
that we both generalise over the commitment scheme and encryption scheme (if
any). Concurrently to this, similar work has been done by Sidorenco et al. [39]

There have been a couple of recent papers which bring the state-separating
proof paradigm for game-based cryptographic proofs (not be confused with zero-
knowledge proofs) into interactive proof-assistants; for example, the SSProve [1]
framework does this in Coq and there is similar work in EasyCrypt [19]. Both
of these works exhibit a fair degree of modularity which is similar to our work
but do so for game-based cryptographic proofs whereas our security proofs for
the zero-knowledge proofs are not structured in this way.
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1.2 Contributions

The closest previous work [31, 30] focused on ordinary sigma-protocols (that is
three round zero-knowledge proofs as described previously) with an emphasis
on ensuring compatibility with existing deployed systems. The first work [31]
included several ways of combing sigma protocols and the second work [30]
formalised inside Coq the proof of soundness from TW [43] but the definition
remained very bespoke to the particular five round protocol. Our contributions
compared to these and other works in the literature are summarised below.

1. More rounds and parametric structural relations. We give a formal
definition of sigmaesque-protocol protocols which contain 5 rounds and 9
rounds, as required by the Bayer-Groth proof of shuffle. We encoded and
machine-checked the structural relationships between these sigmaesque-
protocols which then allowed us to machine-check the pen-and-paper proofs
of the security of the shuffle while retaining the gist of the pen-and-paper
proofs. The alternative would have been to define the 9 round BG proto-
col, monolithically, and machine-check it directly. Moreover, whereas prior
work allowed us to combine two input sigma-protocols into a new sigma-
protocol using one of three fixed logical relationships as shown in Figure 1,
here we formalise how to add additional rounds to a sigmaesque-protocol
to produce a new protocol using a relationship that is a parameter of the
combiner rather than fixed. To ensure that a valid sigma protocol can be
constructed the user is also required to prove properties of the parameters
(see for example Sec. 2.2).

In a related minor contribution, we generalise the definition of a sigma-
protocol from Haines et al. [30] from “zero-knowledge proofs” to “argu-
ments of knowledge” where the extraction of a witness may fail under cer-
tain conditions which should occur only with negligible probability, and
to allow for protocols where proving zero-knowledge is more complicated.

2. Clarified the claims in [43]. Utilising these definitions, we found that the
Terelius-Wikström proof of shuffle, is not complete for the claimed rela-
tionship. We have formally verified (machine-checked) a refined claim;
Wikström has confirmed that the refined claim matches the intended
claim. We discuss this and its implications in Sec. 3.1.

3. Machine-checked proof of Bayer-Groth [8]. We machine-checked the
completeness, special-soundness, and honest-verifier zero-knowledge of the
Bayer-Groth proof of shuffle (Sec. 3.8) including the five underlying subar-
guments (for details see Sections 3.3,3.4,3.5, 3.6,3.7). This proof of shuffle
is much more complicated than the zero-knowledge proofs verified in pre-
vious work [31, 30].

4. Tested compatibility with deployed systems We extracted the verifier
(of the Bayer-Groth proof of shuffle) as an OCaml program and used it
to verify transcripts produced by the Bayer-Groth implementation inside
the Swiss Post evoting system.
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Our main contribution (3) is a significant advancement on the state-of-the-
art in terms of the complexity of zero-knowledge proofs with machine-checked
security. We are facilitated in achieving this by our contributions (1) which en-
abled the zero-knowledge proof and cryptographic proof (of the zero-knowledge
proof) to be broken down into sub-components which collectively prove the
overall result. We believe the advantages in handling complexity offered by this
approach are absolutely essential to completing complicated machine-checked
proofs in a sensible way. Our last contribution (4) is important as it bridges
the gap between theory and practice and shows the practical applicability of
our work to deployed systems. We consider our middle contribution (2) to be
more a curiosity but one which highlights the ability of our approach to catch
subtle and longstanding previously undetected errors; we discuss in Sec. 3.1
under what conditions this result would become more important.

1.2.1 The necessity of the new definitions

The main aim of our work is to produce a verified verifier which is compatible
with the Bayer-Groth proof of shuffle as deployed in several government binding
elections. Given the errors in every other zero-knowledge proof in these systems
and the complexity of Bayer-Groth, the value of knowing these zero-knowledge
proofs are generated correctly is immense if focused in impact.

During the process of constructing the several thousand line proof of the
Bayer-Groth proof of shuffle (for Coq to check) we, by necessity, had to formalise
the original pen-and-paper proof. The full version of [8] when proving the
security of zero-knowledge arguments built on underlying arguments says over
half a dozen times things like “completeness now follows from the completeness
of [the sub-argument]” or “honest-verifier zero knowledge now follows from the
honest-verifier zero knowledge of [the sub-argument].” However, as we have seen
with Terelius-Wikström such claims are not necessarily true.

Our definitions and structural relations contribute to the literature a precise
description of which conditions suffice for the completeness and honest-verifier
zero knowledge to follow from the underlying zero-knowledge arguments. To
our knowledge no such precise description is currently in the literature; existing
pen-and-paper proofs have been able to sidestep this issue by being informal
in their argumentation. Our formal structural relations allow the same line of
reasoning but without the gaps.

1.3 Limitations

To facilitate a clear understanding of the scope of our work we detail limitations
below.

Side channel attacks: The methods we use to machine-check the security of
proofs of shuffle and produce the OCaml implementation of the verifier
do not preclude the presence of side channel attacks. There are two rea-
sons why this issue is less significant for mixnets than other pieces of
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cryptography. First, the main software of interest is the verifier which is
a public algorithm running on public data. Secondly, the provers are in
essence large batch proofs which (normally) operate only once on a given
statement and often on air-gapped machines. If, for some reason, timing
attacks are a realistic threat in a particular deployment scenario, it should
be relatively easy to make the algorithms constant time, using a constant
time mathematics library, since the algorithms contain no branching.

Fiat-Shamir transform: We have machine-checked the interactive variants of the
ZKP, but when deployed, their non-interactive variant will be used. To
close this gap, we would need to machine-check the Fiat-Shamir trans-
form which would involve machine-checked reasoning about the rewinding
of random oracles in the presence of arbitrary adversaries. Alas, to the
best of our knowledge, no interactive proof-assistant supports such mecha-
nised reasoning. In Section 5.1, we discuss how to prove that the transform
is used securely under the assumption that the underlying theory is valid,
without machine-checked reasoning about rewinding or arbitrary adver-
saries.

Code extraction: Coq’s extraction facility into OCaml has not been formally
verified by anyone. The process is mature but could contain bugs: a
limitation shared with all similar work. This does not detract from the
value in machine-checking the proofs of shuffle because, in practice, we
encourage the use of multiple independently implemented verifiers.

Efficiency: Our extracted OCaml code is roughly half the speed of the Swiss
Post Java implementation. We expect this could be rectified by using
well-known optimisations [28] but doing so and machine-checking the op-
timisations is left as future work.

2 Definitions

All the security definitions in our work are variations of sigma-protocols. We
use strongly related, but different, definitions for 3-round, 5-round, and 9-round
variants of sigma-protocols. We initially tried to encode a single definition,
parameterised on the number of rounds, but found that the Coq types became
very unwieldy. Our current definitions, while much more verbose, are also much
easier to manipulate inside Coq which seems a good trade-off in making our
work re-usable.

For this paper, we have adapted the convention of referencing the name of
the Coq objects which relate to the subject under discussion to allow interested
readers to look up the formal definitions; notwithstanding this, we aim our paper
to make clear our contributions without the reader having to look at the Coq
source. We have included a few Coq snippets of security definitions to illustrate
their form and structure but we largely avoid including Coq code in the paper.
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2.1 3-round protocols

With the exception of some Coq technicalities,1 our formalisation of a sigma-
protocol, defined in a module called SigmaPlus, remains close to past work [30].
We give the natural language definition below for completeness.

Definition 1 (Sigma-Protocol). A protocol P between a prover P and a verifier
V over statement space S and witness space W is a sigma-protocol for relation
R ⊆ S ×W if:

Form: P is of the appropriate 3-move form where the prover P sends a message
c, then the verifier V sends a challenge e, then P sends a reply t, and
finally V decides to accept or reject based on the statement s and the three
messages (c, e, t). It is hopefully obvious that while the prover can base it’s
computation on the witness w, the verifier is not given this value as input.

Completeness: If P and V follow the protocol on statement s and witness w,
where (s, w) ∈ R, the verifier accepts.

Special soundness: For any statement s and any pair (c, e, t) and (c, e′, t′) of
accepting conversations, with e 6= e′, we can efficiently compute some w
such that (s, w) ∈ R.

Honest-verifier zero-knowledge: There exists an efficient simulator, which
on statement s and random e outputs an accepting conversation (c, e, t)
with the same probability distribution as conversations between the honest
P and V on input s.

We extended the definitions of zero-knowledge and special soundness from
Haines et al. [30] as follows. Haines et al. avoid reasoning about probabilities
by observing that the standard security definitions for sigma-protocols do not
directly refer to (arbitrary) adversaries but only to defined algorithms which
internally sample certain random values called (random) coins. By passing
these random coins to the algorithms as inputs, we can refer to the transcript
produced by the (honest) prover and (honest) verifier for a given statement and
witness using specific random values.

Haines et al. [30] used a function simMap to constructively show a bijection
between the random coins used in the honest runs and the coins used by the
simulator. They further require that for a given random coin r, the honest
run using r and the simulator using simMap(r) produce the same transcript as
formalised in Definition 2 below.

We extend simMap with extra “trapdoor information” about the statement
s, via the function simMapHelp: for example, in the Bayer-Groth proof of shuf-
fle, simMapHelp is used to provide simMap with the discrete log relation between
commitment key elements. Since simMap exists only to demonstrate the bijec-
tion between the random coins spaces, providing it with information that would
normally be secret has no impact.

1We changed the encoding of a sigma-protocol from a class to a module.
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We show the encoding of the extended definition for (honest-verifier) zero-
knowledge below.

Definition 2 (Extended Honest Verifier Zero Knowledge). For all statements
s, witnesses w, challenges e, trapdoor information x , honest run random coin
r, and simulator random coin t, if the trapdoor information x fits the statement
s as defined by simMapHelp and (s, w) ∈ Rel then on these inputs, the honest
run (P1,P0) using r produces the same transcript as the simulator using the
coin returned by (simMap s w e x r):

Axiom honest_verifier_ZK :
forall (s : St)(w : W)(e : G)(x : X)(r : R)(t : TE),

simMapHelp s x ->
Rel s w ->
((P1((P0 s r w), e) r w) =
simulator s (simMap s w e x r) e) /\
simMapInv s w e x (simMap s w e x r) = r /\
simMap s w e x (simMapInv s w e x t) = t.

Following [30], the last two lines constructively encode that simMap is bijec-
tive by using its inverse simMapInv.

The other change we make is to special soundness. We extend the definition
to what Bootle et al. [15] call l-Special Soundness, the difference is twofold.
First, the extractor is allowed to have l-responses with the same commitment
but different challenges. Second, we introduce a failure-event parameter to our
definition of a sigma-protocol (SigmaPlus) which allows the definition of special
soundness to be satisfied even if the extractor fails to find a witness.

In practice, the failure-event must be infeasible for an adversary to satisfy,
for example breaking the binding property of the commitment scheme or some
other event which occurs with negligible probability.

We show the encoding of l-special soundness below.

Definition 3 (l-special soundness). For all statements s, commitments c, vec-
tor e of l-challenges, and vector t of l-responses, if the challenges in vector e
are pairwise distinct wrt the underlying group G, and all l-transcripts are valid
(meaning that the verifier accepts on {(s, c, ei, ti)}li=1), then either the extractor
finds a witness which satisfies the relationship or the failure-event occurs:

Axiom special_soundness : forall (s : St)(c : C)
(e : vector G l)(t : vector T l),

allDifferent e ->
allValid s c e t ->
Rel s (extractor t e) = true \/ fail_event s c e.

Both changes introduce new parameters to the definitions which need to be
set sensibly in practice, we will discuss our instantiation for the Bayer-Groth
proof of shuffle in the next section. We stress that these security definitions, but
not their exact encodings into natural language and Coq, are already inherent
in the work by Terelius and Wikström, and Bayer and Groth.

We also machine-checked that any two sigma-protocols, as defined above
(with the same challenge space), can be combined to give a sigma-protocol for
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the conjunction of their two relationships. This is a well known result which
has proved useful for building more complicated sigma-protocols from simpler
ones; a closely related result was proved in [30].

2.2 5-round protocols

Sigma-protocols can be easily generalised to five rounds by adding two extras
rounds in front of the existing three rounds. First the prover sends a commit-
ment and the verifier responds with a challenge, they then follow the existing
commit, challenge, and response phases. We encoded this in a Coq module
called SigmaPlus5. Completeness and honest-verifier zero-knowledge both gen-
eralise in the obvious way, the full protocol should accept if the statement and
witness pair is in the relationship and the simulator should produce transcripts
with the same distribution as the honest parties. Special soundness is a lit-
tle more complicated, but still essentially the obvious generalisation, instead
of l-challenges and responses the extractor receives l-challenges from the first
verifier round, and for each of these challenges also receives l’ challenges from
the second verifier round, and finally l*l’ responses such that all the challenges
are unique and they are part of accepting transcripts.

We show the encoding of (l,l’)-special soundness below.

Definition 4 ((l,l’) special soundness). For all statements s, first commitments
c0, l first round challenges each with a corresponding l’ second round challenge
e, and l*l’ responses t, if the first round challenges are all different and each
list of second round challenges is duplicate free, and all the transcripts are valid
then either the extractor finds a witness which satisfies the relationship or the
argument is broken because the failure event occurred.

(* The special soundness of sigmaplus5 *)
Axiom special_soundness : forall (s : St)(c0 : C0)

(c1 : vector C1 l)
(e : vector (E0*vector E1 l’) l)
(t : vector (vector T l’) l),

allDifferent e ->
allValid s c0 c1 e t ->

Rel s (extractor t e) = true \/ fail_event s (c0 ,c1) e.

A common construction used in both the proofs of shuffle [43, 8] is to build
a 5-round sigma protocol for a relationship R ⊆ S ∗ W by extending a 3-
round protocol for a relationship R′ ⊆ S ′ ∗W ′ with two additional rounds; the
resulting 5 round protocol uses the same verification equation as the 3-round
protocol. In addition, some protocols supplement the commitment produced by
the underlying protocol with additional information.

We define a Coq module called SigmaPlusTo5 which captures the additional
information required to construct a 5-round protocol from a 3-round protocol.
The module SigmaPlus5Comp encodes how the 5-round protocol is constructed
from the underlying 3-round protocol and an instance of SigmaPlusTo5, and
machine-checks that the result is indeed a 5-round sigma protocol. Those inter-
ested in the exact details can review the provided source but we wish to highlight

14



the theorems which the user must machine-check to instantiate SigmaPlusTo.
We have designed these theorems to be as close as possible to the pen-and-paper
proof sketches found in the literature while still being formally sufficient. Below
are two examples.

The axiom to valid which must be proven whenever SigmaPlusTo is in-
stantiated is below. Prior to instantiating the axiom, the user has provided to
Coq the set of random coins used to produce the commitment in the first round,
supplementary random coins for the second commitment if any, and the set of
challenges for the first round. The user also provides to Coq a mapping from the
overall statement, first commitment, and challenge to the underlying statement
(ToSt) and a mapping from the same and the witness to the underlying witness
(ToWit).

Definition 5 (to valid). For all statements s ∈ S, witnesses w ∈ W, random
coins r for the first commitment, supplementary random coins r1 for the second
commitment, and challenge e, if s and w are in the relationship R then the
mappings produce a statement and the witness in the relationship R′.

Axiom to_valid : forall s w r r1 e,
Rel s w ->

Rel ’
(ToSt (P1 (P0 s r w, e) r1 w))
(ToWit (P0 s r w, e) r r1 w).

Definition 6 (special soundness). For all statements s ∈ S, all first round
commitments c, l first challenges e, l second commitments c1, and l witnesses
{wi ∈ W ′}li=1 if all the statements constructed by the mapping (ToSt) are in
the relationship with the corresponding witness, and the challenges are distinct
then either the extractor finds a witness or the failure event occurs.

Axiom special_soundness : forall s c (e : vector E l)
(c1 : vector C1 l)(w : vector sig.W l),

bVforall3 (fun a b d => Rel ’ (ToSt (s,c,a,b)) d)
e c1 w ->

allDifferent e ->
Rel s (extractor w e) \/ fail_event s c e.

Here, for a given predicate P and three vectors (v1, v2, v3) of length l, the
function bVforall3 encodes that {P (v1,i, v2,i, v3,i)}li=1. For brevity we omit a
full discussion of our work on 5-round protocols from the paper, the Coq source
contains numerous other ways to build 5-round sigma-protocols from underlying
5- and 3-round protocols which are used in encoding and machine-checking the
Bayer-Groth proof of shuffle.

2.3 9-round protocols

None of the protocols or sub-protocols in Bayer-Groth are 7-rounds protocols
and hence we did not define these, though it would be easy to do. The definition
of a 9-round sigma protocol, as captured by the Coq module SigmaPlus9, is the
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natural generalisation of what we have already shown in the 5-round proto-
cols. We also encoded the combination which will be later used in Bayer-Groth:
specifically how to combine a 3-round and a 5-round into a 9-round in a specific
format. The module SigmaPlus5plus3to9 encodes the details which the user
needs to provide to Coq and machine-check, whereas SigmaPlus5plus3to9Comp
encode the 9-round protocol and machine-checks that it is secure. This separa-
tion of the structural elements of the security proof, which are largely omitted
by Bayer and Groth [8], from the specifics helped enormously in handling the
complexity of the machine-checked proof of security.

2.4 Commitments and Encryption

In practice, most deployed evoting system make use of ElGamal encryption [22]
and Pedersen commitments [36]. However, we follow Haines et al. [30] in using
abstract versions of both encryption and commitments. They defined a class of
encryption schemes, called Terelius-Wikström compatible encryption schemes,
which is closed under both parallel and pairwise composition of ciphertexts. For
example, it is common that the ballot is too large to be encrypted into a single
ciphertext, so we need to encrypt the message into a vector of ciphertexts; when
it comes time to shuffle, we want to mix but keep together the ciphertexts be-
longing to a single voter: this variant of the encryption scheme and correspond-
ing mixnet can be generated automatically using the techniques from Haines et
al. [30]. For example, to machine-check the Terelius-Wikström proof of shuffle
for the PPATC encryption scheme [24], which provides everlasting privacy to
the votes, Gjosteen et al. showed only that the encryption scheme was in the
class, at which point, Coq could automatically use the existing machine-checked
proofs that any scheme in this class can be mixed securely.

Due to the complexity of Bayer-Groth, we were forced to narrow the defini-
tion of compatible encryption scheme slightly, we give the natural language addi-
tions below while their Coq encodings can be found in module EncryptionSchemePlus.

Challenge acts appropriately on message and randomness. If a cipher-
text c = Enc(m; r), encrypting message m using randomness r, is raised
to a challenge e, then the result is a ciphertext which is equivalent to
Enc(me, r ∗ e).

Encryption of zero is zero. The encryption Enc(0; 0) of the message group
identity element with the randomness group identity element is the ci-
phertext group identity element.

These additional restrictions hold for all the use cases of Terelius-Wikström that
we are aware of.

3 Results

In this section we will summarise our results for the Terelius-Wikström and the
Bayer-Groth proofs of shuffle.
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3.1 Terelius-Wikström Proof of Shuffle

The Terelius-Wikström proof of shuffle is the result of combing the work of
Wikström [46] with the follow up work by Terelius and Wikström [43]; the im-
plementation of this proof of shuffle called Verificatum [47] has been used for
political elections in at least Norway and Estonia and possibly elsewhere. It
was, for a significant period, by far the most commonly used proof of shuffle
in political elections; however, at present it is unclear if Bayer-Groth has sur-
passed it in this regard. Haines et al. [30] machine-checked the soundness of the
Terelius-Wikström proof of shuffle for a wide class of encryption schemes and
were able to extract the verifier and use it to check proof transcripts produced
by the CHVote [41] and Verificatum implementations.

Preface To avoid any ambiguity, we do not think what we write about the
TW-proof of shuffle detracts in any way from the contributions of “Proofs of
Restricted Shuffles” [43]. In contrast, our work is both predicated on the enor-
mous real world impact of that work and provides a more formal proof showing
that it does provide the guarantees for which it is relied upon.

There is no expectation that papers laying out new techniques present every
detail correctly; that “Proofs of Restricted Shuffles” nearly does so is to its
credit. However, the paper does contain a number of claims in the propositions
which an author tells us they did not intend. These claims are clearly orthogonal
to the main thrust of the paper and have never been used to our knowledge.
Nevertheless, for these claims to be unambiguously typos to any knowledgeable
reader would require them to be clearly outweighed by conflicting evidence; this
standard of evidence is not met and so the claims are ambiguous. We are aware
of several readers who noted the claims but none of these realised they were
not true or unintended. The correct(ed) claims should be understood as the
authors’ intent and our writing should in no way be taken to contradict that.

The techniques proposed in Proofs of Restricted Shuffle are currently used
in many election systems and members of expert panels (for example in Switzer-
land) continue to argue for wider use. This places a high value for clarity on the
properties of these techniques. As we outline below, we think it is possible for a
system to be designed and implemented which relies on the unintended claims
for security; this would require some carelessness on the part of the system de-
signer but that is hardly inconceivable. In short, a reader who fully understands
the paper would come to the conclusions the authors intend but most readers
of the paper do not appear to have fully understand it.

Overview We have given a formal definition of a 5-round sigmaesque-protocol
which was not present in prior work [30]. Using our new formal definition of a 5-
round sigmaesque-protocol, we attempted to show that Terelius-Wikström was
complete and enjoyed (honest verifier) zero-knowledge; this we were unable to
do because the full protocol is not complete for the relationship claimed in [43].

We were able to construct machine-checked proofs of the Terelius-Wikström proof
of shuffle which show it to satisfy all of the properties originally claimed with
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the exception of completeness and honest-verifier zero-knowledge when the wit-
ness is a break of the commitment schemes; the protocol as described in [43]
is not actually defined in the case where the witness is a break of the commit-
ment scheme which reinforces the obscurity of this case but also makes it more
interesting that the error in the proposition had not been previously identified.
Our experience has been that mistakes in constructions are more common than
mistakes in theorems and that most often the constructions can be patched to
match the theorem. If other readers have the same experience this might explain
why the obvious (in retrospect) contradiction has not been remarked upon.

We stress that the distinction between the original proposition and the actual
properties of the TW proof of shuffle does not affect the soundness, and hence,
the integrity of the election, which was the main focus of the previous work.
Nevertheless, our discovery of the mistake in the proposition which seems to
have gone undetected for over a decade, despite repeated use in government
binding elections, is significant because detecting even subtle errors in a security
critical area is important.

As we have already mentioned, Haines et al. [30] “only” showed the sound-
ness of the TW mixnet and machine-checked what were widely believed [43] to
be sufficient conditions for completeness and zero-knowledge. While machine-
checking the full properties of the Terelius-Wikström proof of shuffle, we found
that it was not complete when the witness is a break of the commitment scheme.
We only discovered this after we had encoded our 5-round protocol definition
and were trying (unsuccessfully) to machine-check the completeness of the 5-
round protocol.

The protocol we were trying to machine check actually differs from the de-
scription in [43] in that the witness to the commitment parameters was an input
to the protocol (whereas it is not in [43]), so in the original paper the protocol
is obviously incomplete when the witness is a break of the commitment scheme.
We had assumed this was obviously an omitted detail in the protocol. We did
not mention the divergence between paper version of the protocol and our ver-
sion in the original version of this paper or the obvious incompleteness of the
paper version, we should have done so.

Details of why completeness does not hold The following discussion of
why completeness does not hold for any straightforward variation of the tech-
nique has been rendered largely moot by the clarification that the authors never
intended it to. We nevertheless include the discussion for historical reasons.

Before we can explain the issue, we need to briefly recap the relationship
proved by the Terelius-Wikström proof of shuffle, and some elements of the
protocol. The statement is of the form: N input ciphertexts c1, ..., cN , output
ciphertext c′1, ..., c

′
N , a public key pk and commitment parameters g, g1, ..., gN .

If Enc is the encryption function of the encryption scheme then the prover
must show knowledge of a permutation π and randomness r̄ such that for all
i ∈ [1, ...N ]:

c′i = cπ(i) ∗ Enc(1, rπ(i)) (Rpk)
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We denote this relationship by Rpk. In the first round of the protocol the
prover commits to the permutation π in the form of the corresponding permu-
tation matrix. The verifier then sends a challenge vector u1, ..., uN , alternatively
the verifier may send a single element which is expanded into the vector of chal-
lenges. The prover then computes u′ as uπ(1), ..., uπ(N).

Letting Rcom denote that two distinct openings have been found for one
commitment, thereby breaking the binding property, Terelius-Wikström [43,
Proposition 3] claims that the protocol is a perfectly complete 5-message honest
verifier zero-knowledge proof of knowledge from the relation Rpk ∨ Rcom. For
the correctness of 5-round protocol to follow from the underlying 3-round sigma
protocol, whenever the relation is true for the 5-round it must be true for the
3-round. One of the relations in 3-round sigma protocol is that the prover knows
a value r? such that: ∏

cui
i = Enc(1, r?) ∗

∏
c′i
u′i

The above relationship will be true if the prover’s witness is for Rpk but is not
true, in general, if the prover’s witness is for Rcom. Consider, for example, the
case of ElGamal encryption when each c′ decrypts to the group identity and the
decryption of

∏
cui
i is not the group identity. In other words, if the ciphertexts

do not have the expected relationship, the span of the vectors of ciphertexts is
not guaranteed to overlap, except for the case where u is all zero which occurs
only with negligible probability; this means in general that (with overwhelming
probability) no witness exists which satisfies the sub-relation.

The proofs of the propositions focus almost entirely on soundness and simply
say “[t]he completeness follows from the completeness of the sigma proof,” this
omitting of what should have been a trivial case is entirely in-keeping with the
norms of the field. However, in this case it has the unfortunate effect of meaning
that unless a reader fills in the omitted details they won’t be triggered to realise
the case doesn’t actually go through with the written claim. Once the claim is
corrected to match the original intent of the authors, the proof goes through
precisely as the authors intended.

Correct(ed) proposition We have machine-checked the following result:

Theorem 1. The Terelius-Wikström proof of shuffle2 is perfectly complete and
honest verifier zero-knowledge for the relation Rpk and has (N, 2) special sound-
ness for the relation Rpk ∨ Rcom, where N is the number of ciphertexts being
mixed.

Has it mattered? A reader may well ask if the difference between the claim
as written and as intended has mattered. To our knowledge it has not, in every
deployed instance we are aware of the users have used the proof of shuffle as
intended.

2as encoded in modules wikSigma and WikstromMixnet
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Could it matter? For this error to matter, the user would need to intend
the proof of shuffle to work when the prover’s witness is for Rcom (even though
the protocol as written is not defined in this case): that is, the prover’s witness
consists of two distinct openings to the same commitment. Something similar is
done for other kinds of zero-knowledge proofs in some coercion-resistant voting
schemes [27, 29] which allow the prover to make “fake” proofs to provide to the
coercer. One could imagine a similar system which provided analogous coercion-
resistance by allowing the mixnet to fake proofs, but, to our knowledge, no such
proposal exists at present within the literature.

3.2 Bayer-Groth Proof of Shuffle

The Bayer-Groth proof of shuffle is a 9-round perfectly complete honest-verifier
zero knowledge argument of knowledge of the relationship Rpk. The proof of
shuffle uses two parameters n and m such that the number of ciphertexts N
is equal to n times m. Since in practice, the proofs are constructed once and
verified many times, the proof size and verifier complexity is more important
than prover complexity. The (asymptotic) proof size for Bayer-Groth is sub-
linear in the number of ciphertexts and the verification time is roughly a third
of Terelius-Wikström. The final shuffle argument in Bayer-Groth is built upon
five underlying zero-knowledge arguments.

For the rest of this section we will go through each argument and summarise
the relationship it proves; we have included the definition of each argument
for completeness and to show the complexity of the pen and paper definitions.
We suggest the reader to skim the definitions of the Bayer-Groth arguments
to get a feel for the kind of calculations involved; since the security has been
machine checked and the compatibility has been tested (Sec. 4), they can be
safely skipped if the reader prefers. We will reference where in the Coq source
the arguments is machine-checked, along with any interesting observations from
that exercise.

3.2.1 Notation

We have largely tried to keep the same notation as the original paper [8] except
where the notation was overloaded. The following notation is required to read
the following subsections:

• H is the ciphertext space of the encryption scheme, and G is the com-
mitment space of the commitment scheme. The field of integers modulo
a prime q is denoted Zq, and the encryption operation is denoted Encpk.
We will denote by x← S the independent and uniform sampling of x from
a set S.

• For two vectors ~v1 and ~v2, we use [~v1; ~v2] for their concatenation. Some-
times the vectors themselves contain vectors. For example, [~a0;A] is the
concatenation of the column vector ~a0 ∈ Znq with the matrix A ∈ Zn×mq

resulting in a matrix in Zn×(1+m)
q .
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• We have replaced the responses in the multi-exponentiation argument of
knowledge which were previously ~a, r, b, s, τ with ta, tr, tb, ts, tτ to remove
the overlap with the witnesses to the statement.

• We have adjusted some of the indices in the soundness of the multi-
exponentiation argument of knowledge to clean up the presentation.

• We have replaced the randomness used in the Hadamard proof previously
denoted as ~bi as ~di to remove the overloading with the witness.

• We have changed comck, which previously referred to matrix commit-
ments, vector commitments, Pedersen commitments and vectors of Peder-
sen commitments, to refer solely to matrix commitments. We now refer to
vector commitments as EPCck and Pedersen commitments as PCck. In the
original paper [8], when ~a ∈ ZNq and N = mn, the notation comck denoted
comck(~a;~r) = (EPCck(a1, · · · , an; r1), · · · ,EPCck(a(m−1)n+1, · · · , a(m−1)n+n; rn)).

We remove this notation and instead write {EPCck(ani+1, · · · , ani+n; ri)}m−1
i=0 .

3.3 Multi-exponentiation Argument of knowledge

The multi-exponentiation is the only argument which involves the ciphertexts,
except for the overall shuffle argument (Sec. 3.8) which uses multi-exponentiation
as a subargument. The formal definition is given below but can be summarised
as: the prover proves knowledge of the randomness contained in the ciphertexts,
raised to some challenge A. Due to the structure of A, as instantiated by the
overall shuffle argument, this will later allow us to extract all the random values
used to re-encrypt.

The description consists of a common reference string with certain global
parameters of the system, in this case, the public key pk of the encryption
scheme and the commitment key ck of the commitment scheme.

Common reference string: pk, ck.

Statement: ~C1, ..., ~Cm ∈ Hn, C ∈ H and ~cA ∈ Gm

Prover’s witness: A = {~aj}mj=1 ∈ Zn×mq , ~r ∈ Zmq and ρ ∈ Zq such that

C = Encpk(1; ρ)

m∏
i=1

~C~aii and ~cA = comck(A;~r)

Initial message: Pick ~a0 ← Znq and r0 ← Zq and b0, s0, τ0, ..., b2m−1, s2m−1, τ2m−1 ∈
Zq and set bm = 0 and sm = 0 and τm = ρ. For k = 0 to 2m − 1, with
k 6= m− 1, compute:

~cA0 = EPCck(~a0; r0) cBk
= PCck(bk; sk)

Ek = Encpk(Gbk ; τk)

k∏
i=0

~C
~ak−i

m−i
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Challenge: x← Zq.

Answer: Set ~x = (1, x, x2, ..., xm)T and compute

ta = [~a0;A]~x tr = [r0;~r] · ~x tb =

2m−1∑
k=0

bkx
k

ts =

2m−1∑
k=0

skx
k tτ =

2m−1∑
k=0

τkx
k

Send ta, tr, tb, ts, tτ .

Verification: Accept if cBm
= PCck(0; 0) and Em = C and

[~cA0
;~cA]~x = EPCck(ta; tr)

2m−1∏
k=0

cx
k

Bk
= PCck(tb; ts)

2m−1∏
k=0

Ex
k

k = Encpk(Gtb ; tτ )

m∏
i=1

~Cx
m−ita
i

Comments We directly machine-checked that the multi-exponentiation ar-
gument of knowledge meets our encoding of the definition of security in a Coq
module called BGMultiArg. We set the failure event to be the case where the
adversary can find two different openings to the same commitment. The most
difficult part of the machine-checked proof was formalising the reasoning around
taking the product of diagonals of the matrix (of ciphertexts). The machine-
checked proof of soundness is close to the original paper proof, we first prove
the various corollaries and lemmas before using them to finish the proof. The
proofs of completeness and zero-knowledge which are sketched in about half a
page in the original paper, take about 500 lines to machine-check.

3.4 Zero Argument

The zero argument is used to efficiently prove that the inner-product of two
committed vectors is zero; it is used in the Hadamard product argument.

Common reference string: pk, ck.

Statement: ~cA,~cB and a specification of a bilinear map

∗ : ZNq × ZNq → Zq

Prover’s witness: A = {~ai}mi=1 and B = {~bi}mi=1 ∈ Zn×mq and ~r,~s ∈ Znq such
that

~cA = comck(A;~r) ~cB = comck(B;~s) 0 =

m∑
i=1

~ai ∗~bi
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Initial message: Pick ~a0,~bm+1 ← Znq and r0, sm+1 ← Zq and compute

~cA0
= EPCck(~a0; r0) cBm+1

= EPCck(~bm+1; sm+1)

Compute d0, ..., d2m as the sum of the diagonals(
~a0 ~a1 · · · ~am

)
~b1

~b2
...

~bm+1




~a0 ∗~b1 ~a1 ∗~b1

. . . ~am ∗~b1

~a0 ∗~b2 ~a1 ∗~b2
. . . ~am ∗~b2

. . .
. . .

. . . ~am ∗~bm

~a0 ∗~bm+1
. . .

. . . ~am ∗~bm+1


d2m

...
dm+1

d0 · · · dm−1 dm

Pick ~t = (t0, ..., t2m) ← Z2m+1
q and set tm+1 = 0 and compute commit-

ments {~cDi = PCck(di; ti)}2mi=0. Send ~cA0 ,
~bm+1,~cD.

Challenge: x← Zq

Answer:

~a =

m∑
i=0

xi~ai r =

m∑
i=0

xiri ~b =

m+1∑
i=1

xm+1−i~bi

s =

m+1∑
i=1

xm+1−isi t =

2m∑
i=0

xiti

Send ~a,~b, r, s, t.

Verification: Accept if ~cDm+1 = PCck(0; 0) and

m∏
i=0

~cx
i

Ai
= EPCck(~a; r)

m+1∏
i=1

cx
m+1−i

Bi
= EPCck(~b; s)

2m∏
i=0

~cx
i

Di
= PCck(~a ∗~b; t)

The Schwarz-Zippel Lemma The zero argument is the first of the Bayer-
Groth subarguments to depend on the Schwarz-Zippel lemma. We therefore
take this opportunity to explain this lemma and how we encode it.

Recall that a polynomial is a zero polynomial iff all coefficients are zero.
The Schwarz-Zippel lemma states that if f(x1, ..., xN ) is a non-zero polynomial
of degree d and we pick a point e from ZNq randomly, then the probability that
f(e) = 0 is at most d/q. Since q was already required to be exponentially large,
this means that, in practice, the chance of the polynomial at point e being
zero without the polynomial being zero is negligible. This lemma can be used
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to check that two polynomials f, f ′ are equal by checking that f − f ′ is the
zero polynomial and is widely used in ZKPs that reason about polynomials,
including in the Terelius-Wikström proof of shuffle and several of the Bayer-
Groth subarguments.

It is crucial that the point e at which the polynomial is sampled is indepen-
dent of the polynomial, furthermore, in a zero-knowledge proof, the polynomial
is often part of the witness and we do not wish to leak it. To resolve this,
the prover commits to the polynomial first and then the verifier replies with
a challenge which is a random point e ∈ ZNq at which the polynomial will be
evaluated.

To encode the failure condition, we state that no witness will not need to
extracted if the commitment can be opened to a non-zero polynomial which
evaluates to zero at the following challenge. In practice, the use is often more
complicated and the coefficients of the polynomial are determined by the val-
ues of several commitments. Nevertheless, the crux is that the polynomial is
determined by values committed to before the challenge is sent.

The 5-round variant of the Terelius-Wikström proof of shuffle also depends
on the Schwarz-Zippel lemma. This was handled in an ad hoc way by Haines
et al. [30] and in our updated Coq proofs for Terelius-Wikström using the same
technique above.

Comments We directly machine-checked that the zero-argument meets our
definition of security in a module called BGZeroArg. These machine-checked
proofs, while still fairly verbose, are much simpler than the multi-exponentiation
argument.

3.5 Hadamard Product Argument

For a matrix A in a given commitment and a vector~b in a different commitment,
the Hadamard product argument is used to prove that ~b =

∏m
i=1 ~ai.

Common reference string: pk, ck

Statement: ~cA, cb

Prover’s witness: A = (~a1, ...,~am), ~r,~b, and s such that

~cA = comck(A;~r) cb = EPCck(~b; s) ~b =

m∏
i=1

~ai

Initial message: Define ~b1 = ~a1 and {~bi =
∏i
j=1 ~aj}

m−1
i=2 and ~bm = ~b. Pick

s2, ..., sm−1 ← Zq and compute {~cBi
= EPCck(~bi; si)}m−1

i=2 . Define s1 = r1

and sm = s and set ~cB1
= ~cA1

and ~cBm
= cb. Send ~cB .

Challenge: x← Z∗q , y ← Zq
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Answer: Define the bilinear map ∗ : Znq×Znq → Zq by (a1, ..., an)T ∗(d1, ..., dn)T =∑n
j=1 ajdjy

j . Define {cDi = ~cx
i

Bi
}m−1
i=1 and cD =

∏m−1
i=1 ~cx

i

Bi+1
and c−1 =

EPCck(−~1; 0) and engage in the Zero Argument for the committed values
satisfying the relation

0 =

m−1∑
i=1

~ai+1 ∗ ~di −~1 ∗ ~d

The prover’s witness in this argument consists of the openings of ~cA2 , ...,~cAm , c−1

and the openings of cD1 , .., cDm−1 , cD.

Verification: Check that ~cB1
= ~cA1

and ~cBm
= cb. Accept if the zero argument

is valid.

Comments The Hadamard product argument is a five-round protocol, which
builds upon the 3-round zero argument, and it is here that we begin to gain good
value from the combinations we proved alongside our definitions. We encode
the additional information required to construct the 5-round protocol from the
underlying 3-round protocol as a SigmaPlusTo5sim module called BGHadProd.
The encoded definitions and machine-checked proofs in this module are less than
half the length of the encoding of the zero or multi-exponentiation arguments.

3.6 Single Value Product Argument

The single value product argument is a 3-round protocol which proves that the
product of an opening to a given commitment is equal to a known value.

Common reference string: pk, ck

Statement: ca ∈ G and b ∈ Zq

Prover’s witness: ~a ∈ Znq and r ∈ Zq such that

ca = EPCck(~a; r) and b =
n∏
i=1

ai

Initial message: Compute

{bi =

i∏
j=1

aj}ni=1

Pick d1, ..., dn, rd ← Zq. Define δ1 = d1 and δn = 0 and pick δ2, ..., δn−1 ←
Zq. Pick s1, sx ← Zq and compute

cd = EPCck(~d; rd) cδ = EPCck(−δ1d2, ...,−δn−1dn; s1)

c∆ = EPCck(δ2 − a2δ1 − b1d2, ..., δn − anδn−1 − bn−1dn; sx)

Send cd, cδ, c∆
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Challenge: x← Zq

Answer: Compute

ã1 = xa1 + d1 ... ãn = xan + dn r̃ = xr + rd

b̃1 = xb1 + δ1 ... b̃n = xbn + δn s̃ = xsx + s1

Send: ã1, b̃1, ..., ãn, b̃n, r̃, s̃.

Verification: The verifier accepts if

cxacd = EPCck(ã1, ..., ãn; r̃)

cx∆cδ = EPCck(xb̃2 − b̃1ã2, ..., xb̃n − b̃n−1ãn; s̃)

b̃1 = ã1 b̃n = xb

Comments We encode the definitions and machine-checked security proofs
for the single value product argument in a module called BGSingleProd. The
machine-checked proofs are straightforward and similar to the pen-and-paper
version.

3.7 Product Argument

The product argument is used to show that the product of all the elements in
a committed matrix is equal to a particular known value.

Common reference string: pk, ck

Statement: ~cA ∈ Gm and b ∈ Zq

Prover’s witness: A ∈ Zn×mq and ~r ∈ Zmq such that

~cA = comck(A;~r) and

n∏
i=1

m∏
j=1

aij = b

Initial message: Pick s← Zq and compute cb = EPCck(
∏m
j=1 a1j , ...,

∏m
j=1 anj ; s).

Send cb to the verifier.

Subarguments: Engage in an Hadamard Product Argument of the relation
~cA = comck(A;~r) and
cb = EPCck(

∏m
j=1 a1j , ...,

∏m
j=1 anj ; s). Engage in a Single Value Product

Argument that b is equal to the product of
∏m
j=1 a1j , ...,

∏m
j=1 anj .

Verification: The verifier accepts if both arguments accept.
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Comments The product argument builds upon the 5-round Hadamard prod-
uct argument and the 3-round single value product argument. We encode the
additional information required to build a 5-round protocol from an underlying
5-round and 3-round protocol in the module SigmaPlus5To5 and then provided
the details of how to construct the machine-checked proofs of security in the
module SigmaPlus5to5Comp. Having taken care of the structural issues, the
actual encodings of the definitions and machine-checked proofs of the product
argument, contained in the Coq module ProdArg, are very short at only 200
lines.

3.8 Shuffle Argument

The shuffle argument is the Bayer-Groth proof of shuffle. It draws upon the
product argument and the multi-exponentiation argument.

Common reference string: pk, ck.

Statement: ~C, ~C ′ ∈ HN with N = mn.

Prover’s witness: π ∈ ΣN and ~ρ ∈ ZNq such that ~C ′ = Encpk(~1; ~ρ)~Cπ.

Initial message: Pick ~r ← Zmq , set ~a = {π(i)}Ni=1 and compute ~cA = {EPCck(ani+1, ..., ani+n; ri)}m−1
i=0 .

Send ~cA.

Challenge: x← Zq.

Answer: Pick ~s ∈ Zmq , set~b = {xπ(i)}Ni=1 and compute ~cB = {EPCck(bni+1, ..., bni+n; si)}m−1
i=0 .

Send ~cB .

Challenge: y, z ← Zq.

Answer: Define ~c−z = {EPCck(−~z; 0)}mi=1 and ~cD = ~cyA~cB . Compute ~d = y~a+~b
and ~t = y~r+~s. Engage in a product argument of openings d1−z, ..., dN−z
and ~t such that

~cD~c−z = {EPCck(dni+1 − z, ..., dni+n − z; ti}m−1
i=0

N∏
i=1

(di − z) =

N∏
i=1

(yi+ xi − z).

Compute ρ = −~ρ · ~b and set ~x = (x, x2, ..., xN )T . Engage in a multi-

exponentiation argument of ~b,~s and ρ such that

~C~x = Encpk(1; ρ)~C ′
~b and

~cB = {EPCck(bni+1, ..., bni+n; si)}m−1
i=0

Verification: The verifier accepts if the product argument and the multi-
exponentiation argument are both valid.
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Comments We encode the extra information required to construct a 9-round
protocol from a 5-round and 3-round protocol in the module SigmaPlus5plus3to9.
The module SigmaPlus5plus3to9Comp then encodes how to construct the 9-
round protocol from this information. The specifics of the shuffle argument are
encoded in the 500 line module ShuffleArg.

4 Applications

In the previous section, we summarised how we encoded and machine-checked
the Bayer-Groth proof of shuffle. Particularly useful was our separation of the
encoding of the structural reasoning about how protocols can be combined from
the specifics of the arguments by Bayer and Groth. However, how can we be
sure that our encoding captures the original pen-and-paper definitions or the
actual computer implementations being used? To answer either of these in a
machine-checked way is not feasible and ultimately unnecessary. If our concern
is the integrity of the elections using the Bayer-Groth proof of shuffle, it suffices
to have a correct verifier which works on the proof transcripts produced by the
deployed systems. This is what we have shown, as explained next.

4.1 Testing with Swiss Post’s system

Background One of the earliest uses of a proof of shuffle in an electronic vot-
ing system deployed for government elections was in Norway [23]. That system,
produced by the prominent vendor Scytl, made use of the Verificatum imple-
mentation we have alluded to earlier. Verificatum remained the most commonly
used proof of shuffle until recently.

The original paper by Bayer and Groth [8] contains the benchmarks of their
C++ implementation of their proof of shuffle. We believe that, at one time,
this implementation was available on github but this appears to no longer be
the case. Scytl created their own implementation of the Bayer-Groth proof of
shuffle no later than 2018, this implementation has subsequently been used, to
our knowledge, for government elections in Australia and Switzerland. We have
already mentioned the issue discovered in 2019 which invalidated the security
of the Scytl implementation due to insecure generation of the commitment pa-
rameters. Following that debacle, Swiss Post bought the rights3 to the Scytl
system and now manages the development in house and is currently working to
have it certified for use in Swiss elections. We have therefor tested our extracted
OCaml verifier on the current version of the Swiss Post implementation. The
current Swiss Post implementation contains some refactoring of the old Scytl
code, but we expect that our verifier will work for the Scytl implementation since
it works for Swiss Post one; however, since the current Scytl implementation is
not public, we are unable to check this.

We used Coq’s extraction facility to produce an OCaml implementation of
the verifier in a file called lib.ml. We changed this code to use the native OCaml

3As far as we aware, the exact rights are not publicly known.
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method for computing the modulus of one number with respect to another, this
is necessary for performance reasons. The Swiss Post implementation is freely
available on github4 and includes some test vectors in a JSON format. We
parsed this JSON file and fed the values into our extracted verifier, see main.ml.
After fixing some minor compatibility issues in our parser, the tests were passing
successfully. We also tried feeding our verifier some invalid data as a sanity check
which it rejected as expected. For the purpose of testing our compatibility we
hard coded the challenges produced by the hash function standing in for the
verifier; we discuss how to do this securely in our future work 5.1.

The redundant data The test vectors provided by Swiss Post contained
more data than our verifier was expecting, which was part of the reason why
writing the parser took more time than expected. Upon investigation, it turns
out that Scytl and Swiss Post had actually followed the original paper by Bayer
and Groth [8] in providing this redundant data. The verification equations of
the Bayer Groth proof of shuffle involve checking that certain commitments
received from the prover are either equal to certain parts of the statement or
equal to certain constants, see the definitions in Section 3. This occurs in the
Multi-exponentiation, Zero, and Hadamard product arguments. These redun-
dant values do not need to be transmitted, we suspect they were included in
the BG paper to simplify notation; this all leads to the slightly odd scenario
where our verifier may accept a transcript which the Swiss Post implementa-
tion rejects because we ignore the redundant data. The presence of this data is
asymptotically irrelevant to the size of the proof of shuffle.

Efficiency We tested the efficiency of our verifier by verifying a shuffle of
6,400 votes each encrypted in two ElGamal ciphertexts, a total 25,600 ElGamal
ciphertexts including the input and output. Our implementation verified the
proof in 16 minutes and 13 seconds running on a single core of an Intel i5
Macbook Pro. The same test data took the Swiss Post implementation 7 minutes
and 40 seconds to verify on the same machine. The relatively slow performance
is due to the use of a 2048bit safe prime group, that is the group of a quadratic
residues modulo a prime p which is itself equal to 2q+1 where q is another prime.
A hypothetical elliptic curve based implementation would be several orders of
magnitude faster. If someone did wish to use our implementation for verifying
a large election, we would suggest parallelising the exponentiation (which is the
most expensive operation) and using some of the tricks we alluded to earlier.

5 Conclusion

We have significantly extended the previous work of Haines et al. [30] to formally
verify (machine-check) the soundness, completeness and zero-knowledge prop-
erties of both the TW and BG proofs of shuffle using the Coq proof-assistant.

4https://gitlab.com/swisspost-evoting/crypto-primitives
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In so doing, we have found that the paper presenting the TW proof of shuffle
has an error in the proposition describing the properties of the proof of shuf-
fle. Our finding exposes an error undetected over the past ten years, albeit one
which does not undermine the soundness of the proof of shuffle. We have also
extracted from Coq a formally verified (machine-checked) verifier in OCaml to
check the evidence produced by implementations of the BG mixnet. Finally, we
have shown that the current Swiss Post implementation of the BG mixnet does
indeed produce valid BG proofs of shuffle on the test cases they have provided.

Now, for argument’s sake, suppose that there is a bug deep inside the Swiss
Post implementation of the BG mixnet. Suppose further that Swiss Post uses it
to count some important election in Switzerland and suppose they publish the
proofs of shuffle produced by their implementation of BG on the election ballots.
Anyone with access to these proofs can now implement a verifier according to
our proven secure executable specification, with appropriate use of the Fiat-
Shamir transform, and check the proofs of shuffle published by Swiss Post.
“Hang on”, we hear you say, “You just assumed that there is some subtle bug
inside the Swiss Post implementation, so why would anyone trust the result of
their election count, even if your verifier accepted it?”. Because, if you run our
verifier on the published proofs of shuffle from their election, and our verifier
does not complain, then we can assert with confidence that the subtle bug, or
any other bug for that matter, did not affect this particular run of the mixnet
on these particular ballots. That is, for this particular election result, you can
safely believe the mixnet’s claim that “my new sequence contains all and only
the encrypted ballots from my initial sequence without tampering”.

5.1 Future work

The downside of interactive proofs is in the name; they are interactive. In
electronic voting, this is normally not a feature since we would like the proofs
(evidence) to be produced once and for any other scrutineering party to be able
to verify later at their leisure. Fortunately, Fiat and Shamir proposed a solution
to this problem [20] which is now called the Fiat-Shamir transform; by replacing
the verifier’s interaction with the output of a hash function we can get a non-
interactive version of the zero-knowledge proof which is provably secure in the
a security model called the random oracle model.

Despite the attraction of the Fiat-Shamir transform, as is so often the case,
the devil is in the details. Bernhard, Pereira, and Warinschi [13] show that, in
practice, the deployed zero-knowledge proofs using the Fiat-Shamir transform
may offer no security. The issue which distinguishes between what Bernhard et
al. call the weak transform and the strong transform is the information that is
input into the hash function. An example of the weak variant of the transform
is found in the famous foundational paper of the random oracle model [9]. The
weak variant only hashes the commitment in the zero-knowledge proof but not
the statement. The discrepancy occurs because the weak transform causes the
post-conditions of the forking lemma [10] to fail to meet the preconditions of
the special-soundness extractor, see 5.1.5 of [11] for full details. As we shall
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explain shortly, this discrepancy can be avoided by ensuring that the statement
is (uniquely) included in the hash.

Definitions Assume the existence of some underlying hash function or key
derivation function H which is used to produce the challenges for the protocol.
We are interested in the information given as input to this function H and
the format of this information. We model this as a function M which takes
the statement, commitment, and some auxiliary information and produces a
bit string which is passed to H. We will denote the statements by S, the
commitments by C, and the auxiliary information by A, thus M has domain
S × C × A and range {0, 1}∗. We will denote the output of the hash function
when used as a challenge as e.

Definition 7 (Strong Fiat-Shamir). A given sigma protocol σ, made non-
interactive using the Fiat-Shamir transform (by replacing the challenge with
H(M(∗))), is implemented strongly if: ∀s, s′ ∈ S, c, c′ ∈ C, a, a′ ∈ A if M(s, c, a) =
M(s′, c′, a′) then (s = s′) ∧ (c = c′).

As discussed above, the reason the proof fails [11] in the case of the weak
transform is that the post-condition on the forking lemma is an insufficient
pre-condition on special-soundness. Specifically, the pre-condition on special-
soundness is that:

(1) s = s′ (2) c = c′ (3) e 6= e′

But only the third condition is guaranteed to be true in general, whereas the first
two follow from the information input into the hash function. In contrast, the
first two conditions follow immediately from the properties of M in Definition 7.

The definition is fairly straightforward but the difficulty will be in machine-
checking that the Swiss Post implementation has this property, which we leave
as future work.
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[3] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe,
Stephan Krenn, and Santiago Zanella Béguelin. Full proof cryptography:
verifiable compilation of efficient zero-knowledge protocols. In the ACM
Conference on Computer and Communications Security, CCS’12, Raleigh,
NC, USA, October 16-18, 2012, pages 488–500, 2012.
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defrawy, Stéphane Graham-Lengrand, Hugo Pacheco, and Vitor Pereira.
Machine-checked ZKP for NP relations: Formally verified security proofs
and implementations of mpc-in-the-head. In CCS, pages 2587–2600. ACM,
2021.

[5] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas
Cremers, Kevin Liao, and Bryan Parno. Sok: Computer-aided cryptogra-
phy. In IEEE Symposium on Security and Privacy, pages 777–795. IEEE,
2021.

[6] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal Certification
of Code-Based Cryptographic Proofs. In 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2009), pages
90–101. ACM, 2009.

[7] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire,
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[30] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. Did you mix me? for-
mally verifying verifiable mix nets in electronic voting. In IEEE Symposium
on Security and Privacy, pages 1748–1765. IEEE, 2021.
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